1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 #include "e1000.h" 23 24 /** 25 * e1000e_get_bus_info_pcie - Get PCIe bus information 26 * @hw: pointer to the HW structure 27 * 28 * Determines and stores the system bus information for a particular 29 * network interface. The following bus information is determined and stored: 30 * bus speed, bus width, type (PCIe), and PCIe function. 31 **/ 32 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) 33 { 34 struct e1000_mac_info *mac = &hw->mac; 35 struct e1000_bus_info *bus = &hw->bus; 36 struct e1000_adapter *adapter = hw->adapter; 37 u16 pcie_link_status, cap_offset; 38 39 cap_offset = adapter->pdev->pcie_cap; 40 if (!cap_offset) { 41 bus->width = e1000_bus_width_unknown; 42 } else { 43 pci_read_config_word(adapter->pdev, 44 cap_offset + PCIE_LINK_STATUS, 45 &pcie_link_status); 46 bus->width = (enum e1000_bus_width)((pcie_link_status & 47 PCIE_LINK_WIDTH_MASK) >> 48 PCIE_LINK_WIDTH_SHIFT); 49 } 50 51 mac->ops.set_lan_id(hw); 52 53 return 0; 54 } 55 56 /** 57 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 58 * 59 * @hw: pointer to the HW structure 60 * 61 * Determines the LAN function id by reading memory-mapped registers 62 * and swaps the port value if requested. 63 **/ 64 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) 65 { 66 struct e1000_bus_info *bus = &hw->bus; 67 u32 reg; 68 69 /* The status register reports the correct function number 70 * for the device regardless of function swap state. 71 */ 72 reg = er32(STATUS); 73 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; 74 } 75 76 /** 77 * e1000_set_lan_id_single_port - Set LAN id for a single port device 78 * @hw: pointer to the HW structure 79 * 80 * Sets the LAN function id to zero for a single port device. 81 **/ 82 void e1000_set_lan_id_single_port(struct e1000_hw *hw) 83 { 84 struct e1000_bus_info *bus = &hw->bus; 85 86 bus->func = 0; 87 } 88 89 /** 90 * e1000_clear_vfta_generic - Clear VLAN filter table 91 * @hw: pointer to the HW structure 92 * 93 * Clears the register array which contains the VLAN filter table by 94 * setting all the values to 0. 95 **/ 96 void e1000_clear_vfta_generic(struct e1000_hw *hw) 97 { 98 u32 offset; 99 100 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 101 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); 102 e1e_flush(); 103 } 104 } 105 106 /** 107 * e1000_write_vfta_generic - Write value to VLAN filter table 108 * @hw: pointer to the HW structure 109 * @offset: register offset in VLAN filter table 110 * @value: register value written to VLAN filter table 111 * 112 * Writes value at the given offset in the register array which stores 113 * the VLAN filter table. 114 **/ 115 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) 116 { 117 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); 118 e1e_flush(); 119 } 120 121 /** 122 * e1000e_init_rx_addrs - Initialize receive address's 123 * @hw: pointer to the HW structure 124 * @rar_count: receive address registers 125 * 126 * Setup the receive address registers by setting the base receive address 127 * register to the devices MAC address and clearing all the other receive 128 * address registers to 0. 129 **/ 130 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) 131 { 132 u32 i; 133 u8 mac_addr[ETH_ALEN] = { 0 }; 134 135 /* Setup the receive address */ 136 e_dbg("Programming MAC Address into RAR[0]\n"); 137 138 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 139 140 /* Zero out the other (rar_entry_count - 1) receive addresses */ 141 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1); 142 for (i = 1; i < rar_count; i++) 143 hw->mac.ops.rar_set(hw, mac_addr, i); 144 } 145 146 /** 147 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr 148 * @hw: pointer to the HW structure 149 * 150 * Checks the nvm for an alternate MAC address. An alternate MAC address 151 * can be setup by pre-boot software and must be treated like a permanent 152 * address and must override the actual permanent MAC address. If an 153 * alternate MAC address is found it is programmed into RAR0, replacing 154 * the permanent address that was installed into RAR0 by the Si on reset. 155 * This function will return SUCCESS unless it encounters an error while 156 * reading the EEPROM. 157 **/ 158 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) 159 { 160 u32 i; 161 s32 ret_val; 162 u16 offset, nvm_alt_mac_addr_offset, nvm_data; 163 u8 alt_mac_addr[ETH_ALEN]; 164 165 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); 166 if (ret_val) 167 return ret_val; 168 169 /* not supported on 82573 */ 170 if (hw->mac.type == e1000_82573) 171 return 0; 172 173 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, 174 &nvm_alt_mac_addr_offset); 175 if (ret_val) { 176 e_dbg("NVM Read Error\n"); 177 return ret_val; 178 } 179 180 if ((nvm_alt_mac_addr_offset == 0xFFFF) || 181 (nvm_alt_mac_addr_offset == 0x0000)) 182 /* There is no Alternate MAC Address */ 183 return 0; 184 185 if (hw->bus.func == E1000_FUNC_1) 186 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; 187 for (i = 0; i < ETH_ALEN; i += 2) { 188 offset = nvm_alt_mac_addr_offset + (i >> 1); 189 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); 190 if (ret_val) { 191 e_dbg("NVM Read Error\n"); 192 return ret_val; 193 } 194 195 alt_mac_addr[i] = (u8)(nvm_data & 0xFF); 196 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); 197 } 198 199 /* if multicast bit is set, the alternate address will not be used */ 200 if (is_multicast_ether_addr(alt_mac_addr)) { 201 e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); 202 return 0; 203 } 204 205 /* We have a valid alternate MAC address, and we want to treat it the 206 * same as the normal permanent MAC address stored by the HW into the 207 * RAR. Do this by mapping this address into RAR0. 208 */ 209 hw->mac.ops.rar_set(hw, alt_mac_addr, 0); 210 211 return 0; 212 } 213 214 u32 e1000e_rar_get_count_generic(struct e1000_hw *hw) 215 { 216 return hw->mac.rar_entry_count; 217 } 218 219 /** 220 * e1000e_rar_set_generic - Set receive address register 221 * @hw: pointer to the HW structure 222 * @addr: pointer to the receive address 223 * @index: receive address array register 224 * 225 * Sets the receive address array register at index to the address passed 226 * in by addr. 227 **/ 228 int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) 229 { 230 u32 rar_low, rar_high; 231 232 /* HW expects these in little endian so we reverse the byte order 233 * from network order (big endian) to little endian 234 */ 235 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 236 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 237 238 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 239 240 /* If MAC address zero, no need to set the AV bit */ 241 if (rar_low || rar_high) 242 rar_high |= E1000_RAH_AV; 243 244 /* Some bridges will combine consecutive 32-bit writes into 245 * a single burst write, which will malfunction on some parts. 