1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 /* ethtool support for e1000 */ 23 24 #include <linux/netdevice.h> 25 #include <linux/interrupt.h> 26 #include <linux/ethtool.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 #include <linux/delay.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pm_runtime.h> 32 33 #include "e1000.h" 34 35 enum { NETDEV_STATS, E1000_STATS }; 36 37 struct e1000_stats { 38 char stat_string[ETH_GSTRING_LEN]; 39 int type; 40 int sizeof_stat; 41 int stat_offset; 42 }; 43 44 #define E1000_STAT(str, m) { \ 45 .stat_string = str, \ 46 .type = E1000_STATS, \ 47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 48 .stat_offset = offsetof(struct e1000_adapter, m) } 49 #define E1000_NETDEV_STAT(str, m) { \ 50 .stat_string = str, \ 51 .type = NETDEV_STATS, \ 52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 53 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 54 55 static const struct e1000_stats e1000_gstrings_stats[] = { 56 E1000_STAT("rx_packets", stats.gprc), 57 E1000_STAT("tx_packets", stats.gptc), 58 E1000_STAT("rx_bytes", stats.gorc), 59 E1000_STAT("tx_bytes", stats.gotc), 60 E1000_STAT("rx_broadcast", stats.bprc), 61 E1000_STAT("tx_broadcast", stats.bptc), 62 E1000_STAT("rx_multicast", stats.mprc), 63 E1000_STAT("tx_multicast", stats.mptc), 64 E1000_NETDEV_STAT("rx_errors", rx_errors), 65 E1000_NETDEV_STAT("tx_errors", tx_errors), 66 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 67 E1000_STAT("multicast", stats.mprc), 68 E1000_STAT("collisions", stats.colc), 69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 71 E1000_STAT("rx_crc_errors", stats.crcerrs), 72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 73 E1000_STAT("rx_no_buffer_count", stats.rnbc), 74 E1000_STAT("rx_missed_errors", stats.mpc), 75 E1000_STAT("tx_aborted_errors", stats.ecol), 76 E1000_STAT("tx_carrier_errors", stats.tncrs), 77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 79 E1000_STAT("tx_window_errors", stats.latecol), 80 E1000_STAT("tx_abort_late_coll", stats.latecol), 81 E1000_STAT("tx_deferred_ok", stats.dc), 82 E1000_STAT("tx_single_coll_ok", stats.scc), 83 E1000_STAT("tx_multi_coll_ok", stats.mcc), 84 E1000_STAT("tx_timeout_count", tx_timeout_count), 85 E1000_STAT("tx_restart_queue", restart_queue), 86 E1000_STAT("rx_long_length_errors", stats.roc), 87 E1000_STAT("rx_short_length_errors", stats.ruc), 88 E1000_STAT("rx_align_errors", stats.algnerrc), 89 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 91 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 93 E1000_STAT("tx_flow_control_xon", stats.xontxc), 94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 95 E1000_STAT("rx_csum_offload_good", hw_csum_good), 96 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 97 E1000_STAT("rx_header_split", rx_hdr_split), 98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 99 E1000_STAT("tx_smbus", stats.mgptc), 100 E1000_STAT("rx_smbus", stats.mgprc), 101 E1000_STAT("dropped_smbus", stats.mgpdc), 102 E1000_STAT("rx_dma_failed", rx_dma_failed), 103 E1000_STAT("tx_dma_failed", tx_dma_failed), 104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 105 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 106 E1000_STAT("corr_ecc_errors", corr_errors), 107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 108 }; 109 110 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 113 "Register test (offline)", "Eeprom test (offline)", 114 "Interrupt test (offline)", "Loopback test (offline)", 115 "Link test (on/offline)" 116 }; 117 118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 119 120 static int e1000_get_settings(struct net_device *netdev, 121 struct ethtool_cmd *ecmd) 122 { 123 struct e1000_adapter *adapter = netdev_priv(netdev); 124 struct e1000_hw *hw = &adapter->hw; 125 u32 speed; 126 127 if (hw->phy.media_type == e1000_media_type_copper) { 128 ecmd->supported = (SUPPORTED_10baseT_Half | 129 SUPPORTED_10baseT_Full | 130 SUPPORTED_100baseT_Half | 131 SUPPORTED_100baseT_Full | 132 SUPPORTED_1000baseT_Full | 133 SUPPORTED_Autoneg | 134 SUPPORTED_TP); 135 if (hw->phy.type == e1000_phy_ife) 136 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 137 ecmd->advertising = ADVERTISED_TP; 138 139 if (hw->mac.autoneg == 1) { 140 ecmd->advertising |= ADVERTISED_Autoneg; 141 /* the e1000 autoneg seems to match ethtool nicely */ 142 ecmd->advertising |= hw->phy.autoneg_advertised; 143 } 144 145 ecmd->port = PORT_TP; 146 ecmd->phy_address = hw->phy.addr; 147 ecmd->transceiver = XCVR_INTERNAL; 148 149 } else { 150 ecmd->supported = (SUPPORTED_1000baseT_Full | 151 SUPPORTED_FIBRE | 152 SUPPORTED_Autoneg); 153 154 ecmd->advertising = (ADVERTISED_1000baseT_Full | 155 ADVERTISED_FIBRE | 156 ADVERTISED_Autoneg); 157 158 ecmd->port = PORT_FIBRE; 159 ecmd->transceiver = XCVR_EXTERNAL; 160 } 161 162 speed = SPEED_UNKNOWN; 163 ecmd->duplex = DUPLEX_UNKNOWN; 164 165 if (netif_running(netdev)) { 166 if (netif_carrier_ok(netdev)) { 167 speed = adapter->link_speed; 168 ecmd->duplex = adapter->link_duplex - 1; 169 } 170 } else if (!pm_runtime_suspended(netdev->dev.parent)) { 171 u32 status = er32(STATUS); 172 173 if (status & E1000_STATUS_LU) { 174 if (status & E1000_STATUS_SPEED_1000) 175 speed = SPEED_1000; 176 else if (status & E1000_STATUS_SPEED_100) 177 speed = SPEED_100; 178 else 179 speed = SPEED_10; 180 181 if (status & E1000_STATUS_FD) 182 ecmd->duplex = DUPLEX_FULL; 183 else 184 ecmd->duplex = DUPLEX_HALF; 185 } 186 } 187 188 ethtool_cmd_speed_set(ecmd, speed); 189 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 190 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 191 192 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 193 if ((hw->phy.media_type == e1000_media_type_copper) && 194 netif_carrier_ok(netdev)) 195 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI; 196 else 197 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 198 199 if (hw->phy.mdix == AUTO_ALL_MODES) 200 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 201 else 202 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 203 204 if (hw->phy.media_type != e1000_media_type_copper) 205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 206 207 return 0; 208 } 209 210 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 211 { 212 struct e1000_mac_info *mac = &adapter->hw.mac; 213 214 mac->autoneg = 0; 215 216 /* Make sure dplx is at most 1 bit and lsb of speed is not set 217 * for the switch() below to work 218 */ 219 if ((spd & 1) || (dplx & ~1)) 220 goto err_inval; 221 222 /* Fiber NICs only allow 1000 gbps Full duplex */ 223 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 224 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 225 goto err_inval; 226 } 227 228 switch (spd + dplx) { 229 case SPEED_10 + DUPLEX_HALF: 230 mac->forced_speed_duplex = ADVERTISE_10_HALF; 231 break; 232 case SPEED_10 + DUPLEX_FULL: 233 mac->forced_speed_duplex = ADVERTISE_10_FULL; 234 break; 235 case SPEED_100 + DUPLEX_HALF: 236 mac->forced_speed_duplex = ADVERTISE_100_HALF; 237 break; 238 case SPEED_100 + DUPLEX_FULL: 239 mac->forced_speed_duplex = ADVERTISE_100_FULL; 240 break; 241 case SPEED_1000 + DUPLEX_FULL: 242 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 243 mac->autoneg = 1; 244 adapter->hw.phy.autoneg_advertised = 245 ADVERTISE_1000_FULL; 246 } else { 247 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 248 } 249 break; 250 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 251 default: 252 goto err_inval; 253 } 254 255 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 256 adapter->hw.phy.mdix = AUTO_ALL_MODES; 257 258 return 0; 259 260 err_inval: 261 e_err("Unsupported Speed/Duplex configuration\n"); 262 return -EINVAL; 263 } 264 265 static int e1000_set_settings(struct net_device *netdev, 266 struct ethtool_cmd *ecmd) 267 { 268 struct e1000_adapter *adapter = netdev_priv(netdev); 269 struct e1000_hw *hw = &adapter->hw; 270 int ret_val = 0; 271 272 pm_runtime_get_sync(netdev->dev.parent); 273 274 /* When SoL/IDER sessions are active, autoneg/speed/duplex 275 * cannot be changed 276 */ 277 if (hw->phy.ops.check_reset_block && 278 hw->phy.ops.check_reset_block(hw)) { 279 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 280 ret_val = -EINVAL; 281 goto out; 282 } 283 284 /* MDI setting is only allowed when autoneg enabled because 285 * some hardware doesn't allow MDI setting when speed or 286 * duplex is forced. 