1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 31 /** 32 * e1000e_get_bus_info_pcie - Get PCIe bus information 33 * @hw: pointer to the HW structure 34 * 35 * Determines and stores the system bus information for a particular 36 * network interface. The following bus information is determined and stored: 37 * bus speed, bus width, type (PCIe), and PCIe function. 38 **/ 39 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) 40 { 41 struct e1000_mac_info *mac = &hw->mac; 42 struct e1000_bus_info *bus = &hw->bus; 43 struct e1000_adapter *adapter = hw->adapter; 44 u16 pcie_link_status, cap_offset; 45 46 cap_offset = adapter->pdev->pcie_cap; 47 if (!cap_offset) { 48 bus->width = e1000_bus_width_unknown; 49 } else { 50 pci_read_config_word(adapter->pdev, 51 cap_offset + PCIE_LINK_STATUS, 52 &pcie_link_status); 53 bus->width = (enum e1000_bus_width)((pcie_link_status & 54 PCIE_LINK_WIDTH_MASK) >> 55 PCIE_LINK_WIDTH_SHIFT); 56 } 57 58 mac->ops.set_lan_id(hw); 59 60 return 0; 61 } 62 63 /** 64 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 65 * 66 * @hw: pointer to the HW structure 67 * 68 * Determines the LAN function id by reading memory-mapped registers 69 * and swaps the port value if requested. 70 **/ 71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) 72 { 73 struct e1000_bus_info *bus = &hw->bus; 74 u32 reg; 75 76 /* The status register reports the correct function number 77 * for the device regardless of function swap state. 78 */ 79 reg = er32(STATUS); 80 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; 81 } 82 83 /** 84 * e1000_set_lan_id_single_port - Set LAN id for a single port device 85 * @hw: pointer to the HW structure 86 * 87 * Sets the LAN function id to zero for a single port device. 88 **/ 89 void e1000_set_lan_id_single_port(struct e1000_hw *hw) 90 { 91 struct e1000_bus_info *bus = &hw->bus; 92 93 bus->func = 0; 94 } 95 96 /** 97 * e1000_clear_vfta_generic - Clear VLAN filter table 98 * @hw: pointer to the HW structure 99 * 100 * Clears the register array which contains the VLAN filter table by 101 * setting all the values to 0. 102 **/ 103 void e1000_clear_vfta_generic(struct e1000_hw *hw) 104 { 105 u32 offset; 106 107 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 108 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); 109 e1e_flush(); 110 } 111 } 112 113 /** 114 * e1000_write_vfta_generic - Write value to VLAN filter table 115 * @hw: pointer to the HW structure 116 * @offset: register offset in VLAN filter table 117 * @value: register value written to VLAN filter table 118 * 119 * Writes value at the given offset in the register array which stores 120 * the VLAN filter table. 121 **/ 122 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) 123 { 124 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); 125 e1e_flush(); 126 } 127 128 /** 129 * e1000e_init_rx_addrs - Initialize receive address's 130 * @hw: pointer to the HW structure 131 * @rar_count: receive address registers 132 * 133 * Setup the receive address registers by setting the base receive address 134 * register to the devices MAC address and clearing all the other receive 135 * address registers to 0. 136 **/ 137 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) 138 { 139 u32 i; 140 u8 mac_addr[ETH_ALEN] = { 0 }; 141 142 /* Setup the receive address */ 143 e_dbg("Programming MAC Address into RAR[0]\n"); 144 145 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 146 147 /* Zero out the other (rar_entry_count - 1) receive addresses */ 148 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1); 149 for (i = 1; i < rar_count; i++) 150 hw->mac.ops.rar_set(hw, mac_addr, i); 151 } 152 153 /** 154 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr 155 * @hw: pointer to the HW structure 156 * 157 * Checks the nvm for an alternate MAC address. An alternate MAC address 158 * can be setup by pre-boot software and must be treated like a permanent 159 * address and must override the actual permanent MAC address. If an 160 * alternate MAC address is found it is programmed into RAR0, replacing 161 * the permanent address that was installed into RAR0 by the Si on reset. 162 * This function will return SUCCESS unless it encounters an error while 163 * reading the EEPROM. 164 **/ 165 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) 166 { 167 u32 i; 168 s32 ret_val; 169 u16 offset, nvm_alt_mac_addr_offset, nvm_data; 170 u8 alt_mac_addr[ETH_ALEN]; 171 172 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); 173 if (ret_val) 174 return ret_val; 175 176 /* not supported on 82573 */ 177 if (hw->mac.type == e1000_82573) 178 return 0; 179 180 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, 181 &nvm_alt_mac_addr_offset); 182 if (ret_val) { 183 e_dbg("NVM Read Error\n"); 184 return ret_val; 185 } 186 187 if ((nvm_alt_mac_addr_offset == 0xFFFF) || 188 (nvm_alt_mac_addr_offset == 0x0000)) 189 /* There is no Alternate MAC Address */ 190 return 0; 191 192 if (hw->bus.func == E1000_FUNC_1) 193 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; 194 for (i = 0; i < ETH_ALEN; i += 2) { 195 offset = nvm_alt_mac_addr_offset + (i >> 1); 196 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); 197 if (ret_val) { 198 e_dbg("NVM Read Error\n"); 199 return ret_val; 200 } 201 202 alt_mac_addr[i] = (u8)(nvm_data & 0xFF); 203 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); 204 } 205 206 /* if multicast bit is set, the alternate address will not be used */ 207 if (is_multicast_ether_addr(alt_mac_addr)) { 208 e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); 209 return 0; 210 } 211 212 /* We have a valid alternate MAC address, and we want to treat it the 213 * same as the normal permanent MAC address stored by the HW into the 214 * RAR. Do this by mapping this address into RAR0. 215 */ 216 hw->mac.ops.rar_set(hw, alt_mac_addr, 0); 217 218 return 0; 219 } 220 221 /** 222 * e1000e_rar_set_generic - Set receive address register 223 * @hw: pointer to the HW structure 224 * @addr: pointer to the receive address 225 * @index: receive address array register 226 * 227 * Sets the receive address array register at index to the address passed 228 * in by addr. 229 **/ 230 void e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) 231 { 232 u32 rar_low, rar_high; 233 234 /* HW expects these in little endian so we reverse the byte order 235 * from network order (big endian) to little endian 236 */ 237 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 238 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 239 240 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 241 242 /* If MAC address zero, no need to set the AV bit */ 243 if (rar_low || rar_high) 244 rar_high |= E1000_RAH_AV; 245 246 /* Some bridges will combine consecutive 32-bit writes into 247 * a single burst write, which will malfunction on some parts. 