1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include <linux/bitfield.h>
5
6 #include "e1000.h"
7
8 /**
9 * e1000e_get_bus_info_pcie - Get PCIe bus information
10 * @hw: pointer to the HW structure
11 *
12 * Determines and stores the system bus information for a particular
13 * network interface. The following bus information is determined and stored:
14 * bus speed, bus width, type (PCIe), and PCIe function.
15 **/
e1000e_get_bus_info_pcie(struct e1000_hw * hw)16 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
17 {
18 struct pci_dev *pdev = hw->adapter->pdev;
19 struct e1000_mac_info *mac = &hw->mac;
20 struct e1000_bus_info *bus = &hw->bus;
21 u16 pcie_link_status;
22
23 if (!pci_pcie_cap(pdev)) {
24 bus->width = e1000_bus_width_unknown;
25 } else {
26 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &pcie_link_status);
27 bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW,
28 pcie_link_status);
29 }
30
31 mac->ops.set_lan_id(hw);
32
33 return 0;
34 }
35
36 /**
37 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
38 *
39 * @hw: pointer to the HW structure
40 *
41 * Determines the LAN function id by reading memory-mapped registers
42 * and swaps the port value if requested.
43 **/
e1000_set_lan_id_multi_port_pcie(struct e1000_hw * hw)44 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
45 {
46 struct e1000_bus_info *bus = &hw->bus;
47 u32 reg;
48
49 /* The status register reports the correct function number
50 * for the device regardless of function swap state.
51 */
52 reg = er32(STATUS);
53 bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg);
54 }
55
56 /**
57 * e1000_set_lan_id_single_port - Set LAN id for a single port device
58 * @hw: pointer to the HW structure
59 *
60 * Sets the LAN function id to zero for a single port device.
61 **/
e1000_set_lan_id_single_port(struct e1000_hw * hw)62 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
63 {
64 struct e1000_bus_info *bus = &hw->bus;
65
66 bus->func = 0;
67 }
68
69 /**
70 * e1000_clear_vfta_generic - Clear VLAN filter table
71 * @hw: pointer to the HW structure
72 *
73 * Clears the register array which contains the VLAN filter table by
74 * setting all the values to 0.
75 **/
e1000_clear_vfta_generic(struct e1000_hw * hw)76 void e1000_clear_vfta_generic(struct e1000_hw *hw)
77 {
78 u32 offset;
79
80 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
81 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
82 e1e_flush();
83 }
84 }
85
86 /**
87 * e1000_write_vfta_generic - Write value to VLAN filter table
88 * @hw: pointer to the HW structure
89 * @offset: register offset in VLAN filter table
90 * @value: register value written to VLAN filter table
91 *
92 * Writes value at the given offset in the register array which stores
93 * the VLAN filter table.
94 **/
e1000_write_vfta_generic(struct e1000_hw * hw,u32 offset,u32 value)95 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
96 {
97 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
98 e1e_flush();
99 }
100
101 /**
102 * e1000e_init_rx_addrs - Initialize receive address's
103 * @hw: pointer to the HW structure
104 * @rar_count: receive address registers
105 *
106 * Setup the receive address registers by setting the base receive address
107 * register to the devices MAC address and clearing all the other receive
108 * address registers to 0.
109 **/
e1000e_init_rx_addrs(struct e1000_hw * hw,u16 rar_count)110 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
111 {
112 u32 i;
113 u8 mac_addr[ETH_ALEN] = { 0 };
114
115 /* Setup the receive address */
116 e_dbg("Programming MAC Address into RAR[0]\n");
117
118 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
119
120 /* Zero out the other (rar_entry_count - 1) receive addresses */
121 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
122 for (i = 1; i < rar_count; i++)
123 hw->mac.ops.rar_set(hw, mac_addr, i);
124 }
125
126 /**
127 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
128 * @hw: pointer to the HW structure
129 *
130 * Checks the nvm for an alternate MAC address. An alternate MAC address
131 * can be setup by pre-boot software and must be treated like a permanent
132 * address and must override the actual permanent MAC address. If an
133 * alternate MAC address is found it is programmed into RAR0, replacing
134 * the permanent address that was installed into RAR0 by the Si on reset.
135 * This function will return SUCCESS unless it encounters an error while
136 * reading the EEPROM.
137 **/
e1000_check_alt_mac_addr_generic(struct e1000_hw * hw)138 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
139 {
140 u32 i;
141 s32 ret_val;
142 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
143 u8 alt_mac_addr[ETH_ALEN];
144
145 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
146 if (ret_val)
147 return ret_val;
148
149 /* not supported on 82573 */
150 if (hw->mac.type == e1000_82573)
151 return 0;
152
153 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
154 &nvm_alt_mac_addr_offset);
155 if (ret_val) {
156 e_dbg("NVM Read Error\n");
157 return ret_val;
158 }
159
160 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
161 (nvm_alt_mac_addr_offset == 0x0000))
162 /* There is no Alternate MAC Address */
163 return 0;
164
165 if (hw->bus.func == E1000_FUNC_1)
166 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
167 for (i = 0; i < ETH_ALEN; i += 2) {
168 offset = nvm_alt_mac_addr_offset + (i >> 1);
169 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
170 if (ret_val) {
171 e_dbg("NVM Read Error\n");
172 return ret_val;
173 }
174
175 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
176 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
177 }
178
179 /* if multicast bit is set, the alternate address will not be used */
180 if (is_multicast_ether_addr(alt_mac_addr)) {
181 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
182 return 0;
183 }
184
185 /* We have a valid alternate MAC address, and we want to treat it the
186 * same as the normal permanent MAC address stored by the HW into the
187 * RAR. Do this by mapping this address into RAR0.
188 */
189 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
190
191 return 0;
192 }
193
e1000e_rar_get_count_generic(struct e1000_hw * hw)194 u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
195 {
196 return hw->mac.rar_entry_count;
197 }
198
199 /**
200 * e1000e_rar_set_generic - Set receive address register
201 * @hw: pointer to the HW structure
202 * @addr: pointer to the receive address
203 * @index: receive address array register
204 *
205 * Sets the receive address array register at index to the address passed
206 * in by addr.
207 **/
e1000e_rar_set_generic(struct e1000_hw * hw,u8 * addr,u32 index)208 int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
209 {
210 u32 rar_low, rar_high;
211
212 /* HW expects these in little endian so we reverse the byte order
213 * from network order (big endian) to little endian
214 */
215 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
216 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
217
218 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
219
220 /* If MAC address zero, no need to set the AV bit */
221 if (rar_low || rar_high)
222 rar_high |= E1000_RAH_AV;
223
224 /* Some bridges will combine consecutive 32-bit writes into
225 * a single burst write, which will malfunction on some parts.
226 * The flushes avoid this.
227 */
228 ew32(RAL(index), rar_low);
229 e1e_flush();
230 ew32(RAH(index), rar_high);
231 e1e_flush();
232
233 return 0;
234 }
235
236 /**
237 * e1000_hash_mc_addr - Generate a multicast hash value
238 * @hw: pointer to the HW structure
239 * @mc_addr: pointer to a multicast address
240 *
241 * Generates a multicast address hash value which is used to determine
242 * the multicast filter table array address and new table value.
