xref: /linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision d0b73b488c55df905ea8faaad079f8535629ed26)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 
39 #include "e1000.h"
40 
41 enum {NETDEV_STATS, E1000_STATS};
42 
43 struct e1000_stats {
44 	char stat_string[ETH_GSTRING_LEN];
45 	int type;
46 	int sizeof_stat;
47 	int stat_offset;
48 };
49 
50 #define E1000_STAT(str, m) { \
51 		.stat_string = str, \
52 		.type = E1000_STATS, \
53 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54 		.stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56 		.stat_string = str, \
57 		.type = NETDEV_STATS, \
58 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
60 
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62 	E1000_STAT("rx_packets", stats.gprc),
63 	E1000_STAT("tx_packets", stats.gptc),
64 	E1000_STAT("rx_bytes", stats.gorc),
65 	E1000_STAT("tx_bytes", stats.gotc),
66 	E1000_STAT("rx_broadcast", stats.bprc),
67 	E1000_STAT("tx_broadcast", stats.bptc),
68 	E1000_STAT("rx_multicast", stats.mprc),
69 	E1000_STAT("tx_multicast", stats.mptc),
70 	E1000_NETDEV_STAT("rx_errors", rx_errors),
71 	E1000_NETDEV_STAT("tx_errors", tx_errors),
72 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73 	E1000_STAT("multicast", stats.mprc),
74 	E1000_STAT("collisions", stats.colc),
75 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77 	E1000_STAT("rx_crc_errors", stats.crcerrs),
78 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
80 	E1000_STAT("rx_missed_errors", stats.mpc),
81 	E1000_STAT("tx_aborted_errors", stats.ecol),
82 	E1000_STAT("tx_carrier_errors", stats.tncrs),
83 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85 	E1000_STAT("tx_window_errors", stats.latecol),
86 	E1000_STAT("tx_abort_late_coll", stats.latecol),
87 	E1000_STAT("tx_deferred_ok", stats.dc),
88 	E1000_STAT("tx_single_coll_ok", stats.scc),
89 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
90 	E1000_STAT("tx_timeout_count", tx_timeout_count),
91 	E1000_STAT("tx_restart_queue", restart_queue),
92 	E1000_STAT("rx_long_length_errors", stats.roc),
93 	E1000_STAT("rx_short_length_errors", stats.ruc),
94 	E1000_STAT("rx_align_errors", stats.algnerrc),
95 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
100 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101 	E1000_STAT("rx_long_byte_count", stats.gorc),
102 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 	E1000_STAT("rx_header_split", rx_hdr_split),
105 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 	E1000_STAT("tx_smbus", stats.mgptc),
107 	E1000_STAT("rx_smbus", stats.mgprc),
108 	E1000_STAT("dropped_smbus", stats.mgpdc),
109 	E1000_STAT("rx_dma_failed", rx_dma_failed),
110 	E1000_STAT("tx_dma_failed", tx_dma_failed),
111 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
112 	E1000_STAT("corr_ecc_errors", corr_errors),
113 };
114 
115 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
116 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
117 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
118 	"Register test  (offline)", "Eeprom test    (offline)",
119 	"Interrupt test (offline)", "Loopback test  (offline)",
120 	"Link test   (on/offline)"
121 };
122 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
123 
124 static int e1000_get_settings(struct net_device *netdev,
125 			      struct ethtool_cmd *ecmd)
126 {
127 	struct e1000_adapter *adapter = netdev_priv(netdev);
128 	struct e1000_hw *hw = &adapter->hw;
129 	u32 speed;
130 
131 	if (hw->phy.media_type == e1000_media_type_copper) {
132 
133 		ecmd->supported = (SUPPORTED_10baseT_Half |
134 				   SUPPORTED_10baseT_Full |
135 				   SUPPORTED_100baseT_Half |
136 				   SUPPORTED_100baseT_Full |
137 				   SUPPORTED_1000baseT_Full |
138 				   SUPPORTED_Autoneg |
139 				   SUPPORTED_TP);
140 		if (hw->phy.type == e1000_phy_ife)
141 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
142 		ecmd->advertising = ADVERTISED_TP;
143 
144 		if (hw->mac.autoneg == 1) {
145 			ecmd->advertising |= ADVERTISED_Autoneg;
146 			/* the e1000 autoneg seems to match ethtool nicely */
147 			ecmd->advertising |= hw->phy.autoneg_advertised;
148 		}
149 
150 		ecmd->port = PORT_TP;
151 		ecmd->phy_address = hw->phy.addr;
152 		ecmd->transceiver = XCVR_INTERNAL;
153 
154 	} else {
155 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
156 				     SUPPORTED_FIBRE |
157 				     SUPPORTED_Autoneg);
158 
159 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
160 				     ADVERTISED_FIBRE |
161 				     ADVERTISED_Autoneg);
162 
163 		ecmd->port = PORT_FIBRE;
164 		ecmd->transceiver = XCVR_EXTERNAL;
165 	}
166 
167 	speed = -1;
168 	ecmd->duplex = -1;
169 
170 	if (netif_running(netdev)) {
171 		if (netif_carrier_ok(netdev)) {
172 			speed = adapter->link_speed;
173 			ecmd->duplex = adapter->link_duplex - 1;
174 		}
175 	} else {
176 		u32 status = er32(STATUS);
177 		if (status & E1000_STATUS_LU) {
178 			if (status & E1000_STATUS_SPEED_1000)
179 				speed = SPEED_1000;
180 			else if (status & E1000_STATUS_SPEED_100)
181 				speed = SPEED_100;
182 			else
183 				speed = SPEED_10;
184 
185 			if (status & E1000_STATUS_FD)
186 				ecmd->duplex = DUPLEX_FULL;
187 			else
188 				ecmd->duplex = DUPLEX_HALF;
189 		}
190 	}
191 
192 	ethtool_cmd_speed_set(ecmd, speed);
193 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
194 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
195 
196 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
197 	if ((hw->phy.media_type == e1000_media_type_copper) &&
198 	    netif_carrier_ok(netdev))
199 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
200 		                                      ETH_TP_MDI;
201 	else
202 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
203 
204 	if (hw->phy.mdix == AUTO_ALL_MODES)
205 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206 	else
207 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
208 
209 	return 0;
210 }
211 
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
213 {
214 	struct e1000_mac_info *mac = &adapter->hw.mac;
215 
216 	mac->autoneg = 0;
217 
218 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
219 	 * for the switch() below to work
220 	 */
221 	if ((spd & 1) || (dplx & ~1))
222 		goto err_inval;
223 
224 	/* Fiber NICs only allow 1000 gbps Full duplex */
225 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226 	    spd != SPEED_1000 &&
227 	    dplx != DUPLEX_FULL) {
228 		goto err_inval;
229 	}
230 
231 	switch (spd + dplx) {
232 	case SPEED_10 + DUPLEX_HALF:
233 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
234 		break;
235 	case SPEED_10 + DUPLEX_FULL:
236 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
237 		break;
238 	case SPEED_100 + DUPLEX_HALF:
239 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
240 		break;
241 	case SPEED_100 + DUPLEX_FULL:
242 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
243 		break;
244 	case SPEED_1000 + DUPLEX_FULL:
245 		mac->autoneg = 1;
246 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
247 		break;
248 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
249 	default:
250 		goto err_inval;
251 	}
252 
253 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
254 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
255 
256 	return 0;
257 
258 err_inval:
259 	e_err("Unsupported Speed/Duplex configuration\n");
260 	return -EINVAL;
261 }
262 
263 static int e1000_set_settings(struct net_device *netdev,
264 			      struct ethtool_cmd *ecmd)
265 {
266 	struct e1000_adapter *adapter = netdev_priv(netdev);
267 	struct e1000_hw *hw = &adapter->hw;
268 
269 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
270 	 * cannot be changed
271 	 */
272 	if (hw->phy.ops.check_reset_block &&
273 	    hw->phy.ops.check_reset_block(hw)) {
274 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
275 		return -EINVAL;
276 	}
277 
278 	/* MDI setting is only allowed when autoneg enabled because
279 	 * some hardware doesn't allow MDI setting when speed or
280 	 * duplex is forced.