248 * The flushes avoid this. 249 */ 250 ew32(RAL(index), rar_low); 251 e1e_flush(); 252 ew32(RAH(index), rar_high); 253 e1e_flush(); 254 } 255 256 /** 257 * e1000_hash_mc_addr - Generate a multicast hash value 258 * @hw: pointer to the HW structure 259 * @mc_addr: pointer to a multicast address 260 * 261 * Generates a multicast address hash value which is used to determine 262 * the multicast filter table array address and new table value. 263 **/ 264 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 265 { 266 u32 hash_value, hash_mask; 267 u8 bit_shift = 0; 268 269 /* Register count multiplied by bits per register */ 270 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 271 272 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts 273 * where 0xFF would still fall within the hash mask. 274 */ 275 while (hash_mask >> bit_shift != 0xFF) 276 bit_shift++; 277 278 /* The portion of the address that is used for the hash table 279 * is determined by the mc_filter_type setting. 280 * The algorithm is such that there is a total of 8 bits of shifting. 281 * The bit_shift for a mc_filter_type of 0 represents the number of 282 * left-shifts where the MSB of mc_addr[5] would still fall within 283 * the hash_mask. Case 0 does this exactly. Since there are a total 284 * of 8 bits of shifting, then mc_addr[4] will shift right the 285 * remaining number of bits. Thus 8 - bit_shift. The rest of the 286 * cases are a variation of this algorithm...essentially raising the 287 * number of bits to shift mc_addr[5] left, while still keeping the 288 * 8-bit shifting total. 289 * 290 * For example, given the following Destination MAC Address and an 291 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 292 * we can see that the bit_shift for case 0 is 4. These are the hash 293 * values resulting from each mc_filter_type... 294 * [0] [1] [2] [3] [4] [5] 295 * 01 AA 00 12 34 56 296 * LSB MSB 297 * 298 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 299 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 300 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 301 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 302 */ 303 switch (hw->mac.mc_filter_type) { 304 default: 305 case 0: 306 break; 307 case 1: 308 bit_shift += 1; 309 break; 310 case 2: 311 bit_shift += 2; 312 break; 313 case 3: 314 bit_shift += 4; 315 break; 316 } 317 318 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 319 (((u16)mc_addr[5]) << bit_shift))); 320 321 return hash_value; 322 } 323 324 /** 325 * e1000e_update_mc_addr_list_generic - Update Multicast addresses 326 * @hw: pointer to the HW structure 327 * @mc_addr_list: array of multicast addresses to program 328 * @mc_addr_count: number of multicast addresses to program 329 * 330 * Updates entire Multicast Table Array. 331 * The caller must have a packed mc_addr_list of multicast addresses. 332 **/ 333 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, 334 u8 *mc_addr_list, u32 mc_addr_count) 335 { 336 u32 hash_value, hash_bit, hash_reg; 337 int i; 338 339 /* clear mta_shadow */ 340 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 341 342 /* update mta_shadow from mc_addr_list */ 343 for (i = 0; (u32)i < mc_addr_count; i++) { 344 hash_value = e1000_hash_mc_addr(hw, mc_addr_list); 345 346 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 347 hash_bit = hash_value & 0x1F; 348 349 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); 350 mc_addr_list += (ETH_ALEN); 351 } 352 353 /* replace the entire MTA table */ 354 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 355 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); 356 e1e_flush(); 357 } 358 359 /** 360 * e1000e_clear_hw_cntrs_base - Clear base hardware counters 361 * @hw: pointer to the HW structure 362 * 363 * Clears the base hardware counters by reading the counter registers. 364 **/ 365 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) 366 { 367 er32(CRCERRS); 368 er32(SYMERRS); 369 er32(MPC); 370 er32(SCC); 371 er32(ECOL); 372 er32(MCC); 373 er32(LATECOL); 374 er32(COLC); 375 er32(DC); 376 er32(SEC); 377 er32(RLEC); 378 er32(XONRXC); 379 er32(XONTXC); 380 er32(XOFFRXC); 381 er32(XOFFTXC); 382 er32(FCRUC); 383 er32(GPRC); 384 er32(BPRC); 385 er32(MPRC); 386 er32(GPTC); 387 er32(GORCL); 388 er32(GORCH); 389 er32(GOTCL); 390 er32(GOTCH); 391 er32(RNBC); 392 er32(RUC); 393 er32(RFC); 394 er32(ROC); 395 er32(RJC); 396 er32(TORL); 397 er32(TORH); 398 er32(TOTL); 399 er32(TOTH); 400 er32(TPR); 401 er32(TPT); 402 er32(MPTC); 403 er32(BPTC); 404 } 405 406 /** 407 * e1000e_check_for_copper_link - Check for link (Copper) 408 * @hw: pointer to the HW structure 409 * 410 * Checks to see of the link status of the hardware has changed. If a 411 * change in link status has been detected, then we read the PHY registers 412 * to get the current speed/duplex if link exists. 413 **/ 414 s32 e1000e_check_for_copper_link(struct e1000_hw *hw) 415 { 416 struct e1000_mac_info *mac = &hw->mac; 417 s32 ret_val; 418 bool link; 419 420 /* We only want to go out to the PHY registers to see if Auto-Neg 421 * has completed and/or if our link status has changed. The 422 * get_link_status flag is set upon receiving a Link Status 423 * Change or Rx Sequence Error interrupt. 424 */ 425 if (!mac->get_link_status) 426 return 0; 427 428 /* First we want to see if the MII Status Register reports 429 * link. If so, then we want to get the current speed/duplex 430 * of the PHY. 431 */ 432 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 433 if (ret_val) 434 return ret_val; 435 436 if (!link) 437 return 0; /* No link detected */ 438 439 mac->get_link_status = false; 440 441 /* Check if there was DownShift, must be checked 442 * immediately after link-up 443 */ 444 e1000e_check_downshift(hw); 445 446 /* If we are forcing speed/duplex, then we simply return since 447 * we have already determined whether we have link or not. 448 */ 449 if (!mac->autoneg) 450 return -E1000_ERR_CONFIG; 451 452 /* Auto-Neg is enabled. Auto Speed Detection takes care 453 * of MAC speed/duplex configuration. So we only need to 454 * configure Collision Distance in the MAC. 455 */ 456 mac->ops.config_collision_dist(hw); 457 458 /* Configure Flow Control now that Auto-Neg has completed. 459 * First, we need to restore the desired flow control 460 * settings because we may have had to re-autoneg with a 461 * different link partner. 462 */ 463 ret_val = e1000e_config_fc_after_link_up(hw); 464 if (ret_val) 465 e_dbg("Error configuring flow control\n"); 466 467 return ret_val; 468 } 469 470 /** 471 * e1000e_check_for_fiber_link - Check for link (Fiber) 472 * @hw: pointer to the HW structure 473 * 474 * Checks for link up on the hardware. If link is not up and we have 475 * a signal, then we need to force link up. 476 **/ 477 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) 478 { 479 struct e1000_mac_info *mac = &hw->mac; 480 u32 rxcw; 481 u32 ctrl; 482 u32 status; 483 s32 ret_val; 484 485 ctrl = er32(CTRL); 486 status = er32(STATUS); 487 rxcw = er32(RXCW); 488 489 /* If we don't have link (auto-negotiation failed or link partner 490 * cannot auto-negotiate), the cable is plugged in (we have signal), 491 * and our link partner is not trying to auto-negotiate with us (we 492 * are receiving idles or data), we need to force link up. We also 493 * need to give auto-negotiation time to complete, in case the cable 494 * was just plugged in. The autoneg_failed flag does this. 495 */ 496 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 497 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && 498 !