243 **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)244 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
245 {
246 u32 hash_value, hash_mask;
247 u8 bit_shift = 0;
248
249 /* Register count multiplied by bits per register */
250 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
251
252 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
253 * where 0xFF would still fall within the hash mask.
254 */
255 while (hash_mask >> bit_shift != 0xFF)
256 bit_shift++;
257
258 /* The portion of the address that is used for the hash table
259 * is determined by the mc_filter_type setting.
260 * The algorithm is such that there is a total of 8 bits of shifting.
261 * The bit_shift for a mc_filter_type of 0 represents the number of
262 * left-shifts where the MSB of mc_addr[5] would still fall within
263 * the hash_mask. Case 0 does this exactly. Since there are a total
264 * of 8 bits of shifting, then mc_addr[4] will shift right the
265 * remaining number of bits. Thus 8 - bit_shift. The rest of the
266 * cases are a variation of this algorithm...essentially raising the
267 * number of bits to shift mc_addr[5] left, while still keeping the
268 * 8-bit shifting total.
269 *
270 * For example, given the following Destination MAC Address and an
271 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
272 * we can see that the bit_shift for case 0 is 4. These are the hash
273 * values resulting from each mc_filter_type...
274 * [0] [1] [2] [3] [4] [5]
275 * 01 AA 00 12 34 56
276 * LSB MSB
277 *
278 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
279 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
280 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
281 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
282 */
283 switch (hw->mac.mc_filter_type) {
284 default:
285 case 0:
286 break;
287 case 1:
288 bit_shift += 1;
289 break;
290 case 2:
291 bit_shift += 2;
292 break;
293 case 3:
294 bit_shift += 4;
295 break;
296 }
297
298 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
299 (((u16)mc_addr[5]) << bit_shift)));
300
301 return hash_value;
302 }
303
304 /**
305 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
306 * @hw: pointer to the HW structure
307 * @mc_addr_list: array of multicast addresses to program
308 * @mc_addr_count: number of multicast addresses to program
309 *
310 * Updates entire Multicast Table Array.
311 * The caller must have a packed mc_addr_list of multicast addresses.
312 **/
e1000e_update_mc_addr_list_generic(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)313 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
314 u8 *mc_addr_list, u32 mc_addr_count)
315 {
316 u32 hash_value, hash_bit, hash_reg;
317 int i;
318
319 /* clear mta_shadow */
320 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
321
322 /* update mta_shadow from mc_addr_list */
323 for (i = 0; (u32)i < mc_addr_count; i++) {
324 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
325
326 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
327 hash_bit = hash_value & 0x1F;
328
329 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
330 mc_addr_list += (ETH_ALEN);
331 }
332
333 /* replace the entire MTA table */
334 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
335 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
336 e1e_flush();
337 }
338
339 /**
340 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
341 * @hw: pointer to the HW structure
342 *
343 * Clears the base hardware counters by reading the counter registers.
344 **/
e1000e_clear_hw_cntrs_base(struct e1000_hw * hw)345 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
346 {
347 er32(CRCERRS);
348 er32(SYMERRS);
349 er32(MPC);
350 er32(SCC);
351 er32(ECOL);
352 er32(MCC);
353 er32(LATECOL);
354 er32(COLC);
355 er32(DC);
356 er32(SEC);
357 er32(RLEC);
358 er32(XONRXC);
359 er32(XONTXC);
360 er32(XOFFRXC);
361 er32(XOFFTXC);
362 er32(FCRUC);
363 er32(GPRC);
364 er32(BPRC);
365 er32(MPRC);
366 er32(GPTC);
367 er32(GORCL);
368 er32(GORCH);
369 er32(GOTCL);
370 er32(GOTCH);
371 er32(RNBC);
372 er32(RUC);
373 er32(RFC);
374 er32(ROC);
375 er32(RJC);
376 er32(TORL);
377 er32(TORH);
378 er32(TOTL);
379 er32(TOTH);
380 er32(TPR);
381 er32(TPT);
382 er32(MPTC);
383 er32(BPTC);
384 }
385
386 /**
387 * e1000e_check_for_copper_link - Check for link (Copper)
388 * @hw: pointer to the HW structure
389 *
390 * Checks to see of the link status of the hardware has changed. If a
391 * change in link status has been detected, then we read the PHY registers
392 * to get the current speed/duplex if link exists.
393 **/
e1000e_check_for_copper_link(struct e1000_hw * hw)394 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
395 {
396 struct e1000_mac_info *mac = &hw->mac;
397 s32 ret_val;
398 bool link;
399
400 /* We only want to go out to the PHY registers to see if Auto-Neg
401 * has completed and/or if our link status has changed. The
402 * get_link_status flag is set upon receiving a Link Status
403 * Change or Rx Sequence Error interrupt.
404 */
405 if (!mac->get_link_status)
406 return 0;
407 mac->get_link_status = false;
408
409 /* First we want to see if the MII Status Register reports
410 * link. If so, then we want to get the current speed/duplex
411 * of the PHY.
412 */
413 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
414 if (ret_val || !link)
415 goto out;
416
417 /* Check if there was DownShift, must be checked
418 * immediately after link-up
419 */
420 e1000e_check_downshift(hw);
421
422 /* If we are forcing speed/duplex, then we simply return since
423 * we have already determined whether we have link or not.
424 */
425 if (!mac->autoneg)
426 return -E1000_ERR_CONFIG;
427
428 /* Auto-Neg is enabled. Auto Speed Detection takes care
429 * of MAC speed/duplex configuration. So we only need to
430 * configure Collision Distance in the MAC.
431 */
432 mac->ops.config_collision_dist(hw);
433
434 /* Configure Flow Control now that Auto-Neg has completed.
435 * First, we need to restore the desired flow control
436 * settings because we may have had to re-autoneg with a
437 * different link partner.
438 */
439 ret_val = e1000e_config_fc_after_link_up(hw);
440 if (ret_val)
441 e_dbg("Error configuring flow control\n");
442
443 return ret_val;
444
445 out:
446 mac->get_link_status = true;
447 return ret_val;
448 }
449
450 /**
451 * e1000e_check_for_fiber_link - Check for link (Fiber)
452 * @hw: pointer to the HW structure
453 *
454 * Checks for link up on the hardware. If link is not up and we have
455 * a signal, then we need to force link up.
456 **/
e1000e_check_for_fiber_link(struct e1000_hw * hw)457 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
458 {
459 struct e1000_mac_info *mac = &hw->mac;
460 u32 rxcw;
461 u32 ctrl;
462 u32 status;
463 s32 ret_val;
464
465 ctrl = er32(CTRL);
466 status = er32(STATUS);
467 rxcw = er32(RXCW);
468
469 /* If we don't have link (auto-negotiation failed or link partner
470 * cannot auto-negotiate), the cable is plugged in (we have signal),
471 * and our link partner is not trying to auto-negotiate with us (we
472 * are receiving idles or data), we need to force link up. We also
473 * need to give auto-negotiation time to complete, in case the cable
474 * was just plugged in. The autoneg_failed flag does this.
