1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2011 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 38 #include "e1000.h" 39 40 enum {NETDEV_STATS, E1000_STATS}; 41 42 struct e1000_stats { 43 char stat_string[ETH_GSTRING_LEN]; 44 int type; 45 int sizeof_stat; 46 int stat_offset; 47 }; 48 49 #define E1000_STAT(str, m) { \ 50 .stat_string = str, \ 51 .type = E1000_STATS, \ 52 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 53 .stat_offset = offsetof(struct e1000_adapter, m) } 54 #define E1000_NETDEV_STAT(str, m) { \ 55 .stat_string = str, \ 56 .type = NETDEV_STATS, \ 57 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 58 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 59 60 static const struct e1000_stats e1000_gstrings_stats[] = { 61 E1000_STAT("rx_packets", stats.gprc), 62 E1000_STAT("tx_packets", stats.gptc), 63 E1000_STAT("rx_bytes", stats.gorc), 64 E1000_STAT("tx_bytes", stats.gotc), 65 E1000_STAT("rx_broadcast", stats.bprc), 66 E1000_STAT("tx_broadcast", stats.bptc), 67 E1000_STAT("rx_multicast", stats.mprc), 68 E1000_STAT("tx_multicast", stats.mptc), 69 E1000_NETDEV_STAT("rx_errors", rx_errors), 70 E1000_NETDEV_STAT("tx_errors", tx_errors), 71 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 72 E1000_STAT("multicast", stats.mprc), 73 E1000_STAT("collisions", stats.colc), 74 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 75 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 76 E1000_STAT("rx_crc_errors", stats.crcerrs), 77 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 78 E1000_STAT("rx_no_buffer_count", stats.rnbc), 79 E1000_STAT("rx_missed_errors", stats.mpc), 80 E1000_STAT("tx_aborted_errors", stats.ecol), 81 E1000_STAT("tx_carrier_errors", stats.tncrs), 82 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 83 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 84 E1000_STAT("tx_window_errors", stats.latecol), 85 E1000_STAT("tx_abort_late_coll", stats.latecol), 86 E1000_STAT("tx_deferred_ok", stats.dc), 87 E1000_STAT("tx_single_coll_ok", stats.scc), 88 E1000_STAT("tx_multi_coll_ok", stats.mcc), 89 E1000_STAT("tx_timeout_count", tx_timeout_count), 90 E1000_STAT("tx_restart_queue", restart_queue), 91 E1000_STAT("rx_long_length_errors", stats.roc), 92 E1000_STAT("rx_short_length_errors", stats.ruc), 93 E1000_STAT("rx_align_errors", stats.algnerrc), 94 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 95 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 96 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 97 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 98 E1000_STAT("tx_flow_control_xon", stats.xontxc), 99 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 100 E1000_STAT("rx_long_byte_count", stats.gorc), 101 E1000_STAT("rx_csum_offload_good", hw_csum_good), 102 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 103 E1000_STAT("rx_header_split", rx_hdr_split), 104 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 105 E1000_STAT("tx_smbus", stats.mgptc), 106 E1000_STAT("rx_smbus", stats.mgprc), 107 E1000_STAT("dropped_smbus", stats.mgpdc), 108 E1000_STAT("rx_dma_failed", rx_dma_failed), 109 E1000_STAT("tx_dma_failed", tx_dma_failed), 110 }; 111 112 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 113 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 114 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 115 "Register test (offline)", "Eeprom test (offline)", 116 "Interrupt test (offline)", "Loopback test (offline)", 117 "Link test (on/offline)" 118 }; 119 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 120 121 static int e1000_get_settings(struct net_device *netdev, 122 struct ethtool_cmd *ecmd) 123 { 124 struct e1000_adapter *adapter = netdev_priv(netdev); 125 struct e1000_hw *hw = &adapter->hw; 126 u32 speed; 127 128 if (hw->phy.media_type == e1000_media_type_copper) { 129 130 ecmd->supported = (SUPPORTED_10baseT_Half | 131 SUPPORTED_10baseT_Full | 132 SUPPORTED_100baseT_Half | 133 SUPPORTED_100baseT_Full | 134 SUPPORTED_1000baseT_Full | 135 SUPPORTED_Autoneg | 136 SUPPORTED_TP); 137 if (hw->phy.type == e1000_phy_ife) 138 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 139 ecmd->advertising = ADVERTISED_TP; 140 141 if (hw->mac.autoneg == 1) { 142 ecmd->advertising |= ADVERTISED_Autoneg; 143 /* the e1000 autoneg seems to match ethtool nicely */ 144 ecmd->advertising |= hw->phy.autoneg_advertised; 145 } 146 147 ecmd->port = PORT_TP; 148 ecmd->phy_address = hw->phy.addr; 149 ecmd->transceiver = XCVR_INTERNAL; 150 151 } else { 152 ecmd->supported = (SUPPORTED_1000baseT_Full | 153 SUPPORTED_FIBRE | 154 SUPPORTED_Autoneg); 155 156 ecmd->advertising = (ADVERTISED_1000baseT_Full | 157 ADVERTISED_FIBRE | 158 ADVERTISED_Autoneg); 159 160 ecmd->port = PORT_FIBRE; 161 ecmd->transceiver = XCVR_EXTERNAL; 162 } 163 164 speed = -1; 165 ecmd->duplex = -1; 166 167 if (netif_running(netdev)) { 168 if (netif_carrier_ok(netdev)) { 169 speed = adapter->link_speed; 170 ecmd->duplex = adapter->link_duplex - 1; 171 } 172 } else { 173 u32 status = er32(STATUS); 174 if (status & E1000_STATUS_LU) { 175 if (status & E1000_STATUS_SPEED_1000) 176 speed = SPEED_1000; 177 else if (status & E1000_STATUS_SPEED_100) 178 speed = SPEED_100; 179 else 180 speed = SPEED_10; 181 182 if (status & E1000_STATUS_FD) 183 ecmd->duplex = DUPLEX_FULL; 184 else 185 ecmd->duplex = DUPLEX_HALF; 186 } 187 } 188 189 ethtool_cmd_speed_set(ecmd, speed); 190 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 191 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 192 193 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 194 if ((hw->phy.media_type == e1000_media_type_copper) && 195 netif_carrier_ok(netdev)) 196 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 197 ETH_TP_MDI; 198 else 199 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 200 201 return 0; 202 } 203 204 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 205 { 206 struct e1000_mac_info *mac = &adapter->hw.mac; 207 208 mac->autoneg = 0; 209 210 /* Make sure dplx is at most 1 bit and lsb of speed is not set 211 * for the switch() below to work */ 212 if ((spd & 1) || (dplx & ~1)) 213 goto err_inval; 214 215 /* Fiber NICs only allow 1000 gbps Full duplex */ 216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 217 spd != SPEED_1000 && 218 dplx != DUPLEX_FULL) { 219 goto err_inval; 220 } 221 222 switch (spd + dplx) { 223 case SPEED_10 + DUPLEX_HALF: 224 mac->forced_speed_duplex = ADVERTISE_10_HALF; 225 break; 226 case SPEED_10 + DUPLEX_FULL: 227 mac->forced_speed_duplex = ADVERTISE_10_FULL; 228 break; 229 case SPEED_100 + DUPLEX_HALF: 230 mac->forced_speed_duplex = ADVERTISE_100_HALF; 231 break; 232 case SPEED_100 + DUPLEX_FULL: 233 mac->forced_speed_duplex = ADVERTISE_100_FULL; 234 break; 235 case SPEED_1000 + DUPLEX_FULL: 236 mac->autoneg = 1; 237 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 238 break; 239 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 240 default: 241 goto err_inval; 242 } 243 return 0; 244 245 err_inval: 246 e_err("Unsupported Speed/Duplex configuration\n"); 247 return -EINVAL; 248 } 249 250 static int e1000_set_settings(struct net_device *netdev, 251 struct ethtool_cmd *ecmd) 252 { 253 struct e1000_adapter *adapter = netdev_priv(netdev); 254 struct e1000_hw *hw = &adapter->hw; 255 256 /* 257 * When SoL/IDER sessions are active, autoneg/speed/duplex 258 * cannot be changed 259 */ 260 if (e1000_check_reset_block(hw)) { 261 e_err("Cannot change link characteristics when SoL/IDER is " 262 "active.