xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp_hw.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include <linux/delay.h>
5 #include "ice_common.h"
6 #include "ice_ptp_hw.h"
7 #include "ice_ptp_consts.h"
8 #include "ice_cgu_regs.h"
9 
10 static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
11 	DPLL_PIN_FREQUENCY_1PPS,
12 	DPLL_PIN_FREQUENCY_10MHZ,
13 };
14 
15 static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
16 	DPLL_PIN_FREQUENCY_1PPS,
17 };
18 
19 static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
20 	DPLL_PIN_FREQUENCY_10MHZ,
21 };
22 
23 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
24 	{ "CVL-SDP22",	  ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
25 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
26 	{ "CVL-SDP20",	  ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
27 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
28 	{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
29 	{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
30 	{ "SMA1",	  ZL_REF3P, DPLL_PIN_TYPE_EXT,
31 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
32 	{ "SMA2/U.FL2",	  ZL_REF3N, DPLL_PIN_TYPE_EXT,
33 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
34 	{ "GNSS-1PPS",	  ZL_REF4P, DPLL_PIN_TYPE_GNSS,
35 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
36 	{ "OCXO",	  ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0, },
37 };
38 
39 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
40 	{ "CVL-SDP22",	  ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
41 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
42 	{ "CVL-SDP20",	  ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
43 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
44 	{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
45 	{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
46 	{ "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
47 	{ "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
48 	{ "SMA1",	  ZL_REF3P, DPLL_PIN_TYPE_EXT,
49 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
50 	{ "SMA2/U.FL2",	  ZL_REF3N, DPLL_PIN_TYPE_EXT,
51 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
52 	{ "GNSS-1PPS",	  ZL_REF4P, DPLL_PIN_TYPE_GNSS,
53 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
54 	{ "OCXO",	  ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, },
55 };
56 
57 static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
58 	{ "REF-SMA1",	    ZL_OUT0, DPLL_PIN_TYPE_EXT,
59 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
60 	{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
61 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
62 	{ "PHY-CLK",	    ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
63 	{ "MAC-CLK",	    ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
64 	{ "CVL-SDP21",	    ZL_OUT4, DPLL_PIN_TYPE_EXT,
65 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
66 	{ "CVL-SDP23",	    ZL_OUT5, DPLL_PIN_TYPE_EXT,
67 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
68 };
69 
70 static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
71 	{ "REF-SMA1",	    ZL_OUT0, DPLL_PIN_TYPE_EXT,
72 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
73 	{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
74 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
75 	{ "PHY-CLK",	    ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
76 	{ "PHY2-CLK",	    ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
77 	{ "MAC-CLK",	    ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
78 	{ "CVL-SDP21",	    ZL_OUT5, DPLL_PIN_TYPE_EXT,
79 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
80 	{ "CVL-SDP23",	    ZL_OUT6, DPLL_PIN_TYPE_EXT,
81 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
82 };
83 
84 static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
85 	{ "NONE",	  SI_REF0P, 0, 0 },
86 	{ "NONE",	  SI_REF0N, 0, 0 },
87 	{ "SYNCE0_DP",	  SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
88 	{ "SYNCE0_DN",	  SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
89 	{ "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
90 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
91 	{ "NONE",	  SI_REF2N, 0, 0 },
92 	{ "EXT_PPS_OUT",  SI_REF3,  DPLL_PIN_TYPE_EXT,
93 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
94 	{ "INT_PPS_OUT",  SI_REF4,  DPLL_PIN_TYPE_EXT,
95 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
96 };
97 
98 static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
99 	{ "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
100 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
101 	{ "PHY-CLK",	    SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
102 	{ "10MHZ-SMA2",	    SI_OUT2, DPLL_PIN_TYPE_EXT,
103 		ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
104 	{ "PPS-SMA1",	    SI_OUT3, DPLL_PIN_TYPE_EXT,
105 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
106 };
107 
108 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
109 	{ "NONE",	  ZL_REF0P, 0, 0 },
110 	{ "INT_PPS_OUT",  ZL_REF0N, DPLL_PIN_TYPE_EXT,
111 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
112 	{ "SYNCE0_DP",	  ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
113 	{ "SYNCE0_DN",	  ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
114 	{ "NONE",	  ZL_REF2P, 0, 0 },
115 	{ "NONE",	  ZL_REF2N, 0, 0 },
116 	{ "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
117 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
118 	{ "NONE",	  ZL_REF3N, 0, 0 },
119 	{ "EXT_PPS_OUT",  ZL_REF4P, DPLL_PIN_TYPE_EXT,
120 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
121 	{ "OCXO",	  ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
122 };
123 
124 static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
125 	{ "PPS-SMA1",	   ZL_OUT0, DPLL_PIN_TYPE_EXT,
126 		ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
127 	{ "10MHZ-SMA2",	   ZL_OUT1, DPLL_PIN_TYPE_EXT,
128 		ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
129 	{ "PHY-CLK",	   ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
130 	{ "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
131 	{ "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
132 		ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
133 	{ "NONE",	   ZL_OUT5, 0, 0 },
134 };
135 
136 /* Low level functions for interacting with and managing the device clock used
137  * for the Precision Time Protocol.
138  *
139  * The ice hardware represents the current time using three registers:
140  *
141  *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
142  *  +---------------+ +---------------+ +---------------+
143  *  |    32 bits    | |    32 bits    | |    32 bits    |
144  *  +---------------+ +---------------+ +---------------+
145  *
146  * The registers are incremented every clock tick using a 40bit increment
147  * value defined over two registers:
148  *
149  *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
150  *                    +---------------+ +---------------+
151  *                    |    8 bit s    | |    32 bits    |
152  *                    +---------------+ +---------------+
153  *
154  * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
155  * registers every clock source tick. Depending on the specific device
156  * configuration, the clock source frequency could be one of a number of
157  * values.
158  *
159  * For E810 devices, the increment frequency is 812.5 MHz
160  *
161  * For E822 devices the clock can be derived from different sources, and the
162  * increment has an effective frequency of one of the following:
163  * - 823.4375 MHz
164  * - 783.36 MHz
165  * - 796.875 MHz
166  * - 816 MHz
167  * - 830.078125 MHz
168  * - 783.36 MHz
169  *
170  * The hardware captures timestamps in the PHY for incoming packets, and for
171  * outgoing packets on request. To support this, the PHY maintains a timer
172  * that matches the lower 64 bits of the global source timer.
173  *
174  * In order to ensure that the PHY timers and the source timer are equivalent,
175  * shadow registers are used to prepare the desired initial values. A special
176  * sync command is issued to trigger copying from the shadow registers into
177  * the appropriate source and PHY registers simultaneously.
178  *
179  * The driver supports devices which have different PHYs with subtly different
180  * mechanisms to program and control the timers. We divide the devices into
181  * families named after the first major device, E810 and similar devices, and
182  * E822 and similar devices.
183  *
184  * - E822 based devices have additional support for fine grained Vernier
185  *   calibration which requires significant setup
186  * - The layout of timestamp data in the PHY register blocks is different
187  * - The way timer synchronization commands are issued is different.
188  *
189  * To support this, very low level functions have an e810 or e822 suffix
190  * indicating what type of device they work on. Higher level abstractions for
191  * tasks that can be done on both devices do not have the suffix and will
192  * correctly look up the appropriate low level function when running.
193  *
194  * Functions which only make sense on a single device family may not have
195  * a suitable generic implementation
196  */
197 
198 /**
199  * ice_get_ptp_src_clock_index - determine source clock index
200  * @hw: pointer to HW struct
201  *
202  * Determine the source clock index currently in use, based on device
203  * capabilities reported during initialization.
204  */
205 u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
206 {
207 	return hw->func_caps.ts_func_info.tmr_index_assoc;
208 }
209 
210 /**
211  * ice_ptp_read_src_incval - Read source timer increment value
212  * @hw: pointer to HW struct
213  *
214  * Read the increment value of the source timer and return it.
215  */
216 static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
217 {
218 	u32 lo, hi;
219 	u8 tmr_idx;
220 
221 	tmr_idx = ice_get_ptp_src_clock_index(hw);
222 
223 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
224 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
225 
226 	return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
227 }
228 
229 /**
230  * ice_ptp_src_cmd - Prepare source timer for a timer command
231  * @hw: pointer to HW structure
232  * @cmd: Timer command
233  *
234  * Prepare the source timer for an upcoming timer sync command.
235  */
236 void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
237 {
238 	u32 cmd_val;
239 	u8 tmr_idx;
240 
241 	tmr_idx = ice_get_ptp_src_clock_index(hw);
242 	cmd_val = tmr_idx << SEL_CPK_SRC;
243 
244 	switch (cmd) {
245 	case ICE_PTP_INIT_TIME:
246 		cmd_val |= GLTSYN_CMD_INIT_TIME;
247 		break;
248 	case ICE_PTP_INIT_INCVAL:
249 		cmd_val |= GLTSYN_CMD_INIT_INCVAL;
250 		break;
251 	case ICE_PTP_ADJ_TIME:
252 		cmd_val |= GLTSYN_CMD_ADJ_TIME;
253 		break;
254 	case ICE_PTP_ADJ_TIME_AT_TIME:
255 		cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
256 		break;
257 	case ICE_PTP_READ_TIME:
258 		cmd_val |= GLTSYN_CMD_READ_TIME;
259 		break;
260 	case ICE_PTP_NOP:
261 		break;
262 	}
263 
264 	wr32(hw, GLTSYN_CMD, cmd_val);
265 }
266 
267 /**
268  * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
269  * @hw: pointer to HW struct
270  *
271  * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
272  * write immediately. This triggers the hardware to begin executing all of the
273  * source and PHY timer commands synchronously.
274  */
275 static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
276 {
277 	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
278 	ice_flush(hw);
279 }
280 
281 /* E822 family functions
282  *
283  * The following functions operate on the E822 family of devices.
284  */
285 
286 /**
287  * ice_fill_phy_msg_e822 - Fill message data for a PHY register access
288  * @msg: the PHY message buffer to fill in
289  * @port: the port to access
290  * @offset: the register offset
291  */
292 static void
293 ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
294 {
295 	int phy_port, phy, quadtype;
296 
297 	phy_port = port % ICE_PORTS_PER_PHY_E822;
298 	phy = port / ICE_PORTS_PER_PHY_E822;
299 	quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_QUADS_PER_PHY_E822;
300 
301 	if (quadtype == 0) {
302 		msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
303 		msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
304 	} else {
305 		msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
306 		msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
307 	}
308 
309 	if (phy == 0)
310 		msg->dest_dev = rmn_0;
311 	else if (phy == 1)
312 		msg->dest_dev = rmn_1;
313 	else
314 		msg->dest_dev = rmn_2;
315 }
316 
317 /**
318  * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
319  * @low_addr: the low address to check
320  * @high_addr: on return, contains the high address of the 64bit register
321  *
322  * Checks if the provided low address is one of the known 64bit PHY values
323  * represented as two 32bit registers. If it is, return the appropriate high
324  * register offset to use.
325  */
326 static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
327 {
328 	switch (low_addr) {
329 	case P_REG_PAR_PCS_TX_OFFSET_L:
330 		*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
331 		return true;
332 	case P_REG_PAR_PCS_RX_OFFSET_L:
333 		*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
334 		return true;
335 	case P_REG_PAR_TX_TIME_L:
336 		*high_addr = P_REG_PAR_TX_TIME_U;
337 		return true;
338 	case P_REG_PAR_RX_TIME_L:
339 		*high_addr = P_REG_PAR_RX_TIME_U;
340 		return true;
341 	case P_REG_TOTAL_TX_OFFSET_L:
342 		*high_addr = P_REG_TOTAL_TX_OFFSET_U;
343 		return true;
344 	case P_REG_TOTAL_RX_OFFSET_L:
345 		*high_addr = P_REG_TOTAL_RX_OFFSET_U;
346 		return true;
347 	case P_REG_UIX66_10G_40G_L:
348 		*high_addr = P_REG_UIX66_10G_40G_U;
349 		return true;
350 	case P_REG_UIX66_25G_100G_L:
351 		*high_addr = P_REG_UIX66_25G_100G_U;
352 		return true;
353 	case P_REG_TX_CAPTURE_L:
354 		*high_addr = P_REG_TX_CAPTURE_U;
355 		return true;
356 	case P_REG_RX_CAPTURE_L:
357 		*high_addr = P_REG_RX_CAPTURE_U;
358 		return true;
359 	case P_REG_TX_TIMER_INC_PRE_L:
360 		*high_addr = P_REG_TX_TIMER_INC_PRE_U;
361 		return true;
362 	case P_REG_RX_TIMER_INC_PRE_L:
363 		*high_addr = P_REG_RX_TIMER_INC_PRE_U;
364 		return true;
365 	default:
366 		return false;
367 	}
368 }
369 
370 /**
371  * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
372  * @low_addr: the low address to check
373  * @high_addr: on return, contains the high address of the 40bit value
374  *
375  * Checks if the provided low address is one of the known 40bit PHY values
376  * split into two registers with the lower 8 bits in the low register and the
377  * upper 32 bits in the high register. If it is, return the appropriate high
378  * register offset to use.
379  */
380 static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
381 {
382 	switch (low_addr) {
383 	case P_REG_TIMETUS_L:
384 		*high_addr = P_REG_TIMETUS_U;
385 		return true;
386 	case P_REG_PAR_RX_TUS_L:
387 		*high_addr = P_REG_PAR_RX_TUS_U;
388 		return true;
389 	case P_REG_PAR_TX_TUS_L:
390 		*high_addr = P_REG_PAR_TX_TUS_U;
391 		return true;
392 	case P_REG_PCS_RX_TUS_L:
393 		*high_addr = P_REG_PCS_RX_TUS_U;
394 		return true;
395 	case P_REG_PCS_TX_TUS_L:
396 		*high_addr = P_REG_PCS_TX_TUS_U;
397 		return true;
398 	case P_REG_DESK_PAR_RX_TUS_L:
399 		*high_addr = P_REG_DESK_PAR_RX_TUS_U;
400 		return true;
401 	case P_REG_DESK_PAR_TX_TUS_L:
402 		*high_addr = P_REG_DESK_PAR_TX_TUS_U;
403 		return true;
404 	case P_REG_DESK_PCS_RX_TUS_L:
405 		*high_addr = P_REG_DESK_PCS_RX_TUS_U;
406 		return true;
407 	case P_REG_DESK_PCS_TX_TUS_L:
408 		*high_addr = P_REG_DESK_PCS_TX_TUS_U;
409 		return true;
410 	default:
411 		return false;
412 	}
413 }
414 
415 /**
416  * ice_read_phy_reg_e822 - Read a PHY register
417  * @hw: pointer to the HW struct
418  * @port: PHY port to read from
419  * @offset: PHY register offset to read
420  * @val: on return, the contents read from the PHY
421  *
422  * Read a PHY register for the given port over the device sideband queue.
