xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp_hw.c (revision 3f58ff6b53c11773b1bd564082fae37d48e0cc40)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include <linux/delay.h>
5 #include "ice_common.h"
6 #include "ice_ptp_hw.h"
7 #include "ice_ptp_consts.h"
8 #include "ice_cgu_regs.h"
9 
10 /* Low level functions for interacting with and managing the device clock used
11  * for the Precision Time Protocol.
12  *
13  * The ice hardware represents the current time using three registers:
14  *
15  *    GLTSYN_TIME_H     GLTSYN_TIME_L     GLTSYN_TIME_R
16  *  +---------------+ +---------------+ +---------------+
17  *  |    32 bits    | |    32 bits    | |    32 bits    |
18  *  +---------------+ +---------------+ +---------------+
19  *
20  * The registers are incremented every clock tick using a 40bit increment
21  * value defined over two registers:
22  *
23  *                     GLTSYN_INCVAL_H   GLTSYN_INCVAL_L
24  *                    +---------------+ +---------------+
25  *                    |    8 bit s    | |    32 bits    |
26  *                    +---------------+ +---------------+
27  *
28  * The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
29  * registers every clock source tick. Depending on the specific device
30  * configuration, the clock source frequency could be one of a number of
31  * values.
32  *
33  * For E810 devices, the increment frequency is 812.5 MHz
34  *
35  * For E822 devices the clock can be derived from different sources, and the
36  * increment has an effective frequency of one of the following:
37  * - 823.4375 MHz
38  * - 783.36 MHz
39  * - 796.875 MHz
40  * - 816 MHz
41  * - 830.078125 MHz
42  * - 783.36 MHz
43  *
44  * The hardware captures timestamps in the PHY for incoming packets, and for
45  * outgoing packets on request. To support this, the PHY maintains a timer
46  * that matches the lower 64 bits of the global source timer.
47  *
48  * In order to ensure that the PHY timers and the source timer are equivalent,
49  * shadow registers are used to prepare the desired initial values. A special
50  * sync command is issued to trigger copying from the shadow registers into
51  * the appropriate source and PHY registers simultaneously.
52  *
53  * The driver supports devices which have different PHYs with subtly different
54  * mechanisms to program and control the timers. We divide the devices into
55  * families named after the first major device, E810 and similar devices, and
56  * E822 and similar devices.
57  *
58  * - E822 based devices have additional support for fine grained Vernier
59  *   calibration which requires significant setup
60  * - The layout of timestamp data in the PHY register blocks is different
61  * - The way timer synchronization commands are issued is different.
62  *
63  * To support this, very low level functions have an e810 or e822 suffix
64  * indicating what type of device they work on. Higher level abstractions for
65  * tasks that can be done on both devices do not have the suffix and will
66  * correctly look up the appropriate low level function when running.
67  *
68  * Functions which only make sense on a single device family may not have
69  * a suitable generic implementation
70  */
71 
72 /**
73  * ice_get_ptp_src_clock_index - determine source clock index
74  * @hw: pointer to HW struct
75  *
76  * Determine the source clock index currently in use, based on device
77  * capabilities reported during initialization.
78  */
79 u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
80 {
81 	return hw->func_caps.ts_func_info.tmr_index_assoc;
82 }
83 
84 /**
85  * ice_ptp_read_src_incval - Read source timer increment value
86  * @hw: pointer to HW struct
87  *
88  * Read the increment value of the source timer and return it.
89  */
90 static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
91 {
92 	u32 lo, hi;
93 	u8 tmr_idx;
94 
95 	tmr_idx = ice_get_ptp_src_clock_index(hw);
96 
97 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
98 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
99 
100 	return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
101 }
102 
103 /**
104  * ice_ptp_src_cmd - Prepare source timer for a timer command
105  * @hw: pointer to HW structure
106  * @cmd: Timer command
107  *
108  * Prepare the source timer for an upcoming timer sync command.
109  */
110 static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
111 {
112 	u32 cmd_val;
113 	u8 tmr_idx;
114 
115 	tmr_idx = ice_get_ptp_src_clock_index(hw);
116 	cmd_val = tmr_idx << SEL_CPK_SRC;
117 
118 	switch (cmd) {
119 	case INIT_TIME:
120 		cmd_val |= GLTSYN_CMD_INIT_TIME;
121 		break;
122 	case INIT_INCVAL:
123 		cmd_val |= GLTSYN_CMD_INIT_INCVAL;
124 		break;
125 	case ADJ_TIME:
126 		cmd_val |= GLTSYN_CMD_ADJ_TIME;
127 		break;
128 	case ADJ_TIME_AT_TIME:
129 		cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
130 		break;
131 	case READ_TIME:
132 		cmd_val |= GLTSYN_CMD_READ_TIME;
133 		break;
134 	}
135 
136 	wr32(hw, GLTSYN_CMD, cmd_val);
137 }
138 
139 /**
140  * ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
141  * @hw: pointer to HW struct
142  *
143  * Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
144  * write immediately. This triggers the hardware to begin executing all of the
145  * source and PHY timer commands synchronously.
146  */
147 static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
148 {
149 	wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
150 	ice_flush(hw);
151 }
152 
153 /* E822 family functions
154  *
155  * The following functions operate on the E822 family of devices.
156  */
157 
158 /**
159  * ice_fill_phy_msg_e822 - Fill message data for a PHY register access
160  * @msg: the PHY message buffer to fill in
161  * @port: the port to access
162  * @offset: the register offset
163  */
164 static void
165 ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
166 {
167 	int phy_port, phy, quadtype;
168 
169 	phy_port = port % ICE_PORTS_PER_PHY;
170 	phy = port / ICE_PORTS_PER_PHY;
171 	quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE;
172 
173 	if (quadtype == 0) {
174 		msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
175 		msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
176 	} else {
177 		msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
178 		msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
179 	}
180 
181 	if (phy == 0)
182 		msg->dest_dev = rmn_0;
183 	else if (phy == 1)
184 		msg->dest_dev = rmn_1;
185 	else
186 		msg->dest_dev = rmn_2;
187 }
188 
189 /**
190  * ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
191  * @low_addr: the low address to check
192  * @high_addr: on return, contains the high address of the 64bit register
193  *
194  * Checks if the provided low address is one of the known 64bit PHY values
195  * represented as two 32bit registers. If it is, return the appropriate high
196  * register offset to use.
197  */
198 static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
199 {
200 	switch (low_addr) {
201 	case P_REG_PAR_PCS_TX_OFFSET_L:
202 		*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
203 		return true;
204 	case P_REG_PAR_PCS_RX_OFFSET_L:
205 		*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
206 		return true;
207 	case P_REG_PAR_TX_TIME_L:
208 		*high_addr = P_REG_PAR_TX_TIME_U;
209 		return true;
210 	case P_REG_PAR_RX_TIME_L:
211 		*high_addr = P_REG_PAR_RX_TIME_U;
212 		return true;
213 	case P_REG_TOTAL_TX_OFFSET_L:
214 		*high_addr = P_REG_TOTAL_TX_OFFSET_U;
215 		return true;
216 	case P_REG_TOTAL_RX_OFFSET_L:
217 		*high_addr = P_REG_TOTAL_RX_OFFSET_U;
218 		return true;
219 	case P_REG_UIX66_10G_40G_L:
220 		*high_addr = P_REG_UIX66_10G_40G_U;
221 		return true;
222 	case P_REG_UIX66_25G_100G_L:
223 		*high_addr = P_REG_UIX66_25G_100G_U;
224 		return true;
225 	case P_REG_TX_CAPTURE_L:
226 		*high_addr = P_REG_TX_CAPTURE_U;
227 		return true;
228 	case P_REG_RX_CAPTURE_L:
229 		*high_addr = P_REG_RX_CAPTURE_U;
230 		return true;
231 	case P_REG_TX_TIMER_INC_PRE_L:
232 		*high_addr = P_REG_TX_TIMER_INC_PRE_U;
233 		return true;
234 	case P_REG_RX_TIMER_INC_PRE_L:
235 		*high_addr = P_REG_RX_TIMER_INC_PRE_U;
236 		return true;
237 	default:
238 		return false;
239 	}
240 }
241 
242 /**
243  * ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
244  * @low_addr: the low address to check
245  * @high_addr: on return, contains the high address of the 40bit value
246  *
247  * Checks if the provided low address is one of the known 40bit PHY values
248  * split into two registers with the lower 8 bits in the low register and the
249  * upper 32 bits in the high register. If it is, return the appropriate high
250  * register offset to use.
251  */
252 static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
253 {
254 	switch (low_addr) {
255 	case P_REG_TIMETUS_L:
256 		*high_addr = P_REG_TIMETUS_U;
257 		return true;
258 	case P_REG_PAR_RX_TUS_L:
259 		*high_addr = P_REG_PAR_RX_TUS_U;
260 		return true;
261 	case P_REG_PAR_TX_TUS_L:
262 		*high_addr = P_REG_PAR_TX_TUS_U;
263 		return true;
264 	case P_REG_PCS_RX_TUS_L:
265 		*high_addr = P_REG_PCS_RX_TUS_U;
266 		return true;
267 	case P_REG_PCS_TX_TUS_L:
268 		*high_addr = P_REG_PCS_TX_TUS_U;
269 		return true;
270 	case P_REG_DESK_PAR_RX_TUS_L:
271 		*high_addr = P_REG_DESK_PAR_RX_TUS_U;
272 		return true;
273 	case P_REG_DESK_PAR_TX_TUS_L:
274 		*high_addr = P_REG_DESK_PAR_TX_TUS_U;
275 		return true;
276 	case P_REG_DESK_PCS_RX_TUS_L:
277 		*high_addr = P_REG_DESK_PCS_RX_TUS_U;
278 		return true;
279 	case P_REG_DESK_PCS_TX_TUS_L:
280 		*high_addr = P_REG_DESK_PCS_TX_TUS_U;
281 		return true;
282 	default:
283 		return false;
284 	}
285 }
286 
287 /**
288  * ice_read_phy_reg_e822 - Read a PHY register
289  * @hw: pointer to the HW struct
290  * @port: PHY port to read from
291  * @offset: PHY register offset to read
292  * @val: on return, the contents read from the PHY
293  *
294  * Read a PHY register for the given port over the device sideband queue.
295  */
296 int
297 ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
298 {
299 	struct ice_sbq_msg_input msg = {0};
300 	int err;
301 
302 	ice_fill_phy_msg_e822(&msg, port, offset);
303 	msg.opcode = ice_sbq_msg_rd;
304 
305 	err = ice_sbq_rw_reg(hw, &msg);
306 	if (err) {
307 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
308 			  err);
309 		return err;
310 	}
311 
312 	*val = msg.data;
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
319  * @hw: pointer to the HW struct
320  * @port: PHY port to read from
321  * @low_addr: offset of the lower register to read from
322  * @val: on return, the contents of the 64bit value from the PHY registers
323  *
324  * Reads the two registers associated with a 64bit value and returns it in the
325  * val pointer. The offset always specifies the lower register offset to use.
326  * The high offset is looked up. This function only operates on registers
327  * known to be two parts of a 64bit value.
328  */
329 static int
330 ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
331 {
332 	u32 low, high;
333 	u16 high_addr;
334 	int err;
335 
336 	/* Only operate on registers known to be split into two 32bit
337 	 * registers.
338 	 */
339 	if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
340 		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
341 			  low_addr);
342 		return -EINVAL;
343 	}
344 
345 	err = ice_read_phy_reg_e822(hw, port, low_addr, &low);
346 	if (err) {
347 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
348 			  low_addr, err);
349 		return err;
350 	}
351 
352 	err = ice_read_phy_reg_e822(hw, port, high_addr, &high);
353 	if (err) {
354 		ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
355 			  high_addr, err);
356 		return err;
357 	}
358 
359 	*val = (u64)high << 32 | low;
360 
361 	return 0;
362 }
363 
364 /**
365  * ice_write_phy_reg_e822 - Write a PHY register
366  * @hw: pointer to the HW struct
367  * @port: PHY port to write to
368  * @offset: PHY register offset to write
369  * @val: The value to write to the register
370  *
371  * Write a PHY register for the given port over the device sideband queue.