246 * The flushes avoid this. 247 */ 248 ew32(RAL(index), rar_low); 249 e1e_flush(); 250 ew32(RAH(index), rar_high); 251 e1e_flush(); 252 253 return 0; 254 } 255 256 /** 257 * e1000_hash_mc_addr - Generate a multicast hash value 258 * @hw: pointer to the HW structure 259 * @mc_addr: pointer to a multicast address 260 * 261 * Generates a multicast address hash value which is used to determine 262 * the multicast filter table array address and new table value. 263 **/ 264 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 265 { 266 u32 hash_value, hash_mask; 267 u8 bit_shift = 0; 268 269 /* Register count multiplied by bits per register */ 270 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 271 272 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts 273 * where 0xFF would still fall within the hash mask. 274 */ 275 while (hash_mask >> bit_shift != 0xFF) 276 bit_shift++; 277 278 /* The portion of the address that is used for the hash table 279 * is determined by the mc_filter_type setting. 280 * The algorithm is such that there is a total of 8 bits of shifting. 281 * The bit_shift for a mc_filter_type of 0 represents the number of 282 * left-shifts where the MSB of mc_addr[5] would still fall within 283 * the hash_mask. Case 0 does this exactly. Since there are a total 284 * of 8 bits of shifting, then mc_addr[4] will shift right the 285 * remaining number of bits. Thus 8 - bit_shift. The rest of the 286 * cases are a variation of this algorithm...essentially raising the 287 * number of bits to shift mc_addr[5] left, while still keeping the 288 * 8-bit shifting total. 289 * 290 * For example, given the following Destination MAC Address and an 291 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 292 * we can see that the bit_shift for case 0 is 4. These are the hash 293 * values resulting from each mc_filter_type... 294 * [0] [1] [2] [3] [4] [5] 295 * 01 AA 00 12 34 56 296 * LSB MSB 297 * 298 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 299 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 300 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 301 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 302 */ 303 switch (hw->mac.mc_filter_type) { 304 default: 305 case 0: 306 break; 307 case 1: 308 bit_shift += 1; 309 break; 310 case 2: 311 bit_shift += 2; 312 break; 313 case 3: 314 bit_shift += 4; 315 break; 316 } 317 318 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 319 (((u16)mc_addr[5]) << bit_shift))); 320 321 return hash_value; 322 } 323 324 /** 325 * e1000e_update_mc_addr_list_generic - Update Multicast addresses 326 * @hw: pointer to the HW structure 327 * @mc_addr_list: array of multicast addresses to program 328 * @mc_addr_count: number of multicast addresses to program 329 * 330 * Updates entire Multicast Table Array. 331 * The caller must have a packed mc_addr_list of multicast addresses. 332 **/ 333 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, 334 u8 *mc_addr_list, u32 mc_addr_count) 335 { 336 u32 hash_value, hash_bit, hash_reg; 337 int i; 338 339 /* clear mta_shadow */ 340 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 341 342 /* update mta_shadow from mc_addr_list */ 343 for (i = 0; (u32)i < mc_addr_count; i++) { 344 hash_value = e1000_hash_mc_addr(hw, mc_addr_list); 345 346 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 347 hash_bit = hash_value & 0x1F; 348 349 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); 350 mc_addr_list += (ETH_ALEN); 351 } 352 353 /* replace the entire MTA table */ 354 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 355 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); 356 e1e_flush(); 357 } 358 359 /** 360 * e1000e_clear_hw_cntrs_base - Clear base hardware counters 361 * @hw: pointer to the HW structure 362 * 363 * Clears the base hardware counters by reading the counter registers. 364 **/ 365 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) 366 { 367 er32(CRCERRS); 368 er32(SYMERRS); 369 er32(MPC); 370 er32(SCC); 371 er32(ECOL); 372 er32(MCC); 373 er32(LATECOL); 374 er32(COLC); 375 er32(DC); 376 er32(SEC); 377 er32(RLEC); 378 er32(XONRXC); 379 er32(XONTXC); 380 er32(XOFFRXC); 381 er32(XOFFTXC); 382 er32(FCRUC); 383 er32(GPRC); 384 er32(BPRC); 385 er32(MPRC); 386 er32(GPTC); 387 er32(GORCL); 388 er32(GORCH); 389 er32(GOTCL); 390 er32(GOTCH); 391 er32(RNBC); 392 er32(RUC); 393 er32(RFC); 394 er32(ROC); 395 er32(RJC); 396 er32(TORL); 397 er32(TORH); 398 er32(TOTL); 399 er32(TOTH); 400 er32(TPR); 401 er32(TPT); 402 er32(MPTC); 403 er32(BPTC); 404 } 405 406 /** 407 * e1000e_check_for_copper_link - Check for link (Copper) 408 * @hw: pointer to the HW structure 409 * 410 * Checks to see of the link status of the hardware has changed. If a 411 * change in link status has been detected, then we read the PHY registers 412 * to get the current speed/duplex if link exists. 413 **/ 414 s32 e1000e_check_for_copper_link(struct e1000_hw *hw) 415 { 416 struct e1000_mac_info *mac = &hw->mac; 417 s32 ret_val; 418 bool link; 419 420 /* We only want to go out to the PHY registers to see if Auto-Neg 421 * has completed and/or if our link status has changed. The 422 * get_link_status flag is set upon receiving a Link Status 423 * Change or Rx Sequence Error interrupt. 424 */ 425 if (!mac->get_link_status) 426 return 0; 427 428 /* First we want to see if the MII Status Register reports 429 * link. If so, then we want to get the current speed/duplex 430 * of the PHY. 431 */ 432 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 433 if (ret_val) 434 return ret_val; 435 436 if (!link) 437 return 0; /* No link detected */ 438 439 mac->get_link_status = false; 440 441 /* Check if there was DownShift, must be checked 442 * immediately after link-up 443 */ 444 e1000e_check_downshift(hw); 445 446 /* If we are forcing speed/duplex, then we simply return since 447 * we have already determined whether we have link or not. 448 */ 449 if (!mac->autoneg) 450 return -E1000_ERR_CONFIG; 451 452 /* Auto-Neg is enabled. Auto Speed Detection takes care 453 * of MAC speed/duplex configuration. So we only need to 454 * configure Collision Distance in the MAC. 455 */ 456 mac->ops.config_collision_dist(hw); 457 458 /* Configure Flow Control now that Auto-Neg has completed. 459 * First, we need to restore the desired flow control 460 * settings because we may have had to re-autoneg with a 461 * different link partner. 462 */ 463 ret_val = e1000e_config_fc_after_link_up(hw); 464 if (ret_val) 465 e_dbg("Error configuring flow control\n"); 466 467 return ret_val; 468 } 469 470 /** 471 * e1000e_check_for_fiber_link - Check for link (Fiber) 472 * @hw: pointer to the HW structure 473 * 474 * Checks for link up on the hardware. If link is not up and we have 475 * a signal, then we need to force link up. 476 **/ 477 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) 478 { 479 struct e1000_mac_info *mac = &hw->mac; 480 u32 rxcw; 481 u32 ctrl; 482 u32 status; 483 s32 ret_val; 484 485 ctrl = er32(CTRL); 486 status = er32(STATUS); 487 rxcw = er32(RXCW); 488 489 /* If we don't have link (auto-negotiation failed or link partner 490 * cannot auto-negotiate), the cable is plugged in (we have signal), 491 * and our link partner is not trying to auto-negotiate with us (we 492 * are receiving idles or data), we need to force link up. We also 493 * need to give auto-negotiation time to complete, in case the cable 494 * was just plugged in. The autoneg_failed flag does this. 495 */ 496 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 497 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && 498 !