1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 #include <linux/vmalloc.h> 38 39 #include "e1000.h" 40 41 enum {NETDEV_STATS, E1000_STATS}; 42 43 struct e1000_stats { 44 char stat_string[ETH_GSTRING_LEN]; 45 int type; 46 int sizeof_stat; 47 int stat_offset; 48 }; 49 50 #define E1000_STAT(str, m) { \ 51 .stat_string = str, \ 52 .type = E1000_STATS, \ 53 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 54 .stat_offset = offsetof(struct e1000_adapter, m) } 55 #define E1000_NETDEV_STAT(str, m) { \ 56 .stat_string = str, \ 57 .type = NETDEV_STATS, \ 58 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 59 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 60 61 static const struct e1000_stats e1000_gstrings_stats[] = { 62 E1000_STAT("rx_packets", stats.gprc), 63 E1000_STAT("tx_packets", stats.gptc), 64 E1000_STAT("rx_bytes", stats.gorc), 65 E1000_STAT("tx_bytes", stats.gotc), 66 E1000_STAT("rx_broadcast", stats.bprc), 67 E1000_STAT("tx_broadcast", stats.bptc), 68 E1000_STAT("rx_multicast", stats.mprc), 69 E1000_STAT("tx_multicast", stats.mptc), 70 E1000_NETDEV_STAT("rx_errors", rx_errors), 71 E1000_NETDEV_STAT("tx_errors", tx_errors), 72 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 73 E1000_STAT("multicast", stats.mprc), 74 E1000_STAT("collisions", stats.colc), 75 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 76 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 77 E1000_STAT("rx_crc_errors", stats.crcerrs), 78 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 79 E1000_STAT("rx_no_buffer_count", stats.rnbc), 80 E1000_STAT("rx_missed_errors", stats.mpc), 81 E1000_STAT("tx_aborted_errors", stats.ecol), 82 E1000_STAT("tx_carrier_errors", stats.tncrs), 83 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 84 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 85 E1000_STAT("tx_window_errors", stats.latecol), 86 E1000_STAT("tx_abort_late_coll", stats.latecol), 87 E1000_STAT("tx_deferred_ok", stats.dc), 88 E1000_STAT("tx_single_coll_ok", stats.scc), 89 E1000_STAT("tx_multi_coll_ok", stats.mcc), 90 E1000_STAT("tx_timeout_count", tx_timeout_count), 91 E1000_STAT("tx_restart_queue", restart_queue), 92 E1000_STAT("rx_long_length_errors", stats.roc), 93 E1000_STAT("rx_short_length_errors", stats.ruc), 94 E1000_STAT("rx_align_errors", stats.algnerrc), 95 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 96 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 97 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 98 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 99 E1000_STAT("tx_flow_control_xon", stats.xontxc), 100 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 101 E1000_STAT("rx_long_byte_count", stats.gorc), 102 E1000_STAT("rx_csum_offload_good", hw_csum_good), 103 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 104 E1000_STAT("rx_header_split", rx_hdr_split), 105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 106 E1000_STAT("tx_smbus", stats.mgptc), 107 E1000_STAT("rx_smbus", stats.mgprc), 108 E1000_STAT("dropped_smbus", stats.mgpdc), 109 E1000_STAT("rx_dma_failed", rx_dma_failed), 110 E1000_STAT("tx_dma_failed", tx_dma_failed), 111 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 112 E1000_STAT("corr_ecc_errors", corr_errors), 113 }; 114 115 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 116 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 117 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 118 "Register test (offline)", "Eeprom test (offline)", 119 "Interrupt test (offline)", "Loopback test (offline)", 120 "Link test (on/offline)" 121 }; 122 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 123 124 static int e1000_get_settings(struct net_device *netdev, 125 struct ethtool_cmd *ecmd) 126 { 127 struct e1000_adapter *adapter = netdev_priv(netdev); 128 struct e1000_hw *hw = &adapter->hw; 129 u32 speed; 130 131 if (hw->phy.media_type == e1000_media_type_copper) { 132 133 ecmd->supported = (SUPPORTED_10baseT_Half | 134 SUPPORTED_10baseT_Full | 135 SUPPORTED_100baseT_Half | 136 SUPPORTED_100baseT_Full | 137 SUPPORTED_1000baseT_Full | 138 SUPPORTED_Autoneg | 139 SUPPORTED_TP); 140 if (hw->phy.type == e1000_phy_ife) 141 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 142 ecmd->advertising = ADVERTISED_TP; 143 144 if (hw->mac.autoneg == 1) { 145 ecmd->advertising |= ADVERTISED_Autoneg; 146 /* the e1000 autoneg seems to match ethtool nicely */ 147 ecmd->advertising |= hw->phy.autoneg_advertised; 148 } 149 150 ecmd->port = PORT_TP; 151 ecmd->phy_address = hw->phy.addr; 152 ecmd->transceiver = XCVR_INTERNAL; 153 154 } else { 155 ecmd->supported = (SUPPORTED_1000baseT_Full | 156 SUPPORTED_FIBRE | 157 SUPPORTED_Autoneg); 158 159 ecmd->advertising = (ADVERTISED_1000baseT_Full | 160 ADVERTISED_FIBRE | 161 ADVERTISED_Autoneg); 162 163 ecmd->port = PORT_FIBRE; 164 ecmd->transceiver = XCVR_EXTERNAL; 165 } 166 167 speed = -1; 168 ecmd->duplex = -1; 169 170 if (netif_running(netdev)) { 171 if (netif_carrier_ok(netdev)) { 172 speed = adapter->link_speed; 173 ecmd->duplex = adapter->link_duplex - 1; 174 } 175 } else { 176 u32 status = er32(STATUS); 177 if (status & E1000_STATUS_LU) { 178 if (status & E1000_STATUS_SPEED_1000) 179 speed = SPEED_1000; 180 else if (status & E1000_STATUS_SPEED_100) 181 speed = SPEED_100; 182 else 183 speed = SPEED_10; 184 185 if (status & E1000_STATUS_FD) 186 ecmd->duplex = DUPLEX_FULL; 187 else 188 ecmd->duplex = DUPLEX_HALF; 189 } 190 } 191 192 ethtool_cmd_speed_set(ecmd, speed); 193 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 194 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 195 196 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 197 if ((hw->phy.media_type == e1000_media_type_copper) && 198 netif_carrier_ok(netdev)) 199 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 200 ETH_TP_MDI; 201 else 202 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 203 204 if (hw->phy.mdix == AUTO_ALL_MODES) 205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 206 else 207 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 208 209 return 0; 210 } 211 212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 213 { 214 struct e1000_mac_info *mac = &adapter->hw.mac; 215 216 mac->autoneg = 0; 217 218 /* Make sure dplx is at most 1 bit and lsb of speed is not set 219 * for the switch() below to work 220 */ 221 if ((spd & 1) || (dplx & ~1)) 222 goto err_inval; 223 224 /* Fiber NICs only allow 1000 gbps Full duplex */ 225 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 226 spd != SPEED_1000 && 227 dplx != DUPLEX_FULL) { 228 goto err_inval; 229 } 230 231 switch (spd + dplx) { 232 case SPEED_10 + DUPLEX_HALF: 233 mac->forced_speed_duplex = ADVERTISE_10_HALF; 234 break; 235 case SPEED_10 + DUPLEX_FULL: 236 mac->forced_speed_duplex = ADVERTISE_10_FULL; 237 break; 238 case SPEED_100 + DUPLEX_HALF: 239 mac->forced_speed_duplex = ADVERTISE_100_HALF; 240 break; 241 case SPEED_100 + DUPLEX_FULL: 242 mac->forced_speed_duplex = ADVERTISE_100_FULL; 243 break; 244 case SPEED_1000 + DUPLEX_FULL: 245 mac->autoneg = 1; 246 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 247 break; 248 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 249 default: 250 goto err_inval; 251 } 252 253 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 254 adapter->hw.phy.mdix = AUTO_ALL_MODES; 255 256 return 0; 257 258 err_inval: 259 e_err("Unsupported Speed/Duplex configuration\n"); 260 return -EINVAL; 261 } 262 263 static int e1000_set_settings(struct net_device *netdev, 264 struct ethtool_cmd *ecmd) 265 { 266 struct e1000_adapter *adapter = netdev_priv(netdev); 267 struct e1000_hw *hw = &adapter->hw; 268 269 /* When SoL/IDER sessions are active, autoneg/speed/duplex 270 * cannot be changed 271 */ 272 if (hw->phy.ops.check_reset_block && 273 hw->phy.ops.check_reset_block(hw)) { 274 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 275 return -EINVAL; 276 } 277 278 /* MDI setting is only allowed when autoneg enabled because 279 * some hardware doesn't allow MDI setting when speed or 280 * duplex is forced. 