287 */ 288 if (ecmd->eth_tp_mdix_ctrl) { 289 if (hw->phy.media_type != e1000_media_type_copper) { 290 ret_val = -EOPNOTSUPP; 291 goto out; 292 } 293 294 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 295 (ecmd->autoneg != AUTONEG_ENABLE)) { 296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 297 ret_val = -EINVAL; 298 goto out; 299 } 300 } 301 302 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 303 usleep_range(1000, 2000); 304 305 if (ecmd->autoneg == AUTONEG_ENABLE) { 306 hw->mac.autoneg = 1; 307 if (hw->phy.media_type == e1000_media_type_fiber) 308 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 309 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 310 else 311 hw->phy.autoneg_advertised = ecmd->advertising | 312 ADVERTISED_TP | ADVERTISED_Autoneg; 313 ecmd->advertising = hw->phy.autoneg_advertised; 314 if (adapter->fc_autoneg) 315 hw->fc.requested_mode = e1000_fc_default; 316 } else { 317 u32 speed = ethtool_cmd_speed(ecmd); 318 /* calling this overrides forced MDI setting */ 319 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 320 ret_val = -EINVAL; 321 goto out; 322 } 323 } 324 325 /* MDI-X => 2; MDI => 1; Auto => 3 */ 326 if (ecmd->eth_tp_mdix_ctrl) { 327 /* fix up the value for auto (3 => 0) as zero is mapped 328 * internally to auto 329 */ 330 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 331 hw->phy.mdix = AUTO_ALL_MODES; 332 else 333 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 334 } 335 336 /* reset the link */ 337 if (netif_running(adapter->netdev)) { 338 e1000e_down(adapter, true); 339 e1000e_up(adapter); 340 } else { 341 e1000e_reset(adapter); 342 } 343 344 out: 345 pm_runtime_put_sync(netdev->dev.parent); 346 clear_bit(__E1000_RESETTING, &adapter->state); 347 return ret_val; 348 } 349 350 static void e1000_get_pauseparam(struct net_device *netdev, 351 struct ethtool_pauseparam *pause) 352 { 353 struct e1000_adapter *adapter = netdev_priv(netdev); 354 struct e1000_hw *hw = &adapter->hw; 355 356 pause->autoneg = 357 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 358 359 if (hw->fc.current_mode == e1000_fc_rx_pause) { 360 pause->rx_pause = 1; 361 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 362 pause->tx_pause = 1; 363 } else if (hw->fc.current_mode == e1000_fc_full) { 364 pause->rx_pause = 1; 365 pause->tx_pause = 1; 366 } 367 } 368 369 static int e1000_set_pauseparam(struct net_device *netdev, 370 struct ethtool_pauseparam *pause) 371 { 372 struct e1000_adapter *adapter = netdev_priv(netdev); 373 struct e1000_hw *hw = &adapter->hw; 374 int retval = 0; 375 376 adapter->fc_autoneg = pause->autoneg; 377 378 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 379 usleep_range(1000, 2000); 380 381 pm_runtime_get_sync(netdev->dev.parent); 382 383 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 384 hw->fc.requested_mode = e1000_fc_default; 385 if (netif_running(adapter->netdev)) { 386 e1000e_down(adapter, true); 387 e1000e_up(adapter); 388 } else { 389 e1000e_reset(adapter); 390 } 391 } else { 392 if (pause->rx_pause && pause->tx_pause) 393 hw->fc.requested_mode = e1000_fc_full; 394 else if (pause->rx_pause && !pause->tx_pause) 395 hw->fc.requested_mode = e1000_fc_rx_pause; 396 else if (!pause->rx_pause && pause->tx_pause) 397 hw->fc.requested_mode = e1000_fc_tx_pause; 398 else if (!pause->rx_pause && !pause->tx_pause) 399 hw->fc.requested_mode = e1000_fc_none; 400 401 hw->fc.current_mode = hw->fc.requested_mode; 402 403 if (hw->phy.media_type == e1000_media_type_fiber) { 404 retval = hw->mac.ops.setup_link(hw); 405 /* implicit goto out */ 406 } else { 407 retval = e1000e_force_mac_fc(hw); 408 if (retval) 409 goto out; 410 e1000e_set_fc_watermarks(hw); 411 } 412 } 413 414 out: 415 pm_runtime_put_sync(netdev->dev.parent); 416 clear_bit(__E1000_RESETTING, &adapter->state); 417 return retval; 418 } 419 420 static u32 e1000_get_msglevel(struct net_device *netdev) 421 { 422 struct e1000_adapter *adapter = netdev_priv(netdev); 423 return adapter->msg_enable; 424 } 425 426 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 427 { 428 struct e1000_adapter *adapter = netdev_priv(netdev); 429 adapter->msg_enable = data; 430 } 431 432 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 433 { 434 #define E1000_REGS_LEN 32 /* overestimate */ 435 return E1000_REGS_LEN * sizeof(u32); 436 } 437 438 static void e1000_get_regs(struct net_device *netdev, 439 struct ethtool_regs *regs, void *p) 440 { 441 struct e1000_adapter *adapter = netdev_priv(netdev); 442 struct e1000_hw *hw = &adapter->hw; 443 u32 *regs_buff = p; 444 u16 phy_data; 445 446 pm_runtime_get_sync(netdev->dev.parent); 447 448 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 449 450 regs->version = (1u << 24) | 451 (adapter->pdev->revision << 16) | 452 adapter->pdev->device; 453 454 regs_buff[0] = er32(CTRL); 455 regs_buff[1] = er32(STATUS); 456 457 regs_buff[2] = er32(RCTL); 458 regs_buff[3] = er32(RDLEN(0)); 459 regs_buff[4] = er32(RDH(0)); 460 regs_buff[5] = er32(RDT(0)); 461 regs_buff[6] = er32(RDTR); 462 463 regs_buff[7] = er32(TCTL); 464 regs_buff[8] = er32(TDLEN(0)); 465 regs_buff[9] = er32(TDH(0)); 466 regs_buff[10] = er32(TDT(0)); 467 regs_buff[11] = er32(TIDV); 468 469 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 470 471 /* ethtool doesn't use anything past this point, so all this 472 * code is likely legacy junk for apps that may or may not exist 473 */ 474 if (hw->phy.type == e1000_phy_m88) { 475 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 476 regs_buff[13] = (u32)phy_data; /* cable length */ 477 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 478 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 479 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 480 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 481 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 482 regs_buff[18] = regs_buff[13]; /* cable polarity */ 483 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 484 regs_buff[20] = regs_buff[17]; /* polarity correction */ 485 /* phy receive errors */ 486 regs_buff[22] = adapter->phy_stats.receive_errors; 487 regs_buff[23] = regs_buff[13]; /* mdix mode */ 488 } 489 regs_buff[21] = 0; /* was idle_errors */ 490 e1e_rphy(hw, MII_STAT1000, &phy_data); 491 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 492 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 493 494 pm_runtime_put_sync(netdev->dev.parent); 495 } 496 497 static int e1000_get_eeprom_len(struct net_device *netdev) 498 { 499 struct e1000_adapter *adapter = netdev_priv(netdev); 500 return adapter->hw.nvm.word_size * 2; 501 } 502 503 static int e1000_get_eeprom(struct net_device *netdev, 504 struct ethtool_eeprom *eeprom, u8 *bytes) 505 { 506 struct e1000_adapter *adapter = netdev_priv(netdev); 507 struct e1000_hw *hw = &adapter->hw; 508 u16 *eeprom_buff; 509 int first_word; 510 int last_word; 511 int ret_val = 0; 512 u16 i; 513 514 if (eeprom->len == 0) 515 return -EINVAL; 516 517 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 518 519 first_word = eeprom->offset >> 1; 520 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 521 522 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), 523 GFP_KERNEL); 524 if (!eeprom_buff) 525 return -ENOMEM; 526 527 pm_runtime_get_sync(netdev->dev.parent); 528 529 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 530 ret_val = e1000_read_nvm(hw, first_word, 531 last_word - first_word + 1, 532 eeprom_buff); 533 } else { 534 for (i = 0; i < last_word - first_word + 1; i++) { 535 ret_val = e1000_read_nvm(hw, first_word + i, 1, 536 &eeprom_buff[i]); 537 if (ret_val) 538 break; 539 } 540 } 541 542 pm_runtime_put_sync(netdev->dev.parent); 543 544 if (ret_val) { 545 /* a read error occurred, throw away the result */ 546 memset(eeprom_buff, 0xff, sizeof(u16) * 547 (last_word - first_word + 1)); 548 } else { 549 /* Device's eeprom is always little-endian, word addressable */ 550 for (i = 0; i < last_word - first_word + 1; i++) 551 le16_to_cpus(&eeprom_buff[i]); 552 } 553 554 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 555 kfree(eeprom_buff); 556 557 return ret_val; 558 } 559 560 static int e1000_set_eeprom(struct net_device *netdev, 561 struct ethtool_eeprom *eeprom, u8 *bytes) 562 { 563 struct e1000_adapter *adapter = netdev_priv(netdev); 564 struct e1000_hw *hw = &adapter->hw; 565 u16 *eeprom_buff; 566 void *ptr; 567 int max_len; 568 int first_word; 569 int last_word; 570 int ret_val = 0; 571 u16 i; 572 573 if (eeprom->len == 0) 574 return -EOPNOTSUPP; 575 576 if (eeprom->magic != 577 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 578 return -EFAULT; 579 580 if (adapter->flags & FLAG_READ_ONLY_NVM) 581 return -EINVAL; 582 583 max_len = hw->nvm.word_size * 2; 584 585 first_word = eeprom->offset >> 1; 586 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 587 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 588 if (!eeprom_buff) 589 return -ENOMEM; 590 591 ptr = (void *)eeprom_buff; 592 593 pm_runtime_get_sync(netdev->dev.parent); 594 595 if (eeprom->offset & 1) { 596 /* need read/modify/write of first changed EEPROM word */ 597 /* only the second byte of the word is being modified */ 598 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 599 ptr++; 600 } 601 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 602 /* need read/modify/write of last changed EEPROM word */ 603 /* only the first byte of the word is being modified */ 604 ret_val = e1000_read_nvm(hw, last_word, 1, 605 &eeprom_buff[last_word - first_word]); 606 607 if (ret_val) 608 goto out; 609 610 /* Device's eeprom is always little-endian, word addressable */ 611 for (i = 0; i < last_word - first_word + 1; i++) 612 le16_to_cpus(&eeprom_buff[i]); 613 614 memcpy(ptr, bytes, eeprom->len); 615 616 for (i = 0; i < last_word - first_word + 1; i++) 617 cpu_to_le16s(&eeprom_buff[i]); 618 619 ret_val = e1000_write_nvm(hw, first_word, 620 last_word - first_word + 1, eeprom_buff); 621 622 if (ret_val) 623 goto out; 624 625 /* Update the checksum over the first part of the EEPROM if needed 626 * and flush shadow RAM for applicable controllers 627 */ 628 if ((first_word <= NVM_CHECKSUM_REG) || 629 (hw->mac.type == e1000_82583) || 630 (hw->mac.type == e1000_82574) || 631 (hw->mac.type == e1000_82573)) 632 ret_val = e1000e_update_nvm_checksum(hw); 633 634 out: 635 pm_runtime_put_sync(netdev->dev.parent); 636 kfree(eeprom_buff); 637 return ret_val; 638 } 639 640 static void e1000_get_drvinfo(struct net_device *netdev, 641 struct ethtool_drvinfo *drvinfo) 642 { 643 struct e1000_adapter *adapter = netdev_priv(netdev); 644 645 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 646 strlcpy(drvinfo->version, e1000e_driver_version, 647 sizeof(drvinfo->version)); 648 649 /* EEPROM image version # is reported as firmware version # for 650 * PCI-E controllers 651 */ 652 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 653 "%d.%d-%d", 654 (adapter->eeprom_vers & 0xF000) >> 12, 655 (adapter->eeprom_vers & 0x0FF0) >> 4, 656 (adapter->eeprom_vers & 0x000F)); 657 658 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 659 sizeof(drvinfo->bus_info)); 660 } 661 662 static void e1000_get_ringparam(struct net_device *netdev, 663 struct ethtool_ringparam *ring) 664 { 665 struct e1000_adapter *adapter = netdev_priv(netdev); 666 667 ring->rx_max_pending = E1000_MAX_RXD; 668 ring->tx_max_pending = E1000_MAX_TXD; 669 ring->rx_pending = adapter->rx_ring_count; 670 ring->tx_pending = adapter->tx_ring_count; 671 } 672 673 static int e1000_set_ringparam(struct net_device *netdev, 674 struct ethtool_ringparam *ring) 675 { 676 struct e1000_adapter *adapter = netdev_priv(netdev); 677 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 678 int err = 0, size = sizeof(struct e1000_ring); 679 bool set_tx = false, set_rx = false; 680 u16 new_rx_count, new_tx_count; 681 682 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 683 return -EINVAL; 684 685 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 686 E1000_MAX_RXD); 687 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 688 689 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 690 E1000_MAX_TXD); 691 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 692 693 if ((new_tx_count == adapter->tx_ring_count) && 694 (new_rx_count == adapter->rx_ring_count)) 695 /* nothing to do */ 696 return 0; 697 698 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 699 usleep_range(1000, 2000); 700 701 if (!netif_running(adapter->netdev)) { 702 /* Set counts now and allocate resources during open() */ 703 adapter->tx_ring->count = new_tx_count; 704 adapter->rx_ring->count = new_rx_count; 705 adapter->tx_ring_count = new_tx_count; 706 adapter->rx_ring_count = new_rx_count; 707 goto clear_reset; 708 } 709 710 set_tx = (new_tx_count != adapter->tx_ring_count); 711 set_rx = (new_rx_count != adapter->rx_ring_count); 712 713 /* Allocate temporary storage for ring updates */ 714 if (set_tx) { 715 temp_tx = vmalloc(size); 716 if (!temp_tx) { 717 err = -ENOMEM; 718 goto free_temp; 719 } 720 } 721 if (set_rx) { 722 temp_rx = vmalloc(size); 723 if (!temp_rx) { 724 err = -ENOMEM; 725 goto free_temp; 726 } 727 } 728 729 pm_runtime_get_sync(netdev->dev.parent); 730 731 e1000e_down(adapter, true); 732 733 /* We can't just free everything and then setup again, because the 734 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 735 * structs. First, attempt to allocate new resources... 736 */ 737 if (set_tx) { 738 memcpy(temp_tx, adapter->tx_ring, size); 739 temp_tx->count = new_tx_count; 740 err = e1000e_setup_tx_resources(temp_tx); 741 if (err) 742 goto err_setup; 743 } 744 if (set_rx) { 745 memcpy(temp_rx, adapter->rx_ring, size); 746 temp_rx->count = new_rx_count; 747 err = e1000e_setup_rx_resources(temp_rx); 748 if (err) 749 goto err_setup_rx; 750 } 751 752 /* ...then free the old resources and copy back any new ring data */ 753 if (set_tx) { 754 e1000e_free_tx_resources(adapter->tx_ring); 755 memcpy(adapter->tx_ring, temp_tx, size); 756 adapter->tx_ring_count = new_tx_count; 757 } 758 if (set_rx) { 759 e1000e_free_rx_resources(adapter->rx_ring); 760 memcpy(adapter->rx_ring, temp_rx, size); 761 adapter->rx_ring_count = new_rx_count; 762 } 763 764 err_setup_rx: 765 if (err && set_tx) 766 e1000e_free_tx_resources(temp_tx); 767 err_setup: 768 e1000e_up(adapter); 769 pm_runtime_put_sync(netdev->dev.parent); 770 free_temp: 771 vfree(temp_tx); 772 vfree(temp_rx); 773 clear_reset: 774 clear_bit(__E1000_RESETTING, &adapter->state); 775 return err; 776 } 777 778 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 779 int reg, int offset, u32 mask, u32 write) 780 { 781 u32 pat, val; 782 static const u32 test[] = { 783 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 784 }; 785 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 786 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 787 (test[pat] & write)); 788 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 789 if (val != (test[pat] & write & mask)) { 790 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 791 reg + (offset << 2), val, 792 (test[pat] & write & mask)); 793 *data = reg; 794 return true; 795 } 796 } 797 return false; 798 } 799 800 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 801 int reg, u32 mask, u32 write) 802 { 803 u32 val; 804 805 __ew32(&adapter->hw, reg, write & mask); 806 val = __er32(&adapter->hw, reg); 807 if ((write & mask) != (val & mask)) { 808 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 809 reg, (val & mask), (write & mask)); 810 *data = reg; 811 return true; 812 } 813 return false; 814 } 815 816 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 817 do { \ 818 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 819 return 1; \ 820 } while (0) 821 #define REG_PATTERN_TEST(reg, mask, write) \ 822 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 823 824 #define REG_SET_AND_CHECK(reg, mask, write) \ 825 do { \ 826 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 827 return 1; \ 828 } while (0) 829 830 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 831 { 832 struct e1000_hw *hw = &adapter->hw; 833 struct e1000_mac_info *mac = &adapter->hw.mac; 834 u32 value; 835 u32 before; 836 u32 after; 837 u32 i; 838 u32 toggle; 839 u32 mask; 840 u32 wlock_mac = 0; 841 842 /* The status register is Read Only, so a write should fail. 843 * Some bits that get toggled are ignored. There are several bits 844 * on newer hardware that are r/w. 845 */ 846 switch (mac->type) { 847 case e1000_82571: 848 case e1000_82572: 849 case e1000_80003es2lan: 850 toggle = 0x7FFFF3FF; 851 break; 852 default: 853 toggle = 0x7FFFF033; 854 break; 855 } 856 857 before = er32(STATUS); 858 value = (er32(STATUS) & toggle); 859 ew32(STATUS, toggle); 860 after = er32(STATUS) & toggle; 861 if (value != after) { 862 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 863 after, value); 864 *data = 1; 865 return 1; 866 } 867 /* restore previous status */ 868 ew32(STATUS, before); 869 870 if (!