(rxcw & E1000_RXCW_C)) { 499 if (!mac->autoneg_failed) { 500 mac->autoneg_failed = true; 501 return 0; 502 } 503 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 504 505 /* Disable auto-negotiation in the TXCW register */ 506 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 507 508 /* Force link-up and also force full-duplex. */ 509 ctrl = er32(CTRL); 510 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 511 ew32(CTRL, ctrl); 512 513 /* Configure Flow Control after forcing link up. */ 514 ret_val = e1000e_config_fc_after_link_up(hw); 515 if (ret_val) { 516 e_dbg("Error configuring flow control\n"); 517 return ret_val; 518 } 519 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 520 /* If we are forcing link and we are receiving /C/ ordered 521 * sets, re-enable auto-negotiation in the TXCW register 522 * and disable forced link in the Device Control register 523 * in an attempt to auto-negotiate with our link partner. 524 */ 525 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 526 ew32(TXCW, mac->txcw); 527 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 528 529 mac->serdes_has_link = true; 530 } 531 532 return 0; 533 } 534 535 /** 536 * e1000e_check_for_serdes_link - Check for link (Serdes) 537 * @hw: pointer to the HW structure 538 * 539 * Checks for link up on the hardware. If link is not up and we have 540 * a signal, then we need to force link up. 541 **/ 542 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) 543 { 544 struct e1000_mac_info *mac = &hw->mac; 545 u32 rxcw; 546 u32 ctrl; 547 u32 status; 548 s32 ret_val; 549 550 ctrl = er32(CTRL); 551 status = er32(STATUS); 552 rxcw = er32(RXCW); 553 554 /* If we don't have link (auto-negotiation failed or link partner 555 * cannot auto-negotiate), and our link partner is not trying to 556 * auto-negotiate with us (we are receiving idles or data), 557 * we need to force link up. We also need to give auto-negotiation 558 * time to complete. 559 */ 560 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 561 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { 562 if (!mac->autoneg_failed) { 563 mac->autoneg_failed = true; 564 return 0; 565 } 566 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 567 568 /* Disable auto-negotiation in the TXCW register */ 569 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 570 571 /* Force link-up and also force full-duplex. */ 572 ctrl = er32(CTRL); 573 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 574 ew32(CTRL, ctrl); 575 576 /* Configure Flow Control after forcing link up. */ 577 ret_val = e1000e_config_fc_after_link_up(hw); 578 if (ret_val) { 579 e_dbg("Error configuring flow control\n"); 580 return ret_val; 581 } 582 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 583 /* If we are forcing link and we are receiving /C/ ordered 584 * sets, re-enable auto-negotiation in the TXCW register 585 * and disable forced link in the Device Control register 586 * in an attempt to auto-negotiate with our link partner. 587 */ 588 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 589 ew32(TXCW, mac->txcw); 590 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 591 592 mac->serdes_has_link = true; 593 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { 594 /* If we force link for non-auto-negotiation switch, check 595 * link status based on MAC synchronization for internal 596 * serdes media type. 597 */ 598 /* SYNCH bit and IV bit are sticky. */ 599 usleep_range(10, 20); 600 rxcw = er32(RXCW); 601 if (rxcw & E1000_RXCW_SYNCH) { 602 if (!(rxcw & E1000_RXCW_IV)) { 603 mac->serdes_has_link = true; 604 e_dbg("SERDES: Link up - forced.\n"); 605 } 606 } else { 607 mac->serdes_has_link = false; 608 e_dbg("SERDES: Link down - force failed.\n"); 609 } 610 } 611 612 if (E1000_TXCW_ANE & er32(TXCW)) { 613 status = er32(STATUS); 614 if (status & E1000_STATUS_LU) { 615 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ 616 usleep_range(10, 20); 617 rxcw = er32(RXCW); 618 if (rxcw & E1000_RXCW_SYNCH) { 619 if (!(rxcw & E1000_RXCW_IV)) { 620 mac->serdes_has_link = true; 621 e_dbg("SERDES: Link up - autoneg completed successfully.\n"); 622 } else { 623 mac->serdes_has_link = false; 624 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n"); 625 } 626 } else { 627 mac->serdes_has_link = false; 628 e_dbg("SERDES: Link down - no sync.\n"); 629 } 630 } else { 631 mac->serdes_has_link = false; 632 e_dbg("SERDES: Link down - autoneg failed\n"); 633 } 634 } 635 636 return 0; 637 } 638 639 /** 640 * e1000_set_default_fc_generic - Set flow control default values 641 * @hw: pointer to the HW structure 642 * 643 * Read the EEPROM for the default values for flow control and store the 644 * values. 645 **/ 646 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) 647 { 648 s32 ret_val; 649 u16 nvm_data; 650 651 /* Read and store word 0x0F of the EEPROM. This word contains bits 652 * that determine the hardware's default PAUSE (flow control) mode, 653 * a bit that determines whether the HW defaults to enabling or 654 * disabling auto-negotiation, and the direction of the 655 * SW defined pins. If there is no SW over-ride of the flow 656 * control setting, then the variable hw->fc will 657 * be initialized based on a value in the EEPROM. 658 */ 659 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); 660 661 if (ret_val) { 662 e_dbg("NVM Read Error\n"); 663 return ret_val; 664 } 665 666 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) 667 hw->fc.requested_mode = e1000_fc_none; 668 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) 669 hw->fc.requested_mode = e1000_fc_tx_pause; 670 else 671 hw->fc.requested_mode = e1000_fc_full; 672 673 return 0; 674 } 675 676 /** 677 * e1000e_setup_link_generic - Setup flow control and link settings 678 * @hw: pointer to the HW structure 679 * 680 * Determines which flow control settings to use, then configures flow 681 * control. Calls the appropriate media-specific link configuration 682 * function. Assuming the adapter has a valid link partner, a valid link 683 * should be established. Assumes the hardware has previously been reset 684 * and the transmitter and receiver are not enabled. 685 **/ 686 s32 e1000e_setup_link_generic(struct e1000_hw *hw) 687 { 688 s32 ret_val; 689 690 /* In the case of the phy reset being blocked, we already have a link. 691 * We do not need to set it up again. 692 */ 693 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 694 return 0; 695 696 /* If requested flow control is set to default, set flow control 697 * based on the EEPROM flow control settings. 