\n"); 263 return -EINVAL; 264 } 265 266 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 267 usleep_range(1000, 2000); 268 269 if (ecmd->autoneg == AUTONEG_ENABLE) { 270 hw->mac.autoneg = 1; 271 if (hw->phy.media_type == e1000_media_type_fiber) 272 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 273 ADVERTISED_FIBRE | 274 ADVERTISED_Autoneg; 275 else 276 hw->phy.autoneg_advertised = ecmd->advertising | 277 ADVERTISED_TP | 278 ADVERTISED_Autoneg; 279 ecmd->advertising = hw->phy.autoneg_advertised; 280 if (adapter->fc_autoneg) 281 hw->fc.requested_mode = e1000_fc_default; 282 } else { 283 u32 speed = ethtool_cmd_speed(ecmd); 284 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 285 clear_bit(__E1000_RESETTING, &adapter->state); 286 return -EINVAL; 287 } 288 } 289 290 /* reset the link */ 291 292 if (netif_running(adapter->netdev)) { 293 e1000e_down(adapter); 294 e1000e_up(adapter); 295 } else { 296 e1000e_reset(adapter); 297 } 298 299 clear_bit(__E1000_RESETTING, &adapter->state); 300 return 0; 301 } 302 303 static void e1000_get_pauseparam(struct net_device *netdev, 304 struct ethtool_pauseparam *pause) 305 { 306 struct e1000_adapter *adapter = netdev_priv(netdev); 307 struct e1000_hw *hw = &adapter->hw; 308 309 pause->autoneg = 310 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 311 312 if (hw->fc.current_mode == e1000_fc_rx_pause) { 313 pause->rx_pause = 1; 314 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 315 pause->tx_pause = 1; 316 } else if (hw->fc.current_mode == e1000_fc_full) { 317 pause->rx_pause = 1; 318 pause->tx_pause = 1; 319 } 320 } 321 322 static int e1000_set_pauseparam(struct net_device *netdev, 323 struct ethtool_pauseparam *pause) 324 { 325 struct e1000_adapter *adapter = netdev_priv(netdev); 326 struct e1000_hw *hw = &adapter->hw; 327 int retval = 0; 328 329 adapter->fc_autoneg = pause->autoneg; 330 331 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 332 usleep_range(1000, 2000); 333 334 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 335 hw->fc.requested_mode = e1000_fc_default; 336 if (netif_running(adapter->netdev)) { 337 e1000e_down(adapter); 338 e1000e_up(adapter); 339 } else { 340 e1000e_reset(adapter); 341 } 342 } else { 343 if (pause->rx_pause && pause->tx_pause) 344 hw->fc.requested_mode = e1000_fc_full; 345 else if (pause->rx_pause && !pause->tx_pause) 346 hw->fc.requested_mode = e1000_fc_rx_pause; 347 else if (!pause->rx_pause && pause->tx_pause) 348 hw->fc.requested_mode = e1000_fc_tx_pause; 349 else if (!pause->rx_pause && !pause->tx_pause) 350 hw->fc.requested_mode = e1000_fc_none; 351 352 hw->fc.current_mode = hw->fc.requested_mode; 353 354 if (hw->phy.media_type == e1000_media_type_fiber) { 355 retval = hw->mac.ops.setup_link(hw); 356 /* implicit goto out */ 357 } else { 358 retval = e1000e_force_mac_fc(hw); 359 if (retval) 360 goto out; 361 e1000e_set_fc_watermarks(hw); 362 } 363 } 364 365 out: 366 clear_bit(__E1000_RESETTING, &adapter->state); 367 return retval; 368 } 369 370 static u32 e1000_get_msglevel(struct net_device *netdev) 371 { 372 struct e1000_adapter *adapter = netdev_priv(netdev); 373 return adapter->msg_enable; 374 } 375 376 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 377 { 378 struct e1000_adapter *adapter = netdev_priv(netdev); 379 adapter->msg_enable = data; 380 } 381 382 static int e1000_get_regs_len(struct net_device *netdev) 383 { 384 #define E1000_REGS_LEN 32 /* overestimate */ 385 return E1000_REGS_LEN * sizeof(u32); 386 } 387 388 static void e1000_get_regs(struct net_device *netdev, 389 struct ethtool_regs *regs, void *p) 390 { 391 struct e1000_adapter *adapter = netdev_priv(netdev); 392 struct e1000_hw *hw = &adapter->hw; 393 u32 *regs_buff = p; 394 u16 phy_data; 395 396 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 397 398 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 399 adapter->pdev->device; 400 401 regs_buff[0] = er32(CTRL); 402 regs_buff[1] = er32(STATUS); 403 404 regs_buff[2] = er32(RCTL); 405 regs_buff[3] = er32(RDLEN); 406 regs_buff[4] = er32(RDH); 407 regs_buff[5] = er32(RDT); 408 regs_buff[6] = er32(RDTR); 409 410 regs_buff[7] = er32(TCTL); 411 regs_buff[8] = er32(TDLEN); 412 regs_buff[9] = er32(TDH); 413 regs_buff[10] = er32(TDT); 414 regs_buff[11] = er32(TIDV); 415 416 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 417 418 /* ethtool doesn't use anything past this point, so all this 419 * code is likely legacy junk for apps that may or may not 420 * exist */ 421 if (hw->phy.type == e1000_phy_m88) { 422 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 423 regs_buff[13] = (u32)phy_data; /* cable length */ 424 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 425 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 426 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 427 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 428 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 429 regs_buff[18] = regs_buff[13]; /* cable polarity */ 430 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 431 regs_buff[20] = regs_buff[17]; /* polarity correction */ 432 /* phy receive errors */ 433 regs_buff[22] = adapter->phy_stats.receive_errors; 434 regs_buff[23] = regs_buff[13]; /* mdix mode */ 435 } 436 regs_buff[21] = 0; /* was idle_errors */ 437 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); 438 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 439 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 440 } 441 442 static int e1000_get_eeprom_len(struct net_device *netdev) 443 { 444 struct e1000_adapter *adapter = netdev_priv(netdev); 445 return adapter->hw.nvm.word_size * 2; 446 } 447 448 static int e1000_get_eeprom(struct net_device *netdev, 449 struct ethtool_eeprom *eeprom, u8 *bytes) 450 { 451 struct e1000_adapter *adapter = netdev_priv(netdev); 452 struct e1000_hw *hw = &adapter->hw; 453 u16 *eeprom_buff; 454 int first_word; 455 int last_word; 456 int ret_val = 0; 457 u16 i; 458 459 if (eeprom->len == 0) 460 return -EINVAL; 461 462 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 463 464 first_word = eeprom->offset >> 1; 465 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 466 467 eeprom_buff = kmalloc(sizeof(u16) * 468 (last_word - first_word + 1), GFP_KERNEL); 469 if (!eeprom_buff) 470 return -ENOMEM; 471 472 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 473 ret_val = e1000_read_nvm(hw, first_word, 474 last_word - first_word + 1, 475 eeprom_buff); 476 } else { 477 for (i = 0; i < last_word - first_word + 1; i++) { 478 ret_val = e1000_read_nvm(hw, first_word + i, 1, 479 &eeprom_buff[i]); 480 if (ret_val) 481 break; 482 } 483 } 484 485 if (ret_val) { 486 /* a read error occurred, throw away the result */ 487 memset(eeprom_buff, 0xff, sizeof(u16) * 488 (last_word - first_word + 1)); 489 } else { 490 /* Device's eeprom is always little-endian, word addressable */ 491 for (i = 0; i < last_word - first_word + 1; i++) 492 