1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14
15 #include "e1000.h"
16
17 enum { NETDEV_STATS, E1000_STATS };
18
19 struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24 };
25
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0)
28 "s0ix-enabled",
29 };
30
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32
33 #define E1000_STAT(str, m) { \
34 .stat_string = str, \
35 .type = E1000_STATS, \
36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 .stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 .stat_string = str, \
40 .type = NETDEV_STATS, \
41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
43
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 E1000_STAT("rx_packets", stats.gprc),
46 E1000_STAT("tx_packets", stats.gptc),
47 E1000_STAT("rx_bytes", stats.gorc),
48 E1000_STAT("tx_bytes", stats.gotc),
49 E1000_STAT("rx_broadcast", stats.bprc),
50 E1000_STAT("tx_broadcast", stats.bptc),
51 E1000_STAT("rx_multicast", stats.mprc),
52 E1000_STAT("tx_multicast", stats.mptc),
53 E1000_NETDEV_STAT("rx_errors", rx_errors),
54 E1000_NETDEV_STAT("tx_errors", tx_errors),
55 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 E1000_STAT("multicast", stats.mprc),
57 E1000_STAT("collisions", stats.colc),
58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 E1000_STAT("rx_crc_errors", stats.crcerrs),
61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 E1000_STAT("rx_missed_errors", stats.mpc),
64 E1000_STAT("tx_aborted_errors", stats.ecol),
65 E1000_STAT("tx_carrier_errors", stats.tncrs),
66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 E1000_STAT("tx_window_errors", stats.latecol),
69 E1000_STAT("tx_abort_late_coll", stats.latecol),
70 E1000_STAT("tx_deferred_ok", stats.dc),
71 E1000_STAT("tx_single_coll_ok", stats.scc),
72 E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 E1000_STAT("tx_timeout_count", tx_timeout_count),
74 E1000_STAT("tx_restart_queue", restart_queue),
75 E1000_STAT("rx_long_length_errors", stats.roc),
76 E1000_STAT("rx_short_length_errors", stats.ruc),
77 E1000_STAT("rx_align_errors", stats.algnerrc),
78 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 E1000_STAT("rx_header_split", rx_hdr_split),
87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 E1000_STAT("tx_smbus", stats.mgptc),
89 E1000_STAT("rx_smbus", stats.mgprc),
90 E1000_STAT("dropped_smbus", stats.mgpdc),
91 E1000_STAT("rx_dma_failed", rx_dma_failed),
92 E1000_STAT("tx_dma_failed", tx_dma_failed),
93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 E1000_STAT("corr_ecc_errors", corr_errors),
96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106 };
107
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109
e1000_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 struct ethtool_link_ksettings *cmd)
112 {
113 u32 speed, supported, advertising, lp_advertising, lpa_t;
114 struct e1000_adapter *adapter = netdev_priv(netdev);
115 struct e1000_hw *hw = &adapter->hw;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118 supported = (SUPPORTED_10baseT_Half |
119 SUPPORTED_10baseT_Full |
120 SUPPORTED_100baseT_Half |
121 SUPPORTED_100baseT_Full |
122 SUPPORTED_1000baseT_Full |
123 SUPPORTED_Asym_Pause |
124 SUPPORTED_Autoneg |
125 SUPPORTED_Pause |
126 SUPPORTED_TP);
127 if (hw->phy.type == e1000_phy_ife)
128 supported &= ~SUPPORTED_1000baseT_Full;
129 advertising = ADVERTISED_TP;
130
131 if (hw->mac.autoneg == 1) {
132 advertising |= ADVERTISED_Autoneg;
133 /* the e1000 autoneg seems to match ethtool nicely */
134 advertising |= hw->phy.autoneg_advertised;
135 }
136
137 cmd->base.port = PORT_TP;
138 cmd->base.phy_address = hw->phy.addr;
139 } else {
140 supported = (SUPPORTED_1000baseT_Full |
141 SUPPORTED_FIBRE |
142 SUPPORTED_Autoneg);
143
144 advertising = (ADVERTISED_1000baseT_Full |
145 ADVERTISED_FIBRE |
146 ADVERTISED_Autoneg);
147
148 cmd->base.port = PORT_FIBRE;
149 }
150
151 speed = SPEED_UNKNOWN;
152 cmd->base.duplex = DUPLEX_UNKNOWN;
153
154 if (netif_running(netdev)) {
155 if (netif_carrier_ok(netdev)) {
156 speed = adapter->link_speed;
157 cmd->base.duplex = adapter->link_duplex - 1;
158 }
159 } else {
160 u32 status = er32(STATUS);
161
162 if (status & E1000_STATUS_LU) {
163 if (status & E1000_STATUS_SPEED_1000)
164 speed = SPEED_1000;
165 else if (status & E1000_STATUS_SPEED_100)
166 speed = SPEED_100;
167 else
168 speed = SPEED_10;
169
170 if (status & E1000_STATUS_FD)
171 cmd->base.duplex = DUPLEX_FULL;
172 else
173 cmd->base.duplex = DUPLEX_HALF;
174 }
175 }
176
177 cmd->base.speed = speed;
178 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
179 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180
181 /* MDI-X => 2; MDI =>1; Invalid =>0 */
182 if ((hw->phy.media_type == e1000_media_type_copper) &&
183 netif_carrier_ok(netdev))
184 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
185 ETH_TP_MDI_X : ETH_TP_MDI;
186 else
187 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
188
189 if (hw->phy.mdix == AUTO_ALL_MODES)
190 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
191 else
192 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
193
194 if (hw->phy.media_type != e1000_media_type_copper)
195 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
196
197 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
198 lp_advertising = lpa_t |
199 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
200
201 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
202 supported);
203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
204 advertising);
205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
206 lp_advertising);
207
208 return 0;
209 }
210
e1000_set_spd_dplx(struct e1000_adapter * adapter,u32 spd,u8 dplx)211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
212 {
213 struct e1000_mac_info *mac = &adapter->hw.mac;
214
215 mac->autoneg = 0;
216
217 /* Make sure dplx is at most 1 bit and lsb of speed is not set
218 * for the switch() below to work
219 */
220 if ((spd & 1) || (dplx & ~1))
221 goto err_inval;
222
223 /* Fiber NICs only allow 1000 gbps Full duplex */
224 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
225 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
226 goto err_inval;
227 }
228
229 switch (spd + dplx) {
230 case SPEED_10 + DUPLEX_HALF:
231 mac->forced_speed_duplex = ADVERTISE_10_HALF;
232 break;
233 case SPEED_10 + DUPLEX_FULL:
234 mac->forced_speed_duplex = ADVERTISE_10_FULL;
235 break;
236 case SPEED_100 + DUPLEX_HALF:
237 mac->forced_speed_duplex = ADVERTISE_100_HALF;
238 break;
239 case SPEED_100 + DUPLEX_FULL:
240 mac->forced_speed_duplex = ADVERTISE_100_FULL;
241 break;
242 case SPEED_1000 + DUPLEX_FULL:
243 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
244 mac->autoneg = 1;
245 adapter->hw.phy.autoneg_advertised =
246 ADVERTISE_1000_FULL;
247 } else {
248 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
249 }
250 break;
251 case SPEED_1000 + DUPLEX_HALF: /* not supported */
252 default:
253 goto err_inval;
254 }
255
256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
257 adapter->hw.phy.mdix = AUTO_ALL_MODES;
258
259 return 0;
260
261 err_inval:
262 e_err("Unsupported Speed/Duplex configuration\n");
263 return -EINVAL;
264 }
265
e1000_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)266 static int e1000_set_link_ksettings(struct net_device *netdev,
267 const struct ethtool_link_ksettings *cmd)
268 {
269 struct e1000_adapter *adapter = netdev_priv(netdev);
270 struct e1000_hw *hw = &adapter->hw;
271 int ret_val = 0;
272 u32 advertising;
273
274 ethtool_convert_link_mode_to_legacy_u32(&advertising,
275 cmd->link_modes.advertising);
276
277 /* When SoL/IDER sessions are active, autoneg/speed/duplex
278 * cannot be changed
279 */
280 if (hw->phy.ops.check_reset_block &&
281 hw->phy.ops.check_reset_block(hw)) {
282 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
283 return -EINVAL;
284 }
285
286 /* MDI setting is only allowed when autoneg enabled because
287 * some hardware doesn't allow MDI setting when speed or
288 * duplex is forced.