475 */
476 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
477 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
478 !(rxcw & E1000_RXCW_C)) {
479 if (!mac->autoneg_failed) {
480 mac->autoneg_failed = true;
481 return 0;
482 }
483 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
484
485 /* Disable auto-negotiation in the TXCW register */
486 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
487
488 /* Force link-up and also force full-duplex. */
489 ctrl = er32(CTRL);
490 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
491 ew32(CTRL, ctrl);
492
493 /* Configure Flow Control after forcing link up. */
494 ret_val = e1000e_config_fc_after_link_up(hw);
495 if (ret_val) {
496 e_dbg("Error configuring flow control\n");
497 return ret_val;
498 }
499 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
500 /* If we are forcing link and we are receiving /C/ ordered
501 * sets, re-enable auto-negotiation in the TXCW register
502 * and disable forced link in the Device Control register
503 * in an attempt to auto-negotiate with our link partner.
504 */
505 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
506 ew32(TXCW, mac->txcw);
507 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
508
509 mac->serdes_has_link = true;
510 }
511
512 return 0;
513 }
514
515 /**
516 * e1000e_check_for_serdes_link - Check for link (Serdes)
517 * @hw: pointer to the HW structure
518 *
519 * Checks for link up on the hardware. If link is not up and we have
520 * a signal, then we need to force link up.
521 **/
e1000e_check_for_serdes_link(struct e1000_hw * hw)522 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
523 {
524 struct e1000_mac_info *mac = &hw->mac;
525 u32 rxcw;
526 u32 ctrl;
527 u32 status;
528 s32 ret_val;
529
530 ctrl = er32(CTRL);
531 status = er32(STATUS);
532 rxcw = er32(RXCW);
533
534 /* If we don't have link (auto-negotiation failed or link partner
535 * cannot auto-negotiate), and our link partner is not trying to
536 * auto-negotiate with us (we are receiving idles or data),
537 * we need to force link up. We also need to give auto-negotiation
538 * time to complete.
539 */
540 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
541 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
542 if (!mac->autoneg_failed) {
543 mac->autoneg_failed = true;
544 return 0;
545 }
546 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
547
548 /* Disable auto-negotiation in the TXCW register */
549 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
550
551 /* Force link-up and also force full-duplex. */
552 ctrl = er32(CTRL);
553 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
554 ew32(CTRL, ctrl);
555
556 /* Configure Flow Control after forcing link up. */
557 ret_val = e1000e_config_fc_after_link_up(hw);
558 if (ret_val) {
559 e_dbg("Error configuring flow control\n");
560 return ret_val;
561 }
562 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
563 /* If we are forcing link and we are receiving /C/ ordered
564 * sets, re-enable auto-negotiation in the TXCW register
565 * and disable forced link in the Device Control register
566 * in an attempt to auto-negotiate with our link partner.
567 */
568 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
569 ew32(TXCW, mac->txcw);
570 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
571
572 mac->serdes_has_link = true;
573 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
574 /* If we force link for non-auto-negotiation switch, check
575 * link status based on MAC synchronization for internal
576 * serdes media type.
577 */
578 /* SYNCH bit and IV bit are sticky. */
579 usleep_range(10, 20);
580 rxcw = er32(RXCW);
581 if (rxcw & E1000_RXCW_SYNCH) {
582 if (!(rxcw & E1000_RXCW_IV)) {
583 mac->serdes_has_link = true;
584 e_dbg("SERDES: Link up - forced.\n");
585 }
586 } else {
587 mac->serdes_has_link = false;
588 e_dbg("SERDES: Link down - force failed.\n");
589 }
590 }
591
592 if (E1000_TXCW_ANE & er32(TXCW)) {
593 status = er32(STATUS);
594 if (status & E1000_STATUS_LU) {
595 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
596 usleep_range(10, 20);
597 rxcw = er32(RXCW);
598 if (rxcw & E1000_RXCW_SYNCH) {
599 if (!(rxcw & E1000_RXCW_IV)) {
600 mac->serdes_has_link = true;
601 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
602 } else {
603 mac->serdes_has_link = false;
604 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
605 }
606 } else {
607 mac->serdes_has_link = false;
608 e_dbg("SERDES: Link down - no sync.\n");
609 }
610 } else {
611 mac->serdes_has_link = false;
612 e_dbg("SERDES: Link down - autoneg failed\n");
613 }
614 }
615
616 return 0;
617 }
618
619 /**
620 * e1000_set_default_fc_generic - Set flow control default values
621 * @hw: pointer to the HW structure
622 *
623 * Read the EEPROM for the default values for flow control and store the
624 * values.
625 **/
e1000_set_default_fc_generic(struct e1000_hw * hw)626 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
627 {
628 s32 ret_val;
629 u16 nvm_data;
630
631 /* Read and store word 0x0F of the EEPROM. This word contains bits
632 * that determine the hardware's default PAUSE (flow control) mode,
633 * a bit that determines whether the HW defaults to enabling or
634 * disabling auto-negotiation, and the direction of the
635 * SW defined pins. If there is no SW over-ride of the flow
636 * control setting, then the variable hw->fc will
637 * be initialized based on a value in the EEPROM.
638 */
639 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
640
641 if (ret_val) {
642 e_dbg("NVM Read Error\n");
643 return ret_val;
644 }
645
646 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
647 hw->fc.requested_mode = e1000_fc_none;
648 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
649 hw->fc.requested_mode = e1000_fc_tx_pause;
650 else
651 hw->fc.requested_mode = e1000_fc_full;
652
653 return 0;
654 }
655
656 /**
657 * e1000e_setup_link_generic - Setup flow control and link settings
658 * @hw: pointer to the HW structure
659 *
660 * Determines which flow control settings to use, then configures flow
661 * control. Calls the appropriate media-specific link configuration
662 * function. Assuming the adapter has a valid link partner, a valid link
663 * should be established. Assumes the hardware has previously been reset
664 * and the transmitter and receiver are not enabled.
665 **/
e1000e_setup_link_generic(struct e1000_hw * hw)666 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
667 {
668 s32 ret_val;
669
670 /* In the case of the phy reset being blocked, we already have a link.
671 * We do not need to set it up again.
672 */
673 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
674 return 0;
675
676 /* If requested flow control is set to default, set flow control
677 * based on the EEPROM flow control settings.
678 */
679 if (hw->fc.requested_mode == e1000_fc_default) {
680 ret_val = e1000_set_default_fc_generic(hw);
681 if (ret_val)
682 return ret_val;
683 }
684
685 /* Save off the requested flow control mode for use later. Depending
686 * on the link partner's capabilities, we may or may not use this mode.
687 */
688 hw->fc.current_mode = hw->fc.requested_mode;
689
690 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
691
692 /* Call the necessary media_type subroutine to configure the link. */
693 ret_val = hw->mac.ops.setup_physical_interface(hw);
694 if (ret_val)
695 return ret_val;
696
697 /* Initialize the flow control address, type, and PAUSE timer
698 * registers to their default values. This is done even if flow
699 * control is disabled, because it does not hurt anything to
700 * initialize these registers.