423  */
424 static int
425 ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
426 {
427 	struct ice_sbq_msg_input msg = {0};
428 	int err;
429 
430 	ice_fill_phy_msg_e822(&msg, port, offset);
431 	msg.opcode = ice_sbq_msg_rd;
432 
433 	err = ice_sbq_rw_reg(hw, &msg);
434 	if (err) {
435 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
436 			  err);
437 		return err;
438 	}
439 
440 	*val = msg.data;
441 
442 	return 0;
443 }
444 
445 /**
446  * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
447  * @hw: pointer to the HW struct
448  * @port: PHY port to read from
449  * @low_addr: offset of the lower register to read from
450  * @val: on return, the contents of the 64bit value from the PHY registers
451  *
452  * Reads the two registers associated with a 64bit value and returns it in the
453  * val pointer. The offset always specifies the lower register offset to use.
454  * The high offset is looked up. This function only operates on registers
455  * known to be two parts of a 64bit value.
456  */
457 static int
458 ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
459 {
460 	u32 low, high;
461 	u16 high_addr;
462 	int err;
463 
464 	/* Only operate on registers known to be split into two 32bit
465 	 * registers.
466 	 */
467 	if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
468 		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
469 			  low_addr);
470 		return -EINVAL;
471 	}
472 
473 	err = ice_read_phy_reg_e822(hw, port, low_addr, &low);
474 	if (err) {
475 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
476 			  low_addr, err);
477 		return err;
478 	}
479 
480 	err = ice_read_phy_reg_e822(hw, port, high_addr, &high);
481 	if (err) {
482 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
483 			  high_addr, err);
484 		return err;
485 	}
486 
487 	*val = (u64)high << 32 | low;
488 
489 	return 0;
490 }
491 
492 /**
493  * ice_write_phy_reg_e822 - Write a PHY register
494  * @hw: pointer to the HW struct
495  * @port: PHY port to write to
496  * @offset: PHY register offset to write
497  * @val: The value to write to the register
498  *
499  * Write a PHY register for the given port over the device sideband queue.
500  */
501 static int
502 ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
503 {
504 	struct ice_sbq_msg_input msg = {0};
505 	int err;
506 
507 	ice_fill_phy_msg_e822(&msg, port, offset);
508 	msg.opcode = ice_sbq_msg_wr;
509 	msg.data = val;
510 
511 	err = ice_sbq_rw_reg(hw, &msg);
512 	if (err) {
513 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
514 			  err);
515 		return err;
516 	}
517 
518 	return 0;
519 }
520 
521 /**
522  * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
523  * @hw: pointer to the HW struct
524  * @port: port to write to
525  * @low_addr: offset of the low register
526  * @val: 40b value to write
527  *
528  * Write the provided 40b value to the two associated registers by splitting
529  * it up into two chunks, the lower 8 bits and the upper 32 bits.
530  */
531 static int
532 ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
533 {
534 	u32 low, high;
535 	u16 high_addr;
536 	int err;
537 
538 	/* Only operate on registers known to be split into a lower 8 bit
539 	 * register and an upper 32 bit register.
540 	 */
541 	if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) {
542 		ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
543 			  low_addr);
544 		return -EINVAL;
545 	}
546 
547 	low = (u32)(val & P_REG_40B_LOW_M);
548 	high = (u32)(val >> P_REG_40B_HIGH_S);
549 
550 	err = ice_write_phy_reg_e822(hw, port, low_addr, low);
551 	if (err) {
552 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
553 			  low_addr, err);
554 		return err;
555 	}
556 
557 	err = ice_write_phy_reg_e822(hw, port, high_addr, high);
558 	if (err) {
559 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
560 			  high_addr, err);
561 		return err;
562 	}
563 
564 	return 0;
565 }
566 
567 /**
568  * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
569  * @hw: pointer to the HW struct
570  * @port: PHY port to read from
571  * @low_addr: offset of the lower register to read from
572  * @val: the contents of the 64bit value to write to PHY
573  *
574  * Write the 64bit value to the two associated 32bit PHY registers. The offset
575  * is always specified as the lower register, and the high address is looked
576  * up. This function only operates on registers known to be two parts of
577  * a 64bit value.
578  */
579 static int
580 ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
581 {
582 	u32 low, high;
583 	u16 high_addr;
584 	int err;
585 
586 	/* Only operate on registers known to be split into two 32bit
587 	 * registers.
588 	 */
589 	if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
590 		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
591 			  low_addr);
592 		return -EINVAL;
593 	}
594 
595 	low = lower_32_bits(val);
596 	high = upper_32_bits(val);
597 
598 	err = ice_write_phy_reg_e822(hw, port, low_addr, low);
599 	if (err) {
600 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
601 			  low_addr, err);
602 		return err;
603 	}
604 
605 	err = ice_write_phy_reg_e822(hw, port, high_addr, high);
606 	if (err) {
607 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
608 			  high_addr, err);
609 		return err;
610 	}
611 
612 	return 0;
613 }
614 
615 /**
616  * ice_fill_quad_msg_e822 - Fill message data for quad register access
617  * @msg: the PHY message buffer to fill in
618  * @quad: the quad to access
619  * @offset: the register offset
620  *
621  * Fill a message buffer for accessing a register in a quad shared between
622  * multiple PHYs.
623  */
624 static int
625 ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
626 {
627 	u32 addr;
628 
629 	if (quad >= ICE_MAX_QUAD)
630 		return -EINVAL;
631 
632 	msg->dest_dev = rmn_0;
633 
634 	if ((quad % ICE_QUADS_PER_PHY_E822) == 0)
635 		addr = Q_0_BASE + offset;
636 	else
637 		addr = Q_1_BASE + offset;
638 
639 	msg->msg_addr_low = lower_16_bits(addr);
640 	msg->msg_addr_high = upper_16_bits(addr);
641 
642 	return 0;
643 }
644 
645 /**
646  * ice_read_quad_reg_e822 - Read a PHY quad register
647  * @hw: pointer to the HW struct
648  * @quad: quad to read from
649  * @offset: quad register offset to read
650  * @val: on return, the contents read from the quad
651  *
652  * Read a quad register over the device sideband queue. Quad registers are
653  * shared between multiple PHYs.
654  */
655 int
656 ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
657 {
658 	struct ice_sbq_msg_input msg = {0};
659 	int err;
660 
661 	err = ice_fill_quad_msg_e822(&msg, quad, offset);
662 	if (err)
663 		return err;
664 
665 	msg.opcode = ice_sbq_msg_rd;
666 
667 	err = ice_sbq_rw_reg(hw, &msg);
668 	if (err) {
669 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
670 			  err);
671 		return err;
672 	}
673 
674 	*val = msg.data;
675 
676 	return 0;
677 }
678 
679 /**
680  * ice_write_quad_reg_e822 - Write a PHY quad register
681  * @hw: pointer to the HW struct
682  * @quad: quad to write to
683  * @offset: quad register offset to write
684  * @val: The value to write to the register
685  *
686  * Write a quad register over the device sideband queue. Quad registers are
687  * shared between multiple PHYs.
688  */
689 int
690 ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
691 {
692 	struct ice_sbq_msg_input msg = {0};
693 	int err;
694 
695 	err = ice_fill_quad_msg_e822(&msg, quad, offset);
696 	if (err)
697 		return err;
698 
699 	msg.opcode = ice_sbq_msg_wr;
700 	msg.data = val;
701 
702 	err = ice_sbq_rw_reg(hw, &msg);
703 	if (err) {
704 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
705 			  err);
706 		return err;
707 	}
708 
709 	return 0;
710 }
711 
712 /**
713  * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
714  * @hw: pointer to the HW struct
715  * @quad: the quad to read from
716  * @idx: the timestamp index to read
717  * @tstamp: on return, the 40bit timestamp value
718  *
719  * Read a 40bit timestamp value out of the two associated registers in the
720  * quad memory block that is shared between the internal PHYs of the E822
721  * family of devices.
722  */
723 static int
724 ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
725 {
726 	u16 lo_addr, hi_addr;
727 	u32 lo, hi;
728 	int err;
729 
730 	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
731 	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
732 
733 	err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo);
734 	if (err) {
735 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
736 			  err);
737 		return err;
738 	}
739 
740 	err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi);
741 	if (err) {
742 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
743 			  err);
744 		return err;
745 	}
746 
747 	/* For E822 based internal PHYs, the timestamp is reported with the
748 	 * lower 8 bits in the low register, and the upper 32 bits in the high
749 	 * register.
750 	 */
751 	*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
752 
753 	return 0;
754 }
755 
756 /**
757  * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
758  * @hw: pointer to the HW struct
759  * @quad: the quad to read from
760  * @idx: the timestamp index to reset
761  *
762  * Read the timestamp out of the quad to clear its timestamp status bit from
763  * the PHY quad block that is shared between the internal PHYs of the E822
764  * devices.
765  *
766  * Note that unlike E810, software cannot directly write to the quad memory
767  * bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
768  * to determine which timestamps are valid. Reading a timestamp auto-clears
769  * the valid bit.
770  *
771  * To directly clear the contents of the timestamp block entirely, discarding
772  * all timestamp data at once, software should instead use
773  * ice_ptp_reset_ts_memory_quad_e822().
774  *
775  * This function should only be called on an idx whose bit is set according to
776  * ice_get_phy_tx_tstamp_ready().
777  */
778 static int
779 ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
780 {
781 	u64 unused_tstamp;
782 	int err;
783 
784 	err = ice_read_phy_tstamp_e822(hw, quad, idx, &unused_tstamp);
785 	if (err) {
786 		ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
787 			  quad, idx, err);
788 		return err;
789 	}
790 
791 	return 0;
792 }
793 
794 /**
795  * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block
796  * @hw: pointer to the HW struct
797  * @quad: the quad to read from
798  *
799  * Clear all timestamps from the PHY quad block that is shared between the
800  * internal PHYs on the E822 devices.
801  */
802 void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad)
803 {
804 	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
805 	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
806 }
807 
808 /**
809  * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks
810  * @hw: pointer to the HW struct
811  */
812 static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw)
813 {
814 	unsigned int quad;
815 
816 	for (quad = 0; quad < ICE_MAX_QUAD; quad++)
817 		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
818 }
819 
820 /**
821  * ice_read_cgu_reg_e822 - Read a CGU register
822  * @hw: pointer to the HW struct
823  * @addr: Register address to read
824  * @val: storage for register value read
825  *
826  * Read the contents of a register of the Clock Generation Unit. Only
827  * applicable to E822 devices.
828  */
829 static int
830 ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
831 {
832 	struct ice_sbq_msg_input cgu_msg;
833 	int err;
834 
835 	cgu_msg.opcode = ice_sbq_msg_rd;
836 	cgu_msg.dest_dev = cgu;
837 	cgu_msg.msg_addr_low = addr;
838 	cgu_msg.msg_addr_high = 0x0;
839 
840 	err = ice_sbq_rw_reg(hw, &cgu_msg);
841 	if (err) {
842 		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
843 			  addr, err);
844 		return err;
845 	}
846 
847 	*val = cgu_msg.data;
848 
849 	return err;
850 }
851 
852 /**
853  * ice_write_cgu_reg_e822 - Write a CGU register
854  * @hw: pointer to the HW struct
855  * @addr: Register address to write
856  * @val: value to write into the register
857  *
858  * Write the specified value to a register of the Clock Generation Unit. Only
859  * applicable to E822 devices.
860  */
861 static int
862 ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
863 {
864 	struct ice_sbq_msg_input cgu_msg;
865 	int err;
866 
867 	cgu_msg.opcode = ice_sbq_msg_wr;
868 	cgu_msg.dest_dev = cgu;
869 	cgu_msg.msg_addr_low = addr;
870 	cgu_msg.msg_addr_high = 0x0;
871 	cgu_msg.data = val;
872 
873 	err = ice_sbq_rw_reg(hw, &cgu_msg);
874 	if (err) {
875 		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
876 			  addr, err);
877 		return err;
878 	}
879 
880 	return err;
881 }
882 
883 /**
884  * ice_clk_freq_str - Convert time_ref_freq to string
885  * @clk_freq: Clock frequency
886  *
887  * Convert the specified TIME_REF clock frequency to a string.
888  */
889 static const char *ice_clk_freq_str(u8 clk_freq)
890 {
891 	switch ((enum ice_time_ref_freq)clk_freq) {
892 	case ICE_TIME_REF_FREQ_25_000:
893 		return "25 MHz";
894 	case ICE_TIME_REF_FREQ_122_880:
895 		return "122.88 MHz";
896 	case ICE_TIME_REF_FREQ_125_000:
897 		return "125 MHz";
898 	case ICE_TIME_REF_FREQ_153_600:
899 		return "153.6 MHz";
900 	case ICE_TIME_REF_FREQ_156_250:
901 		return "156.25 MHz";
902 	case ICE_TIME_REF_FREQ_245_760:
903 		return "245.76 MHz";
904 	default:
905 		return "Unknown";
906 	}
907 }
908 
909 /**
910  * ice_clk_src_str - Convert time_ref_src to string
911  * @clk_src: Clock source
912  *
913  * Convert the specified clock source to its string name.
914  */
915 static const char *ice_clk_src_str(u8 clk_src)
916 {
917 	switch ((enum ice_clk_src)clk_src) {
918 	case ICE_CLK_SRC_TCX0:
919 		return "TCX0";
920 	case ICE_CLK_SRC_TIME_REF:
921 		return "TIME_REF";
922 	default:
923 		return "Unknown";
924 	}
925 }
926 
927 /**
928  * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
929  * @hw: pointer to the HW struct
930  * @clk_freq: Clock frequency to program
931  * @clk_src: Clock source to select (TIME_REF, or TCX0)
932  *
933  * Configure the Clock Generation Unit with the desired clock frequency and
934  * time reference, enabling the PLL which drives the PTP hardware clock.