281 	 */
282 	if (ecmd->eth_tp_mdix_ctrl) {
283 		if (hw->phy.media_type != e1000_media_type_copper)
284 			return -EOPNOTSUPP;
285 
286 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
287 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
288 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
289 			return -EINVAL;
290 		}
291 	}
292 
293 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
294 		usleep_range(1000, 2000);
295 
296 	if (ecmd->autoneg == AUTONEG_ENABLE) {
297 		hw->mac.autoneg = 1;
298 		if (hw->phy.media_type == e1000_media_type_fiber)
299 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
300 						     ADVERTISED_FIBRE |
301 						     ADVERTISED_Autoneg;
302 		else
303 			hw->phy.autoneg_advertised = ecmd->advertising |
304 						     ADVERTISED_TP |
305 						     ADVERTISED_Autoneg;
306 		ecmd->advertising = hw->phy.autoneg_advertised;
307 		if (adapter->fc_autoneg)
308 			hw->fc.requested_mode = e1000_fc_default;
309 	} else {
310 		u32 speed = ethtool_cmd_speed(ecmd);
311 		/* calling this overrides forced MDI setting */
312 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
313 			clear_bit(__E1000_RESETTING, &adapter->state);
314 			return -EINVAL;
315 		}
316 	}
317 
318 	/* MDI-X => 2; MDI => 1; Auto => 3 */
319 	if (ecmd->eth_tp_mdix_ctrl) {
320 		/* fix up the value for auto (3 => 0) as zero is mapped
321 		 * internally to auto
322 		 */
323 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
324 			hw->phy.mdix = AUTO_ALL_MODES;
325 		else
326 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
327 	}
328 
329 	/* reset the link */
330 
331 	if (netif_running(adapter->netdev)) {
332 		e1000e_down(adapter);
333 		e1000e_up(adapter);
334 	} else
335 		e1000e_reset(adapter);
336 
337 	clear_bit(__E1000_RESETTING, &adapter->state);
338 	return 0;
339 }
340 
341 static void e1000_get_pauseparam(struct net_device *netdev,
342 				 struct ethtool_pauseparam *pause)
343 {
344 	struct e1000_adapter *adapter = netdev_priv(netdev);
345 	struct e1000_hw *hw = &adapter->hw;
346 
347 	pause->autoneg =
348 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
349 
350 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
351 		pause->rx_pause = 1;
352 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
353 		pause->tx_pause = 1;
354 	} else if (hw->fc.current_mode == e1000_fc_full) {
355 		pause->rx_pause = 1;
356 		pause->tx_pause = 1;
357 	}
358 }
359 
360 static int e1000_set_pauseparam(struct net_device *netdev,
361 				struct ethtool_pauseparam *pause)
362 {
363 	struct e1000_adapter *adapter = netdev_priv(netdev);
364 	struct e1000_hw *hw = &adapter->hw;
365 	int retval = 0;
366 
367 	adapter->fc_autoneg = pause->autoneg;
368 
369 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
370 		usleep_range(1000, 2000);
371 
372 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
373 		hw->fc.requested_mode = e1000_fc_default;
374 		if (netif_running(adapter->netdev)) {
375 			e1000e_down(adapter);
376 			e1000e_up(adapter);
377 		} else {
378 			e1000e_reset(adapter);
379 		}
380 	} else {
381 		if (pause->rx_pause && pause->tx_pause)
382 			hw->fc.requested_mode = e1000_fc_full;
383 		else if (pause->rx_pause && !pause->tx_pause)
384 			hw->fc.requested_mode = e1000_fc_rx_pause;
385 		else if (!pause->rx_pause && pause->tx_pause)
386 			hw->fc.requested_mode = e1000_fc_tx_pause;
387 		else if (!pause->rx_pause && !pause->tx_pause)
388 			hw->fc.requested_mode = e1000_fc_none;
389 
390 		hw->fc.current_mode = hw->fc.requested_mode;
391 
392 		if (hw->phy.media_type == e1000_media_type_fiber) {
393 			retval = hw->mac.ops.setup_link(hw);
394 			/* implicit goto out */
395 		} else {
396 			retval = e1000e_force_mac_fc(hw);
397 			if (retval)
398 				goto out;
399 			e1000e_set_fc_watermarks(hw);
400 		}
401 	}
402 
403 out:
404 	clear_bit(__E1000_RESETTING, &adapter->state);
405 	return retval;
406 }
407 
408 static u32 e1000_get_msglevel(struct net_device *netdev)
409 {
410 	struct e1000_adapter *adapter = netdev_priv(netdev);
411 	return adapter->msg_enable;
412 }
413 
414 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
415 {
416 	struct e1000_adapter *adapter = netdev_priv(netdev);
417 	adapter->msg_enable = data;
418 }
419 
420 static int e1000_get_regs_len(struct net_device *netdev)
421 {
422 #define E1000_REGS_LEN 32 /* overestimate */
423 	return E1000_REGS_LEN * sizeof(u32);
424 }
425 
426 static void e1000_get_regs(struct net_device *netdev,
427 			   struct ethtool_regs *regs, void *p)
428 {
429 	struct e1000_adapter *adapter = netdev_priv(netdev);
430 	struct e1000_hw *hw = &adapter->hw;
431 	u32 *regs_buff = p;
432 	u16 phy_data;
433 
434 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
435 
436 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
437 			adapter->pdev->device;
438 
439 	regs_buff[0]  = er32(CTRL);
440 	regs_buff[1]  = er32(STATUS);
441 
442 	regs_buff[2]  = er32(RCTL);
443 	regs_buff[3]  = er32(RDLEN(0));
444 	regs_buff[4]  = er32(RDH(0));
445 	regs_buff[5]  = er32(RDT(0));
446 	regs_buff[6]  = er32(RDTR);
447 
448 	regs_buff[7]  = er32(TCTL);
449 	regs_buff[8]  = er32(TDLEN(0));
450 	regs_buff[9]  = er32(TDH(0));
451 	regs_buff[10] = er32(TDT(0));
452 	regs_buff[11] = er32(TIDV);
453 
454 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
455 
456 	/* ethtool doesn't use anything past this point, so all this
457 	 * code is likely legacy junk for apps that may or may not exist
458 	 */
459 	if (hw->phy.type == e1000_phy_m88) {
460 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
461 		regs_buff[13] = (u32)phy_data; /* cable length */