(rxcw & E1000_RXCW_C)) { 499 if (!mac->autoneg_failed) { 500 mac->autoneg_failed = true; 501 return 0; 502 } 503 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 504 505 /* Disable auto-negotiation in the TXCW register */ 506 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 507 508 /* Force link-up and also force full-duplex. */ 509 ctrl = er32(CTRL); 510 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 511 ew32(CTRL, ctrl); 512 513 /* Configure Flow Control after forcing link up. */ 514 ret_val = e1000e_config_fc_after_link_up(hw); 515 if (ret_val) { 516 e_dbg("Error configuring flow control\n"); 517 return ret_val; 518 } 519 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 520 /* If we are forcing link and we are receiving /C/ ordered 521 * sets, re-enable auto-negotiation in the TXCW register 522 * and disable forced link in the Device Control register 523 * in an attempt to auto-negotiate with our link partner. 524 */ 525 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 526 ew32(TXCW, mac->txcw); 527 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 528 529 mac->serdes_has_link = true; 530 } 531 532 return 0; 533 } 534 535 /** 536 * e1000e_check_for_serdes_link - Check for link (Serdes) 537 * @hw: pointer to the HW structure 538 * 539 * Checks for link up on the hardware. If link is not up and we have 540 * a signal, then we need to force link up. 541 **/ 542 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) 543 { 544 struct e1000_mac_info *mac = &hw->mac; 545 u32 rxcw; 546 u32 ctrl; 547 u32 status; 548 s32 ret_val; 549 550 ctrl = er32(CTRL); 551 status = er32(STATUS); 552 rxcw = er32(RXCW); 553 554 /* If we don't have link (auto-negotiation failed or link partner 555 * cannot auto-negotiate), and our link partner is not trying to 556 * auto-negotiate with us (we are receiving idles or data), 557 * we need to force link up. We also need to give auto-negotiation 558 * time to complete. 559 */ 560 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 561 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { 562 if (!mac->autoneg_failed) { 563 mac->autoneg_failed = true; 564 return 0; 565 } 566 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 567 568 /* Disable auto-negotiation in the TXCW register */ 569 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 570 571 /* Force link-up and also force full-duplex. */ 572 ctrl = er32(CTRL); 573 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 574 ew32(CTRL, ctrl); 575 576 /* Configure Flow Control after forcing link up. */ 577 ret_val = e1000e_config_fc_after_link_up(hw); 578 if (ret_val) { 579 e_dbg("Error configuring flow control\n"); 580 return ret_val; 581 } 582 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 583 /* If we are forcing link and we are receiving /C/ ordered 584 * sets, re-enable auto-negotiation in the TXCW register 585 * and disable forced link in the Device Control register 586 * in an attempt to auto-negotiate with our link partner. 587 */ 588 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 589 ew32(TXCW, mac->txcw); 590 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 591 592 mac->serdes_has_link = true; 593 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { 594 /* If we force link for non-auto-negotiation switch, check 595 * link status based on MAC synchronization for internal 596 * serdes media type. 597 */ 598 /* SYNCH bit and IV bit are sticky. */ 599 usleep_range(10, 20); 600 rxcw = er32(RXCW); 601 if (rxcw & E1000_RXCW_SYNCH) { 602 if (!(rxcw & E1000_RXCW_IV)) { 603 mac->serdes_has_link = true; 604 e_dbg("SERDES: Link up - forced.\n"); 605 } 606 } else { 607 mac->serdes_has_link = false; 608 e_dbg("SERDES: Link down - force failed.\n"); 609 } 610 } 611 612 if (E1000_TXCW_ANE & er32(TXCW)) { 613 status = er32(STATUS); 614 if (status & E1000_STATUS_LU) { 615 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ 616 usleep_range(10, 20); 617 rxcw = er32(RXCW); 618 if (rxcw & E1000_RXCW_SYNCH) { 619 if (!(rxcw & E1000_RXCW_IV)) { 620 mac->serdes_has_link = true; 621 e_dbg("SERDES: Link up - autoneg completed successfully.\n"); 622 } else { 623 mac->serdes_has_link = false; 624 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n"); 625 } 626 } else { 627 mac->serdes_has_link = false; 628 e_dbg("SERDES: Link down - no sync.\n"); 629 } 630 } else { 631 mac->serdes_has_link = false; 632 e_dbg("SERDES: Link down - autoneg failed\n"); 633 } 634 } 635 636 return 0; 637 } 638 639 /** 640 * e1000_set_default_fc_generic - Set flow control default values 641 * @hw: pointer to the HW structure 642 * 643 * Read the EEPROM for the default values for flow control and store the 644 * values. 645 **/ 646 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) 647 { 648 s32 ret_val; 649 u16 nvm_data; 650 651 /* Read and store word 0x0F of the EEPROM. This word contains bits 652 * that determine the hardware's default PAUSE (flow control) mode, 653 * a bit that determines whether the HW defaults to enabling or 654 * disabling auto-negotiation, and the direction of the 655 * SW defined pins. If there is no SW over-ride of the flow 656 * control setting, then the variable hw->fc will 657 * be initialized based on a value in the EEPROM. 658 */ 659 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); 660 661 if (ret_val) { 662 e_dbg("NVM Read Error\n"); 663 return ret_val; 664 } 665 666 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) 667 hw->fc.requested_mode = e1000_fc_none; 668 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) 669 hw->fc.requested_mode = e1000_fc_tx_pause; 670 else 671 hw->fc.requested_mode = e1000_fc_full; 672 673 return 0; 674 } 675 676 /** 677 * e1000e_setup_link_generic - Setup flow control and link settings 678 * @hw: pointer to the HW structure 679 * 680 * Determines which flow control settings to use, then configures flow 681 * control. Calls the appropriate media-specific link configuration 682 * function. Assuming the adapter has a valid link partner, a valid link 683 * should be established. Assumes the hardware has previously been reset 684 * and the transmitter and receiver are not enabled. 685 **/ 686 s32 e1000e_setup_link_generic(struct e1000_hw *hw) 687 { 688 s32 ret_val; 689 690 /* In the case of the phy reset being blocked, we already have a link. 691 * We do not need to set it up again. 692 */ 693 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 694 return 0; 695 696 /* If requested flow control is set to default, set flow control 697 * based on the EEPROM flow control settings. 