281 */ 282 if (ecmd->eth_tp_mdix_ctrl) { 283 if (hw->phy.media_type != e1000_media_type_copper) 284 return -EOPNOTSUPP; 285 286 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 287 (ecmd->autoneg != AUTONEG_ENABLE)) { 288 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 289 return -EINVAL; 290 } 291 } 292 293 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 294 usleep_range(1000, 2000); 295 296 if (ecmd->autoneg == AUTONEG_ENABLE) { 297 hw->mac.autoneg = 1; 298 if (hw->phy.media_type == e1000_media_type_fiber) 299 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 300 ADVERTISED_FIBRE | 301 ADVERTISED_Autoneg; 302 else 303 hw->phy.autoneg_advertised = ecmd->advertising | 304 ADVERTISED_TP | 305 ADVERTISED_Autoneg; 306 ecmd->advertising = hw->phy.autoneg_advertised; 307 if (adapter->fc_autoneg) 308 hw->fc.requested_mode = e1000_fc_default; 309 } else { 310 u32 speed = ethtool_cmd_speed(ecmd); 311 /* calling this overrides forced MDI setting */ 312 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 313 clear_bit(__E1000_RESETTING, &adapter->state); 314 return -EINVAL; 315 } 316 } 317 318 /* MDI-X => 2; MDI => 1; Auto => 3 */ 319 if (ecmd->eth_tp_mdix_ctrl) { 320 /* fix up the value for auto (3 => 0) as zero is mapped 321 * internally to auto 322 */ 323 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 324 hw->phy.mdix = AUTO_ALL_MODES; 325 else 326 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 327 } 328 329 /* reset the link */ 330 331 if (netif_running(adapter->netdev)) { 332 e1000e_down(adapter); 333 e1000e_up(adapter); 334 } else 335 e1000e_reset(adapter); 336 337 clear_bit(__E1000_RESETTING, &adapter->state); 338 return 0; 339 } 340 341 static void e1000_get_pauseparam(struct net_device *netdev, 342 struct ethtool_pauseparam *pause) 343 { 344 struct e1000_adapter *adapter = netdev_priv(netdev); 345 struct e1000_hw *hw = &adapter->hw; 346 347 pause->autoneg = 348 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 349 350 if (hw->fc.current_mode == e1000_fc_rx_pause) { 351 pause->rx_pause = 1; 352 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 353 pause->tx_pause = 1; 354 } else if (hw->fc.current_mode == e1000_fc_full) { 355 pause->rx_pause = 1; 356 pause->tx_pause = 1; 357 } 358 } 359 360 static int e1000_set_pauseparam(struct net_device *netdev, 361 struct ethtool_pauseparam *pause) 362 { 363 struct e1000_adapter *adapter = netdev_priv(netdev); 364 struct e1000_hw *hw = &adapter->hw; 365 int retval = 0; 366 367 adapter->fc_autoneg = pause->autoneg; 368 369 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 370 usleep_range(1000, 2000); 371 372 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 373 hw->fc.requested_mode = e1000_fc_default; 374 if (netif_running(adapter->netdev)) { 375 e1000e_down(adapter); 376 e1000e_up(adapter); 377 } else { 378 e1000e_reset(adapter); 379 } 380 } else { 381 if (pause->rx_pause && pause->tx_pause) 382 hw->fc.requested_mode = e1000_fc_full; 383 else if (pause->rx_pause && !pause->tx_pause) 384 hw->fc.requested_mode = e1000_fc_rx_pause; 385 else if (!pause->rx_pause && pause->tx_pause) 386 hw->fc.requested_mode = e1000_fc_tx_pause; 387 else if (!pause->rx_pause && !pause->tx_pause) 388 hw->fc.requested_mode = e1000_fc_none; 389 390 hw->fc.current_mode = hw->fc.requested_mode; 391 392 if (hw->phy.media_type == e1000_media_type_fiber) { 393 retval = hw->mac.ops.setup_link(hw); 394 /* implicit goto out */ 395 } else { 396 retval = e1000e_force_mac_fc(hw); 397 if (retval) 398 goto out; 399 e1000e_set_fc_watermarks(hw); 400 } 401 } 402 403 out: 404 clear_bit(__E1000_RESETTING, &adapter->state); 405 return retval; 406 } 407 408 static u32 e1000_get_msglevel(struct net_device *netdev) 409 { 410 struct e1000_adapter *adapter = netdev_priv(netdev); 411 return adapter->msg_enable; 412 } 413 414 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 415 { 416 struct e1000_adapter *adapter = netdev_priv(netdev); 417 adapter->msg_enable = data; 418 } 419 420 static int e1000_get_regs_len(struct net_device *netdev) 421 { 422 #define E1000_REGS_LEN 32 /* overestimate */ 423 return E1000_REGS_LEN * sizeof(u32); 424 } 425 426 static void e1000_get_regs(struct net_device *netdev, 427 struct ethtool_regs *regs, void *p) 428 { 429 struct e1000_adapter *adapter = netdev_priv(netdev); 430 struct e1000_hw *hw = &adapter->hw; 431 u32 *regs_buff = p; 432 u16 phy_data; 433 434 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 435 436 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 437 adapter->pdev->device; 438 439 regs_buff[0] = er32(CTRL); 440 regs_buff[1] = er32(STATUS); 441 442 regs_buff[2] = er32(RCTL); 443 regs_buff[3] = er32(RDLEN(0)); 444 regs_buff[4] = er32(RDH(0)); 445 regs_buff[5] = er32(RDT(0)); 446 regs_buff[6] = er32(RDTR); 447 448 regs_buff[7] = er32(TCTL); 449 regs_buff[8] = er32(TDLEN(0)); 450 regs_buff[9] = er32(TDH(0)); 451 regs_buff[10] = er32(TDT(0)); 452 regs_buff[11] = er32(TIDV); 453 454 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 455 456 /* ethtool doesn't use anything past this point, so all this 457 * code is likely legacy junk for apps that may or may not exist 458 */ 459 if (hw->phy.type == e1000_phy_m88) { 460 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 461 regs_buff[13] = (u32)phy_data; /* cable length */ 462 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 463 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 464 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 465 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 466 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 467 regs_buff[18] = regs_buff[13]; /* cable polarity */ 468 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 469 regs_buff[20] = regs_buff[17]; /* polarity correction */ 470 /* phy receive errors */ 471 regs_buff[22] = adapter->phy_stats.receive_errors; 472 regs_buff[23] = regs_buff[13]; /* mdix mode */ 473 } 474 regs_buff[21] = 0; /* was idle_errors */ 475 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); 476 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 477 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 478 } 479 480 static int e1000_get_eeprom_len(struct net_device *netdev) 481 { 482 struct e1000_adapter *adapter = netdev_priv(netdev); 483 return adapter->hw.nvm.word_size * 2; 484 } 485 486 static int e1000_get_eeprom(struct net_device *netdev, 487 struct ethtool_eeprom *eeprom, u8 *bytes) 488 { 489 struct e1000_adapter *adapter = netdev_priv(netdev); 490 struct e1000_hw *hw = &adapter->hw; 491 u16 *eeprom_buff; 492 int first_word; 493 int last_word; 494 int ret_val = 0; 495 u16 i; 496 497 if (eeprom->len == 0) 498 return -EINVAL; 499 500 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 501 502 first_word = eeprom->offset >> 1; 503 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 504 505 eeprom_buff = kmalloc(sizeof(u16) * 506 (last_word - first_word + 1), GFP_KERNEL); 507 if (!eeprom_buff) 508 return -ENOMEM; 509 510 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 511 ret_val = e1000_read_nvm(hw, first_word, 512 last_word - first_word + 1, 513 eeprom_buff); 514 } else { 515 for (i = 0; i < last_word - first_word + 1; i++) { 516 ret_val = e1000_read_nvm(hw, first_word + i, 1, 517 &eeprom_buff[i]); 518 if (ret_val) 519 break; 520 } 521 } 522 523 if (ret_val) { 524 /* a read error occurred, throw away the result */ 525 memset(eeprom_buff, 0xff, sizeof(u16) * 526 (last_word - first_word + 1)); 527 } else { 528 /* Device's eeprom is always little-endian, word addressable */ 529 for (i = 0; i < last_word - first_word + 1; i++) 530 le16_to_cpus(&eeprom_buff[i]); 531 } 532 533 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 534 kfree(eeprom_buff); 535 536 return ret_val; 537 } 538 539 static int e1000_set_eeprom(struct net_device *netdev, 540 struct ethtool_eeprom *eeprom, u8 *bytes) 541 { 542 struct e1000_adapter *adapter = netdev_priv(netdev); 543 struct e1000_hw *hw = &adapter->hw; 544 u16 *eeprom_buff; 545 void *ptr; 546 int max_len; 547 int first_word; 548 int last_word; 549 int ret_val = 0; 550 u16 i; 551 552 if (eeprom->len == 0) 553 return -EOPNOTSUPP; 554 555 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) 556 return -EFAULT; 557 558 if (adapter->flags & FLAG_READ_ONLY_NVM) 559 return -EINVAL; 560 561 max_len = hw->nvm.word_size * 2; 562 563 first_word = eeprom->offset >> 1; 564 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 565 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 566 if (!eeprom_buff) 567 return -ENOMEM; 568 569 ptr = (void *)eeprom_buff; 570 571 if (eeprom->offset & 1) { 572 /* need read/modify/write of first changed EEPROM word */ 573 /* only the second byte of the word is being modified */ 574 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 575 ptr++; 576 } 577 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 578 /* need read/modify/write of last changed EEPROM word */ 579 /* only the first byte of the word is being modified */ 580 ret_val = e1000_read_nvm(hw, last_word, 1, 581 &eeprom_buff[last_word - first_word]); 582 583 if (ret_val) 584 goto out; 585 586 /* Device's eeprom is always little-endian, word addressable */ 587 for (i = 0; i < last_word - first_word + 1; i++) 588 le16_to_cpus(&eeprom_buff[i]); 589 590 memcpy(ptr, bytes, eeprom->len); 591 592 for (i = 0; i < last_word - first_word + 1; i++) 593 cpu_to_le16s(&eeprom_buff[i]); 594 595 ret_val = e1000_write_nvm(hw, first_word, 596 last_word - first_word + 1, eeprom_buff); 597 598 if (ret_val) 599 goto out; 600 601 /* Update the checksum over the first part of the EEPROM if needed 602 * and flush shadow RAM for applicable controllers 603 */ 604 if ((first_word <= NVM_CHECKSUM_REG) || 605 (hw->mac.type == e1000_82583) || 606 (hw->mac.type == e1000_82574) || 607 (hw->mac.type == e1000_82573)) 608 ret_val = e1000e_update_nvm_checksum(hw); 609 610 out: 611 kfree(eeprom_buff); 612 return ret_val; 613 } 614 615 static void e1000_get_drvinfo(struct net_device *netdev, 616 struct ethtool_drvinfo *drvinfo) 617 { 618 struct e1000_adapter *adapter = netdev_priv(netdev); 619 620 strlcpy(drvinfo->driver, e1000e_driver_name, 621 sizeof(drvinfo->driver)); 622 strlcpy(drvinfo->version, e1000e_driver_version, 623 sizeof(drvinfo->version)); 624 625 /* EEPROM image version # is reported as firmware version # for 626 * PCI-E controllers 627 */ 628 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 629 "%d.%d-%d", 630 (adapter->eeprom_vers & 0xF000) >> 12, 631 (adapter->eeprom_vers & 0x0FF0) >> 4, 632 (adapter->eeprom_vers & 0x000F)); 633 634 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 635 sizeof(drvinfo->bus_info)); 636 drvinfo->regdump_len = e1000_get_regs_len(netdev); 637 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 638 } 639 640 static void e1000_get_ringparam(struct net_device *netdev, 641 struct ethtool_ringparam *ring) 642 { 643 struct e1000_adapter *adapter = netdev_priv(netdev); 644 645 ring->rx_max_pending = E1000_MAX_RXD; 646 ring->tx_max_pending = E1000_MAX_TXD; 647 ring->rx_pending = adapter->rx_ring_count; 648 ring->tx_pending = adapter->tx_ring_count; 649 } 650 651 static int e1000_set_ringparam(struct net_device *netdev, 652 struct ethtool_ringparam *ring) 653 { 654 struct e1000_adapter *adapter = netdev_priv(netdev); 655 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 656 int err = 0, size = sizeof(struct e1000_ring); 657 bool set_tx = false, set_rx = false; 658 u16 new_rx_count, new_tx_count; 659 660 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 661 return -EINVAL; 662 663 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 664 E1000_MAX_RXD); 665 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 666 667 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 668 E1000_MAX_TXD); 669 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 670 671 if ((new_tx_count == adapter->tx_ring_count) && 672 (new_rx_count == adapter->rx_ring_count)) 673 /* nothing to do */ 674 return 0; 675 676 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 677 usleep_range(1000, 2000); 678 679 if (!netif_running(adapter->netdev)) { 680 /* Set counts now and allocate resources during open() */ 681 adapter->tx_ring->count = new_tx_count; 682 adapter->rx_ring->count = new_rx_count; 683 adapter->tx_ring_count = new_tx_count; 684 adapter->rx_ring_count = new_rx_count; 685 goto clear_reset; 686 } 687 688 set_tx = (new_tx_count != adapter->tx_ring_count); 689 set_rx = (new_rx_count != adapter->rx_ring_count); 690 691 /* Allocate temporary storage for ring updates */ 692 if (set_tx) { 693 temp_tx = vmalloc(size); 694 if (!temp_tx) { 695 err = -ENOMEM; 696 goto free_temp; 697 } 698 } 699 if (set_rx) { 700 temp_rx = vmalloc(size); 701 if (!temp_rx) { 702 err = -ENOMEM; 703 goto free_temp; 704 } 705 } 706 707 e1000e_down(adapter); 708 709 /* We can't just free everything and then setup again, because the 710 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 711 * structs. First, attempt to allocate new resources... 712 */ 713 if (set_tx) { 714 memcpy(temp_tx, adapter->tx_ring, size); 715 temp_tx->count = new_tx_count; 716 err = e1000e_setup_tx_resources(temp_tx); 717 if (err) 718 goto err_setup; 719 } 720 if (set_rx) { 721 memcpy(temp_rx, adapter->rx_ring, size); 722 temp_rx->count = new_rx_count; 723 err = e1000e_setup_rx_resources(temp_rx); 724 if (err) 725 goto err_setup_rx; 726 } 727 728 /* ...then free the old resources and copy back any new ring data */ 729 if (set_tx) { 730 e1000e_free_tx_resources(adapter->tx_ring); 731 memcpy(adapter->tx_ring, temp_tx, size); 732 adapter->tx_ring_count = new_tx_count; 733 } 734 if (set_rx) { 735 e1000e_free_rx_resources(adapter->rx_ring); 736 memcpy(adapter->rx_ring, temp_rx, size); 737 adapter->rx_ring_count = new_rx_count; 738 } 739 740 err_setup_rx: 741 if (err && set_tx) 742 e1000e_free_tx_resources(temp_tx); 743 err_setup: 744 e1000e_up(adapter); 745 free_temp: 746 vfree(temp_tx); 747 vfree(temp_rx); 748 clear_reset: 749 clear_bit(__E1000_RESETTING, &adapter->state); 750 return err; 751 } 752 753 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 754 int reg, int offset, u32 mask, u32 write) 755 { 756 u32 pat, val; 757 static const u32 test[] = { 758 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 759 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 760 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 761 (test[pat] & write)); 762 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 763 if (val != (test[pat] & write & mask)) { 764 e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 765 reg + offset, val, (test[pat] & write & mask)); 766 *data = reg; 767 return 1; 768 } 769 } 770 return 0; 771 } 772 773 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 774 int reg, u32 mask, u32 write) 775 { 776 u32 val; 777 __ew32(&adapter->hw, reg, write & mask); 778 val = __er32(&adapter->hw, reg); 779 if ((write & mask) != (val & mask)) { 780 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 781 reg, (val & mask), (write & mask)); 782 *data = reg; 783 return 1; 784 } 785 return 0; 786 } 787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 788 do { \ 789 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 790 return 1; \ 791 } while (0) 792 #define REG_PATTERN_TEST(reg, mask, write) \ 793 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 794 795 #define REG_SET_AND_CHECK(reg, mask, write) \ 796 do { \ 797 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 798 return 1; \ 799 } while (0) 800 801 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 802 { 803 struct e1000_hw *hw = &adapter->hw; 804 struct e1000_mac_info *mac = &adapter->hw.mac; 805 u32 value; 806 u32 before; 807 u32 after; 808 u32 i; 809 u32 toggle; 810 u32 mask; 811 u32 wlock_mac = 0; 812 813 /* The status register is Read Only, so a write should fail. 814 * Some bits that get toggled are ignored. 