372  */
373 int
374 ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
375 {
376 	struct ice_sbq_msg_input msg = {0};
377 	int err;
378 
379 	ice_fill_phy_msg_e822(&msg, port, offset);
380 	msg.opcode = ice_sbq_msg_wr;
381 	msg.data = val;
382 
383 	err = ice_sbq_rw_reg(hw, &msg);
384 	if (err) {
385 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
386 			  err);
387 		return err;
388 	}
389 
390 	return 0;
391 }
392 
393 /**
394  * ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
395  * @hw: pointer to the HW struct
396  * @port: port to write to
397  * @low_addr: offset of the low register
398  * @val: 40b value to write
399  *
400  * Write the provided 40b value to the two associated registers by splitting
401  * it up into two chunks, the lower 8 bits and the upper 32 bits.
402  */
403 static int
404 ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
405 {
406 	u32 low, high;
407 	u16 high_addr;
408 	int err;
409 
410 	/* Only operate on registers known to be split into a lower 8 bit
411 	 * register and an upper 32 bit register.
412 	 */
413 	if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) {
414 		ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
415 			  low_addr);
416 		return -EINVAL;
417 	}
418 
419 	low = (u32)(val & P_REG_40B_LOW_M);
420 	high = (u32)(val >> P_REG_40B_HIGH_S);
421 
422 	err = ice_write_phy_reg_e822(hw, port, low_addr, low);
423 	if (err) {
424 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
425 			  low_addr, err);
426 		return err;
427 	}
428 
429 	err = ice_write_phy_reg_e822(hw, port, high_addr, high);
430 	if (err) {
431 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
432 			  high_addr, err);
433 		return err;
434 	}
435 
436 	return 0;
437 }
438 
439 /**
440  * ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
441  * @hw: pointer to the HW struct
442  * @port: PHY port to read from
443  * @low_addr: offset of the lower register to read from
444  * @val: the contents of the 64bit value to write to PHY
445  *
446  * Write the 64bit value to the two associated 32bit PHY registers. The offset
447  * is always specified as the lower register, and the high address is looked
448  * up. This function only operates on registers known to be two parts of
449  * a 64bit value.
450  */
451 static int
452 ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
453 {
454 	u32 low, high;
455 	u16 high_addr;
456 	int err;
457 
458 	/* Only operate on registers known to be split into two 32bit
459 	 * registers.
460 	 */
461 	if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
462 		ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
463 			  low_addr);
464 		return -EINVAL;
465 	}
466 
467 	low = lower_32_bits(val);
468 	high = upper_32_bits(val);
469 
470 	err = ice_write_phy_reg_e822(hw, port, low_addr, low);
471 	if (err) {
472 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
473 			  low_addr, err);
474 		return err;
475 	}
476 
477 	err = ice_write_phy_reg_e822(hw, port, high_addr, high);
478 	if (err) {
479 		ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
480 			  high_addr, err);
481 		return err;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * ice_fill_quad_msg_e822 - Fill message data for quad register access
489  * @msg: the PHY message buffer to fill in
490  * @quad: the quad to access
491  * @offset: the register offset
492  *
493  * Fill a message buffer for accessing a register in a quad shared between
494  * multiple PHYs.
495  */
496 static void
497 ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
498 {
499 	u32 addr;
500 
501 	msg->dest_dev = rmn_0;
502 
503 	if ((quad % ICE_NUM_QUAD_TYPE) == 0)
504 		addr = Q_0_BASE + offset;
505 	else
506 		addr = Q_1_BASE + offset;
507 
508 	msg->msg_addr_low = lower_16_bits(addr);
509 	msg->msg_addr_high = upper_16_bits(addr);
510 }
511 
512 /**
513  * ice_read_quad_reg_e822 - Read a PHY quad register
514  * @hw: pointer to the HW struct
515  * @quad: quad to read from
516  * @offset: quad register offset to read
517  * @val: on return, the contents read from the quad
518  *
519  * Read a quad register over the device sideband queue. Quad registers are
520  * shared between multiple PHYs.
521  */
522 int
523 ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
524 {
525 	struct ice_sbq_msg_input msg = {0};
526 	int err;
527 
528 	if (quad >= ICE_MAX_QUAD)
529 		return -EINVAL;
530 
531 	ice_fill_quad_msg_e822(&msg, quad, offset);
532 	msg.opcode = ice_sbq_msg_rd;
533 
534 	err = ice_sbq_rw_reg(hw, &msg);
535 	if (err) {
536 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
537 			  err);
538 		return err;
539 	}
540 
541 	*val = msg.data;
542 
543 	return 0;
544 }
545 
546 /**
547  * ice_write_quad_reg_e822 - Write a PHY quad register
548  * @hw: pointer to the HW struct
549  * @quad: quad to write to
550  * @offset: quad register offset to write
551  * @val: The value to write to the register
552  *
553  * Write a quad register over the device sideband queue. Quad registers are
554  * shared between multiple PHYs.
555  */
556 int
557 ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
558 {
559 	struct ice_sbq_msg_input msg = {0};
560 	int err;
561 
562 	if (quad >= ICE_MAX_QUAD)
563 		return -EINVAL;
564 
565 	ice_fill_quad_msg_e822(&msg, quad, offset);
566 	msg.opcode = ice_sbq_msg_wr;
567 	msg.data = val;
568 
569 	err = ice_sbq_rw_reg(hw, &msg);
570 	if (err) {
571 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
572 			  err);
573 		return err;
574 	}
575 
576 	return 0;
577 }
578 
579 /**
580  * ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
581  * @hw: pointer to the HW struct
582  * @quad: the quad to read from
583  * @idx: the timestamp index to read
584  * @tstamp: on return, the 40bit timestamp value
585  *
586  * Read a 40bit timestamp value out of the two associated registers in the
587  * quad memory block that is shared between the internal PHYs of the E822
588  * family of devices.
589  */
590 static int
591 ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
592 {
593 	u16 lo_addr, hi_addr;
594 	u32 lo, hi;
595 	int err;
596 
597 	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
598 	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
599 
600 	err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo);
601 	if (err) {
602 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
603 			  err);
604 		return err;
605 	}
606 
607 	err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi);
608 	if (err) {
609 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
610 			  err);
611 		return err;
612 	}
613 
614 	/* For E822 based internal PHYs, the timestamp is reported with the
615 	 * lower 8 bits in the low register, and the upper 32 bits in the high
616 	 * register.
617 	 */
618 	*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
619 
620 	return 0;
621 }
622 
623 /**
624  * ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
625  * @hw: pointer to the HW struct
626  * @quad: the quad to read from
627  * @idx: the timestamp index to reset
628  *
629  * Clear a timestamp, resetting its valid bit, from the PHY quad block that is
630  * shared between the internal PHYs on the E822 devices.
631  */
632 static int
633 ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
634 {
635 	u16 lo_addr, hi_addr;
636 	int err;
637 
638 	lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
639 	hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
640 
641 	err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0);
642 	if (err) {
643 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
644 			  err);
645 		return err;
646 	}
647 
648 	err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0);
649 	if (err) {
650 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
651 			  err);
652 		return err;
653 	}
654 
655 	return 0;
656 }
657 
658 /**
659  * ice_ptp_reset_ts_memory_quad_e822 - Clear all timestamps from the quad block
660  * @hw: pointer to the HW struct
661  * @quad: the quad to read from
662  *
663  * Clear all timestamps from the PHY quad block that is shared between the
664  * internal PHYs on the E822 devices.
665  */
666 void ice_ptp_reset_ts_memory_quad_e822(struct ice_hw *hw, u8 quad)
667 {
668 	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
669 	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
670 }
671 
672 /**
673  * ice_ptp_reset_ts_memory_e822 - Clear all timestamps from all quad blocks
674  * @hw: pointer to the HW struct
675  */
676 static void ice_ptp_reset_ts_memory_e822(struct ice_hw *hw)
677 {
678 	unsigned int quad;
679 
680 	for (quad = 0; quad < ICE_MAX_QUAD; quad++)
681 		ice_ptp_reset_ts_memory_quad_e822(hw, quad);
682 }
683 
684 /**
685  * ice_read_cgu_reg_e822 - Read a CGU register
686  * @hw: pointer to the HW struct
687  * @addr: Register address to read
688  * @val: storage for register value read
689  *
690  * Read the contents of a register of the Clock Generation Unit. Only
691  * applicable to E822 devices.
692  */
693 static int
694 ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
695 {
696 	struct ice_sbq_msg_input cgu_msg;
697 	int err;
698 
699 	cgu_msg.opcode = ice_sbq_msg_rd;
700 	cgu_msg.dest_dev = cgu;
701 	cgu_msg.msg_addr_low = addr;
702 	cgu_msg.msg_addr_high = 0x0;
703 
704 	err = ice_sbq_rw_reg(hw, &cgu_msg);
705 	if (err) {
706 		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
707 			  addr, err);
708 		return err;
709 	}
710 
711 	*val = cgu_msg.data;
712 
713 	return err;
714 }
715 
716 /**
717  * ice_write_cgu_reg_e822 - Write a CGU register
718  * @hw: pointer to the HW struct
719  * @addr: Register address to write
720  * @val: value to write into the register
721  *
722  * Write the specified value to a register of the Clock Generation Unit. Only
723  * applicable to E822 devices.
724  */
725 static int
726 ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
727 {
728 	struct ice_sbq_msg_input cgu_msg;
729 	int err;
730 
731 	cgu_msg.opcode = ice_sbq_msg_wr;
732 	cgu_msg.dest_dev = cgu;
733 	cgu_msg.msg_addr_low = addr;
734 	cgu_msg.msg_addr_high = 0x0;
735 	cgu_msg.data = val;
736 
737 	err = ice_sbq_rw_reg(hw, &cgu_msg);
738 	if (err) {
739 		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
740 			  addr, err);
741 		return err;
742 	}
743 
744 	return err;
745 }
746 
747 /**
748  * ice_clk_freq_str - Convert time_ref_freq to string
749  * @clk_freq: Clock frequency
750  *
751  * Convert the specified TIME_REF clock frequency to a string.
752  */
753 static const char *ice_clk_freq_str(u8 clk_freq)
754 {
755 	switch ((enum ice_time_ref_freq)clk_freq) {
756 	case ICE_TIME_REF_FREQ_25_000:
757 		return "25 MHz";
758 	case ICE_TIME_REF_FREQ_122_880:
759 		return "122.88 MHz";
760 	case ICE_TIME_REF_FREQ_125_000:
761 		return "125 MHz";
762 	case ICE_TIME_REF_FREQ_153_600:
763 		return "153.6 MHz";
764 	case ICE_TIME_REF_FREQ_156_250:
765 		return "156.25 MHz";
766 	case ICE_TIME_REF_FREQ_245_760:
767 		return "245.76 MHz";
768 	default:
769 		return "Unknown";
770 	}
771 }
772 
773 /**
774  * ice_clk_src_str - Convert time_ref_src to string
775  * @clk_src: Clock source
776  *
777  * Convert the specified clock source to its string name.
778  */
779 static const char *ice_clk_src_str(u8 clk_src)
780 {
781 	switch ((enum ice_clk_src)clk_src) {
782 	case ICE_CLK_SRC_TCX0:
783 		return "TCX0";
784 	case ICE_CLK_SRC_TIME_REF:
785 		return "TIME_REF";
786 	default:
787 		return "Unknown";
788 	}
789 }
790 
791 /**
792  * ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
793  * @hw: pointer to the HW struct
794  * @clk_freq: Clock frequency to program
795  * @clk_src: Clock source to select (TIME_REF, or TCX0)
796  *
797  * Configure the Clock Generation Unit with the desired clock frequency and
798  * time reference, enabling the PLL which drives the PTP hardware clock.