935  */
936 static int
937 ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
938 		     enum ice_clk_src clk_src)
939 {
940 	union tspll_ro_bwm_lf bwm_lf;
941 	union nac_cgu_dword19 dw19;
942 	union nac_cgu_dword22 dw22;
943 	union nac_cgu_dword24 dw24;
944 	union nac_cgu_dword9 dw9;
945 	int err;
946 
947 	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
948 		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
949 			 clk_freq);
950 		return -EINVAL;
951 	}
952 
953 	if (clk_src >= NUM_ICE_CLK_SRC) {
954 		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
955 			 clk_src);
956 		return -EINVAL;
957 	}
958 
959 	if (clk_src == ICE_CLK_SRC_TCX0 &&
960 	    clk_freq != ICE_TIME_REF_FREQ_25_000) {
961 		dev_warn(ice_hw_to_dev(hw),
962 			 "TCX0 only supports 25 MHz frequency\n");
963 		return -EINVAL;
964 	}
965 
966 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val);
967 	if (err)
968 		return err;
969 
970 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
971 	if (err)
972 		return err;
973 
974 	err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
975 	if (err)
976 		return err;
977 
978 	/* Log the current clock configuration */
979 	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
980 		  dw24.field.ts_pll_enable ? "enabled" : "disabled",
981 		  ice_clk_src_str(dw24.field.time_ref_sel),
982 		  ice_clk_freq_str(dw9.field.time_ref_freq_sel),
983 		  bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
984 
985 	/* Disable the PLL before changing the clock source or frequency */
986 	if (dw24.field.ts_pll_enable) {
987 		dw24.field.ts_pll_enable = 0;
988 
989 		err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
990 		if (err)
991 			return err;
992 	}
993 
994 	/* Set the frequency */
995 	dw9.field.time_ref_freq_sel = clk_freq;
996 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val);
997 	if (err)
998 		return err;
999 
1000 	/* Configure the TS PLL feedback divisor */
1001 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val);
1002 	if (err)
1003 		return err;
1004 
1005 	dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
1006 	dw19.field.tspll_ndivratio = 1;
1007 
1008 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val);
1009 	if (err)
1010 		return err;
1011 
1012 	/* Configure the TS PLL post divisor */
1013 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val);
1014 	if (err)
1015 		return err;
1016 
1017 	dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
1018 	dw22.field.time1588clk_sel_div2 = 0;
1019 
1020 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val);
1021 	if (err)
1022 		return err;
1023 
1024 	/* Configure the TS PLL pre divisor and clock source */
1025 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
1026 	if (err)
1027 		return err;
1028 
1029 	dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
1030 	dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
1031 	dw24.field.time_ref_sel = clk_src;
1032 
1033 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
1034 	if (err)
1035 		return err;
1036 
1037 	/* Finally, enable the PLL */
1038 	dw24.field.ts_pll_enable = 1;
1039 
1040 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
1041 	if (err)
1042 		return err;
1043 
1044 	/* Wait to verify if the PLL locks */
1045 	usleep_range(1000, 5000);
1046 
1047 	err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
1048 	if (err)
1049 		return err;
1050 
1051 	if (!bwm_lf.field.plllock_true_lock_cri) {
1052 		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
1053 		return -EBUSY;
1054 	}
1055 
1056 	/* Log the current clock configuration */
1057 	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
1058 		  dw24.field.ts_pll_enable ? "enabled" : "disabled",
1059 		  ice_clk_src_str(dw24.field.time_ref_sel),
1060 		  ice_clk_freq_str(dw9.field.time_ref_freq_sel),
1061 		  bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
1062 
1063 	return 0;
1064 }
1065 
1066 /**
1067  * ice_init_cgu_e822 - Initialize CGU with settings from firmware
1068  * @hw: pointer to the HW structure
1069  *
1070  * Initialize the Clock Generation Unit of the E822 device.
1071  */
1072 static int ice_init_cgu_e822(struct ice_hw *hw)
1073 {
1074 	struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
1075 	union tspll_cntr_bist_settings cntr_bist;
1076 	int err;
1077 
1078 	err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
1079 				    &cntr_bist.val);
1080 	if (err)
1081 		return err;
1082 
1083 	/* Disable sticky lock detection so lock err reported is accurate */
1084 	cntr_bist.field.i_plllock_sel_0 = 0;
1085 	cntr_bist.field.i_plllock_sel_1 = 0;
1086 
1087 	err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
1088 				     cntr_bist.val);
1089 	if (err)
1090 		return err;
1091 
1092 	/* Configure the CGU PLL using the parameters from the function
1093 	 * capabilities.
1094 	 */
1095 	err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref,
1096 				   (enum ice_clk_src)ts_info->clk_src);
1097 	if (err)
1098 		return err;
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
1105  * @hw: pointer to the HW struct
1106  *
1107  * Set the window length used for the vernier port calibration process.
1108  */
1109 static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
1110 {
1111 	u8 port;
1112 
1113 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1114 		int err;
1115 
1116 		err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
1117 					     PTP_VERNIER_WL);
1118 		if (err) {
1119 			ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
1120 				  port, err);
1121 			return err;
1122 		}
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 /**
1129  * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
1130  * @hw: pointer to HW struct
1131  *
1132  * Perform PHC initialization steps specific to E822 devices.
1133  */
1134 static int ice_ptp_init_phc_e822(struct ice_hw *hw)
1135 {
1136 	int err;
1137 	u32 regval;
1138 
1139 	/* Enable reading switch and PHY registers over the sideband queue */
1140 #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
1141 #define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
1142 	regval = rd32(hw, PF_SB_REM_DEV_CTL);
1143 	regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
1144 		   PF_SB_REM_DEV_CTL_PHY0);
1145 	wr32(hw, PF_SB_REM_DEV_CTL, regval);
1146 
1147 	/* Initialize the Clock Generation Unit */
1148 	err = ice_init_cgu_e822(hw);
1149 	if (err)
1150 		return err;
1151 
1152 	/* Set window length for all the ports */
1153 	return ice_ptp_set_vernier_wl(hw);
1154 }
1155 
1156 /**
1157  * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
1158  * @hw: pointer to the HW struct
1159  * @time: Time to initialize the PHY port clocks to
1160  *
1161  * Program the PHY port registers with a new initial time value. The port
1162  * clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
1163  * command. The time value is the upper 32 bits of the PHY timer, usually in
1164  * units of nominal nanoseconds.
1165  */
1166 static int
1167 ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
1168 {
1169 	u64 phy_time;
1170 	u8 port;
1171 	int err;
1172 
1173 	/* The time represents the upper 32 bits of the PHY timer, so we need
1174 	 * to shift to account for this when programming.
1175 	 */
1176 	phy_time = (u64)time << 32;
1177 
1178 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1179 		/* Tx case */
1180 		err = ice_write_64b_phy_reg_e822(hw, port,
1181 						 P_REG_TX_TIMER_INC_PRE_L,
1182 						 phy_time);
1183 		if (err)
1184 			goto exit_err;
1185 
1186 		/* Rx case */
1187 		err = ice_write_64b_phy_reg_e822(hw, port,
1188 						 P_REG_RX_TIMER_INC_PRE_L,
1189 						 phy_time);
1190 		if (err)
1191 			goto exit_err;
1192 	}
1193 
1194 	return 0;
1195 
1196 exit_err:
1197 	ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1198 		  port, err);
1199 
1200 	return err;
1201 }
1202 
1203 /**
1204  * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
1205  * @hw: pointer to HW struct
1206  * @port: Port number to be programmed
1207  * @time: time in cycles to adjust the port Tx and Rx clocks
1208  *
1209  * Program the port for an atomic adjustment by writing the Tx and Rx timer
1210  * registers. The atomic adjustment won't be completed until the driver issues
1211  * an ICE_PTP_ADJ_TIME command.
1212  *
1213  * Note that time is not in units of nanoseconds. It is in clock time
1214  * including the lower sub-nanosecond portion of the port timer.
1215  *
1216  * Negative adjustments are supported using 2s complement arithmetic.
1217  */
1218 static int
1219 ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
1220 {
1221 	u32 l_time, u_time;
1222 	int err;
1223 
1224 	l_time = lower_32_bits(time);
1225 	u_time = upper_32_bits(time);
1226 
1227 	/* Tx case */
1228 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
1229 				     l_time);
1230 	if (err)
1231 		goto exit_err;
1232 
1233 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
1234 				     u_time);
1235 	if (err)
1236 		goto exit_err;
1237 
1238 	/* Rx case */
1239 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
1240 				     l_time);
1241 	if (err)
1242 		goto exit_err;
1243 
1244 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
1245 				     u_time);
1246 	if (err)
1247 		goto exit_err;
1248 
1249 	return 0;
1250 
1251 exit_err:
1252 	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1253 		  port, err);
1254 	return err;
1255 }
1256 
1257 /**
1258  * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
1259  * @hw: pointer to HW struct
1260  * @adj: adjustment in nanoseconds
1261  *
1262  * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1263  * Tx and Rx port registers. The actual adjustment is completed by issuing an
1264  * ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
1265  */
1266 static int
1267 ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
1268 {
1269 	s64 cycles;
1270 	u8 port;
1271 
1272 	/* The port clock supports adjustment of the sub-nanosecond portion of
1273 	 * the clock. We shift the provided adjustment in nanoseconds to
1274 	 * calculate the appropriate adjustment to program into the PHY ports.
1275 	 */
1276 	if (adj > 0)
1277 		cycles = (s64)adj << 32;
1278 	else
1279 		cycles = -(((s64)-adj) << 32);
1280 
1281 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1282 		int err;
1283 
1284 		err = ice_ptp_prep_port_adj_e822(hw, port, cycles);
1285 		if (err)
1286 			return err;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
1294  * @hw: pointer to HW struct
1295  * @incval: new increment value to prepare
1296  *
1297  * Prepare each of the PHY ports for a new increment value by programming the
1298  * port's TIMETUS registers. The new increment value will be updated after
1299  * issuing an ICE_PTP_INIT_INCVAL command.
1300  */
1301 static int
1302 ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
1303 {
1304 	int err;
1305 	u8 port;
1306 
1307 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1308 		err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
1309 						 incval);
1310 		if (err)
1311 			goto exit_err;
1312 	}
1313 
1314 	return 0;
1315 
1316 exit_err:
1317 	ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1318 		  port, err);
1319 
1320 	return err;
1321 }
1322 
1323 /**
1324  * ice_ptp_read_port_capture - Read a port's local time capture
1325  * @hw: pointer to HW struct
1326  * @port: Port number to read
1327  * @tx_ts: on return, the Tx port time capture
1328  * @rx_ts: on return, the Rx port time capture
1329  *
1330  * Read the port's Tx and Rx local time capture values.
1331  *
1332  * Note this has no equivalent for the E810 devices.
1333  */
1334 static int
1335 ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
1336 {
1337 	int err;
1338 
1339 	/* Tx case */
1340 	err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
1341 	if (err) {
1342 		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1343 			  err);
1344 		return err;
1345 	}
1346 
1347 	ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
1348 		  (unsigned long long)*tx_ts);
1349 
1350 	/* Rx case */
1351 	err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
1352 	if (err) {
1353 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1354 			  err);
1355 		return err;
1356 	}
1357 
1358 	ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
1359 		  (unsigned long long)*rx_ts);
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * ice_ptp_write_port_cmd_e822 - Prepare a single PHY port for a timer command
1366  * @hw: pointer to HW struct
1367  * @port: Port to which cmd has to be sent
1368  * @cmd: Command to be sent to the port
1369  *
1370  * Prepare the requested port for an upcoming timer sync command.
1371  *
1372  * Do not use this function directly. If you want to configure exactly one
1373  * port, use ice_ptp_one_port_cmd() instead.
1374  */
1375 static int
1376 ice_ptp_write_port_cmd_e822(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
1377 {
1378 	u32 cmd_val, val;
1379 	u8 tmr_idx;
1380 	int err;
1381 
1382 	tmr_idx = ice_get_ptp_src_clock_index(hw);
1383 	cmd_val = tmr_idx << SEL_PHY_SRC;
1384 	switch (cmd) {
1385 	case ICE_PTP_INIT_TIME:
1386 		cmd_val |= PHY_CMD_INIT_TIME;
1387 		break;
1388 	case ICE_PTP_INIT_INCVAL:
1389 		cmd_val |= PHY_CMD_INIT_INCVAL;
1390 		break;
1391 	case ICE_PTP_ADJ_TIME:
1392 		cmd_val |= PHY_CMD_ADJ_TIME;
1393 		break;
1394 	case ICE_PTP_READ_TIME:
1395 		cmd_val |= PHY_CMD_READ_TIME;
1396 		break;
1397 	case ICE_PTP_ADJ_TIME_AT_TIME:
1398 		cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
1399 		break;
1400 	case ICE_PTP_NOP:
1401 		break;
1402 	}
1403 
1404 	/* Tx case */
1405 	/* Read, modify, write */
1406 	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val);
1407 	if (err) {
1408 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
1409 			  err);
1410 		return err;
1411 	}
1412 
1413 	/* Modify necessary bits only and perform write */
1414 	val &= ~TS_CMD_MASK;
1415 	val |= cmd_val;
1416 
1417 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
1418 	if (err) {
1419 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1420 			  err);
1421 		return err;
1422 	}
1423 
1424 	/* Rx case */
1425 	/* Read, modify, write */
1426 	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val);
1427 	if (err) {
1428 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
1429 			  err);
1430 		return err;
1431 	}
1432 
1433 	/* Modify necessary bits only and perform write */
1434 	val &= ~TS_CMD_MASK;
1435 	val |= cmd_val;
1436 
1437 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
1438 	if (err) {
1439 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1440 			  err);
1441 		return err;
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 /**
1448  * ice_ptp_one_port_cmd - Prepare one port for a timer command
1449  * @hw: pointer to the HW struct
1450  * @configured_port: the port to configure with configured_cmd
1451  * @configured_cmd: timer command to prepare on the configured_port
1452  *
1453  * Prepare the configured_port for the configured_cmd, and prepare all other
1454  * ports for ICE_PTP_NOP. This causes the configured_port to execute the
1455  * desired command while all other ports perform no operation.
1456  */
1457 static int
1458 ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
1459 		     enum ice_ptp_tmr_cmd configured_cmd)
1460 {
1461 	u8 port;
1462 
1463 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1464 		enum ice_ptp_tmr_cmd cmd;
1465 		int err;
1466 
1467 		if (port == configured_port)
1468 			cmd = configured_cmd;
1469 		else
1470 			cmd = ICE_PTP_NOP;
1471 
1472 		err = ice_ptp_write_port_cmd_e822(hw, port, cmd);
1473 		if (err)
1474 			return err;
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 /**
1481  * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
1482  * @hw: pointer to the HW struct
1483  * @cmd: timer command to prepare
1484  *
1485  * Prepare all ports connected to this device for an upcoming timer sync
1486  * command.
1487  */
1488 static int
1489 ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
1490 {
1491 	u8 port;
1492 
1493 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1494 		int err;
1495 
1496 		err = ice_ptp_write_port_cmd_e822(hw, port, cmd);
1497 		if (err)
1498 			return err;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 /* E822 Vernier calibration functions
1505  *
1506  * The following functions are used as part of the vernier calibration of
1507  * a port. This calibration increases the precision of the timestamps on the
1508  * port.
1509  */
1510 
1511 /**
1512  * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
1513  * @hw: pointer to HW struct
1514  * @port: the port to read from
1515  * @link_out: if non-NULL, holds link speed on success
1516  * @fec_out: if non-NULL, holds FEC algorithm on success
1517  *
1518  * Read the serdes data for the PHY port and extract the link speed and FEC
1519  * algorithm.