815 */ 816 switch (mac->type) { 817 /* there are several bits on newer hardware that are r/w */ 818 case e1000_82571: 819 case e1000_82572: 820 case e1000_80003es2lan: 821 toggle = 0x7FFFF3FF; 822 break; 823 default: 824 toggle = 0x7FFFF033; 825 break; 826 } 827 828 before = er32(STATUS); 829 value = (er32(STATUS) & toggle); 830 ew32(STATUS, toggle); 831 after = er32(STATUS) & toggle; 832 if (value != after) { 833 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 834 after, value); 835 *data = 1; 836 return 1; 837 } 838 /* restore previous status */ 839 ew32(STATUS, before); 840 841 if (!(adapter->flags & FLAG_IS_ICH)) { 842 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 843 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 844 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 845 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 846 } 847 848 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 849 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 850 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 851 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 852 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 853 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 854 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 855 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 856 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 857 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 858 859 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 860 861 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 862 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 863 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 864 865 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 866 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 867 if (!(adapter->flags & FLAG_IS_ICH)) 868 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 869 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 870 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 871 mask = 0x8003FFFF; 872 switch (mac->type) { 873 case e1000_ich10lan: 874 case e1000_pchlan: 875 case e1000_pch2lan: 876 case e1000_pch_lpt: 877 mask |= (1 << 18); 878 break; 879 default: 880 break; 881 } 882 883 if (mac->type == e1000_pch_lpt) 884 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 885 E1000_FWSM_WLOCK_MAC_SHIFT; 886 887 for (i = 0; i < mac->rar_entry_count; i++) { 888 /* Cannot test write-protected SHRAL[n] registers */ 889 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 890 continue; 891 892 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), 893 mask, 0xFFFFFFFF); 894 } 895 896 for (i = 0; i < mac->mta_reg_count; i++) 897 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 898 899 *data = 0; 900 901 return 0; 902 } 903 904 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 905 { 906 u16 temp; 907 u16 checksum = 0; 908 u16 i; 909 910 *data = 0; 911 /* Read and add up the contents of the EEPROM */ 912 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 913 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 914 *data = 1; 915 return *data; 916 } 917 checksum += temp; 918 } 919 920 /* If Checksum is not Correct return error else test passed */ 921 if ((checksum != (u16) NVM_SUM) && !(*data)) 922 *data = 2; 923 924 return *data; 925 } 926 927 static irqreturn_t e1000_test_intr(int irq, void *data) 928 { 929 struct net_device *netdev = (struct net_device *) data; 930 struct e1000_adapter *adapter = netdev_priv(netdev); 931 struct e1000_hw *hw = &adapter->hw; 932 933 adapter->test_icr |= er32(ICR); 934 935 return IRQ_HANDLED; 936 } 937 938 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 939 { 940 struct net_device *netdev = adapter->netdev; 941 struct e1000_hw *hw = &adapter->hw; 942 u32 mask; 943 u32 shared_int = 1; 944 u32 irq = adapter->pdev->irq; 945 int i; 946 int ret_val = 0; 947 int int_mode = E1000E_INT_MODE_LEGACY; 948 949 *data = 0; 950 951 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 952 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 953 int_mode = adapter->int_mode; 954 e1000e_reset_interrupt_capability(adapter); 955 adapter->int_mode = E1000E_INT_MODE_LEGACY; 956 e1000e_set_interrupt_capability(adapter); 957 } 958 /* Hook up test interrupt handler just for this test */ 959 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 960 netdev)) { 961 shared_int = 0; 962 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 963 netdev->name, netdev)) { 964 *data = 1; 965 ret_val = -1; 966 goto out; 967 } 968 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 969 970 /* Disable all the interrupts */ 971 ew32(IMC, 0xFFFFFFFF); 972 e1e_flush(); 973 usleep_range(10000, 20000); 974 975 /* Test each interrupt */ 976 for (i = 0; i < 10; i++) { 977 /* Interrupt to test */ 978 mask = 1 << i; 979 980 if (adapter->flags & FLAG_IS_ICH) { 981 switch (mask) { 982 case E1000_ICR_RXSEQ: 983 continue; 984 case 0x00000100: 985 if (adapter->hw.mac.type == e1000_ich8lan || 986 adapter->hw.mac.type == e1000_ich9lan) 987 continue; 988 break; 989 default: 990 break; 991 } 992 } 993 994 if (!shared_int) { 995 /* Disable the interrupt to be reported in 996 * the cause register and then force the same 997 * interrupt and see if one gets posted. If 998 * an interrupt was posted to the bus, the 999 * test failed. 1000 */ 1001 adapter->test_icr = 0; 1002 ew32(IMC, mask); 1003 ew32(ICS, mask); 1004 e1e_flush(); 1005 usleep_range(10000, 20000); 1006 1007 if (adapter->test_icr & mask) { 1008 *data = 3; 1009 break; 1010 } 1011 } 1012 1013 /* Enable the interrupt to be reported in 1014 * the cause register and then force the same 1015 * interrupt and see if one gets posted. If 1016 * an interrupt was not posted to the bus, the 1017 * test failed. 1018 */ 1019 adapter->test_icr = 0; 1020 ew32(IMS, mask); 1021 ew32(ICS, mask); 1022 e1e_flush(); 1023 usleep_range(10000, 20000); 1024 1025 if (!(adapter->test_icr & mask)) { 1026 *data = 4; 1027 break; 1028 } 1029 1030 if (!shared_int) { 1031 /* Disable the other interrupts to be reported in 1032 * the cause register and then force the other 1033 * interrupts and see if any get posted. If 1034 * an interrupt was posted to the bus, the 1035 * test failed. 