xref: /linux/drivers/net/ethernet/intel/e1000e/mac.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 /**
32  *  e1000e_get_bus_info_pcie - Get PCIe bus information
33  *  @hw: pointer to the HW structure
34  *
35  *  Determines and stores the system bus information for a particular
36  *  network interface.  The following bus information is determined and stored:
37  *  bus speed, bus width, type (PCIe), and PCIe function.
38  **/
39 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40 {
41 	struct e1000_mac_info *mac = &hw->mac;
42 	struct e1000_bus_info *bus = &hw->bus;
43 	struct e1000_adapter *adapter = hw->adapter;
44 	u16 pcie_link_status, cap_offset;
45 
46 	cap_offset = adapter->pdev->pcie_cap;
47 	if (!cap_offset) {
48 		bus->width = e1000_bus_width_unknown;
49 	} else {
50 		pci_read_config_word(adapter->pdev,
51 				     cap_offset + PCIE_LINK_STATUS,
52 				     &pcie_link_status);
53 		bus->width = (enum e1000_bus_width)((pcie_link_status &
54 						     PCIE_LINK_WIDTH_MASK) >>
55 						    PCIE_LINK_WIDTH_SHIFT);
56 	}
57 
58 	mac->ops.set_lan_id(hw);
59 
60 	return 0;
61 }
62 
63 /**
64  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65  *
66  *  @hw: pointer to the HW structure
67  *
68  *  Determines the LAN function id by reading memory-mapped registers
69  *  and swaps the port value if requested.
70  **/
71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72 {
73 	struct e1000_bus_info *bus = &hw->bus;
74 	u32 reg;
75 
76 	/* The status register reports the correct function number
77 	 * for the device regardless of function swap state.
78 	 */
79 	reg = er32(STATUS);
80 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
81 }
82 
83 /**
84  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
85  *  @hw: pointer to the HW structure
86  *
87  *  Sets the LAN function id to zero for a single port device.
88  **/
89 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
90 {
91 	struct e1000_bus_info *bus = &hw->bus;
92 
93 	bus->func = 0;
94 }
95 
96 /**
97  *  e1000_clear_vfta_generic - Clear VLAN filter table
98  *  @hw: pointer to the HW structure
99  *
100  *  Clears the register array which contains the VLAN filter table by
101  *  setting all the values to 0.
102  **/
103 void e1000_clear_vfta_generic(struct e1000_hw *hw)
104 {
105 	u32 offset;
106 
107 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
108 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
109 		e1e_flush();
110 	}
111 }
112 
113 /**
114  *  e1000_write_vfta_generic - Write value to VLAN filter table
115  *  @hw: pointer to the HW structure
116  *  @offset: register offset in VLAN filter table
117  *  @value: register value written to VLAN filter table
118  *
119  *  Writes value at the given offset in the register array which stores
120  *  the VLAN filter table.
121  **/
122 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
123 {
124 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
125 	e1e_flush();
126 }
127 
128 /**
129  *  e1000e_init_rx_addrs - Initialize receive address's
130  *  @hw: pointer to the HW structure
131  *  @rar_count: receive address registers
132  *
133  *  Setup the receive address registers by setting the base receive address
134  *  register to the devices MAC address and clearing all the other receive
135  *  address registers to 0.
136  **/
137 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
138 {
139 	u32 i;
140 	u8 mac_addr[ETH_ALEN] = { 0 };
141 
142 	/* Setup the receive address */
143 	e_dbg("Programming MAC Address into RAR[0]\n");
144 
145 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
146 
147 	/* Zero out the other (rar_entry_count - 1) receive addresses */
148 	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
149 	for (i = 1; i < rar_count; i++)
150 		hw->mac.ops.rar_set(hw, mac_addr, i);
151 }
152 
153 /**
154  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
155  *  @hw: pointer to the HW structure
156  *
157  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
158  *  can be setup by pre-boot software and must be treated like a permanent
159  *  address and must override the actual permanent MAC address. If an
160  *  alternate MAC address is found it is programmed into RAR0, replacing
161  *  the permanent address that was installed into RAR0 by the Si on reset.
162  *  This function will return SUCCESS unless it encounters an error while
163  *  reading the EEPROM.
164  **/
165 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
166 {
167 	u32 i;
168 	s32 ret_val = 0;
169 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
170 	u8 alt_mac_addr[ETH_ALEN];
171 
172 	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
173 	if (ret_val)
174 		return ret_val;
175 
176 	/* not supported on 82573 */
177 	if (hw->mac.type == e1000_82573)
178 		return 0;
179 
180 	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
181 				 &nvm_alt_mac_addr_offset);
182 	if (ret_val) {
183 		e_dbg("NVM Read Error\n");
184 		return ret_val;
185 	}
186 
187 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
188 	    (nvm_alt_mac_addr_offset == 0x0000))
189 		/* There is no Alternate MAC Address */
190 		return 0;
191 
192 	if (hw->bus.func == E1000_FUNC_1)
193 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
194 	for (i = 0; i < ETH_ALEN; i += 2) {
195 		offset = nvm_alt_mac_addr_offset + (i >> 1);
196 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
197 		if (ret_val) {
198 			e_dbg("NVM Read Error\n");
199 			return ret_val;
200 		}
201 
202 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
203 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
204 	}
205 
206 	/* if multicast bit is set, the alternate address will not be used */
207 	if (is_multicast_ether_addr(alt_mac_addr)) {
208 		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
209 		return 0;
210 	}
211 
212 	/* We have a valid alternate MAC address, and we want to treat it the
213 	 * same as the normal permanent MAC address stored by the HW into the
214 	 * RAR. Do this by mapping this address into RAR0.
215 	 */
216 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
217 
218 	return 0;
219 }
220 
221 /**
222  *  e1000e_rar_set_generic - Set receive address register
223  *  @hw: pointer to the HW structure
224  *  @addr: pointer to the receive address
225  *  @index: receive address array register
226  *
227  *  Sets the receive address array register at index to the address passed
228  *  in by addr.
229  **/
230 void e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
231 {
232 	u32 rar_low, rar_high;
233 
234 	/* HW expects these in little endian so we reverse the byte order
235 	 * from network order (big endian) to little endian
236 	 */
237 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
238 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
239 
240 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
241 
242 	/* If MAC address zero, no need to set the AV bit */
243 	if (rar_low || rar_high)
244 		rar_high |= E1000_RAH_AV;
245 
246 	/* Some bridges will combine consecutive 32-bit writes into
247 	 * a single burst write, which will malfunction on some parts.