1520  */
1521 static int
1522 ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
1523 			       enum ice_ptp_link_spd *link_out,
1524 			       enum ice_ptp_fec_mode *fec_out)
1525 {
1526 	enum ice_ptp_link_spd link;
1527 	enum ice_ptp_fec_mode fec;
1528 	u32 serdes;
1529 	int err;
1530 
1531 	err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes);
1532 	if (err) {
1533 		ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
1534 		return err;
1535 	}
1536 
1537 	/* Determine the FEC algorithm */
1538 	fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
1539 
1540 	serdes &= P_REG_LINK_SPEED_SERDES_M;
1541 
1542 	/* Determine the link speed */
1543 	if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
1544 		switch (serdes) {
1545 		case ICE_PTP_SERDES_25G:
1546 			link = ICE_PTP_LNK_SPD_25G_RS;
1547 			break;
1548 		case ICE_PTP_SERDES_50G:
1549 			link = ICE_PTP_LNK_SPD_50G_RS;
1550 			break;
1551 		case ICE_PTP_SERDES_100G:
1552 			link = ICE_PTP_LNK_SPD_100G_RS;
1553 			break;
1554 		default:
1555 			return -EIO;
1556 		}
1557 	} else {
1558 		switch (serdes) {
1559 		case ICE_PTP_SERDES_1G:
1560 			link = ICE_PTP_LNK_SPD_1G;
1561 			break;
1562 		case ICE_PTP_SERDES_10G:
1563 			link = ICE_PTP_LNK_SPD_10G;
1564 			break;
1565 		case ICE_PTP_SERDES_25G:
1566 			link = ICE_PTP_LNK_SPD_25G;
1567 			break;
1568 		case ICE_PTP_SERDES_40G:
1569 			link = ICE_PTP_LNK_SPD_40G;
1570 			break;
1571 		case ICE_PTP_SERDES_50G:
1572 			link = ICE_PTP_LNK_SPD_50G;
1573 			break;
1574 		default:
1575 			return -EIO;
1576 		}
1577 	}
1578 
1579 	if (link_out)
1580 		*link_out = link;
1581 	if (fec_out)
1582 		*fec_out = fec;
1583 
1584 	return 0;
1585 }
1586 
1587 /**
1588  * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
1589  * @hw: pointer to HW struct
1590  * @port: to configure the quad for
1591  */
1592 static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
1593 {
1594 	enum ice_ptp_link_spd link_spd;
1595 	int err;
1596 	u32 val;
1597 	u8 quad;
1598 
1599 	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL);
1600 	if (err) {
1601 		ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
1602 			  err);
1603 		return;
1604 	}
1605 
1606 	quad = port / ICE_PORTS_PER_QUAD;
1607 
1608 	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
1609 	if (err) {
1610 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
1611 			  err);
1612 		return;
1613 	}
1614 
1615 	if (link_spd >= ICE_PTP_LNK_SPD_40G)
1616 		val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1617 	else
1618 		val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1619 
1620 	err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
1621 	if (err) {
1622 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
1623 			  err);
1624 		return;
1625 	}
1626 }
1627 
1628 /**
1629  * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
1630  * @hw: pointer to the HW structure
1631  * @port: the port to configure
1632  *
1633  * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
1634  * hardware clock time units (TUs). That is, determine the number of TUs per
1635  * serdes unit interval, and program the UIX registers with this conversion.
1636  *
1637  * This conversion is used as part of the calibration process when determining
1638  * the additional error of a timestamp vs the real time of transmission or
1639  * receipt of the packet.
1640  *
1641  * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
1642  * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
1643  *
1644  * To calculate the conversion ratio, we use the following facts:
1645  *
1646  * a) the clock frequency in Hz (cycles per second)
1647  * b) the number of TUs per cycle (the increment value of the clock)
1648  * c) 1 second per 1 billion nanoseconds
1649  * d) the duration of 66 UIs in nanoseconds
1650  *
1651  * Given these facts, we can use the following table to work out what ratios
1652  * to multiply in order to get the number of TUs per 66 UIs:
1653  *
1654  * cycles |   1 second   | incval (TUs) | nanoseconds
1655  * -------+--------------+--------------+-------------
1656  * second | 1 billion ns |    cycle     |   66 UIs
1657  *
1658  * To perform the multiplication using integers without too much loss of
1659  * precision, we can take use the following equation:
1660  *
1661  * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
1662  *
1663  * We scale up to using 6600 UI instead of 66 in order to avoid fractional
1664  * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
1665  *
1666  * The increment value has a maximum expected range of about 34 bits, while
1667  * the frequency value is about 29 bits. Multiplying these values shouldn't
1668  * overflow the 64 bits. However, we must then further multiply them again by
1669  * the Serdes unit interval duration. To avoid overflow here, we split the
1670  * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
1671  * a divide by 390,625,000. This does lose some precision, but avoids
1672  * miscalculation due to arithmetic overflow.
1673  */
1674 static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
1675 {
1676 	u64 cur_freq, clk_incval, tu_per_sec, uix;
1677 	int err;
1678 
1679 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1680 	clk_incval = ice_ptp_read_src_incval(hw);
1681 
1682 	/* Calculate TUs per second divided by 256 */
1683 	tu_per_sec = (cur_freq * clk_incval) >> 8;
1684 
1685 #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
1686 #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
1687 
1688 	/* Program the 10Gb/40Gb conversion ratio */
1689 	uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
1690 
1691 	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
1692 					 uix);
1693 	if (err) {
1694 		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
1695 			  err);
1696 		return err;
1697 	}
1698 
1699 	/* Program the 25Gb/100Gb conversion ratio */
1700 	uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
1701 
1702 	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
1703 					 uix);
1704 	if (err) {
1705 		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
1706 			  err);
1707 		return err;
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 /**
1714  * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
1715  * @hw: pointer to the HW struct
1716  * @port: port to configure
1717  *
1718  * Configure the number of TUs for the PAR and PCS clocks used as part of the
1719  * timestamp calibration process. This depends on the link speed, as the PHY
1720  * uses different markers depending on the speed.
1721  *
1722  * 1Gb/10Gb/25Gb:
1723  * - Tx/Rx PAR/PCS markers
1724  *
1725  * 25Gb RS:
1726  * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1727  *
1728  * 40Gb/50Gb:
1729  * - Tx/Rx PAR/PCS markers
1730  * - Rx Deskew PAR/PCS markers
1731  *
1732  * 50G RS and 100GB RS:
1733  * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1734  * - Rx Deskew PAR/PCS markers
1735  * - Tx PAR/PCS markers
1736  *
1737  * To calculate the conversion, we use the PHC clock frequency (cycles per
1738  * second), the increment value (TUs per cycle), and the related PHY clock
1739  * frequency to calculate the TUs per unit of the PHY link clock. The
1740  * following table shows how the units convert:
1741  *
1742  * cycles |  TUs  | second
1743  * -------+-------+--------
1744  * second | cycle | cycles
1745  *
1746  * For each conversion register, look up the appropriate frequency from the
1747  * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
1748  * this to the appropriate register, preparing hardware to perform timestamp
1749  * calibration to calculate the total Tx or Rx offset to adjust the timestamp
1750  * in order to calibrate for the internal PHY delays.
1751  *
1752  * Note that the increment value ranges up to ~34 bits, and the clock
1753  * frequency is ~29 bits, so multiplying them together should fit within the
1754  * 64 bit arithmetic.
1755  */
1756 static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
1757 {
1758 	u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
1759 	enum ice_ptp_link_spd link_spd;
1760 	enum ice_ptp_fec_mode fec_mode;
1761 	int err;
1762 
1763 	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1764 	if (err)
1765 		return err;
1766 
1767 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1768 	clk_incval = ice_ptp_read_src_incval(hw);
1769 
1770 	/* Calculate TUs per cycle of the PHC clock */
1771 	tu_per_sec = cur_freq * clk_incval;
1772 
1773 	/* For each PHY conversion register, look up the appropriate link
1774 	 * speed frequency and determine the TUs per that clock's cycle time.
1775 	 * Split this into a high and low value and then program the
1776 	 * appropriate register. If that link speed does not use the
1777 	 * associated register, write zeros to clear it instead.
1778 	 */
1779 
1780 	/* P_REG_PAR_TX_TUS */
1781 	if (e822_vernier[link_spd].tx_par_clk)
1782 		phy_tus = div_u64(tu_per_sec,
1783 				  e822_vernier[link_spd].tx_par_clk);
1784 	else
1785 		phy_tus = 0;
1786 
1787 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
1788 					 phy_tus);
1789 	if (err)
1790 		return err;
1791 
1792 	/* P_REG_PAR_RX_TUS */
1793 	if (e822_vernier[link_spd].rx_par_clk)
1794 		phy_tus = div_u64(tu_per_sec,
1795 				  e822_vernier[link_spd].rx_par_clk);
1796 	else
1797 		phy_tus = 0;
1798 
1799 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
1800 					 phy_tus);
1801 	if (err)
1802 		return err;
1803 
1804 	/* P_REG_PCS_TX_TUS */
1805 	if (e822_vernier[link_spd].tx_pcs_clk)
1806 		phy_tus = div_u64(tu_per_sec,
1807 				  e822_vernier[link_spd].tx_pcs_clk);
1808 	else
1809 		phy_tus = 0;
1810 
1811 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
1812 					 phy_tus);
1813 	if (err)
1814 		return err;
1815 
1816 	/* P_REG_PCS_RX_TUS */
1817 	if (e822_vernier[link_spd].rx_pcs_clk)
1818 		phy_tus = div_u64(tu_per_sec,
1819 				  e822_vernier[link_spd].rx_pcs_clk);
1820 	else
1821 		phy_tus = 0;
1822 
1823 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
1824 					 phy_tus);
1825 	if (err)
1826 		return err;
1827 
1828 	/* P_REG_DESK_PAR_TX_TUS */
1829 	if (e822_vernier[link_spd].tx_desk_rsgb_par)
1830 		phy_tus = div_u64(tu_per_sec,
1831 				  e822_vernier[link_spd].tx_desk_rsgb_par);
1832 	else
1833 		phy_tus = 0;
1834 
1835 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
1836 					 phy_tus);
1837 	if (err)
1838 		return err;
1839 
1840 	/* P_REG_DESK_PAR_RX_TUS */
1841 	if (e822_vernier[link_spd].rx_desk_rsgb_par)
1842 		phy_tus = div_u64(tu_per_sec,
1843 				  e822_vernier[link_spd].rx_desk_rsgb_par);
1844 	else
1845 		phy_tus = 0;
1846 
1847 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
1848 					 phy_tus);
1849 	if (err)
1850 		return err;
1851 
1852 	/* P_REG_DESK_PCS_TX_TUS */
1853 	if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
1854 		phy_tus = div_u64(tu_per_sec,
1855 				  e822_vernier[link_spd].tx_desk_rsgb_pcs);
1856 	else
1857 		phy_tus = 0;
1858 
1859 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
1860 					 phy_tus);
1861 	if (err)
1862 		return err;
1863 
1864 	/* P_REG_DESK_PCS_RX_TUS */
1865 	if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
1866 		phy_tus = div_u64(tu_per_sec,
1867 				  e822_vernier[link_spd].rx_desk_rsgb_pcs);
1868 	else
1869 		phy_tus = 0;
1870 
1871 	return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
1872 					  phy_tus);
1873 }
1874 
1875 /**
1876  * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
1877  * @hw: pointer to the HW struct
1878  * @link_spd: the Link speed to calculate for
1879  *
1880  * Calculate the fixed offset due to known static latency data.
1881  */
1882 static u64
1883 ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
1884 {
1885 	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
1886 
1887 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1888 	clk_incval = ice_ptp_read_src_incval(hw);
1889 
1890 	/* Calculate TUs per second */
1891 	tu_per_sec = cur_freq * clk_incval;
1892 
1893 	/* Calculate number of TUs to add for the fixed Tx latency. Since the
1894 	 * latency measurement is in 1/100th of a nanosecond, we need to
1895 	 * multiply by tu_per_sec and then divide by 1e11. This calculation
1896 	 * overflows 64 bit integer arithmetic, so break it up into two
1897 	 * divisions by 1e4 first then by 1e7.
1898 	 */
1899 	fixed_offset = div_u64(tu_per_sec, 10000);
1900 	fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
1901 	fixed_offset = div_u64(fixed_offset, 10000000);
1902 
1903 	return fixed_offset;
1904 }
1905 
1906 /**
1907  * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
1908  * @hw: pointer to the HW struct
1909  * @port: the PHY port to configure
1910  *
1911  * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
1912  * adjust Tx timestamps by. This is calculated by combining some known static
1913  * latency along with the Vernier offset computations done by hardware.
1914  *
1915  * This function will not return successfully until the Tx offset calculations
1916  * have been completed, which requires waiting until at least one packet has
1917  * been transmitted by the device. It is safe to call this function
1918  * periodically until calibration succeeds, as it will only program the offset
1919  * once.
1920  *
1921  * To avoid overflow, when calculating the offset based on the known static
1922  * latency values, we use measurements in 1/100th of a nanosecond, and divide
1923  * the TUs per second up front. This avoids overflow while allowing
1924  * calculation of the adjustment using integer arithmetic.
1925  *
1926  * Returns zero on success, -EBUSY if the hardware vernier offset
1927  * calibration has not completed, or another error code on failure.
1928  */
1929 int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
1930 {
1931 	enum ice_ptp_link_spd link_spd;
1932 	enum ice_ptp_fec_mode fec_mode;
1933 	u64 total_offset, val;
1934 	int err;
1935 	u32 reg;
1936 
1937 	/* Nothing to do if we've already programmed the offset */
1938 	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, &reg);
1939 	if (err) {
1940 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
1941 			  port, err);
1942 		return err;
1943 	}
1944 
1945 	if (reg)
1946 		return 0;
1947 
1948 	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &reg);
1949 	if (err) {
1950 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
1951 			  port, err);
1952 		return err;
1953 	}
1954 
1955 	if (!(reg & P_REG_TX_OV_STATUS_OV_M))
1956 		return -EBUSY;
1957 
1958 	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1959 	if (err)
1960 		return err;
1961 
1962 	total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
1963 
1964 	/* Read the first Vernier offset from the PHY register and add it to
1965 	 * the total offset.
1966 	 */
1967 	if (link_spd == ICE_PTP_LNK_SPD_1G ||
1968 	    link_spd == ICE_PTP_LNK_SPD_10G ||
1969 	    link_spd == ICE_PTP_LNK_SPD_25G ||
1970 	    link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1971 	    link_spd == ICE_PTP_LNK_SPD_40G ||
1972 	    link_spd == ICE_PTP_LNK_SPD_50G) {
1973 		err = ice_read_64b_phy_reg_e822(hw, port,
1974 						P_REG_PAR_PCS_TX_OFFSET_L,
1975 						&val);
1976 		if (err)
1977 			return err;
1978 
1979 		total_offset += val;
1980 	}
1981 
1982 	/* For Tx, we only need to use the second Vernier offset for
1983 	 * multi-lane link speeds with RS-FEC. The lanes will always be
1984 	 * aligned.
1985 	 */
1986 	if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1987 	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1988 		err = ice_read_64b_phy_reg_e822(hw, port,
1989 						P_REG_PAR_TX_TIME_L,
1990 						&val);
1991 		if (err)
1992 			return err;
1993 
1994 		total_offset += val;
1995 	}
1996 
1997 	/* Now that the total offset has been calculated, program it to the
1998 	 * PHY and indicate that the Tx offset is ready. After this,
1999 	 * timestamps will be enabled.