1036 */ 1037 adapter->test_icr = 0; 1038 ew32(IMC, ~mask & 0x00007FFF); 1039 ew32(ICS, ~mask & 0x00007FFF); 1040 e1e_flush(); 1041 usleep_range(10000, 20000); 1042 1043 if (adapter->test_icr) { 1044 *data = 5; 1045 break; 1046 } 1047 } 1048 } 1049 1050 /* Disable all the interrupts */ 1051 ew32(IMC, 0xFFFFFFFF); 1052 e1e_flush(); 1053 usleep_range(10000, 20000); 1054 1055 /* Unhook test interrupt handler */ 1056 free_irq(irq, netdev); 1057 1058 out: 1059 if (int_mode == E1000E_INT_MODE_MSIX) { 1060 e1000e_reset_interrupt_capability(adapter); 1061 adapter->int_mode = int_mode; 1062 e1000e_set_interrupt_capability(adapter); 1063 } 1064 1065 return ret_val; 1066 } 1067 1068 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1069 { 1070 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1071 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1072 struct pci_dev *pdev = adapter->pdev; 1073 int i; 1074 1075 if (tx_ring->desc && tx_ring->buffer_info) { 1076 for (i = 0; i < tx_ring->count; i++) { 1077 if (tx_ring->buffer_info[i].dma) 1078 dma_unmap_single(&pdev->dev, 1079 tx_ring->buffer_info[i].dma, 1080 tx_ring->buffer_info[i].length, 1081 DMA_TO_DEVICE); 1082 if (tx_ring->buffer_info[i].skb) 1083 dev_kfree_skb(tx_ring->buffer_info[i].skb); 1084 } 1085 } 1086 1087 if (rx_ring->desc && rx_ring->buffer_info) { 1088 for (i = 0; i < rx_ring->count; i++) { 1089 if (rx_ring->buffer_info[i].dma) 1090 dma_unmap_single(&pdev->dev, 1091 rx_ring->buffer_info[i].dma, 1092 2048, DMA_FROM_DEVICE); 1093 if (rx_ring->buffer_info[i].skb) 1094 dev_kfree_skb(rx_ring->buffer_info[i].skb); 1095 } 1096 } 1097 1098 if (tx_ring->desc) { 1099 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1100 tx_ring->dma); 1101 tx_ring->desc = NULL; 1102 } 1103 if (rx_ring->desc) { 1104 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1105 rx_ring->dma); 1106 rx_ring->desc = NULL; 1107 } 1108 1109 kfree(tx_ring->buffer_info); 1110 tx_ring->buffer_info = NULL; 1111 kfree(rx_ring->buffer_info); 1112 rx_ring->buffer_info = NULL; 1113 } 1114 1115 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1116 { 1117 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1118 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1119 struct pci_dev *pdev = adapter->pdev; 1120 struct e1000_hw *hw = &adapter->hw; 1121 u32 rctl; 1122 int i; 1123 int ret_val; 1124 1125 /* Setup Tx descriptor ring and Tx buffers */ 1126 1127 if (!tx_ring->count) 1128 tx_ring->count = E1000_DEFAULT_TXD; 1129 1130 tx_ring->buffer_info = kcalloc(tx_ring->count, 1131 sizeof(struct e1000_buffer), 1132 GFP_KERNEL); 1133 if (!tx_ring->buffer_info) { 1134 ret_val = 1; 1135 goto err_nomem; 1136 } 1137 1138 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1139 tx_ring->size = ALIGN(tx_ring->size, 4096); 1140 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1141 &tx_ring->dma, GFP_KERNEL); 1142 if (!tx_ring->desc) { 1143 ret_val = 2; 1144 goto err_nomem; 1145 } 1146 tx_ring->next_to_use = 0; 1147 tx_ring->next_to_clean = 0; 1148 1149 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); 1150 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32)); 1151 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1152 ew32(TDH(0), 0); 1153 ew32(TDT(0), 0); 1154 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1155 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1156 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1157 1158 for (i = 0; i < tx_ring->count; i++) { 1159 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1160 struct sk_buff *skb; 1161 unsigned int skb_size = 1024; 1162 1163 skb = alloc_skb(skb_size, GFP_KERNEL); 1164 if (!skb) { 1165 ret_val = 3; 1166 goto err_nomem; 1167 } 1168 skb_put(skb, skb_size); 1169 tx_ring->buffer_info[i].skb = skb; 1170 tx_ring->buffer_info[i].length = skb->len; 1171 tx_ring->buffer_info[i].dma = 1172 dma_map_single(&pdev->dev, skb->data, skb->len, 1173 DMA_TO_DEVICE); 1174 if (dma_mapping_error(&pdev->dev, 1175 tx_ring->buffer_info[i].dma)) { 1176 ret_val = 4; 1177 goto err_nomem; 1178 } 1179 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1180 tx_desc->lower.data = cpu_to_le32(skb->len); 1181 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1182 E1000_TXD_CMD_IFCS | 1183 E1000_TXD_CMD_RS); 1184 tx_desc->upper.data = 0; 1185 } 1186 1187 /* Setup Rx descriptor ring and Rx buffers */ 1188 1189 if (!rx_ring->count) 1190 rx_ring->count = E1000_DEFAULT_RXD; 1191 1192 rx_ring->buffer_info = kcalloc(rx_ring->count, 1193 sizeof(struct e1000_buffer), 1194 GFP_KERNEL); 1195 if (!rx_ring->buffer_info) { 1196 ret_val = 5; 1197 goto err_nomem; 1198 } 1199 1200 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1201 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1202 &rx_ring->dma, GFP_KERNEL); 1203 if (!rx_ring->desc) { 1204 ret_val = 6; 1205 goto err_nomem; 1206 } 1207 rx_ring->next_to_use = 0; 1208 rx_ring->next_to_clean = 0; 1209 1210 rctl = er32(RCTL); 1211 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1212 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1213 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF)); 1214 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32)); 1215 ew32(RDLEN(0), rx_ring->size); 1216 ew32(RDH(0), 0); 1217 ew32(RDT(0), 0); 1218 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1219 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1220 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1221 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1222 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1223 ew32(RCTL, rctl); 1224 1225 for (i = 0; i < rx_ring->count; i++) { 1226 union e1000_rx_desc_extended *rx_desc; 1227 struct sk_buff *skb; 1228 1229 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1230 if (!skb) { 1231 ret_val = 7; 1232 goto err_nomem; 1233 } 1234 skb_reserve(skb, NET_IP_ALIGN); 1235 rx_ring->buffer_info[i].skb = skb; 1236 rx_ring->buffer_info[i].dma = 1237 dma_map_single(&pdev->dev, skb->data, 2048, 1238 DMA_FROM_DEVICE); 1239 if (dma_mapping_error(&pdev->dev, 1240 rx_ring->buffer_info[i].dma)) { 1241 ret_val = 8; 1242 goto err_nomem; 1243 } 1244 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1245 rx_desc->read.buffer_addr = 1246 cpu_to_le64(rx_ring->buffer_info[i].dma); 1247 memset(skb->data, 0x00, skb->len); 1248 } 1249 1250 return 0; 1251 1252 err_nomem: 1253 e1000_free_desc_rings(adapter); 1254 return ret_val; 1255 } 1256 1257 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1258 { 1259 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1260 e1e_wphy(&adapter->hw, 29, 0x001F); 1261 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1262 e1e_wphy(&adapter->hw, 29, 0x001A); 1263 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1264 } 1265 1266 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1267 { 1268 struct e1000_hw *hw = &adapter->hw; 1269 u32 ctrl_reg = 0; 1270 u16 phy_reg = 0; 1271 s32 ret_val = 0; 1272 1273 hw->mac.autoneg = 0; 1274 1275 if (hw->phy.type == e1000_phy_ife) { 1276 /* force 100, set loopback */ 1277 e1e_wphy(hw, PHY_CONTROL, 0x6100); 1278 1279 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1280 ctrl_reg = er32(CTRL); 1281 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1282 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1283 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1284 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1285 E1000_CTRL_FD); /* Force Duplex to FULL */ 1286 1287 ew32(CTRL, ctrl_reg); 1288 e1e_flush(); 1289 udelay(500); 1290 1291 return 0; 1292 } 1293 1294 /* Specific PHY configuration for loopback */ 1295 switch (hw->phy.type) { 1296 case e1000_phy_m88: 1297 /* Auto-MDI/MDIX Off */ 1298 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1299 /* reset to update Auto-MDI/MDIX */ 1300 e1e_wphy(hw, PHY_CONTROL, 0x9140); 1301 /* autoneg off */ 1302 e1e_wphy(hw, PHY_CONTROL, 0x8140); 1303 break; 1304 case e1000_phy_gg82563: 1305 