248 	 * The flushes avoid this.
249 	 */
250 	ew32(RAL(index), rar_low);
251 	e1e_flush();
252 	ew32(RAH(index), rar_high);
253 	e1e_flush();
254 }
255 
256 /**
257  *  e1000_hash_mc_addr - Generate a multicast hash value
258  *  @hw: pointer to the HW structure
259  *  @mc_addr: pointer to a multicast address
260  *
261  *  Generates a multicast address hash value which is used to determine
262  *  the multicast filter table array address and new table value.
263  **/
264 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
265 {
266 	u32 hash_value, hash_mask;
267 	u8 bit_shift = 0;
268 
269 	/* Register count multiplied by bits per register */
270 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
271 
272 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
273 	 * where 0xFF would still fall within the hash mask.
274 	 */
275 	while (hash_mask >> bit_shift != 0xFF)
276 		bit_shift++;
277 
278 	/* The portion of the address that is used for the hash table
279 	 * is determined by the mc_filter_type setting.
280 	 * The algorithm is such that there is a total of 8 bits of shifting.
281 	 * The bit_shift for a mc_filter_type of 0 represents the number of
282 	 * left-shifts where the MSB of mc_addr[5] would still fall within
283 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
284 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
285 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
286 	 * cases are a variation of this algorithm...essentially raising the
287 	 * number of bits to shift mc_addr[5] left, while still keeping the
288 	 * 8-bit shifting total.
289 	 *
290 	 * For example, given the following Destination MAC Address and an
291 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
292 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
293 	 * values resulting from each mc_filter_type...
294 	 * [0] [1] [2] [3] [4] [5]
295 	 * 01  AA  00  12  34  56
296 	 * LSB           MSB
297 	 *
298 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
299 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
300 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
301 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
302 	 */
303 	switch (hw->mac.mc_filter_type) {
304 	default:
305 	case 0:
306 		break;
307 	case 1:
308 		bit_shift += 1;
309 		break;
310 	case 2:
311 		bit_shift += 2;
312 		break;
313 	case 3:
314 		bit_shift += 4;
315 		break;
316 	}
317 
318 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
319 				   (((u16)mc_addr[5]) << bit_shift)));
320 
321 	return hash_value;
322 }
323 
324 /**
325  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
326  *  @hw: pointer to the HW structure
327  *  @mc_addr_list: array of multicast addresses to program
328  *  @mc_addr_count: number of multicast addresses to program
329  *
330  *  Updates entire Multicast Table Array.
331  *  The caller must have a packed mc_addr_list of multicast addresses.
332  **/
333 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
334 					u8 *mc_addr_list, u32 mc_addr_count)
335 {
336 	u32 hash_value, hash_bit, hash_reg;
337 	int i;
338 
339 	/* clear mta_shadow */
340 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
341 
342 	/* update mta_shadow from mc_addr_list */
343 	for (i = 0; (u32)i < mc_addr_count; i++) {
344 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
345 
346 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
347 		hash_bit = hash_value & 0x1F;
348 
349 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
350 		mc_addr_list += (ETH_ALEN);
351 	}
352 
353 	/* replace the entire MTA table */
354 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
355 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
356 	e1e_flush();
357 }
358 
359 /**
360  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
361  *  @hw: pointer to the HW structure
362  *
363  *  Clears the base hardware counters by reading the counter registers.
364  **/
365 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
366 {
367 	er32(CRCERRS);
368 	er32(SYMERRS);
369 	er32(MPC);
370 	er32(SCC);
371 	er32(ECOL);
372 	er32(MCC);
373 	er32(LATECOL);
374 	er32(COLC);
375 	er32(DC);
376 	er32(SEC);
377 	er32(RLEC);
378 	er32(XONRXC);
379 	er32(XONTXC);
380 	er32(XOFFRXC);
381 	er32(XOFFTXC);
382 	er32(FCRUC);
383 	er32(GPRC);
384 	er32(BPRC);
385 	er32(MPRC);
386 	er32(GPTC);
387 	er32(GORCL);
388 	er32(GORCH);
389 	er32(GOTCL);
390 	er32(GOTCH);
391 	er32(RNBC);
392 	er32(RUC);
393 	er32(RFC);
394 	er32(ROC);
395 	er32(RJC);
396 	er32(TORL);
397 	er32(TORH);
398 	er32(TOTL);
399 	er32(TOTH);
400 	er32(TPR);
401 	er32(TPT);
402 	er32(MPTC);
403 	er32(BPTC);
404 }
405 
406 /**
407  *  e1000e_check_for_copper_link - Check for link (Copper)
408  *  @hw: pointer to the HW structure
409  *
410  *  Checks to see of the link status of the hardware has changed.  If a
411  *  change in link status has been detected, then we read the PHY registers
412  *  to get the current speed/duplex if link exists.
413  **/
414 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
415 {
416 	struct e1000_mac_info *mac = &hw->mac;
417 	s32 ret_val;
418 	bool link;
419 
420 	/* We only want to go out to the PHY registers to see if Auto-Neg
421 	 * has completed and/or if our link status has changed.  The
422 	 * get_link_status flag is set upon receiving a Link Status
423 	 * Change or Rx Sequence Error interrupt.
424 	 */
425 	if (!mac->get_link_status)
426 		return 0;
427 
428 	/* First we want to see if the MII Status Register reports
429 	 * link.  If so, then we want to get the current speed/duplex
430 	 * of the PHY.
431 	 */
432 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
433 	if (ret_val)
434 		return ret_val;
435 
436 	if (!link)
437 		return 0;	/* No link detected */
438 
439 	mac->get_link_status = false;
440 
441 	/* Check if there was DownShift, must be checked
442 	 * immediately after link-up
443 	 */
444 	e1000e_check_downshift(hw);
445 
446 	/* If we are forcing speed/duplex, then we simply return since
447 	 * we have already determined whether we have link or not.
448 	 */
449 	if (!mac->autoneg)
450 		return -E1000_ERR_CONFIG;
451 
452 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
453 	 * of MAC speed/duplex configuration.  So we only need to
454 	 * configure Collision Distance in the MAC.
455 	 */
456 	mac->ops.config_collision_dist(hw);
457 
458 	/* Configure Flow Control now that Auto-Neg has completed.