2000 	 */
2001 	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
2002 					 total_offset);
2003 	if (err)
2004 		return err;
2005 
2006 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
2007 	if (err)
2008 		return err;
2009 
2010 	dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
2011 		 port);
2012 
2013 	return 0;
2014 }
2015 
2016 /**
2017  * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
2018  * @hw: pointer to the HW struct
2019  * @port: the PHY port to adjust for
2020  * @link_spd: the current link speed of the PHY
2021  * @fec_mode: the current FEC mode of the PHY
2022  * @pmd_adj: on return, the amount to adjust the Rx total offset by
2023  *
2024  * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
2025  * This varies by link speed and FEC mode. The value calculated accounts for
2026  * various delays caused when receiving a packet.
2027  */
2028 static int
2029 ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
2030 			  enum ice_ptp_link_spd link_spd,
2031 			  enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
2032 {
2033 	u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
2034 	u8 pmd_align;
2035 	u32 val;
2036 	int err;
2037 
2038 	err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val);
2039 	if (err) {
2040 		ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
2041 			  err);
2042 		return err;
2043 	}
2044 
2045 	pmd_align = (u8)val;
2046 
2047 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
2048 	clk_incval = ice_ptp_read_src_incval(hw);
2049 
2050 	/* Calculate TUs per second */
2051 	tu_per_sec = cur_freq * clk_incval;
2052 
2053 	/* The PMD alignment adjustment measurement depends on the link speed,
2054 	 * and whether FEC is enabled. For each link speed, the alignment
2055 	 * adjustment is calculated by dividing a value by the length of
2056 	 * a Time Unit in nanoseconds.
2057 	 *
2058 	 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
2059 	 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
2060 	 * 10G w/FEC: align * 0.1 * 32/33
2061 	 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
2062 	 * 25G w/FEC: align * 0.4 * 32/33
2063 	 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
2064 	 * 40G w/FEC: align * 0.1 * 32/33
2065 	 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
2066 	 * 50G w/FEC: align * 0.8 * 32/33
2067 	 *
2068 	 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
2069 	 *
2070 	 * To allow for calculating this value using integer arithmetic, we
2071 	 * instead start with the number of TUs per second, (inverse of the
2072 	 * length of a Time Unit in nanoseconds), multiply by a value based
2073 	 * on the PMD alignment register, and then divide by the right value
2074 	 * calculated based on the table above. To avoid integer overflow this
2075 	 * division is broken up into a step of dividing by 125 first.
2076 	 */
2077 	if (link_spd == ICE_PTP_LNK_SPD_1G) {
2078 		if (pmd_align == 4)
2079 			mult = 10;
2080 		else
2081 			mult = (pmd_align + 6) % 10;
2082 	} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
2083 		   link_spd == ICE_PTP_LNK_SPD_25G ||
2084 		   link_spd == ICE_PTP_LNK_SPD_40G ||
2085 		   link_spd == ICE_PTP_LNK_SPD_50G) {
2086 		/* If Clause 74 FEC, always calculate PMD adjust */
2087 		if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
2088 			mult = pmd_align;
2089 		else
2090 			mult = 0;
2091 	} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
2092 		   link_spd == ICE_PTP_LNK_SPD_50G_RS ||
2093 		   link_spd == ICE_PTP_LNK_SPD_100G_RS) {
2094 		if (pmd_align < 17)
2095 			mult = pmd_align + 40;
2096 		else
2097 			mult = pmd_align;
2098 	} else {
2099 		ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
2100 			  link_spd);
2101 		mult = 0;
2102 	}
2103 
2104 	/* In some cases, there's no need to adjust for the PMD alignment */
2105 	if (!mult) {
2106 		*pmd_adj = 0;
2107 		return 0;
2108 	}
2109 
2110 	/* Calculate the adjustment by multiplying TUs per second by the
2111 	 * appropriate multiplier and divisor. To avoid overflow, we first
2112 	 * divide by 125, and then handle remaining divisor based on the link
2113 	 * speed pmd_adj_divisor value.
2114 	 */
2115 	adj = div_u64(tu_per_sec, 125);
2116 	adj *= mult;
2117 	adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
2118 
2119 	/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
2120 	 * cycle count is necessary.
2121 	 */
2122 	if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
2123 		u64 cycle_adj;
2124 		u8 rx_cycle;
2125 
2126 		err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
2127 					    &val);
2128 		if (err) {
2129 			ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
2130 				  err);
2131 			return err;
2132 		}
2133 
2134 		rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
2135 		if (rx_cycle) {
2136 			mult = (4 - rx_cycle) * 40;
2137 
2138 			cycle_adj = div_u64(tu_per_sec, 125);
2139 			cycle_adj *= mult;
2140 			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
2141 
2142 			adj += cycle_adj;
2143 		}
2144 	} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
2145 		u64 cycle_adj;
2146 		u8 rx_cycle;
2147 
2148 		err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
2149 					    &val);
2150 		if (err) {
2151 			ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
2152 				  err);
2153 			return err;
2154 		}
2155 
2156 		rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
2157 		if (rx_cycle) {
2158 			mult = rx_cycle * 40;
2159 
2160 			cycle_adj = div_u64(tu_per_sec, 125);
2161 			cycle_adj *= mult;
2162 			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
2163 
2164 			adj += cycle_adj;
2165 		}
2166 	}
2167 
2168 	/* Return the calculated adjustment */
2169 	*pmd_adj = adj;
2170 
2171 	return 0;
2172 }
2173 
2174 /**
2175  * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
2176  * @hw: pointer to HW struct
2177  * @link_spd: The Link speed to calculate for
2178  *
2179  * Determine the fixed Rx latency for a given link speed.
2180  */
2181 static u64
2182 ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
2183 {
2184 	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
2185 
2186 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
2187 	clk_incval = ice_ptp_read_src_incval(hw);
2188 
2189 	/* Calculate TUs per second */
2190 	tu_per_sec = cur_freq * clk_incval;
2191 
2192 	/* Calculate number of TUs to add for the fixed Rx latency. Since the
2193 	 * latency measurement is in 1/100th of a nanosecond, we need to
2194 	 * multiply by tu_per_sec and then divide by 1e11. This calculation
2195 	 * overflows 64 bit integer arithmetic, so break it up into two
2196 	 * divisions by 1e4 first then by 1e7.
2197 	 */
2198 	fixed_offset = div_u64(tu_per_sec, 10000);
2199 	fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
2200 	fixed_offset = div_u64(fixed_offset, 10000000);
2201 
2202 	return fixed_offset;
2203 }
2204 
2205 /**
2206  * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
2207  * @hw: pointer to the HW struct
2208  * @port: the PHY port to configure
2209  *
2210  * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
2211  * adjust Rx timestamps by. This combines calculations from the Vernier offset
2212  * measurements taken in hardware with some data about known fixed delay as
2213  * well as adjusting for multi-lane alignment delay.
2214  *
2215  * This function will not return successfully until the Rx offset calculations
2216  * have been completed, which requires waiting until at least one packet has
2217  * been received by the device. It is safe to call this function periodically
2218  * until calibration succeeds, as it will only program the offset once.
2219  *
2220  * This function must be called only after the offset registers are valid,
2221  * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
2222  * has measured the offset.
2223  *
2224  * To avoid overflow, when calculating the offset based on the known static
2225  * latency values, we use measurements in 1/100th of a nanosecond, and divide
2226  * the TUs per second up front. This avoids overflow while allowing
2227  * calculation of the adjustment using integer arithmetic.
2228  *
2229  * Returns zero on success, -EBUSY if the hardware vernier offset
2230  * calibration has not completed, or another error code on failure.
2231  */
2232 int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
2233 {
2234 	enum ice_ptp_link_spd link_spd;
2235 	enum ice_ptp_fec_mode fec_mode;
2236 	u64 total_offset, pmd, val;
2237 	int err;
2238 	u32 reg;
2239 
2240 	/* Nothing to do if we've already programmed the offset */
2241 	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, &reg);
2242 	if (err) {
2243 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
2244 			  port, err);
2245 		return err;
2246 	}
2247 
2248 	if (reg)
2249 		return 0;
2250 
2251 	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &reg);
2252 	if (err) {
2253 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
2254 			  port, err);
2255 		return err;
2256 	}
2257 
2258 	if (!(reg & P_REG_RX_OV_STATUS_OV_M))
2259 		return -EBUSY;
2260 
2261 	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
2262 	if (err)
2263 		return err;
2264 
2265 	total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
2266 
2267 	/* Read the first Vernier offset from the PHY register and add it to
2268 	 * the total offset.
2269 	 */
2270 	err = ice_read_64b_phy_reg_e822(hw, port,
2271 					P_REG_PAR_PCS_RX_OFFSET_L,
2272 					&val);
2273 	if (err)
2274 		return err;
2275 
2276 	total_offset += val;
2277 
2278 	/* For Rx, all multi-lane link speeds include a second Vernier
2279 	 * calibration, because the lanes might not be aligned.
2280 	 */
2281 	if (link_spd == ICE_PTP_LNK_SPD_40G ||
2282 	    link_spd == ICE_PTP_LNK_SPD_50G ||
2283 	    link_spd == ICE_PTP_LNK_SPD_50G_RS ||
2284 	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
2285 		err = ice_read_64b_phy_reg_e822(hw, port,
2286 						P_REG_PAR_RX_TIME_L,
2287 						&val);
2288 		if (err)
2289 			return err;
2290 
2291 		total_offset += val;
2292 	}
2293 
2294 	/* In addition, Rx must account for the PMD alignment */
2295 	err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd);
2296 	if (err)
2297 		return err;
2298 
2299 	/* For RS-FEC, this adjustment adds delay, but for other modes, it
2300 	 * subtracts delay.
2301 	 */
2302 	if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
2303 		total_offset += pmd;
2304 	else
2305 		total_offset -= pmd;
2306 
2307 	/* Now that the total offset has been calculated, program it to the
2308 	 * PHY and indicate that the Rx offset is ready. After this,
2309 	 * timestamps will be enabled.
2310 	 */
2311 	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
2312 					 total_offset);
2313 	if (err)
2314 		return err;
2315 
2316 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
2317 	if (err)
2318 		return err;
2319 
2320 	dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
2321 		 port);
2322 
2323 	return 0;
2324 }
2325 
2326 /**
2327  * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
2328  * @hw: pointer to the HW struct
2329  * @port: the PHY port to read
2330  * @phy_time: on return, the 64bit PHY timer value
2331  * @phc_time: on return, the lower 64bits of PHC time
2332  *
2333  * Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
2334  * and PHC timer values.
2335  */
2336 static int
2337 ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
2338 			       u64 *phc_time)
2339 {
2340 	u64 tx_time, rx_time;
2341 	u32 zo, lo;
2342 	u8 tmr_idx;
2343 	int err;
2344 
2345 	tmr_idx = ice_get_ptp_src_clock_index(hw);
2346 
2347 	/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
2348 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2349 
2350 	/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
2351 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
2352 	if (err)
2353 		return err;
2354 
2355 	/* Issue the sync to start the ICE_PTP_READ_TIME capture */
2356 	ice_ptp_exec_tmr_cmd(hw);
2357 
2358 	/* Read the captured PHC time from the shadow time registers */
2359 	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2360 	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2361 	*phc_time = (u64)lo << 32 | zo;
2362 
2363 	/* Read the captured PHY time from the PHY shadow registers */
2364 	err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
2365 	if (err)
2366 		return err;
2367 
2368 	/* If the PHY Tx and Rx timers don't match, log a warning message.
2369 	 * Note that this should not happen in normal circumstances since the
2370 	 * driver always programs them together.
2371 	 */
2372 	if (tx_time != rx_time)
2373 		dev_warn(ice_hw_to_dev(hw),
2374 			 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2375 			 port, (unsigned long long)tx_time,
2376 			 (unsigned long long)rx_time);
2377 
2378 	*phy_time = tx_time;
2379 
2380 	return 0;
2381 }
2382 
2383 /**
2384  * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
2385  * @hw: pointer to the HW struct
2386  * @port: the PHY port to synchronize
2387  *
2388  * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2389  * This is done by issuing a ICE_PTP_READ_TIME command which triggers a
2390  * simultaneous read of the PHY timer and PHC timer. Then we use the
2391  * difference to calculate an appropriate 2s complement addition to add
2392  * to the PHY timer in order to ensure it reads the same value as the
2393  * primary PHC timer.
2394  */
2395 static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
2396 {
2397 	u64 phc_time, phy_time, difference;
2398 	int err;
2399 
2400 	if (!ice_ptp_lock(hw)) {
2401 		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2402 		return -EBUSY;
2403 	}
2404 
2405 	err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2406 	if (err)
2407 		goto err_unlock;
2408 
2409 	/* Calculate the amount required to add to the port time in order for
2410 	 * it to match the PHC time.
2411 	 *
2412 	 * Note that the port adjustment is done using 2s complement
2413 	 * arithmetic. This is convenient since it means that we can simply
2414 	 * calculate the difference between the PHC time and the port time,
2415 	 * and it will be interpreted correctly.
2416 	 */
2417 	difference = phc_time - phy_time;
2418 
2419 	err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference);
2420 	if (err)
2421 		goto err_unlock;
2422 
2423 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
2424 	if (err)
2425 		goto err_unlock;
2426 
2427 	/* Do not perform any action on the main timer */
2428 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2429 
2430 	/* Issue the sync to activate the time adjustment */
2431 	ice_ptp_exec_tmr_cmd(hw);
2432 
2433 	/* Re-capture the timer values to flush the command registers and
2434 	 * verify that the time was properly adjusted.
2435 	 */
2436 	err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2437 	if (err)
2438 		goto err_unlock;
2439 
2440 	dev_info(ice_hw_to_dev(hw),
2441 		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2442 		 port, (unsigned long long)phy_time,
2443 		 (unsigned long long)phc_time);
2444 
2445 	ice_ptp_unlock(hw);
2446 
2447 	return 0;
2448 
2449 err_unlock:
2450 	ice_ptp_unlock(hw);
2451 	return err;
2452 }
2453 
2454 /**
2455  * ice_stop_phy_timer_e822 - Stop the PHY clock timer
2456  * @hw: pointer to the HW struct
2457  * @port: the PHY port to stop
2458  * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
2459  *
2460  * Stop the clock of a PHY port. This must be done as part of the flow to
2461  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2462  * initialized or when link speed changes.