462 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
463 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
464 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
466 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
467 		regs_buff[18] = regs_buff[13]; /* cable polarity */
468 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469 		regs_buff[20] = regs_buff[17]; /* polarity correction */
470 		/* phy receive errors */
471 		regs_buff[22] = adapter->phy_stats.receive_errors;
472 		regs_buff[23] = regs_buff[13]; /* mdix mode */
473 	}
474 	regs_buff[21] = 0; /* was idle_errors */
475 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
476 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
477 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
478 }
479 
480 static int e1000_get_eeprom_len(struct net_device *netdev)
481 {
482 	struct e1000_adapter *adapter = netdev_priv(netdev);
483 	return adapter->hw.nvm.word_size * 2;
484 }
485 
486 static int e1000_get_eeprom(struct net_device *netdev,
487 			    struct ethtool_eeprom *eeprom, u8 *bytes)
488 {
489 	struct e1000_adapter *adapter = netdev_priv(netdev);
490 	struct e1000_hw *hw = &adapter->hw;
491 	u16 *eeprom_buff;
492 	int first_word;
493 	int last_word;
494 	int ret_val = 0;
495 	u16 i;
496 
497 	if (eeprom->len == 0)
498 		return -EINVAL;
499 
500 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
501 
502 	first_word = eeprom->offset >> 1;
503 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
504 
505 	eeprom_buff = kmalloc(sizeof(u16) *
506 			(last_word - first_word + 1), GFP_KERNEL);
507 	if (!eeprom_buff)
508 		return -ENOMEM;
509 
510 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
511 		ret_val = e1000_read_nvm(hw, first_word,
512 					 last_word - first_word + 1,
513 					 eeprom_buff);
514 	} else {
515 		for (i = 0; i < last_word - first_word + 1; i++) {
516 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
517 						      &eeprom_buff[i]);
518 			if (ret_val)
519 				break;
520 		}
521 	}
522 
523 	if (ret_val) {
524 		/* a read error occurred, throw away the result */
525 		memset(eeprom_buff, 0xff, sizeof(u16) *
526 		       (last_word - first_word + 1));
527 	} else {
528 		/* Device's eeprom is always little-endian, word addressable */
529 		for (i = 0; i < last_word - first_word + 1; i++)
530 			le16_to_cpus(&eeprom_buff[i]);
531 	}
532 
533 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
534 	kfree(eeprom_buff);
535 
536 	return ret_val;
537 }
538 
539 static int e1000_set_eeprom(struct net_device *netdev,
540 			    struct ethtool_eeprom *eeprom, u8 *bytes)
541 {
542 	struct e1000_adapter *adapter = netdev_priv(netdev);
543 	struct e1000_hw *hw = &adapter->hw;
544 	u16 *eeprom_buff;
545 	void *ptr;
546 	int max_len;
547 	int first_word;
548 	int last_word;
549 	int ret_val = 0;
550 	u16 i;
551 
552 	if (eeprom->len == 0)
553 		return -EOPNOTSUPP;
554 
555 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
556 		return -EFAULT;
557 
558 	if (adapter->flags & FLAG_READ_ONLY_NVM)
559 		return -EINVAL;
560 
561 	max_len = hw->nvm.word_size * 2;
562 
563 	first_word = eeprom->offset >> 1;
564 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
565 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
566 	if (!eeprom_buff)
567 		return -ENOMEM;
568 
569 	ptr = (void *)eeprom_buff;
570 
571 	if (eeprom->offset & 1) {
572 		/* need read/modify/write of first changed EEPROM word */
573 		/* only the second byte of the word is being modified */
574 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
575 		ptr++;
576 	}
577 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
578 		/* need read/modify/write of last changed EEPROM word */
579 		/* only the first byte of the word is being modified */
580 		ret_val = e1000_read_nvm(hw, last_word, 1,
581 				  &eeprom_buff[last_word - first_word]);
582 
583 	if (ret_val)
584 		goto out;
585 
586 	/* Device's eeprom is always little-endian, word addressable */
587 	for (i = 0; i < last_word - first_word + 1; i++)
588 		le16_to_cpus(&eeprom_buff[i]);
589 
590 	memcpy(ptr, bytes, eeprom->len);
591 
592 	for (i = 0; i < last_word - first_word + 1; i++)
593 		cpu_to_le16s(&eeprom_buff[i]);
594 
595 	ret_val = e1000_write_nvm(hw, first_word,
596 				  last_word - first_word + 1, eeprom_buff);
597 
598 	if (ret_val)
599 		goto out;
600 
601 	/* Update the checksum over the first part of the EEPROM if needed
602 	 * and flush shadow RAM for applicable controllers
603 	 */
604 	if ((first_word <= NVM_CHECKSUM_REG) ||
605 	    (hw->mac.type == e1000_82583) ||
606 	    (hw->mac.type == e1000_82574) ||
607 	    (hw->mac.type == e1000_82573))
608 		ret_val = e1000e_update_nvm_checksum(hw);
609 
610 out:
611 	kfree(eeprom_buff);
612 	return ret_val;
613 }
614 
615 static void e1000_get_drvinfo(struct net_device *netdev,
616 			      struct ethtool_drvinfo *drvinfo)
617 {
618 	struct e1000_adapter *adapter = netdev_priv(netdev);
619 
620 	strlcpy(drvinfo->driver,  e1000e_driver_name,
621 		sizeof(drvinfo->driver));
622 	strlcpy(drvinfo->version, e1000e_driver_version,
623 		sizeof(drvinfo->version));
624 
625 	/* EEPROM image version # is reported as firmware version # for
626 	 * PCI-E controllers
627 	 */
628 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
629 		"%d.%d-%d",
630 		(adapter->eeprom_vers & 0xF000) >> 12,
631 		(adapter->eeprom_vers & 0x0FF0) >> 4,
632 		(adapter->eeprom_vers & 0x000F));
633 
634 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
635 		sizeof(drvinfo->bus_info));
636 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
637 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
638 }
639 