698 */ 699 if (hw->fc.requested_mode == e1000_fc_default) { 700 ret_val = e1000_set_default_fc_generic(hw); 701 if (ret_val) 702 return ret_val; 703 } 704 705 /* Save off the requested flow control mode for use later. Depending 706 * on the link partner's capabilities, we may or may not use this mode. 707 */ 708 hw->fc.current_mode = hw->fc.requested_mode; 709 710 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 711 712 /* Call the necessary media_type subroutine to configure the link. */ 713 ret_val = hw->mac.ops.setup_physical_interface(hw); 714 if (ret_val) 715 return ret_val; 716 717 /* Initialize the flow control address, type, and PAUSE timer 718 * registers to their default values. This is done even if flow 719 * control is disabled, because it does not hurt anything to 720 * initialize these registers. 721 */ 722 e_dbg("Initializing the Flow Control address, type and timer regs\n"); 723 ew32(FCT, FLOW_CONTROL_TYPE); 724 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); 725 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); 726 727 ew32(FCTTV, hw->fc.pause_time); 728 729 return e1000e_set_fc_watermarks(hw); 730 } 731 732 /** 733 * e1000_commit_fc_settings_generic - Configure flow control 734 * @hw: pointer to the HW structure 735 * 736 * Write the flow control settings to the Transmit Config Word Register (TXCW) 737 * base on the flow control settings in e1000_mac_info. 738 **/ 739 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) 740 { 741 struct e1000_mac_info *mac = &hw->mac; 742 u32 txcw; 743 744 /* Check for a software override of the flow control settings, and 745 * setup the device accordingly. If auto-negotiation is enabled, then 746 * software will have to set the "PAUSE" bits to the correct value in 747 * the Transmit Config Word Register (TXCW) and re-start auto- 748 * negotiation. However, if auto-negotiation is disabled, then 749 * software will have to manually configure the two flow control enable 750 * bits in the CTRL register. 751 * 752 * The possible values of the "fc" parameter are: 753 * 0: Flow control is completely disabled 754 * 1: Rx flow control is enabled (we can receive pause frames, 755 * but not send pause frames). 756 * 2: Tx flow control is enabled (we can send pause frames but we 757 * do not support receiving pause frames). 758 * 3: Both Rx and Tx flow control (symmetric) are enabled. 759 */ 760 switch (hw->fc.current_mode) { 761 case e1000_fc_none: 762 /* Flow control completely disabled by a software over-ride. */ 763 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); 764 break; 765 case e1000_fc_rx_pause: 766 /* Rx Flow control is enabled and Tx Flow control is disabled 767 * by a software over-ride. Since there really isn't a way to 768 * advertise that we are capable of Rx Pause ONLY, we will 769 * advertise that we support both symmetric and asymmetric Rx 770 * PAUSE. Later, we will disable the adapter's ability to send 771 * PAUSE frames. 772 */ 773 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 774 break; 775 case e1000_fc_tx_pause: 776 /* Tx Flow control is enabled, and Rx Flow control is disabled, 777 * by a software over-ride. 778 */ 779 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); 780 break; 781 case e1000_fc_full: 782 /* Flow control (both Rx and Tx) is enabled by a software 783 * over-ride. 784 */ 785 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 786 break; 787 default: 788 e_dbg("Flow control param set incorrectly\n"); 789 return -E1000_ERR_CONFIG; 790 } 791 792 ew32(TXCW, txcw); 793 mac->txcw = txcw; 794 795 return 0; 796 } 797 798 /** 799 * e1000_poll_fiber_serdes_link_generic - Poll for link up 800 * @hw: pointer to the HW structure 801 * 802 * Polls for link up by reading the status register, if link fails to come 803 * up with auto-negotiation, then the link is forced if a signal is detected. 804 **/ 805 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) 806 { 807 struct e1000_mac_info *mac = &hw->mac; 808 u32 i, status; 809 s32 ret_val; 810 811 /* If we have a signal (the cable is plugged in, or assumed true for 812 * serdes media) then poll for a "Link-Up" indication in the Device 813 * Status Register. Time-out if a link isn't seen in 500 milliseconds 814 * seconds (Auto-negotiation should complete in less than 500 815 * milliseconds even if the other end is doing it in SW). 816 */ 817 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { 818 usleep_range(10000, 20000); 819 status = er32(STATUS); 820 if (status & E1000_STATUS_LU) 821 break; 822 } 823 if (i == FIBER_LINK_UP_LIMIT) { 824 e_dbg("Never got a valid link from auto-neg!!!\n"); 825 mac->autoneg_failed = true; 826 /* AutoNeg failed to achieve a link, so we'll call 827 * mac->check_for_link. This routine will force the 828 * link up if we detect a signal. This will allow us to 829 * communicate with non-autonegotiating link partners. 830 */ 831 ret_val = mac->ops.check_for_link(hw); 832 if (ret_val) { 833 e_dbg("Error while checking for link\n"); 834 return ret_val; 835 } 836 mac->autoneg_failed = false; 837 } else { 838 mac->autoneg_failed = false; 839 e_dbg("Valid Link Found\n"); 840 } 841 842 return 0; 843 } 844 845 /** 846 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes 847 * @hw: pointer to the HW structure 848 * 849 * Configures collision distance and flow control for fiber and serdes 850 * links. Upon successful setup, poll for link. 851 **/ 852 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) 853 { 854 u32 ctrl; 855 s32 ret_val; 856 857 ctrl = er32(CTRL); 858 859 /* Take the link out of reset */ 860 ctrl &= ~E1000_CTRL_LRST; 861 862 hw->mac.ops.config_collision_dist(hw); 863 864 ret_val = e1000_commit_fc_settings_generic(hw); 865 if (ret_val) 866 return ret_val; 867 868 /* Since auto-negotiation is enabled, take the link out of reset (the 869 * link will be in reset, because we previously reset the chip). This 870 * will restart auto-negotiation. If auto-negotiation is successful 871 * then the link-up status bit will be set and the flow control enable 872 * bits (RFCE and TFCE) will be set according to their negotiated value. 873 */ 874 e_dbg("Auto-negotiation enabled\n"); 875 876 ew32(CTRL, ctrl); 877 e1e_flush(); 878 usleep_range(1000, 2000); 879 880 /* For these adapters, the SW definable pin 1 is set when the optics 881 * detect a signal. If we have a signal, then poll for a "Link-Up" 882 * indication. 883 */ 884 if (hw->phy.media_type == e1000_media_type_internal_serdes || 885 (er32(CTRL) & E1000_CTRL_SWDPIN1)) { 886 ret_val = e1000_poll_fiber_serdes_link_generic(hw); 887 } else { 888 e_dbg("No signal detected\n"); 889 } 890 891 return ret_val; 892 } 893 894 /** 895 * e1000e_config_collision_dist_generic - Configure collision distance 896 * @hw: pointer to the HW structure 897 * 898 * Configures the collision distance to the default value and is used 899 * during link setup. 