698 */ 699 if (hw->fc.requested_mode == e1000_fc_default) { 700 ret_val = e1000_set_default_fc_generic(hw); 701 if (ret_val) 702 return ret_val; 703 } 704 705 /* Save off the requested flow control mode for use later. Depending 706 * on the link partner's capabilities, we may or may not use this mode. 707 */ 708 hw->fc.current_mode = hw->fc.requested_mode; 709 710 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 711 712 /* Call the necessary media_type subroutine to configure the link. */ 713 ret_val = hw->mac.ops.setup_physical_interface(hw); 714 if (ret_val) 715 return ret_val; 716 717 /* Initialize the flow control address, type, and PAUSE timer 718 * registers to their default values. This is done even if flow 719 * control is disabled, because it does not hurt anything to 720 * initialize these registers. 721 */ 722 e_dbg("Initializing the Flow Control address, type and timer regs\n"); 723 ew32(FCT, FLOW_CONTROL_TYPE); 724 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); 725 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); 726 727 ew32(FCTTV, hw->fc.pause_time); 728 729 return e1000e_set_fc_watermarks(hw); 730 } 731 732 /** 733 * e1000_commit_fc_settings_generic - Configure flow control 734 * @hw: pointer to the HW structure 735 * 736 * Write the flow control settings to the Transmit Config Word Register (TXCW) 737 * base on the flow control settings in e1000_mac_info. 738 **/ 739 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) 740 { 741 struct e1000_mac_info *mac = &hw->mac; 742 u32 txcw; 743 744 /* Check for a software override of the flow control settings, and 745 * setup the device accordingly. If auto-negotiation is enabled, then 746 * software will have to set the "PAUSE" bits to the correct value in 747 * the Transmit Config Word Register (TXCW) and re-start auto- 748 * negotiation. However, if auto-negotiation is disabled, then 749 * software will have to manually configure the two flow control enable 750 * bits in the CTRL register. 751 * 752 * The possible values of the "fc" parameter are: 753 * 0: Flow control is completely disabled 754 * 1: Rx flow control is enabled (we can receive pause frames, 755 * but not send pause frames). 756 * 2: Tx flow control is enabled (we can send pause frames but we 757 * do not support receiving pause frames). 758 * 3: Both Rx and Tx flow control (symmetric) are enabled. 759 */ 760 switch (hw->fc.current_mode) { 761 case e1000_fc_none: 762 /* Flow control completely disabled by a software over-ride. */ 763 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); 764 break; 765 case e1000_fc_rx_pause: 766 /* Rx Flow control is enabled and Tx Flow control is disabled 767 * by a software over-ride. Since there really isn't a way to 768 * advertise that we are capable of Rx Pause ONLY, we will 769 * advertise that we support both symmetric and asymmetric Rx 770 * PAUSE. Later, we will disable the adapter's ability to send 771 * PAUSE frames. 772 */ 773 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 774 break; 775 case e1000_fc_tx_pause: 776 /* Tx Flow control is enabled, and Rx Flow control is disabled, 777 * by a software over-ride. 778 */ 779 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); 780 break; 781 case e1000_fc_full: 782 /* Flow control (both Rx and Tx) is enabled by a software 783 * over-ride. 784 */ 785 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 786 break; 787 default: 788 e_dbg("Flow control param set incorrectly\n"); 789 return -E1000_ERR_CONFIG; 790 break; 791 } 792 793 ew32(TXCW, txcw); 794 mac->txcw = txcw; 795 796 return 0; 797 } 798 799 /** 800 * e1000_poll_fiber_serdes_link_generic - Poll for link up 801 * @hw: pointer to the HW structure 802 * 803 * Polls for link up by reading the status register, if link fails to come 804 * up with auto-negotiation, then the link is forced if a signal is detected. 805 **/ 806 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) 807 { 808 struct e1000_mac_info *mac = &hw->mac; 809 u32 i, status; 810 s32 ret_val; 811 812 /* If we have a signal (the cable is plugged in, or assumed true for 813 * serdes media) then poll for a "Link-Up" indication in the Device 814 * Status Register. Time-out if a link isn't seen in 500 milliseconds 815 * seconds (Auto-negotiation should complete in less than 500 816 * milliseconds even if the other end is doing it in SW). 817 */ 818 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { 819 usleep_range(10000, 20000); 820 status = er32(STATUS); 821 if (status & E1000_STATUS_LU) 822 break; 823 } 824 if (i == FIBER_LINK_UP_LIMIT) { 825 e_dbg("Never got a valid link from auto-neg!!!\n"); 826 mac->autoneg_failed = true; 827 /* AutoNeg failed to achieve a link, so we'll call 828 * mac->check_for_link. This routine will force the 829 * link up if we detect a signal. This will allow us to 830 * communicate with non-autonegotiating link partners. 831 */ 832 ret_val = mac->ops.check_for_link(hw); 833 if (ret_val) { 834 e_dbg("Error while checking for link\n"); 835 return ret_val; 836 } 837 mac->autoneg_failed = false; 838 } else { 839 mac->autoneg_failed = false; 840 e_dbg("Valid Link Found\n"); 841 } 842 843 return 0; 844 } 845 846 /** 847 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes 848 * @hw: pointer to the HW structure 849 * 850 * Configures collision distance and flow control for fiber and serdes 851 * links. Upon successful setup, poll for link. 852 **/ 853 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) 854 { 855 u32 ctrl; 856 s32 ret_val; 857 858 ctrl = er32(CTRL); 859 860 /* Take the link out of reset */ 861 ctrl &= ~E1000_CTRL_LRST; 862 863 hw->mac.ops.config_collision_dist(hw); 864 865 ret_val = e1000_commit_fc_settings_generic(hw); 866 if (ret_val) 867 return ret_val; 868 869 /* Since auto-negotiation is enabled, take the link out of reset (the 870 * link will be in reset, because we previously reset the chip). This 871 * will restart auto-negotiation. If auto-negotiation is successful 872 * then the link-up status bit will be set and the flow control enable 873 * bits (RFCE and TFCE) will be set according to their negotiated value. 874 */ 875 e_dbg("Auto-negotiation enabled\n"); 876 877 ew32(CTRL, ctrl); 878 e1e_flush(); 879 usleep_range(1000, 2000); 880 881 /* For these adapters, the SW definable pin 1 is set when the optics 882 * detect a signal. If we have a signal, then poll for a "Link-Up" 883 * indication. 884 */ 885 if (hw->phy.media_type == e1000_media_type_internal_serdes || 886 (er32(CTRL) & E1000_CTRL_SWDPIN1)) { 887 ret_val = e1000_poll_fiber_serdes_link_generic(hw); 888 } else { 889 e_dbg("No signal detected\n"); 890 } 891 892 return ret_val; 893 } 894 895 /** 896 * e1000e_config_collision_dist_generic - Configure collision distance 897 * @hw: pointer to the HW structure 898 * 899 * Configures the collision distance to the default value and is used 900 * during link setup. 