640 static void e1000_get_ringparam(struct net_device *netdev,
641 				struct ethtool_ringparam *ring)
642 {
643 	struct e1000_adapter *adapter = netdev_priv(netdev);
644 
645 	ring->rx_max_pending = E1000_MAX_RXD;
646 	ring->tx_max_pending = E1000_MAX_TXD;
647 	ring->rx_pending = adapter->rx_ring_count;
648 	ring->tx_pending = adapter->tx_ring_count;
649 }
650 
651 static int e1000_set_ringparam(struct net_device *netdev,
652 			       struct ethtool_ringparam *ring)
653 {
654 	struct e1000_adapter *adapter = netdev_priv(netdev);
655 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
656 	int err = 0, size = sizeof(struct e1000_ring);
657 	bool set_tx = false, set_rx = false;
658 	u16 new_rx_count, new_tx_count;
659 
660 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
661 		return -EINVAL;
662 
663 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
664 			       E1000_MAX_RXD);
665 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
666 
667 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
668 			       E1000_MAX_TXD);
669 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
670 
671 	if ((new_tx_count == adapter->tx_ring_count) &&
672 	    (new_rx_count == adapter->rx_ring_count))
673 		/* nothing to do */
674 		return 0;
675 
676 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
677 		usleep_range(1000, 2000);
678 
679 	if (!netif_running(adapter->netdev)) {
680 		/* Set counts now and allocate resources during open() */
681 		adapter->tx_ring->count = new_tx_count;
682 		adapter->rx_ring->count = new_rx_count;
683 		adapter->tx_ring_count = new_tx_count;
684 		adapter->rx_ring_count = new_rx_count;
685 		goto clear_reset;
686 	}
687 
688 	set_tx = (new_tx_count != adapter->tx_ring_count);
689 	set_rx = (new_rx_count != adapter->rx_ring_count);
690 
691 	/* Allocate temporary storage for ring updates */
692 	if (set_tx) {
693 		temp_tx = vmalloc(size);
694 		if (!temp_tx) {
695 			err = -ENOMEM;
696 			goto free_temp;
697 		}
698 	}
699 	if (set_rx) {
700 		temp_rx = vmalloc(size);
701 		if (!temp_rx) {
702 			err = -ENOMEM;
703 			goto free_temp;
704 		}
705 	}
706 
707 	e1000e_down(adapter);
708 
709 	/* We can't just free everything and then setup again, because the
710 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
711 	 * structs.  First, attempt to allocate new resources...
712 	 */
713 	if (set_tx) {
714 		memcpy(temp_tx, adapter->tx_ring, size);
715 		temp_tx->count = new_tx_count;
716 		err = e1000e_setup_tx_resources(temp_tx);
717 		if (err)
718 			goto err_setup;
719 	}
720 	if (set_rx) {
721 		memcpy(temp_rx, adapter->rx_ring, size);
722 		temp_rx->count = new_rx_count;
723 		err = e1000e_setup_rx_resources(temp_rx);
724 		if (err)
725 			goto err_setup_rx;
726 	}
727 
728 	/* ...then free the old resources and copy back any new ring data */
729 	if (set_tx) {
730 		e1000e_free_tx_resources(adapter->tx_ring);
731 		memcpy(adapter->tx_ring, temp_tx, size);
732 		adapter->tx_ring_count = new_tx_count;
733 	}
734 	if (set_rx) {
735 		e1000e_free_rx_resources(adapter->rx_ring);
736 		memcpy(adapter->rx_ring, temp_rx, size);
737 		adapter->rx_ring_count = new_rx_count;
738 	}
739 
740 err_setup_rx:
741 	if (err && set_tx)
742 		e1000e_free_tx_resources(temp_tx);
743 err_setup:
744 	e1000e_up(adapter);
745 free_temp:
746 	vfree(temp_tx);
747 	vfree(temp_rx);
748 clear_reset:
749 	clear_bit(__E1000_RESETTING, &adapter->state);
750 	return err;
751 }
752 
753 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
754 			     int reg, int offset, u32 mask, u32 write)
755 {
756 	u32 pat, val;
757 	static const u32 test[] = {
758 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
759 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
760 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
761 				      (test[pat] & write));
762 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
763 		if (val != (test[pat] & write & mask)) {
764 			e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
765 			      reg + offset, val, (test[pat] & write & mask));
766 			*data = reg;
767 			return 1;
768 		}
769 	}
770 	return 0;
771 }
772 
773 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
774 			      int reg, u32 mask, u32 write)
775 {
776 	u32 val;
777 	__ew32(&adapter->hw, reg, write & mask);
778 	val = __er32(&adapter->hw, reg);
779 	if ((write & mask) != (val & mask)) {
780 		e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
781 		      reg, (val & mask), (write & mask));
782 		*data = reg;
783 		return 1;
784 	}
785 	return 0;
786 }
787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
788 	do {                                                                   \
789 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
790 			return 1;                                              \
791 	} while (0)
792 #define REG_PATTERN_TEST(reg, mask, write)                                     \
793 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
794 
795 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
796 	do {                                                                   \
797 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
798 			return 1;                                              \
799 	} while (0)
800 
801 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
802 {
803 	struct e1000_hw *hw = &adapter->hw;
804 	struct e1000_mac_info *mac = &adapter->hw.mac;
805 	u32 value;
806 	u32 before;
807 	u32 after;
808 	u32 i;
809 	u32 toggle;
810 	u32 mask;
811 	u32 wlock_mac = 0;
812 
813 	/* The status register is Read Only, so a write should fail.
814 	 * Some bits that get toggled are ignored.