459 	 * First, we need to restore the desired flow control
460 	 * settings because we may have had to re-autoneg with a
461 	 * different link partner.
462 	 */
463 	ret_val = e1000e_config_fc_after_link_up(hw);
464 	if (ret_val)
465 		e_dbg("Error configuring flow control\n");
466 
467 	return ret_val;
468 }
469 
470 /**
471  *  e1000e_check_for_fiber_link - Check for link (Fiber)
472  *  @hw: pointer to the HW structure
473  *
474  *  Checks for link up on the hardware.  If link is not up and we have
475  *  a signal, then we need to force link up.
476  **/
477 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
478 {
479 	struct e1000_mac_info *mac = &hw->mac;
480 	u32 rxcw;
481 	u32 ctrl;
482 	u32 status;
483 	s32 ret_val;
484 
485 	ctrl = er32(CTRL);
486 	status = er32(STATUS);
487 	rxcw = er32(RXCW);
488 
489 	/* If we don't have link (auto-negotiation failed or link partner
490 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
491 	 * and our link partner is not trying to auto-negotiate with us (we
492 	 * are receiving idles or data), we need to force link up. We also
493 	 * need to give auto-negotiation time to complete, in case the cable
494 	 * was just plugged in. The autoneg_failed flag does this.
495 	 */
496 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
497 	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
498 	    !(rxcw & E1000_RXCW_C)) {
499 		if (!mac->autoneg_failed) {
500 			mac->autoneg_failed = true;
501 			return 0;
502 		}
503 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
504 
505 		/* Disable auto-negotiation in the TXCW register */
506 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
507 
508 		/* Force link-up and also force full-duplex. */
509 		ctrl = er32(CTRL);
510 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
511 		ew32(CTRL, ctrl);
512 
513 		/* Configure Flow Control after forcing link up. */
514 		ret_val = e1000e_config_fc_after_link_up(hw);
515 		if (ret_val) {
516 			e_dbg("Error configuring flow control\n");
517 			return ret_val;
518 		}
519 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
520 		/* If we are forcing link and we are receiving /C/ ordered
521 		 * sets, re-enable auto-negotiation in the TXCW register
522 		 * and disable forced link in the Device Control register
523 		 * in an attempt to auto-negotiate with our link partner.
524 		 */
525 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
526 		ew32(TXCW, mac->txcw);
527 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
528 
529 		mac->serdes_has_link = true;
530 	}
531 
532 	return 0;
533 }
534 
535 /**
536  *  e1000e_check_for_serdes_link - Check for link (Serdes)
537  *  @hw: pointer to the HW structure
538  *
539  *  Checks for link up on the hardware.  If link is not up and we have
540  *  a signal, then we need to force link up.
541  **/
542 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
543 {
544 	struct e1000_mac_info *mac = &hw->mac;
545 	u32 rxcw;
546 	u32 ctrl;
547 	u32 status;
548 	s32 ret_val;
549 
550 	ctrl = er32(CTRL);
551 	status = er32(STATUS);
552 	rxcw = er32(RXCW);
553 
554 	/* If we don't have link (auto-negotiation failed or link partner
555 	 * cannot auto-negotiate), and our link partner is not trying to
556 	 * auto-negotiate with us (we are receiving idles or data),
557 	 * we need to force link up. We also need to give auto-negotiation
558 	 * time to complete.
559 	 */
560 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
561 	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
562 		if (!mac->autoneg_failed) {
563 			mac->autoneg_failed = true;
564 			return 0;
565 		}
566 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
567 
568 		/* Disable auto-negotiation in the TXCW register */
569 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
570 
571 		/* Force link-up and also force full-duplex. */
572 		ctrl = er32(CTRL);
573 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
574 		ew32(CTRL, ctrl);
575 
576 		/* Configure Flow Control after forcing link up. */
577 		ret_val = e1000e_config_fc_after_link_up(hw);
578 		if (ret_val) {
579 			e_dbg("Error configuring flow control\n");
580 			return ret_val;
581 		}
582 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
583 		/* If we are forcing link and we are receiving /C/ ordered
584 		 * sets, re-enable auto-negotiation in the TXCW register
585 		 * and disable forced link in the Device Control register
586 		 * in an attempt to auto-negotiate with our link partner.
587 		 */
588 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
589 		ew32(TXCW, mac->txcw);
590 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
591 
592 		mac->serdes_has_link = true;
593 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
594 		/* If we force link for non-auto-negotiation switch, check
595 		 * link status based on MAC synchronization for internal
596 		 * serdes media type.
597 		 */
598 		/* SYNCH bit and IV bit are sticky. */
599 		udelay(10);
600 		rxcw = er32(RXCW);
601 		if (rxcw & E1000_RXCW_SYNCH) {
602 			if (!(rxcw & E1000_RXCW_IV)) {
603 				mac->serdes_has_link = true;
604 				e_dbg("SERDES: Link up - forced.\n");
605 			}
606 		} else {
607 			mac->serdes_has_link = false;
608 			e_dbg("SERDES: Link down - force failed.\n");
609 		}
610 	}
611 
612 	if (E1000_TXCW_ANE & er32(TXCW)) {
613 		status = er32(STATUS);
614 		if (status & E1000_STATUS_LU) {
615 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
616 			udelay(10);
617 			rxcw = er32(RXCW);
618 			if (rxcw & E1000_RXCW_SYNCH) {
619 				if (!(rxcw & E1000_RXCW_IV)) {
620 					mac->serdes_has_link = true;
621 					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
622 				} else {
623 					mac->serdes_has_link = false;
624 					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
625 				}
626 			} else {
627 				mac->serdes_has_link = false;
628 				e_dbg("SERDES: Link down - no sync.\n");
629 			}
630 		} else {
631 			mac->serdes_has_link = false;
632 			e_dbg("SERDES: Link down - autoneg failed\n");
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  *  e1000_set_default_fc_generic - Set flow control default values
641  *  @hw: pointer to the HW structure
642  *
643  *  Read the EEPROM for the default values for flow control and store the
644  *  values.