701 */
702 e_dbg("Initializing the Flow Control address, type and timer regs\n");
703 ew32(FCT, FLOW_CONTROL_TYPE);
704 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
705 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
706
707 ew32(FCTTV, hw->fc.pause_time);
708
709 return e1000e_set_fc_watermarks(hw);
710 }
711
712 /**
713 * e1000_commit_fc_settings_generic - Configure flow control
714 * @hw: pointer to the HW structure
715 *
716 * Write the flow control settings to the Transmit Config Word Register (TXCW)
717 * base on the flow control settings in e1000_mac_info.
718 **/
e1000_commit_fc_settings_generic(struct e1000_hw * hw)719 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
720 {
721 struct e1000_mac_info *mac = &hw->mac;
722 u32 txcw;
723
724 /* Check for a software override of the flow control settings, and
725 * setup the device accordingly. If auto-negotiation is enabled, then
726 * software will have to set the "PAUSE" bits to the correct value in
727 * the Transmit Config Word Register (TXCW) and re-start auto-
728 * negotiation. However, if auto-negotiation is disabled, then
729 * software will have to manually configure the two flow control enable
730 * bits in the CTRL register.
731 *
732 * The possible values of the "fc" parameter are:
733 * 0: Flow control is completely disabled
734 * 1: Rx flow control is enabled (we can receive pause frames,
735 * but not send pause frames).
736 * 2: Tx flow control is enabled (we can send pause frames but we
737 * do not support receiving pause frames).
738 * 3: Both Rx and Tx flow control (symmetric) are enabled.
739 */
740 switch (hw->fc.current_mode) {
741 case e1000_fc_none:
742 /* Flow control completely disabled by a software over-ride. */
743 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
744 break;
745 case e1000_fc_rx_pause:
746 /* Rx Flow control is enabled and Tx Flow control is disabled
747 * by a software over-ride. Since there really isn't a way to
748 * advertise that we are capable of Rx Pause ONLY, we will
749 * advertise that we support both symmetric and asymmetric Rx
750 * PAUSE. Later, we will disable the adapter's ability to send
751 * PAUSE frames.
752 */
753 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
754 break;
755 case e1000_fc_tx_pause:
756 /* Tx Flow control is enabled, and Rx Flow control is disabled,
757 * by a software over-ride.
758 */
759 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
760 break;
761 case e1000_fc_full:
762 /* Flow control (both Rx and Tx) is enabled by a software
763 * over-ride.
764 */
765 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
766 break;
767 default:
768 e_dbg("Flow control param set incorrectly\n");
769 return -E1000_ERR_CONFIG;
770 }
771
772 ew32(TXCW, txcw);
773 mac->txcw = txcw;
774
775 return 0;
776 }
777
778 /**
779 * e1000_poll_fiber_serdes_link_generic - Poll for link up
780 * @hw: pointer to the HW structure
781 *
782 * Polls for link up by reading the status register, if link fails to come
783 * up with auto-negotiation, then the link is forced if a signal is detected.
784 **/
e1000_poll_fiber_serdes_link_generic(struct e1000_hw * hw)785 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
786 {
787 struct e1000_mac_info *mac = &hw->mac;
788 u32 i, status;
789 s32 ret_val;
790
791 /* If we have a signal (the cable is plugged in, or assumed true for
792 * serdes media) then poll for a "Link-Up" indication in the Device
793 * Status Register. Time-out if a link isn't seen in 500 milliseconds
794 * seconds (Auto-negotiation should complete in less than 500
795 * milliseconds even if the other end is doing it in SW).
796 */
797 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
798 usleep_range(10000, 11000);
799 status = er32(STATUS);
800 if (status & E1000_STATUS_LU)
801 break;
802 }
803 if (i == FIBER_LINK_UP_LIMIT) {
804 e_dbg("Never got a valid link from auto-neg!!!\n");
805 mac->autoneg_failed = true;
806 /* AutoNeg failed to achieve a link, so we'll call
807 * mac->check_for_link. This routine will force the
808 * link up if we detect a signal. This will allow us to
809 * communicate with non-autonegotiating link partners.
810 */
811 ret_val = mac->ops.check_for_link(hw);
812 if (ret_val) {
813 e_dbg("Error while checking for link\n");
814 return ret_val;
815 }
816 mac->autoneg_failed = false;
817 } else {
818 mac->autoneg_failed = false;
819 e_dbg("Valid Link Found\n");
820 }
821
822 return 0;
823 }
824
825 /**
826 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
827 * @hw: pointer to the HW structure
828 *
829 * Configures collision distance and flow control for fiber and serdes
830 * links. Upon successful setup, poll for link.
831 **/
e1000e_setup_fiber_serdes_link(struct e1000_hw * hw)832 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
833 {
834 u32 ctrl;
835 s32 ret_val;
836
837 ctrl = er32(CTRL);
838
839 /* Take the link out of reset */
840 ctrl &= ~E1000_CTRL_LRST;
841
842 hw->mac.ops.config_collision_dist(hw);
843
844 ret_val = e1000_commit_fc_settings_generic(hw);
845 if (ret_val)
846 return ret_val;
847
848 /* Since auto-negotiation is enabled, take the link out of reset (the
849 * link will be in reset, because we previously reset the chip). This
850 * will restart auto-negotiation. If auto-negotiation is successful
851 * then the link-up status bit will be set and the flow control enable
852 * bits (RFCE and TFCE) will be set according to their negotiated value.
853 */
854 e_dbg("Auto-negotiation enabled\n");
855
856 ew32(CTRL, ctrl);
857 e1e_flush();
858 usleep_range(1000, 2000);
859
860 /* For these adapters, the SW definable pin 1 is set when the optics
861 * detect a signal. If we have a signal, then poll for a "Link-Up"
862 * indication.
863 */
864 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
865 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
866 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
867 } else {
868 e_dbg("No signal detected\n");
869 }
870
871 return ret_val;
872 }
873
874 /**
875 * e1000e_config_collision_dist_generic - Configure collision distance
876 * @hw: pointer to the HW structure
877 *
878 * Configures the collision distance to the default value and is used
879 * during link setup.
880 **/
e1000e_config_collision_dist_generic(struct e1000_hw * hw)881 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
882 {
883 u32 tctl;
884
885 tctl = er32(TCTL);
886
887 tctl &= ~E1000_TCTL_COLD;
888 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
889
890 ew32(TCTL, tctl);
891 e1e_flush();
892 }
893
894 /**
895 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
896 * @hw: pointer to the HW structure
897 *
898 * Sets the flow control high/low threshold (watermark) registers. If
899 * flow control XON frame transmission is enabled, then set XON frame
900 * transmission as well.
901 **/
e1000e_set_fc_watermarks(struct e1000_hw * hw)902 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
903 {
904 u32 fcrtl = 0, fcrth = 0;
905
906 /* Set the flow control receive threshold registers. Normally,
907 * these registers will be set to a default threshold that may be
908 * adjusted later by the driver's runtime code. However, if the
909 * ability to transmit pause frames is not enabled, then these
910 * registers will be set to 0.