289 */
290 if (cmd->base.eth_tp_mdix_ctrl) {
291 if (hw->phy.media_type != e1000_media_type_copper)
292 return -EOPNOTSUPP;
293
294 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
295 (cmd->base.autoneg != AUTONEG_ENABLE)) {
296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297 return -EINVAL;
298 }
299 }
300
301 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
302 usleep_range(1000, 2000);
303
304 if (cmd->base.autoneg == AUTONEG_ENABLE) {
305 hw->mac.autoneg = 1;
306 if (hw->phy.media_type == e1000_media_type_fiber)
307 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
308 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
309 else
310 hw->phy.autoneg_advertised = advertising |
311 ADVERTISED_TP | ADVERTISED_Autoneg;
312 advertising = hw->phy.autoneg_advertised;
313 if (adapter->fc_autoneg)
314 hw->fc.requested_mode = e1000_fc_default;
315 } else {
316 u32 speed = cmd->base.speed;
317 /* calling this overrides forced MDI setting */
318 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
319 ret_val = -EINVAL;
320 goto out;
321 }
322 }
323
324 /* MDI-X => 2; MDI => 1; Auto => 3 */
325 if (cmd->base.eth_tp_mdix_ctrl) {
326 /* fix up the value for auto (3 => 0) as zero is mapped
327 * internally to auto
328 */
329 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
330 hw->phy.mdix = AUTO_ALL_MODES;
331 else
332 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
333 }
334
335 /* reset the link */
336 if (netif_running(adapter->netdev)) {
337 e1000e_down(adapter, true);
338 e1000e_up(adapter);
339 } else {
340 e1000e_reset(adapter);
341 }
342
343 out:
344 clear_bit(__E1000_RESETTING, &adapter->state);
345 return ret_val;
346 }
347
e1000_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)348 static void e1000_get_pauseparam(struct net_device *netdev,
349 struct ethtool_pauseparam *pause)
350 {
351 struct e1000_adapter *adapter = netdev_priv(netdev);
352 struct e1000_hw *hw = &adapter->hw;
353
354 pause->autoneg =
355 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
356
357 if (hw->fc.current_mode == e1000_fc_rx_pause) {
358 pause->rx_pause = 1;
359 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
360 pause->tx_pause = 1;
361 } else if (hw->fc.current_mode == e1000_fc_full) {
362 pause->rx_pause = 1;
363 pause->tx_pause = 1;
364 }
365 }
366
e1000_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)367 static int e1000_set_pauseparam(struct net_device *netdev,
368 struct ethtool_pauseparam *pause)
369 {
370 struct e1000_adapter *adapter = netdev_priv(netdev);
371 struct e1000_hw *hw = &adapter->hw;
372 int retval = 0;
373
374 adapter->fc_autoneg = pause->autoneg;
375
376 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
377 usleep_range(1000, 2000);
378
379 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
380 hw->fc.requested_mode = e1000_fc_default;
381 if (netif_running(adapter->netdev)) {
382 e1000e_down(adapter, true);
383 e1000e_up(adapter);
384 } else {
385 e1000e_reset(adapter);
386 }
387 } else {
388 if (pause->rx_pause && pause->tx_pause)
389 hw->fc.requested_mode = e1000_fc_full;
390 else if (pause->rx_pause && !pause->tx_pause)
391 hw->fc.requested_mode = e1000_fc_rx_pause;
392 else if (!pause->rx_pause && pause->tx_pause)
393 hw->fc.requested_mode = e1000_fc_tx_pause;
394 else if (!pause->rx_pause && !pause->tx_pause)
395 hw->fc.requested_mode = e1000_fc_none;
396
397 hw->fc.current_mode = hw->fc.requested_mode;
398
399 if (hw->phy.media_type == e1000_media_type_fiber) {
400 retval = hw->mac.ops.setup_link(hw);
401 /* implicit goto out */
402 } else {
403 retval = e1000e_force_mac_fc(hw);
404 if (retval)
405 goto out;
406 e1000e_set_fc_watermarks(hw);
407 }
408 }
409
410 out:
411 clear_bit(__E1000_RESETTING, &adapter->state);
412 return retval;
413 }
414
e1000_get_msglevel(struct net_device * netdev)415 static u32 e1000_get_msglevel(struct net_device *netdev)
416 {
417 struct e1000_adapter *adapter = netdev_priv(netdev);
418 return adapter->msg_enable;
419 }
420
e1000_set_msglevel(struct net_device * netdev,u32 data)421 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
422 {
423 struct e1000_adapter *adapter = netdev_priv(netdev);
424 adapter->msg_enable = data;
425 }
426
e1000_get_regs_len(struct net_device __always_unused * netdev)427 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
428 {
429 #define E1000_REGS_LEN 32 /* overestimate */
430 return E1000_REGS_LEN * sizeof(u32);
431 }
432
e1000_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)433 static void e1000_get_regs(struct net_device *netdev,
434 struct ethtool_regs *regs, void *p)
435 {
436 struct e1000_adapter *adapter = netdev_priv(netdev);
437 struct e1000_hw *hw = &adapter->hw;
438 u32 *regs_buff = p;
439 u16 phy_data;
440
441 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
442
443 regs->version = (1u << 24) |
444 (adapter->pdev->revision << 16) |
445 adapter->pdev->device;
446
447 regs_buff[0] = er32(CTRL);
448 regs_buff[1] = er32(STATUS);
449
450 regs_buff[2] = er32(RCTL);
451 regs_buff[3] = er32(RDLEN(0));
452 regs_buff[4] = er32(RDH(0));
453 regs_buff[5] = er32(RDT(0));
454 regs_buff[6] = er32(RDTR);
455
456 regs_buff[7] = er32(TCTL);
457 regs_buff[8] = er32(TDLEN(0));
458 regs_buff[9] = er32(TDH(0));
459 regs_buff[10] = er32(TDT(0));
460 regs_buff[11] = er32(TIDV);
461
462 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
463
464 /* ethtool doesn't use anything past this point, so all this
465 * code is likely legacy junk for apps that may or may not exist
466 */
467 if (hw->phy.type == e1000_phy_m88) {
468 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
469 regs_buff[13] = (u32)phy_data; /* cable length */
470 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
471 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
472 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
473 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
474 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
475 regs_buff[18] = regs_buff[13]; /* cable polarity */
476 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
477 regs_buff[20] = regs_buff[17]; /* polarity correction */
478 /* phy receive errors */
479 regs_buff[22] = adapter->phy_stats.receive_errors;
480 regs_buff[23] = regs_buff[13]; /* mdix mode */
481 }
482 regs_buff[21] = 0; /* was idle_errors */
483 e1e_rphy(hw, MII_STAT1000, &phy_data);
484 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
485 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
486 }
487
e1000_get_eeprom_len(struct net_device * netdev)488 static int e1000_get_eeprom_len(struct net_device *netdev)
489 {
490 struct e1000_adapter *adapter = netdev_priv(netdev);
491 return adapter->hw.nvm.word_size * 2;
492 }
493
e1000_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)494 static int e1000_get_eeprom(struct net_device *netdev,
495 struct ethtool_eeprom *eeprom, u8 *bytes)
496 {
497 struct e1000_adapter *adapter = netdev_priv(netdev);
498 struct e1000_hw *hw = &adapter->hw;
499 u16 *eeprom_buff;
500 int first_word;
501 int last_word;
502 int ret_val = 0;
503 u16 i;
504
505 if (eeprom->len == 0)
506 return -EINVAL;
507
508 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
509
510 first_word = eeprom->offset >> 1;
511 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
512
513 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
514 GFP_KERNEL);
515 if (!eeprom_buff)
516 return -ENOMEM;
517
518 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
519 ret_val = e1000_read_nvm(hw, first_word,
520 last_word - first_word + 1,
521 eeprom_buff);
522 } else {
523 for (i = 0; i < last_word - first_word + 1; i++) {
524 ret_val = e1000_read_nvm(hw, first_word + i, 1,
525 &eeprom_buff[i]);
526 if (ret_val)
527 break;
528 }
529 }
530
531 if (ret_val) {
532 /* a read error occurred, throw away the result */
533 memset(eeprom_buff, 0xff, sizeof(u16) *
534 (last_word - first_word + 1));
535 } else {
536 /* Device's eeprom is always little-endian, word addressable */
537 for (i = 0; i < last_word - first_word + 1; i++)
538 le16_to_cpus(&eeprom_buff[i]);
539 }
540
541 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
542 kfree(eeprom_buff);
543
544 return ret_val;
545 }
546
e1000_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)547 static int e1000_set_eeprom(struct net_device *netdev,
548 struct ethtool_eeprom *eeprom, u8 *bytes)
549 {
550 struct e1000_adapter *adapter = netdev_priv(netdev);
551 struct e1000_hw *hw = &adapter->hw;