799  */
800 static int
801 ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
802 		     enum ice_clk_src clk_src)
803 {
804 	union tspll_ro_bwm_lf bwm_lf;
805 	union nac_cgu_dword19 dw19;
806 	union nac_cgu_dword22 dw22;
807 	union nac_cgu_dword24 dw24;
808 	union nac_cgu_dword9 dw9;
809 	int err;
810 
811 	if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
812 		dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
813 			 clk_freq);
814 		return -EINVAL;
815 	}
816 
817 	if (clk_src >= NUM_ICE_CLK_SRC) {
818 		dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
819 			 clk_src);
820 		return -EINVAL;
821 	}
822 
823 	if (clk_src == ICE_CLK_SRC_TCX0 &&
824 	    clk_freq != ICE_TIME_REF_FREQ_25_000) {
825 		dev_warn(ice_hw_to_dev(hw),
826 			 "TCX0 only supports 25 MHz frequency\n");
827 		return -EINVAL;
828 	}
829 
830 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val);
831 	if (err)
832 		return err;
833 
834 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
835 	if (err)
836 		return err;
837 
838 	err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
839 	if (err)
840 		return err;
841 
842 	/* Log the current clock configuration */
843 	ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
844 		  dw24.field.ts_pll_enable ? "enabled" : "disabled",
845 		  ice_clk_src_str(dw24.field.time_ref_sel),
846 		  ice_clk_freq_str(dw9.field.time_ref_freq_sel),
847 		  bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
848 
849 	/* Disable the PLL before changing the clock source or frequency */
850 	if (dw24.field.ts_pll_enable) {
851 		dw24.field.ts_pll_enable = 0;
852 
853 		err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
854 		if (err)
855 			return err;
856 	}
857 
858 	/* Set the frequency */
859 	dw9.field.time_ref_freq_sel = clk_freq;
860 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val);
861 	if (err)
862 		return err;
863 
864 	/* Configure the TS PLL feedback divisor */
865 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val);
866 	if (err)
867 		return err;
868 
869 	dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
870 	dw19.field.tspll_ndivratio = 1;
871 
872 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val);
873 	if (err)
874 		return err;
875 
876 	/* Configure the TS PLL post divisor */
877 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val);
878 	if (err)
879 		return err;
880 
881 	dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
882 	dw22.field.time1588clk_sel_div2 = 0;
883 
884 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val);
885 	if (err)
886 		return err;
887 
888 	/* Configure the TS PLL pre divisor and clock source */
889 	err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
890 	if (err)
891 		return err;
892 
893 	dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
894 	dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
895 	dw24.field.time_ref_sel = clk_src;
896 
897 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
898 	if (err)
899 		return err;
900 
901 	/* Finally, enable the PLL */
902 	dw24.field.ts_pll_enable = 1;
903 
904 	err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
905 	if (err)
906 		return err;
907 
908 	/* Wait to verify if the PLL locks */
909 	usleep_range(1000, 5000);
910 
911 	err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
912 	if (err)
913 		return err;
914 
915 	if (!bwm_lf.field.plllock_true_lock_cri) {
916 		dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
917 		return -EBUSY;
918 	}
919 
920 	/* Log the current clock configuration */
921 	ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
922 		  dw24.field.ts_pll_enable ? "enabled" : "disabled",
923 		  ice_clk_src_str(dw24.field.time_ref_sel),
924 		  ice_clk_freq_str(dw9.field.time_ref_freq_sel),
925 		  bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
926 
927 	return 0;
928 }
929 
930 /**
931  * ice_init_cgu_e822 - Initialize CGU with settings from firmware
932  * @hw: pointer to the HW structure
933  *
934  * Initialize the Clock Generation Unit of the E822 device.
935  */
936 static int ice_init_cgu_e822(struct ice_hw *hw)
937 {
938 	struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
939 	union tspll_cntr_bist_settings cntr_bist;
940 	int err;
941 
942 	err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
943 				    &cntr_bist.val);
944 	if (err)
945 		return err;
946 
947 	/* Disable sticky lock detection so lock err reported is accurate */
948 	cntr_bist.field.i_plllock_sel_0 = 0;
949 	cntr_bist.field.i_plllock_sel_1 = 0;
950 
951 	err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
952 				     cntr_bist.val);
953 	if (err)
954 		return err;
955 
956 	/* Configure the CGU PLL using the parameters from the function
957 	 * capabilities.
958 	 */
959 	err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref,
960 				   (enum ice_clk_src)ts_info->clk_src);
961 	if (err)
962 		return err;
963 
964 	return 0;
965 }
966 
967 /**
968  * ice_ptp_set_vernier_wl - Set the window length for vernier calibration
969  * @hw: pointer to the HW struct
970  *
971  * Set the window length used for the vernier port calibration process.
972  */
973 static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
974 {
975 	u8 port;
976 
977 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
978 		int err;
979 
980 		err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
981 					     PTP_VERNIER_WL);
982 		if (err) {
983 			ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
984 				  port, err);
985 			return err;
986 		}
987 	}
988 
989 	return 0;
990 }
991 
992 /**
993  * ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
994  * @hw: pointer to HW struct
995  *
996  * Perform PHC initialization steps specific to E822 devices.
997  */
998 static int ice_ptp_init_phc_e822(struct ice_hw *hw)
999 {
1000 	int err;
1001 	u32 regval;
1002 
1003 	/* Enable reading switch and PHY registers over the sideband queue */
1004 #define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
1005 #define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
1006 	regval = rd32(hw, PF_SB_REM_DEV_CTL);
1007 	regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
1008 		   PF_SB_REM_DEV_CTL_PHY0);
1009 	wr32(hw, PF_SB_REM_DEV_CTL, regval);
1010 
1011 	/* Initialize the Clock Generation Unit */
1012 	err = ice_init_cgu_e822(hw);
1013 	if (err)
1014 		return err;
1015 
1016 	/* Set window length for all the ports */
1017 	return ice_ptp_set_vernier_wl(hw);
1018 }
1019 
1020 /**
1021  * ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
1022  * @hw: pointer to the HW struct
1023  * @time: Time to initialize the PHY port clocks to
1024  *
1025  * Program the PHY port registers with a new initial time value. The port
1026  * clock will be initialized once the driver issues an INIT_TIME sync
1027  * command. The time value is the upper 32 bits of the PHY timer, usually in
1028  * units of nominal nanoseconds.
1029  */
1030 static int
1031 ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
1032 {
1033 	u64 phy_time;
1034 	u8 port;
1035 	int err;
1036 
1037 	/* The time represents the upper 32 bits of the PHY timer, so we need
1038 	 * to shift to account for this when programming.
1039 	 */
1040 	phy_time = (u64)time << 32;
1041 
1042 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1043 		/* Tx case */
1044 		err = ice_write_64b_phy_reg_e822(hw, port,
1045 						 P_REG_TX_TIMER_INC_PRE_L,
1046 						 phy_time);
1047 		if (err)
1048 			goto exit_err;
1049 
1050 		/* Rx case */
1051 		err = ice_write_64b_phy_reg_e822(hw, port,
1052 						 P_REG_RX_TIMER_INC_PRE_L,
1053 						 phy_time);
1054 		if (err)
1055 			goto exit_err;
1056 	}
1057 
1058 	return 0;
1059 
1060 exit_err:
1061 	ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
1062 		  port, err);
1063 
1064 	return err;
1065 }
1066 
1067 /**
1068  * ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
1069  * @hw: pointer to HW struct
1070  * @port: Port number to be programmed
1071  * @time: time in cycles to adjust the port Tx and Rx clocks
1072  *
1073  * Program the port for an atomic adjustment by writing the Tx and Rx timer
1074  * registers. The atomic adjustment won't be completed until the driver issues
1075  * an ADJ_TIME command.
1076  *
1077  * Note that time is not in units of nanoseconds. It is in clock time
1078  * including the lower sub-nanosecond portion of the port timer.
1079  *
1080  * Negative adjustments are supported using 2s complement arithmetic.
1081  */
1082 int
1083 ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
1084 {
1085 	u32 l_time, u_time;
1086 	int err;
1087 
1088 	l_time = lower_32_bits(time);
1089 	u_time = upper_32_bits(time);
1090 
1091 	/* Tx case */
1092 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
1093 				     l_time);
1094 	if (err)
1095 		goto exit_err;
1096 
1097 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
1098 				     u_time);
1099 	if (err)
1100 		goto exit_err;
1101 
1102 	/* Rx case */
1103 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
1104 				     l_time);
1105 	if (err)
1106 		goto exit_err;
1107 
1108 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
1109 				     u_time);
1110 	if (err)
1111 		goto exit_err;
1112 
1113 	return 0;
1114 
1115 exit_err:
1116 	ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
1117 		  port, err);
1118 	return err;
1119 }
1120 
1121 /**
1122  * ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
1123  * @hw: pointer to HW struct
1124  * @adj: adjustment in nanoseconds
1125  *
1126  * Prepare the PHY ports for an atomic time adjustment by programming the PHY
1127  * Tx and Rx port registers. The actual adjustment is completed by issuing an
1128  * ADJ_TIME or ADJ_TIME_AT_TIME sync command.
1129  */
1130 static int
1131 ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
1132 {
1133 	s64 cycles;
1134 	u8 port;
1135 
1136 	/* The port clock supports adjustment of the sub-nanosecond portion of
1137 	 * the clock. We shift the provided adjustment in nanoseconds to
1138 	 * calculate the appropriate adjustment to program into the PHY ports.
1139 	 */
1140 	if (adj > 0)
1141 		cycles = (s64)adj << 32;
1142 	else
1143 		cycles = -(((s64)-adj) << 32);
1144 
1145 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1146 		int err;
1147 
1148 		err = ice_ptp_prep_port_adj_e822(hw, port, cycles);
1149 		if (err)
1150 			return err;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 /**
1157  * ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
1158  * @hw: pointer to HW struct
1159  * @incval: new increment value to prepare
1160  *
1161  * Prepare each of the PHY ports for a new increment value by programming the
1162  * port's TIMETUS registers. The new increment value will be updated after
1163  * issuing an INIT_INCVAL command.
1164  */
1165 static int
1166 ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
1167 {
1168 	int err;
1169 	u8 port;
1170 
1171 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1172 		err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
1173 						 incval);
1174 		if (err)
1175 			goto exit_err;
1176 	}
1177 
1178 	return 0;
1179 
1180 exit_err:
1181 	ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
1182 		  port, err);
1183 
1184 	return err;
1185 }
1186 
1187 /**
1188  * ice_ptp_read_port_capture - Read a port's local time capture
1189  * @hw: pointer to HW struct
1190  * @port: Port number to read
1191  * @tx_ts: on return, the Tx port time capture
1192  * @rx_ts: on return, the Rx port time capture
1193  *
1194  * Read the port's Tx and Rx local time capture values.
1195  *
1196  * Note this has no equivalent for the E810 devices.
1197  */
1198 static int
1199 ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
1200 {
1201 	int err;
1202 
1203 	/* Tx case */
1204 	err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
1205 	if (err) {
1206 		ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
1207 			  err);
1208 		return err;
1209 	}
1210 
1211 	ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
1212 		  (unsigned long long)*tx_ts);
1213 
1214 	/* Rx case */
1215 	err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
1216 	if (err) {
1217 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
1218 			  err);
1219 		return err;
1220 	}
1221 
1222 	ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
1223 		  (unsigned long long)*rx_ts);
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * ice_ptp_one_port_cmd - Prepare a single PHY port for a timer command
1230  * @hw: pointer to HW struct
1231  * @port: Port to which cmd has to be sent
1232  * @cmd: Command to be sent to the port
1233  *
1234  * Prepare the requested port for an upcoming timer sync command.
1235  *
1236  * Note there is no equivalent of this operation on E810, as that device
1237  * always handles all external PHYs internally.
1238  */
1239 static int
1240 ice_ptp_one_port_cmd(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
1241 {
1242 	u32 cmd_val, val;
1243 	u8 tmr_idx;
1244 	int err;
1245 
1246 	tmr_idx = ice_get_ptp_src_clock_index(hw);
1247 	cmd_val = tmr_idx << SEL_PHY_SRC;
1248 	switch (cmd) {
1249 	case INIT_TIME:
1250 		cmd_val |= PHY_CMD_INIT_TIME;
1251 		break;
1252 	case INIT_INCVAL:
1253 		cmd_val |= PHY_CMD_INIT_INCVAL;
1254 		break;
1255 	case ADJ_TIME:
1256 		cmd_val |= PHY_CMD_ADJ_TIME;
1257 		break;
1258 	case READ_TIME:
1259 		cmd_val |= PHY_CMD_READ_TIME;
1260 		break;
1261 	case ADJ_TIME_AT_TIME:
1262 		cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
1263 		break;
1264 	}
1265 
1266 	/* Tx case */
1267 	/* Read, modify, write */
1268 	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val);
1269 	if (err) {
1270 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
1271 			  err);
1272 		return err;
1273 	}
1274 
1275 	/* Modify necessary bits only and perform write */
1276 	val &= ~TS_CMD_MASK;
1277 	val |= cmd_val;
1278 
1279 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
1280 	if (err) {
1281 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
1282 			  err);
1283 		return err;
1284 	}
1285 
1286 	/* Rx case */
1287 	/* Read, modify, write */
1288 	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val);
1289 	if (err) {
1290 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
1291 			  err);
1292 		return err;
1293 	}
1294 
1295 	/* Modify necessary bits only and perform write */
1296 	val &= ~TS_CMD_MASK;
1297 	val |= cmd_val;
1298 
1299 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
1300 	if (err) {
1301 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
1302 			  err);
1303 		return err;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  * ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
1311  * @hw: pointer to the HW struct
1312  * @cmd: timer command to prepare
1313  *
1314  * Prepare all ports connected to this device for an upcoming timer sync
1315  * command.