645  **/
646 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
647 {
648 	s32 ret_val;
649 	u16 nvm_data;
650 
651 	/* Read and store word 0x0F of the EEPROM. This word contains bits
652 	 * that determine the hardware's default PAUSE (flow control) mode,
653 	 * a bit that determines whether the HW defaults to enabling or
654 	 * disabling auto-negotiation, and the direction of the
655 	 * SW defined pins. If there is no SW over-ride of the flow
656 	 * control setting, then the variable hw->fc will
657 	 * be initialized based on a value in the EEPROM.
658 	 */
659 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
660 
661 	if (ret_val) {
662 		e_dbg("NVM Read Error\n");
663 		return ret_val;
664 	}
665 
666 	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
667 		hw->fc.requested_mode = e1000_fc_none;
668 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
669 		hw->fc.requested_mode = e1000_fc_tx_pause;
670 	else
671 		hw->fc.requested_mode = e1000_fc_full;
672 
673 	return 0;
674 }
675 
676 /**
677  *  e1000e_setup_link_generic - Setup flow control and link settings
678  *  @hw: pointer to the HW structure
679  *
680  *  Determines which flow control settings to use, then configures flow
681  *  control.  Calls the appropriate media-specific link configuration
682  *  function.  Assuming the adapter has a valid link partner, a valid link
683  *  should be established.  Assumes the hardware has previously been reset
684  *  and the transmitter and receiver are not enabled.
685  **/
686 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
687 {
688 	s32 ret_val;
689 
690 	/* In the case of the phy reset being blocked, we already have a link.
691 	 * We do not need to set it up again.
692 	 */
693 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
694 		return 0;
695 
696 	/* If requested flow control is set to default, set flow control
697 	 * based on the EEPROM flow control settings.
698 	 */
699 	if (hw->fc.requested_mode == e1000_fc_default) {
700 		ret_val = e1000_set_default_fc_generic(hw);
701 		if (ret_val)
702 			return ret_val;
703 	}
704 
705 	/* Save off the requested flow control mode for use later.  Depending
706 	 * on the link partner's capabilities, we may or may not use this mode.
707 	 */
708 	hw->fc.current_mode = hw->fc.requested_mode;
709 
710 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
711 
712 	/* Call the necessary media_type subroutine to configure the link. */
713 	ret_val = hw->mac.ops.setup_physical_interface(hw);
714 	if (ret_val)
715 		return ret_val;
716 
717 	/* Initialize the flow control address, type, and PAUSE timer
718 	 * registers to their default values.  This is done even if flow
719 	 * control is disabled, because it does not hurt anything to
720 	 * initialize these registers.
721 	 */
722 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
723 	ew32(FCT, FLOW_CONTROL_TYPE);
724 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
725 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
726 
727 	ew32(FCTTV, hw->fc.pause_time);
728 
729 	return e1000e_set_fc_watermarks(hw);
730 }
731 
732 /**
733  *  e1000_commit_fc_settings_generic - Configure flow control
734  *  @hw: pointer to the HW structure
735  *
736  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
737  *  base on the flow control settings in e1000_mac_info.
738  **/
739 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
740 {
741 	struct e1000_mac_info *mac = &hw->mac;
742 	u32 txcw;
743 
744 	/* Check for a software override of the flow control settings, and
745 	 * setup the device accordingly.  If auto-negotiation is enabled, then
746 	 * software will have to set the "PAUSE" bits to the correct value in
747 	 * the Transmit Config Word Register (TXCW) and re-start auto-
748 	 * negotiation.  However, if auto-negotiation is disabled, then
749 	 * software will have to manually configure the two flow control enable
750 	 * bits in the CTRL register.
751 	 *
752 	 * The possible values of the "fc" parameter are:
753 	 *      0:  Flow control is completely disabled
754 	 *      1:  Rx flow control is enabled (we can receive pause frames,
755 	 *          but not send pause frames).
756 	 *      2:  Tx flow control is enabled (we can send pause frames but we
757 	 *          do not support receiving pause frames).
758 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
759 	 */
760 	switch (hw->fc.current_mode) {
761 	case e1000_fc_none:
762 		/* Flow control completely disabled by a software over-ride. */
763 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
764 		break;
765 	case e1000_fc_rx_pause:
766 		/* Rx Flow control is enabled and Tx Flow control is disabled
767 		 * by a software over-ride. Since there really isn't a way to
768 		 * advertise that we are capable of Rx Pause ONLY, we will
769 		 * advertise that we support both symmetric and asymmetric Rx
770 		 * PAUSE.  Later, we will disable the adapter's ability to send
771 		 * PAUSE frames.
772 		 */
773 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
774 		break;
775 	case e1000_fc_tx_pause:
776 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
777 		 * by a software over-ride.
778 		 */
779 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
780 		break;
781 	case e1000_fc_full:
782 		/* Flow control (both Rx and Tx) is enabled by a software
783 		 * over-ride.
784 		 */
785 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
786 		break;
787 	default:
788 		e_dbg("Flow control param set incorrectly\n");
789 		return -E1000_ERR_CONFIG;
790 		break;
791 	}
792 
793 	ew32(TXCW, txcw);
794 	mac->txcw = txcw;
795 
796 	return 0;
797 }
798 
799 /**
800  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
801  *  @hw: pointer to the HW structure
802  *
803  *  Polls for link up by reading the status register, if link fails to come
804  *  up with auto-negotiation, then the link is forced if a signal is detected.
805  **/
806 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
807 {
808 	struct e1000_mac_info *mac = &hw->mac;
809 	u32 i, status;
810 	s32 ret_val;
811 
812 	/* If we have a signal (the cable is plugged in, or assumed true for
813 	 * serdes media) then poll for a "Link-Up" indication in the Device
814 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
815 	 * seconds (Auto-negotiation should complete in less than 500
816 	 * milliseconds even if the other end is doing it in SW).
817 	 */
818 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
819 		usleep_range(10000, 20000);
820 		status = er32(STATUS);
821 		if (status & E1000_STATUS_LU)
822 			break;
823 	}
824 	if (i == FIBER_LINK_UP_LIMIT) {
825 		e_dbg("Never got a valid link from auto-neg!!!\n");
826 		mac->autoneg_failed = true;
827 		/* AutoNeg failed to achieve a link, so we'll call
828 		 * mac->check_for_link. This routine will force the
829 		 * link up if we detect a signal. This will allow us to
830 		 * communicate with non-autonegotiating link partners.