900 **/ 901 void e1000e_config_collision_dist_generic(struct e1000_hw *hw) 902 { 903 u32 tctl; 904 905 tctl = er32(TCTL); 906 907 tctl &= ~E1000_TCTL_COLD; 908 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; 909 910 ew32(TCTL, tctl); 911 e1e_flush(); 912 } 913 914 /** 915 * e1000e_set_fc_watermarks - Set flow control high/low watermarks 916 * @hw: pointer to the HW structure 917 * 918 * Sets the flow control high/low threshold (watermark) registers. If 919 * flow control XON frame transmission is enabled, then set XON frame 920 * transmission as well. 921 **/ 922 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) 923 { 924 u32 fcrtl = 0, fcrth = 0; 925 926 /* Set the flow control receive threshold registers. Normally, 927 * these registers will be set to a default threshold that may be 928 * adjusted later by the driver's runtime code. However, if the 929 * ability to transmit pause frames is not enabled, then these 930 * registers will be set to 0. 931 */ 932 if (hw->fc.current_mode & e1000_fc_tx_pause) { 933 /* We need to set up the Receive Threshold high and low water 934 * marks as well as (optionally) enabling the transmission of 935 * XON frames. 936 */ 937 fcrtl = hw->fc.low_water; 938 if (hw->fc.send_xon) 939 fcrtl |= E1000_FCRTL_XONE; 940 941 fcrth = hw->fc.high_water; 942 } 943 ew32(FCRTL, fcrtl); 944 ew32(FCRTH, fcrth); 945 946 return 0; 947 } 948 949 /** 950 * e1000e_force_mac_fc - Force the MAC's flow control settings 951 * @hw: pointer to the HW structure 952 * 953 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 954 * device control register to reflect the adapter settings. TFCE and RFCE 955 * need to be explicitly set by software when a copper PHY is used because 956 * autonegotiation is managed by the PHY rather than the MAC. Software must 957 * also configure these bits when link is forced on a fiber connection. 958 **/ 959 s32 e1000e_force_mac_fc(struct e1000_hw *hw) 960 { 961 u32 ctrl; 962 963 ctrl = er32(CTRL); 964 965 /* Because we didn't get link via the internal auto-negotiation 966 * mechanism (we either forced link or we got link via PHY 967 * auto-neg), we have to manually enable/disable transmit an 968 * receive flow control. 969 * 970 * The "Case" statement below enables/disable flow control 971 * according to the "hw->fc.current_mode" parameter. 972 * 973 * The possible values of the "fc" parameter are: 974 * 0: Flow control is completely disabled 975 * 1: Rx flow control is enabled (we can receive pause 976 * frames but not send pause frames). 977 * 2: Tx flow control is enabled (we can send pause frames 978 * frames but we do not receive pause frames). 979 * 3: Both Rx and Tx flow control (symmetric) is enabled. 980 * other: No other values should be possible at this point. 981 */ 982 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 983 984 switch (hw->fc.current_mode) { 985 case e1000_fc_none: 986 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 987 break; 988 case e1000_fc_rx_pause: 989 ctrl &= (~E1000_CTRL_TFCE); 990 ctrl |= E1000_CTRL_RFCE; 991 break; 992 case e1000_fc_tx_pause: 993 ctrl &= (~E1000_CTRL_RFCE); 994 ctrl |= E1000_CTRL_TFCE; 995 break; 996 case e1000_fc_full: 997 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 998 break; 999 default: 1000 e_dbg("Flow control param set incorrectly\n"); 1001 return -E1000_ERR_CONFIG; 1002 } 1003 1004 ew32(CTRL, ctrl); 1005 1006 return 0; 1007 } 1008 1009 /** 1010 * e1000e_config_fc_after_link_up - Configures flow control after link 1011 * @hw: pointer to the HW structure 1012 * 1013 * Checks the status of auto-negotiation after link up to ensure that the 1014 * speed and duplex were not forced. If the link needed to be forced, then 1015 * flow control needs to be forced also. If auto-negotiation is enabled 1016 * and did not fail, then we configure flow control based on our link 1017 * partner. 1018 **/ 1019 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) 1020 { 1021 struct e1000_mac_info *mac = &hw->mac; 1022 s32 ret_val = 0; 1023 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; 1024 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 1025 u16 speed, duplex; 1026 1027 /* Check for the case where we have fiber media and auto-neg failed 1028 * so we had to force link. In this case, we need to force the 1029 * configuration of the MAC to match the "fc" parameter. 1030 */ 1031 if (mac->autoneg_failed) { 1032 if (hw->phy.media_type == e1000_media_type_fiber || 1033 hw->phy.media_type == e1000_media_type_internal_serdes) 1034 ret_val = e1000e_force_mac_fc(hw); 1035 } else { 1036 if (hw->phy.media_type == e1000_media_type_copper) 1037 ret_val = e1000e_force_mac_fc(hw); 1038 } 1039 1040 if (ret_val) { 1041 e_dbg("Error forcing flow control settings\n"); 1042 return ret_val; 1043 } 1044 1045 /* Check for the case where we have copper media and auto-neg is 1046 * enabled. In this case, we need to check and see if Auto-Neg 1047 * has completed, and if so, how the PHY and link partner has 1048 * flow control configured. 1049 */ 1050 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { 1051 /* Read the MII Status Register and check to see if AutoNeg 1052 * has completed. We read this twice because this reg has 1053 * some "sticky" (latched) bits. 1054 */ 1055 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); 1056 if (ret_val) 1057 return ret_val; 1058 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); 1059 if (ret_val) 1060 return ret_val; 1061 1062 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) { 1063 e_dbg("Copper PHY and Auto Neg has not completed.\n"); 1064 return ret_val; 1065 } 1066 1067 /* The AutoNeg process has completed, so we now need to 1068 * read both the Auto Negotiation Advertisement 1069 * Register (Address 4) and the Auto_Negotiation Base 1070 * Page Ability Register (Address 5) to determine how 1071 * flow control was negotiated. 1072 */ 1073 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg); 1074 if (ret_val) 1075 return ret_val; 1076 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg); 1077 if (ret_val) 1078 return ret_val; 1079 1080 /* Two bits in the Auto Negotiation Advertisement Register 1081 * (Address 4) and two bits in the Auto Negotiation Base 1082 * Page Ability Register (Address 5) determine flow control 1083 * for both the PHY and the link partner. The following 1084 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1085 * 1999, describes these PAUSE resolution bits and how flow 1086 * control is determined based upon these settings. 