1316  */
1317 static int
1318 ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
1319 {
1320 	u8 port;
1321 
1322 	for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
1323 		int err;
1324 
1325 		err = ice_ptp_one_port_cmd(hw, port, cmd);
1326 		if (err)
1327 			return err;
1328 	}
1329 
1330 	return 0;
1331 }
1332 
1333 /* E822 Vernier calibration functions
1334  *
1335  * The following functions are used as part of the vernier calibration of
1336  * a port. This calibration increases the precision of the timestamps on the
1337  * port.
1338  */
1339 
1340 /**
1341  * ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
1342  * @hw: pointer to HW struct
1343  * @port: the port to read from
1344  * @link_out: if non-NULL, holds link speed on success
1345  * @fec_out: if non-NULL, holds FEC algorithm on success
1346  *
1347  * Read the serdes data for the PHY port and extract the link speed and FEC
1348  * algorithm.
1349  */
1350 static int
1351 ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
1352 			       enum ice_ptp_link_spd *link_out,
1353 			       enum ice_ptp_fec_mode *fec_out)
1354 {
1355 	enum ice_ptp_link_spd link;
1356 	enum ice_ptp_fec_mode fec;
1357 	u32 serdes;
1358 	int err;
1359 
1360 	err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes);
1361 	if (err) {
1362 		ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
1363 		return err;
1364 	}
1365 
1366 	/* Determine the FEC algorithm */
1367 	fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
1368 
1369 	serdes &= P_REG_LINK_SPEED_SERDES_M;
1370 
1371 	/* Determine the link speed */
1372 	if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
1373 		switch (serdes) {
1374 		case ICE_PTP_SERDES_25G:
1375 			link = ICE_PTP_LNK_SPD_25G_RS;
1376 			break;
1377 		case ICE_PTP_SERDES_50G:
1378 			link = ICE_PTP_LNK_SPD_50G_RS;
1379 			break;
1380 		case ICE_PTP_SERDES_100G:
1381 			link = ICE_PTP_LNK_SPD_100G_RS;
1382 			break;
1383 		default:
1384 			return -EIO;
1385 		}
1386 	} else {
1387 		switch (serdes) {
1388 		case ICE_PTP_SERDES_1G:
1389 			link = ICE_PTP_LNK_SPD_1G;
1390 			break;
1391 		case ICE_PTP_SERDES_10G:
1392 			link = ICE_PTP_LNK_SPD_10G;
1393 			break;
1394 		case ICE_PTP_SERDES_25G:
1395 			link = ICE_PTP_LNK_SPD_25G;
1396 			break;
1397 		case ICE_PTP_SERDES_40G:
1398 			link = ICE_PTP_LNK_SPD_40G;
1399 			break;
1400 		case ICE_PTP_SERDES_50G:
1401 			link = ICE_PTP_LNK_SPD_50G;
1402 			break;
1403 		default:
1404 			return -EIO;
1405 		}
1406 	}
1407 
1408 	if (link_out)
1409 		*link_out = link;
1410 	if (fec_out)
1411 		*fec_out = fec;
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  * ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
1418  * @hw: pointer to HW struct
1419  * @port: to configure the quad for
1420  */
1421 static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
1422 {
1423 	enum ice_ptp_link_spd link_spd;
1424 	int err;
1425 	u32 val;
1426 	u8 quad;
1427 
1428 	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL);
1429 	if (err) {
1430 		ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
1431 			  err);
1432 		return;
1433 	}
1434 
1435 	quad = port / ICE_PORTS_PER_QUAD;
1436 
1437 	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
1438 	if (err) {
1439 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
1440 			  err);
1441 		return;
1442 	}
1443 
1444 	if (link_spd >= ICE_PTP_LNK_SPD_40G)
1445 		val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1446 	else
1447 		val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
1448 
1449 	err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
1450 	if (err) {
1451 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
1452 			  err);
1453 		return;
1454 	}
1455 }
1456 
1457 /**
1458  * ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
1459  * @hw: pointer to the HW structure
1460  * @port: the port to configure
1461  *
1462  * Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
1463  * hardware clock time units (TUs). That is, determine the number of TUs per
1464  * serdes unit interval, and program the UIX registers with this conversion.
1465  *
1466  * This conversion is used as part of the calibration process when determining
1467  * the additional error of a timestamp vs the real time of transmission or
1468  * receipt of the packet.
1469  *
1470  * Hardware uses the number of TUs per 66 UIs, written to the UIX registers
1471  * for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
1472  *
1473  * To calculate the conversion ratio, we use the following facts:
1474  *
1475  * a) the clock frequency in Hz (cycles per second)
1476  * b) the number of TUs per cycle (the increment value of the clock)
1477  * c) 1 second per 1 billion nanoseconds
1478  * d) the duration of 66 UIs in nanoseconds
1479  *
1480  * Given these facts, we can use the following table to work out what ratios
1481  * to multiply in order to get the number of TUs per 66 UIs:
1482  *
1483  * cycles |   1 second   | incval (TUs) | nanoseconds
1484  * -------+--------------+--------------+-------------
1485  * second | 1 billion ns |    cycle     |   66 UIs
1486  *
1487  * To perform the multiplication using integers without too much loss of
1488  * precision, we can take use the following equation:
1489  *
1490  * (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
1491  *
1492  * We scale up to using 6600 UI instead of 66 in order to avoid fractional
1493  * nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
1494  *
1495  * The increment value has a maximum expected range of about 34 bits, while
1496  * the frequency value is about 29 bits. Multiplying these values shouldn't
1497  * overflow the 64 bits. However, we must then further multiply them again by
1498  * the Serdes unit interval duration. To avoid overflow here, we split the
1499  * overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
1500  * a divide by 390,625,000. This does lose some precision, but avoids
1501  * miscalculation due to arithmetic overflow.
1502  */
1503 static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
1504 {
1505 	u64 cur_freq, clk_incval, tu_per_sec, uix;
1506 	int err;
1507 
1508 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1509 	clk_incval = ice_ptp_read_src_incval(hw);
1510 
1511 	/* Calculate TUs per second divided by 256 */
1512 	tu_per_sec = (cur_freq * clk_incval) >> 8;
1513 
1514 #define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
1515 #define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
1516 
1517 	/* Program the 10Gb/40Gb conversion ratio */
1518 	uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
1519 
1520 	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
1521 					 uix);
1522 	if (err) {
1523 		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
1524 			  err);
1525 		return err;
1526 	}
1527 
1528 	/* Program the 25Gb/100Gb conversion ratio */
1529 	uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
1530 
1531 	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
1532 					 uix);
1533 	if (err) {
1534 		ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
1535 			  err);
1536 		return err;
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /**
1543  * ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
1544  * @hw: pointer to the HW struct
1545  * @port: port to configure
1546  *
1547  * Configure the number of TUs for the PAR and PCS clocks used as part of the
1548  * timestamp calibration process. This depends on the link speed, as the PHY
1549  * uses different markers depending on the speed.
1550  *
1551  * 1Gb/10Gb/25Gb:
1552  * - Tx/Rx PAR/PCS markers
1553  *
1554  * 25Gb RS:
1555  * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1556  *
1557  * 40Gb/50Gb:
1558  * - Tx/Rx PAR/PCS markers
1559  * - Rx Deskew PAR/PCS markers
1560  *
1561  * 50G RS and 100GB RS:
1562  * - Tx/Rx Reed Solomon gearbox PAR/PCS markers
1563  * - Rx Deskew PAR/PCS markers
1564  * - Tx PAR/PCS markers
1565  *
1566  * To calculate the conversion, we use the PHC clock frequency (cycles per
1567  * second), the increment value (TUs per cycle), and the related PHY clock
1568  * frequency to calculate the TUs per unit of the PHY link clock. The
1569  * following table shows how the units convert:
1570  *
1571  * cycles |  TUs  | second
1572  * -------+-------+--------
1573  * second | cycle | cycles
1574  *
1575  * For each conversion register, look up the appropriate frequency from the
1576  * e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
1577  * this to the appropriate register, preparing hardware to perform timestamp
1578  * calibration to calculate the total Tx or Rx offset to adjust the timestamp
1579  * in order to calibrate for the internal PHY delays.
1580  *
1581  * Note that the increment value ranges up to ~34 bits, and the clock
1582  * frequency is ~29 bits, so multiplying them together should fit within the
1583  * 64 bit arithmetic.
1584  */
1585 static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
1586 {
1587 	u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
1588 	enum ice_ptp_link_spd link_spd;
1589 	enum ice_ptp_fec_mode fec_mode;
1590 	int err;
1591 
1592 	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1593 	if (err)
1594 		return err;
1595 
1596 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1597 	clk_incval = ice_ptp_read_src_incval(hw);
1598 
1599 	/* Calculate TUs per cycle of the PHC clock */
1600 	tu_per_sec = cur_freq * clk_incval;
1601 
1602 	/* For each PHY conversion register, look up the appropriate link
1603 	 * speed frequency and determine the TUs per that clock's cycle time.
1604 	 * Split this into a high and low value and then program the
1605 	 * appropriate register. If that link speed does not use the
1606 	 * associated register, write zeros to clear it instead.
1607 	 */
1608 
1609 	/* P_REG_PAR_TX_TUS */
1610 	if (e822_vernier[link_spd].tx_par_clk)
1611 		phy_tus = div_u64(tu_per_sec,
1612 				  e822_vernier[link_spd].tx_par_clk);
1613 	else
1614 		phy_tus = 0;
1615 
1616 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
1617 					 phy_tus);
1618 	if (err)
1619 		return err;
1620 
1621 	/* P_REG_PAR_RX_TUS */
1622 	if (e822_vernier[link_spd].rx_par_clk)
1623 		phy_tus = div_u64(tu_per_sec,
1624 				  e822_vernier[link_spd].rx_par_clk);
1625 	else
1626 		phy_tus = 0;
1627 
1628 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
1629 					 phy_tus);
1630 	if (err)
1631 		return err;
1632 
1633 	/* P_REG_PCS_TX_TUS */
1634 	if (e822_vernier[link_spd].tx_pcs_clk)
1635 		phy_tus = div_u64(tu_per_sec,
1636 				  e822_vernier[link_spd].tx_pcs_clk);
1637 	else
1638 		phy_tus = 0;
1639 
1640 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
1641 					 phy_tus);
1642 	if (err)
1643 		return err;
1644 
1645 	/* P_REG_PCS_RX_TUS */
1646 	if (e822_vernier[link_spd].rx_pcs_clk)
1647 		phy_tus = div_u64(tu_per_sec,
1648 				  e822_vernier[link_spd].rx_pcs_clk);
1649 	else
1650 		phy_tus = 0;
1651 
1652 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
1653 					 phy_tus);
1654 	if (err)
1655 		return err;
1656 
1657 	/* P_REG_DESK_PAR_TX_TUS */
1658 	if (e822_vernier[link_spd].tx_desk_rsgb_par)
1659 		phy_tus = div_u64(tu_per_sec,
1660 				  e822_vernier[link_spd].tx_desk_rsgb_par);
1661 	else
1662 		phy_tus = 0;
1663 
1664 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
1665 					 phy_tus);
1666 	if (err)
1667 		return err;
1668 
1669 	/* P_REG_DESK_PAR_RX_TUS */
1670 	if (e822_vernier[link_spd].rx_desk_rsgb_par)
1671 		phy_tus = div_u64(tu_per_sec,
1672 				  e822_vernier[link_spd].rx_desk_rsgb_par);
1673 	else
1674 		phy_tus = 0;
1675 
1676 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
1677 					 phy_tus);
1678 	if (err)
1679 		return err;
1680 
1681 	/* P_REG_DESK_PCS_TX_TUS */
1682 	if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
1683 		phy_tus = div_u64(tu_per_sec,
1684 				  e822_vernier[link_spd].tx_desk_rsgb_pcs);
1685 	else
1686 		phy_tus = 0;
1687 
1688 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
1689 					 phy_tus);
1690 	if (err)
1691 		return err;
1692 
1693 	/* P_REG_DESK_PCS_RX_TUS */
1694 	if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
1695 		phy_tus = div_u64(tu_per_sec,
1696 				  e822_vernier[link_spd].rx_desk_rsgb_pcs);
1697 	else
1698 		phy_tus = 0;
1699 
1700 	return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
1701 					  phy_tus);
1702 }
1703 
1704 /**
1705  * ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
1706  * @hw: pointer to the HW struct
1707  * @link_spd: the Link speed to calculate for
1708  *
1709  * Calculate the fixed offset due to known static latency data.