552 u16 *eeprom_buff;
553 void *ptr;
554 int max_len;
555 int first_word;
556 int last_word;
557 int ret_val = 0;
558 u16 i;
559
560 if (eeprom->len == 0)
561 return -EOPNOTSUPP;
562
563 if (eeprom->magic !=
564 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
565 return -EFAULT;
566
567 if (adapter->flags & FLAG_READ_ONLY_NVM)
568 return -EINVAL;
569
570 max_len = hw->nvm.word_size * 2;
571
572 first_word = eeprom->offset >> 1;
573 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
574 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
575 if (!eeprom_buff)
576 return -ENOMEM;
577
578 ptr = (void *)eeprom_buff;
579
580 if (eeprom->offset & 1) {
581 /* need read/modify/write of first changed EEPROM word */
582 /* only the second byte of the word is being modified */
583 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
584 ptr++;
585 }
586 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
587 /* need read/modify/write of last changed EEPROM word */
588 /* only the first byte of the word is being modified */
589 ret_val = e1000_read_nvm(hw, last_word, 1,
590 &eeprom_buff[last_word - first_word]);
591
592 if (ret_val)
593 goto out;
594
595 /* Device's eeprom is always little-endian, word addressable */
596 for (i = 0; i < last_word - first_word + 1; i++)
597 le16_to_cpus(&eeprom_buff[i]);
598
599 memcpy(ptr, bytes, eeprom->len);
600
601 for (i = 0; i < last_word - first_word + 1; i++)
602 cpu_to_le16s(&eeprom_buff[i]);
603
604 ret_val = e1000_write_nvm(hw, first_word,
605 last_word - first_word + 1, eeprom_buff);
606
607 if (ret_val)
608 goto out;
609
610 /* Update the checksum over the first part of the EEPROM if needed
611 * and flush shadow RAM for applicable controllers
612 */
613 if ((first_word <= NVM_CHECKSUM_REG) ||
614 (hw->mac.type == e1000_82583) ||
615 (hw->mac.type == e1000_82574) ||
616 (hw->mac.type == e1000_82573))
617 ret_val = e1000e_update_nvm_checksum(hw);
618
619 out:
620 kfree(eeprom_buff);
621 return ret_val;
622 }
623
e1000_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)624 static void e1000_get_drvinfo(struct net_device *netdev,
625 struct ethtool_drvinfo *drvinfo)
626 {
627 struct e1000_adapter *adapter = netdev_priv(netdev);
628
629 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
630
631 /* EEPROM image version # is reported as firmware version # for
632 * PCI-E controllers
633 */
634 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
635 "%d.%d-%d",
636 FIELD_GET(0xF000, adapter->eeprom_vers),
637 FIELD_GET(0x0FF0, adapter->eeprom_vers),
638 (adapter->eeprom_vers & 0x000F));
639
640 strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
641 sizeof(drvinfo->bus_info));
642 }
643
e1000_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)644 static void e1000_get_ringparam(struct net_device *netdev,
645 struct ethtool_ringparam *ring,
646 struct kernel_ethtool_ringparam *kernel_ring,
647 struct netlink_ext_ack *extack)
648 {
649 struct e1000_adapter *adapter = netdev_priv(netdev);
650
651 ring->rx_max_pending = E1000_MAX_RXD;
652 ring->tx_max_pending = E1000_MAX_TXD;
653 ring->rx_pending = adapter->rx_ring_count;
654 ring->tx_pending = adapter->tx_ring_count;
655 }
656
e1000_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)657 static int e1000_set_ringparam(struct net_device *netdev,
658 struct ethtool_ringparam *ring,
659 struct kernel_ethtool_ringparam *kernel_ring,
660 struct netlink_ext_ack *extack)
661 {
662 struct e1000_adapter *adapter = netdev_priv(netdev);
663 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
664 int err = 0, size = sizeof(struct e1000_ring);
665 bool set_tx = false, set_rx = false;
666 u16 new_rx_count, new_tx_count;
667
668 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
669 return -EINVAL;
670
671 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
672 E1000_MAX_RXD);
673 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
674
675 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
676 E1000_MAX_TXD);
677 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
678
679 if ((new_tx_count == adapter->tx_ring_count) &&
680 (new_rx_count == adapter->rx_ring_count))
681 /* nothing to do */
682 return 0;
683
684 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
685 usleep_range(1000, 2000);
686
687 if (!netif_running(adapter->netdev)) {
688 /* Set counts now and allocate resources during open() */
689 adapter->tx_ring->count = new_tx_count;
690 adapter->rx_ring->count = new_rx_count;
691 adapter->tx_ring_count = new_tx_count;
692 adapter->rx_ring_count = new_rx_count;
693 goto clear_reset;
694 }
695
696 set_tx = (new_tx_count != adapter->tx_ring_count);
697 set_rx = (new_rx_count != adapter->rx_ring_count);
698
699 /* Allocate temporary storage for ring updates */
700 if (set_tx) {
701 temp_tx = vmalloc(size);
702 if (!temp_tx) {
703 err = -ENOMEM;
704 goto free_temp;
705 }
706 }
707 if (set_rx) {
708 temp_rx = vmalloc(size);
709 if (!temp_rx) {
710 err = -ENOMEM;
711 goto free_temp;
712 }
713 }
714
715 e1000e_down(adapter, true);
716
717 /* We can't just free everything and then setup again, because the
718 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
719 * structs. First, attempt to allocate new resources...
720 */
721 if (set_tx) {
722 memcpy(temp_tx, adapter->tx_ring, size);
723 temp_tx->count = new_tx_count;
724 err = e1000e_setup_tx_resources(temp_tx);
725 if (err)
726 goto err_setup;
727 }
728 if (set_rx) {
729 memcpy(temp_rx, adapter->rx_ring, size);
730 temp_rx->count = new_rx_count;
731 err = e1000e_setup_rx_resources(temp_rx);
732 if (err)
733 goto err_setup_rx;
734 }
735
736 /* ...then free the old resources and copy back any new ring data */
737 if (set_tx) {
738 e1000e_free_tx_resources(adapter->tx_ring);
739 memcpy(adapter->tx_ring, temp_tx, size);
740 adapter->tx_ring_count = new_tx_count;
741 }
742 if (set_rx) {
743 e1000e_free_rx_resources(adapter->rx_ring);
744 memcpy(adapter->rx_ring, temp_rx, size);
745 adapter->rx_ring_count = new_rx_count;
746 }
747
748 err_setup_rx:
749 if (err && set_tx)
750 e1000e_free_tx_resources(temp_tx);
751 err_setup:
752 e1000e_up(adapter);
753 free_temp:
754 vfree(temp_tx);
755 vfree(temp_rx);
756 clear_reset:
757 clear_bit(__E1000_RESETTING, &adapter->state);
758 return err;
759 }
760
reg_pattern_test(struct e1000_adapter * adapter,u64 * data,int reg,int offset,u32 mask,u32 write)761 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
762 int reg, int offset, u32 mask, u32 write)
763 {
764 u32 pat, val;
765 static const u32 test[] = {
766 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
767 };
768 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
769 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
770 (test[pat] & write));
771 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
772 if (val != (test[pat] & write & mask)) {
773 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
774 reg + (offset << 2), val,
775 (test[pat] & write & mask));
776 *data = reg;
777 return true;
778 }
779 }
780 return false;
781 }
782
reg_set_and_check(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)783 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
784 int reg, u32 mask, u32 write)
785 {
786 u32 val;
787
788 __ew32(&adapter->hw, reg, write & mask);
789 val = __er32(&adapter->hw, reg);
790 if ((write & mask) != (val & mask)) {
791 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
792 reg, (val & mask), (write & mask));
793 *data = reg;
794 return true;
795 }
796 return false;
797 }
798
799 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
800 do { \
801 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
802 return 1; \
803 } while (0)
804 #define REG_PATTERN_TEST(reg, mask, write) \
805 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
806
807 #define REG_SET_AND_CHECK(reg, mask, write) \
808 do { \
809 if (reg_set_and_check(adapter, data, reg, mask, write)) \
810 return 1; \
811 } while (0)
812
e1000_reg_test(struct e1000_adapter * adapter,u64 * data)813 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
814 {
815 struct e1000_hw *hw = &adapter->hw;
816 struct e1000_mac_info *mac = &adapter->hw.mac;
817 u32 value;
818 u32 before;
819 u32 after;
820 u32 i;
821 u32 toggle;
822 u32 mask;
823 u32 wlock_mac = 0;
824
825 /* The status register is Read Only, so a write should fail.
826 * Some bits that get toggled are ignored. There are several bits
827 * on newer hardware that are r/w.