le16_to_cpus(&eeprom_buff[i]); 493 } 494 495 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 496 kfree(eeprom_buff); 497 498 return ret_val; 499 } 500 501 static int e1000_set_eeprom(struct net_device *netdev, 502 struct ethtool_eeprom *eeprom, u8 *bytes) 503 { 504 struct e1000_adapter *adapter = netdev_priv(netdev); 505 struct e1000_hw *hw = &adapter->hw; 506 u16 *eeprom_buff; 507 void *ptr; 508 int max_len; 509 int first_word; 510 int last_word; 511 int ret_val = 0; 512 u16 i; 513 514 if (eeprom->len == 0) 515 return -EOPNOTSUPP; 516 517 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) 518 return -EFAULT; 519 520 if (adapter->flags & FLAG_READ_ONLY_NVM) 521 return -EINVAL; 522 523 max_len = hw->nvm.word_size * 2; 524 525 first_word = eeprom->offset >> 1; 526 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 527 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 528 if (!eeprom_buff) 529 return -ENOMEM; 530 531 ptr = (void *)eeprom_buff; 532 533 if (eeprom->offset & 1) { 534 /* need read/modify/write of first changed EEPROM word */ 535 /* only the second byte of the word is being modified */ 536 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 537 ptr++; 538 } 539 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) 540 /* need read/modify/write of last changed EEPROM word */ 541 /* only the first byte of the word is being modified */ 542 ret_val = e1000_read_nvm(hw, last_word, 1, 543 &eeprom_buff[last_word - first_word]); 544 545 if (ret_val) 546 goto out; 547 548 /* Device's eeprom is always little-endian, word addressable */ 549 for (i = 0; i < last_word - first_word + 1; i++) 550 le16_to_cpus(&eeprom_buff[i]); 551 552 memcpy(ptr, bytes, eeprom->len); 553 554 for (i = 0; i < last_word - first_word + 1; i++) 555 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 556 557 ret_val = e1000_write_nvm(hw, first_word, 558 last_word - first_word + 1, eeprom_buff); 559 560 if (ret_val) 561 goto out; 562 563 /* 564 * Update the checksum over the first part of the EEPROM if needed 565 * and flush shadow RAM for applicable controllers 566 */ 567 if ((first_word <= NVM_CHECKSUM_REG) || 568 (hw->mac.type == e1000_82583) || 569 (hw->mac.type == e1000_82574) || 570 (hw->mac.type == e1000_82573)) 571 ret_val = e1000e_update_nvm_checksum(hw); 572 573 out: 574 kfree(eeprom_buff); 575 return ret_val; 576 } 577 578 static void e1000_get_drvinfo(struct net_device *netdev, 579 struct ethtool_drvinfo *drvinfo) 580 { 581 struct e1000_adapter *adapter = netdev_priv(netdev); 582 char firmware_version[32]; 583 584 strncpy(drvinfo->driver, e1000e_driver_name, 585 sizeof(drvinfo->driver) - 1); 586 strncpy(drvinfo->version, e1000e_driver_version, 587 sizeof(drvinfo->version) - 1); 588 589 /* 590 * EEPROM image version # is reported as firmware version # for 591 * PCI-E controllers 592 */ 593 snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d", 594 (adapter->eeprom_vers & 0xF000) >> 12, 595 (adapter->eeprom_vers & 0x0FF0) >> 4, 596 (adapter->eeprom_vers & 0x000F)); 597 598 strncpy(drvinfo->fw_version, firmware_version, 599 sizeof(drvinfo->fw_version) - 1); 600 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 601 sizeof(drvinfo->bus_info) - 1); 602 drvinfo->regdump_len = e1000_get_regs_len(netdev); 603 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 604 } 605 606 static void e1000_get_ringparam(struct net_device *netdev, 607 struct ethtool_ringparam *ring) 608 { 609 struct e1000_adapter *adapter = netdev_priv(netdev); 610 struct e1000_ring *tx_ring = adapter->tx_ring; 611 struct e1000_ring *rx_ring = adapter->rx_ring; 612 613 ring->rx_max_pending = E1000_MAX_RXD; 614 ring->tx_max_pending = E1000_MAX_TXD; 615 ring->rx_pending = rx_ring->count; 616 ring->tx_pending = tx_ring->count; 617 } 618 619 static int e1000_set_ringparam(struct net_device *netdev, 620 struct ethtool_ringparam *ring) 621 { 622 struct e1000_adapter *adapter = netdev_priv(netdev); 623 struct e1000_ring *tx_ring, *tx_old; 624 struct e1000_ring *rx_ring, *rx_old; 625 int err; 626 627 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 628 return -EINVAL; 629 630 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 631 usleep_range(1000, 2000); 632 633 if (netif_running(adapter->netdev)) 634 e1000e_down(adapter); 635 636 tx_old = adapter->tx_ring; 637 rx_old = adapter->rx_ring; 638 639 err = -ENOMEM; 640 tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL); 641 if (!tx_ring) 642 goto err_alloc_tx; 643 644 rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL); 645 if (!rx_ring) 646 goto err_alloc_rx; 647 648 adapter->tx_ring = tx_ring; 649 adapter->rx_ring = rx_ring; 650 651 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); 652 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD)); 653 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE); 654 655 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); 656 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD)); 657 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE); 658 659 if (netif_running(adapter->netdev)) { 660 /* Try to get new resources before deleting old */ 661 err = e1000e_setup_rx_resources(adapter); 662 if (err) 663 goto err_setup_rx; 664 err = e1000e_setup_tx_resources(adapter); 665 if (err) 666 goto err_setup_tx; 667 668 /* 669 * restore the old in order to free it, 670 * then add in the new 671 */ 672 adapter->rx_ring = rx_old; 673 adapter->tx_ring = tx_old; 674 e1000e_free_rx_resources(adapter); 675 e1000e_free_tx_resources(adapter); 676 kfree(tx_old); 677 kfree(rx_old); 678 adapter->rx_ring = rx_ring; 679 adapter->tx_ring = tx_ring; 680 err = e1000e_up(adapter); 681 if (err) 682 goto err_setup; 683 } 684 685 clear_bit(__E1000_RESETTING, &adapter->state); 686 return 0; 687 err_setup_tx: 688 e1000e_free_rx_resources(adapter); 689 err_setup_rx: 690 adapter->rx_ring = rx_old; 691 adapter->tx_ring = tx_old; 692 kfree(rx_ring); 693 err_alloc_rx: 694 kfree(tx_ring); 695 err_alloc_tx: 696 e1000e_up(adapter); 697 err_setup: 698 clear_bit(__E1000_RESETTING, &adapter->state); 699 return err; 700 } 701 702 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 703 int reg, int offset, u32 mask, u32 write) 704 { 705 u32 pat, val; 706 static const u32 test[] = { 707 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 708 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 709 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 710 (test[pat] & write)); 711 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 712 if (val != (test[pat] & write & mask)) { 713 e_err("pattern test reg %04X failed: got 0x%08X " 714 "expected 0x%08X\n", reg + offset, val, 715 (test[pat] & write & mask)); 716 *data = reg; 717 return 1; 718 } 719 } 720 return 0; 721 } 722 723 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 724 int reg, u32 mask, u32 write) 725 { 726 u32 val; 727 __ew32(&adapter->hw, reg, write & mask); 728 val = __er32(&adapter->hw, reg); 729 if ((write & mask) != (val & mask)) { 730 e_err("set/check reg %04X test failed: got 0x%08X " 731 "expected 0x%08X\n", reg, (val & mask), (write & mask)); 732 *data = reg; 733 return 1; 734 } 735 return 0; 736 } 737 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 738 do { \ 739 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 740 return 1; \ 741 } while (0) 742 #define REG_PATTERN_TEST(reg, mask, write) \ 743 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 744 745 #define REG_SET_AND_CHECK(reg, mask, write) \ 746 do { \ 747 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 748 return 1; \ 749 } while (0) 750 751 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 752 { 753 struct e1000_hw *hw = &adapter->hw; 754 struct e1000_mac_info *mac = &adapter->hw.mac; 755 u32 value; 756 u32 before; 757 u32 after; 758 u32 i; 759 u32 toggle; 760 u32 mask; 761 762 /* 763 * The status register is Read Only, so a write should fail. 764 * Some bits that get toggled are ignored. 