831 		 */
832 		ret_val = mac->ops.check_for_link(hw);
833 		if (ret_val) {
834 			e_dbg("Error while checking for link\n");
835 			return ret_val;
836 		}
837 		mac->autoneg_failed = false;
838 	} else {
839 		mac->autoneg_failed = false;
840 		e_dbg("Valid Link Found\n");
841 	}
842 
843 	return 0;
844 }
845 
846 /**
847  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
848  *  @hw: pointer to the HW structure
849  *
850  *  Configures collision distance and flow control for fiber and serdes
851  *  links.  Upon successful setup, poll for link.
852  **/
853 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
854 {
855 	u32 ctrl;
856 	s32 ret_val;
857 
858 	ctrl = er32(CTRL);
859 
860 	/* Take the link out of reset */
861 	ctrl &= ~E1000_CTRL_LRST;
862 
863 	hw->mac.ops.config_collision_dist(hw);
864 
865 	ret_val = e1000_commit_fc_settings_generic(hw);
866 	if (ret_val)
867 		return ret_val;
868 
869 	/* Since auto-negotiation is enabled, take the link out of reset (the
870 	 * link will be in reset, because we previously reset the chip). This
871 	 * will restart auto-negotiation.  If auto-negotiation is successful
872 	 * then the link-up status bit will be set and the flow control enable
873 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
874 	 */
875 	e_dbg("Auto-negotiation enabled\n");
876 
877 	ew32(CTRL, ctrl);
878 	e1e_flush();
879 	usleep_range(1000, 2000);
880 
881 	/* For these adapters, the SW definable pin 1 is set when the optics
882 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
883 	 * indication.
884 	 */
885 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
886 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
887 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
888 	} else {
889 		e_dbg("No signal detected\n");
890 	}
891 
892 	return ret_val;
893 }
894 
895 /**
896  *  e1000e_config_collision_dist_generic - Configure collision distance
897  *  @hw: pointer to the HW structure
898  *
899  *  Configures the collision distance to the default value and is used
900  *  during link setup.
901  **/
902 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
903 {
904 	u32 tctl;
905 
906 	tctl = er32(TCTL);
907 
908 	tctl &= ~E1000_TCTL_COLD;
909 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
910 
911 	ew32(TCTL, tctl);
912 	e1e_flush();
913 }
914 
915 /**
916  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
917  *  @hw: pointer to the HW structure
918  *
919  *  Sets the flow control high/low threshold (watermark) registers.  If
920  *  flow control XON frame transmission is enabled, then set XON frame
921  *  transmission as well.
922  **/
923 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
924 {
925 	u32 fcrtl = 0, fcrth = 0;
926 
927 	/* Set the flow control receive threshold registers.  Normally,
928 	 * these registers will be set to a default threshold that may be
929 	 * adjusted later by the driver's runtime code.  However, if the
930 	 * ability to transmit pause frames is not enabled, then these
931 	 * registers will be set to 0.
932 	 */
933 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
934 		/* We need to set up the Receive Threshold high and low water
935 		 * marks as well as (optionally) enabling the transmission of
936 		 * XON frames.
937 		 */
938 		fcrtl = hw->fc.low_water;
939 		if (hw->fc.send_xon)
940 			fcrtl |= E1000_FCRTL_XONE;
941 
942 		fcrth = hw->fc.high_water;
943 	}
944 	ew32(FCRTL, fcrtl);
945 	ew32(FCRTH, fcrth);
946 
947 	return 0;
948 }
949 
950 /**
951  *  e1000e_force_mac_fc - Force the MAC's flow control settings
952  *  @hw: pointer to the HW structure
953  *
954  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
955  *  device control register to reflect the adapter settings.  TFCE and RFCE
956  *  need to be explicitly set by software when a copper PHY is used because
957  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
958  *  also configure these bits when link is forced on a fiber connection.
959  **/
960 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
961 {
962 	u32 ctrl;
963 
964 	ctrl = er32(CTRL);
965 
966 	/* Because we didn't get link via the internal auto-negotiation
967 	 * mechanism (we either forced link or we got link via PHY
968 	 * auto-neg), we have to manually enable/disable transmit an
969 	 * receive flow control.
970 	 *
971 	 * The "Case" statement below enables/disable flow control
972 	 * according to the "hw->fc.current_mode" parameter.
973 	 *
974 	 * The possible values of the "fc" parameter are:
975 	 *      0:  Flow control is completely disabled
976 	 *      1:  Rx flow control is enabled (we can receive pause
977 	 *          frames but not send pause frames).
978 	 *      2:  Tx flow control is enabled (we can send pause frames
979 	 *          frames but we do not receive pause frames).
980 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
981 	 *  other:  No other values should be possible at this point.
982 	 */
983 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
984 
985 	switch (hw->fc.current_mode) {
986 	case e1000_fc_none:
987 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
988 		break;
989 	case e1000_fc_rx_pause:
990 		ctrl &= (~E1000_CTRL_TFCE);
991 		ctrl |= E1000_CTRL_RFCE;
992 		break;
993 	case e1000_fc_tx_pause:
994 		ctrl &= (~E1000_CTRL_RFCE);
995 		ctrl |= E1000_CTRL_TFCE;
996 		break;
997 	case e1000_fc_full:
998 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
999 		break;
1000 	default:
1001 		e_dbg("Flow control param set incorrectly\n");
1002 		return -E1000_ERR_CONFIG;
1003 	}
1004 
1005 	ew32(CTRL, ctrl);
1006 
1007 	return 0;
1008 }
1009 
1010 /**
1011  *  e1000e_config_fc_after_link_up - Configures flow control after link
1012  *  @hw: pointer to the HW structure
1013  *
1014  *  Checks the status of auto-negotiation after link up to ensure that the
1015  *  speed and duplex were not forced.  If the link needed to be forced, then
1016  *  flow control needs to be forced also.  If auto-negotiation is enabled
1017  *  and did not fail, then we configure flow control based on our link
1018  *  partner.
1019  **/
1020 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1021 {
1022 	struct e1000_mac_info *mac = &hw->mac;
1023 	s32 ret_val = 0;
1024 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1025 	u16 speed, duplex;
1026 
1027 	/* Check for the case where we have fiber media and auto-neg failed
1028 	 * so we had to force link.  In this case, we need to force the
1029 	 * configuration of the MAC to match the "fc" parameter.