828 */
829 switch (mac->type) {
830 case e1000_82571:
831 case e1000_82572:
832 case e1000_80003es2lan:
833 toggle = 0x7FFFF3FF;
834 break;
835 default:
836 toggle = 0x7FFFF033;
837 break;
838 }
839
840 before = er32(STATUS);
841 value = (er32(STATUS) & toggle);
842 ew32(STATUS, toggle);
843 after = er32(STATUS) & toggle;
844 if (value != after) {
845 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
846 after, value);
847 *data = 1;
848 return 1;
849 }
850 /* restore previous status */
851 ew32(STATUS, before);
852
853 if (!(adapter->flags & FLAG_IS_ICH)) {
854 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
855 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
856 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
858 }
859
860 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
861 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
862 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
863 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
864 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
865 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
866 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
867 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
868 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
869 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
870
871 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
872
873 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
874 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
875 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
876
877 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
878 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
879 if (!(adapter->flags & FLAG_IS_ICH))
880 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
881 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
882 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
883 mask = 0x8003FFFF;
884 switch (mac->type) {
885 case e1000_ich10lan:
886 case e1000_pchlan:
887 case e1000_pch2lan:
888 case e1000_pch_lpt:
889 case e1000_pch_spt:
890 case e1000_pch_cnp:
891 case e1000_pch_tgp:
892 case e1000_pch_adp:
893 case e1000_pch_mtp:
894 case e1000_pch_lnp:
895 case e1000_pch_ptp:
896 case e1000_pch_nvp:
897 mask |= BIT(18);
898 break;
899 default:
900 break;
901 }
902
903 if (mac->type >= e1000_pch_lpt)
904 wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
905
906 for (i = 0; i < mac->rar_entry_count; i++) {
907 if (mac->type >= e1000_pch_lpt) {
908 /* Cannot test write-protected SHRAL[n] registers */
909 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
910 continue;
911
912 /* SHRAH[9] different than the others */
913 if (i == 10)
914 mask |= BIT(30);
915 else
916 mask &= ~BIT(30);
917 }
918 if (mac->type == e1000_pch2lan) {
919 /* SHRAH[0,1,2] different than previous */
920 if (i == 1)
921 mask &= 0xFFF4FFFF;
922 /* SHRAH[3] different than SHRAH[0,1,2] */
923 if (i == 4)
924 mask |= BIT(30);
925 /* RAR[1-6] owned by management engine - skipping */
926 if (i > 0)
927 i += 6;
928 }
929
930 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
931 0xFFFFFFFF);
932 /* reset index to actual value */
933 if ((mac->type == e1000_pch2lan) && (i > 6))
934 i -= 6;
935 }
936
937 for (i = 0; i < mac->mta_reg_count; i++)
938 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
939
940 *data = 0;
941
942 return 0;
943 }
944
e1000_eeprom_test(struct e1000_adapter * adapter,u64 * data)945 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
946 {
947 u16 temp;
948 u16 checksum = 0;
949 u16 i;
950
951 *data = 0;
952 /* Read and add up the contents of the EEPROM */
953 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
954 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
955 *data = 1;
956 return *data;
957 }
958 checksum += temp;
959 }
960
961 /* If Checksum is not Correct return error else test passed */
962 if ((checksum != (u16)NVM_SUM) && !(*data))
963 *data = 2;
964
965 return *data;
966 }
967
e1000_test_intr(int __always_unused irq,void * data)968 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
969 {
970 struct net_device *netdev = (struct net_device *)data;
971 struct e1000_adapter *adapter = netdev_priv(netdev);
972 struct e1000_hw *hw = &adapter->hw;
973
974 adapter->test_icr |= er32(ICR);
975
976 return IRQ_HANDLED;
977 }
978
e1000_intr_test(struct e1000_adapter * adapter,u64 * data)979 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
980 {
981 struct net_device *netdev = adapter->netdev;
982 struct e1000_hw *hw = &adapter->hw;
983 u32 mask;
984 u32 shared_int = 1;
985 u32 irq = adapter->pdev->irq;
986 int i;
987 int ret_val = 0;
988 int int_mode = E1000E_INT_MODE_LEGACY;
989
990 *data = 0;
991
992 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
993 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
994 int_mode = adapter->int_mode;
995 e1000e_reset_interrupt_capability(adapter);
996 adapter->int_mode = E1000E_INT_MODE_LEGACY;
997 e1000e_set_interrupt_capability(adapter);
998 }
999 /* Hook up test interrupt handler just for this test */
1000 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1001 netdev)) {
1002 shared_int = 0;
1003 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1004 netdev)) {
1005 *data = 1;
1006 ret_val = -1;
1007 goto out;
1008 }
1009 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1010
1011 /* Disable all the interrupts */
1012 ew32(IMC, 0xFFFFFFFF);
1013 e1e_flush();
1014 usleep_range(10000, 11000);
1015
1016 /* Test each interrupt */
1017 for (i = 0; i < 10; i++) {
1018 /* Interrupt to test */
1019 mask = BIT(i);
1020
1021 if (adapter->flags & FLAG_IS_ICH) {
1022 switch (mask) {
1023 case E1000_ICR_RXSEQ:
1024 continue;
1025 case 0x00000100:
1026 if (adapter->hw.mac.type == e1000_ich8lan ||
1027 adapter->hw.mac.type == e1000_ich9lan)
1028 continue;
1029 break;
1030 default:
1031 break;
1032 }
1033 }
1034
1035 if (!shared_int) {
1036 /* Disable the interrupt to be reported in
1037 * the cause register and then force the same
1038 * interrupt and see if one gets posted. If
1039 * an interrupt was posted to the bus, the
1040 * test failed.
1041 */
1042 adapter->test_icr = 0;
1043 ew32(IMC, mask);
1044 ew32(ICS, mask);
1045 e1e_flush();
1046 usleep_range(10000, 11000);
1047
1048 if (adapter->test_icr & mask) {
1049 *data = 3;
1050 break;
1051 }
1052 }
1053
1054 /* Enable the interrupt to be reported in
1055 * the cause register and then force the same
1056 * interrupt and see if one gets posted. If
1057 * an interrupt was not posted to the bus, the
1058 * test failed.
1059 */
1060 adapter->test_icr = 0;
1061 ew32(IMS, mask);
1062 ew32(ICS, mask);
1063 e1e_flush();
1064 usleep_range(10000, 11000);
1065
1066 if (!(adapter->test_icr & mask)) {
1067 *data = 4;
1068 break;
1069 }
1070
1071 if (!shared_int) {
1072 /* Disable the other interrupts to be reported in
1073 * the cause register and then force the other
1074 * interrupts and see if any get posted. If
1075 * an interrupt was posted to the bus, the
1076 * test failed.
1077 */
1078 adapter->test_icr = 0;
1079 ew32(IMC, ~mask & 0x00007FFF);
1080 ew32(ICS, ~mask & 0x00007FFF);
1081 e1e_flush();
1082 usleep_range(10000, 11000);
1083
1084 if (adapter->test_icr) {
1085 *data = 5;
1086 break;
1087 }
1088 }
1089 }
1090
1091 /* Disable all the interrupts */
1092 ew32(IMC, 0xFFFFFFFF);
1093 e1e_flush();
1094 usleep_range(10000, 11000);
1095
1096 /* Unhook test interrupt handler */
1097 free_irq(irq, netdev);
1098
1099 out:
1100 if (int_mode == E1000E_INT_MODE_MSIX) {
1101 e1000e_reset_interrupt_capability(adapter);
1102 adapter->int_mode = int_mode;
1103 e1000e_set_interrupt_capability(adapter);
1104 }
1105
1106 return ret_val;
1107 }
1108
e1000_free_desc_rings(struct e1000_adapter * adapter)1109 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1110 {
1111 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1112 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1113 struct pci_dev *pdev = adapter->pdev;
1114 struct e1000_buffer *buffer_info;
1115 int i;
1116
1117 if (tx_ring->desc && tx_ring->buffer_info) {
1118 for (i = 0; i < tx_ring->count; i++) {
1119 buffer_info = &tx_ring->buffer_info[i];
1120
1121 if (buffer_info->dma)
1122 dma_unmap_single(&pdev->dev,
1123 buffer_info->dma,
1124 buffer_info->length,
1125 DMA_TO_DEVICE);
1126 dev_kfree_skb(buffer_info->skb);
1127 }
1128 }
1129
1130 if (rx_ring->desc && rx_ring->buffer_info) {
1131 for (i = 0; i < rx_ring->count; i++) {
1132 buffer_info = &rx_ring->buffer_info[i];
1133
1134 if (buffer_info->dma)
1135 dma_unmap_single(&pdev->dev,
1136 buffer_info->dma,
1137 2048, DMA_FROM_DEVICE);
1138 dev_kfree_skb(buffer_info->skb);
1139 }
1140 }
1141
1142 if (tx_ring->desc) {
1143 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1144 tx_ring->dma);
1145 tx_ring->desc = NULL;
1146 }
1147 if (rx_ring->desc) {
1148 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1149 rx_ring->dma);
1150 rx_ring->desc = NULL;
1151 }
1152
1153 kfree(tx_ring->buffer_info);
1154 tx_ring->buffer_info = NULL;
1155 kfree(rx_ring->buffer_info);
1156 rx_ring->buffer_info = NULL;
1157 }
1158
e1000_setup_desc_rings(struct e1000_adapter * adapter)1159 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1160 {
1161 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1162 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1163 struct pci_dev *pdev = adapter->pdev;