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1306 break; 1307 case e1000_phy_bm: 1308 /* Set Default MAC Interface speed to 1GB */ 1309 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1310 phy_reg &= ~0x0007; 1311 phy_reg |= 0x006; 1312 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1313 /* Assert SW reset for above settings to take effect */ 1314 e1000e_commit_phy(hw); 1315 mdelay(1); 1316 /* Force Full Duplex */ 1317 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1318 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1319 /* Set Link Up (in force link) */ 1320 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1321 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1322 /* Force Link */ 1323 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1324 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1325 /* Set Early Link Enable */ 1326 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1327 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1328 break; 1329 case e1000_phy_82577: 1330 case e1000_phy_82578: 1331 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1332 ret_val = hw->phy.ops.acquire(hw); 1333 if (ret_val) { 1334 e_err("Cannot setup 1Gbps loopback.\n"); 1335 return ret_val; 1336 } 1337 e1000_configure_k1_ich8lan(hw, false); 1338 hw->phy.ops.release(hw); 1339 break; 1340 case e1000_phy_82579: 1341 /* Disable PHY energy detect power down */ 1342 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1343 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1344 /* Disable full chip energy detect */ 1345 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1346 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1347 /* Enable loopback on the PHY */ 1348 #define I82577_PHY_LBK_CTRL 19 1349 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1350 break; 1351 default: 1352 break; 1353 } 1354 1355 /* force 1000, set loopback */ 1356 e1e_wphy(hw, PHY_CONTROL, 0x4140); 1357 mdelay(250); 1358 1359 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1360 ctrl_reg = er32(CTRL); 1361 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1362 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1363 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1364 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1365 E1000_CTRL_FD); /* Force Duplex to FULL */ 1366 1367 if (adapter->flags & FLAG_IS_ICH) 1368 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1369 1370 if (hw->phy.media_type == e1000_media_type_copper && 1371 hw->phy.type == e1000_phy_m88) { 1372 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1373 } else { 1374 /* Set the ILOS bit on the fiber Nic if half duplex link is 1375 * detected. 1376 */ 1377 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1378 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1379 } 1380 1381 ew32(CTRL, ctrl_reg); 1382 1383 /* Disable the receiver on the PHY so when a cable is plugged in, the 1384 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1385 */ 1386 if (hw->phy.type == e1000_phy_m88) 1387 e1000_phy_disable_receiver(adapter); 1388 1389 udelay(500); 1390 1391 return 0; 1392 } 1393 1394 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1395 { 1396 struct e1000_hw *hw = &adapter->hw; 1397 u32 ctrl = er32(CTRL); 1398 int link = 0; 1399 1400 /* special requirements for 82571/82572 fiber adapters */ 1401 1402 /* jump through hoops to make sure link is up because serdes 1403 * link is hardwired up 1404 */ 1405 ctrl |= E1000_CTRL_SLU; 1406 ew32(CTRL, ctrl); 1407 1408 /* disable autoneg */ 1409 ctrl = er32(TXCW); 1410 ctrl &= ~(1 << 31); 1411 ew32(TXCW, ctrl); 1412 1413 link = (er32(STATUS) & E1000_STATUS_LU); 1414 1415 if (!link) { 1416 /* set invert loss of signal */ 1417 ctrl = er32(CTRL); 1418 ctrl |= E1000_CTRL_ILOS; 1419 ew32(CTRL, ctrl); 1420 } 1421 1422 /* special write to serdes control register to enable SerDes analog 1423 * loopback 1424 */ 1425 #define E1000_SERDES_LB_ON 0x410 1426 ew32(SCTL, E1000_SERDES_LB_ON); 1427 e1e_flush(); 1428 usleep_range(10000, 20000); 1429 1430 return 0; 1431 } 1432 1433 /* only call this for fiber/serdes connections to es2lan */ 1434 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1435 { 1436 struct e1000_hw *hw = &adapter->hw; 1437 u32 ctrlext = er32(CTRL_EXT); 1438 u32 ctrl = er32(CTRL); 1439 1440 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1441 * on mac_type 80003es2lan) 1442 */ 1443 adapter->tx_fifo_head = ctrlext; 1444 1445 /* clear the serdes mode bits, putting the device into mac loopback */ 1446 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1447 ew32(CTRL_EXT, ctrlext); 1448 1449 /* force speed to 1000/FD, link up */ 1450 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1451 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1452 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1453 ew32(CTRL, ctrl); 1454 1455 /* set mac loopback */ 1456 ctrl = er32(RCTL); 1457 ctrl |= E1000_RCTL_LBM_MAC; 1458 ew32(RCTL, ctrl); 1459 1460 /* set testing mode parameters (no need to reset later) */ 1461 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1462 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1463 ew32(KMRNCTRLSTA, 1464 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1465 1466 return 0; 1467 } 1468 1469 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1470 { 1471 struct e1000_hw *hw = &adapter->hw; 1472 u32 rctl; 1473 1474 if (hw->phy.media_type == e1000_media_type_fiber || 1475 hw->phy.media_type == e1000_media_type_internal_serdes) { 1476 switch (hw->mac.type) { 1477 case e1000_80003es2lan: 1478 return e1000_set_es2lan_mac_loopback(adapter); 1479 break; 1480 case e1000_82571: 1481 case e1000_82572: 1482 return e1000_set_82571_fiber_loopback(adapter); 1483 break; 1484 default: 1485 rctl = er32(RCTL); 1486 rctl |= E1000_RCTL_LBM_TCVR; 1487 ew32(RCTL, rctl); 1488 return 0; 1489 } 1490 } else if (hw->phy.media_type == e1000_media_type_copper) { 1491 return e1000_integrated_phy_loopback(adapter); 1492 } 1493 1494 return 7; 1495 } 1496 1497 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1498 { 1499 struct e1000_hw *hw = &adapter->hw; 1500 u32 rctl; 1501 u16 phy_reg; 1502 1503 rctl = er32(RCTL); 1504 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1505 ew32(RCTL, rctl); 1506 1507 switch (hw->mac.type) { 1508 case e1000_80003es2lan: 1509 if (hw->phy.media_type == e1000_media_type_fiber || 1510 hw->phy.media_type == e1000_media_type_internal_serdes) { 1511 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1512 ew32(CTRL_EXT, adapter->tx_fifo_head); 1513 adapter->tx_fifo_head = 0; 1514 } 1515 /* fall through */ 1516 case e1000_82571: 1517 case e1000_82572: 1518 if (hw->phy.media_type == e1000_media_type_fiber || 1519 hw->phy.media_type == e1000_media_type_internal_serdes) { 1520 #define E1000_SERDES_LB_OFF 0x400 1521 ew32(SCTL, E1000_SERDES_LB_OFF); 1522 e1e_flush(); 1523 usleep_range(10000, 20000); 1524 break; 1525 } 1526 /* Fall Through */ 1527 default: 1528 hw->mac.autoneg = 1; 1529 if (hw->phy.type == e1000_phy_gg82563) 1530 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1531 e1e_rphy(hw, PHY_CONTROL, &phy_reg); 1532 if (phy_reg & MII_CR_LOOPBACK) { 1533 phy_reg &= ~MII_CR_LOOPBACK; 1534 e1e_wphy(hw, PHY_CONTROL, phy_reg); 1535 e1000e_commit_phy(hw); 1536 } 1537 break; 1538 } 1539 } 1540 1541 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1542 unsigned int frame_size) 1543 { 1544 memset(skb->data, 0xFF, frame_size); 1545 frame_size &= ~1; 1546 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1547 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1548 