1710  */
1711 static u64
1712 ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
1713 {
1714 	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
1715 
1716 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1717 	clk_incval = ice_ptp_read_src_incval(hw);
1718 
1719 	/* Calculate TUs per second */
1720 	tu_per_sec = cur_freq * clk_incval;
1721 
1722 	/* Calculate number of TUs to add for the fixed Tx latency. Since the
1723 	 * latency measurement is in 1/100th of a nanosecond, we need to
1724 	 * multiply by tu_per_sec and then divide by 1e11. This calculation
1725 	 * overflows 64 bit integer arithmetic, so break it up into two
1726 	 * divisions by 1e4 first then by 1e7.
1727 	 */
1728 	fixed_offset = div_u64(tu_per_sec, 10000);
1729 	fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
1730 	fixed_offset = div_u64(fixed_offset, 10000000);
1731 
1732 	return fixed_offset;
1733 }
1734 
1735 /**
1736  * ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
1737  * @hw: pointer to the HW struct
1738  * @port: the PHY port to configure
1739  *
1740  * Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
1741  * adjust Tx timestamps by. This is calculated by combining some known static
1742  * latency along with the Vernier offset computations done by hardware.
1743  *
1744  * This function will not return successfully until the Tx offset calculations
1745  * have been completed, which requires waiting until at least one packet has
1746  * been transmitted by the device. It is safe to call this function
1747  * periodically until calibration succeeds, as it will only program the offset
1748  * once.
1749  *
1750  * To avoid overflow, when calculating the offset based on the known static
1751  * latency values, we use measurements in 1/100th of a nanosecond, and divide
1752  * the TUs per second up front. This avoids overflow while allowing
1753  * calculation of the adjustment using integer arithmetic.
1754  *
1755  * Returns zero on success, -EBUSY if the hardware vernier offset
1756  * calibration has not completed, or another error code on failure.
1757  */
1758 int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
1759 {
1760 	enum ice_ptp_link_spd link_spd;
1761 	enum ice_ptp_fec_mode fec_mode;
1762 	u64 total_offset, val;
1763 	int err;
1764 	u32 reg;
1765 
1766 	/* Nothing to do if we've already programmed the offset */
1767 	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OR, &reg);
1768 	if (err) {
1769 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
1770 			  port, err);
1771 		return err;
1772 	}
1773 
1774 	if (reg)
1775 		return 0;
1776 
1777 	err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &reg);
1778 	if (err) {
1779 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
1780 			  port, err);
1781 		return err;
1782 	}
1783 
1784 	if (!(reg & P_REG_TX_OV_STATUS_OV_M))
1785 		return -EBUSY;
1786 
1787 	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
1788 	if (err)
1789 		return err;
1790 
1791 	total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
1792 
1793 	/* Read the first Vernier offset from the PHY register and add it to
1794 	 * the total offset.
1795 	 */
1796 	if (link_spd == ICE_PTP_LNK_SPD_1G ||
1797 	    link_spd == ICE_PTP_LNK_SPD_10G ||
1798 	    link_spd == ICE_PTP_LNK_SPD_25G ||
1799 	    link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1800 	    link_spd == ICE_PTP_LNK_SPD_40G ||
1801 	    link_spd == ICE_PTP_LNK_SPD_50G) {
1802 		err = ice_read_64b_phy_reg_e822(hw, port,
1803 						P_REG_PAR_PCS_TX_OFFSET_L,
1804 						&val);
1805 		if (err)
1806 			return err;
1807 
1808 		total_offset += val;
1809 	}
1810 
1811 	/* For Tx, we only need to use the second Vernier offset for
1812 	 * multi-lane link speeds with RS-FEC. The lanes will always be
1813 	 * aligned.
1814 	 */
1815 	if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1816 	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1817 		err = ice_read_64b_phy_reg_e822(hw, port,
1818 						P_REG_PAR_TX_TIME_L,
1819 						&val);
1820 		if (err)
1821 			return err;
1822 
1823 		total_offset += val;
1824 	}
1825 
1826 	/* Now that the total offset has been calculated, program it to the
1827 	 * PHY and indicate that the Tx offset is ready. After this,
1828 	 * timestamps will be enabled.
1829 	 */
1830 	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
1831 					 total_offset);
1832 	if (err)
1833 		return err;
1834 
1835 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
1836 	if (err)
1837 		return err;
1838 
1839 	dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
1840 		 port);
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  * ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
1847  * @hw: pointer to the HW struct
1848  * @port: the PHY port to adjust for
1849  * @link_spd: the current link speed of the PHY
1850  * @fec_mode: the current FEC mode of the PHY
1851  * @pmd_adj: on return, the amount to adjust the Rx total offset by
1852  *
1853  * Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
1854  * This varies by link speed and FEC mode. The value calculated accounts for
1855  * various delays caused when receiving a packet.
1856  */
1857 static int
1858 ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
1859 			  enum ice_ptp_link_spd link_spd,
1860 			  enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
1861 {
1862 	u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
1863 	u8 pmd_align;
1864 	u32 val;
1865 	int err;
1866 
1867 	err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val);
1868 	if (err) {
1869 		ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
1870 			  err);
1871 		return err;
1872 	}
1873 
1874 	pmd_align = (u8)val;
1875 
1876 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
1877 	clk_incval = ice_ptp_read_src_incval(hw);
1878 
1879 	/* Calculate TUs per second */
1880 	tu_per_sec = cur_freq * clk_incval;
1881 
1882 	/* The PMD alignment adjustment measurement depends on the link speed,
1883 	 * and whether FEC is enabled. For each link speed, the alignment
1884 	 * adjustment is calculated by dividing a value by the length of
1885 	 * a Time Unit in nanoseconds.
1886 	 *
1887 	 * 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
1888 	 * 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
1889 	 * 10G w/FEC: align * 0.1 * 32/33
1890 	 * 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
1891 	 * 25G w/FEC: align * 0.4 * 32/33
1892 	 * 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
1893 	 * 40G w/FEC: align * 0.1 * 32/33
1894 	 * 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
1895 	 * 50G w/FEC: align * 0.8 * 32/33
1896 	 *
1897 	 * For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
1898 	 *
1899 	 * To allow for calculating this value using integer arithmetic, we
1900 	 * instead start with the number of TUs per second, (inverse of the
1901 	 * length of a Time Unit in nanoseconds), multiply by a value based
1902 	 * on the PMD alignment register, and then divide by the right value
1903 	 * calculated based on the table above. To avoid integer overflow this
1904 	 * division is broken up into a step of dividing by 125 first.
1905 	 */
1906 	if (link_spd == ICE_PTP_LNK_SPD_1G) {
1907 		if (pmd_align == 4)
1908 			mult = 10;
1909 		else
1910 			mult = (pmd_align + 6) % 10;
1911 	} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
1912 		   link_spd == ICE_PTP_LNK_SPD_25G ||
1913 		   link_spd == ICE_PTP_LNK_SPD_40G ||
1914 		   link_spd == ICE_PTP_LNK_SPD_50G) {
1915 		/* If Clause 74 FEC, always calculate PMD adjust */
1916 		if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
1917 			mult = pmd_align;
1918 		else
1919 			mult = 0;
1920 	} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
1921 		   link_spd == ICE_PTP_LNK_SPD_50G_RS ||
1922 		   link_spd == ICE_PTP_LNK_SPD_100G_RS) {
1923 		if (pmd_align < 17)
1924 			mult = pmd_align + 40;
1925 		else
1926 			mult = pmd_align;
1927 	} else {
1928 		ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
1929 			  link_spd);
1930 		mult = 0;
1931 	}
1932 
1933 	/* In some cases, there's no need to adjust for the PMD alignment */
1934 	if (!mult) {
1935 		*pmd_adj = 0;
1936 		return 0;
1937 	}
1938 
1939 	/* Calculate the adjustment by multiplying TUs per second by the
1940 	 * appropriate multiplier and divisor. To avoid overflow, we first
1941 	 * divide by 125, and then handle remaining divisor based on the link
1942 	 * speed pmd_adj_divisor value.
1943 	 */
1944 	adj = div_u64(tu_per_sec, 125);
1945 	adj *= mult;
1946 	adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
1947 
1948 	/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
1949 	 * cycle count is necessary.
1950 	 */
1951 	if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
1952 		u64 cycle_adj;
1953 		u8 rx_cycle;
1954 
1955 		err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
1956 					    &val);
1957 		if (err) {
1958 			ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
1959 				  err);
1960 			return err;
1961 		}
1962 
1963 		rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
1964 		if (rx_cycle) {
1965 			mult = (4 - rx_cycle) * 40;
1966 
1967 			cycle_adj = div_u64(tu_per_sec, 125);
1968 			cycle_adj *= mult;
1969 			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
1970 
1971 			adj += cycle_adj;
1972 		}
1973 	} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
1974 		u64 cycle_adj;
1975 		u8 rx_cycle;
1976 
1977 		err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
1978 					    &val);
1979 		if (err) {
1980 			ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
1981 				  err);
1982 			return err;
1983 		}
1984 
1985 		rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
1986 		if (rx_cycle) {
1987 			mult = rx_cycle * 40;
1988 
1989 			cycle_adj = div_u64(tu_per_sec, 125);
1990 			cycle_adj *= mult;
1991 			cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
1992 
1993 			adj += cycle_adj;
1994 		}
1995 	}
1996 
1997 	/* Return the calculated adjustment */
1998 	*pmd_adj = adj;
1999 
2000 	return 0;
2001 }
2002 
2003 /**
2004  * ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
2005  * @hw: pointer to HW struct
2006  * @link_spd: The Link speed to calculate for
2007  *
2008  * Determine the fixed Rx latency for a given link speed.
2009  */
2010 static u64
2011 ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
2012 {
2013 	u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
2014 
2015 	cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
2016 	clk_incval = ice_ptp_read_src_incval(hw);
2017 
2018 	/* Calculate TUs per second */
2019 	tu_per_sec = cur_freq * clk_incval;
2020 
2021 	/* Calculate number of TUs to add for the fixed Rx latency. Since the
2022 	 * latency measurement is in 1/100th of a nanosecond, we need to
2023 	 * multiply by tu_per_sec and then divide by 1e11. This calculation
2024 	 * overflows 64 bit integer arithmetic, so break it up into two
2025 	 * divisions by 1e4 first then by 1e7.
2026 	 */
2027 	fixed_offset = div_u64(tu_per_sec, 10000);
2028 	fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
2029 	fixed_offset = div_u64(fixed_offset, 10000000);
2030 
2031 	return fixed_offset;
2032 }
2033 
2034 /**
2035  * ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
2036  * @hw: pointer to the HW struct
2037  * @port: the PHY port to configure
2038  *
2039  * Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
2040  * adjust Rx timestamps by. This combines calculations from the Vernier offset
2041  * measurements taken in hardware with some data about known fixed delay as
2042  * well as adjusting for multi-lane alignment delay.
2043  *
2044  * This function will not return successfully until the Rx offset calculations
2045  * have been completed, which requires waiting until at least one packet has
2046  * been received by the device. It is safe to call this function periodically
2047  * until calibration succeeds, as it will only program the offset once.
2048  *
2049  * This function must be called only after the offset registers are valid,
2050  * i.e. after the Vernier calibration wait has passed, to ensure that the PHY
2051  * has measured the offset.
2052  *
2053  * To avoid overflow, when calculating the offset based on the known static
2054  * latency values, we use measurements in 1/100th of a nanosecond, and divide
2055  * the TUs per second up front. This avoids overflow while allowing
2056  * calculation of the adjustment using integer arithmetic.
2057  *
2058  * Returns zero on success, -EBUSY if the hardware vernier offset
2059  * calibration has not completed, or another error code on failure.
2060  */
2061 int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
2062 {
2063 	enum ice_ptp_link_spd link_spd;
2064 	enum ice_ptp_fec_mode fec_mode;
2065 	u64 total_offset, pmd, val;
2066 	int err;
2067 	u32 reg;
2068 
2069 	/* Nothing to do if we've already programmed the offset */
2070 	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OR, &reg);
2071 	if (err) {
2072 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
2073 			  port, err);
2074 		return err;
2075 	}
2076 
2077 	if (reg)
2078 		return 0;
2079 
2080 	err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &reg);
2081 	if (err) {
2082 		ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
2083 			  port, err);
2084 		return err;
2085 	}
2086 
2087 	if (!(reg & P_REG_RX_OV_STATUS_OV_M))
2088 		return -EBUSY;
2089 
2090 	err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
2091 	if (err)
2092 		return err;
2093 
2094 	total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
2095 
2096 	/* Read the first Vernier offset from the PHY register and add it to
2097 	 * the total offset.