765 */ 766 switch (mac->type) { 767 /* there are several bits on newer hardware that are r/w */ 768 case e1000_82571: 769 case e1000_82572: 770 case e1000_80003es2lan: 771 toggle = 0x7FFFF3FF; 772 break; 773 default: 774 toggle = 0x7FFFF033; 775 break; 776 } 777 778 before = er32(STATUS); 779 value = (er32(STATUS) & toggle); 780 ew32(STATUS, toggle); 781 after = er32(STATUS) & toggle; 782 if (value != after) { 783 e_err("failed STATUS register test got: 0x%08X expected: " 784 "0x%08X\n", after, value); 785 *data = 1; 786 return 1; 787 } 788 /* restore previous status */ 789 ew32(STATUS, before); 790 791 if (!(adapter->flags & FLAG_IS_ICH)) { 792 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 793 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 794 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 795 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 796 } 797 798 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 799 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 800 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF); 801 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF); 802 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF); 803 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 804 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 805 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 806 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 807 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF); 808 809 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 810 811 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 812 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 813 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 814 815 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 816 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 817 if (!(adapter->flags & FLAG_IS_ICH)) 818 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 819 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 820 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 821 mask = 0x8003FFFF; 822 switch (mac->type) { 823 case e1000_ich10lan: 824 case e1000_pchlan: 825 case e1000_pch2lan: 826 mask |= (1 << 18); 827 break; 828 default: 829 break; 830 } 831 for (i = 0; i < mac->rar_entry_count; i++) 832 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), 833 mask, 0xFFFFFFFF); 834 835 for (i = 0; i < mac->mta_reg_count; i++) 836 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 837 838 *data = 0; 839 return 0; 840 } 841 842 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 843 { 844 u16 temp; 845 u16 checksum = 0; 846 u16 i; 847 848 *data = 0; 849 /* Read and add up the contents of the EEPROM */ 850 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 851 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 852 *data = 1; 853 return *data; 854 } 855 checksum += temp; 856 } 857 858 /* If Checksum is not Correct return error else test passed */ 859 if ((checksum != (u16) NVM_SUM) && !(*data)) 860 *data = 2; 861 862 return *data; 863 } 864 865 static irqreturn_t e1000_test_intr(int irq, void *data) 866 { 867 struct net_device *netdev = (struct net_device *) data; 868 struct e1000_adapter *adapter = netdev_priv(netdev); 869 struct e1000_hw *hw = &adapter->hw; 870 871 adapter->test_icr |= er32(ICR); 872 873 return IRQ_HANDLED; 874 } 875 876 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 877 { 878 struct net_device *netdev = adapter->netdev; 879 struct e1000_hw *hw = &adapter->hw; 880 u32 mask; 881 u32 shared_int = 1; 882 u32 irq = adapter->pdev->irq; 883 int i; 884 int ret_val = 0; 885 int int_mode = E1000E_INT_MODE_LEGACY; 886 887 *data = 0; 888 889 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 890 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 891 int_mode = adapter->int_mode; 892 e1000e_reset_interrupt_capability(adapter); 893 adapter->int_mode = E1000E_INT_MODE_LEGACY; 894 e1000e_set_interrupt_capability(adapter); 895 } 896 /* Hook up test interrupt handler just for this test */ 897 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 898 netdev)) { 899 shared_int = 0; 900 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 901 netdev->name, netdev)) { 902 *data = 1; 903 ret_val = -1; 904 goto out; 905 } 906 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 907 908 /* Disable all the interrupts */ 909 ew32(IMC, 0xFFFFFFFF); 910 e1e_flush(); 911 usleep_range(10000, 20000); 912 913 /* Test each interrupt */ 914 for (i = 0; i < 10; i++) { 915 /* Interrupt to test */ 916 mask = 1 << i; 917 918 if (adapter->flags & FLAG_IS_ICH) { 919 switch (mask) { 920 case E1000_ICR_RXSEQ: 921 continue; 922 case 0x00000100: 923 if (adapter->hw.mac.type == e1000_ich8lan || 924 adapter->hw.mac.type == e1000_ich9lan) 925 continue; 926 break; 927 default: 928 break; 929 } 930 } 931 932 if (!shared_int) { 933 /* 934 * Disable the interrupt to be reported in 935 * the cause register and then force the same 936 * interrupt and see if one gets posted. If 937 * an interrupt was posted to the bus, the 938 * test failed. 939 */ 940 adapter->test_icr = 0; 941 ew32(IMC, mask); 942 ew32(ICS, mask); 943 e1e_flush(); 944 usleep_range(10000, 20000); 945 946 if (adapter->test_icr & mask) { 947 *data = 3; 948 break; 949 } 950 } 951 952 /* 953 * Enable the interrupt to be reported in 954 * the cause register and then force the same 955 * interrupt and see if one gets posted. If 956 * an interrupt was not posted to the bus, the 957 * test failed. 958 */ 959 adapter->test_icr = 0; 960 ew32(IMS, mask); 961 ew32(ICS, mask); 962 e1e_flush(); 963 usleep_range(10000, 20000); 964 965 if (!(adapter->test_icr & mask)) { 966 *data = 4; 967 break; 968 } 969 970 if (!shared_int) { 971 /* 972 * Disable the other interrupts to be reported in 973 * the cause register and then force the other 974 * interrupts and see if any get posted. If 975 * an interrupt was posted to the bus, the 976 * test failed. 