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1549 } 1550 1551 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1552 unsigned int frame_size) 1553 { 1554 frame_size &= ~1; 1555 if (*(skb->data + 3) == 0xFF) 1556 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1557 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1558 return 0; 1559 return 13; 1560 } 1561 1562 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1563 { 1564 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1565 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1566 struct pci_dev *pdev = adapter->pdev; 1567 struct e1000_hw *hw = &adapter->hw; 1568 int i, j, k, l; 1569 int lc; 1570 int good_cnt; 1571 int ret_val = 0; 1572 unsigned long time; 1573 1574 ew32(RDT(0), rx_ring->count - 1); 1575 1576 /* Calculate the loop count based on the largest descriptor ring 1577 * The idea is to wrap the largest ring a number of times using 64 1578 * send/receive pairs during each loop 1579 */ 1580 1581 if (rx_ring->count <= tx_ring->count) 1582 lc = ((tx_ring->count / 64) * 2) + 1; 1583 else 1584 lc = ((rx_ring->count / 64) * 2) + 1; 1585 1586 k = 0; 1587 l = 0; 1588 for (j = 0; j <= lc; j++) { /* loop count loop */ 1589 for (i = 0; i < 64; i++) { /* send the packets */ 1590 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, 1591 1024); 1592 dma_sync_single_for_device(&pdev->dev, 1593 tx_ring->buffer_info[k].dma, 1594 tx_ring->buffer_info[k].length, 1595 DMA_TO_DEVICE); 1596 k++; 1597 if (k == tx_ring->count) 1598 k = 0; 1599 } 1600 ew32(TDT(0), k); 1601 e1e_flush(); 1602 msleep(200); 1603 time = jiffies; /* set the start time for the receive */ 1604 good_cnt = 0; 1605 do { /* receive the sent packets */ 1606 dma_sync_single_for_cpu(&pdev->dev, 1607 rx_ring->buffer_info[l].dma, 2048, 1608 DMA_FROM_DEVICE); 1609 1610 ret_val = e1000_check_lbtest_frame( 1611 rx_ring->buffer_info[l].skb, 1024); 1612 if (!ret_val) 1613 good_cnt++; 1614 l++; 1615 if (l == rx_ring->count) 1616 l = 0; 1617 /* time + 20 msecs (200 msecs on 2.4) is more than 1618 * enough time to complete the receives, if it's 1619 * exceeded, break and error off 1620 */ 1621 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1622 if (good_cnt != 64) { 1623 ret_val = 13; /* ret_val is the same as mis-compare */ 1624 break; 1625 } 1626 if (jiffies >= (time + 20)) { 1627 ret_val = 14; /* error code for time out error */ 1628 break; 1629 } 1630 } /* end loop count loop */ 1631 return ret_val; 1632 } 1633 1634 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1635 { 1636 struct e1000_hw *hw = &adapter->hw; 1637 1638 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1639 if (hw->phy.ops.check_reset_block && 1640 hw->phy.ops.check_reset_block(hw)) { 1641 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1642 *data = 0; 1643 goto out; 1644 } 1645 1646 *data = e1000_setup_desc_rings(adapter); 1647 if (*data) 1648 goto out; 1649 1650 *data = e1000_setup_loopback_test(adapter); 1651 if (*data) 1652 goto err_loopback; 1653 1654 *data = e1000_run_loopback_test(adapter); 1655 e1000_loopback_cleanup(adapter); 1656 1657 err_loopback: 1658 e1000_free_desc_rings(adapter); 1659 out: 1660 return *data; 1661 } 1662 1663 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1664 { 1665 struct e1000_hw *hw = &adapter->hw; 1666 1667 *data = 0; 1668 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1669 int i = 0; 1670 hw->mac.serdes_has_link = false; 1671 1672 /* On some blade server designs, link establishment 1673 * could take as long as 2-3 minutes 1674 */ 1675 do { 1676 hw->mac.ops.check_for_link(hw); 1677 if (hw->mac.serdes_has_link) 1678 return *data; 1679 msleep(20); 1680 } while (i++ < 3750); 1681 1682 *data = 1; 1683 } else { 1684 hw->mac.ops.check_for_link(hw); 1685 if (hw->mac.autoneg) 1686 /* On some Phy/switch combinations, link establishment 1687 * can take a few seconds more than expected. 1688 */ 1689 msleep(5000); 1690 1691 if (!(er32(STATUS) & E1000_STATUS_LU)) 1692 *data = 1; 1693 } 1694 return *data; 1695 } 1696 1697 static int e1000e_get_sset_count(struct net_device *netdev, int sset) 1698 { 1699 switch (sset) { 1700 case ETH_SS_TEST: 1701 return E1000_TEST_LEN; 1702 case ETH_SS_STATS: 1703 return E1000_STATS_LEN; 1704 default: 1705 return -EOPNOTSUPP; 1706 } 1707 } 1708 1709 static void e1000_diag_test(struct net_device *netdev, 1710 struct ethtool_test *eth_test, u64 *data) 1711 { 1712 struct e1000_adapter *adapter = netdev_priv(netdev); 1713 u16 autoneg_advertised; 1714 u8 forced_speed_duplex; 1715 u8 autoneg; 1716 bool if_running = netif_running(netdev); 1717 1718 set_bit(__E1000_TESTING, &adapter->state); 1719 1720 if (!if_running) { 1721 /* Get control of and reset hardware */ 1722 if (adapter->flags & FLAG_HAS_AMT) 1723 e1000e_get_hw_control(adapter); 1724 1725 e1000e_power_up_phy(adapter); 1726 1727 adapter->hw.phy.autoneg_wait_to_complete = 1; 1728 e1000e_reset(adapter); 1729 adapter->hw.phy.autoneg_wait_to_complete = 0; 1730 } 1731 1732 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1733 /* Offline tests */ 1734 1735 /* save speed, duplex, autoneg settings */ 1736 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1737 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1738 autoneg = adapter->hw.mac.autoneg; 1739 1740 e_info("offline testing starting\n"); 1741 1742 if (if_running) 1743 /* indicate we're in test mode */ 1744 dev_close(netdev); 1745 1746 if (e1000_reg_test(adapter, &data[0])) 1747 eth_test->flags |= ETH_TEST_FL_FAILED; 1748 1749 e1000e_reset(adapter); 1750 if (e1000_eeprom_test(adapter, &data[1])) 1751 eth_test->flags |= ETH_TEST_FL_FAILED; 1752 1753 e1000e_reset(adapter); 1754 if (e1000_intr_test(adapter, &data[2])) 1755 eth_test->flags |= ETH_TEST_FL_FAILED; 1756 1757 e1000e_reset(adapter); 1758 if (e1000_loopback_test(adapter, &data[3])) 1759 eth_test->flags |= ETH_TEST_FL_FAILED; 1760 1761 /* force this routine to wait until autoneg complete/timeout */ 1762 adapter->hw.phy.autoneg_wait_to_complete = 1; 1763 e1000e_reset(adapter); 1764 adapter->hw.phy.autoneg_wait_to_complete = 0; 1765 1766 if (e1000_link_test(adapter, &data[4])) 1767 eth_test->flags |= ETH_TEST_FL_FAILED; 1768 1769 /* restore speed, duplex, autoneg settings */ 1770 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1771 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1772 adapter->hw.mac.autoneg = autoneg; 1773 e1000e_reset(adapter); 1774 1775 clear_bit(__E1000_TESTING, &adapter->state); 1776 if (if_running) 1777 dev_open(netdev); 1778 } else { 1779 /* Online tests */ 1780 1781 e_info("online testing starting\n"); 1782 1783 /* register, eeprom, intr and loopback tests not run online */ 1784 data[0] = 0; 1785 data[1] = 0; 1786 data[2] = 0; 1787 data[3] = 0; 1788 1789 if (e1000_link_test(adapter, &data[4])) 1790 eth_test->flags |= ETH_TEST_FL_FAILED; 1791 1792 clear_bit(__E1000_TESTING, &adapter->state); 1793 } 1794 1795 if (!if_running) { 1796 e1000e_reset(adapter); 1797 1798 if (adapter->flags & FLAG_HAS_AMT) 1799 e1000e_release_hw_control(adapter); 1800 } 1801 1802 msleep_interruptible(4 * 1000); 1803 } 1804 1805 static void e1000_get_wol(struct net_device *netdev, 1806 struct ethtool_wolinfo *wol) 1807 { 1808 struct e1000_adapter *adapter = netdev_priv(netdev); 1809 1810 wol->supported = 0; 1811 wol->wolopts = 0; 1812 1813 if (!