(adapter->flags & FLAG_IS_ICH)) { 871 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 872 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 873 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 874 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 875 } 876 877 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 878 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 879 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 880 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 881 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 882 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 883 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 884 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 885 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 886 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 887 888 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 889 890 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 891 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 892 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 893 894 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 895 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 896 if (!(adapter->flags & FLAG_IS_ICH)) 897 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 898 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 899 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 900 mask = 0x8003FFFF; 901 switch (mac->type) { 902 case e1000_ich10lan: 903 case e1000_pchlan: 904 case e1000_pch2lan: 905 case e1000_pch_lpt: 906 case e1000_pch_spt: 907 mask |= BIT(18); 908 break; 909 default: 910 break; 911 } 912 913 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) 914 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 915 E1000_FWSM_WLOCK_MAC_SHIFT; 916 917 for (i = 0; i < mac->rar_entry_count; i++) { 918 if ((mac->type == e1000_pch_lpt) || 919 (mac->type == e1000_pch_spt)) { 920 /* Cannot test write-protected SHRAL[n] registers */ 921 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 922 continue; 923 924 /* SHRAH[9] different than the others */ 925 if (i == 10) 926 mask |= BIT(30); 927 else 928 mask &= ~BIT(30); 929 } 930 if (mac->type == e1000_pch2lan) { 931 /* SHRAH[0,1,2] different than previous */ 932 if (i == 1) 933 mask &= 0xFFF4FFFF; 934 /* SHRAH[3] different than SHRAH[0,1,2] */ 935 if (i == 4) 936 mask |= BIT(30); 937 /* RAR[1-6] owned by management engine - skipping */ 938 if (i > 0) 939 i += 6; 940 } 941 942 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 943 0xFFFFFFFF); 944 /* reset index to actual value */ 945 if ((mac->type == e1000_pch2lan) && (i > 6)) 946 i -= 6; 947 } 948 949 for (i = 0; i < mac->mta_reg_count; i++) 950 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 951 952 *data = 0; 953 954 return 0; 955 } 956 957 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 958 { 959 u16 temp; 960 u16 checksum = 0; 961 u16 i; 962 963 *data = 0; 964 /* Read and add up the contents of the EEPROM */ 965 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 966 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 967 *data = 1; 968 return *data; 969 } 970 checksum += temp; 971 } 972 973 /* If Checksum is not Correct return error else test passed */ 974 if ((checksum != (u16)NVM_SUM) && !(*data)) 975 *data = 2; 976 977 return *data; 978 } 979 980 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 981 { 982 struct net_device *netdev = (struct net_device *)data; 983 struct e1000_adapter *adapter = netdev_priv(netdev); 984 struct e1000_hw *hw = &adapter->hw; 985 986 adapter->test_icr |= er32(ICR); 987 988 return IRQ_HANDLED; 989 } 990 991 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 992 { 993 struct net_device *netdev = adapter->netdev; 994 struct e1000_hw *hw = &adapter->hw; 995 u32 mask; 996 u32 shared_int = 1; 997 u32 irq = adapter->pdev->irq; 998 int i; 999 int ret_val = 0; 1000 int int_mode = E1000E_INT_MODE_LEGACY; 1001 1002 *data = 0; 1003 1004 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 1005 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1006 int_mode = adapter->int_mode; 1007 e1000e_reset_interrupt_capability(adapter); 1008 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1009 e1000e_set_interrupt_capability(adapter); 1010 } 1011 /* Hook up test interrupt handler just for this test */ 1012 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1013 netdev)) { 1014 shared_int = 0; 1015 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1016 netdev)) { 1017 *data = 1; 1018 ret_val = -1; 1019 goto out; 1020 } 1021 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1022 1023 /* Disable all the interrupts */ 1024 ew32(IMC, 0xFFFFFFFF); 1025 e1e_flush(); 1026 usleep_range(10000, 20000); 1027 1028 /* Test each interrupt */ 1029 for (i = 0; i < 10; i++) { 1030 /* Interrupt to test */ 1031 mask = BIT(i); 1032 1033 if (adapter->flags & FLAG_IS_ICH) { 1034 switch (mask) { 1035 case E1000_ICR_RXSEQ: 1036 continue; 1037 case 0x00000100: 1038 if (adapter->hw.mac.type == e1000_ich8lan || 1039 adapter->hw.mac.type == e1000_ich9lan) 1040 continue; 1041 break; 1042 default: 1043 break; 1044 } 1045 } 1046 1047 if (!shared_int) { 1048 /* Disable the interrupt to be reported in 1049 * the cause register and then force the same 1050 * interrupt and see if one gets posted. If 1051 * an interrupt was posted to the bus, the 1052 * test failed. 1053 */ 1054 adapter->test_icr = 0; 1055 ew32(IMC, mask); 1056 ew32(ICS, mask); 1057 e1e_flush(); 1058 usleep_range(10000, 20000); 1059 1060 if (adapter->test_icr & mask) { 1061 *data = 3; 1062 break; 1063 } 1064 } 1065 1066 /* Enable the interrupt to be reported in 1067 * the cause register and then force the same 1068 * interrupt and see if one gets posted. If 1069 * an interrupt was not posted to the bus, the 1070 * test failed. 1071 */ 1072 adapter->test_icr = 0; 1073 ew32(IMS, mask); 1074 ew32(ICS, mask); 1075 e1e_flush(); 1076 usleep_range(10000, 20000); 1077 1078 if (!(adapter->test_icr & mask)) { 1079 *data = 4; 1080 break; 1081 } 1082 1083 if (!shared_int) { 1084 /* Disable the other interrupts to be reported in 1085 * the cause register and then force the other 1086 * interrupts and see if any get posted. If 1087 * an interrupt was posted to the bus, the 1088 * test failed. 1089 */ 1090 adapter->test_icr = 0; 1091 ew32(IMC, ~mask & 0x00007FFF); 1092 ew32(ICS, ~mask & 0x00007FFF); 1093 e1e_flush(); 1094 usleep_range(10000, 20000); 1095 1096 if (adapter->test_icr) { 1097 *data = 5; 1098 break; 1099 } 1100 } 1101 } 1102 1103 /* Disable all the interrupts */ 1104 ew32(IMC, 0xFFFFFFFF); 1105 e1e_flush(); 1106 usleep_range(10000, 20000); 1107 1108 /* Unhook test interrupt handler */ 1109 free_irq(irq, netdev); 1110 1111 out: 1112 if (int_mode == E1000E_INT_MODE_MSIX) { 1113 e1000e_reset_interrupt_capability(adapter); 1114 adapter->int_mode = int_mode; 1115 e1000e_set_interrupt_capability(adapter); 1116 } 1117 1118 return ret_val; 1119 } 1120 1121 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1122 { 1123 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1124 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1125 struct pci_dev *pdev = adapter->pdev; 1126 struct e1000_buffer *buffer_info; 1127 int i; 1128 1129 if (tx_ring->desc && tx_ring->buffer_info) { 1130 for (i = 0; i < tx_ring->count; i++) { 1131 buffer_info = &tx_ring->buffer_info[i]; 1132 1133 if (buffer_info->dma) 1134 dma_unmap_single(&pdev->dev, 1135 buffer_info->dma, 1136 buffer_info->length, 1137 DMA_TO_DEVICE); 1138 if (buffer_info->skb) 1139 dev_kfree_skb(buffer_info->skb); 1140 } 1141 } 1142 1143 if (rx_ring->desc && rx_ring->buffer_info) { 1144 for (i = 0; i < rx_ring->count; i++) { 1145 buffer_info = &rx_ring->buffer_info[i]; 1146 1147 if (buffer_info->dma) 1148 dma_unmap_single(&pdev->dev, 1149 buffer_info->dma, 1150 2048, DMA_FROM_DEVICE); 1151 if (buffer_info->skb) 1152 dev_kfree_skb(buffer_info->skb); 1153 } 1154 } 1155 1156 if (tx_ring->desc) { 1157 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1158 tx_ring->dma); 1159 tx_ring->desc = NULL; 1160 } 1161 if (rx_ring->desc) { 1162 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1163 rx_ring->dma); 1164 rx_ring->desc = NULL; 1165 } 1166 1167 kfree(tx_ring->buffer_info); 1168 tx_ring->buffer_info = NULL; 1169 kfree(rx_ring->buffer_info); 1170 rx_ring->buffer_info = NULL; 1171 } 1172 1173 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1174 { 1175 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1176 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1177 struct pci_dev *pdev = adapter->pdev; 1178 struct e1000_hw *hw = &adapter->hw; 1179 u32 rctl; 1180 int i; 1181 int ret_val; 1182 1183 /* Setup Tx descriptor ring and Tx buffers */ 1184 1185 if (!tx_ring->count) 1186 tx_ring->count = E1000_DEFAULT_TXD; 1187 1188 tx_ring->buffer_info = kcalloc(tx_ring->count, 1189 sizeof(struct e1000_buffer), GFP_KERNEL); 1190 if (!tx_ring->buffer_info) { 1191 ret_val = 1; 1192 goto err_nomem; 1193 } 1194 1195 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1196 tx_ring->size = ALIGN(tx_ring->size, 4096); 1197 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1198 &tx_ring->dma, GFP_KERNEL); 1199 if (!tx_ring->desc) { 1200 ret_val = 2; 1201 goto err_nomem; 1202 } 1203 tx_ring->next_to_use = 0; 1204 tx_ring->next_to_clean = 0; 1205 1206 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1207 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1208 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1209 ew32(TDH(0), 0); 1210 ew32(TDT(0), 0); 1211 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1212 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1213 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1214 1215 for (i = 0; i < tx_ring->count; i++) { 1216 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1217 struct sk_buff *skb; 1218 unsigned int skb_size = 1024; 1219 1220 skb = alloc_skb(skb_size, GFP_KERNEL); 1221 if (!skb) { 1222 ret_val = 3; 1223 goto err_nomem; 1224 } 1225 skb_put(skb, skb_size); 1226 tx_ring->buffer_info[i].skb = skb; 1227 tx_ring->buffer_info[i].length = skb->len; 1228 tx_ring->buffer_info[i].dma = 1229 dma_map_single(&pdev->dev, skb->data, skb->len, 1230 DMA_TO_DEVICE); 1231 if (dma_mapping_error(&pdev->dev, 1232 tx_ring->buffer_info[i].dma)) { 1233 ret_val = 4; 1234 goto err_nomem; 1235 } 1236 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1237 tx_desc->lower.data = cpu_to_le32(skb->len); 1238 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1239 E1000_TXD_CMD_IFCS | 1240 E1000_TXD_CMD_RS); 1241 tx_desc->upper.data = 0; 1242 } 1243 1244 /* Setup Rx descriptor ring and Rx buffers */ 1245 1246 if (!rx_ring->count) 1247 rx_ring->count = E1000_DEFAULT_RXD; 1248 1249 rx_ring->buffer_info = kcalloc(rx_ring->count, 1250 sizeof(struct e1000_buffer), GFP_KERNEL); 1251 if (!rx_ring->buffer_info) { 1252 ret_val = 5; 1253 goto err_nomem; 1254 } 1255 1256 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1257 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1258 &rx_ring->dma, GFP_KERNEL); 1259 if (!rx_ring->desc) { 1260 ret_val = 6; 1261 goto err_nomem; 1262 } 1263 rx_ring->next_to_use = 0; 1264 rx_ring->next_to_clean = 0; 1265 1266 rctl = er32(RCTL); 1267 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1268 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1269 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1270 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1271 ew32(RDLEN(0), rx_ring->size); 1272 ew32(RDH(0), 0); 1273 ew32(RDT(0), 0); 1274 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1275 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1276 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1277 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1278 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1279 ew32(RCTL, rctl); 1280 1281 for (i = 0; i < rx_ring->count; i++) { 1282 union e1000_rx_desc_extended *rx_desc; 1283 struct sk_buff *skb; 1284 1285 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1286 if (!skb) { 1287 ret_val = 7; 1288 goto err_nomem; 1289 } 1290 skb_reserve(skb, NET_IP_ALIGN); 1291 rx_ring->buffer_info[i].skb = skb; 1292 rx_ring->buffer_info[i].dma = 1293 dma_map_single(&pdev->dev, skb->data, 2048, 1294 DMA_FROM_DEVICE); 1295 if (dma_mapping_error(&pdev->dev, 1296 rx_ring->buffer_info[i].dma)) { 1297 ret_val = 8; 1298 goto err_nomem; 1299 } 1300 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1301 rx_desc->read.buffer_addr = 1302 cpu_to_le64(rx_ring->buffer_info[i].dma); 1303 memset(skb->data, 0x00, skb->len); 1304 } 1305 1306 return 0; 1307 1308 err_nomem: 1309 e1000_free_desc_rings(adapter); 1310 return ret_val; 1311 } 1312 1313 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1314 { 1315 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1316 e1e_wphy(&adapter->hw, 29, 0x001F); 1317 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1318 e1e_wphy(&adapter->hw, 29, 0x001A); 1319 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1320 } 1321 1322 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1323 { 1324 struct e1000_hw *hw = &adapter->hw; 1325 u32 ctrl_reg = 0; 1326 u16 phy_reg = 0; 1327 s32 ret_val = 0; 1328 1329 hw->mac.autoneg = 0; 1330 1331 if (hw->phy.type == e1000_phy_ife) { 1332 /* force 100, set loopback */ 1333 e1e_wphy(hw, MII_BMCR, 0x6100); 1334 1335 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1336 ctrl_reg = er32(CTRL); 1337 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1338 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1339 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1340 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1341 E1000_CTRL_FD); /* Force Duplex to FULL */ 1342 1343 ew32(CTRL, ctrl_reg); 1344 e1e_flush(); 1345 usleep_range(500, 1000); 1346 1347 return 0; 1348 } 1349 1350 /* Specific PHY configuration for loopback */ 1351 switch (hw->phy.type) { 1352 case e1000_phy_m88: 1353 /* Auto-MDI/MDIX Off */ 1354 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1355 /* reset to update Auto-MDI/MDIX */ 1356 e1e_wphy(hw, MII_BMCR, 0x9140); 1357 /* autoneg off */ 1358 e1e_wphy(hw, MII_BMCR, 0x8140); 1359 break; 1360 case e1000_phy_gg82563: 1361 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1362 break; 1363 case e1000_phy_bm: 1364 /* Set Default MAC Interface speed to 1GB */ 1365 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1366 phy_reg &= ~0x0007; 1367 phy_reg |= 0x006; 1368 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1369 /* Assert SW reset for above settings to take effect */ 1370 hw->phy.ops.commit(hw); 1371 usleep_range(1000, 2000); 1372 /* Force Full Duplex */ 1373 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1374 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1375 /* Set Link Up (in force link) */ 1376 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1377 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1378 /* Force Link */ 1379 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1380 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1381 /* Set Early Link Enable */ 1382 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1383 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1384 break; 1385 case e1000_phy_82577: 1386 case e1000_phy_82578: 1387 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1388 ret_val = hw->phy.ops.acquire(hw); 1389 if (ret_val) { 1390 e_err("Cannot setup 1Gbps loopback.\n"); 1391 return ret_val; 1392 } 1393 e1000_configure_k1_ich8lan(hw, false); 1394 hw->phy.ops.release(hw); 1395 break; 1396 case e1000_phy_82579: 1397 /* Disable PHY energy detect power down */ 1398 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1399 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1400 /* Disable full chip energy detect */ 1401 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1402 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1403 /* Enable loopback on the PHY */ 1404 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1405 break; 1406 default: 1407 break; 1408 } 1409 1410 /* force 1000, set loopback */ 1411 e1e_wphy(hw, MII_BMCR, 0x4140); 1412 msleep(250); 1413 1414 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1415 ctrl_reg = er32(CTRL); 1416 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1417 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1418 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1419 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1420 E1000_CTRL_FD); /* Force Duplex to FULL */ 1421 1422 if (adapter->flags & FLAG_IS_ICH) 1423 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1424 1425 if (hw->phy.media_type == e1000_media_type_copper && 1426 hw->phy.type == e1000_phy_m88) { 1427 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1428 } else { 1429 /* Set the ILOS bit on the fiber Nic if half duplex link is 1430 * detected. 