977 */ 978 adapter->test_icr = 0; 979 ew32(IMC, ~mask & 0x00007FFF); 980 ew32(ICS, ~mask & 0x00007FFF); 981 e1e_flush(); 982 usleep_range(10000, 20000); 983 984 if (adapter->test_icr) { 985 *data = 5; 986 break; 987 } 988 } 989 } 990 991 /* Disable all the interrupts */ 992 ew32(IMC, 0xFFFFFFFF); 993 e1e_flush(); 994 usleep_range(10000, 20000); 995 996 /* Unhook test interrupt handler */ 997 free_irq(irq, netdev); 998 999 out: 1000 if (int_mode == E1000E_INT_MODE_MSIX) { 1001 e1000e_reset_interrupt_capability(adapter); 1002 adapter->int_mode = int_mode; 1003 e1000e_set_interrupt_capability(adapter); 1004 } 1005 1006 return ret_val; 1007 } 1008 1009 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1010 { 1011 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1012 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1013 struct pci_dev *pdev = adapter->pdev; 1014 int i; 1015 1016 if (tx_ring->desc && tx_ring->buffer_info) { 1017 for (i = 0; i < tx_ring->count; i++) { 1018 if (tx_ring->buffer_info[i].dma) 1019 dma_unmap_single(&pdev->dev, 1020 tx_ring->buffer_info[i].dma, 1021 tx_ring->buffer_info[i].length, 1022 DMA_TO_DEVICE); 1023 if (tx_ring->buffer_info[i].skb) 1024 dev_kfree_skb(tx_ring->buffer_info[i].skb); 1025 } 1026 } 1027 1028 if (rx_ring->desc && rx_ring->buffer_info) { 1029 for (i = 0; i < rx_ring->count; i++) { 1030 if (rx_ring->buffer_info[i].dma) 1031 dma_unmap_single(&pdev->dev, 1032 rx_ring->buffer_info[i].dma, 1033 2048, DMA_FROM_DEVICE); 1034 if (rx_ring->buffer_info[i].skb) 1035 dev_kfree_skb(rx_ring->buffer_info[i].skb); 1036 } 1037 } 1038 1039 if (tx_ring->desc) { 1040 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1041 tx_ring->dma); 1042 tx_ring->desc = NULL; 1043 } 1044 if (rx_ring->desc) { 1045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1046 rx_ring->dma); 1047 rx_ring->desc = NULL; 1048 } 1049 1050 kfree(tx_ring->buffer_info); 1051 tx_ring->buffer_info = NULL; 1052 kfree(rx_ring->buffer_info); 1053 rx_ring->buffer_info = NULL; 1054 } 1055 1056 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1057 { 1058 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1059 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1060 struct pci_dev *pdev = adapter->pdev; 1061 struct e1000_hw *hw = &adapter->hw; 1062 u32 rctl; 1063 int i; 1064 int ret_val; 1065 1066 /* Setup Tx descriptor ring and Tx buffers */ 1067 1068 if (!tx_ring->count) 1069 tx_ring->count = E1000_DEFAULT_TXD; 1070 1071 tx_ring->buffer_info = kcalloc(tx_ring->count, 1072 sizeof(struct e1000_buffer), 1073 GFP_KERNEL); 1074 if (!(tx_ring->buffer_info)) { 1075 ret_val = 1; 1076 goto err_nomem; 1077 } 1078 1079 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1080 tx_ring->size = ALIGN(tx_ring->size, 4096); 1081 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1082 &tx_ring->dma, GFP_KERNEL); 1083 if (!tx_ring->desc) { 1084 ret_val = 2; 1085 goto err_nomem; 1086 } 1087 tx_ring->next_to_use = 0; 1088 tx_ring->next_to_clean = 0; 1089 1090 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); 1091 ew32(TDBAH, ((u64) tx_ring->dma >> 32)); 1092 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc)); 1093 ew32(TDH, 0); 1094 ew32(TDT, 0); 1095 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1096 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1097 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1098 1099 for (i = 0; i < tx_ring->count; i++) { 1100 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1101 struct sk_buff *skb; 1102 unsigned int skb_size = 1024; 1103 1104 skb = alloc_skb(skb_size, GFP_KERNEL); 1105 if (!skb) { 1106 ret_val = 3; 1107 goto err_nomem; 1108 } 1109 skb_put(skb, skb_size); 1110 tx_ring->buffer_info[i].skb = skb; 1111 tx_ring->buffer_info[i].length = skb->len; 1112 tx_ring->buffer_info[i].dma = 1113 dma_map_single(&pdev->dev, skb->data, skb->len, 1114 DMA_TO_DEVICE); 1115 if (dma_mapping_error(&pdev->dev, 1116 tx_ring->buffer_info[i].dma)) { 1117 ret_val = 4; 1118 goto err_nomem; 1119 } 1120 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1121 tx_desc->lower.data = cpu_to_le32(skb->len); 1122 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1123 E1000_TXD_CMD_IFCS | 1124 E1000_TXD_CMD_RS); 1125 tx_desc->upper.data = 0; 1126 } 1127 1128 /* Setup Rx descriptor ring and Rx buffers */ 1129 1130 if (!rx_ring->count) 1131 rx_ring->count = E1000_DEFAULT_RXD; 1132 1133 rx_ring->buffer_info = kcalloc(rx_ring->count, 1134 sizeof(struct e1000_buffer), 1135 GFP_KERNEL); 1136 if (!(rx_ring->buffer_info)) { 1137 ret_val = 5; 1138 goto err_nomem; 1139 } 1140 1141 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1142 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1143 &rx_ring->dma, GFP_KERNEL); 1144 if (!rx_ring->desc) { 1145 ret_val = 6; 1146 goto err_nomem; 1147 } 1148 rx_ring->next_to_use = 0; 1149 rx_ring->next_to_clean = 0; 1150 1151 rctl = er32(RCTL); 1152 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1153 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1154 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF)); 1155 ew32(RDBAH, ((u64) rx_ring->dma >> 32)); 1156 ew32(RDLEN, rx_ring->size); 1157 ew32(RDH, 0); 1158 ew32(RDT, 0); 1159 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1160 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1161 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1162 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1163 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1164 ew32(RCTL, rctl); 1165 1166 for (i = 0; i < rx_ring->count; i++) { 1167 union e1000_rx_desc_extended *rx_desc; 1168 struct sk_buff *skb; 1169 1170 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1171 if (!skb) { 1172 ret_val = 7; 1173 goto err_nomem; 1174 } 1175 skb_reserve(skb, NET_IP_ALIGN); 1176 rx_ring->buffer_info[i].skb = skb; 1177 rx_ring->buffer_info[i].dma = 1178 dma_map_single(&pdev->dev, skb->data, 2048, 1179 DMA_FROM_DEVICE); 1180 if (dma_mapping_error(&pdev->dev, 1181 rx_ring->buffer_info[i].dma)) { 1182 ret_val = 8; 1183 goto err_nomem; 1184 } 1185 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1186 rx_desc->read.buffer_addr = 1187 cpu_to_le64(rx_ring->buffer_info[i].dma); 1188 memset(skb->data, 0x00, skb->len); 1189 } 1190 1191 return 0; 1192 1193 err_nomem: 1194 e1000_free_desc_rings(adapter); 1195 return ret_val; 1196 } 1197 1198 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1199 { 1200 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1201 e1e_wphy(&adapter->hw, 29, 0x001F); 1202 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1203 e1e_wphy(&adapter->hw, 29, 0x001A); 1204 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1205 } 1206 1207 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1208 { 1209 struct e1000_hw *hw = &adapter->hw; 1210 u32 ctrl_reg = 0; 1211 u16 phy_reg = 0; 1212 s32 ret_val = 0; 1213 1214 hw->mac.autoneg = 0; 1215 1216 if (hw->phy.type == e1000_phy_ife) { 1217 /* force 100, set loopback */ 1218 e1e_wphy(hw, PHY_CONTROL, 0x6100); 1219 1220 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1221 ctrl_reg = er32(CTRL); 1222 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1223 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1224 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1225 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1226 E1000_CTRL_FD); /* Force Duplex to FULL */ 1227 1228 ew32(CTRL, ctrl_reg); 1229 e1e_flush(); 1230 udelay(500); 1231 1232 return 0; 1233 } 1234 1235 /* Specific PHY configuration for loopback */ 1236 switch (hw->phy.type) { 1237 case e1000_phy_m88: 1238 /* Auto-MDI/MDIX Off */ 1239 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1240 /* reset to update Auto-MDI/MDIX */ 1241 e1e_wphy(hw, PHY_CONTROL, 0x9140); 1242 /* autoneg off */ 1243 e1e_wphy(hw, PHY_CONTROL, 