901 **/ 902 void e1000e_config_collision_dist_generic(struct e1000_hw *hw) 903 { 904 u32 tctl; 905 906 tctl = er32(TCTL); 907 908 tctl &= ~E1000_TCTL_COLD; 909 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; 910 911 ew32(TCTL, tctl); 912 e1e_flush(); 913 } 914 915 /** 916 * e1000e_set_fc_watermarks - Set flow control high/low watermarks 917 * @hw: pointer to the HW structure 918 * 919 * Sets the flow control high/low threshold (watermark) registers. If 920 * flow control XON frame transmission is enabled, then set XON frame 921 * transmission as well. 922 **/ 923 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) 924 { 925 u32 fcrtl = 0, fcrth = 0; 926 927 /* Set the flow control receive threshold registers. Normally, 928 * these registers will be set to a default threshold that may be 929 * adjusted later by the driver's runtime code. However, if the 930 * ability to transmit pause frames is not enabled, then these 931 * registers will be set to 0. 932 */ 933 if (hw->fc.current_mode & e1000_fc_tx_pause) { 934 /* We need to set up the Receive Threshold high and low water 935 * marks as well as (optionally) enabling the transmission of 936 * XON frames. 937 */ 938 fcrtl = hw->fc.low_water; 939 if (hw->fc.send_xon) 940 fcrtl |= E1000_FCRTL_XONE; 941 942 fcrth = hw->fc.high_water; 943 } 944 ew32(FCRTL, fcrtl); 945 ew32(FCRTH, fcrth); 946 947 return 0; 948 } 949 950 /** 951 * e1000e_force_mac_fc - Force the MAC's flow control settings 952 * @hw: pointer to the HW structure 953 * 954 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 955 * device control register to reflect the adapter settings. TFCE and RFCE 956 * need to be explicitly set by software when a copper PHY is used because 957 * autonegotiation is managed by the PHY rather than the MAC. Software must 958 * also configure these bits when link is forced on a fiber connection. 959 **/ 960 s32 e1000e_force_mac_fc(struct e1000_hw *hw) 961 { 962 u32 ctrl; 963 964 ctrl = er32(CTRL); 965 966 /* Because we didn't get link via the internal auto-negotiation 967 * mechanism (we either forced link or we got link via PHY 968 * auto-neg), we have to manually enable/disable transmit an 969 * receive flow control. 970 * 971 * The "Case" statement below enables/disable flow control 972 * according to the "hw->fc.current_mode" parameter. 973 * 974 * The possible values of the "fc" parameter are: 975 * 0: Flow control is completely disabled 976 * 1: Rx flow control is enabled (we can receive pause 977 * frames but not send pause frames). 978 * 2: Tx flow control is enabled (we can send pause frames 979 * frames but we do not receive pause frames). 980 * 3: Both Rx and Tx flow control (symmetric) is enabled. 981 * other: No other values should be possible at this point. 982 */ 983 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 984 985 switch (hw->fc.current_mode) { 986 case e1000_fc_none: 987 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 988 break; 989 case e1000_fc_rx_pause: 990 ctrl &= (~E1000_CTRL_TFCE); 991 ctrl |= E1000_CTRL_RFCE; 992 break; 993 case e1000_fc_tx_pause: 994 ctrl &= (~E1000_CTRL_RFCE); 995 ctrl |= E1000_CTRL_TFCE; 996 break; 997 case e1000_fc_full: 998 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 999 break; 1000 default: 1001 e_dbg("Flow control param set incorrectly\n"); 1002 return -E1000_ERR_CONFIG; 1003 } 1004 1005 ew32(CTRL, ctrl); 1006 1007 return 0; 1008 } 1009 1010 /** 1011 * e1000e_config_fc_after_link_up - Configures flow control after link 1012 * @hw: pointer to the HW structure 1013 * 1014 * Checks the status of auto-negotiation after link up to ensure that the 1015 * speed and duplex were not forced. If the link needed to be forced, then 1016 * flow control needs to be forced also. If auto-negotiation is enabled 1017 * and did not fail, then we configure flow control based on our link 1018 * partner. 1019 **/ 1020 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) 1021 { 1022 struct e1000_mac_info *mac = &hw->mac; 1023 s32 ret_val = 0; 1024 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; 1025 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 1026 u16 speed, duplex; 1027 1028 /* Check for the case where we have fiber media and auto-neg failed 1029 * so we had to force link. In this case, we need to force the 1030 * configuration of the MAC to match the "fc" parameter. 1031 */ 1032 if (mac->autoneg_failed) { 1033 if (hw->phy.media_type == e1000_media_type_fiber || 1034 hw->phy.media_type == e1000_media_type_internal_serdes) 1035 ret_val = e1000e_force_mac_fc(hw); 1036 } else { 1037 if (hw->phy.media_type == e1000_media_type_copper) 1038 ret_val = e1000e_force_mac_fc(hw); 1039 } 1040 1041 if (ret_val) { 1042 e_dbg("Error forcing flow control settings\n"); 1043 return ret_val; 1044 } 1045 1046 /* Check for the case where we have copper media and auto-neg is 1047 * enabled. In this case, we need to check and see if Auto-Neg 1048 * has completed, and if so, how the PHY and link partner has 1049 * flow control configured. 1050 */ 1051 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { 1052 /* Read the MII Status Register and check to see if AutoNeg 1053 * has completed. We read this twice because this reg has 1054 * some "sticky" (latched) bits. 1055 */ 1056 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); 1057 if (ret_val) 1058 return ret_val; 1059 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); 1060 if (ret_val) 1061 return ret_val; 1062 1063 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) { 1064 e_dbg("Copper PHY and Auto Neg has not completed.\n"); 1065 return ret_val; 1066 } 1067 1068 /* The AutoNeg process has completed, so we now need to 1069 * read both the Auto Negotiation Advertisement 1070 * Register (Address 4) and the Auto_Negotiation Base 1071 * Page Ability Register (Address 5) to determine how 1072 * flow control was negotiated. 1073 */ 1074 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg); 1075 if (ret_val) 1076 return ret_val; 1077 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg); 1078 if (ret_val) 1079 return ret_val; 1080 1081 /* Two bits in the Auto Negotiation Advertisement Register 1082 * (Address 4) and two bits in the Auto Negotiation Base 1083 * Page Ability Register (Address 5) determine flow control 1084 * for both the PHY and the link partner. The following 1085 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1086 * 1999, describes these PAUSE resolution bits and how flow 1087 * control is determined based upon these settings. 