815 	 */
816 	switch (mac->type) {
817 	/* there are several bits on newer hardware that are r/w */
818 	case e1000_82571:
819 	case e1000_82572:
820 	case e1000_80003es2lan:
821 		toggle = 0x7FFFF3FF;
822 		break;
823         default:
824 		toggle = 0x7FFFF033;
825 		break;
826 	}
827 
828 	before = er32(STATUS);
829 	value = (er32(STATUS) & toggle);
830 	ew32(STATUS, toggle);
831 	after = er32(STATUS) & toggle;
832 	if (value != after) {
833 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
834 		      after, value);
835 		*data = 1;
836 		return 1;
837 	}
838 	/* restore previous status */
839 	ew32(STATUS, before);
840 
841 	if (!(adapter->flags & FLAG_IS_ICH)) {
842 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
843 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
844 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
845 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
846 	}
847 
848 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
849 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
850 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
851 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
852 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
853 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
854 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
855 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
856 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
857 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
858 
859 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
860 
861 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
862 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
863 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
864 
865 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
866 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
867 	if (!(adapter->flags & FLAG_IS_ICH))
868 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
869 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
870 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
871 	mask = 0x8003FFFF;
872 	switch (mac->type) {
873 	case e1000_ich10lan:
874 	case e1000_pchlan:
875 	case e1000_pch2lan:
876 	case e1000_pch_lpt:
877 		mask |= (1 << 18);
878 		break;
879 	default:
880 		break;
881 	}
882 
883 	if (mac->type == e1000_pch_lpt)
884 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
885 		    E1000_FWSM_WLOCK_MAC_SHIFT;
886 
887 	for (i = 0; i < mac->rar_entry_count; i++) {
888 		/* Cannot test write-protected SHRAL[n] registers */
889 		if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
890 			continue;
891 
892 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
893 				       mask, 0xFFFFFFFF);
894 	}
895 
896 	for (i = 0; i < mac->mta_reg_count; i++)
897 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
898 
899 	*data = 0;
900 
901 	return 0;
902 }
903 
904 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
905 {
906 	u16 temp;
907 	u16 checksum = 0;
908 	u16 i;
909 
910 	*data = 0;
911 	/* Read and add up the contents of the EEPROM */
912 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
913 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
914 			*data = 1;
915 			return *data;
916 		}
917 		checksum += temp;
918 	}
919 
920 	/* If Checksum is not Correct return error else test passed */
921 	if ((checksum != (u16) NVM_SUM) && !(*data))
922 		*data = 2;
923 
924 	return *data;
925 }
926 
927 static irqreturn_t e1000_test_intr(int irq, void *data)
928 {
929 	struct net_device *netdev = (struct net_device *) data;
930 	struct e1000_adapter *adapter = netdev_priv(netdev);
931 	struct e1000_hw *hw = &adapter->hw;
932 
933 	adapter->test_icr |= er32(ICR);
934 
935 	return IRQ_HANDLED;
936 }
937 
938 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
939 {
940 	struct net_device *netdev = adapter->netdev;
941 	struct e1000_hw *hw = &adapter->hw;
942 	u32 mask;
943 	u32 shared_int = 1;
944 	u32 irq = adapter->pdev->irq;
945 	int i;
946 	int ret_val = 0;
947 	int int_mode = E1000E_INT_MODE_LEGACY;
948 
949 	*data = 0;
950 
951 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
952 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
953 		int_mode = adapter->int_mode;
954 		e1000e_reset_interrupt_capability(adapter);
955 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
956 		e1000e_set_interrupt_capability(adapter);
957 	}
958 	/* Hook up test interrupt handler just for this test */
959 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
960 			 netdev)) {
961 		shared_int = 0;
962 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
963 		 netdev->name, netdev)) {
964 		*data = 1;
965 		ret_val = -1;
966 		goto out;
967 	}
968 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
969 
970 	/* Disable all the interrupts */
971 	ew32(IMC, 0xFFFFFFFF);
972 	e1e_flush();
973 	usleep_range(10000, 20000);
974 
975 	/* Test each interrupt */
976 	for (i = 0; i < 10; i++) {
977 		/* Interrupt to test */
978 		mask = 1 << i;
979 
980 		if (adapter->flags & FLAG_IS_ICH) {
981 			switch (mask) {
982 			case E1000_ICR_RXSEQ:
983 				continue;
984 			case 0x00000100:
985 				if (adapter->hw.mac.type == e1000_ich8lan ||
986 				    adapter->hw.mac.type == e1000_ich9lan)
987 					continue;
988 				break;
989 			default:
990 				break;
991 			}
992 		}
993 
994 		if (!shared_int) {
995 			/* Disable the interrupt to be reported in
996 			 * the cause register and then force the same
997 			 * interrupt and see if one gets posted.  If
998 			 * an interrupt was posted to the bus, the
999 			 * test failed.
1000 			 */
1001 			adapter->test_icr = 0;
1002 			ew32(IMC, mask);
1003 			ew32(ICS, mask);
1004 			e1e_flush();
1005 			usleep_range(10000, 20000);
1006 
1007 			if (adapter->test_icr & mask) {
1008 				*data = 3;
1009 				break;
1010 			}
1011 		}
1012 
1013 		/* Enable the interrupt to be reported in
1014 		 * the cause register and then force the same
1015 		 * interrupt and see if one gets posted.  If
1016 		 * an interrupt was not posted to the bus, the
1017 		 * test failed.
1018 		 */
1019 		adapter->test_icr = 0;
1020 		ew32(IMS, mask);
1021 		ew32(ICS, mask);
1022 		e1e_flush();
1023 		usleep_range(10000, 20000);
1024 
1025 		if (!(adapter->test_icr & mask)) {
1026 			*data = 4;
1027 			break;
1028 		}
1029 
1030 		if (!shared_int) {
1031 			/* Disable the other interrupts to be reported in
1032 			 * the cause register and then force the other
1033 			 * interrupts and see if any get posted.  If
1034 			 * an interrupt was posted to the bus, the
1035 			 * test failed.