0x8140); 1244 break; 1245 case e1000_phy_gg82563: 1246 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1247 break; 1248 case e1000_phy_bm: 1249 /* Set Default MAC Interface speed to 1GB */ 1250 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1251 phy_reg &= ~0x0007; 1252 phy_reg |= 0x006; 1253 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1254 /* Assert SW reset for above settings to take effect */ 1255 e1000e_commit_phy(hw); 1256 mdelay(1); 1257 /* Force Full Duplex */ 1258 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1259 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1260 /* Set Link Up (in force link) */ 1261 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1262 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1263 /* Force Link */ 1264 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1265 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1266 /* Set Early Link Enable */ 1267 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1268 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1269 break; 1270 case e1000_phy_82577: 1271 case e1000_phy_82578: 1272 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1273 ret_val = hw->phy.ops.acquire(hw); 1274 if (ret_val) { 1275 e_err("Cannot setup 1Gbps loopback.\n"); 1276 return ret_val; 1277 } 1278 e1000_configure_k1_ich8lan(hw, false); 1279 hw->phy.ops.release(hw); 1280 break; 1281 case e1000_phy_82579: 1282 /* Disable PHY energy detect power down */ 1283 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1284 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1285 /* Disable full chip energy detect */ 1286 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1287 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1288 /* Enable loopback on the PHY */ 1289 #define I82577_PHY_LBK_CTRL 19 1290 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1291 break; 1292 default: 1293 break; 1294 } 1295 1296 /* force 1000, set loopback */ 1297 e1e_wphy(hw, PHY_CONTROL, 0x4140); 1298 mdelay(250); 1299 1300 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1301 ctrl_reg = er32(CTRL); 1302 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1303 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1304 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1305 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1306 E1000_CTRL_FD); /* Force Duplex to FULL */ 1307 1308 if (adapter->flags & FLAG_IS_ICH) 1309 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1310 1311 if (hw->phy.media_type == e1000_media_type_copper && 1312 hw->phy.type == e1000_phy_m88) { 1313 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1314 } else { 1315 /* 1316 * Set the ILOS bit on the fiber Nic if half duplex link is 1317 * detected. 1318 */ 1319 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1320 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1321 } 1322 1323 ew32(CTRL, ctrl_reg); 1324 1325 /* 1326 * Disable the receiver on the PHY so when a cable is plugged in, the 1327 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1328 */ 1329 if (hw->phy.type == e1000_phy_m88) 1330 e1000_phy_disable_receiver(adapter); 1331 1332 udelay(500); 1333 1334 return 0; 1335 } 1336 1337 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1338 { 1339 struct e1000_hw *hw = &adapter->hw; 1340 u32 ctrl = er32(CTRL); 1341 int link = 0; 1342 1343 /* special requirements for 82571/82572 fiber adapters */ 1344 1345 /* 1346 * jump through hoops to make sure link is up because serdes 1347 * link is hardwired up 1348 */ 1349 ctrl |= E1000_CTRL_SLU; 1350 ew32(CTRL, ctrl); 1351 1352 /* disable autoneg */ 1353 ctrl = er32(TXCW); 1354 ctrl &= ~(1 << 31); 1355 ew32(TXCW, ctrl); 1356 1357 link = (er32(STATUS) & E1000_STATUS_LU); 1358 1359 if (!link) { 1360 /* set invert loss of signal */ 1361 ctrl = er32(CTRL); 1362 ctrl |= E1000_CTRL_ILOS; 1363 ew32(CTRL, ctrl); 1364 } 1365 1366 /* 1367 * special write to serdes control register to enable SerDes analog 1368 * loopback 1369 */ 1370 #define E1000_SERDES_LB_ON 0x410 1371 ew32(SCTL, E1000_SERDES_LB_ON); 1372 e1e_flush(); 1373 usleep_range(10000, 20000); 1374 1375 return 0; 1376 } 1377 1378 /* only call this for fiber/serdes connections to es2lan */ 1379 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1380 { 1381 struct e1000_hw *hw = &adapter->hw; 1382 u32 ctrlext = er32(CTRL_EXT); 1383 u32 ctrl = er32(CTRL); 1384 1385 /* 1386 * save CTRL_EXT to restore later, reuse an empty variable (unused 1387 * on mac_type 80003es2lan) 1388 */ 1389 adapter->tx_fifo_head = ctrlext; 1390 1391 /* clear the serdes mode bits, putting the device into mac loopback */ 1392 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1393 ew32(CTRL_EXT, ctrlext); 1394 1395 /* force speed to 1000/FD, link up */ 1396 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1397 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1398 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1399 ew32(CTRL, ctrl); 1400 1401 /* set mac loopback */ 1402 ctrl = er32(RCTL); 1403 ctrl |= E1000_RCTL_LBM_MAC; 1404 ew32(RCTL, ctrl); 1405 1406 /* set testing mode parameters (no need to reset later) */ 1407 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1408 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1409 ew32(KMRNCTRLSTA, 1410 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1411 1412 return 0; 1413 } 1414 1415 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1416 { 1417 struct e1000_hw *hw = &adapter->hw; 1418 u32 rctl; 1419 1420 if (hw->phy.media_type == e1000_media_type_fiber || 1421 hw->phy.media_type == e1000_media_type_internal_serdes) { 1422 switch (hw->mac.type) { 1423 case e1000_80003es2lan: 1424 return e1000_set_es2lan_mac_loopback(adapter); 1425 break; 1426 case e1000_82571: 1427 case e1000_82572: 1428 return e1000_set_82571_fiber_loopback(adapter); 1429 break; 1430 default: 1431 rctl = er32(RCTL); 1432 rctl |= E1000_RCTL_LBM_TCVR; 1433 ew32(RCTL, rctl); 1434 return 0; 1435 } 1436 } else if (hw->phy.media_type == e1000_media_type_copper) { 1437 return e1000_integrated_phy_loopback(adapter); 1438 } 1439 1440 return 7; 1441 } 1442 1443 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1444 { 1445 struct e1000_hw *hw = &adapter->hw; 1446 u32 rctl; 1447 u16 phy_reg; 1448 1449 rctl = er32(RCTL); 1450 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1451 ew32(RCTL, rctl); 1452 1453 switch (hw->mac.type) { 1454 case e1000_80003es2lan: 1455 if (hw->phy.media_type == e1000_media_type_fiber || 1456 hw->phy.media_type == e1000_media_type_internal_serdes) { 1457 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1458 ew32(CTRL_EXT, adapter->tx_fifo_head); 1459 adapter->tx_fifo_head = 0; 1460 } 1461 /* fall through */ 1462 case e1000_82571: 1463 case e1000_82572: 1464 if (hw->phy.media_type == e1000_media_type_fiber || 1465 hw->phy.media_type == e1000_media_type_internal_serdes) { 1466 #define E1000_SERDES_LB_OFF 0x400 1467 ew32(SCTL, E1000_SERDES_LB_OFF); 1468 e1e_flush(); 1469 usleep_range(10000, 20000); 1470 break; 1471 } 1472 /* Fall Through */ 1473 default: 1474 hw->mac.autoneg = 1; 1475 if (hw->phy.type == e1000_phy_gg82563) 1476 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1477 