1431 */ 1432 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1433 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1434 } 1435 1436 ew32(CTRL, ctrl_reg); 1437 1438 /* Disable the receiver on the PHY so when a cable is plugged in, the 1439 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1440 */ 1441 if (hw->phy.type == e1000_phy_m88) 1442 e1000_phy_disable_receiver(adapter); 1443 1444 usleep_range(500, 1000); 1445 1446 return 0; 1447 } 1448 1449 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1450 { 1451 struct e1000_hw *hw = &adapter->hw; 1452 u32 ctrl = er32(CTRL); 1453 int link; 1454 1455 /* special requirements for 82571/82572 fiber adapters */ 1456 1457 /* jump through hoops to make sure link is up because serdes 1458 * link is hardwired up 1459 */ 1460 ctrl |= E1000_CTRL_SLU; 1461 ew32(CTRL, ctrl); 1462 1463 /* disable autoneg */ 1464 ctrl = er32(TXCW); 1465 ctrl &= ~BIT(31); 1466 ew32(TXCW, ctrl); 1467 1468 link = (er32(STATUS) & E1000_STATUS_LU); 1469 1470 if (!link) { 1471 /* set invert loss of signal */ 1472 ctrl = er32(CTRL); 1473 ctrl |= E1000_CTRL_ILOS; 1474 ew32(CTRL, ctrl); 1475 } 1476 1477 /* special write to serdes control register to enable SerDes analog 1478 * loopback 1479 */ 1480 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1481 e1e_flush(); 1482 usleep_range(10000, 20000); 1483 1484 return 0; 1485 } 1486 1487 /* only call this for fiber/serdes connections to es2lan */ 1488 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1489 { 1490 struct e1000_hw *hw = &adapter->hw; 1491 u32 ctrlext = er32(CTRL_EXT); 1492 u32 ctrl = er32(CTRL); 1493 1494 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1495 * on mac_type 80003es2lan) 1496 */ 1497 adapter->tx_fifo_head = ctrlext; 1498 1499 /* clear the serdes mode bits, putting the device into mac loopback */ 1500 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1501 ew32(CTRL_EXT, ctrlext); 1502 1503 /* force speed to 1000/FD, link up */ 1504 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1505 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1506 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1507 ew32(CTRL, ctrl); 1508 1509 /* set mac loopback */ 1510 ctrl = er32(RCTL); 1511 ctrl |= E1000_RCTL_LBM_MAC; 1512 ew32(RCTL, ctrl); 1513 1514 /* set testing mode parameters (no need to reset later) */ 1515 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1516 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1517 ew32(KMRNCTRLSTA, 1518 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1519 1520 return 0; 1521 } 1522 1523 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1524 { 1525 struct e1000_hw *hw = &adapter->hw; 1526 u32 rctl, fext_nvm11, tarc0; 1527 1528 if (hw->mac.type == e1000_pch_spt) { 1529 fext_nvm11 = er32(FEXTNVM11); 1530 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1531 ew32(FEXTNVM11, fext_nvm11); 1532 tarc0 = er32(TARC(0)); 1533 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1534 tarc0 &= 0xcfffffff; 1535 /* set bit 29 (value of MULR requests is now 2) */ 1536 tarc0 |= 0x20000000; 1537 ew32(TARC(0), tarc0); 1538 } 1539 if (hw->phy.media_type == e1000_media_type_fiber || 1540 hw->phy.media_type == e1000_media_type_internal_serdes) { 1541 switch (hw->mac.type) { 1542 case e1000_80003es2lan: 1543 return e1000_set_es2lan_mac_loopback(adapter); 1544 case e1000_82571: 1545 case e1000_82572: 1546 return e1000_set_82571_fiber_loopback(adapter); 1547 default: 1548 rctl = er32(RCTL); 1549 rctl |= E1000_RCTL_LBM_TCVR; 1550 ew32(RCTL, rctl); 1551 return 0; 1552 } 1553 } else if (hw->phy.media_type == e1000_media_type_copper) { 1554 return e1000_integrated_phy_loopback(adapter); 1555 } 1556 1557 return 7; 1558 } 1559 1560 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1561 { 1562 struct e1000_hw *hw = &adapter->hw; 1563 u32 rctl, fext_nvm11, tarc0; 1564 u16 phy_reg; 1565 1566 rctl = er32(RCTL); 1567 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1568 ew32(RCTL, rctl); 1569 1570 switch (hw->mac.type) { 1571 case e1000_pch_spt: 1572 fext_nvm11 = er32(FEXTNVM11); 1573 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1574 ew32(FEXTNVM11, fext_nvm11); 1575 tarc0 = er32(TARC(0)); 1576 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1577 /* set bit 29 (value of MULR requests is now 0) */ 1578 tarc0 &= 0xcfffffff; 1579 ew32(TARC(0), tarc0); 1580 /* fall through */ 1581 case e1000_80003es2lan: 1582 if (hw->phy.media_type == e1000_media_type_fiber || 1583 hw->phy.media_type == e1000_media_type_internal_serdes) { 1584 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1585 ew32(CTRL_EXT, adapter->tx_fifo_head); 1586 adapter->tx_fifo_head = 0; 1587 } 1588 /* fall through */ 1589 case e1000_82571: 1590 case e1000_82572: 1591 if (hw->phy.media_type == e1000_media_type_fiber || 1592 hw->phy.media_type == e1000_media_type_internal_serdes) { 1593 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1594 e1e_flush(); 1595 usleep_range(10000, 20000); 1596 break; 1597 } 1598 /* Fall Through */ 1599 default: 1600 hw->mac.autoneg = 1; 1601 if (hw->phy.type == e1000_phy_gg82563) 1602 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1603 e1e_rphy(hw, MII_BMCR, &phy_reg); 1604 if (phy_reg & BMCR_LOOPBACK) { 1605 phy_reg &= ~BMCR_LOOPBACK; 1606 e1e_wphy(hw, MII_BMCR, phy_reg); 1607 if (hw->phy.ops.commit) 1608 hw->phy.ops.commit(hw); 1609 } 1610 break; 1611 } 1612 } 1613 1614 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1615 unsigned int frame_size) 1616 { 1617 memset(skb->data, 0xFF, frame_size); 1618 frame_size &= ~1; 1619 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1620 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1621 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1622 } 1623 1624 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1625 unsigned int frame_size) 1626 { 1627 frame_size &= ~1; 1628 if (*(skb->data + 3) == 0xFF) 1629 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1630 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1631 return 0; 1632 return 13; 1633 } 1634 1635 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1636 { 1637 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1638 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1639 struct pci_dev *pdev = adapter->pdev; 1640 struct e1000_hw *hw = &adapter->hw; 1641 struct e1000_buffer *buffer_info; 1642 int i, j, k, l; 1643 int lc; 1644 int good_cnt; 1645 int ret_val = 0; 1646 unsigned long time; 1647 1648 ew32(RDT(0), rx_ring->count - 1); 1649 1650 /* Calculate the loop count based on the largest descriptor ring 1651 * The idea is to wrap the largest ring a number of times using 64 1652 * send/receive pairs during each loop 1653 */ 1654 1655 if (rx_ring->count <= tx_ring->count) 1656 lc = ((tx_ring->count / 64) * 2) + 1; 1657 else 1658 lc = ((rx_ring->count / 64) * 2) + 1; 1659 1660 k = 0; 1661 l = 0; 1662 /* loop count loop */ 1663 for (j = 0; j <= lc; j++) { 1664 /* send the packets */ 1665 for (i = 0; i < 64; i++) { 1666 buffer_info = &tx_ring->buffer_info[k]; 1667 1668 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1669 dma_sync_single_for_device(&pdev->dev, 1670 buffer_info->dma, 1671 buffer_info->length, 1672 DMA_TO_DEVICE); 1673 k++; 1674 if (k == tx_ring->count) 1675 k = 0; 1676 } 1677 ew32(TDT(0), k); 1678 e1e_flush(); 1679 msleep(200); 1680 time = jiffies; /* set the start time for the receive */ 1681 good_cnt = 0; 1682 /* receive the sent packets */ 1683 do { 1684 buffer_info = &rx_ring->buffer_info[l]; 1685 1686 dma_sync_single_for_cpu(&pdev->dev, 1687 buffer_info->dma, 2048, 1688 DMA_FROM_DEVICE); 1689 1690 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1691 1024); 1692 if (!ret_val) 1693 good_cnt++; 1694 l++; 1695 if (l == rx_ring->count) 1696 l = 0; 1697 /* time + 20 msecs (200 msecs on 2.4) is more than 1698 * enough time to complete the receives, if it's 1699 * exceeded, break and error off 1700 */ 1701 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1702 if (good_cnt != 64) { 1703 ret_val = 13; /* ret_val is the same as mis-compare */ 1704 break; 1705 } 1706 if (time_after(jiffies, time + 20)) { 1707 ret_val = 14; /* error code for time out error */ 1708 break; 1709 } 1710 } 1711 return ret_val; 1712 } 1713 1714 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1715 { 1716 struct e1000_hw *hw = &adapter->hw; 1717 1718 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1719 if (hw->phy.ops.check_reset_block && 1720 hw->phy.ops.check_reset_block(hw)) { 1721 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1722 *data = 0; 1723 goto out; 1724 } 1725 1726 *data = e1000_setup_desc_rings(adapter); 1727 if (*data) 1728 goto out; 1729 1730 *data = e1000_setup_loopback_test(adapter); 1731 if (*data) 1732 goto err_loopback; 1733 1734 *data = e1000_run_loopback_test(adapter); 1735 e1000_loopback_cleanup(adapter); 1736 1737 err_loopback: 1738 e1000_free_desc_rings(adapter); 1739 out: 1740 return *data; 1741 } 1742 1743 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1744 { 1745 struct e1000_hw *hw = &adapter->hw; 1746 1747 *data = 0; 1748 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1749 int i = 0; 1750 1751 hw->mac.serdes_has_link = false; 1752 1753 /* On some blade server designs, link establishment 1754 * could take as long as 2-3 minutes 1755 */ 1756 do { 1757 hw->mac.ops.check_for_link(hw); 1758 if (hw->mac.serdes_has_link) 1759 return *data; 1760 msleep(20); 1761 } while (i++ < 3750); 1762 1763 *data = 1; 1764 } else { 1765 hw->mac.ops.check_for_link(hw); 1766 if (hw->mac.autoneg) 1767 /* On some Phy/switch combinations, link establishment 1768 * can take a few seconds more than expected. 