1164 struct e1000_hw *hw = &adapter->hw;
1165 u32 rctl;
1166 int i;
1167 int ret_val;
1168
1169 /* Setup Tx descriptor ring and Tx buffers */
1170
1171 if (!tx_ring->count)
1172 tx_ring->count = E1000_DEFAULT_TXD;
1173
1174 tx_ring->buffer_info = kcalloc(tx_ring->count,
1175 sizeof(struct e1000_buffer), GFP_KERNEL);
1176 if (!tx_ring->buffer_info) {
1177 ret_val = 1;
1178 goto err_nomem;
1179 }
1180
1181 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1182 tx_ring->size = ALIGN(tx_ring->size, 4096);
1183 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1184 &tx_ring->dma, GFP_KERNEL);
1185 if (!tx_ring->desc) {
1186 ret_val = 2;
1187 goto err_nomem;
1188 }
1189 tx_ring->next_to_use = 0;
1190 tx_ring->next_to_clean = 0;
1191
1192 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1193 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1194 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1195 ew32(TDH(0), 0);
1196 ew32(TDT(0), 0);
1197 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1198 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1199 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1200
1201 for (i = 0; i < tx_ring->count; i++) {
1202 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1203 struct sk_buff *skb;
1204 unsigned int skb_size = 1024;
1205
1206 skb = alloc_skb(skb_size, GFP_KERNEL);
1207 if (!skb) {
1208 ret_val = 3;
1209 goto err_nomem;
1210 }
1211 skb_put(skb, skb_size);
1212 tx_ring->buffer_info[i].skb = skb;
1213 tx_ring->buffer_info[i].length = skb->len;
1214 tx_ring->buffer_info[i].dma =
1215 dma_map_single(&pdev->dev, skb->data, skb->len,
1216 DMA_TO_DEVICE);
1217 if (dma_mapping_error(&pdev->dev,
1218 tx_ring->buffer_info[i].dma)) {
1219 ret_val = 4;
1220 goto err_nomem;
1221 }
1222 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1223 tx_desc->lower.data = cpu_to_le32(skb->len);
1224 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1225 E1000_TXD_CMD_IFCS |
1226 E1000_TXD_CMD_RS);
1227 tx_desc->upper.data = 0;
1228 }
1229
1230 /* Setup Rx descriptor ring and Rx buffers */
1231
1232 if (!rx_ring->count)
1233 rx_ring->count = E1000_DEFAULT_RXD;
1234
1235 rx_ring->buffer_info = kcalloc(rx_ring->count,
1236 sizeof(struct e1000_buffer), GFP_KERNEL);
1237 if (!rx_ring->buffer_info) {
1238 ret_val = 5;
1239 goto err_nomem;
1240 }
1241
1242 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1243 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1244 &rx_ring->dma, GFP_KERNEL);
1245 if (!rx_ring->desc) {
1246 ret_val = 6;
1247 goto err_nomem;
1248 }
1249 rx_ring->next_to_use = 0;
1250 rx_ring->next_to_clean = 0;
1251
1252 rctl = er32(RCTL);
1253 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1254 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1255 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1256 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1257 ew32(RDLEN(0), rx_ring->size);
1258 ew32(RDH(0), 0);
1259 ew32(RDT(0), 0);
1260 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1261 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1262 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1263 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1264 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1265 ew32(RCTL, rctl);
1266
1267 for (i = 0; i < rx_ring->count; i++) {
1268 union e1000_rx_desc_extended *rx_desc;
1269 struct sk_buff *skb;
1270
1271 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1272 if (!skb) {
1273 ret_val = 7;
1274 goto err_nomem;
1275 }
1276 skb_reserve(skb, NET_IP_ALIGN);
1277 rx_ring->buffer_info[i].skb = skb;
1278 rx_ring->buffer_info[i].dma =
1279 dma_map_single(&pdev->dev, skb->data, 2048,
1280 DMA_FROM_DEVICE);
1281 if (dma_mapping_error(&pdev->dev,
1282 rx_ring->buffer_info[i].dma)) {
1283 ret_val = 8;
1284 goto err_nomem;
1285 }
1286 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1287 rx_desc->read.buffer_addr =
1288 cpu_to_le64(rx_ring->buffer_info[i].dma);
1289 memset(skb->data, 0x00, skb->len);
1290 }
1291
1292 return 0;
1293
1294 err_nomem:
1295 e1000_free_desc_rings(adapter);
1296 return ret_val;
1297 }
1298
e1000_phy_disable_receiver(struct e1000_adapter * adapter)1299 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1300 {
1301 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1302 e1e_wphy(&adapter->hw, 29, 0x001F);
1303 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1304 e1e_wphy(&adapter->hw, 29, 0x001A);
1305 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1306 }
1307
e1000_integrated_phy_loopback(struct e1000_adapter * adapter)1308 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1309 {
1310 struct e1000_hw *hw = &adapter->hw;
1311 u32 ctrl_reg = 0;
1312 u16 phy_reg = 0;
1313 s32 ret_val = 0;
1314
1315 hw->mac.autoneg = 0;
1316
1317 if (hw->phy.type == e1000_phy_ife) {
1318 /* force 100, set loopback */
1319 e1e_wphy(hw, MII_BMCR, 0x6100);
1320
1321 /* Now set up the MAC to the same speed/duplex as the PHY. */
1322 ctrl_reg = er32(CTRL);
1323 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1324 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1325 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1326 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1327 E1000_CTRL_FD); /* Force Duplex to FULL */
1328
1329 ew32(CTRL, ctrl_reg);
1330 e1e_flush();
1331 usleep_range(500, 1000);
1332
1333 return 0;
1334 }
1335
1336 /* Specific PHY configuration for loopback */
1337 switch (hw->phy.type) {
1338 case e1000_phy_m88:
1339 /* Auto-MDI/MDIX Off */
1340 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1341 /* reset to update Auto-MDI/MDIX */
1342 e1e_wphy(hw, MII_BMCR, 0x9140);
1343 /* autoneg off */
1344 e1e_wphy(hw, MII_BMCR, 0x8140);
1345 break;
1346 case e1000_phy_gg82563:
1347 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1348 break;
1349 case e1000_phy_bm:
1350 /* Set Default MAC Interface speed to 1GB */
1351 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1352 phy_reg &= ~0x0007;
1353 phy_reg |= 0x006;
1354 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1355 /* Assert SW reset for above settings to take effect */
1356 hw->phy.ops.commit(hw);
1357 usleep_range(1000, 2000);
1358 /* Force Full Duplex */
1359 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1360 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1361 /* Set Link Up (in force link) */
1362 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1363 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1364 /* Force Link */
1365 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1366 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1367 /* Set Early Link Enable */
1368 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1369 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1370 break;
1371 case e1000_phy_82577:
1372 case e1000_phy_82578:
1373 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1374 ret_val = hw->phy.ops.acquire(hw);
1375 if (ret_val) {
1376 e_err("Cannot setup 1Gbps loopback.\n");
1377 return ret_val;
1378 }
1379 e1000_configure_k1_ich8lan(hw, false);
1380 hw->phy.ops.release(hw);
1381 break;
1382 case e1000_phy_82579:
1383 /* Disable PHY energy detect power down */
1384 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1385 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1386 /* Disable full chip energy detect */
1387 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1388 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1389 /* Enable loopback on the PHY */
1390 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1391 break;
1392 default:
1393 break;
1394 }
1395
1396 /* force 1000, set loopback */
1397 e1e_wphy(hw, MII_BMCR, 0x4140);
1398 msleep(250);
1399
1400 /* Now set up the MAC to the same speed/duplex as the PHY. */
1401 ctrl_reg = er32(CTRL);
1402 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1403 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1404 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1405 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1406 E1000_CTRL_FD); /* Force Duplex to FULL */
1407
1408 if (adapter->flags & FLAG_IS_ICH)
1409 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1410
1411 if (hw->phy.media_type == e1000_media_type_copper &&
1412 hw->phy.type == e1000_phy_m88) {
1413 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1414 } else {
1415 /* Set the ILOS bit on the fiber Nic if half duplex link is
1416 * detected.
1417 */
1418 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1419 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1420 }
1421
1422 ew32(CTRL, ctrl_reg);
1423
1424 /* Disable the receiver on the PHY so when a cable is plugged in, the
1425 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1426 */
1427 if (hw->phy.type == e1000_phy_m88)
1428 e1000_phy_disable_receiver(adapter);
1429
1430 usleep_range(500, 1000);
1431
1432 return 0;
1433 }
1434
e1000_set_82571_fiber_loopback(struct e1000_adapter * adapter)1435 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1436 {
1437 struct e1000_hw *hw = &adapter->hw;
1438 u32 ctrl = er32(CTRL);
1439 int link;
1440
1441 /* special requirements for 82571/82572 fiber adapters */
1442
1443 /* jump through hoops to make sure link is up because serdes
1444 * link is hardwired up
1445 */
1446 ctrl |= E1000_CTRL_SLU;
1447 ew32(CTRL, ctrl);
1448
1449 /* disable autoneg */
1450 ctrl = er32(TXCW);