1087 * NOTE: DC = Don't Care 1088 * 1089 * LOCAL DEVICE | LINK PARTNER 1090 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1091 *-------|---------|-------|---------|-------------------- 1092 * 0 | 0 | DC | DC | e1000_fc_none 1093 * 0 | 1 | 0 | DC | e1000_fc_none 1094 * 0 | 1 | 1 | 0 | e1000_fc_none 1095 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1096 * 1 | 0 | 0 | DC | e1000_fc_none 1097 * 1 | DC | 1 | DC | e1000_fc_full 1098 * 1 | 1 | 0 | 0 | e1000_fc_none 1099 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1100 * 1101 * Are both PAUSE bits set to 1? If so, this implies 1102 * Symmetric Flow Control is enabled at both ends. The 1103 * ASM_DIR bits are irrelevant per the spec. 1104 * 1105 * For Symmetric Flow Control: 1106 * 1107 * LOCAL DEVICE | LINK PARTNER 1108 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1109 *-------|---------|-------|---------|-------------------- 1110 * 1 | DC | 1 | DC | E1000_fc_full 1111 * 1112 */ 1113 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1114 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) { 1115 /* Now we need to check if the user selected Rx ONLY 1116 * of pause frames. In this case, we had to advertise 1117 * FULL flow control because we could not advertise Rx 1118 * ONLY. Hence, we must now check to see if we need to 1119 * turn OFF the TRANSMISSION of PAUSE frames. 1120 */ 1121 if (hw->fc.requested_mode == e1000_fc_full) { 1122 hw->fc.current_mode = e1000_fc_full; 1123 e_dbg("Flow Control = FULL.\n"); 1124 } else { 1125 hw->fc.current_mode = e1000_fc_rx_pause; 1126 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1127 } 1128 } 1129 /* For receiving PAUSE frames ONLY. 1130 * 1131 * LOCAL DEVICE | LINK PARTNER 1132 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1133 *-------|---------|-------|---------|-------------------- 1134 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1135 */ 1136 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1137 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && 1138 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && 1139 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { 1140 hw->fc.current_mode = e1000_fc_tx_pause; 1141 e_dbg("Flow Control = Tx PAUSE frames only.\n"); 1142 } 1143 /* For transmitting PAUSE frames ONLY. 1144 * 1145 * LOCAL DEVICE | LINK PARTNER 1146 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1147 *-------|---------|-------|---------|-------------------- 1148 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1149 */ 1150 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1151 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && 1152 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && 1153 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { 1154 hw->fc.current_mode = e1000_fc_rx_pause; 1155 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1156 } else { 1157 /* Per the IEEE spec, at this point flow control 1158 * should be disabled. 1159 */ 1160 hw->fc.current_mode = e1000_fc_none; 1161 e_dbg("Flow Control = NONE.\n"); 1162 } 1163 1164 /* Now we need to do one last check... If we auto- 1165 * negotiated to HALF DUPLEX, flow control should not be 1166 * enabled per IEEE 802.3 spec. 1167 */ 1168 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); 1169 if (ret_val) { 1170 e_dbg("Error getting link speed and duplex\n"); 1171 return ret_val; 1172 } 1173 1174 if (duplex == HALF_DUPLEX) 1175 hw->fc.current_mode = e1000_fc_none; 1176 1177 /* Now we call a subroutine to actually force the MAC 1178 * controller to use the correct flow control settings. 1179 */ 1180 ret_val = e1000e_force_mac_fc(hw); 1181 if (ret_val) { 1182 e_dbg("Error forcing flow control settings\n"); 1183 return ret_val; 1184 } 1185 } 1186 1187 /* Check for the case where we have SerDes media and auto-neg is 1188 * enabled. In this case, we need to check and see if Auto-Neg 1189 * has completed, and if so, how the PHY and link partner has 1190 * flow control configured. 1191 */ 1192 if ((hw->phy.media_type == e1000_media_type_internal_serdes) && 1193 mac->autoneg) { 1194 /* Read the PCS_LSTS and check to see if AutoNeg 1195 * has completed. 1196 */ 1197 pcs_status_reg = er32(PCS_LSTAT); 1198 1199 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { 1200 e_dbg("PCS Auto Neg has not completed.\n"); 1201 return ret_val; 1202 } 1203 1204 /* The AutoNeg process has completed, so we now need to 1205 * read both the Auto Negotiation Advertisement 1206 * Register (PCS_ANADV) and the Auto_Negotiation Base 1207 * Page Ability Register (PCS_LPAB) to determine how 1208 * flow control was negotiated. 1209 */ 1210 pcs_adv_reg = er32(PCS_ANADV); 1211 pcs_lp_ability_reg = er32(PCS_LPAB); 1212 1213 /* Two bits in the Auto Negotiation Advertisement Register 1214 * (PCS_ANADV) and two bits in the Auto Negotiation Base 1215 * Page Ability Register (PCS_LPAB) determine flow control 1216 * for both the PHY and the link partner. The following 1217 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1218 * 1999, describes these PAUSE resolution bits and how flow 1219 * control is determined based upon these settings. 1220 * NOTE: DC = Don't Care 1221 * 1222 * LOCAL DEVICE | LINK PARTNER 1223 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1224 *-------|---------|-------|---------|-------------------- 1225 * 0 | 0 | DC | DC | e1000_fc_none 1226 * 0 | 1 | 0 | DC | e1000_fc_none 1227 * 0 | 1 | 1 | 0 | e1000_fc_none 1228 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1229 * 1 | 0 | 0 | DC | e1000_fc_none 1230 * 1 | DC | 1 | DC | e1000_fc_full 1231 * 1 | 1 | 0 | 0 | e1000_fc_none 1232 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1233 * 1234 * Are both PAUSE bits set to 1? If so, this implies 1235 * Symmetric Flow Control is enabled at both ends. The 1236 * ASM_DIR bits are irrelevant per the spec. 1237 * 1238 * For Symmetric Flow Control: 1239 * 1240 * LOCAL DEVICE | LINK PARTNER 1241 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1242 *-------|---------|-------|---------|-------------------- 1243 * 1 | DC | 1 | DC | e1000_fc_full 1244 * 1245 */ 1246 if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1247 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { 1248 /* Now we need to check if the user selected Rx ONLY 1249 * of pause frames. In this case, we had to advertise 1250 * FULL flow control because we could not advertise Rx 1251 * ONLY. Hence, we must now check to see if we need to 1252 * turn OFF the TRANSMISSION of PAUSE frames. 1253 */ 1254 if (hw->fc.requested_mode == e1000_fc_full) { 1255 hw->fc.current_mode = e1000_fc_full; 1256 e_dbg("Flow Control = FULL.\n"); 1257 } else { 1258 hw->fc.current_mode = e1000_fc_rx_pause; 1259 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1260 } 1261 } 1262 /* For receiving PAUSE frames ONLY. 1263 * 1264 * LOCAL DEVICE | LINK PARTNER 1265 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1266 *-------|---------|-------|---------|-------------------- 1267 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1268 */ 1269 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && 1270 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1271 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1272 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1273 hw->fc.current_mode = e1000_fc_tx_pause; 1274 e_dbg("Flow Control = Tx PAUSE frames only.