1030 	 */
1031 	if (mac->autoneg_failed) {
1032 		if (hw->phy.media_type == e1000_media_type_fiber ||
1033 		    hw->phy.media_type == e1000_media_type_internal_serdes)
1034 			ret_val = e1000e_force_mac_fc(hw);
1035 	} else {
1036 		if (hw->phy.media_type == e1000_media_type_copper)
1037 			ret_val = e1000e_force_mac_fc(hw);
1038 	}
1039 
1040 	if (ret_val) {
1041 		e_dbg("Error forcing flow control settings\n");
1042 		return ret_val;
1043 	}
1044 
1045 	/* Check for the case where we have copper media and auto-neg is
1046 	 * enabled.  In this case, we need to check and see if Auto-Neg
1047 	 * has completed, and if so, how the PHY and link partner has
1048 	 * flow control configured.
1049 	 */
1050 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1051 		/* Read the MII Status Register and check to see if AutoNeg
1052 		 * has completed.  We read this twice because this reg has
1053 		 * some "sticky" (latched) bits.
1054 		 */
1055 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1056 		if (ret_val)
1057 			return ret_val;
1058 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1059 		if (ret_val)
1060 			return ret_val;
1061 
1062 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1063 			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1064 			return ret_val;
1065 		}
1066 
1067 		/* The AutoNeg process has completed, so we now need to
1068 		 * read both the Auto Negotiation Advertisement
1069 		 * Register (Address 4) and the Auto_Negotiation Base
1070 		 * Page Ability Register (Address 5) to determine how
1071 		 * flow control was negotiated.
1072 		 */
1073 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1074 		if (ret_val)
1075 			return ret_val;
1076 		ret_val =
1077 		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1078 		if (ret_val)
1079 			return ret_val;
1080 
1081 		/* Two bits in the Auto Negotiation Advertisement Register
1082 		 * (Address 4) and two bits in the Auto Negotiation Base
1083 		 * Page Ability Register (Address 5) determine flow control
1084 		 * for both the PHY and the link partner.  The following
1085 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1086 		 * 1999, describes these PAUSE resolution bits and how flow
1087 		 * control is determined based upon these settings.
1088 		 * NOTE:  DC = Don't Care
1089 		 *
1090 		 *   LOCAL DEVICE  |   LINK PARTNER
1091 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1092 		 *-------|---------|-------|---------|--------------------
1093 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1094 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1095 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1096 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1097 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1098 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1099 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1100 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1101 		 *
1102 		 * Are both PAUSE bits set to 1?  If so, this implies
1103 		 * Symmetric Flow Control is enabled at both ends.  The
1104 		 * ASM_DIR bits are irrelevant per the spec.
1105 		 *
1106 		 * For Symmetric Flow Control:
1107 		 *
1108 		 *   LOCAL DEVICE  |   LINK PARTNER
1109 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1110 		 *-------|---------|-------|---------|--------------------
1111 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1112 		 *
1113 		 */
1114 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1115 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1116 			/* Now we need to check if the user selected Rx ONLY
1117 			 * of pause frames.  In this case, we had to advertise
1118 			 * FULL flow control because we could not advertise Rx
1119 			 * ONLY. Hence, we must now check to see if we need to
1120 			 * turn OFF the TRANSMISSION of PAUSE frames.
1121 			 */
1122 			if (hw->fc.requested_mode == e1000_fc_full) {
1123 				hw->fc.current_mode = e1000_fc_full;
1124 				e_dbg("Flow Control = FULL.\n");
1125 			} else {
1126 				hw->fc.current_mode = e1000_fc_rx_pause;
1127 				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1128 			}
1129 		}
1130 		/* For receiving PAUSE frames ONLY.
1131 		 *
1132 		 *   LOCAL DEVICE  |   LINK PARTNER
1133 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1134 		 *-------|---------|-------|---------|--------------------
1135 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1136 		 */
1137 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1138 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1139 			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1140 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1141 			hw->fc.current_mode = e1000_fc_tx_pause;
1142 			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1143 		}
1144 		/* For transmitting PAUSE frames ONLY.
1145 		 *
1146 		 *   LOCAL DEVICE  |   LINK PARTNER
1147 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148 		 *-------|---------|-------|---------|--------------------
1149 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1150 		 */
1151 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1152 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1153 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1154 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1155 			hw->fc.current_mode = e1000_fc_rx_pause;
1156 			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1157 		} else {
1158 			/* Per the IEEE spec, at this point flow control
1159 			 * should be disabled.
1160 			 */
1161 			hw->fc.current_mode = e1000_fc_none;
1162 			e_dbg("Flow Control = NONE.\n");
1163 		}
1164 
1165 		/* Now we need to do one last check...  If we auto-
1166 		 * negotiated to HALF DUPLEX, flow control should not be
1167 		 * enabled per IEEE 802.3 spec.
1168 		 */
1169 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1170 		if (ret_val) {
1171 			e_dbg("Error getting link speed and duplex\n");
1172 			return ret_val;
1173 		}
1174 
1175 		if (duplex == HALF_DUPLEX)
1176 			hw->fc.current_mode = e1000_fc_none;
1177 
1178 		/* Now we call a subroutine to actually force the MAC
1179 		 * controller to use the correct flow control settings.
1180 		 */
1181 		ret_val = e1000e_force_mac_fc(hw);
1182 		if (ret_val) {
1183 			e_dbg("Error forcing flow control settings\n");
1184 			return ret_val;
1185 		}
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 /**
1192  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1193  *  @hw: pointer to the HW structure
1194  *  @speed: stores the current speed
1195  *  @duplex: stores the current duplex
1196  *
1197  *  Read the status register for the current speed/duplex and store the current
1198  *  speed and duplex for copper connections.
1199  **/
1200 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1201 				       u16 *duplex)
1202 {
1203 	u32 status;
1204 
1205 	status = er32(STATUS);
1206 	if (status & E1000_STATUS_SPEED_1000)
1207 		*speed = SPEED_1000;
1208 	else if (status & E1000_STATUS_SPEED_100)
1209 		*speed = SPEED_100;
1210 	else
1211 		*speed = SPEED_10;
1212 
1213 	if (status & E1000_STATUS_FD)
1214 		*duplex = FULL_DUPLEX;
1215 	else
1216 		*duplex = HALF_DUPLEX;
1217 
1218 	e_dbg("%u Mbps, %s Duplex\n",
1219 	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1220 	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1221 
1222 	return 0;
1223 }
1224 
1225 /**
1226  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1227  *  @hw: pointer to the HW structure
1228  *  @speed: stores the current speed
1229  *  @duplex: stores the current duplex
1230  *
1231  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1232  *  for fiber/serdes links.