1451 ctrl &= ~BIT(31);
1452 ew32(TXCW, ctrl);
1453
1454 link = (er32(STATUS) & E1000_STATUS_LU);
1455
1456 if (!link) {
1457 /* set invert loss of signal */
1458 ctrl = er32(CTRL);
1459 ctrl |= E1000_CTRL_ILOS;
1460 ew32(CTRL, ctrl);
1461 }
1462
1463 /* special write to serdes control register to enable SerDes analog
1464 * loopback
1465 */
1466 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1467 e1e_flush();
1468 usleep_range(10000, 11000);
1469
1470 return 0;
1471 }
1472
1473 /* only call this for fiber/serdes connections to es2lan */
e1000_set_es2lan_mac_loopback(struct e1000_adapter * adapter)1474 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1475 {
1476 struct e1000_hw *hw = &adapter->hw;
1477 u32 ctrlext = er32(CTRL_EXT);
1478 u32 ctrl = er32(CTRL);
1479
1480 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1481 * on mac_type 80003es2lan)
1482 */
1483 adapter->tx_fifo_head = ctrlext;
1484
1485 /* clear the serdes mode bits, putting the device into mac loopback */
1486 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1487 ew32(CTRL_EXT, ctrlext);
1488
1489 /* force speed to 1000/FD, link up */
1490 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1491 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1492 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1493 ew32(CTRL, ctrl);
1494
1495 /* set mac loopback */
1496 ctrl = er32(RCTL);
1497 ctrl |= E1000_RCTL_LBM_MAC;
1498 ew32(RCTL, ctrl);
1499
1500 /* set testing mode parameters (no need to reset later) */
1501 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1502 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1503 ew32(KMRNCTRLSTA,
1504 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1505
1506 return 0;
1507 }
1508
e1000_setup_loopback_test(struct e1000_adapter * adapter)1509 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1510 {
1511 struct e1000_hw *hw = &adapter->hw;
1512 u32 rctl, fext_nvm11, tarc0;
1513
1514 if (hw->mac.type >= e1000_pch_spt) {
1515 fext_nvm11 = er32(FEXTNVM11);
1516 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1517 ew32(FEXTNVM11, fext_nvm11);
1518 tarc0 = er32(TARC(0));
1519 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1520 tarc0 &= 0xcfffffff;
1521 /* set bit 29 (value of MULR requests is now 2) */
1522 tarc0 |= 0x20000000;
1523 ew32(TARC(0), tarc0);
1524 }
1525 if (hw->phy.media_type == e1000_media_type_fiber ||
1526 hw->phy.media_type == e1000_media_type_internal_serdes) {
1527 switch (hw->mac.type) {
1528 case e1000_80003es2lan:
1529 return e1000_set_es2lan_mac_loopback(adapter);
1530 case e1000_82571:
1531 case e1000_82572:
1532 return e1000_set_82571_fiber_loopback(adapter);
1533 default:
1534 rctl = er32(RCTL);
1535 rctl |= E1000_RCTL_LBM_TCVR;
1536 ew32(RCTL, rctl);
1537 return 0;
1538 }
1539 } else if (hw->phy.media_type == e1000_media_type_copper) {
1540 return e1000_integrated_phy_loopback(adapter);
1541 }
1542
1543 return 7;
1544 }
1545
e1000_loopback_cleanup(struct e1000_adapter * adapter)1546 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1547 {
1548 struct e1000_hw *hw = &adapter->hw;
1549 u32 rctl, fext_nvm11, tarc0;
1550 u16 phy_reg;
1551
1552 rctl = er32(RCTL);
1553 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1554 ew32(RCTL, rctl);
1555
1556 switch (hw->mac.type) {
1557 case e1000_pch_spt:
1558 case e1000_pch_cnp:
1559 case e1000_pch_tgp:
1560 case e1000_pch_adp:
1561 case e1000_pch_mtp:
1562 case e1000_pch_lnp:
1563 case e1000_pch_ptp:
1564 case e1000_pch_nvp:
1565 fext_nvm11 = er32(FEXTNVM11);
1566 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1567 ew32(FEXTNVM11, fext_nvm11);
1568 tarc0 = er32(TARC(0));
1569 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1570 /* set bit 29 (value of MULR requests is now 0) */
1571 tarc0 &= 0xcfffffff;
1572 ew32(TARC(0), tarc0);
1573 fallthrough;
1574 case e1000_80003es2lan:
1575 if (hw->phy.media_type == e1000_media_type_fiber ||
1576 hw->phy.media_type == e1000_media_type_internal_serdes) {
1577 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1578 ew32(CTRL_EXT, adapter->tx_fifo_head);
1579 adapter->tx_fifo_head = 0;
1580 }
1581 fallthrough;
1582 case e1000_82571:
1583 case e1000_82572:
1584 if (hw->phy.media_type == e1000_media_type_fiber ||
1585 hw->phy.media_type == e1000_media_type_internal_serdes) {
1586 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1587 e1e_flush();
1588 usleep_range(10000, 11000);
1589 break;
1590 }
1591 fallthrough;
1592 default:
1593 hw->mac.autoneg = 1;
1594 if (hw->phy.type == e1000_phy_gg82563)
1595 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1596 e1e_rphy(hw, MII_BMCR, &phy_reg);
1597 if (phy_reg & BMCR_LOOPBACK) {
1598 phy_reg &= ~BMCR_LOOPBACK;
1599 e1e_wphy(hw, MII_BMCR, phy_reg);
1600 if (hw->phy.ops.commit)
1601 hw->phy.ops.commit(hw);
1602 }
1603 break;
1604 }
1605 }
1606
e1000_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1607 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1608 unsigned int frame_size)
1609 {
1610 memset(skb->data, 0xFF, frame_size);
1611 frame_size &= ~1;
1612 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1613 skb->data[frame_size / 2 + 10] = 0xBE;
1614 skb->data[frame_size / 2 + 12] = 0xAF;
1615 }
1616
e1000_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1617 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1618 unsigned int frame_size)
1619 {
1620 frame_size &= ~1;
1621 if (*(skb->data + 3) == 0xFF)
1622 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1623 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1624 return 0;
1625 return 13;
1626 }
1627
e1000_run_loopback_test(struct e1000_adapter * adapter)1628 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1629 {
1630 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1631 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1632 struct pci_dev *pdev = adapter->pdev;
1633 struct e1000_hw *hw = &adapter->hw;
1634 struct e1000_buffer *buffer_info;
1635 int i, j, k, l;
1636 int lc;
1637 int good_cnt;
1638 int ret_val = 0;
1639 unsigned long time;
1640
1641 ew32(RDT(0), rx_ring->count - 1);
1642
1643 /* Calculate the loop count based on the largest descriptor ring
1644 * The idea is to wrap the largest ring a number of times using 64
1645 * send/receive pairs during each loop
1646 */
1647
1648 if (rx_ring->count <= tx_ring->count)
1649 lc = ((tx_ring->count / 64) * 2) + 1;
1650 else
1651 lc = ((rx_ring->count / 64) * 2) + 1;
1652
1653 k = 0;
1654 l = 0;
1655 /* loop count loop */
1656 for (j = 0; j <= lc; j++) {
1657 /* send the packets */
1658 for (i = 0; i < 64; i++) {
1659 buffer_info = &tx_ring->buffer_info[k];
1660
1661 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1662 dma_sync_single_for_device(&pdev->dev,
1663 buffer_info->dma,
1664 buffer_info->length,
1665 DMA_TO_DEVICE);
1666 k++;
1667 if (k == tx_ring->count)
1668 k = 0;
1669 }
1670 ew32(TDT(0), k);
1671 e1e_flush();
1672 msleep(200);
1673 time = jiffies; /* set the start time for the receive */
1674 good_cnt = 0;
1675 /* receive the sent packets */
1676 do {
1677 buffer_info = &rx_ring->buffer_info[l];
1678
1679 dma_sync_single_for_cpu(&pdev->dev,
1680 buffer_info->dma, 2048,
1681 DMA_FROM_DEVICE);
1682
1683 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1684 1024);
1685 if (!ret_val)
1686 good_cnt++;
1687 l++;
1688 if (l == rx_ring->count)
1689 l = 0;
1690 /* time + 20 msecs (200 msecs on 2.4) is more than
1691 * enough time to complete the receives, if it's
1692 * exceeded, break and error off
1693 */
1694 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1695 if (good_cnt != 64) {
1696 ret_val = 13; /* ret_val is the same as mis-compare */
1697 break;
1698 }
1699 if (time_after(jiffies, time + 20)) {
1700 ret_val = 14; /* error code for time out error */
1701 break;
1702 }
1703 }
1704 return ret_val;
1705 }
1706
e1000_loopback_test(struct e1000_adapter * adapter,u64 * data)1707 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1708 {
1709 struct e1000_hw *hw = &adapter->hw;
1710
1711 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1712 if (hw->phy.ops.check_reset_block &&
1713 hw->phy.ops.check_reset_block(hw)) {
1714 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1715 *data = 0;
1716 goto out;
1717 }
1718
1719 *data = e1000_setup_desc_rings(adapter);
1720 if (*data)
1721 goto out;
1722
1723 *data = e1000_setup_loopback_test(adapter);
1724 if (*data)
1725 goto err_loopback;
1726
1727 *data = e1000_run_loopback_test(adapter);
1728 e1000_loopback_cleanup(adapter);
1729
1730 err_loopback:
1731 e1000_free_desc_rings(adapter);
1732 out:
1733 return *data;
1734 }
1735
e1000_link_test(struct e1000_adapter * adapter,u64 * data)1736 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1737 {
1738 struct e1000_hw *hw = &adapter->hw;
1739
1740 *data = 0;
1741 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1742 int i = 0;
1743
1744 hw->mac.serdes_has_link = false;
1745
1746 /* On some blade server designs, link establishment
1747 * could take as long as 2-3 minutes
1748 */
1749 do {
1750 hw->mac.ops.check_for_link(hw);
1751 if (hw->mac.serdes_has_link)
1752 return *data;
1753 msleep(20);
1754 } while (i++ < 3750);
1755
1756 *data = 1;
1757 } else {
1758 hw->mac.ops.check_for_link(hw);
1759 if (hw->mac.autoneg)
1760 /* On some Phy/switch combinations, link establishment
1761 * can take a few seconds more than expected.