911 */
912 if (hw->fc.current_mode & e1000_fc_tx_pause) {
913 /* We need to set up the Receive Threshold high and low water
914 * marks as well as (optionally) enabling the transmission of
915 * XON frames.
916 */
917 fcrtl = hw->fc.low_water;
918 if (hw->fc.send_xon)
919 fcrtl |= E1000_FCRTL_XONE;
920
921 fcrth = hw->fc.high_water;
922 }
923 ew32(FCRTL, fcrtl);
924 ew32(FCRTH, fcrth);
925
926 return 0;
927 }
928
929 /**
930 * e1000e_force_mac_fc - Force the MAC's flow control settings
931 * @hw: pointer to the HW structure
932 *
933 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
934 * device control register to reflect the adapter settings. TFCE and RFCE
935 * need to be explicitly set by software when a copper PHY is used because
936 * autonegotiation is managed by the PHY rather than the MAC. Software must
937 * also configure these bits when link is forced on a fiber connection.
938 **/
e1000e_force_mac_fc(struct e1000_hw * hw)939 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
940 {
941 u32 ctrl;
942
943 ctrl = er32(CTRL);
944
945 /* Because we didn't get link via the internal auto-negotiation
946 * mechanism (we either forced link or we got link via PHY
947 * auto-neg), we have to manually enable/disable transmit an
948 * receive flow control.
949 *
950 * The "Case" statement below enables/disable flow control
951 * according to the "hw->fc.current_mode" parameter.
952 *
953 * The possible values of the "fc" parameter are:
954 * 0: Flow control is completely disabled
955 * 1: Rx flow control is enabled (we can receive pause
956 * frames but not send pause frames).
957 * 2: Tx flow control is enabled (we can send pause frames
958 * but we do not receive pause frames).
959 * 3: Both Rx and Tx flow control (symmetric) is enabled.
960 * other: No other values should be possible at this point.
961 */
962 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
963
964 switch (hw->fc.current_mode) {
965 case e1000_fc_none:
966 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
967 break;
968 case e1000_fc_rx_pause:
969 ctrl &= (~E1000_CTRL_TFCE);
970 ctrl |= E1000_CTRL_RFCE;
971 break;
972 case e1000_fc_tx_pause:
973 ctrl &= (~E1000_CTRL_RFCE);
974 ctrl |= E1000_CTRL_TFCE;
975 break;
976 case e1000_fc_full:
977 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
978 break;
979 default:
980 e_dbg("Flow control param set incorrectly\n");
981 return -E1000_ERR_CONFIG;
982 }
983
984 ew32(CTRL, ctrl);
985
986 return 0;
987 }
988
989 /**
990 * e1000e_config_fc_after_link_up - Configures flow control after link
991 * @hw: pointer to the HW structure
992 *
993 * Checks the status of auto-negotiation after link up to ensure that the
994 * speed and duplex were not forced. If the link needed to be forced, then
995 * flow control needs to be forced also. If auto-negotiation is enabled
996 * and did not fail, then we configure flow control based on our link
997 * partner.
998 **/
e1000e_config_fc_after_link_up(struct e1000_hw * hw)999 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1000 {
1001 struct e1000_mac_info *mac = &hw->mac;
1002 s32 ret_val = 0;
1003 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1004 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1005 u16 speed, duplex;
1006
1007 /* Check for the case where we have fiber media and auto-neg failed
1008 * so we had to force link. In this case, we need to force the
1009 * configuration of the MAC to match the "fc" parameter.
1010 */
1011 if (mac->autoneg_failed) {
1012 if (hw->phy.media_type == e1000_media_type_fiber ||
1013 hw->phy.media_type == e1000_media_type_internal_serdes)
1014 ret_val = e1000e_force_mac_fc(hw);
1015 } else {
1016 if (hw->phy.media_type == e1000_media_type_copper)
1017 ret_val = e1000e_force_mac_fc(hw);
1018 }
1019
1020 if (ret_val) {
1021 e_dbg("Error forcing flow control settings\n");
1022 return ret_val;
1023 }
1024
1025 /* Check for the case where we have copper media and auto-neg is
1026 * enabled. In this case, we need to check and see if Auto-Neg
1027 * has completed, and if so, how the PHY and link partner has
1028 * flow control configured.
1029 */
1030 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1031 /* Read the MII Status Register and check to see if AutoNeg
1032 * has completed. We read this twice because this reg has
1033 * some "sticky" (latched) bits.
1034 */
1035 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1036 if (ret_val)
1037 return ret_val;
1038 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1039 if (ret_val)
1040 return ret_val;
1041
1042 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1043 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1044 return ret_val;
1045 }
1046
1047 /* The AutoNeg process has completed, so we now need to
1048 * read both the Auto Negotiation Advertisement
1049 * Register (Address 4) and the Auto_Negotiation Base
1050 * Page Ability Register (Address 5) to determine how
1051 * flow control was negotiated.
1052 */
1053 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1054 if (ret_val)
1055 return ret_val;
1056 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1057 if (ret_val)
1058 return ret_val;
1059
1060 /* Two bits in the Auto Negotiation Advertisement Register
1061 * (Address 4) and two bits in the Auto Negotiation Base
1062 * Page Ability Register (Address 5) determine flow control
1063 * for both the PHY and the link partner. The following
1064 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1065 * 1999, describes these PAUSE resolution bits and how flow
1066 * control is determined based upon these settings.
1067 * NOTE: DC = Don't Care
1068 *
1069 * LOCAL DEVICE | LINK PARTNER
1070 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1071 *-------|---------|-------|---------|--------------------
1072 * 0 | 0 | DC | DC | e1000_fc_none
1073 * 0 | 1 | 0 | DC | e1000_fc_none
1074 * 0 | 1 | 1 | 0 | e1000_fc_none
1075 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1076 * 1 | 0 | 0 | DC | e1000_fc_none
1077 * 1 | DC | 1 | DC | e1000_fc_full
1078 * 1 | 1 | 0 | 0 | e1000_fc_none
1079 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1080 *
1081 * Are both PAUSE bits set to 1? If so, this implies
1082 * Symmetric Flow Control is enabled at both ends. The
1083 * ASM_DIR bits are irrelevant per the spec.
1084 *
1085 * For Symmetric Flow Control:
1086 *
1087 * LOCAL DEVICE | LINK PARTNER
1088 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1089 *-------|---------|-------|---------|--------------------
1090 * 1 | DC | 1 | DC | E1000_fc_full
1091 *
1092 */
1093 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1094 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1095 /* Now we need to check if the user selected Rx ONLY
1096 * of pause frames. In this case, we had to advertise
1097 * FULL flow control because we could not advertise Rx
1098 * ONLY. Hence, we must now check to see if we need to
1099 * turn OFF the TRANSMISSION of PAUSE frames.
1100 */
1101 if (hw->fc.requested_mode == e1000_fc_full) {
1102 hw->fc.current_mode = e1000_fc_full;
1103 e_dbg("Flow Control = FULL.\n");
1104 } else {
1105 hw->fc.current_mode = e1000_fc_rx_pause;
1106 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1107 }
1108 }
1109 /* For receiving PAUSE frames ONLY.