1233  **/
1234 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1235 					     u16 *duplex)
1236 {
1237 	*speed = SPEED_1000;
1238 	*duplex = FULL_DUPLEX;
1239 
1240 	return 0;
1241 }
1242 
1243 /**
1244  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1245  *  @hw: pointer to the HW structure
1246  *
1247  *  Acquire the HW semaphore to access the PHY or NVM
1248  **/
1249 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1250 {
1251 	u32 swsm;
1252 	s32 timeout = hw->nvm.word_size + 1;
1253 	s32 i = 0;
1254 
1255 	/* Get the SW semaphore */
1256 	while (i < timeout) {
1257 		swsm = er32(SWSM);
1258 		if (!(swsm & E1000_SWSM_SMBI))
1259 			break;
1260 
1261 		udelay(50);
1262 		i++;
1263 	}
1264 
1265 	if (i == timeout) {
1266 		e_dbg("Driver can't access device - SMBI bit is set.\n");
1267 		return -E1000_ERR_NVM;
1268 	}
1269 
1270 	/* Get the FW semaphore. */
1271 	for (i = 0; i < timeout; i++) {
1272 		swsm = er32(SWSM);
1273 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1274 
1275 		/* Semaphore acquired if bit latched */
1276 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1277 			break;
1278 
1279 		udelay(50);
1280 	}
1281 
1282 	if (i == timeout) {
1283 		/* Release semaphores */
1284 		e1000e_put_hw_semaphore(hw);
1285 		e_dbg("Driver can't access the NVM\n");
1286 		return -E1000_ERR_NVM;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  *  e1000e_put_hw_semaphore - Release hardware semaphore
1294  *  @hw: pointer to the HW structure
1295  *
1296  *  Release hardware semaphore used to access the PHY or NVM
1297  **/
1298 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1299 {
1300 	u32 swsm;
1301 
1302 	swsm = er32(SWSM);
1303 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1304 	ew32(SWSM, swsm);
1305 }
1306 
1307 /**
1308  *  e1000e_get_auto_rd_done - Check for auto read completion
1309  *  @hw: pointer to the HW structure
1310  *
1311  *  Check EEPROM for Auto Read done bit.
1312  **/
1313 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1314 {
1315 	s32 i = 0;
1316 
1317 	while (i < AUTO_READ_DONE_TIMEOUT) {
1318 		if (er32(EECD) & E1000_EECD_AUTO_RD)
1319 			break;
1320 		usleep_range(1000, 2000);
1321 		i++;
1322 	}
1323 
1324 	if (i == AUTO_READ_DONE_TIMEOUT) {
1325 		e_dbg("Auto read by HW from NVM has not completed.\n");
1326 		return -E1000_ERR_RESET;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  *  e1000e_valid_led_default - Verify a valid default LED config
1334  *  @hw: pointer to the HW structure
1335  *  @data: pointer to the NVM (EEPROM)
1336  *
1337  *  Read the EEPROM for the current default LED configuration.  If the
1338  *  LED configuration is not valid, set to a valid LED configuration.
1339  **/
1340 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1341 {
1342 	s32 ret_val;
1343 
1344 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1345 	if (ret_val) {
1346 		e_dbg("NVM Read Error\n");
1347 		return ret_val;
1348 	}
1349 
1350 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1351 		*data = ID_LED_DEFAULT;
1352 
1353 	return 0;
1354 }
1355 
1356 /**
1357  *  e1000e_id_led_init_generic -
1358  *  @hw: pointer to the HW structure
1359  *
1360  **/
1361 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1362 {
1363 	struct e1000_mac_info *mac = &hw->mac;
1364 	s32 ret_val;
1365 	const u32 ledctl_mask = 0x000000FF;
1366 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1367 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1368 	u16 data, i, temp;
1369 	const u16 led_mask = 0x0F;
1370 
1371 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1372 	if (ret_val)
1373 		return ret_val;
1374 
1375 	mac->ledctl_default = er32(LEDCTL);
1376 	mac->ledctl_mode1 = mac->ledctl_default;
1377 	mac->ledctl_mode2 = mac->ledctl_default;
1378 
1379 	for (i = 0; i < 4; i++) {
1380 		temp = (data >> (i << 2)) & led_mask;
1381 		switch (temp) {
1382 		case ID_LED_ON1_DEF2:
1383 		case ID_LED_ON1_ON2:
1384 		case ID_LED_ON1_OFF2:
1385 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1386 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1387 			break;
1388 		case ID_LED_OFF1_DEF2:
1389 		case ID_LED_OFF1_ON2:
1390 		case ID_LED_OFF1_OFF2:
1391 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1392 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1393 			break;
1394 		default:
1395 			/* Do nothing */
1396 			break;
1397 		}
1398 		switch (temp) {
1399 		case ID_LED_DEF1_ON2:
1400 		case ID_LED_ON1_ON2:
1401 		case ID_LED_OFF1_ON2:
1402 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1403 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1404 			break;
1405 		case ID_LED_DEF1_OFF2:
1406 		case ID_LED_ON1_OFF2:
1407 		case ID_LED_OFF1_OFF2:
1408 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1409 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1410 			break;
1411 		default:
1412 			/* Do nothing */
1413 			break;
1414 		}
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 /**
1421  *  e1000e_setup_led_generic - Configures SW controllable LED
1422  *  @hw: pointer to the HW structure
1423  *
1424  *  This prepares the SW controllable LED for use and saves the current state
1425  *  of the LED so it can be later restored.
1426  **/
1427 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1428 {
1429 	u32 ledctl;
1430 
1431 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1432 		return -E1000_ERR_CONFIG;
1433 
1434 	if (hw->phy.media_type == e1000_media_type_fiber) {
1435 		ledctl = er32(LEDCTL);
1436 		hw->mac.ledctl_default = ledctl;
1437 		/* Turn off LED0 */
1438 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1439 			    E1000_LEDCTL_LED0_MODE_MASK);
1440 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1441 			   E1000_LEDCTL_LED0_MODE_SHIFT);
1442 		ew32(LEDCTL, ledctl);
1443 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1444 		ew32(LEDCTL, hw->mac.ledctl_mode1);
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 /**
1451  *  e1000e_cleanup_led_generic - Set LED config to default operation
1452  *  @hw: pointer to the HW structure
1453  *
1454  *  Remove the current LED configuration and set the LED configuration
1455  *  to the default value, saved from the EEPROM.