1762 */
1763 msleep_interruptible(5000);
1764
1765 if (!(er32(STATUS) & E1000_STATUS_LU))
1766 *data = 1;
1767 }
1768 return *data;
1769 }
1770
e1000e_get_sset_count(struct net_device __always_unused * netdev,int sset)1771 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1772 int sset)
1773 {
1774 switch (sset) {
1775 case ETH_SS_TEST:
1776 return E1000_TEST_LEN;
1777 case ETH_SS_STATS:
1778 return E1000_STATS_LEN;
1779 case ETH_SS_PRIV_FLAGS:
1780 return E1000E_PRIV_FLAGS_STR_LEN;
1781 default:
1782 return -EOPNOTSUPP;
1783 }
1784 }
1785
e1000_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1786 static void e1000_diag_test(struct net_device *netdev,
1787 struct ethtool_test *eth_test, u64 *data)
1788 {
1789 struct e1000_adapter *adapter = netdev_priv(netdev);
1790 u16 autoneg_advertised;
1791 u8 forced_speed_duplex;
1792 u8 autoneg;
1793 bool if_running = netif_running(netdev);
1794
1795 set_bit(__E1000_TESTING, &adapter->state);
1796
1797 if (!if_running) {
1798 /* Get control of and reset hardware */
1799 if (adapter->flags & FLAG_HAS_AMT)
1800 e1000e_get_hw_control(adapter);
1801
1802 e1000e_power_up_phy(adapter);
1803
1804 adapter->hw.phy.autoneg_wait_to_complete = 1;
1805 e1000e_reset(adapter);
1806 adapter->hw.phy.autoneg_wait_to_complete = 0;
1807 }
1808
1809 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1810 /* Offline tests */
1811
1812 /* save speed, duplex, autoneg settings */
1813 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1814 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1815 autoneg = adapter->hw.mac.autoneg;
1816
1817 e_info("offline testing starting\n");
1818
1819 if (if_running)
1820 /* indicate we're in test mode */
1821 e1000e_close(netdev);
1822
1823 if (e1000_reg_test(adapter, &data[0]))
1824 eth_test->flags |= ETH_TEST_FL_FAILED;
1825
1826 e1000e_reset(adapter);
1827 if (e1000_eeprom_test(adapter, &data[1]))
1828 eth_test->flags |= ETH_TEST_FL_FAILED;
1829
1830 e1000e_reset(adapter);
1831 if (e1000_intr_test(adapter, &data[2]))
1832 eth_test->flags |= ETH_TEST_FL_FAILED;
1833
1834 e1000e_reset(adapter);
1835 if (e1000_loopback_test(adapter, &data[3]))
1836 eth_test->flags |= ETH_TEST_FL_FAILED;
1837
1838 /* force this routine to wait until autoneg complete/timeout */
1839 adapter->hw.phy.autoneg_wait_to_complete = 1;
1840 e1000e_reset(adapter);
1841 adapter->hw.phy.autoneg_wait_to_complete = 0;
1842
1843 if (e1000_link_test(adapter, &data[4]))
1844 eth_test->flags |= ETH_TEST_FL_FAILED;
1845
1846 /* restore speed, duplex, autoneg settings */
1847 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1848 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1849 adapter->hw.mac.autoneg = autoneg;
1850 e1000e_reset(adapter);
1851
1852 clear_bit(__E1000_TESTING, &adapter->state);
1853 if (if_running)
1854 e1000e_open(netdev);
1855 } else {
1856 /* Online tests */
1857
1858 e_info("online testing starting\n");
1859
1860 /* register, eeprom, intr and loopback tests not run online */
1861 data[0] = 0;
1862 data[1] = 0;
1863 data[2] = 0;
1864 data[3] = 0;
1865
1866 if (e1000_link_test(adapter, &data[4]))
1867 eth_test->flags |= ETH_TEST_FL_FAILED;
1868
1869 clear_bit(__E1000_TESTING, &adapter->state);
1870 }
1871
1872 if (!if_running) {
1873 e1000e_reset(adapter);
1874
1875 if (adapter->flags & FLAG_HAS_AMT)
1876 e1000e_release_hw_control(adapter);
1877 }
1878
1879 msleep_interruptible(4 * 1000);
1880 }
1881
e1000_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1882 static void e1000_get_wol(struct net_device *netdev,
1883 struct ethtool_wolinfo *wol)
1884 {
1885 struct e1000_adapter *adapter = netdev_priv(netdev);
1886
1887 wol->supported = 0;
1888 wol->wolopts = 0;
1889
1890 if (!(adapter->flags & FLAG_HAS_WOL) ||
1891 !device_can_wakeup(&adapter->pdev->dev))
1892 return;
1893
1894 wol->supported = WAKE_UCAST | WAKE_MCAST |
1895 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1896
1897 /* apply any specific unsupported masks here */
1898 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1899 wol->supported &= ~WAKE_UCAST;
1900
1901 if (adapter->wol & E1000_WUFC_EX)
1902 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1903 }
1904
1905 if (adapter->wol & E1000_WUFC_EX)
1906 wol->wolopts |= WAKE_UCAST;
1907 if (adapter->wol & E1000_WUFC_MC)
1908 wol->wolopts |= WAKE_MCAST;
1909 if (adapter->wol & E1000_WUFC_BC)
1910 wol->wolopts |= WAKE_BCAST;
1911 if (adapter->wol & E1000_WUFC_MAG)
1912 wol->wolopts |= WAKE_MAGIC;
1913 if (adapter->wol & E1000_WUFC_LNKC)
1914 wol->wolopts |= WAKE_PHY;
1915 }
1916
e1000_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1917 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1918 {
1919 struct e1000_adapter *adapter = netdev_priv(netdev);
1920
1921 if (!(adapter->flags & FLAG_HAS_WOL) ||
1922 !device_can_wakeup(&adapter->pdev->dev) ||
1923 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1924 WAKE_MAGIC | WAKE_PHY)))
1925 return -EOPNOTSUPP;
1926
1927 /* these settings will always override what we currently have */
1928 adapter->wol = 0;
1929
1930 if (wol->wolopts & WAKE_UCAST)
1931 adapter->wol |= E1000_WUFC_EX;
1932 if (wol->wolopts & WAKE_MCAST)
1933 adapter->wol |= E1000_WUFC_MC;
1934 if (wol->wolopts & WAKE_BCAST)
1935 adapter->wol |= E1000_WUFC_BC;
1936 if (wol->wolopts & WAKE_MAGIC)
1937 adapter->wol |= E1000_WUFC_MAG;
1938 if (wol->wolopts & WAKE_PHY)
1939 adapter->wol |= E1000_WUFC_LNKC;
1940
1941 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1942
1943 return 0;
1944 }
1945
e1000_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1946 static int e1000_set_phys_id(struct net_device *netdev,
1947 enum ethtool_phys_id_state state)
1948 {
1949 struct e1000_adapter *adapter = netdev_priv(netdev);
1950 struct e1000_hw *hw = &adapter->hw;
1951
1952 switch (state) {
1953 case ETHTOOL_ID_ACTIVE:
1954 pm_runtime_get_sync(netdev->dev.parent);
1955
1956 if (!hw->mac.ops.blink_led)
1957 return 2; /* cycle on/off twice per second */
1958
1959 hw->mac.ops.blink_led(hw);
1960 break;
1961
1962 case ETHTOOL_ID_INACTIVE:
1963 if (hw->phy.type == e1000_phy_ife)
1964 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1965 hw->mac.ops.led_off(hw);
1966 hw->mac.ops.cleanup_led(hw);
1967 pm_runtime_put_sync(netdev->dev.parent);
1968 break;
1969
1970 case ETHTOOL_ID_ON:
1971 hw->mac.ops.led_on(hw);
1972 break;
1973
1974 case ETHTOOL_ID_OFF:
1975 hw->mac.ops.led_off(hw);
1976 break;
1977 }
1978
1979 return 0;
1980 }
1981
e1000_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1982 static int e1000_get_coalesce(struct net_device *netdev,
1983 struct ethtool_coalesce *ec,
1984 struct kernel_ethtool_coalesce *kernel_coal,
1985 struct netlink_ext_ack *extack)
1986 {
1987 struct e1000_adapter *adapter = netdev_priv(netdev);
1988
1989 if (adapter->itr_setting <= 4)
1990 ec->rx_coalesce_usecs = adapter->itr_setting;
1991 else
1992 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1993
1994 return 0;
1995 }
1996
e1000_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1997 static int e1000_set_coalesce(struct net_device *netdev,
1998 struct ethtool_coalesce *ec,
1999 struct kernel_ethtool_coalesce *kernel_coal,
2000 struct netlink_ext_ack *extack)
2001 {
2002 struct e1000_adapter *adapter = netdev_priv(netdev);
2003
2004 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2005 ((ec->rx_coalesce_usecs > 4) &&
2006 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2007 (ec->rx_coalesce_usecs == 2))
2008 return -EINVAL;
2009
2010 if (ec->rx_coalesce_usecs == 4) {
2011 adapter->itr_setting = 4;
2012 adapter->itr = adapter->itr_setting;
2013 } else if (ec->rx_coalesce_usecs <= 3) {
2014 adapter->itr = 20000;
2015 adapter->itr_setting = ec->rx_coalesce_usecs;
2016 } else {
2017 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2018 adapter->itr_setting = adapter->itr & ~3;
2019 }
2020
2021 if (adapter->itr_setting != 0)
2022 e1000e_write_itr(adapter, adapter->itr);
2023 else
2024 e1000e_write_itr(adapter, 0);
2025
2026 return 0;
2027 }
2028
e1000_nway_reset(struct net_device * netdev)2029 static int e1000_nway_reset(struct net_device *netdev)
2030 {
2031 struct e1000_adapter *adapter = netdev_priv(netdev);
2032
2033 if (!netif_running(netdev))
2034 return -EAGAIN;
2035
2036 if (!adapter->hw.mac.autoneg)
2037 return -EINVAL;
2038
2039 e1000e_reinit_locked(adapter);
2040
2041 return 0;
2042 }
2043
e1000_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)2044 static void e1000_get_ethtool_stats(struct net_device *netdev,
2045 struct ethtool_stats __always_unused *stats,
2046 u64 *data)
2047 {
2048 struct e1000_adapter *adapter = netdev_priv(netdev);
2049 struct rtnl_link_stats64 net_stats;
2050 int i;
2051 char *p = NULL;
2052
2053 dev_get_stats(netdev, &net_stats);
2054
2055 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2056 switch (e1000_gstrings_stats[i].type) {
2057 case NETDEV_STATS:
2058 p = (char *)&net_stats +
2059 e1000_gstrings_stats[i].stat_offset;
2060 break;
2061 case E1000_STATS:
2062 p = (char *)adapter +
2063 e1000_gstrings_stats[i].stat_offset;
2064 break;
2065 default:
2066 data[i] = 0;
2067 continue;
2068 }
2069
2070 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2071 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2072 }
2073 }
2074
e1000_get_strings(struct net_device __always_unused * netdev,u32 stringset,u8 * data)2075 static void e1000_get_strings(struct net_device __always_unused *netdev,