\n"); 1275 } 1276 /* For transmitting PAUSE frames ONLY. 1277 * 1278 * LOCAL DEVICE | LINK PARTNER 1279 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1280 *-------|---------|-------|---------|-------------------- 1281 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1282 */ 1283 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1284 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1285 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1286 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1287 hw->fc.current_mode = e1000_fc_rx_pause; 1288 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1289 } else { 1290 /* Per the IEEE spec, at this point flow control 1291 * should be disabled. 1292 */ 1293 hw->fc.current_mode = e1000_fc_none; 1294 e_dbg("Flow Control = NONE.\n"); 1295 } 1296 1297 /* Now we call a subroutine to actually force the MAC 1298 * controller to use the correct flow control settings. 1299 */ 1300 pcs_ctrl_reg = er32(PCS_LCTL); 1301 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1302 ew32(PCS_LCTL, pcs_ctrl_reg); 1303 1304 ret_val = e1000e_force_mac_fc(hw); 1305 if (ret_val) { 1306 e_dbg("Error forcing flow control settings\n"); 1307 return ret_val; 1308 } 1309 } 1310 1311 return 0; 1312 } 1313 1314 /** 1315 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex 1316 * @hw: pointer to the HW structure 1317 * @speed: stores the current speed 1318 * @duplex: stores the current duplex 1319 * 1320 * Read the status register for the current speed/duplex and store the current 1321 * speed and duplex for copper connections. 1322 **/ 1323 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, 1324 u16 *duplex) 1325 { 1326 u32 status; 1327 1328 status = er32(STATUS); 1329 if (status & E1000_STATUS_SPEED_1000) 1330 *speed = SPEED_1000; 1331 else if (status & E1000_STATUS_SPEED_100) 1332 *speed = SPEED_100; 1333 else 1334 *speed = SPEED_10; 1335 1336 if (status & E1000_STATUS_FD) 1337 *duplex = FULL_DUPLEX; 1338 else 1339 *duplex = HALF_DUPLEX; 1340 1341 e_dbg("%u Mbps, %s Duplex\n", 1342 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, 1343 *duplex == FULL_DUPLEX ? "Full" : "Half"); 1344 1345 return 0; 1346 } 1347 1348 /** 1349 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex 1350 * @hw: pointer to the HW structure 1351 * @speed: stores the current speed 1352 * @duplex: stores the current duplex 1353 * 1354 * Sets the speed and duplex to gigabit full duplex (the only possible option) 1355 * for fiber/serdes links. 1356 **/ 1357 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused 1358 *hw, u16 *speed, u16 *duplex) 1359 { 1360 *speed = SPEED_1000; 1361 *duplex = FULL_DUPLEX; 1362 1363 return 0; 1364 } 1365 1366 /** 1367 * e1000e_get_hw_semaphore - Acquire hardware semaphore 1368 * @hw: pointer to the HW structure 1369 * 1370 * Acquire the HW semaphore to access the PHY or NVM 1371 **/ 1372 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) 1373 { 1374 u32 swsm; 1375 s32 timeout = hw->nvm.word_size + 1; 1376 s32 i = 0; 1377 1378 /* Get the SW semaphore */ 1379 while (i < timeout) { 1380 swsm = er32(SWSM); 1381 if (!(swsm & E1000_SWSM_SMBI)) 1382 break; 1383 1384 usleep_range(50, 100); 1385 i++; 1386 } 1387 1388 if (i == timeout) { 1389 e_dbg("Driver can't access device - SMBI bit is set.\n"); 1390 return -E1000_ERR_NVM; 1391 } 1392 1393 /* Get the FW semaphore. */ 1394 for (i = 0; i < timeout; i++) { 1395 swsm = er32(SWSM); 1396 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 1397 1398 /* Semaphore acquired if bit latched */ 1399 if (er32(SWSM) & E1000_SWSM_SWESMBI) 1400 break; 1401 1402 usleep_range(50, 100); 1403 } 1404 1405 if (i == timeout) { 1406 /* Release semaphores */ 1407 e1000e_put_hw_semaphore(hw); 1408 e_dbg("Driver can't access the NVM\n"); 1409 return -E1000_ERR_NVM; 1410 } 1411 1412 return 0; 1413 } 1414 1415 /** 1416 * e1000e_put_hw_semaphore - Release hardware semaphore 1417 * @hw: pointer to the HW structure 1418 * 1419 * Release hardware semaphore used to access the PHY or NVM 1420 **/ 1421 void e1000e_put_hw_semaphore(struct e1000_hw *hw) 1422 { 1423 u32 swsm; 1424 1425 swsm = er32(SWSM); 1426 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1427 ew32(SWSM, swsm); 1428 } 1429 1430 /** 1431 * e1000e_get_auto_rd_done - Check for auto read completion 1432 * @hw: pointer to the HW structure 1433 * 1434 * Check EEPROM for Auto Read done bit. 1435 **/ 1436 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) 1437 { 1438 s32 i = 0; 1439 1440 while (i < AUTO_READ_DONE_TIMEOUT) { 1441 if (er32(EECD) & E1000_EECD_AUTO_RD) 1442 break; 1443 usleep_range(1000, 2000); 1444 i++; 1445 } 1446 1447 if (i == AUTO_READ_DONE_TIMEOUT) { 1448 e_dbg("Auto read by HW from NVM has not completed.\n"); 1449 return -E1000_ERR_RESET; 1450 } 1451 1452 return 0; 1453 } 1454 1455 /** 1456 * e1000e_valid_led_default - Verify a valid default LED config 1457 * @hw: pointer to the HW structure 1458 * @data: pointer to the NVM (EEPROM) 1459 * 1460 * Read the EEPROM for the current default LED configuration. If the 1461 * LED configuration is not valid, set to a valid LED configuration. 1462 **/ 1463 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) 1464 { 1465 s32 ret_val; 1466 1467 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1468 if (ret_val) { 1469 e_dbg("NVM Read Error\n"); 1470 return ret_val; 1471 } 1472 1473 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 1474 *data = ID_LED_DEFAULT; 1475 1476 return 0; 1477 } 1478 1479 /** 1480 * e1000e_id_led_init_generic - 1481 * @hw: pointer to the HW structure 1482 * 1483 **/ 1484 s32 e1000e_id_led_init_generic(struct e1000_hw *hw) 1485 { 1486 struct e1000_mac_info *mac = &hw->mac; 1487 s32 ret_val; 1488 const u32 ledctl_mask = 0x000000FF; 1489 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 1490 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 1491 u16 data, i, temp; 1492 const u16 led_mask = 0x0F; 1493 1494 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 1495 if (ret_val) 1496 return ret_val; 1497 1498 mac->ledctl_default = er32(LEDCTL); 1499 mac->ledctl_mode1 = mac->ledctl_default; 1500 mac->ledctl_mode2 = mac->ledctl_default; 1501 1502 for (i = 0; i < 4; i++) { 1503 temp = (data >> (i << 2)) & led_mask; 1504 switch (temp) { 1505 case ID_LED_ON1_DEF2: 1506 case ID_LED_ON1_ON2: 1507 case ID_LED_ON1_OFF2: 1508 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1509 mac->ledctl_mode1 |= ledctl_on << (i << 3); 1510 break; 1511 case ID_LED_OFF1_DEF2: 1512 case ID_LED_OFF1_ON2: 1513 case ID_LED_OFF1_OFF2: 1514 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1515 mac->ledctl_mode1 |= ledctl_off << (i << 3); 1516 break; 1517 default: 1518 /* Do nothing */ 1519 break; 1520 } 1521 switch (temp) { 1522 case ID_LED_DEF1_ON2: 1523 case ID_LED_ON1_ON2: 1524 case ID_LED_OFF1_ON2: 1525 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1526 mac->ledctl_mode2 |= ledctl_on << (i << 3); 1527 break; 1528 case ID_LED_DEF1_OFF2: 1529 case ID_LED_ON1_OFF2: 1530 case ID_LED_OFF1_OFF2: 1531 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1532 mac->ledctl_mode2 |= ledctl_off << (i << 3); 1533 break; 1534 default: 1535 /* Do nothing */ 1536 break; 1537 } 1538 } 1539 1540 return 0; 1541 } 1542 1543 /** 1544 * e1000e_setup_led_generic - Configures SW controllable LED 1545 * @hw: pointer to the HW structure 1546 * 1547 * This prepares the SW controllable LED for use and saves the current state 1548 * of the LED so it can be later restored. 