1456  **/
1457 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1458 {
1459 	ew32(LEDCTL, hw->mac.ledctl_default);
1460 	return 0;
1461 }
1462 
1463 /**
1464  *  e1000e_blink_led_generic - Blink LED
1465  *  @hw: pointer to the HW structure
1466  *
1467  *  Blink the LEDs which are set to be on.
1468  **/
1469 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1470 {
1471 	u32 ledctl_blink = 0;
1472 	u32 i;
1473 
1474 	if (hw->phy.media_type == e1000_media_type_fiber) {
1475 		/* always blink LED0 for PCI-E fiber */
1476 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1477 		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1478 	} else {
1479 		/* set the blink bit for each LED that's "on" (0x0E)
1480 		 * in ledctl_mode2
1481 		 */
1482 		ledctl_blink = hw->mac.ledctl_mode2;
1483 		for (i = 0; i < 4; i++)
1484 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1485 			    E1000_LEDCTL_MODE_LED_ON)
1486 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1487 						 (i * 8));
1488 	}
1489 
1490 	ew32(LEDCTL, ledctl_blink);
1491 
1492 	return 0;
1493 }
1494 
1495 /**
1496  *  e1000e_led_on_generic - Turn LED on
1497  *  @hw: pointer to the HW structure
1498  *
1499  *  Turn LED on.
1500  **/
1501 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1502 {
1503 	u32 ctrl;
1504 
1505 	switch (hw->phy.media_type) {
1506 	case e1000_media_type_fiber:
1507 		ctrl = er32(CTRL);
1508 		ctrl &= ~E1000_CTRL_SWDPIN0;
1509 		ctrl |= E1000_CTRL_SWDPIO0;
1510 		ew32(CTRL, ctrl);
1511 		break;
1512 	case e1000_media_type_copper:
1513 		ew32(LEDCTL, hw->mac.ledctl_mode2);
1514 		break;
1515 	default:
1516 		break;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 /**
1523  *  e1000e_led_off_generic - Turn LED off
1524  *  @hw: pointer to the HW structure
1525  *
1526  *  Turn LED off.
1527  **/
1528 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1529 {
1530 	u32 ctrl;
1531 
1532 	switch (hw->phy.media_type) {
1533 	case e1000_media_type_fiber:
1534 		ctrl = er32(CTRL);
1535 		ctrl |= E1000_CTRL_SWDPIN0;
1536 		ctrl |= E1000_CTRL_SWDPIO0;
1537 		ew32(CTRL, ctrl);
1538 		break;
1539 	case e1000_media_type_copper:
1540 		ew32(LEDCTL, hw->mac.ledctl_mode1);
1541 		break;
1542 	default:
1543 		break;
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 /**
1550  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1551  *  @hw: pointer to the HW structure
1552  *  @no_snoop: bitmap of snoop events
1553  *
1554  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1555  **/
1556 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1557 {
1558 	u32 gcr;
1559 
1560 	if (no_snoop) {
1561 		gcr = er32(GCR);
1562 		gcr &= ~(PCIE_NO_SNOOP_ALL);
1563 		gcr |= no_snoop;
1564 		ew32(GCR, gcr);
1565 	}
1566 }
1567 
1568 /**
1569  *  e1000e_disable_pcie_master - Disables PCI-express master access
1570  *  @hw: pointer to the HW structure
1571  *
1572  *  Returns 0 if successful, else returns -10
1573  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1574  *  the master requests to be disabled.
1575  *
1576  *  Disables PCI-Express master access and verifies there are no pending
1577  *  requests.
1578  **/
1579 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1580 {
1581 	u32 ctrl;
1582 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1583 
1584 	ctrl = er32(CTRL);
1585 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1586 	ew32(CTRL, ctrl);
1587 
1588 	while (timeout) {
1589 		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1590 			break;
1591 		udelay(100);
1592 		timeout--;
1593 	}
1594 
1595 	if (!timeout) {
1596 		e_dbg("Master requests are pending.\n");
1597 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 /**
1604  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1605  *  @hw: pointer to the HW structure
1606  *
1607  *  Reset the Adaptive Interframe Spacing throttle to default values.
1608  **/
1609 void e1000e_reset_adaptive(struct e1000_hw *hw)
1610 {
1611 	struct e1000_mac_info *mac = &hw->mac;
1612 
1613 	if (!mac->adaptive_ifs) {
1614 		e_dbg("Not in Adaptive IFS mode!\n");
1615 		return;
1616 	}
1617 
1618 	mac->current_ifs_val = 0;
1619 	mac->ifs_min_val = IFS_MIN;
1620 	mac->ifs_max_val = IFS_MAX;
1621 	mac->ifs_step_size = IFS_STEP;
1622 	mac->ifs_ratio = IFS_RATIO;
1623 
1624 	mac->in_ifs_mode = false;
1625 	ew32(AIT, 0);
1626 }
1627 
1628 /**
1629  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1630  *  @hw: pointer to the HW structure
1631  *
1632  *  Update the Adaptive Interframe Spacing Throttle value based on the
1633  *  time between transmitted packets and time between collisions.
1634  **/
1635 void e1000e_update_adaptive(struct e1000_hw *hw)
1636 {
1637 	struct e1000_mac_info *mac = &hw->mac;
1638 
1639 	if (!mac->adaptive_ifs) {
1640 		e_dbg("Not in Adaptive IFS mode!\n");
1641 		return;
1642 	}
1643 
1644 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1645 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1646 			mac->in_ifs_mode = true;
1647 			if (mac->current_ifs_val < mac->ifs_max_val) {
1648 				if (!mac->current_ifs_val)
1649 					mac->current_ifs_val = mac->ifs_min_val;
1650 				else
1651 					mac->current_ifs_val +=
1652 					    mac->ifs_step_size;
1653 				ew32(AIT, mac->current_ifs_val);
1654 			}
1655 		}
1656 	} else {
1657 		if (mac->in_ifs_mode &&
1658 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1659 			mac->current_ifs_val = 0;
1660 			mac->in_ifs_mode = false;
1661 			ew32(AIT, 0);
1662 		}
1663 	}
1664 }
1665