1088 * NOTE: DC = Don't Care 1089 * 1090 * LOCAL DEVICE | LINK PARTNER 1091 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1092 *-------|---------|-------|---------|-------------------- 1093 * 0 | 0 | DC | DC | e1000_fc_none 1094 * 0 | 1 | 0 | DC | e1000_fc_none 1095 * 0 | 1 | 1 | 0 | e1000_fc_none 1096 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1097 * 1 | 0 | 0 | DC | e1000_fc_none 1098 * 1 | DC | 1 | DC | e1000_fc_full 1099 * 1 | 1 | 0 | 0 | e1000_fc_none 1100 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1101 * 1102 * Are both PAUSE bits set to 1? If so, this implies 1103 * Symmetric Flow Control is enabled at both ends. The 1104 * ASM_DIR bits are irrelevant per the spec. 1105 * 1106 * For Symmetric Flow Control: 1107 * 1108 * LOCAL DEVICE | LINK PARTNER 1109 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1110 *-------|---------|-------|---------|-------------------- 1111 * 1 | DC | 1 | DC | E1000_fc_full 1112 * 1113 */ 1114 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1115 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) { 1116 /* Now we need to check if the user selected Rx ONLY 1117 * of pause frames. In this case, we had to advertise 1118 * FULL flow control because we could not advertise Rx 1119 * ONLY. Hence, we must now check to see if we need to 1120 * turn OFF the TRANSMISSION of PAUSE frames. 1121 */ 1122 if (hw->fc.requested_mode == e1000_fc_full) { 1123 hw->fc.current_mode = e1000_fc_full; 1124 e_dbg("Flow Control = FULL.\n"); 1125 } else { 1126 hw->fc.current_mode = e1000_fc_rx_pause; 1127 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1128 } 1129 } 1130 /* For receiving PAUSE frames ONLY. 1131 * 1132 * LOCAL DEVICE | LINK PARTNER 1133 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1134 *-------|---------|-------|---------|-------------------- 1135 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1136 */ 1137 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1138 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && 1139 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && 1140 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { 1141 hw->fc.current_mode = e1000_fc_tx_pause; 1142 e_dbg("Flow Control = Tx PAUSE frames only.\n"); 1143 } 1144 /* For transmitting PAUSE frames ONLY. 1145 * 1146 * LOCAL DEVICE | LINK PARTNER 1147 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1148 *-------|---------|-------|---------|-------------------- 1149 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1150 */ 1151 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1152 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && 1153 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && 1154 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { 1155 hw->fc.current_mode = e1000_fc_rx_pause; 1156 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1157 } else { 1158 /* Per the IEEE spec, at this point flow control 1159 * should be disabled. 1160 */ 1161 hw->fc.current_mode = e1000_fc_none; 1162 e_dbg("Flow Control = NONE.\n"); 1163 } 1164 1165 /* Now we need to do one last check... If we auto- 1166 * negotiated to HALF DUPLEX, flow control should not be 1167 * enabled per IEEE 802.3 spec. 1168 */ 1169 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); 1170 if (ret_val) { 1171 e_dbg("Error getting link speed and duplex\n"); 1172 return ret_val; 1173 } 1174 1175 if (duplex == HALF_DUPLEX) 1176 hw->fc.current_mode = e1000_fc_none; 1177 1178 /* Now we call a subroutine to actually force the MAC 1179 * controller to use the correct flow control settings. 1180 */ 1181 ret_val = e1000e_force_mac_fc(hw); 1182 if (ret_val) { 1183 e_dbg("Error forcing flow control settings\n"); 1184 return ret_val; 1185 } 1186 } 1187 1188 /* Check for the case where we have SerDes media and auto-neg is 1189 * enabled. In this case, we need to check and see if Auto-Neg 1190 * has completed, and if so, how the PHY and link partner has 1191 * flow control configured. 1192 */ 1193 if ((hw->phy.media_type == e1000_media_type_internal_serdes) && 1194 mac->autoneg) { 1195 /* Read the PCS_LSTS and check to see if AutoNeg 1196 * has completed. 1197 */ 1198 pcs_status_reg = er32(PCS_LSTAT); 1199 1200 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { 1201 e_dbg("PCS Auto Neg has not completed.\n"); 1202 return ret_val; 1203 } 1204 1205 /* The AutoNeg process has completed, so we now need to 1206 * read both the Auto Negotiation Advertisement 1207 * Register (PCS_ANADV) and the Auto_Negotiation Base 1208 * Page Ability Register (PCS_LPAB) to determine how 1209 * flow control was negotiated. 1210 */ 1211 pcs_adv_reg = er32(PCS_ANADV); 1212 pcs_lp_ability_reg = er32(PCS_LPAB); 1213 1214 /* Two bits in the Auto Negotiation Advertisement Register 1215 * (PCS_ANADV) and two bits in the Auto Negotiation Base 1216 * Page Ability Register (PCS_LPAB) determine flow control 1217 * for both the PHY and the link partner. The following 1218 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1219 * 1999, describes these PAUSE resolution bits and how flow 1220 * control is determined based upon these settings. 1221 * NOTE: DC = Don't Care 1222 * 1223 * LOCAL DEVICE | LINK PARTNER 1224 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1225 *-------|---------|-------|---------|-------------------- 1226 * 0 | 0 | DC | DC | e1000_fc_none 1227 * 0 | 1 | 0 | DC | e1000_fc_none 1228 * 0 | 1 | 1 | 0 | e1000_fc_none 1229 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1230 * 1 | 0 | 0 | DC | e1000_fc_none 1231 * 1 | DC | 1 | DC | e1000_fc_full 1232 * 1 | 1 | 0 | 0 | e1000_fc_none 1233 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1234 * 1235 * Are both PAUSE bits set to 1? If so, this implies 1236 * Symmetric Flow Control is enabled at both ends. The 1237 * ASM_DIR bits are irrelevant per the spec. 1238 * 1239 * For Symmetric Flow Control: 1240 * 1241 * LOCAL DEVICE | LINK PARTNER 1242 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1243 *-------|---------|-------|---------|-------------------- 1244 * 1 | DC | 1 | DC | e1000_fc_full 1245 * 1246 */ 1247 if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1248 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { 1249 /* Now we need to check if the user selected Rx ONLY 1250 * of pause frames. In this case, we had to advertise 1251 * FULL flow control because we could not advertise Rx 1252 * ONLY. Hence, we must now check to see if we need to 1253 * turn OFF the TRANSMISSION of PAUSE frames. 1254 */ 1255 if (hw->fc.requested_mode == e1000_fc_full) { 1256 hw->fc.current_mode = e1000_fc_full; 1257 e_dbg("Flow Control = FULL.\n"); 1258 } else { 1259 hw->fc.current_mode = e1000_fc_rx_pause; 1260 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1261 } 1262 } 1263 /* For receiving PAUSE frames ONLY. 1264 * 1265 * LOCAL DEVICE | LINK PARTNER 1266 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1267 *-------|---------|-------|---------|-------------------- 1268 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1269 */ 1270 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && 1271 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1272 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1273 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1274 hw->fc.current_mode = e1000_fc_tx_pause; 1275 e_dbg("Flow Control = Tx PAUSE frames only.