2098 	 */
2099 	err = ice_read_64b_phy_reg_e822(hw, port,
2100 					P_REG_PAR_PCS_RX_OFFSET_L,
2101 					&val);
2102 	if (err)
2103 		return err;
2104 
2105 	total_offset += val;
2106 
2107 	/* For Rx, all multi-lane link speeds include a second Vernier
2108 	 * calibration, because the lanes might not be aligned.
2109 	 */
2110 	if (link_spd == ICE_PTP_LNK_SPD_40G ||
2111 	    link_spd == ICE_PTP_LNK_SPD_50G ||
2112 	    link_spd == ICE_PTP_LNK_SPD_50G_RS ||
2113 	    link_spd == ICE_PTP_LNK_SPD_100G_RS) {
2114 		err = ice_read_64b_phy_reg_e822(hw, port,
2115 						P_REG_PAR_RX_TIME_L,
2116 						&val);
2117 		if (err)
2118 			return err;
2119 
2120 		total_offset += val;
2121 	}
2122 
2123 	/* In addition, Rx must account for the PMD alignment */
2124 	err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd);
2125 	if (err)
2126 		return err;
2127 
2128 	/* For RS-FEC, this adjustment adds delay, but for other modes, it
2129 	 * subtracts delay.
2130 	 */
2131 	if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
2132 		total_offset += pmd;
2133 	else
2134 		total_offset -= pmd;
2135 
2136 	/* Now that the total offset has been calculated, program it to the
2137 	 * PHY and indicate that the Rx offset is ready. After this,
2138 	 * timestamps will be enabled.
2139 	 */
2140 	err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
2141 					 total_offset);
2142 	if (err)
2143 		return err;
2144 
2145 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
2146 	if (err)
2147 		return err;
2148 
2149 	dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
2150 		 port);
2151 
2152 	return 0;
2153 }
2154 
2155 /**
2156  * ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
2157  * @hw: pointer to the HW struct
2158  * @port: the PHY port to read
2159  * @phy_time: on return, the 64bit PHY timer value
2160  * @phc_time: on return, the lower 64bits of PHC time
2161  *
2162  * Issue a READ_TIME timer command to simultaneously capture the PHY and PHC
2163  * timer values.
2164  */
2165 static int
2166 ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
2167 			       u64 *phc_time)
2168 {
2169 	u64 tx_time, rx_time;
2170 	u32 zo, lo;
2171 	u8 tmr_idx;
2172 	int err;
2173 
2174 	tmr_idx = ice_get_ptp_src_clock_index(hw);
2175 
2176 	/* Prepare the PHC timer for a READ_TIME capture command */
2177 	ice_ptp_src_cmd(hw, READ_TIME);
2178 
2179 	/* Prepare the PHY timer for a READ_TIME capture command */
2180 	err = ice_ptp_one_port_cmd(hw, port, READ_TIME);
2181 	if (err)
2182 		return err;
2183 
2184 	/* Issue the sync to start the READ_TIME capture */
2185 	ice_ptp_exec_tmr_cmd(hw);
2186 
2187 	/* Read the captured PHC time from the shadow time registers */
2188 	zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
2189 	lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
2190 	*phc_time = (u64)lo << 32 | zo;
2191 
2192 	/* Read the captured PHY time from the PHY shadow registers */
2193 	err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
2194 	if (err)
2195 		return err;
2196 
2197 	/* If the PHY Tx and Rx timers don't match, log a warning message.
2198 	 * Note that this should not happen in normal circumstances since the
2199 	 * driver always programs them together.
2200 	 */
2201 	if (tx_time != rx_time)
2202 		dev_warn(ice_hw_to_dev(hw),
2203 			 "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
2204 			 port, (unsigned long long)tx_time,
2205 			 (unsigned long long)rx_time);
2206 
2207 	*phy_time = tx_time;
2208 
2209 	return 0;
2210 }
2211 
2212 /**
2213  * ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
2214  * @hw: pointer to the HW struct
2215  * @port: the PHY port to synchronize
2216  *
2217  * Perform an adjustment to ensure that the PHY and PHC timers are in sync.
2218  * This is done by issuing a READ_TIME command which triggers a simultaneous
2219  * read of the PHY timer and PHC timer. Then we use the difference to
2220  * calculate an appropriate 2s complement addition to add to the PHY timer in
2221  * order to ensure it reads the same value as the primary PHC timer.
2222  */
2223 static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
2224 {
2225 	u64 phc_time, phy_time, difference;
2226 	int err;
2227 
2228 	if (!ice_ptp_lock(hw)) {
2229 		ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
2230 		return -EBUSY;
2231 	}
2232 
2233 	err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2234 	if (err)
2235 		goto err_unlock;
2236 
2237 	/* Calculate the amount required to add to the port time in order for
2238 	 * it to match the PHC time.
2239 	 *
2240 	 * Note that the port adjustment is done using 2s complement
2241 	 * arithmetic. This is convenient since it means that we can simply
2242 	 * calculate the difference between the PHC time and the port time,
2243 	 * and it will be interpreted correctly.
2244 	 */
2245 	difference = phc_time - phy_time;
2246 
2247 	err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference);
2248 	if (err)
2249 		goto err_unlock;
2250 
2251 	err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME);
2252 	if (err)
2253 		goto err_unlock;
2254 
2255 	/* Issue the sync to activate the time adjustment */
2256 	ice_ptp_exec_tmr_cmd(hw);
2257 
2258 	/* Re-capture the timer values to flush the command registers and
2259 	 * verify that the time was properly adjusted.
2260 	 */
2261 	err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
2262 	if (err)
2263 		goto err_unlock;
2264 
2265 	dev_info(ice_hw_to_dev(hw),
2266 		 "Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
2267 		 port, (unsigned long long)phy_time,
2268 		 (unsigned long long)phc_time);
2269 
2270 	ice_ptp_unlock(hw);
2271 
2272 	return 0;
2273 
2274 err_unlock:
2275 	ice_ptp_unlock(hw);
2276 	return err;
2277 }
2278 
2279 /**
2280  * ice_stop_phy_timer_e822 - Stop the PHY clock timer
2281  * @hw: pointer to the HW struct
2282  * @port: the PHY port to stop
2283  * @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
2284  *
2285  * Stop the clock of a PHY port. This must be done as part of the flow to
2286  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2287  * initialized or when link speed changes.
2288  */
2289 int
2290 ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
2291 {
2292 	int err;
2293 	u32 val;
2294 
2295 	err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0);
2296 	if (err)
2297 		return err;
2298 
2299 	err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0);
2300 	if (err)
2301 		return err;
2302 
2303 	err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2304 	if (err)
2305 		return err;
2306 
2307 	val &= ~P_REG_PS_START_M;
2308 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2309 	if (err)
2310 		return err;
2311 
2312 	val &= ~P_REG_PS_ENA_CLK_M;
2313 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2314 	if (err)
2315 		return err;
2316 
2317 	if (soft_reset) {
2318 		val |= P_REG_PS_SFT_RESET_M;
2319 		err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2320 		if (err)
2321 			return err;
2322 	}
2323 
2324 	ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
2325 
2326 	return 0;
2327 }
2328 
2329 /**
2330  * ice_start_phy_timer_e822 - Start the PHY clock timer
2331  * @hw: pointer to the HW struct
2332  * @port: the PHY port to start
2333  *
2334  * Start the clock of a PHY port. This must be done as part of the flow to
2335  * re-calibrate Tx and Rx timestamping offsets whenever the clock time is
2336  * initialized or when link speed changes.
2337  *
2338  * Hardware will take Vernier measurements on Tx or Rx of packets.
2339  */
2340 int ice_start_phy_timer_e822(struct ice_hw *hw, u8 port)
2341 {
2342 	u32 lo, hi, val;
2343 	u64 incval;
2344 	u8 tmr_idx;
2345 	int err;
2346 
2347 	tmr_idx = ice_get_ptp_src_clock_index(hw);
2348 
2349 	err = ice_stop_phy_timer_e822(hw, port, false);
2350 	if (err)
2351 		return err;
2352 
2353 	ice_phy_cfg_lane_e822(hw, port);
2354 
2355 	err = ice_phy_cfg_uix_e822(hw, port);
2356 	if (err)
2357 		return err;
2358 
2359 	err = ice_phy_cfg_parpcs_e822(hw, port);
2360 	if (err)
2361 		return err;
2362 
2363 	lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
2364 	hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
2365 	incval = (u64)hi << 32 | lo;
2366 
2367 	err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval);
2368 	if (err)
2369 		return err;
2370 
2371 	err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
2372 	if (err)
2373 		return err;
2374 
2375 	ice_ptp_exec_tmr_cmd(hw);
2376 
2377 	err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
2378 	if (err)
2379 		return err;
2380 
2381 	val |= P_REG_PS_SFT_RESET_M;
2382 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2383 	if (err)
2384 		return err;
2385 
2386 	val |= P_REG_PS_START_M;
2387 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2388 	if (err)
2389 		return err;
2390 
2391 	val &= ~P_REG_PS_SFT_RESET_M;
2392 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2393 	if (err)
2394 		return err;
2395 
2396 	err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
2397 	if (err)
2398 		return err;
2399 
2400 	ice_ptp_exec_tmr_cmd(hw);
2401 
2402 	val |= P_REG_PS_ENA_CLK_M;
2403 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2404 	if (err)
2405 		return err;
2406 
2407 	val |= P_REG_PS_LOAD_OFFSET_M;
2408 	err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
2409 	if (err)
2410 		return err;
2411 
2412 	ice_ptp_exec_tmr_cmd(hw);
2413 
2414 	err = ice_sync_phy_timer_e822(hw, port);
2415 	if (err)
2416 		return err;
2417 
2418 	ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
2419 
2420 	return 0;
2421 }
2422 
2423 /**
2424  * ice_get_phy_tx_tstamp_ready_e822 - Read Tx memory status register
2425  * @hw: pointer to the HW struct
2426  * @quad: the timestamp quad to read from
2427  * @tstamp_ready: contents of the Tx memory status register
2428  *
2429  * Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
2430  * the PHY are ready. A set bit means the corresponding timestamp is valid and
2431  * ready to be captured from the PHY timestamp block.
2432  */
2433 static int
2434 ice_get_phy_tx_tstamp_ready_e822(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
2435 {
2436 	u32 hi, lo;
2437 	int err;
2438 
2439 	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
2440 	if (err) {
2441 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
2442 			  quad, err);
2443 		return err;
2444 	}
2445 
2446 	err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
2447 	if (err) {
2448 		ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
2449 			  quad, err);
2450 		return err;
2451 	}
2452 
2453 	*tstamp_ready = (u64)hi << 32 | (u64)lo;
2454 
2455 	return 0;
2456 }
2457 
2458 /* E810 functions
2459  *
2460  * The following functions operate on the E810 series devices which use
2461  * a separate external PHY.
2462  */
2463 
2464 /**
2465  * ice_read_phy_reg_e810 - Read register from external PHY on E810
2466  * @hw: pointer to the HW struct
2467  * @addr: the address to read from
2468  * @val: On return, the value read from the PHY
2469  *
2470  * Read a register from the external PHY on the E810 device.
2471  */
2472 static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
2473 {
2474 	struct ice_sbq_msg_input msg = {0};
2475 	int err;
2476 
2477 	msg.msg_addr_low = lower_16_bits(addr);
2478 	msg.msg_addr_high = upper_16_bits(addr);
2479 	msg.opcode = ice_sbq_msg_rd;
2480 	msg.dest_dev = rmn_0;
2481 
2482 	err = ice_sbq_rw_reg(hw, &msg);
2483 	if (err) {
2484 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2485 			  err);
2486 		return err;
2487 	}
2488 
2489 	*val = msg.data;
2490 
2491 	return 0;
2492 }
2493 
2494 /**
2495  * ice_write_phy_reg_e810 - Write register on external PHY on E810
2496  * @hw: pointer to the HW struct
2497  * @addr: the address to writem to
2498  * @val: the value to write to the PHY
2499  *
2500  * Write a value to a register of the external PHY on the E810 device.