1549 **/ 1550 s32 e1000e_setup_led_generic(struct e1000_hw *hw) 1551 { 1552 u32 ledctl; 1553 1554 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) 1555 return -E1000_ERR_CONFIG; 1556 1557 if (hw->phy.media_type == e1000_media_type_fiber) { 1558 ledctl = er32(LEDCTL); 1559 hw->mac.ledctl_default = ledctl; 1560 /* Turn off LED0 */ 1561 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | 1562 E1000_LEDCTL_LED0_MODE_MASK); 1563 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << 1564 E1000_LEDCTL_LED0_MODE_SHIFT); 1565 ew32(LEDCTL, ledctl); 1566 } else if (hw->phy.media_type == e1000_media_type_copper) { 1567 ew32(LEDCTL, hw->mac.ledctl_mode1); 1568 } 1569 1570 return 0; 1571 } 1572 1573 /** 1574 * e1000e_cleanup_led_generic - Set LED config to default operation 1575 * @hw: pointer to the HW structure 1576 * 1577 * Remove the current LED configuration and set the LED configuration 1578 * to the default value, saved from the EEPROM. 1579 **/ 1580 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) 1581 { 1582 ew32(LEDCTL, hw->mac.ledctl_default); 1583 return 0; 1584 } 1585 1586 /** 1587 * e1000e_blink_led_generic - Blink LED 1588 * @hw: pointer to the HW structure 1589 * 1590 * Blink the LEDs which are set to be on. 1591 **/ 1592 s32 e1000e_blink_led_generic(struct e1000_hw *hw) 1593 { 1594 u32 ledctl_blink = 0; 1595 u32 i; 1596 1597 if (hw->phy.media_type == e1000_media_type_fiber) { 1598 /* always blink LED0 for PCI-E fiber */ 1599 ledctl_blink = E1000_LEDCTL_LED0_BLINK | 1600 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); 1601 } else { 1602 /* Set the blink bit for each LED that's "on" (0x0E) 1603 * (or "off" if inverted) in ledctl_mode2. The blink 1604 * logic in hardware only works when mode is set to "on" 1605 * so it must be changed accordingly when the mode is 1606 * "off" and inverted. 1607 */ 1608 ledctl_blink = hw->mac.ledctl_mode2; 1609 for (i = 0; i < 32; i += 8) { 1610 u32 mode = (hw->mac.ledctl_mode2 >> i) & 1611 E1000_LEDCTL_LED0_MODE_MASK; 1612 u32 led_default = hw->mac.ledctl_default >> i; 1613 1614 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && 1615 (mode == E1000_LEDCTL_MODE_LED_ON)) || 1616 ((led_default & E1000_LEDCTL_LED0_IVRT) && 1617 (mode == E1000_LEDCTL_MODE_LED_OFF))) { 1618 ledctl_blink &= 1619 ~(E1000_LEDCTL_LED0_MODE_MASK << i); 1620 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | 1621 E1000_LEDCTL_MODE_LED_ON) << i; 1622 } 1623 } 1624 } 1625 1626 ew32(LEDCTL, ledctl_blink); 1627 1628 return 0; 1629 } 1630 1631 /** 1632 * e1000e_led_on_generic - Turn LED on 1633 * @hw: pointer to the HW structure 1634 * 1635 * Turn LED on. 1636 **/ 1637 s32 e1000e_led_on_generic(struct e1000_hw *hw) 1638 { 1639 u32 ctrl; 1640 1641 switch (hw->phy.media_type) { 1642 case e1000_media_type_fiber: 1643 ctrl = er32(CTRL); 1644 ctrl &= ~E1000_CTRL_SWDPIN0; 1645 ctrl |= E1000_CTRL_SWDPIO0; 1646 ew32(CTRL, ctrl); 1647 break; 1648 case e1000_media_type_copper: 1649 ew32(LEDCTL, hw->mac.ledctl_mode2); 1650 break; 1651 default: 1652 break; 1653 } 1654 1655 return 0; 1656 } 1657 1658 /** 1659 * e1000e_led_off_generic - Turn LED off 1660 * @hw: pointer to the HW structure 1661 * 1662 * Turn LED off. 1663 **/ 1664 s32 e1000e_led_off_generic(struct e1000_hw *hw) 1665 { 1666 u32 ctrl; 1667 1668 switch (hw->phy.media_type) { 1669 case e1000_media_type_fiber: 1670 ctrl = er32(CTRL); 1671 ctrl |= E1000_CTRL_SWDPIN0; 1672 ctrl |= E1000_CTRL_SWDPIO0; 1673 ew32(CTRL, ctrl); 1674 break; 1675 case e1000_media_type_copper: 1676 ew32(LEDCTL, hw->mac.ledctl_mode1); 1677 break; 1678 default: 1679 break; 1680 } 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities 1687 * @hw: pointer to the HW structure 1688 * @no_snoop: bitmap of snoop events 1689 * 1690 * Set the PCI-express register to snoop for events enabled in 'no_snoop'. 1691 **/ 1692 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) 1693 { 1694 u32 gcr; 1695 1696 if (no_snoop) { 1697 gcr = er32(GCR); 1698 gcr &= ~(PCIE_NO_SNOOP_ALL); 1699 gcr |= no_snoop; 1700 ew32(GCR, gcr); 1701 } 1702 } 1703 1704 /** 1705 * e1000e_disable_pcie_master - Disables PCI-express master access 1706 * @hw: pointer to the HW structure 1707 * 1708 * Returns 0 if successful, else returns -10 1709 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 1710 * the master requests to be disabled. 1711 * 1712 * Disables PCI-Express master access and verifies there are no pending 1713 * requests. 1714 **/ 1715 s32 e1000e_disable_pcie_master(struct e1000_hw *hw) 1716 { 1717 u32 ctrl; 1718 s32 timeout = MASTER_DISABLE_TIMEOUT; 1719 1720 ctrl = er32(CTRL); 1721 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; 1722 ew32(CTRL, ctrl); 1723 1724 while (timeout) { 1725 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) 1726 break; 1727 usleep_range(100, 200); 1728 timeout--; 1729 } 1730 1731 if (!timeout) { 1732 e_dbg("Master requests are pending.\n"); 1733 return -E1000_ERR_MASTER_REQUESTS_PENDING; 1734 } 1735 1736 return 0; 1737 } 1738 1739 /** 1740 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing 1741 * @hw: pointer to the HW structure 1742 * 1743 * Reset the Adaptive Interframe Spacing throttle to default values. 1744 **/ 1745 void e1000e_reset_adaptive(struct e1000_hw *hw) 1746 { 1747 struct e1000_mac_info *mac = &hw->mac; 1748 1749 if (!mac->adaptive_ifs) { 1750 e_dbg("Not in Adaptive IFS mode!\n"); 1751 return; 1752 } 1753 1754 mac->current_ifs_val = 0; 1755 mac->ifs_min_val = IFS_MIN; 1756 mac->ifs_max_val = IFS_MAX; 1757 mac->ifs_step_size = IFS_STEP; 1758 mac->ifs_ratio = IFS_RATIO; 1759 1760 mac->in_ifs_mode = false; 1761 ew32(AIT, 0); 1762 } 1763 1764 /** 1765 * e1000e_update_adaptive - Update Adaptive Interframe Spacing 1766 * @hw: pointer to the HW structure 1767 * 1768 * Update the Adaptive Interframe Spacing Throttle value based on the 1769 * time between transmitted packets and time between collisions. 1770 **/ 1771 void e1000e_update_adaptive(struct e1000_hw *hw) 1772 { 1773 struct e1000_mac_info *mac = &hw->mac; 1774 1775 if (!mac->adaptive_ifs) { 1776 e_dbg("Not in Adaptive IFS mode!\n"); 1777 return; 1778 } 1779 1780 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { 1781 if (mac->tx_packet_delta > MIN_NUM_XMITS) { 1782 mac->in_ifs_mode = true; 1783 if (mac->current_ifs_val < mac->ifs_max_val) { 1784 if (!mac->current_ifs_val) 1785 mac->current_ifs_val = mac->ifs_min_val; 1786 else 1787 mac->current_ifs_val += 1788 mac->ifs_step_size; 1789 ew32(AIT, mac->current_ifs_val); 1790 } 1791 } 1792 } else { 1793 if (mac->in_ifs_mode && 1794 (mac->tx_packet_delta <= MIN_NUM_XMITS)) { 1795 mac->current_ifs_val = 0; 1796 mac->in_ifs_mode = false; 1797 ew32(AIT, 0); 1798 } 1799 } 1800 } 1801