1036 			 */
1037 			adapter->test_icr = 0;
1038 			ew32(IMC, ~mask & 0x00007FFF);
1039 			ew32(ICS, ~mask & 0x00007FFF);
1040 			e1e_flush();
1041 			usleep_range(10000, 20000);
1042 
1043 			if (adapter->test_icr) {
1044 				*data = 5;
1045 				break;
1046 			}
1047 		}
1048 	}
1049 
1050 	/* Disable all the interrupts */
1051 	ew32(IMC, 0xFFFFFFFF);
1052 	e1e_flush();
1053 	usleep_range(10000, 20000);
1054 
1055 	/* Unhook test interrupt handler */
1056 	free_irq(irq, netdev);
1057 
1058 out:
1059 	if (int_mode == E1000E_INT_MODE_MSIX) {
1060 		e1000e_reset_interrupt_capability(adapter);
1061 		adapter->int_mode = int_mode;
1062 		e1000e_set_interrupt_capability(adapter);
1063 	}
1064 
1065 	return ret_val;
1066 }
1067 
1068 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1069 {
1070 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1071 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1072 	struct pci_dev *pdev = adapter->pdev;
1073 	int i;
1074 
1075 	if (tx_ring->desc && tx_ring->buffer_info) {
1076 		for (i = 0; i < tx_ring->count; i++) {
1077 			if (tx_ring->buffer_info[i].dma)
1078 				dma_unmap_single(&pdev->dev,
1079 					tx_ring->buffer_info[i].dma,
1080 					tx_ring->buffer_info[i].length,
1081 					DMA_TO_DEVICE);
1082 			if (tx_ring->buffer_info[i].skb)
1083 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1084 		}
1085 	}
1086 
1087 	if (rx_ring->desc && rx_ring->buffer_info) {
1088 		for (i = 0; i < rx_ring->count; i++) {
1089 			if (rx_ring->buffer_info[i].dma)
1090 				dma_unmap_single(&pdev->dev,
1091 					rx_ring->buffer_info[i].dma,
1092 					2048, DMA_FROM_DEVICE);
1093 			if (rx_ring->buffer_info[i].skb)
1094 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1095 		}
1096 	}
1097 
1098 	if (tx_ring->desc) {
1099 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1100 				  tx_ring->dma);
1101 		tx_ring->desc = NULL;
1102 	}
1103 	if (rx_ring->desc) {
1104 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1105 				  rx_ring->dma);
1106 		rx_ring->desc = NULL;
1107 	}
1108 
1109 	kfree(tx_ring->buffer_info);
1110 	tx_ring->buffer_info = NULL;
1111 	kfree(rx_ring->buffer_info);
1112 	rx_ring->buffer_info = NULL;
1113 }
1114 
1115 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1116 {
1117 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1118 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1119 	struct pci_dev *pdev = adapter->pdev;
1120 	struct e1000_hw *hw = &adapter->hw;
1121 	u32 rctl;
1122 	int i;
1123 	int ret_val;
1124 
1125 	/* Setup Tx descriptor ring and Tx buffers */
1126 
1127 	if (!tx_ring->count)
1128 		tx_ring->count = E1000_DEFAULT_TXD;
1129 
1130 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1131 				       sizeof(struct e1000_buffer),
1132 				       GFP_KERNEL);
1133 	if (!tx_ring->buffer_info) {
1134 		ret_val = 1;
1135 		goto err_nomem;
1136 	}
1137 
1138 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1139 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1140 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1141 					   &tx_ring->dma, GFP_KERNEL);
1142 	if (!tx_ring->desc) {
1143 		ret_val = 2;
1144 		goto err_nomem;
1145 	}
1146 	tx_ring->next_to_use = 0;
1147 	tx_ring->next_to_clean = 0;
1148 
1149 	ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1150 	ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1151 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1152 	ew32(TDH(0), 0);
1153 	ew32(TDT(0), 0);
1154 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1155 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1156 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1157 
1158 	for (i = 0; i < tx_ring->count; i++) {
1159 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1160 		struct sk_buff *skb;
1161 		unsigned int skb_size = 1024;
1162 
1163 		skb = alloc_skb(skb_size, GFP_KERNEL);
1164 		if (!skb) {
1165 			ret_val = 3;
1166 			goto err_nomem;
1167 		}
1168 		skb_put(skb, skb_size);
1169 		tx_ring->buffer_info[i].skb = skb;
1170 		tx_ring->buffer_info[i].length = skb->len;
1171 		tx_ring->buffer_info[i].dma =
1172 			dma_map_single(&pdev->dev, skb->data, skb->len,
1173 				       DMA_TO_DEVICE);
1174 		if (dma_mapping_error(&pdev->dev,
1175 				      tx_ring->buffer_info[i].dma)) {
1176 			ret_val = 4;
1177 			goto err_nomem;
1178 		}
1179 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1180 		tx_desc->lower.data = cpu_to_le32(skb->len);
1181 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1182 						   E1000_TXD_CMD_IFCS |
1183 						   E1000_TXD_CMD_RS);
1184 		tx_desc->upper.data = 0;
1185 	}
1186 
1187 	/* Setup Rx descriptor ring and Rx buffers */
1188 
1189 	if (!rx_ring->count)
1190 		rx_ring->count = E1000_DEFAULT_RXD;
1191 
1192 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1193 				       sizeof(struct e1000_buffer),
1194 				       GFP_KERNEL);
1195 	if (!rx_ring->buffer_info) {
1196 		ret_val = 5;
1197 		goto err_nomem;
1198 	}
1199 
1200 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1201 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1202 					   &rx_ring->dma, GFP_KERNEL);
1203 	if (!rx_ring->desc) {
1204 		ret_val = 6;
1205 		goto err_nomem;
1206 	}
1207 	rx_ring->next_to_use = 0;
1208 	rx_ring->next_to_clean = 0;
1209 
1210 	rctl = er32(RCTL);
1211 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1212 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1213 	ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1214 	ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1215 	ew32(RDLEN(0), rx_ring->size);
1216 	ew32(RDH(0), 0);
1217 	ew32(RDT(0), 0);
1218 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1219 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1220 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1221 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1222 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1223 	ew32(RCTL, rctl);
1224 
1225 	for (i = 0; i < rx_ring->count; i++) {
1226 		union e1000_rx_desc_extended *rx_desc;
1227 		struct sk_buff *skb;
1228 
1229 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1230 		if (!skb) {
1231 			ret_val = 7;
1232 			goto err_nomem;
1233 		}
1234 		skb_reserve(skb, NET_IP_ALIGN);
1235 		rx_ring->buffer_info[i].skb = skb;
1236 		rx_ring->buffer_info[i].dma =
1237 			dma_map_single(&pdev->dev, skb->data, 2048,
1238 				       DMA_FROM_DEVICE);
1239 		if (dma_mapping_error(&pdev->dev,
1240 				      rx_ring->buffer_info[i].dma)) {
1241 			ret_val = 8;
1242 			goto err_nomem;
1243 		}
1244 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1245 		rx_desc->read.buffer_addr =
1246 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1247 		memset(skb->data, 0x00, skb->len);
1248 	}
1249 
1250 	return 0;
1251 
1252 err_nomem:
1253 	e1000_free_desc_rings(adapter);
1254 	return ret_val;
1255 }
1256 
1257 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1258 {
1259 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1260 	e1e_wphy(&adapter->hw, 29, 0x001F);
1261 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1262 	e1e_wphy(&adapter->hw, 29, 0x001A);
1263 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1264 }
1265 
1266 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1267 {