2501  */
2502 static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
2503 {
2504 	struct ice_sbq_msg_input msg = {0};
2505 	int err;
2506 
2507 	msg.msg_addr_low = lower_16_bits(addr);
2508 	msg.msg_addr_high = upper_16_bits(addr);
2509 	msg.opcode = ice_sbq_msg_wr;
2510 	msg.dest_dev = rmn_0;
2511 	msg.data = val;
2512 
2513 	err = ice_sbq_rw_reg(hw, &msg);
2514 	if (err) {
2515 		ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
2516 			  err);
2517 		return err;
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 /**
2524  * ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
2525  * @hw: pointer to the HW struct
2526  * @idx: the timestamp index to read
2527  * @hi: 8 bit timestamp high value
2528  * @lo: 32 bit timestamp low value
2529  *
2530  * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2531  * timestamp block of the external PHY on the E810 device using the low latency
2532  * timestamp read.
2533  */
2534 static int
2535 ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
2536 {
2537 	u32 val;
2538 	u8 i;
2539 
2540 	/* Write TS index to read to the PF register so the FW can read it */
2541 	val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
2542 	wr32(hw, PF_SB_ATQBAL, val);
2543 
2544 	/* Read the register repeatedly until the FW provides us the TS */
2545 	for (i = TS_LL_READ_RETRIES; i > 0; i--) {
2546 		val = rd32(hw, PF_SB_ATQBAL);
2547 
2548 		/* When the bit is cleared, the TS is ready in the register */
2549 		if (!(FIELD_GET(TS_LL_READ_TS, val))) {
2550 			/* High 8 bit value of the TS is on the bits 16:23 */
2551 			*hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
2552 
2553 			/* Read the low 32 bit value and set the TS valid bit */
2554 			*lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
2555 			return 0;
2556 		}
2557 
2558 		udelay(10);
2559 	}
2560 
2561 	/* FW failed to provide the TS in time */
2562 	ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
2563 	return -EINVAL;
2564 }
2565 
2566 /**
2567  * ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
2568  * @hw: pointer to the HW struct
2569  * @lport: the lport to read from
2570  * @idx: the timestamp index to read
2571  * @hi: 8 bit timestamp high value
2572  * @lo: 32 bit timestamp low value
2573  *
2574  * Read a 8bit timestamp high value and 32 bit timestamp low value out of the
2575  * timestamp block of the external PHY on the E810 device using sideband queue.
2576  */
2577 static int
2578 ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
2579 			     u32 *lo)
2580 {
2581 	u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2582 	u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2583 	u32 lo_val, hi_val;
2584 	int err;
2585 
2586 	err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
2587 	if (err) {
2588 		ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
2589 			  err);
2590 		return err;
2591 	}
2592 
2593 	err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
2594 	if (err) {
2595 		ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
2596 			  err);
2597 		return err;
2598 	}
2599 
2600 	*lo = lo_val;
2601 	*hi = (u8)hi_val;
2602 
2603 	return 0;
2604 }
2605 
2606 /**
2607  * ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
2608  * @hw: pointer to the HW struct
2609  * @lport: the lport to read from
2610  * @idx: the timestamp index to read
2611  * @tstamp: on return, the 40bit timestamp value
2612  *
2613  * Read a 40bit timestamp value out of the timestamp block of the external PHY
2614  * on the E810 device.
2615  */
2616 static int
2617 ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
2618 {
2619 	u32 lo = 0;
2620 	u8 hi = 0;
2621 	int err;
2622 
2623 	if (hw->dev_caps.ts_dev_info.ts_ll_read)
2624 		err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
2625 	else
2626 		err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
2627 
2628 	if (err)
2629 		return err;
2630 
2631 	/* For E810 devices, the timestamp is reported with the lower 32 bits
2632 	 * in the low register, and the upper 8 bits in the high register.
2633 	 */
2634 	*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
2635 
2636 	return 0;
2637 }
2638 
2639 /**
2640  * ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
2641  * @hw: pointer to the HW struct
2642  * @lport: the lport to read from
2643  * @idx: the timestamp index to reset
2644  *
2645  * Clear a timestamp, resetting its valid bit, from the timestamp block of the
2646  * external PHY on the E810 device.
2647  */
2648 static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
2649 {
2650 	u32 lo_addr, hi_addr;
2651 	int err;
2652 
2653 	lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
2654 	hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
2655 
2656 	err = ice_write_phy_reg_e810(hw, lo_addr, 0);
2657 	if (err) {
2658 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
2659 			  err);
2660 		return err;
2661 	}
2662 
2663 	err = ice_write_phy_reg_e810(hw, hi_addr, 0);
2664 	if (err) {
2665 		ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
2666 			  err);
2667 		return err;
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 /**
2674  * ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
2675  * @hw: pointer to HW struct
2676  *
2677  * Enable the timesync PTP functionality for the external PHY connected to
2678  * this function.
2679  */
2680 int ice_ptp_init_phy_e810(struct ice_hw *hw)
2681 {
2682 	u8 tmr_idx;
2683 	int err;
2684 
2685 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2686 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
2687 				     GLTSYN_ENA_TSYN_ENA_M);
2688 	if (err)
2689 		ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
2690 			  err);
2691 
2692 	return err;
2693 }
2694 
2695 /**
2696  * ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
2697  * @hw: pointer to HW struct
2698  *
2699  * Perform E810-specific PTP hardware clock initialization steps.
2700  */
2701 static int ice_ptp_init_phc_e810(struct ice_hw *hw)
2702 {
2703 	/* Ensure synchronization delay is zero */
2704 	wr32(hw, GLTSYN_SYNC_DLAY, 0);
2705 
2706 	/* Initialize the PHY */
2707 	return ice_ptp_init_phy_e810(hw);
2708 }
2709 
2710 /**
2711  * ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
2712  * @hw: Board private structure
2713  * @time: Time to initialize the PHY port clock to
2714  *
2715  * Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
2716  * initial clock time. The time will not actually be programmed until the
2717  * driver issues an INIT_TIME command.
2718  *
2719  * The time value is the upper 32 bits of the PHY timer, usually in units of
2720  * nominal nanoseconds.
2721  */
2722 static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
2723 {
2724 	u8 tmr_idx;
2725 	int err;
2726 
2727 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2728 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
2729 	if (err) {
2730 		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
2731 			  err);
2732 		return err;
2733 	}
2734 
2735 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
2736 	if (err) {
2737 		ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
2738 			  err);
2739 		return err;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 /**
2746  * ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
2747  * @hw: pointer to HW struct
2748  * @adj: adjustment value to program
2749  *
2750  * Prepare the PHY port for an atomic adjustment by programming the PHY
2751  * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
2752  * is completed by issuing an ADJ_TIME sync command.
2753  *
2754  * The adjustment value only contains the portion used for the upper 32bits of
2755  * the PHY timer, usually in units of nominal nanoseconds. Negative
2756  * adjustments are supported using 2s complement arithmetic.
2757  */
2758 static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
2759 {
2760 	u8 tmr_idx;
2761 	int err;
2762 
2763 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2764 
2765 	/* Adjustments are represented as signed 2's complement values in
2766 	 * nanoseconds. Sub-nanosecond adjustment is not supported.
2767 	 */
2768 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
2769 	if (err) {
2770 		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
2771 			  err);
2772 		return err;
2773 	}
2774 
2775 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
2776 	if (err) {
2777 		ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
2778 			  err);
2779 		return err;
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 /**
2786  * ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
2787  * @hw: pointer to HW struct
2788  * @incval: The new 40bit increment value to prepare
2789  *
2790  * Prepare the PHY port for a new increment value by programming the PHY
2791  * ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
2792  * completed by issuing an INIT_INCVAL command.
2793  */
2794 static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
2795 {
2796 	u32 high, low;
2797 	u8 tmr_idx;
2798 	int err;
2799 
2800 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2801 	low = lower_32_bits(incval);
2802 	high = upper_32_bits(incval);
2803 
2804 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
2805 	if (err) {
2806 		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
2807 			  err);
2808 		return err;
2809 	}
2810 
2811 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
2812 	if (err) {
2813 		ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
2814 			  err);
2815 		return err;
2816 	}
2817 
2818 	return 0;
2819 }
2820 
2821 /**
2822  * ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
2823  * @hw: pointer to HW struct
2824  * @cmd: Command to be sent to the port
2825  *
2826  * Prepare the external PHYs connected to this device for a timer sync
2827  * command.
2828  */
2829 static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
2830 {
2831 	u32 cmd_val, val;
2832 	int err;
2833 
2834 	switch (cmd) {
2835 	case INIT_TIME:
2836 		cmd_val = GLTSYN_CMD_INIT_TIME;
2837 		break;
2838 	case INIT_INCVAL:
2839 		cmd_val = GLTSYN_CMD_INIT_INCVAL;
2840 		break;
2841 	case ADJ_TIME:
2842 		cmd_val = GLTSYN_CMD_ADJ_TIME;
2843 		break;
2844 	case READ_TIME:
2845 		cmd_val = GLTSYN_CMD_READ_TIME;
2846 		break;
2847 	case ADJ_TIME_AT_TIME:
2848 		cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
2849 		break;
2850 	}
2851 
2852 	/* Read, modify, write */
2853 	err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
2854 	if (err) {
2855 		ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
2856 		return err;
2857 	}
2858 
2859 	/* Modify necessary bits only and perform write */
2860 	val &= ~TS_CMD_MASK_E810;
2861 	val |= cmd_val;
2862 
2863 	err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
2864 	if (err) {
2865 		ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
2866 		return err;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 /* Device agnostic functions
2873  *
2874  * The following functions implement shared behavior common to both E822 and
2875  * E810 devices, possibly calling a device specific implementation where
2876  * necessary.
2877  */
2878 
2879 /**
2880  * ice_ptp_lock - Acquire PTP global semaphore register lock
2881  * @hw: pointer to the HW struct
2882  *
2883  * Acquire the global PTP hardware semaphore lock. Returns true if the lock
2884  * was acquired, false otherwise.
2885  *
2886  * The PFTSYN_SEM register sets the busy bit on read, returning the previous
2887  * value. If software sees the busy bit cleared, this means that this function
2888  * acquired the lock (and the busy bit is now set). If software sees the busy
2889  * bit set, it means that another function acquired the lock.
2890  *
2891  * Software must clear the busy bit with a write to release the lock for other
2892  * functions when done.
2893  */
2894 bool ice_ptp_lock(struct ice_hw *hw)
2895 {
2896 	u32 hw_lock;
2897 	int i;
2898 
2899 #define MAX_TRIES 15
2900 
2901 	for (i = 0; i < MAX_TRIES; i++) {
2902 		hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2903 		hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
2904 		if (hw_lock) {
2905 			/* Somebody is holding the lock */
2906 			usleep_range(5000, 6000);
2907 			continue;
2908 		}
2909 
2910 		break;
2911 	}
2912 
2913 	return !hw_lock;
2914 }
2915 
2916 /**
2917  * ice_ptp_unlock - Release PTP global semaphore register lock
2918  * @hw: pointer to the HW struct
2919  *
2920  * Release the global PTP hardware semaphore lock. This is done by writing to
2921  * the PFTSYN_SEM register.
2922  */
2923 void ice_ptp_unlock(struct ice_hw *hw)
2924 {
2925 	wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
2926 }
2927 
2928 /**
2929  * ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
2930  * @hw: pointer to HW struct
2931  * @cmd: the command to issue
2932  *
2933  * Prepare the source timer and PHY timers and then trigger the requested
2934  * command. This causes the shadow registers previously written in preparation
2935  * for the command to be synchronously applied to both the source and PHY
2936  * timers.
2937  */
2938 static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
2939 {
2940 	int err;
2941 
2942 	/* First, prepare the source timer */
2943 	ice_ptp_src_cmd(hw, cmd);
2944 
2945 	/* Next, prepare the ports */
2946 	if (ice_is_e810(hw))
2947 		err = ice_ptp_port_cmd_e810(hw, cmd);
2948 	else
2949 		err = ice_ptp_port_cmd_e822(hw, cmd);
2950 	if (err) {
2951 		ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
2952 			  cmd, err);
2953 		return err;
2954 	}
2955 
2956 	/* Write the sync command register to drive both source and PHY timer
2957 	 * commands synchronously
2958 	 */
2959 	ice_ptp_exec_tmr_cmd(hw);
2960 
2961 	return 0;
2962 }
2963 
2964 /**
2965  * ice_ptp_init_time - Initialize device time to provided value
2966  * @hw: pointer to HW struct
2967  * @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
2968  *
2969  * Initialize the device to the specified time provided. This requires a three
2970  * step process:
2971  *
2972  * 1) write the new init time to the source timer shadow registers
2973  * 2) write the new init time to the PHY timer shadow registers
2974  * 3) issue an init_time timer command to synchronously switch both the source
2975  *    and port timers to the new init time value at the next clock cycle.