e1e_rphy(hw, PHY_CONTROL, &phy_reg); 1478 if (phy_reg & MII_CR_LOOPBACK) { 1479 phy_reg &= ~MII_CR_LOOPBACK; 1480 e1e_wphy(hw, PHY_CONTROL, phy_reg); 1481 e1000e_commit_phy(hw); 1482 } 1483 break; 1484 } 1485 } 1486 1487 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1488 unsigned int frame_size) 1489 { 1490 memset(skb->data, 0xFF, frame_size); 1491 frame_size &= ~1; 1492 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1493 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1494 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1495 } 1496 1497 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1498 unsigned int frame_size) 1499 { 1500 frame_size &= ~1; 1501 if (*(skb->data + 3) == 0xFF) 1502 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1503 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1504 return 0; 1505 return 13; 1506 } 1507 1508 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1509 { 1510 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1511 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1512 struct pci_dev *pdev = adapter->pdev; 1513 struct e1000_hw *hw = &adapter->hw; 1514 int i, j, k, l; 1515 int lc; 1516 int good_cnt; 1517 int ret_val = 0; 1518 unsigned long time; 1519 1520 ew32(RDT, rx_ring->count - 1); 1521 1522 /* 1523 * Calculate the loop count based on the largest descriptor ring 1524 * The idea is to wrap the largest ring a number of times using 64 1525 * send/receive pairs during each loop 1526 */ 1527 1528 if (rx_ring->count <= tx_ring->count) 1529 lc = ((tx_ring->count / 64) * 2) + 1; 1530 else 1531 lc = ((rx_ring->count / 64) * 2) + 1; 1532 1533 k = 0; 1534 l = 0; 1535 for (j = 0; j <= lc; j++) { /* loop count loop */ 1536 for (i = 0; i < 64; i++) { /* send the packets */ 1537 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, 1538 1024); 1539 dma_sync_single_for_device(&pdev->dev, 1540 tx_ring->buffer_info[k].dma, 1541 tx_ring->buffer_info[k].length, 1542 DMA_TO_DEVICE); 1543 k++; 1544 if (k == tx_ring->count) 1545 k = 0; 1546 } 1547 ew32(TDT, k); 1548 e1e_flush(); 1549 msleep(200); 1550 time = jiffies; /* set the start time for the receive */ 1551 good_cnt = 0; 1552 do { /* receive the sent packets */ 1553 dma_sync_single_for_cpu(&pdev->dev, 1554 rx_ring->buffer_info[l].dma, 2048, 1555 DMA_FROM_DEVICE); 1556 1557 ret_val = e1000_check_lbtest_frame( 1558 rx_ring->buffer_info[l].skb, 1024); 1559 if (!ret_val) 1560 good_cnt++; 1561 l++; 1562 if (l == rx_ring->count) 1563 l = 0; 1564 /* 1565 * time + 20 msecs (200 msecs on 2.4) is more than 1566 * enough time to complete the receives, if it's 1567 * exceeded, break and error off 1568 */ 1569 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1570 if (good_cnt != 64) { 1571 ret_val = 13; /* ret_val is the same as mis-compare */ 1572 break; 1573 } 1574 if (jiffies >= (time + 20)) { 1575 ret_val = 14; /* error code for time out error */ 1576 break; 1577 } 1578 } /* end loop count loop */ 1579 return ret_val; 1580 } 1581 1582 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1583 { 1584 /* 1585 * PHY loopback cannot be performed if SoL/IDER 1586 * sessions are active 1587 */ 1588 if (e1000_check_reset_block(&adapter->hw)) { 1589 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1590 *data = 0; 1591 goto out; 1592 } 1593 1594 *data = e1000_setup_desc_rings(adapter); 1595 if (*data) 1596 goto out; 1597 1598 *data = e1000_setup_loopback_test(adapter); 1599 if (*data) 1600 goto err_loopback; 1601 1602 *data = e1000_run_loopback_test(adapter); 1603 e1000_loopback_cleanup(adapter); 1604 1605 err_loopback: 1606 e1000_free_desc_rings(adapter); 1607 out: 1608 return *data; 1609 } 1610 1611 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1612 { 1613 struct e1000_hw *hw = &adapter->hw; 1614 1615 *data = 0; 1616 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1617 int i = 0; 1618 hw->mac.serdes_has_link = false; 1619 1620 /* 1621 * On some blade server designs, link establishment 1622 * could take as long as 2-3 minutes 1623 */ 1624 do { 1625 hw->mac.ops.check_for_link(hw); 1626 if (hw->mac.serdes_has_link) 1627 return *data; 1628 msleep(20); 1629 } while (i++ < 3750); 1630 1631 *data = 1; 1632 } else { 1633 hw->mac.ops.check_for_link(hw); 1634 if (hw->mac.autoneg) 1635 /* 1636 * On some Phy/switch combinations, link establishment 1637 * can take a few seconds more than expected. 1638 */ 1639 msleep(5000); 1640 1641 if (!(er32(STATUS) & E1000_STATUS_LU)) 1642 *data = 1; 1643 } 1644 return *data; 1645 } 1646 1647 static int e1000e_get_sset_count(struct net_device *netdev, int sset) 1648 { 1649 switch (sset) { 1650 case ETH_SS_TEST: 1651 return E1000_TEST_LEN; 1652 case ETH_SS_STATS: 1653 return E1000_STATS_LEN; 1654 default: 1655 return -EOPNOTSUPP; 1656 } 1657 } 1658 1659 static void e1000_diag_test(struct net_device *netdev, 1660 struct ethtool_test *eth_test, u64 *data) 1661 { 1662 struct e1000_adapter *adapter = netdev_priv(netdev); 1663 u16 autoneg_advertised; 1664 u8 forced_speed_duplex; 1665 u8 autoneg; 1666 bool if_running = netif_running(netdev); 1667 1668 set_bit(__E1000_TESTING, &adapter->state); 1669 1670 if (!if_running) { 1671 /* Get control of and reset hardware */ 1672 if (adapter->flags & FLAG_HAS_AMT) 1673 e1000e_get_hw_control(adapter); 1674 1675 e1000e_power_up_phy(adapter); 1676 1677 adapter->hw.phy.autoneg_wait_to_complete = 1; 1678 e1000e_reset(adapter); 1679 adapter->hw.phy.autoneg_wait_to_complete = 0; 1680 } 1681 1682 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1683 /* Offline tests */ 1684 1685 /* save speed, duplex, autoneg settings */ 1686 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1687 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1688 autoneg = adapter->hw.mac.autoneg; 1689 1690 e_info("offline testing starting\n"); 1691 1692 if (if_running) 1693 /* indicate we're in test mode */ 1694 dev_close(netdev); 1695 1696 if (e1000_reg_test(adapter, &data[0])) 1697 eth_test->flags |= ETH_TEST_FL_FAILED; 1698 1699 e1000e_reset(adapter); 1700 if (e1000_eeprom_test(adapter, &data[1])) 1701 eth_test->flags |= ETH_TEST_FL_FAILED; 1702 1703 e1000e_reset(adapter); 1704 if (e1000_intr_test(adapter, &data[2])) 1705 eth_test->flags |= ETH_TEST_FL_FAILED; 1706 1707 e1000e_reset(adapter); 1708 if (e1000_loopback_test(adapter, &data[3])) 1709 eth_test->flags |= ETH_TEST_FL_FAILED; 1710 1711 /* force this routine to wait until autoneg complete/timeout */ 1712 adapter->hw.phy.autoneg_wait_to_complete = 1; 1713 e1000e_reset(adapter); 1714 adapter->hw.phy.autoneg_wait_to_complete = 0; 1715 1716 if (e1000_link_test(adapter, &data[4])) 1717 eth_test->flags |= ETH_TEST_FL_FAILED; 1718 1719 /* restore speed, duplex, autoneg settings */ 1720 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1721 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1722 adapter->hw.mac.autoneg = autoneg; 1723 e1000e_reset(adapter); 1724 1725 clear_bit(__E1000_TESTING, &adapter->state); 1726 if (if_running) 1727 dev_open(netdev); 1728 } else { 1729 /* Online tests */ 1730 1731 e_info("online testing starting\n"); 1732 1733 /* register, eeprom, intr and loopback tests not run online */ 1734 data[0] = 0; 1735 data[1] = 0; 1736 data[2] = 0; 1737 data[3] = 0; 1738 1739 if (e1000_link_test(adapter, &data[4])) 1740 eth_test->flags |= ETH_TEST_FL_FAILED; 1741 1742 clear_bit(__E1000_TESTING, &adapter->state); 1743 } 1744 1745 if (!if_running) { 1746 e1000e_reset(adapter); 1747 1748 if (adapter->flags & FLAG_HAS_AMT) 1749 e1000e_release_hw_control(adapter); 1750 } 1751 1752 msleep_interruptible(4 * 1000); 1753 } 1754 1755 static void e1000_get_wol(struct net_device *netdev, 1756 struct ethtool_wolinfo *wol) 1757 { 1758 struct e1000_adapter *adapter = netdev_priv(netdev); 1759 1760 wol->supported = 0; 1761 wol->wolopts = 0; 1762 1763 if (!