2463  */
2464 int
2465 ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
2466 {
2467 	int err;
2468 	u32 val;
2469 
2470 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0);
2471 	if (err)
2472 		return err;
2473 
2474 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0);
2475 	if (err)
2476 		return err;
2477 
2478 	err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2479 	if (err)
2480 		return err;
2481 
2482 	val &= ~P_REG_PS_START_M;
2483 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2484 	if (err)
2485 		return err;
2486 
2487 	val &= ~P_REG_PS_ENA_CLK_M;
2488 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2489 	if (err)
2490 		return err;
2491 
2492 	if (soft_reset) {
2493 		val |= P_REG_PS_SFT_RESET_M;
2494 		err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2495 		if (err)
2496 			return err;
2497 	}
2498 
2499 	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2500 
2501 	return 0;
2502 }
2503 
2504 /**
2505  * ice_start_phy_timer_e822 - Start the PHY clock timer
2506  * @hw: pointer to the HW struct
2507  * @port: the PHY port to start
2508  *
2509  * Start the clock of a PHY port. This must be done as part of the flow to
2510  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2511  * initialized or when link speed changes.
2512  *
2513  * Hardware will take Vernier measurements on Tx or Rx of packets.
2514  */
2515 int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port)
2516 {
2517 	u32 lo, hi, val;
2518 	u64 incval;
2519 	u8 tmr_idx;
2520 	int err;
2521 
2522 	tmr_idx = ice_get_ptp_src_clock_index(hw);
2523 
2524 	err = ice_stop_phy_timer_e822(hw, port, false);
2525 	if (err)
2526 		return err;
2527 
2528 	ice_phy_cfg_lane_e822(hw, port);
2529 
2530 	err = ice_phy_cfg_uix_e822(hw, port);
2531 	if (err)
2532 		return err;
2533 
2534 	err = ice_phy_cfg_parpcs_e822(hw, port);
2535 	if (err)
2536 		return err;
2537 
2538 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2539 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2540 	incval = (u64)hi << 32 | lo;
2541 
2542 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval);
2543 	if (err)
2544 		return err;
2545 
2546 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
2547 	if (err)
2548 		return err;
2549 
2550 	/* Do not perform any action on the main timer */
2551 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2552 
2553 	ice_ptp_exec_tmr_cmd(hw);
2554 
2555 	err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2556 	if (err)
2557 		return err;
2558 
2559 	val |= P_REG_PS_SFT_RESET_M;
2560 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2561 	if (err)
2562 		return err;
2563 
2564 	val |= P_REG_PS_START_M;
2565 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2566 	if (err)
2567 		return err;
2568 
2569 	val &= ~P_REG_PS_SFT_RESET_M;
2570 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2571 	if (err)
2572 		return err;
2573 
2574 	err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
2575 	if (err)
2576 		return err;
2577 
2578 	ice_ptp_exec_tmr_cmd(hw);
2579 
2580 	val |= P_REG_PS_ENA_CLK_M;
2581 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2582 	if (err)
2583 		return err;
2584 
2585 	val |= P_REG_PS_LOAD_OFFSET_M;
2586 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2587 	if (err)
2588 		return err;
2589 
2590 	ice_ptp_exec_tmr_cmd(hw);
2591 
2592 	err = ice_sync_phy_timer_e822(hw, port);
2593 	if (err)
2594 		return err;
2595 
2596 	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2597 
2598 	return 0;
2599 }
2600 
2601 /**
2602  * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register
2603  * @hw: pointer to the HW struct
2604  * @quad: the timestamp quad to read from
2605  * @tstamp_ready: contents of the Tx memory status register
2606  *
2607  * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
2608  * the PHY are ready. A set bit means the corresponding timestamp is valid and
2609  * ready to be captured from the PHY timestamp block.
2610  */
2611 static int
2612 ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
2613 {
2614 	u32 hi, lo;
2615 	int err;
2616 
2617 	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
2618 	if (err) {
2619 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
2620 			  quad, err);
2621 		return err;
2622 	}
2623 
2624 	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
2625 	if (err) {
2626 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
2627 			  quad, err);
2628 		return err;
2629 	}
2630 
2631 	*tstamp_ready = (u64)hi << 32 | (u64)lo;
2632 
2633 	return 0;
2634 }
2635 
2636 /* E810 functions
2637  *
2638  * The following functions operate on the E810 series devices which use
2639  * a separate external PHY.
2640  */
2641 
2642 /**
2643  * ice_read_phy_reg_e810 - Read register from external PHY on E810
2644  * @hw: pointer to the HW struct
2645  * @addr: the address to read from
2646  * @val: On return, the value read from the PHY
2647  *
2648  * Read a register from the external PHY on the E810 device.
2649  */
2650 static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
2651 {
2652 	struct ice_sbq_msg_input msg = {0};
2653 	int err;
2654 
2655 	msg.msg_addr_low = lower_16_bits(addr);
2656 	msg.msg_addr_high = upper_16_bits(addr);
2657 	msg.opcode = ice_sbq_msg_rd;
2658 	msg.dest_dev = rmn_0;
2659 
2660 	err = ice_sbq_rw_reg(hw, &msg);
2661 	if (err) {
2662 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2663 			  err);
2664 		return err;
2665 	}
2666 
2667 	*val = msg.data;
2668 
2669 	return 0;
2670 }
2671 
2672 /**
2673  * ice_write_phy_reg_e810 - Write register on external PHY on E810
2674  * @hw: pointer to the HW struct
2675  * @addr: the address to writem to
2676  * @val: the value to write to the PHY
2677  *
2678  * Write a value to a register of the external PHY on the E810 device.
2679  */
2680 static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
2681 {
2682 	struct ice_sbq_msg_input msg = {0};
2683 	int err;
2684 
2685 	msg.msg_addr_low = lower_16_bits(addr);
2686 	msg.msg_addr_high = upper_16_bits(addr);
2687 	msg.opcode = ice_sbq_msg_wr;
2688 	msg.dest_dev = rmn_0;
2689 	msg.data = val;
2690 
2691 	err = ice_sbq_rw_reg(hw, &msg);
2692 	if (err) {
2693 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2694 			  err);
2695 		return err;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 /**
2702  * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
2703  * @hw: pointer to the HW struct
2704  * @idx: the timestamp index to read
2705  * @hi: 8 bit timestamp high value
2706  * @lo: 32 bit timestamp low value
2707  *
2708  * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2709  * timestamp block of the external PHY on the E810 device using the low latency
2710  * timestamp read.
2711  */
2712 static int
2713 ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
2714 {
2715 	u32 val;
2716 	u8 i;
2717 
2718 	/* Write TS index to read to the PF register so the FW can read it */
2719 	val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
2720 	wr32(hw, PF_SB_ATQBAL, val);
2721 
2722 	/* Read the register repeatedly until the FW provides us the TS */
2723 	for (i = TS_LL_READ_RETRIES; i > 0; i--) {
2724 		val = rd32(hw, PF_SB_ATQBAL);
2725 
2726 		/* When the bit is cleared, the TS is ready in the register */
2727 		if (!(FIELD_GET(TS_LL_READ_TS, val))) {
2728 			/* High 8 bit value of the TS is on the bits 16:23 */
2729 			*hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
2730 
2731 			/* Read the low 32 bit value and set the TS valid bit */
2732 			*lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
2733 			return 0;
2734 		}
2735 
2736 		udelay(10);
2737 	}
2738 
2739 	/* FW failed to provide the TS in time */
2740 	ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
2741 	return -EINVAL;
2742 }
2743 
2744 /**
2745  * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
2746  * @hw: pointer to the HW struct
2747  * @lport: the lport to read from
2748  * @idx: the timestamp index to read
2749  * @hi: 8 bit timestamp high value
2750  * @lo: 32 bit timestamp low value
2751  *
2752  * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2753  * timestamp block of the external PHY on the E810 device using sideband queue.
2754  */
2755 static int
2756 ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
2757 			     u32 *lo)
2758 {
2759 	u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2760 	u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2761 	u32 lo_val, hi_val;
2762 	int err;
2763 
2764 	err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
2765 	if (err) {
2766 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
2767 			  err);
2768 		return err;
2769 	}
2770 
2771 	err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
2772 	if (err) {
2773 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
2774 			  err);
2775 		return err;
2776 	}
2777 
2778 	*lo = lo_val;
2779 	*hi = (u8)hi_val;
2780 
2781 	return 0;
2782 }
2783 
2784 /**
2785  * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
2786  * @hw: pointer to the HW struct
2787  * @lport: the lport to read from
2788  * @idx: the timestamp index to read
2789  * @tstamp: on return, the 40bit timestamp value
2790  *
2791  * Read a 40bit timestamp value out of the timestamp block of the external PHY
2792  * on the E810 device.
2793  */
2794 static int
2795 ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
2796 {
2797 	u32 lo = 0;
2798 	u8 hi = 0;
2799 	int err;
2800 
2801 	if (hw->dev_caps.ts_dev_info.ts_ll_read)
2802 		err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
2803 	else
2804 		err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
2805 
2806 	if (err)
2807 		return err;
2808 
2809 	/* For E810 devices, the timestamp is reported with the lower 32 bits
2810 	 * in the low register, and the upper 8 bits in the high register.
2811 	 */
2812 	*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
2813 
2814 	return 0;
2815 }
2816 
2817 /**
2818  * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
2819  * @hw: pointer to the HW struct
2820  * @lport: the lport to read from
2821  * @idx: the timestamp index to reset
2822  *
2823  * Read the timestamp and then forcibly overwrite its value to clear the valid
2824  * bit from the timestamp block of the external PHY on the E810 device.
2825  *
2826  * This function should only be called on an idx whose bit is set according to
2827  * ice_get_phy_tx_tstamp_ready().
2828  */
2829 static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
2830 {
2831 	u32 lo_addr, hi_addr;
2832 	u64 unused_tstamp;
2833 	int err;
2834 
2835 	err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
2836 	if (err) {
2837 		ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
2838 			  lport, idx, err);
2839 		return err;
2840 	}
2841 
2842 	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2843 	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2844 
2845 	err = ice_write_phy_reg_e810(hw, lo_addr, 0);
2846 	if (err) {
2847 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
2848 			  lport, idx, err);
2849 		return err;
2850 	}
2851 
2852 	err = ice_write_phy_reg_e810(hw, hi_addr, 0);
2853 	if (err) {
2854 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
2855 			  lport, idx, err);
2856 		return err;
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 /**
2863  * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
2864  * @hw: pointer to HW struct
2865  *
2866  * Enable the timesync PTP functionality for the external PHY connected to
2867  * this function.
2868  */
2869 int ice_ptp_init_phy_e810(struct ice_hw *hw)
2870 {
2871 	u8 tmr_idx;
2872 	int err;
2873 
2874 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2875 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
2876 				     GLTSYN_ENA_TSYN_ENA_M);
2877 	if (err)
2878 		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
2879 			  err);
2880 
2881 	return err;
2882 }
2883 
2884 /**
2885  * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
2886  * @hw: pointer to HW struct
2887  *
2888  * Perform E810-specific PTP hardware clock initialization steps.
2889  */
2890 static int ice_ptp_init_phc_e810(struct ice_hw *hw)
2891 {
2892 	/* Ensure synchronization delay is zero */
2893 	wr32(hw, GLTSYN_SYNC_DLAY, 0);
2894 
2895 	/* Initialize the PHY */
2896 	return ice_ptp_init_phy_e810(hw);
2897 }
2898 
2899 /**
2900  * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
2901  * @hw: Board private structure
2902  * @time: Time to initialize the PHY port clock to
2903  *
2904  * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
2905  * initial clock time. The time will not actually be programmed until the
2906  * driver issues an ICE_PTP_INIT_TIME command.
2907  *
2908  * The time value is the upper 32 bits of the PHY timer, usually in units of
2909  * nominal nanoseconds.
2910  */
2911 static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
2912 {
2913 	u8 tmr_idx;
2914 	int err;
2915 
2916 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2917 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
2918 	if (err) {
2919 		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
2920 			  err);
2921 		return err;
2922 	}
2923 
2924 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
2925 	if (err) {
2926 		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
2927 			  err);
2928 		return err;
2929 	}
2930 
2931 	return 0;
2932 }
2933 
2934 /**
2935  * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
2936  * @hw: pointer to HW struct
2937  * @adj: adjustment value to program
2938  *
2939  * Prepare the PHY port for an atomic adjustment by programming the PHY
2940  * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
2941  * is completed by issuing an ICE_PTP_ADJ_TIME sync command.
2942  *
2943  * The adjustment value only contains the portion used for the upper 32bits of
2944  * the PHY timer, usually in units of nominal nanoseconds. Negative
2945  * adjustments are supported using 2s complement arithmetic.
2946  */
2947 static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
2948 {
2949 	u8 tmr_idx;
2950 	int err;
2951 
2952 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2953 
2954 	/* Adjustments are represented as signed 2's complement values in
2955 	 * nanoseconds. Sub-nanosecond adjustment is not supported.
2956 	 */
2957 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
2958 	if (err) {
2959 		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
2960 			  err);
2961 		return err;
2962 	}
2963 
2964 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
2965 	if (err) {
2966 		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
2967 			  err);
2968 		return err;
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 /**
2975  * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
2976  * @hw: pointer to HW struct
2977  * @incval: The new 40bit increment value to prepare
2978  *
2979  * Prepare the PHY port for a new increment value by programming the PHY
2980  * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
2981  * completed by issuing an ICE_PTP_INIT_INCVAL command.
2982  */
2983 static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
2984 {
2985 	u32 high, low;
2986 	u8 tmr_idx;
2987 	int err;
2988 
2989 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2990 	low = lower_32_bits(incval);
2991 	high = upper_32_bits(incval);
2992 
2993 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
2994 	if (err) {
2995 		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
2996 			  err);
2997 		return err;
2998 	}
2999 
3000 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
3001 	if (err) {
3002 		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
3003 			  err);
3004 		return err;
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 /**
3011  * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
3012  * @hw: pointer to HW struct
3013  * @cmd: Command to be sent to the port
3014  *
3015  * Prepare the external PHYs connected to this device for a timer sync
3016  * command.
3017  */
3018 static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
3019 {
3020 	u32 cmd_val, val;
3021 	int err;
3022 
3023 	switch (cmd) {
3024 	case ICE_PTP_INIT_TIME:
3025 		cmd_val = GLTSYN_CMD_INIT_TIME;
3026 		break;
3027 	case ICE_PTP_INIT_INCVAL:
3028 		cmd_val = GLTSYN_CMD_INIT_INCVAL;
3029 		break;
3030 	case ICE_PTP_ADJ_TIME:
3031 		cmd_val = GLTSYN_CMD_ADJ_TIME;
3032 		break;
3033 	case ICE_PTP_READ_TIME:
3034 		cmd_val = GLTSYN_CMD_READ_TIME;
3035 		break;
3036 	case ICE_PTP_ADJ_TIME_AT_TIME:
3037 		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
3038 		break;
3039 	case ICE_PTP_NOP:
3040 		return 0;
3041 	}
3042 
3043 	/* Read, modify, write */
3044 	err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
3045 	if (err) {
3046 		ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
3047 		return err;
3048 	}
3049 
3050 	/* Modify necessary bits only and perform write */
3051 	val &= ~TS_CMD_MASK_E810;
3052 	val |= cmd_val;
3053 
3054 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
3055 	if (err) {
3056 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
3057 		return err;
3058 	}
3059 
3060 	return 0;
3061 }
3062 
3063 /**
3064  * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
3065  * @hw: pointer to the HW struct
3066  * @port: the PHY port to read
3067  * @tstamp_ready: contents of the Tx memory status register
3068  *
3069  * E810 devices do not use a Tx memory status register. Instead simply
3070  * indicate that all timestamps are currently ready.