2976  */
2977 int ice_ptp_init_time(struct ice_hw *hw, u64 time)
2978 {
2979 	u8 tmr_idx;
2980 	int err;
2981 
2982 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2983 
2984 	/* Source timers */
2985 	wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
2986 	wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
2987 	wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
2988 
2989 	/* PHY timers */
2990 	/* Fill Rx and Tx ports and send msg to PHY */
2991 	if (ice_is_e810(hw))
2992 		err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
2993 	else
2994 		err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF);
2995 	if (err)
2996 		return err;
2997 
2998 	return ice_ptp_tmr_cmd(hw, INIT_TIME);
2999 }
3000 
3001 /**
3002  * ice_ptp_write_incval - Program PHC with new increment value
3003  * @hw: pointer to HW struct
3004  * @incval: Source timer increment value per clock cycle
3005  *
3006  * Program the PHC with a new increment value. This requires a three-step
3007  * process:
3008  *
3009  * 1) Write the increment value to the source timer shadow registers
3010  * 2) Write the increment value to the PHY timer shadow registers
3011  * 3) Issue an INIT_INCVAL timer command to synchronously switch both the
3012  *    source and port timers to the new increment value at the next clock
3013  *    cycle.
3014  */
3015 int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
3016 {
3017 	u8 tmr_idx;
3018 	int err;
3019 
3020 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3021 
3022 	/* Shadow Adjust */
3023 	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
3024 	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
3025 
3026 	if (ice_is_e810(hw))
3027 		err = ice_ptp_prep_phy_incval_e810(hw, incval);
3028 	else
3029 		err = ice_ptp_prep_phy_incval_e822(hw, incval);
3030 	if (err)
3031 		return err;
3032 
3033 	return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
3034 }
3035 
3036 /**
3037  * ice_ptp_write_incval_locked - Program new incval while holding semaphore
3038  * @hw: pointer to HW struct
3039  * @incval: Source timer increment value per clock cycle
3040  *
3041  * Program a new PHC incval while holding the PTP semaphore.
3042  */
3043 int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
3044 {
3045 	int err;
3046 
3047 	if (!ice_ptp_lock(hw))
3048 		return -EBUSY;
3049 
3050 	err = ice_ptp_write_incval(hw, incval);
3051 
3052 	ice_ptp_unlock(hw);
3053 
3054 	return err;
3055 }
3056 
3057 /**
3058  * ice_ptp_adj_clock - Adjust PHC clock time atomically
3059  * @hw: pointer to HW struct
3060  * @adj: Adjustment in nanoseconds
3061  *
3062  * Perform an atomic adjustment of the PHC time by the specified number of
3063  * nanoseconds. This requires a three-step process:
3064  *
3065  * 1) Write the adjustment to the source timer shadow registers
3066  * 2) Write the adjustment to the PHY timer shadow registers
3067  * 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
3068  *    both the source and port timers at the next clock cycle.
3069  */
3070 int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
3071 {
3072 	u8 tmr_idx;
3073 	int err;
3074 
3075 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3076 
3077 	/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
3078 	 * For an ADJ_TIME command, this set of registers represents the value
3079 	 * to add to the clock time. It supports subtraction by interpreting
3080 	 * the value as a 2's complement integer.
3081 	 */
3082 	wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
3083 	wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
3084 
3085 	if (ice_is_e810(hw))
3086 		err = ice_ptp_prep_phy_adj_e810(hw, adj);
3087 	else
3088 		err = ice_ptp_prep_phy_adj_e822(hw, adj);
3089 	if (err)
3090 		return err;
3091 
3092 	return ice_ptp_tmr_cmd(hw, ADJ_TIME);
3093 }
3094 
3095 /**
3096  * ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
3097  * @hw: pointer to the HW struct
3098  * @block: the block to read from
3099  * @idx: the timestamp index to read
3100  * @tstamp: on return, the 40bit timestamp value
3101  *
3102  * Read a 40bit timestamp value out of the timestamp block. For E822 devices,
3103  * the block is the quad to read from. For E810 devices, the block is the
3104  * logical port to read from.
3105  */
3106 int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
3107 {
3108 	if (ice_is_e810(hw))
3109 		return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
3110 	else
3111 		return ice_read_phy_tstamp_e822(hw, block, idx, tstamp);
3112 }
3113 
3114 /**
3115  * ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
3116  * @hw: pointer to the HW struct
3117  * @block: the block to read from
3118  * @idx: the timestamp index to reset
3119  *
3120  * Clear a timestamp, resetting its valid bit, from the timestamp block. For
3121  * E822 devices, the block is the quad to clear from. For E810 devices, the
3122  * block is the logical port to clear from.
3123  */
3124 int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
3125 {
3126 	if (ice_is_e810(hw))
3127 		return ice_clear_phy_tstamp_e810(hw, block, idx);
3128 	else
3129 		return ice_clear_phy_tstamp_e822(hw, block, idx);
3130 }
3131 
3132 /**
3133  * ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
3134  * @hw: pointer to the HW struct
3135  * @port: the PHY port to read
3136  * @tstamp_ready: contents of the Tx memory status register
3137  *
3138  * E810 devices do not use a Tx memory status register. Instead simply
3139  * indicate that all timestamps are currently ready.
3140  */
3141 static int
3142 ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
3143 {
3144 	*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
3145 	return 0;
3146 }
3147 
3148 /* E810T SMA functions
3149  *
3150  * The following functions operate specifically on E810T hardware and are used
3151  * to access the extended GPIOs available.
3152  */
3153 
3154 /**
3155  * ice_get_pca9575_handle
3156  * @hw: pointer to the hw struct
3157  * @pca9575_handle: GPIO controller's handle
3158  *
3159  * Find and return the GPIO controller's handle in the netlist.
3160  * When found - the value will be cached in the hw structure and following calls
3161  * will return cached value
3162  */
3163 static int
3164 ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
3165 {
3166 	struct ice_aqc_get_link_topo *cmd;
3167 	struct ice_aq_desc desc;
3168 	int status;
3169 	u8 idx;
3170 
3171 	/* If handle was read previously return cached value */
3172 	if (hw->io_expander_handle) {
3173 		*pca9575_handle = hw->io_expander_handle;
3174 		return 0;
3175 	}
3176 
3177 	/* If handle was not detected read it from the netlist */
3178 	cmd = &desc.params.get_link_topo;
3179 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
3180 
3181 	/* Set node type to GPIO controller */
3182 	cmd->addr.topo_params.node_type_ctx =
3183 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
3184 		 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
3185 
3186 #define SW_PCA9575_SFP_TOPO_IDX		2
3187 #define SW_PCA9575_QSFP_TOPO_IDX	1
3188 
3189 	/* Check if the SW IO expander controlling SMA exists in the netlist. */
3190 	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
3191 		idx = SW_PCA9575_SFP_TOPO_IDX;
3192 	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
3193 		idx = SW_PCA9575_QSFP_TOPO_IDX;
3194 	else
3195 		return -EOPNOTSUPP;
3196 
3197 	cmd->addr.topo_params.index = idx;
3198 
3199 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3200 	if (status)
3201 		return -EOPNOTSUPP;
3202 
3203 	/* Verify if we found the right IO expander type */
3204 	if (desc.params.get_link_topo.node_part_num !=
3205 		ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
3206 		return -EOPNOTSUPP;
3207 
3208 	/* If present save the handle and return it */
3209 	hw->io_expander_handle =
3210 		le16_to_cpu(desc.params.get_link_topo.addr.handle);
3211 	*pca9575_handle = hw->io_expander_handle;
3212 
3213 	return 0;
3214 }
3215 
3216 /**
3217  * ice_read_sma_ctrl_e810t
3218  * @hw: pointer to the hw struct
3219  * @data: pointer to data to be read from the GPIO controller
3220  *
3221  * Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
3222  * PCA9575 expander, so only bits 3-7 in data are valid.
3223  */
3224 int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
3225 {
3226 	int status;
3227 	u16 handle;
3228 	u8 i;
3229 
3230 	status = ice_get_pca9575_handle(hw, &handle);
3231 	if (status)
3232 		return status;
3233 
3234 	*data = 0;
3235 
3236 	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3237 		bool pin;
3238 
3239 		status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3240 					 &pin, NULL);
3241 		if (status)
3242 			break;
3243 		*data |= (u8)(!pin) << i;
3244 	}
3245 
3246 	return status;
3247 }
3248 
3249 /**
3250  * ice_write_sma_ctrl_e810t
3251  * @hw: pointer to the hw struct
3252  * @data: data to be written to the GPIO controller
3253  *
3254  * Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
3255  * of the PCA9575 expander, so only bits 3-7 in data are valid.
3256  */
3257 int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
3258 {
3259 	int status;
3260 	u16 handle;
3261 	u8 i;
3262 
3263 	status = ice_get_pca9575_handle(hw, &handle);
3264 	if (status)
3265 		return status;
3266 
3267 	for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
3268 		bool pin;
3269 
3270 		pin = !(data & (1 << i));
3271 		status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
3272 					 pin, NULL);
3273 		if (status)
3274 			break;
3275 	}
3276 
3277 	return status;
3278 }
3279 
3280 /**
3281  * ice_read_pca9575_reg_e810t
3282  * @hw: pointer to the hw struct
3283  * @offset: GPIO controller register offset
3284  * @data: pointer to data to be read from the GPIO controller
3285  *
3286  * Read the register from the GPIO controller
3287  */
3288 int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
3289 {
3290 	struct ice_aqc_link_topo_addr link_topo;
3291 	__le16 addr;
3292 	u16 handle;
3293 	int err;
3294 
3295 	memset(&link_topo, 0, sizeof(link_topo));
3296 
3297 	err = ice_get_pca9575_handle(hw, &handle);
3298 	if (err)
3299 		return err;
3300 
3301 	link_topo.handle = cpu_to_le16(handle);
3302 	link_topo.topo_params.node_type_ctx =
3303 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
3304 			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
3305 
3306 	addr = cpu_to_le16((u16)offset);
3307 
3308 	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
3309 }
3310 
3311 /**
3312  * ice_is_pca9575_present
3313  * @hw: pointer to the hw struct
3314  *
3315  * Check if the SW IO expander is present in the netlist
3316  */
3317 bool ice_is_pca9575_present(struct ice_hw *hw)
3318 {
3319 	u16 handle = 0;
3320 	int status;
3321 
3322 	if (!ice_is_e810t(hw))
3323 		return false;
3324 
3325 	status = ice_get_pca9575_handle(hw, &handle);
3326 
3327 	return !status && handle;
3328 }
3329 
3330 /**
3331  * ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
3332  * @hw: pointer to the HW struct
3333  */
3334 void ice_ptp_reset_ts_memory(struct ice_hw *hw)
3335 {
3336 	if (ice_is_e810(hw))
3337 		return;
3338 
3339 	ice_ptp_reset_ts_memory_e822(hw);
3340 }
3341 
3342 /**
3343  * ice_ptp_init_phc - Initialize PTP hardware clock
3344  * @hw: pointer to the HW struct
3345  *
3346  * Perform the steps required to initialize the PTP hardware clock.
3347  */
3348 int ice_ptp_init_phc(struct ice_hw *hw)
3349 {
3350 	u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3351 
3352 	/* Enable source clocks */
3353 	wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
3354 
3355 	/* Clear event err indications for auxiliary pins */
3356 	(void)rd32(hw, GLTSYN_STAT(src_idx));
3357 
3358 	if (ice_is_e810(hw))
3359 		return ice_ptp_init_phc_e810(hw);
3360 	else
3361 		return ice_ptp_init_phc_e822(hw);
3362 }
3363 
3364 /**
3365  * ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
3366  * @hw: pointer to the HW struct
3367  * @block: the timestamp block to check
3368  * @tstamp_ready: storage for the PHY Tx memory status information
3369  *
3370  * Check the PHY for Tx timestamp memory status. This reports a 64 bit value
3371  * which indicates which timestamps in the block may be captured. A set bit
3372  * means the timestamp can be read. An unset bit means the timestamp is not
3373  * ready and software should avoid reading the register.
3374  */
3375 int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
3376 {
3377 	if (ice_is_e810(hw))
3378 		return ice_get_phy_tx_tstamp_ready_e810(hw, block,
3379 							tstamp_ready);
3380 	else
3381 		return ice_get_phy_tx_tstamp_ready_e822(hw, block,
3382 							tstamp_ready);
3383 }
3384