1110 *
1111 * LOCAL DEVICE | LINK PARTNER
1112 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1113 *-------|---------|-------|---------|--------------------
1114 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1115 */
1116 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1117 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1118 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1119 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1120 hw->fc.current_mode = e1000_fc_tx_pause;
1121 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1122 }
1123 /* For transmitting PAUSE frames ONLY.
1124 *
1125 * LOCAL DEVICE | LINK PARTNER
1126 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1127 *-------|---------|-------|---------|--------------------
1128 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1129 */
1130 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1131 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1132 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1133 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1134 hw->fc.current_mode = e1000_fc_rx_pause;
1135 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1136 } else {
1137 /* Per the IEEE spec, at this point flow control
1138 * should be disabled.
1139 */
1140 hw->fc.current_mode = e1000_fc_none;
1141 e_dbg("Flow Control = NONE.\n");
1142 }
1143
1144 /* Now we need to do one last check... If we auto-
1145 * negotiated to HALF DUPLEX, flow control should not be
1146 * enabled per IEEE 802.3 spec.
1147 */
1148 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1149 if (ret_val) {
1150 e_dbg("Error getting link speed and duplex\n");
1151 return ret_val;
1152 }
1153
1154 if (duplex == HALF_DUPLEX)
1155 hw->fc.current_mode = e1000_fc_none;
1156
1157 /* Now we call a subroutine to actually force the MAC
1158 * controller to use the correct flow control settings.
1159 */
1160 ret_val = e1000e_force_mac_fc(hw);
1161 if (ret_val) {
1162 e_dbg("Error forcing flow control settings\n");
1163 return ret_val;
1164 }
1165 }
1166
1167 /* Check for the case where we have SerDes media and auto-neg is
1168 * enabled. In this case, we need to check and see if Auto-Neg
1169 * has completed, and if so, how the PHY and link partner has
1170 * flow control configured.
1171 */
1172 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1173 mac->autoneg) {
1174 /* Read the PCS_LSTS and check to see if AutoNeg
1175 * has completed.
1176 */
1177 pcs_status_reg = er32(PCS_LSTAT);
1178
1179 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1180 e_dbg("PCS Auto Neg has not completed.\n");
1181 return ret_val;
1182 }
1183
1184 /* The AutoNeg process has completed, so we now need to
1185 * read both the Auto Negotiation Advertisement
1186 * Register (PCS_ANADV) and the Auto_Negotiation Base
1187 * Page Ability Register (PCS_LPAB) to determine how
1188 * flow control was negotiated.
1189 */
1190 pcs_adv_reg = er32(PCS_ANADV);
1191 pcs_lp_ability_reg = er32(PCS_LPAB);
1192
1193 /* Two bits in the Auto Negotiation Advertisement Register
1194 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1195 * Page Ability Register (PCS_LPAB) determine flow control
1196 * for both the PHY and the link partner. The following
1197 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1198 * 1999, describes these PAUSE resolution bits and how flow
1199 * control is determined based upon these settings.
1200 * NOTE: DC = Don't Care
1201 *
1202 * LOCAL DEVICE | LINK PARTNER
1203 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1204 *-------|---------|-------|---------|--------------------
1205 * 0 | 0 | DC | DC | e1000_fc_none
1206 * 0 | 1 | 0 | DC | e1000_fc_none
1207 * 0 | 1 | 1 | 0 | e1000_fc_none
1208 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1209 * 1 | 0 | 0 | DC | e1000_fc_none
1210 * 1 | DC | 1 | DC | e1000_fc_full
1211 * 1 | 1 | 0 | 0 | e1000_fc_none
1212 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1213 *
1214 * Are both PAUSE bits set to 1? If so, this implies
1215 * Symmetric Flow Control is enabled at both ends. The
1216 * ASM_DIR bits are irrelevant per the spec.
1217 *
1218 * For Symmetric Flow Control:
1219 *
1220 * LOCAL DEVICE | LINK PARTNER
1221 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1222 *-------|---------|-------|---------|--------------------
1223 * 1 | DC | 1 | DC | e1000_fc_full
1224 *
1225 */
1226 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1227 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1228 /* Now we need to check if the user selected Rx ONLY
1229 * of pause frames. In this case, we had to advertise
1230 * FULL flow control because we could not advertise Rx
1231 * ONLY. Hence, we must now check to see if we need to
1232 * turn OFF the TRANSMISSION of PAUSE frames.
1233 */
1234 if (hw->fc.requested_mode == e1000_fc_full) {
1235 hw->fc.current_mode = e1000_fc_full;
1236 e_dbg("Flow Control = FULL.\n");
1237 } else {
1238 hw->fc.current_mode = e1000_fc_rx_pause;
1239 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1240 }
1241 }
1242 /* For receiving PAUSE frames ONLY.
1243 *
1244 * LOCAL DEVICE | LINK PARTNER
1245 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1246 *-------|---------|-------|---------|--------------------
1247 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1248 */
1249 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1250 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1251 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1252 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1253 hw->fc.current_mode = e1000_fc_tx_pause;
1254 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1255 }
1256 /* For transmitting PAUSE frames ONLY.
1257 *
1258 * LOCAL DEVICE | LINK PARTNER
1259 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1260 *-------|---------|-------|---------|--------------------
1261 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1262 */
1263 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1264 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1265 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1266 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1267 hw->fc.current_mode = e1000_fc_rx_pause;
1268 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1269 } else {
1270 /* Per the IEEE spec, at this point flow control
1271 * should be disabled.
1272 */
1273 hw->fc.current_mode = e1000_fc_none;
1274 e_dbg("Flow Control = NONE.\n");
1275 }
1276
1277 /* Now we call a subroutine to actually force the MAC
1278 * controller to use the correct flow control settings.
1279 */
1280 pcs_ctrl_reg = er32(PCS_LCTL);
1281 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1282 ew32(PCS_LCTL, pcs_ctrl_reg);
1283
1284 ret_val = e1000e_force_mac_fc(hw);
1285 if (ret_val) {
1286 e_dbg("Error forcing flow control settings\n");
1287 return ret_val;
1288 }
1289 }
1290
1291 return 0;
1292 }
1293
1294 /**
1295 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1296 * @hw: pointer to the HW structure
1297 * @speed: stores the current speed
1298 * @duplex: stores the current duplex
1299 *
1300 * Read the status register for the current speed/duplex and store the current
1301 * speed and duplex for copper connections.
1302 **/
e1000e_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)1303 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1304 u16 *duplex)
1305 {
1306 u32 status;
1307
1308 status = er32(STATUS);
1309 if (status & E1000_STATUS_SPEED_1000)
1310 *speed = SPEED_1000;
1311 else if (status & E1000_STATUS_SPEED_100)
1312 *speed = SPEED_100;
1313 else
1314 *speed = SPEED_10;
1315
1316 if (status & E1000_STATUS_FD)
1317 *duplex = FULL_DUPLEX;
1318 else
1319 *duplex = HALF_DUPLEX;
1320
1321 e_dbg("%u Mbps, %s Duplex\n",
1322 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1323 *duplex == FULL_DUPLEX ? "Full" : "Half");
1324
1325 return 0;
1326 }
1327
1328 /**
1329 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1330 * @hw: pointer to the HW structure
1331 * @speed: stores the current speed
1332 * @duplex: stores the current duplex
1333 *
1334 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1335 * for fiber/serdes links.