(adapter->flags & FLAG_HAS_WOL) || 1814 !device_can_wakeup(&adapter->pdev->dev)) 1815 return; 1816 1817 wol->supported = WAKE_UCAST | WAKE_MCAST | 1818 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1819 1820 /* apply any specific unsupported masks here */ 1821 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1822 wol->supported &= ~WAKE_UCAST; 1823 1824 if (adapter->wol & E1000_WUFC_EX) 1825 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1826 } 1827 1828 if (adapter->wol & E1000_WUFC_EX) 1829 wol->wolopts |= WAKE_UCAST; 1830 if (adapter->wol & E1000_WUFC_MC) 1831 wol->wolopts |= WAKE_MCAST; 1832 if (adapter->wol & E1000_WUFC_BC) 1833 wol->wolopts |= WAKE_BCAST; 1834 if (adapter->wol & E1000_WUFC_MAG) 1835 wol->wolopts |= WAKE_MAGIC; 1836 if (adapter->wol & E1000_WUFC_LNKC) 1837 wol->wolopts |= WAKE_PHY; 1838 } 1839 1840 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1841 { 1842 struct e1000_adapter *adapter = netdev_priv(netdev); 1843 1844 if (!(adapter->flags & FLAG_HAS_WOL) || 1845 !device_can_wakeup(&adapter->pdev->dev) || 1846 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1847 WAKE_MAGIC | WAKE_PHY))) 1848 return -EOPNOTSUPP; 1849 1850 /* these settings will always override what we currently have */ 1851 adapter->wol = 0; 1852 1853 if (wol->wolopts & WAKE_UCAST) 1854 adapter->wol |= E1000_WUFC_EX; 1855 if (wol->wolopts & WAKE_MCAST) 1856 adapter->wol |= E1000_WUFC_MC; 1857 if (wol->wolopts & WAKE_BCAST) 1858 adapter->wol |= E1000_WUFC_BC; 1859 if (wol->wolopts & WAKE_MAGIC) 1860 adapter->wol |= E1000_WUFC_MAG; 1861 if (wol->wolopts & WAKE_PHY) 1862 adapter->wol |= E1000_WUFC_LNKC; 1863 1864 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1865 1866 return 0; 1867 } 1868 1869 static int e1000_set_phys_id(struct net_device *netdev, 1870 enum ethtool_phys_id_state state) 1871 { 1872 struct e1000_adapter *adapter = netdev_priv(netdev); 1873 struct e1000_hw *hw = &adapter->hw; 1874 1875 switch (state) { 1876 case ETHTOOL_ID_ACTIVE: 1877 if (!hw->mac.ops.blink_led) 1878 return 2; /* cycle on/off twice per second */ 1879 1880 hw->mac.ops.blink_led(hw); 1881 break; 1882 1883 case ETHTOOL_ID_INACTIVE: 1884 if (hw->phy.type == e1000_phy_ife) 1885 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1886 hw->mac.ops.led_off(hw); 1887 hw->mac.ops.cleanup_led(hw); 1888 break; 1889 1890 case ETHTOOL_ID_ON: 1891 hw->mac.ops.led_on(hw); 1892 break; 1893 1894 case ETHTOOL_ID_OFF: 1895 hw->mac.ops.led_off(hw); 1896 break; 1897 } 1898 return 0; 1899 } 1900 1901 static int e1000_get_coalesce(struct net_device *netdev, 1902 struct ethtool_coalesce *ec) 1903 { 1904 struct e1000_adapter *adapter = netdev_priv(netdev); 1905 1906 if (adapter->itr_setting <= 4) 1907 ec->rx_coalesce_usecs = adapter->itr_setting; 1908 else 1909 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1910 1911 return 0; 1912 } 1913 1914 static int e1000_set_coalesce(struct net_device *netdev, 1915 struct ethtool_coalesce *ec) 1916 { 1917 struct e1000_adapter *adapter = netdev_priv(netdev); 1918 1919 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1920 ((ec->rx_coalesce_usecs > 4) && 1921 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1922 (ec->rx_coalesce_usecs == 2)) 1923 return -EINVAL; 1924 1925 if (ec->rx_coalesce_usecs == 4) { 1926 adapter->itr_setting = 4; 1927 adapter->itr = adapter->itr_setting; 1928 } else if (ec->rx_coalesce_usecs <= 3) { 1929 adapter->itr = 20000; 1930 adapter->itr_setting = ec->rx_coalesce_usecs; 1931 } else { 1932 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1933 adapter->itr_setting = adapter->itr & ~3; 1934 } 1935 1936 if (adapter->itr_setting != 0) 1937 e1000e_write_itr(adapter, adapter->itr); 1938 else 1939 e1000e_write_itr(adapter, 0); 1940 1941 return 0; 1942 } 1943 1944 static int e1000_nway_reset(struct net_device *netdev) 1945 { 1946 struct e1000_adapter *adapter = netdev_priv(netdev); 1947 1948 if (!netif_running(netdev)) 1949 return -EAGAIN; 1950 1951 if (!adapter->hw.mac.autoneg) 1952 return -EINVAL; 1953 1954 e1000e_reinit_locked(adapter); 1955 1956 return 0; 1957 } 1958 1959 static void e1000_get_ethtool_stats(struct net_device *netdev, 1960 struct ethtool_stats *stats, 1961 u64 *data) 1962 { 1963 struct e1000_adapter *adapter = netdev_priv(netdev); 1964 struct rtnl_link_stats64 net_stats; 1965 int i; 1966 char *p = NULL; 1967 1968 e1000e_get_stats64(netdev, &net_stats); 1969 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1970 switch (e1000_gstrings_stats[i].type) { 1971 case NETDEV_STATS: 1972 p = (char *) &net_stats + 1973 e1000_gstrings_stats[i].stat_offset; 1974 break; 1975 case E1000_STATS: 1976 p = (char *) adapter + 1977 e1000_gstrings_stats[i].stat_offset; 1978 break; 1979 default: 1980 data[i] = 0; 1981 continue; 1982 } 1983 1984 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1985 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1986 } 1987 } 1988 1989 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1990 u8 *data) 1991 { 1992 u8 *p = data; 1993 int i; 1994 1995 switch (stringset) { 1996 case ETH_SS_TEST: 1997 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1998 break; 1999 case ETH_SS_STATS: 2000 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2001 memcpy(p, e1000_gstrings_stats[i].stat_string, 2002 ETH_GSTRING_LEN); 2003 p += ETH_GSTRING_LEN; 2004 } 2005 break; 2006 } 2007 } 2008 2009 static int e1000_get_rxnfc(struct net_device *netdev, 2010 struct ethtool_rxnfc *info, u32 *rule_locs) 2011 { 2012 info->data = 0; 2013 2014 switch (info->cmd) { 2015 case ETHTOOL_GRXFH: { 2016 struct e1000_adapter *adapter = netdev_priv(netdev); 2017 struct e1000_hw *hw = &adapter->hw; 2018 u32 mrqc = er32(MRQC); 2019 2020 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2021 return 0; 2022 2023 switch (info->flow_type) { 2024 case TCP_V4_FLOW: 2025 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2026 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2027 /* fall through */ 2028 case UDP_V4_FLOW: 2029 case SCTP_V4_FLOW: 2030 case AH_ESP_V4_FLOW: 2031 case IPV4_FLOW: 2032 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2033 info->data |= RXH_IP_SRC | RXH_IP_DST; 2034 break; 2035 case TCP_V6_FLOW: 2036 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2037 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2038 /* fall through */ 2039 case UDP_V6_FLOW: 2040 case SCTP_V6_FLOW: 2041 case AH_ESP_V6_FLOW: 2042 case IPV6_FLOW: 2043 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2044 info->data |= RXH_IP_SRC | RXH_IP_DST; 2045 break; 2046 default: 2047 break; 2048 } 2049 return 0; 2050 } 2051 default: 2052 return -EOPNOTSUPP; 2053 } 2054 } 2055 2056 static const struct ethtool_ops e1000_ethtool_ops = { 2057 .get_settings = e1000_get_settings, 2058 .set_settings = e1000_set_settings, 2059 .get_drvinfo = e1000_get_drvinfo, 2060 .get_regs_len = e1000_get_regs_len, 2061 .get_regs = e1000_get_regs, 2062 .get_wol = e1000_get_wol, 2063 .set_wol = e1000_set_wol, 2064 .get_msglevel = e1000_get_msglevel, 2065 .set_msglevel = e1000_set_msglevel, 2066 .nway_reset = e1000_nway_reset, 2067 .get_link = ethtool_op_get_link, 2068 .get_eeprom_len = e1000_get_eeprom_len, 2069 .get_eeprom = e1000_get_eeprom, 2070 .set_eeprom = e1000_set_eeprom, 2071 .get_ringparam = e1000_get_ringparam, 2072 .set_ringparam = e1000_set_ringparam, 2073 .get_pauseparam = e1000_get_pauseparam, 2074 .set_pauseparam = e1000_set_pauseparam, 2075 .self_test = e1000_diag_test, 2076 .get_strings = e1000_get_strings, 2077 .set_phys_id = e1000_set_phys_id, 2078 .get_ethtool_stats = e1000_get_ethtool_stats, 2079 .get_sset_count = e1000e_get_sset_count, 2080 .get_coalesce = e1000_get_coalesce, 2081 .set_coalesce = e1000_set_coalesce, 2082 .get_rxnfc = e1000_get_rxnfc, 2083 .get_ts_info = ethtool_op_get_ts_info, 2084 }; 2085 2086 void e1000e_set_ethtool_ops(struct net_device *netdev) 2087 { 2088 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 2089 } 2090