1769 */ 1770 msleep_interruptible(5000); 1771 1772 if (!(er32(STATUS) & E1000_STATUS_LU)) 1773 *data = 1; 1774 } 1775 return *data; 1776 } 1777 1778 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1779 int sset) 1780 { 1781 switch (sset) { 1782 case ETH_SS_TEST: 1783 return E1000_TEST_LEN; 1784 case ETH_SS_STATS: 1785 return E1000_STATS_LEN; 1786 default: 1787 return -EOPNOTSUPP; 1788 } 1789 } 1790 1791 static void e1000_diag_test(struct net_device *netdev, 1792 struct ethtool_test *eth_test, u64 *data) 1793 { 1794 struct e1000_adapter *adapter = netdev_priv(netdev); 1795 u16 autoneg_advertised; 1796 u8 forced_speed_duplex; 1797 u8 autoneg; 1798 bool if_running = netif_running(netdev); 1799 1800 pm_runtime_get_sync(netdev->dev.parent); 1801 1802 set_bit(__E1000_TESTING, &adapter->state); 1803 1804 if (!if_running) { 1805 /* Get control of and reset hardware */ 1806 if (adapter->flags & FLAG_HAS_AMT) 1807 e1000e_get_hw_control(adapter); 1808 1809 e1000e_power_up_phy(adapter); 1810 1811 adapter->hw.phy.autoneg_wait_to_complete = 1; 1812 e1000e_reset(adapter); 1813 adapter->hw.phy.autoneg_wait_to_complete = 0; 1814 } 1815 1816 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1817 /* Offline tests */ 1818 1819 /* save speed, duplex, autoneg settings */ 1820 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1821 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1822 autoneg = adapter->hw.mac.autoneg; 1823 1824 e_info("offline testing starting\n"); 1825 1826 if (if_running) 1827 /* indicate we're in test mode */ 1828 e1000e_close(netdev); 1829 1830 if (e1000_reg_test(adapter, &data[0])) 1831 eth_test->flags |= ETH_TEST_FL_FAILED; 1832 1833 e1000e_reset(adapter); 1834 if (e1000_eeprom_test(adapter, &data[1])) 1835 eth_test->flags |= ETH_TEST_FL_FAILED; 1836 1837 e1000e_reset(adapter); 1838 if (e1000_intr_test(adapter, &data[2])) 1839 eth_test->flags |= ETH_TEST_FL_FAILED; 1840 1841 e1000e_reset(adapter); 1842 if (e1000_loopback_test(adapter, &data[3])) 1843 eth_test->flags |= ETH_TEST_FL_FAILED; 1844 1845 /* force this routine to wait until autoneg complete/timeout */ 1846 adapter->hw.phy.autoneg_wait_to_complete = 1; 1847 e1000e_reset(adapter); 1848 adapter->hw.phy.autoneg_wait_to_complete = 0; 1849 1850 if (e1000_link_test(adapter, &data[4])) 1851 eth_test->flags |= ETH_TEST_FL_FAILED; 1852 1853 /* restore speed, duplex, autoneg settings */ 1854 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1855 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1856 adapter->hw.mac.autoneg = autoneg; 1857 e1000e_reset(adapter); 1858 1859 clear_bit(__E1000_TESTING, &adapter->state); 1860 if (if_running) 1861 e1000e_open(netdev); 1862 } else { 1863 /* Online tests */ 1864 1865 e_info("online testing starting\n"); 1866 1867 /* register, eeprom, intr and loopback tests not run online */ 1868 data[0] = 0; 1869 data[1] = 0; 1870 data[2] = 0; 1871 data[3] = 0; 1872 1873 if (e1000_link_test(adapter, &data[4])) 1874 eth_test->flags |= ETH_TEST_FL_FAILED; 1875 1876 clear_bit(__E1000_TESTING, &adapter->state); 1877 } 1878 1879 if (!if_running) { 1880 e1000e_reset(adapter); 1881 1882 if (adapter->flags & FLAG_HAS_AMT) 1883 e1000e_release_hw_control(adapter); 1884 } 1885 1886 msleep_interruptible(4 * 1000); 1887 1888 pm_runtime_put_sync(netdev->dev.parent); 1889 } 1890 1891 static void e1000_get_wol(struct net_device *netdev, 1892 struct ethtool_wolinfo *wol) 1893 { 1894 struct e1000_adapter *adapter = netdev_priv(netdev); 1895 1896 wol->supported = 0; 1897 wol->wolopts = 0; 1898 1899 if (!(adapter->flags & FLAG_HAS_WOL) || 1900 !device_can_wakeup(&adapter->pdev->dev)) 1901 return; 1902 1903 wol->supported = WAKE_UCAST | WAKE_MCAST | 1904 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1905 1906 /* apply any specific unsupported masks here */ 1907 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1908 wol->supported &= ~WAKE_UCAST; 1909 1910 if (adapter->wol & E1000_WUFC_EX) 1911 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1912 } 1913 1914 if (adapter->wol & E1000_WUFC_EX) 1915 wol->wolopts |= WAKE_UCAST; 1916 if (adapter->wol & E1000_WUFC_MC) 1917 wol->wolopts |= WAKE_MCAST; 1918 if (adapter->wol & E1000_WUFC_BC) 1919 wol->wolopts |= WAKE_BCAST; 1920 if (adapter->wol & E1000_WUFC_MAG) 1921 wol->wolopts |= WAKE_MAGIC; 1922 if (adapter->wol & E1000_WUFC_LNKC) 1923 wol->wolopts |= WAKE_PHY; 1924 } 1925 1926 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1927 { 1928 struct e1000_adapter *adapter = netdev_priv(netdev); 1929 1930 if (!(adapter->flags & FLAG_HAS_WOL) || 1931 !device_can_wakeup(&adapter->pdev->dev) || 1932 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1933 WAKE_MAGIC | WAKE_PHY))) 1934 return -EOPNOTSUPP; 1935 1936 /* these settings will always override what we currently have */ 1937 adapter->wol = 0; 1938 1939 if (wol->wolopts & WAKE_UCAST) 1940 adapter->wol |= E1000_WUFC_EX; 1941 if (wol->wolopts & WAKE_MCAST) 1942 adapter->wol |= E1000_WUFC_MC; 1943 if (wol->wolopts & WAKE_BCAST) 1944 adapter->wol |= E1000_WUFC_BC; 1945 if (wol->wolopts & WAKE_MAGIC) 1946 adapter->wol |= E1000_WUFC_MAG; 1947 if (wol->wolopts & WAKE_PHY) 1948 adapter->wol |= E1000_WUFC_LNKC; 1949 1950 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1951 1952 return 0; 1953 } 1954 1955 static int e1000_set_phys_id(struct net_device *netdev, 1956 enum ethtool_phys_id_state state) 1957 { 1958 struct e1000_adapter *adapter = netdev_priv(netdev); 1959 struct e1000_hw *hw = &adapter->hw; 1960 1961 switch (state) { 1962 case ETHTOOL_ID_ACTIVE: 1963 pm_runtime_get_sync(netdev->dev.parent); 1964 1965 if (!hw->mac.ops.blink_led) 1966 return 2; /* cycle on/off twice per second */ 1967 1968 hw->mac.ops.blink_led(hw); 1969 break; 1970 1971 case ETHTOOL_ID_INACTIVE: 1972 if (hw->phy.type == e1000_phy_ife) 1973 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1974 hw->mac.ops.led_off(hw); 1975 hw->mac.ops.cleanup_led(hw); 1976 pm_runtime_put_sync(netdev->dev.parent); 1977 break; 1978 1979 case ETHTOOL_ID_ON: 1980 hw->mac.ops.led_on(hw); 1981 break; 1982 1983 case ETHTOOL_ID_OFF: 1984 hw->mac.ops.led_off(hw); 1985 break; 1986 } 1987 1988 return 0; 1989 } 1990 1991 static int e1000_get_coalesce(struct net_device *netdev, 1992 struct ethtool_coalesce *ec) 1993 { 1994 struct e1000_adapter *adapter = netdev_priv(netdev); 1995 1996 if (adapter->itr_setting <= 4) 1997 ec->rx_coalesce_usecs = adapter->itr_setting; 1998 else 1999 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 2000 2001 return 0; 2002 } 2003 2004 static int e1000_set_coalesce(struct net_device *netdev, 2005 struct ethtool_coalesce *ec) 2006 { 2007 struct e1000_adapter *adapter = netdev_priv(netdev); 2008 2009 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2010 ((ec->rx_coalesce_usecs > 4) && 2011 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2012 (ec->rx_coalesce_usecs == 2)) 2013 return -EINVAL; 2014 2015 if (ec->rx_coalesce_usecs == 4) { 2016 adapter->itr_setting = 4; 2017 adapter->itr = adapter->itr_setting; 2018 } else if (ec->rx_coalesce_usecs <= 3) { 2019 adapter->itr = 20000; 2020 adapter->itr_setting = ec->rx_coalesce_usecs; 2021 } else { 2022 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2023 adapter->itr_setting = adapter->itr & ~3; 2024 } 2025 2026 pm_runtime_get_sync(netdev->dev.parent); 2027 2028 if (adapter->itr_setting != 0) 2029 e1000e_write_itr(adapter, adapter->itr); 2030 else 2031 e1000e_write_itr(adapter, 0); 2032 2033 pm_runtime_put_sync(netdev->dev.parent); 2034 2035 return 0; 2036 } 2037 2038 static int e1000_nway_reset(struct net_device *netdev) 2039 { 2040 struct e1000_adapter *adapter = netdev_priv(netdev); 2041 2042 if (!netif_running(netdev)) 2043 return -EAGAIN; 2044 2045 if (!adapter->hw.mac.autoneg) 2046 return -EINVAL; 2047 2048 pm_runtime_get_sync(netdev->dev.parent); 2049 e1000e_reinit_locked(adapter); 2050 pm_runtime_put_sync(netdev->dev.parent); 2051 2052 return 0; 2053 } 2054 2055 static void e1000_get_ethtool_stats(struct net_device *netdev, 2056 struct ethtool_stats __always_unused *stats, 2057 u64 *data) 2058 { 2059 struct e1000_adapter *adapter = netdev_priv(netdev); 