1336 **/
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused * hw,u16 * speed,u16 * duplex)1337 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1338 *hw, u16 *speed, u16 *duplex)
1339 {
1340 *speed = SPEED_1000;
1341 *duplex = FULL_DUPLEX;
1342
1343 return 0;
1344 }
1345
1346 /**
1347 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1348 * @hw: pointer to the HW structure
1349 *
1350 * Acquire the HW semaphore to access the PHY or NVM
1351 **/
e1000e_get_hw_semaphore(struct e1000_hw * hw)1352 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1353 {
1354 u32 swsm;
1355 s32 timeout = hw->nvm.word_size + 1;
1356 s32 i = 0;
1357
1358 /* Get the SW semaphore */
1359 while (i < timeout) {
1360 swsm = er32(SWSM);
1361 if (!(swsm & E1000_SWSM_SMBI))
1362 break;
1363
1364 udelay(100);
1365 i++;
1366 }
1367
1368 if (i == timeout) {
1369 e_dbg("Driver can't access device - SMBI bit is set.\n");
1370 return -E1000_ERR_NVM;
1371 }
1372
1373 /* Get the FW semaphore. */
1374 for (i = 0; i < timeout; i++) {
1375 swsm = er32(SWSM);
1376 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1377
1378 /* Semaphore acquired if bit latched */
1379 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1380 break;
1381
1382 udelay(100);
1383 }
1384
1385 if (i == timeout) {
1386 /* Release semaphores */
1387 e1000e_put_hw_semaphore(hw);
1388 e_dbg("Driver can't access the NVM\n");
1389 return -E1000_ERR_NVM;
1390 }
1391
1392 return 0;
1393 }
1394
1395 /**
1396 * e1000e_put_hw_semaphore - Release hardware semaphore
1397 * @hw: pointer to the HW structure
1398 *
1399 * Release hardware semaphore used to access the PHY or NVM
1400 **/
e1000e_put_hw_semaphore(struct e1000_hw * hw)1401 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1402 {
1403 u32 swsm;
1404
1405 swsm = er32(SWSM);
1406 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1407 ew32(SWSM, swsm);
1408 }
1409
1410 /**
1411 * e1000e_get_auto_rd_done - Check for auto read completion
1412 * @hw: pointer to the HW structure
1413 *
1414 * Check EEPROM for Auto Read done bit.
1415 **/
e1000e_get_auto_rd_done(struct e1000_hw * hw)1416 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1417 {
1418 s32 i = 0;
1419
1420 while (i < AUTO_READ_DONE_TIMEOUT) {
1421 if (er32(EECD) & E1000_EECD_AUTO_RD)
1422 break;
1423 usleep_range(1000, 2000);
1424 i++;
1425 }
1426
1427 if (i == AUTO_READ_DONE_TIMEOUT) {
1428 e_dbg("Auto read by HW from NVM has not completed.\n");
1429 return -E1000_ERR_RESET;
1430 }
1431
1432 return 0;
1433 }
1434
1435 /**
1436 * e1000e_valid_led_default - Verify a valid default LED config
1437 * @hw: pointer to the HW structure
1438 * @data: pointer to the NVM (EEPROM)
1439 *
1440 * Read the EEPROM for the current default LED configuration. If the
1441 * LED configuration is not valid, set to a valid LED configuration.
1442 **/
e1000e_valid_led_default(struct e1000_hw * hw,u16 * data)1443 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1444 {
1445 s32 ret_val;
1446
1447 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1448 if (ret_val) {
1449 e_dbg("NVM Read Error\n");
1450 return ret_val;
1451 }
1452
1453 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1454 *data = ID_LED_DEFAULT;
1455
1456 return 0;
1457 }
1458
1459 /**
1460 * e1000e_id_led_init_generic -
1461 * @hw: pointer to the HW structure
1462 *
1463 **/
e1000e_id_led_init_generic(struct e1000_hw * hw)1464 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1465 {
1466 struct e1000_mac_info *mac = &hw->mac;
1467 s32 ret_val;
1468 const u32 ledctl_mask = 0x000000FF;
1469 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1470 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1471 u16 data, i, temp;
1472 const u16 led_mask = 0x0F;
1473
1474 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1475 if (ret_val)
1476 return ret_val;
1477
1478 mac->ledctl_default = er32(LEDCTL);
1479 mac->ledctl_mode1 = mac->ledctl_default;
1480 mac->ledctl_mode2 = mac->ledctl_default;
1481
1482 for (i = 0; i < 4; i++) {
1483 temp = (data >> (i << 2)) & led_mask;
1484 switch (temp) {
1485 case ID_LED_ON1_DEF2:
1486 case ID_LED_ON1_ON2:
1487 case ID_LED_ON1_OFF2:
1488 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1489 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1490 break;
1491 case ID_LED_OFF1_DEF2:
1492 case ID_LED_OFF1_ON2:
1493 case ID_LED_OFF1_OFF2:
1494 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1495 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1496 break;
1497 default:
1498 /* Do nothing */
1499 break;
1500 }
1501 switch (temp) {
1502 case ID_LED_DEF1_ON2:
1503 case ID_LED_ON1_ON2:
1504 case ID_LED_OFF1_ON2:
1505 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1506 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1507 break;
1508 case ID_LED_DEF1_OFF2:
1509 case ID_LED_ON1_OFF2:
1510 case ID_LED_OFF1_OFF2:
1511 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1512 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1513 break;
1514 default:
1515 /* Do nothing */
1516 break;
1517 }
1518 }
1519
1520 return 0;
1521 }
1522
1523 /**
1524 * e1000e_setup_led_generic - Configures SW controllable LED
1525 * @hw: pointer to the HW structure
1526 *
1527 * This prepares the SW controllable LED for use and saves the current state
1528 * of the LED so it can be later restored.
1529 **/
e1000e_setup_led_generic(struct e1000_hw * hw)1530 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1531 {
1532 u32 ledctl;
1533
1534 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1535 return -E1000_ERR_CONFIG;
1536
1537 if (hw->phy.media_type == e1000_media_type_fiber) {
1538 ledctl = er32(LEDCTL);
1539 hw->mac.ledctl_default = ledctl;
1540 /* Turn off LED0 */
1541 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1542 E1000_LEDCTL_LED0_MODE_MASK);
1543 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1544 E1000_LEDCTL_LED0_MODE_SHIFT);
1545 ew32(LEDCTL, ledctl);
1546 } else if (hw->phy.media_type == e1000_media_type_copper) {
1547 ew32(LEDCTL, hw->mac.ledctl_mode1);
1548 }
1549
1550 return 0;
1551 }
1552
1553 /**
1554 * e1000e_cleanup_led_generic - Set LED config to default operation
1555 * @hw: pointer to the HW structure
1556 *
1557 * Remove the current LED configuration and set the LED configuration
1558 * to the default value, saved from the EEPROM.