3071  */
3072 static int
3073 ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
3074 {
3075 	*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
3076 	return 0;
3077 }
3078 
3079 /* E810T SMA functions
3080  *
3081  * The following functions operate specifically on E810T hardware and are used
3082  * to access the extended GPIOs available.
3083  */
3084 
3085 /**
3086  * ice_get_pca9575_handle
3087  * @hw: pointer to the hw struct
3088  * @pca9575_handle: GPIO controller's handle
3089  *
3090  * Find and return the GPIO controller's handle in the netlist.
3091  * When found - the value will be cached in the hw structure and following calls
3092  * will return cached value
3093  */
3094 static int
3095 ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
3096 {
3097 	struct ice_aqc_get_link_topo *cmd;
3098 	struct ice_aq_desc desc;
3099 	int status;
3100 	u8 idx;
3101 
3102 	/* If handle was read previously return cached value */
3103 	if (hw->io_expander_handle) {
3104 		*pca9575_handle = hw->io_expander_handle;
3105 		return 0;
3106 	}
3107 
3108 	/* If handle was not detected read it from the netlist */
3109 	cmd = &desc.params.get_link_topo;
3110 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
3111 
3112 	/* Set node type to GPIO controller */
3113 	cmd->addr.topo_params.node_type_ctx =
3114 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
3115 		 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
3116 
3117 #define SW_PCA9575_SFP_TOPO_IDX		2
3118 #define SW_PCA9575_QSFP_TOPO_IDX	1
3119 
3120 	/* Check if the SW IO expander controlling SMA exists in the netlist. */
3121 	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
3122 		idx = SW_PCA9575_SFP_TOPO_IDX;
3123 	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
3124 		idx = SW_PCA9575_QSFP_TOPO_IDX;
3125 	else
3126 		return -EOPNOTSUPP;
3127 
3128 	cmd->addr.topo_params.index = idx;
3129 
3130 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3131 	if (status)
3132 		return -EOPNOTSUPP;
3133 
3134 	/* Verify if we found the right IO expander type */
3135 	if (desc.params.get_link_topo.node_part_num !=
3136 		ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
3137 		return -EOPNOTSUPP;
3138 
3139 	/* If present save the handle and return it */
3140 	hw->io_expander_handle =
3141 		le16_to_cpu(desc.params.get_link_topo.addr.handle);
3142 	*pca9575_handle = hw->io_expander_handle;
3143 
3144 	return 0;
3145 }
3146 
3147 /**
3148  * ice_read_sma_ctrl_e810t
3149  * @hw: pointer to the hw struct
3150  * @data: pointer to data to be read from the GPIO controller
3151  *
3152  * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
3153  * PCA9575 expander, so only bits 3-7 in data are valid.
3154  */
3155 int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
3156 {
3157 	int status;
3158 	u16 handle;
3159 	u8 i;
3160 
3161 	status = ice_get_pca9575_handle(hw, &handle);
3162 	if (status)
3163 		return status;
3164 
3165 	*data = 0;
3166 
3167 	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3168 		bool pin;
3169 
3170 		status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3171 					 &pin, NULL);
3172 		if (status)
3173 			break;
3174 		*data |= (u8)(!pin) << i;
3175 	}
3176 
3177 	return status;
3178 }
3179 
3180 /**
3181  * ice_write_sma_ctrl_e810t
3182  * @hw: pointer to the hw struct
3183  * @data: data to be written to the GPIO controller
3184  *
3185  * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
3186  * of the PCA9575 expander, so only bits 3-7 in data are valid.
3187  */
3188 int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
3189 {
3190 	int status;
3191 	u16 handle;
3192 	u8 i;
3193 
3194 	status = ice_get_pca9575_handle(hw, &handle);
3195 	if (status)
3196 		return status;
3197 
3198 	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3199 		bool pin;
3200 
3201 		pin = !(data & (1 << i));
3202 		status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3203 					 pin, NULL);
3204 		if (status)
3205 			break;
3206 	}
3207 
3208 	return status;
3209 }
3210 
3211 /**
3212  * ice_read_pca9575_reg_e810t
3213  * @hw: pointer to the hw struct
3214  * @offset: GPIO controller register offset
3215  * @data: pointer to data to be read from the GPIO controller
3216  *
3217  * Read the register from the GPIO controller
3218  */
3219 int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
3220 {
3221 	struct ice_aqc_link_topo_addr link_topo;
3222 	__le16 addr;
3223 	u16 handle;
3224 	int err;
3225 
3226 	memset(&link_topo, 0, sizeof(link_topo));
3227 
3228 	err = ice_get_pca9575_handle(hw, &handle);
3229 	if (err)
3230 		return err;
3231 
3232 	link_topo.handle = cpu_to_le16(handle);
3233 	link_topo.topo_params.node_type_ctx =
3234 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
3235 			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
3236 
3237 	addr = cpu_to_le16((u16)offset);
3238 
3239 	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
3240 }
3241 
3242 /* Device agnostic functions
3243  *
3244  * The following functions implement shared behavior common to both E822 and
3245  * E810 devices, possibly calling a device specific implementation where
3246  * necessary.
3247  */
3248 
3249 /**
3250  * ice_ptp_lock - Acquire PTP global semaphore register lock
3251  * @hw: pointer to the HW struct
3252  *
3253  * Acquire the global PTP hardware semaphore lock. Returns true if the lock
3254  * was acquired, false otherwise.
3255  *
3256  * The PFTSYN_SEM register sets the busy bit on read, returning the previous
3257  * value. If software sees the busy bit cleared, this means that this function
3258  * acquired the lock (and the busy bit is now set). If software sees the busy
3259  * bit set, it means that another function acquired the lock.
3260  *
3261  * Software must clear the busy bit with a write to release the lock for other
3262  * functions when done.
3263  */
3264 bool ice_ptp_lock(struct ice_hw *hw)
3265 {
3266 	u32 hw_lock;
3267 	int i;
3268 
3269 #define MAX_TRIES 15
3270 
3271 	for (i = 0; i < MAX_TRIES; i++) {
3272 		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
3273 		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
3274 		if (hw_lock) {
3275 			/* Somebody is holding the lock */
3276 			usleep_range(5000, 6000);
3277 			continue;
3278 		}
3279 
3280 		break;
3281 	}
3282 
3283 	return !hw_lock;
3284 }
3285 
3286 /**
3287  * ice_ptp_unlock - Release PTP global semaphore register lock
3288  * @hw: pointer to the HW struct
3289  *
3290  * Release the global PTP hardware semaphore lock. This is done by writing to
3291  * the PFTSYN_SEM register.
3292  */
3293 void ice_ptp_unlock(struct ice_hw *hw)
3294 {
3295 	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
3296 }
3297 
3298 /**
3299  * ice_ptp_init_phy_model - Initialize hw->phy_model based on device type
3300  * @hw: pointer to the HW structure
3301  *
3302  * Determine the PHY model for the device, and initialize hw->phy_model
3303  * for use by other functions.
3304  */
3305 void ice_ptp_init_phy_model(struct ice_hw *hw)
3306 {
3307 	if (ice_is_e810(hw))
3308 		hw->phy_model = ICE_PHY_E810;
3309 	else
3310 		hw->phy_model = ICE_PHY_E822;
3311 }
3312 
3313 /**
3314  * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
3315  * @hw: pointer to HW struct
3316  * @cmd: the command to issue
3317  *
3318  * Prepare the source timer and PHY timers and then trigger the requested
3319  * command. This causes the shadow registers previously written in preparation
3320  * for the command to be synchronously applied to both the source and PHY
3321  * timers.
3322  */
3323 static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
3324 {
3325 	int err;
3326 
3327 	/* First, prepare the source timer */
3328 	ice_ptp_src_cmd(hw, cmd);
3329 
3330 	/* Next, prepare the ports */
3331 	switch (hw->phy_model) {
3332 	case ICE_PHY_E810:
3333 		err = ice_ptp_port_cmd_e810(hw, cmd);
3334 		break;
3335 	case ICE_PHY_E822:
3336 		err = ice_ptp_port_cmd_e822(hw, cmd);
3337 		break;
3338 	default:
3339 		err = -EOPNOTSUPP;
3340 	}
3341 
3342 	if (err) {
3343 		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
3344 			  cmd, err);
3345 		return err;
3346 	}
3347 
3348 	/* Write the sync command register to drive both source and PHY timer
3349 	 * commands synchronously
3350 	 */
3351 	ice_ptp_exec_tmr_cmd(hw);
3352 
3353 	return 0;
3354 }
3355 
3356 /**
3357  * ice_ptp_init_time - Initialize device time to provided value
3358  * @hw: pointer to HW struct
3359  * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
3360  *
3361  * Initialize the device to the specified time provided. This requires a three
3362  * step process:
3363  *
3364  * 1) write the new init time to the source timer shadow registers
3365  * 2) write the new init time to the PHY timer shadow registers
3366  * 3) issue an init_time timer command to synchronously switch both the source
3367  *    and port timers to the new init time value at the next clock cycle.
3368  */
3369 int ice_ptp_init_time(struct ice_hw *hw, u64 time)
3370 {
3371 	u8 tmr_idx;
3372 	int err;
3373 
3374 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3375 
3376 	/* Source timers */
3377 	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
3378 	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
3379 	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
3380 
3381 	/* PHY timers */
3382 	/* Fill Rx and Tx ports and send msg to PHY */
3383 	switch (hw->phy_model) {
3384 	case ICE_PHY_E810:
3385 		err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
3386 		break;
3387 	case ICE_PHY_E822:
3388 		err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF);
3389 		break;
3390 	default:
3391 		err = -EOPNOTSUPP;
3392 	}
3393 
3394 	if (err)
3395 		return err;
3396 
3397 	return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
3398 }
3399 
3400 /**
3401  * ice_ptp_write_incval - Program PHC with new increment value
3402  * @hw: pointer to HW struct
3403  * @incval: Source timer increment value per clock cycle
3404  *
3405  * Program the PHC with a new increment value. This requires a three-step
3406  * process:
3407  *
3408  * 1) Write the increment value to the source timer shadow registers
3409  * 2) Write the increment value to the PHY timer shadow registers
3410  * 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
3411  *    the source and port timers to the new increment value at the next clock
3412  *    cycle.
3413  */
3414 int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
3415 {
3416 	u8 tmr_idx;
3417 	int err;
3418 
3419 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3420 
3421 	/* Shadow Adjust */
3422 	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
3423 	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
3424 
3425 	switch (hw->phy_model) {
3426 	case ICE_PHY_E810:
3427 		err = ice_ptp_prep_phy_incval_e810(hw, incval);
3428 		break;
3429 	case ICE_PHY_E822:
3430 		err = ice_ptp_prep_phy_incval_e822(hw, incval);
3431 		break;
3432 	default:
3433 		err = -EOPNOTSUPP;
3434 	}
3435 
3436 	if (err)
3437 		return err;
3438 
3439 	return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
3440 }
3441 
3442 /**
3443  * ice_ptp_write_incval_locked - Program new incval while holding semaphore
3444  * @hw: pointer to HW struct
3445  * @incval: Source timer increment value per clock cycle
3446  *
3447  * Program a new PHC incval while holding the PTP semaphore.
3448  */
3449 int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
3450 {
3451 	int err;
3452 
3453 	if (!ice_ptp_lock(hw))
3454 		return -EBUSY;
3455 
3456 	err = ice_ptp_write_incval(hw, incval);
3457 
3458 	ice_ptp_unlock(hw);
3459 
3460 	return err;
3461 }
3462 
3463 /**
3464  * ice_ptp_adj_clock - Adjust PHC clock time atomically
3465  * @hw: pointer to HW struct
3466  * @adj: Adjustment in nanoseconds
3467  *
3468  * Perform an atomic adjustment of the PHC time by the specified number of
3469  * nanoseconds. This requires a three-step process:
3470  *
3471  * 1) Write the adjustment to the source timer shadow registers
3472  * 2) Write the adjustment to the PHY timer shadow registers
3473  * 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
3474  *    adjustment to both the source and port timers at the next clock cycle.
3475  */
3476 int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
3477 {
3478 	u8 tmr_idx;
3479 	int err;
3480 
3481 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3482 
3483 	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
3484 	 * For an ICE_PTP_ADJ_TIME command, this set of registers represents
3485 	 * the value to add to the clock time. It supports subtraction by
3486 	 * interpreting the value as a 2's complement integer.
3487 	 */
3488 	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
3489 	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
3490 
3491 	switch (hw->phy_model) {
3492 	case ICE_PHY_E810:
3493 		err = ice_ptp_prep_phy_adj_e810(hw, adj);
3494 		break;
3495 	case ICE_PHY_E822:
3496 		err = ice_ptp_prep_phy_adj_e822(hw, adj);
3497 		break;
3498 	default:
3499 		err = -EOPNOTSUPP;
3500 	}
3501 
3502 	if (err)
3503 		return err;
3504 
3505 	return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
3506 }
3507 
3508 /**
3509  * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
3510  * @hw: pointer to the HW struct
3511  * @block: the block to read from
3512  * @idx: the timestamp index to read
3513  * @tstamp: on return, the 40bit timestamp value
3514  *
3515  * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
3516  * the block is the quad to read from. For E810 devices, the block is the
3517  * logical port to read from.
3518  */
3519 int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
3520 {
3521 	switch (hw->phy_model) {
3522 	case ICE_PHY_E810:
3523 		return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
3524 	case ICE_PHY_E822:
3525 		return ice_read_phy_tstamp_e822(hw, block, idx, tstamp);
3526 	default:
3527 		return -EOPNOTSUPP;
3528 	}
3529 }
3530 
3531 /**
3532  * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
3533  * @hw: pointer to the HW struct
3534  * @block: the block to read from
3535  * @idx: the timestamp index to reset
3536  *
3537  * Clear a timestamp from the timestamp block, discarding its value without
3538  * returning it. This resets the memory status bit for the timestamp index
3539  * allowing it to be reused for another timestamp in the future.
3540  *
3541  * For E822 devices, the block number is the PHY quad to clear from. For E810
3542  * devices, the block number is the logical port to clear from.
3543  *
3544  * This function must only be called on a timestamp index whose valid bit is
3545  * set according to ice_get_phy_tx_tstamp_ready().