1268 	struct e1000_hw *hw = &adapter->hw;
1269 	u32 ctrl_reg = 0;
1270 	u16 phy_reg = 0;
1271 	s32 ret_val = 0;
1272 
1273 	hw->mac.autoneg = 0;
1274 
1275 	if (hw->phy.type == e1000_phy_ife) {
1276 		/* force 100, set loopback */
1277 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
1278 
1279 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1280 		ctrl_reg = er32(CTRL);
1281 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1282 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1283 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1284 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1285 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1286 
1287 		ew32(CTRL, ctrl_reg);
1288 		e1e_flush();
1289 		udelay(500);
1290 
1291 		return 0;
1292 	}
1293 
1294 	/* Specific PHY configuration for loopback */
1295 	switch (hw->phy.type) {
1296 	case e1000_phy_m88:
1297 		/* Auto-MDI/MDIX Off */
1298 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1299 		/* reset to update Auto-MDI/MDIX */
1300 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
1301 		/* autoneg off */
1302 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1303 		break;
1304 	case e1000_phy_gg82563:
1305 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1306 		break;
1307 	case e1000_phy_bm:
1308 		/* Set Default MAC Interface speed to 1GB */
1309 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1310 		phy_reg &= ~0x0007;
1311 		phy_reg |= 0x006;
1312 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1313 		/* Assert SW reset for above settings to take effect */
1314 		e1000e_commit_phy(hw);
1315 		mdelay(1);
1316 		/* Force Full Duplex */
1317 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1318 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1319 		/* Set Link Up (in force link) */
1320 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1321 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1322 		/* Force Link */
1323 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1324 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1325 		/* Set Early Link Enable */
1326 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1327 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1328 		break;
1329 	case e1000_phy_82577:
1330 	case e1000_phy_82578:
1331 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1332 		ret_val = hw->phy.ops.acquire(hw);
1333 		if (ret_val) {
1334 			e_err("Cannot setup 1Gbps loopback.\n");
1335 			return ret_val;
1336 		}
1337 		e1000_configure_k1_ich8lan(hw, false);
1338 		hw->phy.ops.release(hw);
1339 		break;
1340 	case e1000_phy_82579:
1341 		/* Disable PHY energy detect power down */
1342 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1343 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1344 		/* Disable full chip energy detect */
1345 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1346 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1347 		/* Enable loopback on the PHY */
1348 #define I82577_PHY_LBK_CTRL          19
1349 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1350 		break;
1351 	default:
1352 		break;
1353 	}
1354 
1355 	/* force 1000, set loopback */
1356 	e1e_wphy(hw, PHY_CONTROL, 0x4140);
1357 	mdelay(250);
1358 
1359 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1360 	ctrl_reg = er32(CTRL);
1361 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1362 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1363 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1364 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1365 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1366 
1367 	if (adapter->flags & FLAG_IS_ICH)
1368 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1369 
1370 	if (hw->phy.media_type == e1000_media_type_copper &&
1371 	    hw->phy.type == e1000_phy_m88) {
1372 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1373 	} else {
1374 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1375 		 * detected.
1376 		 */
1377 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1378 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1379 	}
1380 
1381 	ew32(CTRL, ctrl_reg);
1382 
1383 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1384 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1385 	 */
1386 	if (hw->phy.type == e1000_phy_m88)
1387 		e1000_phy_disable_receiver(adapter);
1388 
1389 	udelay(500);
1390 
1391 	return 0;
1392 }
1393 
1394 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1395 {
1396 	struct e1000_hw *hw = &adapter->hw;
1397 	u32 ctrl = er32(CTRL);
1398 	int link = 0;
1399 
1400 	/* special requirements for 82571/82572 fiber adapters */
1401 
1402 	/* jump through hoops to make sure link is up because serdes
1403 	 * link is hardwired up
1404 	 */
1405 	ctrl |= E1000_CTRL_SLU;
1406 	ew32(CTRL, ctrl);
1407 
1408 	/* disable autoneg */
1409 	ctrl = er32(TXCW);
1410 	ctrl &= ~(1 << 31);
1411 	ew32(TXCW, ctrl);
1412 
1413 	link = (er32(STATUS) & E1000_STATUS_LU);
1414 
1415 	if (!link) {
1416 		/* set invert loss of signal */
1417 		ctrl = er32(CTRL);
1418 		ctrl |= E1000_CTRL_ILOS;
1419 		ew32(CTRL, ctrl);
1420 	}
1421 
1422 	/* special write to serdes control register to enable SerDes analog
1423 	 * loopback
1424 	 */
1425 #define E1000_SERDES_LB_ON 0x410
1426 	ew32(SCTL, E1000_SERDES_LB_ON);
1427 	e1e_flush();
1428 	usleep_range(10000, 20000);
1429 
1430 	return 0;
1431 }
1432 
1433 /* only call this for fiber/serdes connections to es2lan */
1434 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1435 {
1436 	struct e1000_hw *hw = &adapter->hw;
1437 	u32 ctrlext = er32(CTRL_EXT);
1438 	u32 ctrl = er32(CTRL);
1439 
1440 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1441 	 * on mac_type 80003es2lan)
1442 	 */
1443 	adapter->tx_fifo_head = ctrlext;
1444 
1445 	/* clear the serdes mode bits, putting the device into mac loopback */
1446 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1447 	ew32(CTRL_EXT, ctrlext);
1448 
1449 	/* force speed to 1000/FD, link up */
1450 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1451 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1452 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1453 	ew32(CTRL, ctrl);
1454 
1455 	/* set mac loopback */
1456 	ctrl = er32(RCTL);
1457 	ctrl |= E1000_RCTL_LBM_MAC;
1458 	ew32(RCTL, ctrl);
1459 
1460 	/* set testing mode parameters (no need to reset later) */
1461 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1462 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1463 	ew32(KMRNCTRLSTA,
1464 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1465 
1466 	return 0;
1467 }
1468 
1469 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1470 {
1471 	struct e1000_hw *hw = &adapter->hw;
1472 	u32 rctl;
1473 
1474 	if (hw->phy.media_type == e1000_media_type_fiber ||
1475 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1476 		switch (hw->mac.type) {
1477 		case e1000_80003es2lan:
1478 			return e1000_set_es2lan_mac_loopback(adapter);
1479 			break;
1480 		case e1000_82571:
1481 		case e1000_82572:
1482 			return e1000_set_82571_fiber_loopback(adapter);
1483 			break;
1484 		default:
1485 			rctl = er32(RCTL);
1486 			rctl |= E1000_RCTL_LBM_TCVR;
1487 			ew32(RCTL, rctl);