1559 **/
e1000e_cleanup_led_generic(struct e1000_hw * hw)1560 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1561 {
1562 ew32(LEDCTL, hw->mac.ledctl_default);
1563 return 0;
1564 }
1565
1566 /**
1567 * e1000e_blink_led_generic - Blink LED
1568 * @hw: pointer to the HW structure
1569 *
1570 * Blink the LEDs which are set to be on.
1571 **/
e1000e_blink_led_generic(struct e1000_hw * hw)1572 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1573 {
1574 u32 ledctl_blink = 0;
1575 u32 i;
1576
1577 if (hw->phy.media_type == e1000_media_type_fiber) {
1578 /* always blink LED0 for PCI-E fiber */
1579 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1580 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1581 } else {
1582 /* Set the blink bit for each LED that's "on" (0x0E)
1583 * (or "off" if inverted) in ledctl_mode2. The blink
1584 * logic in hardware only works when mode is set to "on"
1585 * so it must be changed accordingly when the mode is
1586 * "off" and inverted.
1587 */
1588 ledctl_blink = hw->mac.ledctl_mode2;
1589 for (i = 0; i < 32; i += 8) {
1590 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1591 E1000_LEDCTL_LED0_MODE_MASK;
1592 u32 led_default = hw->mac.ledctl_default >> i;
1593
1594 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1595 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1596 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1597 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1598 ledctl_blink &=
1599 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1600 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1601 E1000_LEDCTL_MODE_LED_ON) << i;
1602 }
1603 }
1604 }
1605
1606 ew32(LEDCTL, ledctl_blink);
1607
1608 return 0;
1609 }
1610
1611 /**
1612 * e1000e_led_on_generic - Turn LED on
1613 * @hw: pointer to the HW structure
1614 *
1615 * Turn LED on.
1616 **/
e1000e_led_on_generic(struct e1000_hw * hw)1617 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1618 {
1619 u32 ctrl;
1620
1621 switch (hw->phy.media_type) {
1622 case e1000_media_type_fiber:
1623 ctrl = er32(CTRL);
1624 ctrl &= ~E1000_CTRL_SWDPIN0;
1625 ctrl |= E1000_CTRL_SWDPIO0;
1626 ew32(CTRL, ctrl);
1627 break;
1628 case e1000_media_type_copper:
1629 ew32(LEDCTL, hw->mac.ledctl_mode2);
1630 break;
1631 default:
1632 break;
1633 }
1634
1635 return 0;
1636 }
1637
1638 /**
1639 * e1000e_led_off_generic - Turn LED off
1640 * @hw: pointer to the HW structure
1641 *
1642 * Turn LED off.
1643 **/
e1000e_led_off_generic(struct e1000_hw * hw)1644 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1645 {
1646 u32 ctrl;
1647
1648 switch (hw->phy.media_type) {
1649 case e1000_media_type_fiber:
1650 ctrl = er32(CTRL);
1651 ctrl |= E1000_CTRL_SWDPIN0;
1652 ctrl |= E1000_CTRL_SWDPIO0;
1653 ew32(CTRL, ctrl);
1654 break;
1655 case e1000_media_type_copper:
1656 ew32(LEDCTL, hw->mac.ledctl_mode1);
1657 break;
1658 default:
1659 break;
1660 }
1661
1662 return 0;
1663 }
1664
1665 /**
1666 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1667 * @hw: pointer to the HW structure
1668 * @no_snoop: bitmap of snoop events
1669 *
1670 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1671 **/
e1000e_set_pcie_no_snoop(struct e1000_hw * hw,u32 no_snoop)1672 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1673 {
1674 u32 gcr;
1675
1676 if (no_snoop) {
1677 gcr = er32(GCR);
1678 gcr &= ~(PCIE_NO_SNOOP_ALL);
1679 gcr |= no_snoop;
1680 ew32(GCR, gcr);
1681 }
1682 }
1683
1684 /**
1685 * e1000e_disable_pcie_master - Disables PCI-express master access
1686 * @hw: pointer to the HW structure
1687 *
1688 * Returns 0 if successful, else returns -10
1689 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1690 * the master requests to be disabled.
1691 *
1692 * Disables PCI-Express master access and verifies there are no pending
1693 * requests.
1694 **/
e1000e_disable_pcie_master(struct e1000_hw * hw)1695 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1696 {
1697 u32 ctrl;
1698 s32 timeout = MASTER_DISABLE_TIMEOUT;
1699
1700 ctrl = er32(CTRL);
1701 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1702 ew32(CTRL, ctrl);
1703
1704 while (timeout) {
1705 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1706 break;
1707 usleep_range(100, 200);
1708 timeout--;
1709 }
1710
1711 if (!timeout) {
1712 e_dbg("Master requests are pending.\n");
1713 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1714 }
1715
1716 return 0;
1717 }
1718
1719 /**
1720 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1721 * @hw: pointer to the HW structure
1722 *
1723 * Reset the Adaptive Interframe Spacing throttle to default values.
1724 **/
e1000e_reset_adaptive(struct e1000_hw * hw)1725 void e1000e_reset_adaptive(struct e1000_hw *hw)
1726 {
1727 struct e1000_mac_info *mac = &hw->mac;
1728
1729 if (!mac->adaptive_ifs) {
1730 e_dbg("Not in Adaptive IFS mode!\n");
1731 return;
1732 }
1733
1734 mac->current_ifs_val = 0;
1735 mac->ifs_min_val = IFS_MIN;
1736 mac->ifs_max_val = IFS_MAX;
1737 mac->ifs_step_size = IFS_STEP;
1738 mac->ifs_ratio = IFS_RATIO;
1739
1740 mac->in_ifs_mode = false;
1741 ew32(AIT, 0);
1742 }
1743
1744 /**
1745 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1746 * @hw: pointer to the HW structure
1747 *
1748 * Update the Adaptive Interframe Spacing Throttle value based on the
1749 * time between transmitted packets and time between collisions.
1750 **/
e1000e_update_adaptive(struct e1000_hw * hw)1751 void e1000e_update_adaptive(struct e1000_hw *hw)
1752 {
1753 struct e1000_mac_info *mac = &hw->mac;
1754
1755 if (!mac->adaptive_ifs) {
1756 e_dbg("Not in Adaptive IFS mode!\n");
1757 return;
1758 }
1759
1760 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1761 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1762 mac->in_ifs_mode = true;
1763 if (mac->current_ifs_val < mac->ifs_max_val) {
1764 if (!mac->current_ifs_val)
1765 mac->current_ifs_val = mac->ifs_min_val;
1766 else
1767 mac->current_ifs_val +=
1768 mac->ifs_step_size;
1769 ew32(AIT, mac->current_ifs_val);
1770 }
1771 }
1772 } else {
1773 if (mac->in_ifs_mode &&
1774 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1775 mac->current_ifs_val = 0;
1776 mac->in_ifs_mode = false;
1777 ew32(AIT, 0);
1778 }
1779 }
1780 }
1781