3546  */
3547 int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
3548 {
3549 	switch (hw->phy_model) {
3550 	case ICE_PHY_E810:
3551 		return ice_clear_phy_tstamp_e810(hw, block, idx);
3552 	case ICE_PHY_E822:
3553 		return ice_clear_phy_tstamp_e822(hw, block, idx);
3554 	default:
3555 		return -EOPNOTSUPP;
3556 	}
3557 }
3558 
3559 /**
3560  * ice_get_pf_c827_idx - find and return the C827 index for the current pf
3561  * @hw: pointer to the hw struct
3562  * @idx: index of the found C827 PHY
3563  * Return:
3564  * * 0 - success
3565  * * negative - failure
3566  */
3567 static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
3568 {
3569 	struct ice_aqc_get_link_topo cmd;
3570 	u8 node_part_number;
3571 	u16 node_handle;
3572 	int status;
3573 	u8 ctx;
3574 
3575 	if (hw->mac_type != ICE_MAC_E810)
3576 		return -ENODEV;
3577 
3578 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
3579 		*idx = C827_0;
3580 		return 0;
3581 	}
3582 
3583 	memset(&cmd, 0, sizeof(cmd));
3584 
3585 	ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
3586 	ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
3587 	cmd.addr.topo_params.node_type_ctx = ctx;
3588 
3589 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
3590 					 &node_handle);
3591 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
3592 		return -ENOENT;
3593 
3594 	if (node_handle == E810C_QSFP_C827_0_HANDLE)
3595 		*idx = C827_0;
3596 	else if (node_handle == E810C_QSFP_C827_1_HANDLE)
3597 		*idx = C827_1;
3598 	else
3599 		return -EIO;
3600 
3601 	return 0;
3602 }
3603 
3604 /**
3605  * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
3606  * @hw: pointer to the HW struct
3607  */
3608 void ice_ptp_reset_ts_memory(struct ice_hw *hw)
3609 {
3610 	switch (hw->phy_model) {
3611 	case ICE_PHY_E822:
3612 		ice_ptp_reset_ts_memory_e822(hw);
3613 		break;
3614 	case ICE_PHY_E810:
3615 	default:
3616 		return;
3617 	}
3618 }
3619 
3620 /**
3621  * ice_ptp_init_phc - Initialize PTP hardware clock
3622  * @hw: pointer to the HW struct
3623  *
3624  * Perform the steps required to initialize the PTP hardware clock.
3625  */
3626 int ice_ptp_init_phc(struct ice_hw *hw)
3627 {
3628 	u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3629 
3630 	/* Enable source clocks */
3631 	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
3632 
3633 	/* Clear event err indications for auxiliary pins */
3634 	(void)rd32(hw, GLTSYN_STAT(src_idx));
3635 
3636 	switch (hw->phy_model) {
3637 	case ICE_PHY_E810:
3638 		return ice_ptp_init_phc_e810(hw);
3639 	case ICE_PHY_E822:
3640 		return ice_ptp_init_phc_e822(hw);
3641 	default:
3642 		return -EOPNOTSUPP;
3643 	}
3644 }
3645 
3646 /**
3647  * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
3648  * @hw: pointer to the HW struct
3649  * @block: the timestamp block to check
3650  * @tstamp_ready: storage for the PHY Tx memory status information
3651  *
3652  * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
3653  * which indicates which timestamps in the block may be captured. A set bit
3654  * means the timestamp can be read. An unset bit means the timestamp is not
3655  * ready and software should avoid reading the register.
3656  */
3657 int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
3658 {
3659 	switch (hw->phy_model) {
3660 	case ICE_PHY_E810:
3661 		return ice_get_phy_tx_tstamp_ready_e810(hw, block,
3662 							tstamp_ready);
3663 	case ICE_PHY_E822:
3664 		return ice_get_phy_tx_tstamp_ready_e822(hw, block,
3665 							tstamp_ready);
3666 		break;
3667 	default:
3668 		return -EOPNOTSUPP;
3669 	}
3670 }
3671 
3672 /**
3673  * ice_cgu_get_pin_desc_e823 - get pin description array
3674  * @hw: pointer to the hw struct
3675  * @input: if request is done against input or output pin
3676  * @size: number of inputs/outputs
3677  *
3678  * Return: pointer to pin description array associated to given hw.
3679  */
3680 static const struct ice_cgu_pin_desc *
3681 ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
3682 {
3683 	static const struct ice_cgu_pin_desc *t;
3684 
3685 	if (hw->cgu_part_number ==
3686 	    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
3687 		if (input) {
3688 			t = ice_e823_zl_cgu_inputs;
3689 			*size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
3690 		} else {
3691 			t = ice_e823_zl_cgu_outputs;
3692 			*size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
3693 		}
3694 	} else if (hw->cgu_part_number ==
3695 		   ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
3696 		if (input) {
3697 			t = ice_e823_si_cgu_inputs;
3698 			*size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
3699 		} else {
3700 			t = ice_e823_si_cgu_outputs;
3701 			*size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
3702 		}
3703 	} else {
3704 		t = NULL;
3705 		*size = 0;
3706 	}
3707 
3708 	return t;
3709 }
3710 
3711 /**
3712  * ice_cgu_get_pin_desc - get pin description array
3713  * @hw: pointer to the hw struct
3714  * @input: if request is done against input or output pins
3715  * @size: size of array returned by function
3716  *
3717  * Return: pointer to pin description array associated to given hw.
3718  */
3719 static const struct ice_cgu_pin_desc *
3720 ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
3721 {
3722 	const struct ice_cgu_pin_desc *t = NULL;
3723 
3724 	switch (hw->device_id) {
3725 	case ICE_DEV_ID_E810C_SFP:
3726 		if (input) {
3727 			t = ice_e810t_sfp_cgu_inputs;
3728 			*size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
3729 		} else {
3730 			t = ice_e810t_sfp_cgu_outputs;
3731 			*size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
3732 		}
3733 		break;
3734 	case ICE_DEV_ID_E810C_QSFP:
3735 		if (input) {
3736 			t = ice_e810t_qsfp_cgu_inputs;
3737 			*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
3738 		} else {
3739 			t = ice_e810t_qsfp_cgu_outputs;
3740 			*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
3741 		}
3742 		break;
3743 	case ICE_DEV_ID_E823L_10G_BASE_T:
3744 	case ICE_DEV_ID_E823L_1GBE:
3745 	case ICE_DEV_ID_E823L_BACKPLANE:
3746 	case ICE_DEV_ID_E823L_QSFP:
3747 	case ICE_DEV_ID_E823L_SFP:
3748 	case ICE_DEV_ID_E823C_10G_BASE_T:
3749 	case ICE_DEV_ID_E823C_BACKPLANE:
3750 	case ICE_DEV_ID_E823C_QSFP:
3751 	case ICE_DEV_ID_E823C_SFP:
3752 	case ICE_DEV_ID_E823C_SGMII:
3753 		t = ice_cgu_get_pin_desc_e823(hw, input, size);
3754 		break;
3755 	default:
3756 		break;
3757 	}
3758 
3759 	return t;
3760 }
3761 
3762 /**
3763  * ice_cgu_get_pin_type - get pin's type
3764  * @hw: pointer to the hw struct
3765  * @pin: pin index
3766  * @input: if request is done against input or output pin
3767  *
3768  * Return: type of a pin.
3769  */
3770 enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
3771 {
3772 	const struct ice_cgu_pin_desc *t;
3773 	int t_size;
3774 
3775 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
3776 
3777 	if (!t)
3778 		return 0;
3779 
3780 	if (pin >= t_size)
3781 		return 0;
3782 
3783 	return t[pin].type;
3784 }
3785 
3786 /**
3787  * ice_cgu_get_pin_freq_supp - get pin's supported frequency
3788  * @hw: pointer to the hw struct
3789  * @pin: pin index
3790  * @input: if request is done against input or output pin
3791  * @num: output number of supported frequencies
3792  *
3793  * Get frequency supported number and array of supported frequencies.
3794  *
3795  * Return: array of supported frequencies for given pin.
3796  */
3797 struct dpll_pin_frequency *
3798 ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
3799 {
3800 	const struct ice_cgu_pin_desc *t;
3801 	int t_size;
3802 
3803 	*num = 0;
3804 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
3805 	if (!t)
3806 		return NULL;
3807 	if (pin >= t_size)
3808 		return NULL;
3809 	*num = t[pin].freq_supp_num;
3810 
3811 	return t[pin].freq_supp;
3812 }
3813 
3814 /**
3815  * ice_cgu_get_pin_name - get pin's name
3816  * @hw: pointer to the hw struct
3817  * @pin: pin index
3818  * @input: if request is done against input or output pin
3819  *
3820  * Return:
3821  * * null terminated char array with name
3822  * * NULL in case of failure
3823  */
3824 const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
3825 {
3826 	const struct ice_cgu_pin_desc *t;
3827 	int t_size;
3828 
3829 	t = ice_cgu_get_pin_desc(hw, input, &t_size);
3830 
3831 	if (!t)
3832 		return NULL;
3833 
3834 	if (pin >= t_size)
3835 		return NULL;
3836 
3837 	return t[pin].name;
3838 }
3839 
3840 /**
3841  * ice_get_cgu_state - get the state of the DPLL
3842  * @hw: pointer to the hw struct
3843  * @dpll_idx: Index of internal DPLL unit
3844  * @last_dpll_state: last known state of DPLL
3845  * @pin: pointer to a buffer for returning currently active pin
3846  * @ref_state: reference clock state
3847  * @eec_mode: eec mode of the DPLL
3848  * @phase_offset: pointer to a buffer for returning phase offset
3849  * @dpll_state: state of the DPLL (output)
3850  *
3851  * This function will read the state of the DPLL(dpll_idx). Non-null
3852  * 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
3853  * retrieve currently active pin, state, mode and phase_offset respectively.
3854  *
3855  * Return: state of the DPLL
3856  */
3857 int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
3858 		      enum dpll_lock_status last_dpll_state, u8 *pin,
3859 		      u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
3860 		      enum dpll_lock_status *dpll_state)
3861 {
3862 	u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
3863 	s64 hw_phase_offset;
3864 	int status;
3865 
3866 	status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
3867 					    &hw_dpll_state, &hw_config,
3868 					    &hw_phase_offset, &hw_eec_mode);
3869 	if (status)
3870 		return status;
3871 
3872 	if (pin)
3873 		/* current ref pin in dpll_state_refsel_status_X register */
3874 		*pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
3875 	if (phase_offset)
3876 		*phase_offset = hw_phase_offset;
3877 	if (ref_state)
3878 		*ref_state = hw_ref_state;
3879 	if (eec_mode)
3880 		*eec_mode = hw_eec_mode;
3881 	if (!dpll_state)
3882 		return 0;
3883 
3884 	/* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
3885 	 * it would never return to FREERUN. This aligns to ITU-T G.781
3886 	 * Recommendation. We cannot report HOLDOVER as HO memory is cleared
3887 	 * while switching to another reference.
3888 	 * Only for situations where previous state was either: "LOCKED without
3889 	 * HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
3890 	 */
3891 	if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
3892 		if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
3893 			*dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
3894 		else
3895 			*dpll_state = DPLL_LOCK_STATUS_LOCKED;
3896 	} else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
3897 		   last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
3898 		*dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
3899 	} else {
3900 		*dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
3901 	}
3902 
3903 	return 0;
3904 }
3905 
3906 /**
3907  * ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
3908  * @hw: pointer to the hw struct
3909  * @base_idx: returns index of first recovered clock pin on device
3910  * @pin_num: returns number of recovered clock pins available on device
3911  *
3912  * Based on hw provide caller info about recovery clock pins available on the
3913  * board.
3914  *
3915  * Return:
3916  * * 0 - success, information is valid
3917  * * negative - failure, information is not valid
3918  */
3919 int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
3920 {
3921 	u8 phy_idx;
3922 	int ret;
3923 
3924 	switch (hw->device_id) {
3925 	case ICE_DEV_ID_E810C_SFP:
3926 	case ICE_DEV_ID_E810C_QSFP:
3927 
3928 		ret = ice_get_pf_c827_idx(hw, &phy_idx);
3929 		if (ret)
3930 			return ret;
3931 		*base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
3932 		*pin_num = ICE_E810_RCLK_PINS_NUM;
3933 		ret = 0;
3934 		break;
3935 	case ICE_DEV_ID_E823L_10G_BASE_T:
3936 	case ICE_DEV_ID_E823L_1GBE:
3937 	case ICE_DEV_ID_E823L_BACKPLANE:
3938 	case ICE_DEV_ID_E823L_QSFP:
3939 	case ICE_DEV_ID_E823L_SFP:
3940 	case ICE_DEV_ID_E823C_10G_BASE_T:
3941 	case ICE_DEV_ID_E823C_BACKPLANE:
3942 	case ICE_DEV_ID_E823C_QSFP:
3943 	case ICE_DEV_ID_E823C_SFP:
3944 	case ICE_DEV_ID_E823C_SGMII:
3945 		*pin_num = ICE_E822_RCLK_PINS_NUM;
3946 		ret = 0;
3947 		if (hw->cgu_part_number ==
3948 		    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
3949 			*base_idx = ZL_REF1P;
3950 		else if (hw->cgu_part_number ==
3951 			 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
3952 			*base_idx = SI_REF1P;
3953 		else
3954 			ret = -ENODEV;
3955 
3956 		break;
3957 	default:
3958 		ret = -ENODEV;
3959 		break;
3960 	}
3961 
3962 	return ret;
3963 }
3964 
3965 /**
3966  * ice_cgu_get_output_pin_state_caps - get output pin state capabilities
3967  * @hw: pointer to the hw struct
3968  * @pin_id: id of a pin
3969  * @caps: capabilities to modify
3970  *
3971  * Return:
3972  * * 0 - success, state capabilities were modified
3973  * * negative - failure, capabilities were not modified
3974  */
3975 int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
3976 				      unsigned long *caps)
3977 {
3978 	bool can_change = true;
3979 
3980 	switch (hw->device_id) {
3981 	case ICE_DEV_ID_E810C_SFP:
3982 		if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
3983 			can_change = false;
3984 		break;
3985 	case ICE_DEV_ID_E810C_QSFP:
3986 		if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
3987 			can_change = false;
3988 		break;
3989 	case ICE_DEV_ID_E823L_10G_BASE_T:
3990 	case ICE_DEV_ID_E823L_1GBE:
3991 	case ICE_DEV_ID_E823L_BACKPLANE:
3992 	case ICE_DEV_ID_E823L_QSFP:
3993 	case ICE_DEV_ID_E823L_SFP:
3994 	case ICE_DEV_ID_E823C_10G_BASE_T:
3995 	case ICE_DEV_ID_E823C_BACKPLANE:
3996 	case ICE_DEV_ID_E823C_QSFP:
3997 	case ICE_DEV_ID_E823C_SFP:
3998 	case ICE_DEV_ID_E823C_SGMII:
3999 		if (hw->cgu_part_number ==
4000 		    ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
4001 		    pin_id == ZL_OUT2)
4002 			can_change = false;
4003 		else if (hw->cgu_part_number ==
4004 			 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
4005 			 pin_id == SI_OUT1)
4006 			can_change = false;
4007 		break;
4008 	default:
4009 		return -EINVAL;
4010 	}
4011 	if (can_change)
4012 		*caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
4013 	else
4014 		*caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
4015 
4016 	return 0;
4017 }
4018