(adapter->flags & FLAG_HAS_WOL) || 1764 !device_can_wakeup(&adapter->pdev->dev)) 1765 return; 1766 1767 wol->supported = WAKE_UCAST | WAKE_MCAST | 1768 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1769 1770 /* apply any specific unsupported masks here */ 1771 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1772 wol->supported &= ~WAKE_UCAST; 1773 1774 if (adapter->wol & E1000_WUFC_EX) 1775 e_err("Interface does not support directed (unicast) " 1776 "frame wake-up packets\n"); 1777 } 1778 1779 if (adapter->wol & E1000_WUFC_EX) 1780 wol->wolopts |= WAKE_UCAST; 1781 if (adapter->wol & E1000_WUFC_MC) 1782 wol->wolopts |= WAKE_MCAST; 1783 if (adapter->wol & E1000_WUFC_BC) 1784 wol->wolopts |= WAKE_BCAST; 1785 if (adapter->wol & E1000_WUFC_MAG) 1786 wol->wolopts |= WAKE_MAGIC; 1787 if (adapter->wol & E1000_WUFC_LNKC) 1788 wol->wolopts |= WAKE_PHY; 1789 } 1790 1791 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1792 { 1793 struct e1000_adapter *adapter = netdev_priv(netdev); 1794 1795 if (!(adapter->flags & FLAG_HAS_WOL) || 1796 !device_can_wakeup(&adapter->pdev->dev) || 1797 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1798 WAKE_MAGIC | WAKE_PHY))) 1799 return -EOPNOTSUPP; 1800 1801 /* these settings will always override what we currently have */ 1802 adapter->wol = 0; 1803 1804 if (wol->wolopts & WAKE_UCAST) 1805 adapter->wol |= E1000_WUFC_EX; 1806 if (wol->wolopts & WAKE_MCAST) 1807 adapter->wol |= E1000_WUFC_MC; 1808 if (wol->wolopts & WAKE_BCAST) 1809 adapter->wol |= E1000_WUFC_BC; 1810 if (wol->wolopts & WAKE_MAGIC) 1811 adapter->wol |= E1000_WUFC_MAG; 1812 if (wol->wolopts & WAKE_PHY) 1813 adapter->wol |= E1000_WUFC_LNKC; 1814 1815 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1816 1817 return 0; 1818 } 1819 1820 static int e1000_set_phys_id(struct net_device *netdev, 1821 enum ethtool_phys_id_state state) 1822 { 1823 struct e1000_adapter *adapter = netdev_priv(netdev); 1824 struct e1000_hw *hw = &adapter->hw; 1825 1826 switch (state) { 1827 case ETHTOOL_ID_ACTIVE: 1828 if (!hw->mac.ops.blink_led) 1829 return 2; /* cycle on/off twice per second */ 1830 1831 hw->mac.ops.blink_led(hw); 1832 break; 1833 1834 case ETHTOOL_ID_INACTIVE: 1835 if (hw->phy.type == e1000_phy_ife) 1836 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1837 hw->mac.ops.led_off(hw); 1838 hw->mac.ops.cleanup_led(hw); 1839 break; 1840 1841 case ETHTOOL_ID_ON: 1842 adapter->hw.mac.ops.led_on(&adapter->hw); 1843 break; 1844 1845 case ETHTOOL_ID_OFF: 1846 adapter->hw.mac.ops.led_off(&adapter->hw); 1847 break; 1848 } 1849 return 0; 1850 } 1851 1852 static int e1000_get_coalesce(struct net_device *netdev, 1853 struct ethtool_coalesce *ec) 1854 { 1855 struct e1000_adapter *adapter = netdev_priv(netdev); 1856 1857 if (adapter->itr_setting <= 4) 1858 ec->rx_coalesce_usecs = adapter->itr_setting; 1859 else 1860 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1861 1862 return 0; 1863 } 1864 1865 static int e1000_set_coalesce(struct net_device *netdev, 1866 struct ethtool_coalesce *ec) 1867 { 1868 struct e1000_adapter *adapter = netdev_priv(netdev); 1869 struct e1000_hw *hw = &adapter->hw; 1870 1871 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1872 ((ec->rx_coalesce_usecs > 4) && 1873 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1874 (ec->rx_coalesce_usecs == 2)) 1875 return -EINVAL; 1876 1877 if (ec->rx_coalesce_usecs == 4) { 1878 adapter->itr = adapter->itr_setting = 4; 1879 } else if (ec->rx_coalesce_usecs <= 3) { 1880 adapter->itr = 20000; 1881 adapter->itr_setting = ec->rx_coalesce_usecs; 1882 } else { 1883 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1884 adapter->itr_setting = adapter->itr & ~3; 1885 } 1886 1887 if (adapter->itr_setting != 0) 1888 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1889 else 1890 ew32(ITR, 0); 1891 1892 return 0; 1893 } 1894 1895 static int e1000_nway_reset(struct net_device *netdev) 1896 { 1897 struct e1000_adapter *adapter = netdev_priv(netdev); 1898 1899 if (!netif_running(netdev)) 1900 return -EAGAIN; 1901 1902 if (!adapter->hw.mac.autoneg) 1903 return -EINVAL; 1904 1905 e1000e_reinit_locked(adapter); 1906 1907 return 0; 1908 } 1909 1910 static void e1000_get_ethtool_stats(struct net_device *netdev, 1911 struct ethtool_stats *stats, 1912 u64 *data) 1913 { 1914 struct e1000_adapter *adapter = netdev_priv(netdev); 1915 struct rtnl_link_stats64 net_stats; 1916 int i; 1917 char *p = NULL; 1918 1919 e1000e_get_stats64(netdev, &net_stats); 1920 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1921 switch (e1000_gstrings_stats[i].type) { 1922 case NETDEV_STATS: 1923 p = (char *) &net_stats + 1924 e1000_gstrings_stats[i].stat_offset; 1925 break; 1926 case E1000_STATS: 1927 p = (char *) adapter + 1928 e1000_gstrings_stats[i].stat_offset; 1929 break; 1930 default: 1931 data[i] = 0; 1932 continue; 1933 } 1934 1935 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1936 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1937 } 1938 } 1939 1940 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1941 u8 *data) 1942 { 1943 u8 *p = data; 1944 int i; 1945 1946 switch (stringset) { 1947 case ETH_SS_TEST: 1948 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1949 break; 1950 case ETH_SS_STATS: 1951 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1952 memcpy(p, e1000_gstrings_stats[i].stat_string, 1953 ETH_GSTRING_LEN); 1954 p += ETH_GSTRING_LEN; 1955 } 1956 break; 1957 } 1958 } 1959 1960 static const struct ethtool_ops e1000_ethtool_ops = { 1961 .get_settings = e1000_get_settings, 1962 .set_settings = e1000_set_settings, 1963 .get_drvinfo = e1000_get_drvinfo, 1964 .get_regs_len = e1000_get_regs_len, 1965 .get_regs = e1000_get_regs, 1966 .get_wol = e1000_get_wol, 1967 .set_wol = e1000_set_wol, 1968 .get_msglevel = e1000_get_msglevel, 1969 .set_msglevel = e1000_set_msglevel, 1970 .nway_reset = e1000_nway_reset, 1971 .get_link = ethtool_op_get_link, 1972 .get_eeprom_len = e1000_get_eeprom_len, 1973 .get_eeprom = e1000_get_eeprom, 1974 .set_eeprom = e1000_set_eeprom, 1975 .get_ringparam = e1000_get_ringparam, 1976 .set_ringparam = e1000_set_ringparam, 1977 .get_pauseparam = e1000_get_pauseparam, 1978 .set_pauseparam = e1000_set_pauseparam, 1979 .self_test = e1000_diag_test, 1980 .get_strings = e1000_get_strings, 1981 .set_phys_id = e1000_set_phys_id, 1982 .get_ethtool_stats = e1000_get_ethtool_stats, 1983 .get_sset_count = e1000e_get_sset_count, 1984 .get_coalesce = e1000_get_coalesce, 1985 .set_coalesce = e1000_set_coalesce, 1986 }; 1987 1988 void e1000e_set_ethtool_ops(struct net_device *netdev) 1989 { 1990 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 1991 } 1992