2060 struct rtnl_link_stats64 net_stats; 2061 int i; 2062 char *p = NULL; 2063 2064 pm_runtime_get_sync(netdev->dev.parent); 2065 2066 e1000e_get_stats64(netdev, &net_stats); 2067 2068 pm_runtime_put_sync(netdev->dev.parent); 2069 2070 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2071 switch (e1000_gstrings_stats[i].type) { 2072 case NETDEV_STATS: 2073 p = (char *)&net_stats + 2074 e1000_gstrings_stats[i].stat_offset; 2075 break; 2076 case E1000_STATS: 2077 p = (char *)adapter + 2078 e1000_gstrings_stats[i].stat_offset; 2079 break; 2080 default: 2081 data[i] = 0; 2082 continue; 2083 } 2084 2085 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2086 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2087 } 2088 } 2089 2090 static void e1000_get_strings(struct net_device __always_unused *netdev, 2091 u32 stringset, u8 *data) 2092 { 2093 u8 *p = data; 2094 int i; 2095 2096 switch (stringset) { 2097 case ETH_SS_TEST: 2098 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2099 break; 2100 case ETH_SS_STATS: 2101 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2102 memcpy(p, e1000_gstrings_stats[i].stat_string, 2103 ETH_GSTRING_LEN); 2104 p += ETH_GSTRING_LEN; 2105 } 2106 break; 2107 } 2108 } 2109 2110 static int e1000_get_rxnfc(struct net_device *netdev, 2111 struct ethtool_rxnfc *info, 2112 u32 __always_unused *rule_locs) 2113 { 2114 info->data = 0; 2115 2116 switch (info->cmd) { 2117 case ETHTOOL_GRXFH: { 2118 struct e1000_adapter *adapter = netdev_priv(netdev); 2119 struct e1000_hw *hw = &adapter->hw; 2120 u32 mrqc; 2121 2122 pm_runtime_get_sync(netdev->dev.parent); 2123 mrqc = er32(MRQC); 2124 pm_runtime_put_sync(netdev->dev.parent); 2125 2126 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2127 return 0; 2128 2129 switch (info->flow_type) { 2130 case TCP_V4_FLOW: 2131 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2132 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2133 /* fall through */ 2134 case UDP_V4_FLOW: 2135 case SCTP_V4_FLOW: 2136 case AH_ESP_V4_FLOW: 2137 case IPV4_FLOW: 2138 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2139 info->data |= RXH_IP_SRC | RXH_IP_DST; 2140 break; 2141 case TCP_V6_FLOW: 2142 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2143 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2144 /* fall through */ 2145 case UDP_V6_FLOW: 2146 case SCTP_V6_FLOW: 2147 case AH_ESP_V6_FLOW: 2148 case IPV6_FLOW: 2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2150 info->data |= RXH_IP_SRC | RXH_IP_DST; 2151 break; 2152 default: 2153 break; 2154 } 2155 return 0; 2156 } 2157 default: 2158 return -EOPNOTSUPP; 2159 } 2160 } 2161 2162 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2163 { 2164 struct e1000_adapter *adapter = netdev_priv(netdev); 2165 struct e1000_hw *hw = &adapter->hw; 2166 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2167 u32 ret_val; 2168 2169 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2170 return -EOPNOTSUPP; 2171 2172 switch (hw->phy.type) { 2173 case e1000_phy_82579: 2174 cap_addr = I82579_EEE_CAPABILITY; 2175 lpa_addr = I82579_EEE_LP_ABILITY; 2176 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2177 break; 2178 case e1000_phy_i217: 2179 cap_addr = I217_EEE_CAPABILITY; 2180 lpa_addr = I217_EEE_LP_ABILITY; 2181 pcs_stat_addr = I217_EEE_PCS_STATUS; 2182 break; 2183 default: 2184 return -EOPNOTSUPP; 2185 } 2186 2187 pm_runtime_get_sync(netdev->dev.parent); 2188 2189 ret_val = hw->phy.ops.acquire(hw); 2190 if (ret_val) { 2191 pm_runtime_put_sync(netdev->dev.parent); 2192 return -EBUSY; 2193 } 2194 2195 /* EEE Capability */ 2196 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2197 if (ret_val) 2198 goto release; 2199 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); 2200 2201 /* EEE Advertised */ 2202 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2203 2204 /* EEE Link Partner Advertised */ 2205 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2206 if (ret_val) 2207 goto release; 2208 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2209 2210 /* EEE PCS Status */ 2211 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2212 if (ret_val) 2213 goto release; 2214 if (hw->phy.type == e1000_phy_82579) 2215 phy_data <<= 8; 2216 2217 /* Result of the EEE auto negotiation - there is no register that 2218 * has the status of the EEE negotiation so do a best-guess based 2219 * on whether Tx or Rx LPI indications have been received. 2220 */ 2221 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2222 edata->eee_active = true; 2223 2224 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2225 edata->tx_lpi_enabled = true; 2226 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2227 2228 release: 2229 hw->phy.ops.release(hw); 2230 if (ret_val) 2231 ret_val = -ENODATA; 2232 2233 pm_runtime_put_sync(netdev->dev.parent); 2234 2235 return ret_val; 2236 } 2237 2238 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) 2239 { 2240 struct e1000_adapter *adapter = netdev_priv(netdev); 2241 struct e1000_hw *hw = &adapter->hw; 2242 struct ethtool_eee eee_curr; 2243 s32 ret_val; 2244 2245 ret_val = e1000e_get_eee(netdev, &eee_curr); 2246 if (ret_val) 2247 return ret_val; 2248 2249 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2250 e_err("Setting EEE tx-lpi is not supported\n"); 2251 return -EINVAL; 2252 } 2253 2254 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2255 e_err("Setting EEE Tx LPI timer is not supported\n"); 2256 return -EINVAL; 2257 } 2258 2259 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2260 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2261 return -EINVAL; 2262 } 2263 2264 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2265 2266 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2267 2268 pm_runtime_get_sync(netdev->dev.parent); 2269 2270 /* reset the link */ 2271 if (netif_running(netdev)) 2272 e1000e_reinit_locked(adapter); 2273 else 2274 e1000e_reset(adapter); 2275 2276 pm_runtime_put_sync(netdev->dev.parent); 2277 2278 return 0; 2279 } 2280 2281 static int e1000e_get_ts_info(struct net_device *netdev, 2282 struct ethtool_ts_info *info) 2283 { 2284 struct e1000_adapter *adapter = netdev_priv(netdev); 2285 2286 ethtool_op_get_ts_info(netdev, info); 2287 2288 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2289 return 0; 2290 2291 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2292 SOF_TIMESTAMPING_RX_HARDWARE | 2293 SOF_TIMESTAMPING_RAW_HARDWARE); 2294 2295 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2296 2297 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2298 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2299 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2300 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2301 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2302 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2303 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2304 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2305 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2306 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2307 BIT(HWTSTAMP_FILTER_ALL)); 2308 2309 if (adapter->ptp_clock) 2310 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2311 2312 return 0; 2313 } 2314 2315 static const struct ethtool_ops e1000_ethtool_ops = { 2316 .get_settings = e1000_get_settings, 2317 .set_settings = e1000_set_settings, 2318 .get_drvinfo = e1000_get_drvinfo, 2319 .get_regs_len = e1000_get_regs_len, 2320 .get_regs = e1000_get_regs, 2321 .get_wol = e1000_get_wol, 2322 .set_wol = e1000_set_wol, 2323 .get_msglevel = e1000_get_msglevel, 2324 .set_msglevel = e1000_set_msglevel, 2325 .nway_reset = e1000_nway_reset, 2326 .get_link = ethtool_op_get_link, 2327 .get_eeprom_len = e1000_get_eeprom_len, 2328 .get_eeprom = e1000_get_eeprom, 2329 .set_eeprom = e1000_set_eeprom, 2330 .get_ringparam = e1000_get_ringparam, 2331 .set_ringparam = e1000_set_ringparam, 2332 .get_pauseparam = e1000_get_pauseparam, 2333 .set_pauseparam = e1000_set_pauseparam, 2334 .self_test = e1000_diag_test, 2335 .get_strings = e1000_get_strings, 2336 .set_phys_id = e1000_set_phys_id, 2337 .get_ethtool_stats = e1000_get_ethtool_stats, 2338 .get_sset_count = e1000e_get_sset_count, 2339 .get_coalesce = e1000_get_coalesce, 2340 .set_coalesce = e1000_set_coalesce, 2341 .get_rxnfc = e1000_get_rxnfc, 2342 .get_ts_info = e1000e_get_ts_info, 2343 .get_eee = e1000e_get_eee, 2344 .set_eee = e1000e_set_eee, 2345 }; 2346 2347 void e1000e_set_ethtool_ops(struct net_device *netdev) 2348 { 2349 netdev->ethtool_ops = &e1000_ethtool_ops; 2350 } 2351