\n"); 1276 } 1277 /* For transmitting PAUSE frames ONLY. 1278 * 1279 * LOCAL DEVICE | LINK PARTNER 1280 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1281 *-------|---------|-------|---------|-------------------- 1282 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1283 */ 1284 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1285 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1286 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1287 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1288 hw->fc.current_mode = e1000_fc_rx_pause; 1289 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1290 } else { 1291 /* Per the IEEE spec, at this point flow control 1292 * should be disabled. 1293 */ 1294 hw->fc.current_mode = e1000_fc_none; 1295 e_dbg("Flow Control = NONE.\n"); 1296 } 1297 1298 /* Now we call a subroutine to actually force the MAC 1299 * controller to use the correct flow control settings. 1300 */ 1301 pcs_ctrl_reg = er32(PCS_LCTL); 1302 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1303 ew32(PCS_LCTL, pcs_ctrl_reg); 1304 1305 ret_val = e1000e_force_mac_fc(hw); 1306 if (ret_val) { 1307 e_dbg("Error forcing flow control settings\n"); 1308 return ret_val; 1309 } 1310 } 1311 1312 return 0; 1313 } 1314 1315 /** 1316 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex 1317 * @hw: pointer to the HW structure 1318 * @speed: stores the current speed 1319 * @duplex: stores the current duplex 1320 * 1321 * Read the status register for the current speed/duplex and store the current 1322 * speed and duplex for copper connections. 1323 **/ 1324 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, 1325 u16 *duplex) 1326 { 1327 u32 status; 1328 1329 status = er32(STATUS); 1330 if (status & E1000_STATUS_SPEED_1000) 1331 *speed = SPEED_1000; 1332 else if (status & E1000_STATUS_SPEED_100) 1333 *speed = SPEED_100; 1334 else 1335 *speed = SPEED_10; 1336 1337 if (status & E1000_STATUS_FD) 1338 *duplex = FULL_DUPLEX; 1339 else 1340 *duplex = HALF_DUPLEX; 1341 1342 e_dbg("%u Mbps, %s Duplex\n", 1343 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, 1344 *duplex == FULL_DUPLEX ? "Full" : "Half"); 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex 1351 * @hw: pointer to the HW structure 1352 * @speed: stores the current speed 1353 * @duplex: stores the current duplex 1354 * 1355 * Sets the speed and duplex to gigabit full duplex (the only possible option) 1356 * for fiber/serdes links. 1357 **/ 1358 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused 1359 *hw, u16 *speed, u16 *duplex) 1360 { 1361 *speed = SPEED_1000; 1362 *duplex = FULL_DUPLEX; 1363 1364 return 0; 1365 } 1366 1367 /** 1368 * e1000e_get_hw_semaphore - Acquire hardware semaphore 1369 * @hw: pointer to the HW structure 1370 * 1371 * Acquire the HW semaphore to access the PHY or NVM 1372 **/ 1373 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) 1374 { 1375 u32 swsm; 1376 s32 timeout = hw->nvm.word_size + 1; 1377 s32 i = 0; 1378 1379 /* Get the SW semaphore */ 1380 while (i < timeout) { 1381 swsm = er32(SWSM); 1382 if (!(swsm & E1000_SWSM_SMBI)) 1383 break; 1384 1385 usleep_range(50, 100); 1386 i++; 1387 } 1388 1389 if (i == timeout) { 1390 e_dbg("Driver can't access device - SMBI bit is set.\n"); 1391 return -E1000_ERR_NVM; 1392 } 1393 1394 /* Get the FW semaphore. */ 1395 for (i = 0; i < timeout; i++) { 1396 swsm = er32(SWSM); 1397 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 1398 1399 /* Semaphore acquired if bit latched */ 1400 if (er32(SWSM) & E1000_SWSM_SWESMBI) 1401 break; 1402 1403 usleep_range(50, 100); 1404 } 1405 1406 if (i == timeout) { 1407 /* Release semaphores */ 1408 e1000e_put_hw_semaphore(hw); 1409 e_dbg("Driver can't access the NVM\n"); 1410 return -E1000_ERR_NVM; 1411 } 1412 1413 return 0; 1414 } 1415 1416 /** 1417 * e1000e_put_hw_semaphore - Release hardware semaphore 1418 * @hw: pointer to the HW structure 1419 * 1420 * Release hardware semaphore used to access the PHY or NVM 1421 **/ 1422 void e1000e_put_hw_semaphore(struct e1000_hw *hw) 1423 { 1424 u32 swsm; 1425 1426 swsm = er32(SWSM); 1427 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1428 ew32(SWSM, swsm); 1429 } 1430 1431 /** 1432 * e1000e_get_auto_rd_done - Check for auto read completion 1433 * @hw: pointer to the HW structure 1434 * 1435 * Check EEPROM for Auto Read done bit. 1436 **/ 1437 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) 1438 { 1439 s32 i = 0; 1440 1441 while (i < AUTO_READ_DONE_TIMEOUT) { 1442 if (er32(EECD) & E1000_EECD_AUTO_RD) 1443 break; 1444 usleep_range(1000, 2000); 1445 i++; 1446 } 1447 1448 if (i == AUTO_READ_DONE_TIMEOUT) { 1449 e_dbg("Auto read by HW from NVM has not completed.\n"); 1450 return -E1000_ERR_RESET; 1451 } 1452 1453 return 0; 1454 } 1455 1456 /** 1457 * e1000e_valid_led_default - Verify a valid default LED config 1458 * @hw: pointer to the HW structure 1459 * @data: pointer to the NVM (EEPROM) 1460 * 1461 * Read the EEPROM for the current default LED configuration. If the 1462 * LED configuration is not valid, set to a valid LED configuration. 1463 **/ 1464 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) 1465 { 1466 s32 ret_val; 1467 1468 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1469 if (ret_val) { 1470 e_dbg("NVM Read Error\n"); 1471 return ret_val; 1472 } 1473 1474 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 1475 *data = ID_LED_DEFAULT; 1476 1477 return 0; 1478 } 1479 1480 /** 1481 * e1000e_id_led_init_generic - 1482 * @hw: pointer to the HW structure 1483 * 1484 **/ 1485 s32 e1000e_id_led_init_generic(struct e1000_hw *hw) 1486 { 1487 struct e1000_mac_info *mac = &hw->mac; 1488 s32 ret_val; 1489 const u32 ledctl_mask = 0x000000FF; 1490 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 1491 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 1492 u16 data, i, temp; 1493 const u16 led_mask = 0x0F; 1494 1495 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 1496 if (ret_val) 1497 return ret_val; 1498 1499 mac->ledctl_default = er32(LEDCTL); 1500 mac->ledctl_mode1 = mac->ledctl_default; 1501 mac->ledctl_mode2 = mac->ledctl_default; 1502 1503 for (i = 0; i < 4; i++) { 1504 temp = (data >> (i << 2)) & led_mask; 1505 switch (temp) { 1506 case ID_LED_ON1_DEF2: 1507 case ID_LED_ON1_ON2: 1508 case ID_LED_ON1_OFF2: 1509 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1510 mac->ledctl_mode1 |= ledctl_on << (i << 3); 1511 break; 1512 case ID_LED_OFF1_DEF2: 1513 case ID_LED_OFF1_ON2: 1514 case ID_LED_OFF1_OFF2: 1515 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1516 mac->ledctl_mode1 |= ledctl_off << (i << 3); 1517 break; 1518 default: 1519 /* Do nothing */ 1520 break; 1521 } 1522 switch (temp) { 1523 case ID_LED_DEF1_ON2: 1524 case ID_LED_ON1_ON2: 1525 case ID_LED_OFF1_ON2: 1526 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1527 mac->ledctl_mode2 |= ledctl_on << (i << 3); 1528 break; 1529 case ID_LED_DEF1_OFF2: 1530 case ID_LED_ON1_OFF2: 1531 case ID_LED_OFF1_OFF2: 1532 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1533 mac->ledctl_mode2 |= ledctl_off << (i << 3); 1534 break; 1535 default: 1536 /* Do nothing */ 1537 break; 1538 } 1539 } 1540 1541 return 0; 1542 } 1543 1544 /** 1545 * e1000e_setup_led_generic - Configures SW controllable LED 1546 * @hw: pointer to the HW structure 1547 * 1548 * This prepares the SW controllable LED for use and saves the current state 1549 * of the LED so it can be later restored. 