2076 u32 stringset, u8 *data)
2077 {
2078 u8 *p = data;
2079 int i;
2080
2081 switch (stringset) {
2082 case ETH_SS_TEST:
2083 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2084 break;
2085 case ETH_SS_STATS:
2086 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2087 memcpy(p, e1000_gstrings_stats[i].stat_string,
2088 ETH_GSTRING_LEN);
2089 p += ETH_GSTRING_LEN;
2090 }
2091 break;
2092 case ETH_SS_PRIV_FLAGS:
2093 memcpy(data, e1000e_priv_flags_strings,
2094 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2095 break;
2096 }
2097 }
2098
e1000_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * info,u32 __always_unused * rule_locs)2099 static int e1000_get_rxnfc(struct net_device *netdev,
2100 struct ethtool_rxnfc *info,
2101 u32 __always_unused *rule_locs)
2102 {
2103 info->data = 0;
2104
2105 switch (info->cmd) {
2106 case ETHTOOL_GRXFH: {
2107 struct e1000_adapter *adapter = netdev_priv(netdev);
2108 struct e1000_hw *hw = &adapter->hw;
2109 u32 mrqc;
2110
2111 mrqc = er32(MRQC);
2112
2113 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2114 return 0;
2115
2116 switch (info->flow_type) {
2117 case TCP_V4_FLOW:
2118 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2119 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2120 fallthrough;
2121 case UDP_V4_FLOW:
2122 case SCTP_V4_FLOW:
2123 case AH_ESP_V4_FLOW:
2124 case IPV4_FLOW:
2125 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2126 info->data |= RXH_IP_SRC | RXH_IP_DST;
2127 break;
2128 case TCP_V6_FLOW:
2129 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2130 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2131 fallthrough;
2132 case UDP_V6_FLOW:
2133 case SCTP_V6_FLOW:
2134 case AH_ESP_V6_FLOW:
2135 case IPV6_FLOW:
2136 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2137 info->data |= RXH_IP_SRC | RXH_IP_DST;
2138 break;
2139 default:
2140 break;
2141 }
2142 return 0;
2143 }
2144 default:
2145 return -EOPNOTSUPP;
2146 }
2147 }
2148
e1000e_get_eee(struct net_device * netdev,struct ethtool_keee * edata)2149 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
2150 {
2151 struct e1000_adapter *adapter = netdev_priv(netdev);
2152 struct e1000_hw *hw = &adapter->hw;
2153 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2154 u32 ret_val;
2155
2156 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2157 return -EOPNOTSUPP;
2158
2159 switch (hw->phy.type) {
2160 case e1000_phy_82579:
2161 cap_addr = I82579_EEE_CAPABILITY;
2162 lpa_addr = I82579_EEE_LP_ABILITY;
2163 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2164 break;
2165 case e1000_phy_i217:
2166 cap_addr = I217_EEE_CAPABILITY;
2167 lpa_addr = I217_EEE_LP_ABILITY;
2168 pcs_stat_addr = I217_EEE_PCS_STATUS;
2169 break;
2170 default:
2171 return -EOPNOTSUPP;
2172 }
2173
2174 ret_val = hw->phy.ops.acquire(hw);
2175 if (ret_val)
2176 return -EBUSY;
2177
2178 /* EEE Capability */
2179 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2180 if (ret_val)
2181 goto release;
2182 mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data);
2183
2184 /* EEE Advertised */
2185 mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert);
2186
2187 /* EEE Link Partner Advertised */
2188 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2189 if (ret_val)
2190 goto release;
2191 mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
2192
2193 /* EEE PCS Status */
2194 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2195 if (ret_val)
2196 goto release;
2197 if (hw->phy.type == e1000_phy_82579)
2198 phy_data <<= 8;
2199
2200 /* Result of the EEE auto negotiation - there is no register that
2201 * has the status of the EEE negotiation so do a best-guess based
2202 * on whether Tx or Rx LPI indications have been received.
2203 */
2204 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2205 edata->eee_active = true;
2206
2207 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2208 edata->tx_lpi_enabled = true;
2209 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2210
2211 release:
2212 hw->phy.ops.release(hw);
2213 if (ret_val)
2214 ret_val = -ENODATA;
2215
2216 return ret_val;
2217 }
2218
e1000e_set_eee(struct net_device * netdev,struct ethtool_keee * edata)2219 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata)
2220 {
2221 struct e1000_adapter *adapter = netdev_priv(netdev);
2222 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
2223 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
2224 struct e1000_hw *hw = &adapter->hw;
2225 struct ethtool_keee eee_curr;
2226 s32 ret_val;
2227
2228 ret_val = e1000e_get_eee(netdev, &eee_curr);
2229 if (ret_val)
2230 return ret_val;
2231
2232 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2233 e_err("Setting EEE tx-lpi is not supported\n");
2234 return -EINVAL;
2235 }
2236
2237 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2238 e_err("Setting EEE Tx LPI timer is not supported\n");
2239 return -EINVAL;
2240 }
2241
2242 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2243 supported);
2244 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
2245 supported);
2246
2247 if (linkmode_andnot(tmp, edata->advertised, supported)) {
2248 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2249 return -EINVAL;
2250 }
2251
2252 adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
2253
2254 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2255
2256 /* reset the link */
2257 if (netif_running(netdev))
2258 e1000e_reinit_locked(adapter);
2259 else
2260 e1000e_reset(adapter);
2261
2262 return 0;
2263 }
2264
e1000e_get_ts_info(struct net_device * netdev,struct kernel_ethtool_ts_info * info)2265 static int e1000e_get_ts_info(struct net_device *netdev,
2266 struct kernel_ethtool_ts_info *info)
2267 {
2268 struct e1000_adapter *adapter = netdev_priv(netdev);
2269
2270 ethtool_op_get_ts_info(netdev, info);
2271
2272 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2273 return 0;
2274
2275 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2276 SOF_TIMESTAMPING_RX_HARDWARE |
2277 SOF_TIMESTAMPING_RAW_HARDWARE);
2278
2279 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2280
2281 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2282 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2283 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2284 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2285 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2286 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2287 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2288 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2289 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2290 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2291 BIT(HWTSTAMP_FILTER_ALL));
2292
2293 if (adapter->ptp_clock)
2294 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2295
2296 return 0;
2297 }
2298
e1000e_get_priv_flags(struct net_device * netdev)2299 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2300 {
2301 struct e1000_adapter *adapter = netdev_priv(netdev);
2302 u32 priv_flags = 0;
2303
2304 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2305 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2306
2307 return priv_flags;
2308 }
2309
e1000e_set_priv_flags(struct net_device * netdev,u32 priv_flags)2310 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2311 {
2312 struct e1000_adapter *adapter = netdev_priv(netdev);
2313 unsigned int flags2 = adapter->flags2;
2314
2315 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2316 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2317 struct e1000_hw *hw = &adapter->hw;
2318
2319 if (hw->mac.type < e1000_pch_cnp)
2320 return -EINVAL;
2321 flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2322 }
2323
2324 if (flags2 != adapter->flags2)
2325 adapter->flags2 = flags2;
2326
2327 return 0;
2328 }
2329
2330 static const struct ethtool_ops e1000_ethtool_ops = {
2331 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2332 .get_drvinfo = e1000_get_drvinfo,
2333 .get_regs_len = e1000_get_regs_len,
2334 .get_regs = e1000_get_regs,
2335 .get_wol = e1000_get_wol,
2336 .set_wol = e1000_set_wol,
2337 .get_msglevel = e1000_get_msglevel,
2338 .set_msglevel = e1000_set_msglevel,
2339 .nway_reset = e1000_nway_reset,
2340 .get_link = ethtool_op_get_link,
2341 .get_eeprom_len = e1000_get_eeprom_len,
2342 .get_eeprom = e1000_get_eeprom,
2343 .set_eeprom = e1000_set_eeprom,
2344 .get_ringparam = e1000_get_ringparam,
2345 .set_ringparam = e1000_set_ringparam,
2346 .get_pauseparam = e1000_get_pauseparam,
2347 .set_pauseparam = e1000_set_pauseparam,
2348 .self_test = e1000_diag_test,
2349 .get_strings = e1000_get_strings,
2350 .set_phys_id = e1000_set_phys_id,
2351 .get_ethtool_stats = e1000_get_ethtool_stats,
2352 .get_sset_count = e1000e_get_sset_count,
2353 .get_coalesce = e1000_get_coalesce,
2354 .set_coalesce = e1000_set_coalesce,
2355 .get_rxnfc = e1000_get_rxnfc,
2356 .get_ts_info = e1000e_get_ts_info,
2357 .get_eee = e1000e_get_eee,
2358 .set_eee = e1000e_set_eee,
2359 .get_link_ksettings = e1000_get_link_ksettings,
2360 .set_link_ksettings = e1000_set_link_ksettings,
2361 .get_priv_flags = e1000e_get_priv_flags,
2362 .set_priv_flags = e1000e_set_priv_flags,
2363 };
2364
e1000e_set_ethtool_ops(struct net_device * netdev)2365 void e1000e_set_ethtool_ops(struct net_device *netdev)
2366 {
2367 netdev->ethtool_ops = &e1000_ethtool_ops;
2368 }
2369