1550 **/ 1551 s32 e1000e_setup_led_generic(struct e1000_hw *hw) 1552 { 1553 u32 ledctl; 1554 1555 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) 1556 return -E1000_ERR_CONFIG; 1557 1558 if (hw->phy.media_type == e1000_media_type_fiber) { 1559 ledctl = er32(LEDCTL); 1560 hw->mac.ledctl_default = ledctl; 1561 /* Turn off LED0 */ 1562 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | 1563 E1000_LEDCTL_LED0_MODE_MASK); 1564 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << 1565 E1000_LEDCTL_LED0_MODE_SHIFT); 1566 ew32(LEDCTL, ledctl); 1567 } else if (hw->phy.media_type == e1000_media_type_copper) { 1568 ew32(LEDCTL, hw->mac.ledctl_mode1); 1569 } 1570 1571 return 0; 1572 } 1573 1574 /** 1575 * e1000e_cleanup_led_generic - Set LED config to default operation 1576 * @hw: pointer to the HW structure 1577 * 1578 * Remove the current LED configuration and set the LED configuration 1579 * to the default value, saved from the EEPROM. 1580 **/ 1581 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) 1582 { 1583 ew32(LEDCTL, hw->mac.ledctl_default); 1584 return 0; 1585 } 1586 1587 /** 1588 * e1000e_blink_led_generic - Blink LED 1589 * @hw: pointer to the HW structure 1590 * 1591 * Blink the LEDs which are set to be on. 1592 **/ 1593 s32 e1000e_blink_led_generic(struct e1000_hw *hw) 1594 { 1595 u32 ledctl_blink = 0; 1596 u32 i; 1597 1598 if (hw->phy.media_type == e1000_media_type_fiber) { 1599 /* always blink LED0 for PCI-E fiber */ 1600 ledctl_blink = E1000_LEDCTL_LED0_BLINK | 1601 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); 1602 } else { 1603 /* Set the blink bit for each LED that's "on" (0x0E) 1604 * (or "off" if inverted) in ledctl_mode2. The blink 1605 * logic in hardware only works when mode is set to "on" 1606 * so it must be changed accordingly when the mode is 1607 * "off" and inverted. 1608 */ 1609 ledctl_blink = hw->mac.ledctl_mode2; 1610 for (i = 0; i < 32; i += 8) { 1611 u32 mode = (hw->mac.ledctl_mode2 >> i) & 1612 E1000_LEDCTL_LED0_MODE_MASK; 1613 u32 led_default = hw->mac.ledctl_default >> i; 1614 1615 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && 1616 (mode == E1000_LEDCTL_MODE_LED_ON)) || 1617 ((led_default & E1000_LEDCTL_LED0_IVRT) && 1618 (mode == E1000_LEDCTL_MODE_LED_OFF))) { 1619 ledctl_blink &= 1620 ~(E1000_LEDCTL_LED0_MODE_MASK << i); 1621 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | 1622 E1000_LEDCTL_MODE_LED_ON) << i; 1623 } 1624 } 1625 } 1626 1627 ew32(LEDCTL, ledctl_blink); 1628 1629 return 0; 1630 } 1631 1632 /** 1633 * e1000e_led_on_generic - Turn LED on 1634 * @hw: pointer to the HW structure 1635 * 1636 * Turn LED on. 1637 **/ 1638 s32 e1000e_led_on_generic(struct e1000_hw *hw) 1639 { 1640 u32 ctrl; 1641 1642 switch (hw->phy.media_type) { 1643 case e1000_media_type_fiber: 1644 ctrl = er32(CTRL); 1645 ctrl &= ~E1000_CTRL_SWDPIN0; 1646 ctrl |= E1000_CTRL_SWDPIO0; 1647 ew32(CTRL, ctrl); 1648 break; 1649 case e1000_media_type_copper: 1650 ew32(LEDCTL, hw->mac.ledctl_mode2); 1651 break; 1652 default: 1653 break; 1654 } 1655 1656 return 0; 1657 } 1658 1659 /** 1660 * e1000e_led_off_generic - Turn LED off 1661 * @hw: pointer to the HW structure 1662 * 1663 * Turn LED off. 1664 **/ 1665 s32 e1000e_led_off_generic(struct e1000_hw *hw) 1666 { 1667 u32 ctrl; 1668 1669 switch (hw->phy.media_type) { 1670 case e1000_media_type_fiber: 1671 ctrl = er32(CTRL); 1672 ctrl |= E1000_CTRL_SWDPIN0; 1673 ctrl |= E1000_CTRL_SWDPIO0; 1674 ew32(CTRL, ctrl); 1675 break; 1676 case e1000_media_type_copper: 1677 ew32(LEDCTL, hw->mac.ledctl_mode1); 1678 break; 1679 default: 1680 break; 1681 } 1682 1683 return 0; 1684 } 1685 1686 /** 1687 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities 1688 * @hw: pointer to the HW structure 1689 * @no_snoop: bitmap of snoop events 1690 * 1691 * Set the PCI-express register to snoop for events enabled in 'no_snoop'. 1692 **/ 1693 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) 1694 { 1695 u32 gcr; 1696 1697 if (no_snoop) { 1698 gcr = er32(GCR); 1699 gcr &= ~(PCIE_NO_SNOOP_ALL); 1700 gcr |= no_snoop; 1701 ew32(GCR, gcr); 1702 } 1703 } 1704 1705 /** 1706 * e1000e_disable_pcie_master - Disables PCI-express master access 1707 * @hw: pointer to the HW structure 1708 * 1709 * Returns 0 if successful, else returns -10 1710 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 1711 * the master requests to be disabled. 1712 * 1713 * Disables PCI-Express master access and verifies there are no pending 1714 * requests. 1715 **/ 1716 s32 e1000e_disable_pcie_master(struct e1000_hw *hw) 1717 { 1718 u32 ctrl; 1719 s32 timeout = MASTER_DISABLE_TIMEOUT; 1720 1721 ctrl = er32(CTRL); 1722 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; 1723 ew32(CTRL, ctrl); 1724 1725 while (timeout) { 1726 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) 1727 break; 1728 usleep_range(100, 200); 1729 timeout--; 1730 } 1731 1732 if (!timeout) { 1733 e_dbg("Master requests are pending.\n"); 1734 return -E1000_ERR_MASTER_REQUESTS_PENDING; 1735 } 1736 1737 return 0; 1738 } 1739 1740 /** 1741 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing 1742 * @hw: pointer to the HW structure 1743 * 1744 * Reset the Adaptive Interframe Spacing throttle to default values. 1745 **/ 1746 void e1000e_reset_adaptive(struct e1000_hw *hw) 1747 { 1748 struct e1000_mac_info *mac = &hw->mac; 1749 1750 if (!mac->adaptive_ifs) { 1751 e_dbg("Not in Adaptive IFS mode!\n"); 1752 return; 1753 } 1754 1755 mac->current_ifs_val = 0; 1756 mac->ifs_min_val = IFS_MIN; 1757 mac->ifs_max_val = IFS_MAX; 1758 mac->ifs_step_size = IFS_STEP; 1759 mac->ifs_ratio = IFS_RATIO; 1760 1761 mac->in_ifs_mode = false; 1762 ew32(AIT, 0); 1763 } 1764 1765 /** 1766 * e1000e_update_adaptive - Update Adaptive Interframe Spacing 1767 * @hw: pointer to the HW structure 1768 * 1769 * Update the Adaptive Interframe Spacing Throttle value based on the 1770 * time between transmitted packets and time between collisions. 1771 **/ 1772 void e1000e_update_adaptive(struct e1000_hw *hw) 1773 { 1774 struct e1000_mac_info *mac = &hw->mac; 1775 1776 if (!mac->adaptive_ifs) { 1777 e_dbg("Not in Adaptive IFS mode!\n"); 1778 return; 1779 } 1780 1781 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { 1782 if (mac->tx_packet_delta > MIN_NUM_XMITS) { 1783 mac->in_ifs_mode = true; 1784 if (mac->current_ifs_val < mac->ifs_max_val) { 1785 if (!mac->current_ifs_val) 1786 mac->current_ifs_val = mac->ifs_min_val; 1787 else 1788 mac->current_ifs_val += 1789 mac->ifs_step_size; 1790 ew32(AIT, mac->current_ifs_val); 1791 } 1792 } 1793 } else { 1794 if (mac->in_ifs_mode && 1795 (mac->tx_packet_delta <= MIN_NUM_XMITS)) { 1796 mac->current_ifs_val = 0; 1797 mac->in_ifs_mode = false; 1798 ew32(AIT, 0); 1799 } 1800 } 1801 } 1802