1488 			return 0;
1489 		}
1490 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1491 		return e1000_integrated_phy_loopback(adapter);
1492 	}
1493 
1494 	return 7;
1495 }
1496 
1497 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1498 {
1499 	struct e1000_hw *hw = &adapter->hw;
1500 	u32 rctl;
1501 	u16 phy_reg;
1502 
1503 	rctl = er32(RCTL);
1504 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1505 	ew32(RCTL, rctl);
1506 
1507 	switch (hw->mac.type) {
1508 	case e1000_80003es2lan:
1509 		if (hw->phy.media_type == e1000_media_type_fiber ||
1510 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1511 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1512 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1513 			adapter->tx_fifo_head = 0;
1514 		}
1515 		/* fall through */
1516 	case e1000_82571:
1517 	case e1000_82572:
1518 		if (hw->phy.media_type == e1000_media_type_fiber ||
1519 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1520 #define E1000_SERDES_LB_OFF 0x400
1521 			ew32(SCTL, E1000_SERDES_LB_OFF);
1522 			e1e_flush();
1523 			usleep_range(10000, 20000);
1524 			break;
1525 		}
1526 		/* Fall Through */
1527 	default:
1528 		hw->mac.autoneg = 1;
1529 		if (hw->phy.type == e1000_phy_gg82563)
1530 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1531 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1532 		if (phy_reg & MII_CR_LOOPBACK) {
1533 			phy_reg &= ~MII_CR_LOOPBACK;
1534 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
1535 			e1000e_commit_phy(hw);
1536 		}
1537 		break;
1538 	}
1539 }
1540 
1541 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1542 				      unsigned int frame_size)
1543 {
1544 	memset(skb->data, 0xFF, frame_size);
1545 	frame_size &= ~1;
1546 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1547 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1548 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1549 }
1550 
1551 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1552 				    unsigned int frame_size)
1553 {
1554 	frame_size &= ~1;
1555 	if (*(skb->data + 3) == 0xFF)
1556 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1557 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1558 			return 0;
1559 	return 13;
1560 }
1561 
1562 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1563 {
1564 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1565 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1566 	struct pci_dev *pdev = adapter->pdev;
1567 	struct e1000_hw *hw = &adapter->hw;
1568 	int i, j, k, l;
1569 	int lc;
1570 	int good_cnt;
1571 	int ret_val = 0;
1572 	unsigned long time;
1573 
1574 	ew32(RDT(0), rx_ring->count - 1);
1575 
1576 	/* Calculate the loop count based on the largest descriptor ring
1577 	 * The idea is to wrap the largest ring a number of times using 64
1578 	 * send/receive pairs during each loop
1579 	 */
1580 
1581 	if (rx_ring->count <= tx_ring->count)
1582 		lc = ((tx_ring->count / 64) * 2) + 1;
1583 	else
1584 		lc = ((rx_ring->count / 64) * 2) + 1;
1585 
1586 	k = 0;
1587 	l = 0;
1588 	for (j = 0; j <= lc; j++) { /* loop count loop */
1589 		for (i = 0; i < 64; i++) { /* send the packets */
1590 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1591 						  1024);
1592 			dma_sync_single_for_device(&pdev->dev,
1593 					tx_ring->buffer_info[k].dma,
1594 					tx_ring->buffer_info[k].length,
1595 					DMA_TO_DEVICE);
1596 			k++;
1597 			if (k == tx_ring->count)
1598 				k = 0;
1599 		}
1600 		ew32(TDT(0), k);
1601 		e1e_flush();
1602 		msleep(200);
1603 		time = jiffies; /* set the start time for the receive */
1604 		good_cnt = 0;
1605 		do { /* receive the sent packets */
1606 			dma_sync_single_for_cpu(&pdev->dev,
1607 					rx_ring->buffer_info[l].dma, 2048,
1608 					DMA_FROM_DEVICE);
1609 
1610 			ret_val = e1000_check_lbtest_frame(
1611 					rx_ring->buffer_info[l].skb, 1024);
1612 			if (!ret_val)
1613 				good_cnt++;
1614 			l++;
1615 			if (l == rx_ring->count)
1616 				l = 0;
1617 			/* time + 20 msecs (200 msecs on 2.4) is more than
1618 			 * enough time to complete the receives, if it's
1619 			 * exceeded, break and error off
1620 			 */
1621 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1622 		if (good_cnt != 64) {
1623 			ret_val = 13; /* ret_val is the same as mis-compare */
1624 			break;
1625 		}
1626 		if (jiffies >= (time + 20)) {
1627 			ret_val = 14; /* error code for time out error */
1628 			break;
1629 		}
1630 	} /* end loop count loop */
1631 	return ret_val;
1632 }
1633 
1634 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1635 {
1636 	struct e1000_hw *hw = &adapter->hw;
1637 
1638 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1639 	if (hw->phy.ops.check_reset_block &&
1640 	    hw->phy.ops.check_reset_block(hw)) {
1641 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1642 		*data = 0;
1643 		goto out;
1644 	}
1645 
1646 	*data = e1000_setup_desc_rings(adapter);
1647 	if (*data)
1648 		goto out;
1649 
1650 	*data = e1000_setup_loopback_test(adapter);
1651 	if (*data)
1652 		goto err_loopback;
1653 
1654 	*data = e1000_run_loopback_test(adapter);
1655 	e1000_loopback_cleanup(adapter);
1656 
1657 err_loopback:
1658 	e1000_free_desc_rings(adapter);
1659 out:
1660 	return *data;
1661 }
1662 
1663 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1664 {
1665 	struct e1000_hw *hw = &adapter->hw;
1666 
1667 	*data = 0;
1668 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1669 		int i = 0;
1670 		hw->mac.serdes_has_link = false;
1671 
1672 		/* On some blade server designs, link establishment
1673 		 * could take as long as 2-3 minutes
1674 		 */
1675 		do {
1676 			hw->mac.ops.check_for_link(hw);
1677 			if (hw->mac.serdes_has_link)
1678 				return *data;
1679 			msleep(20);
1680 		} while (i++ < 3750);
1681 
1682 		*data = 1;
1683 	} else {
1684 		hw->mac.ops.check_for_link(hw);
1685 		if (hw->mac.autoneg)
1686 			/* On some Phy/switch combinations, link establishment
1687 			 * can take a few seconds more than expected.
1688 			 */
1689 			msleep(5000);
1690 
1691 		if (!(er32(STATUS) & E1000_STATUS_LU))
1692 			*data = 1;
1693 	}
1694 	return *data;
1695 }
1696 
1697 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1698 {
1699 	switch (sset) {
1700 	case ETH_SS_TEST:
1701 		return E1000_TEST_LEN;
1702 	case ETH_SS_STATS:
1703 		return E1000_STATS_LEN;
1704 	default:
1705 		return -EOPNOTSUPP;
1706 	}
1707 }
1708 
1709 static void e1000_diag_test(struct net_device *netdev,
1710 			    struct ethtool_test *eth_test, u64 *data)
1711 {
1712 	struct e1000_adapter *adapter = netdev_priv(netdev);
1713 	u16 autoneg_advertised;
1714 	u8 forced_speed_duplex;
1715 	u8 autoneg;
1716 	bool if_running = netif_running(netdev);
1717 
1718 	set_bit(__E1000_TESTING, &adapter->state);
1719 
1720 	if (!if_running) {
1721 		/* Get control of and reset hardware */
1722 		if (adapter->flags & FLAG_HAS_AMT)
1723 			e1000e_get_hw_control(adapter);
1724 
1725 		e1000e_power_up_phy(adapter);
1726 
1727 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1728 		e1000e_reset(adapter);
1729 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1730 	}
1731 
1732 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1733 		/* Offline tests */
1734 
1735 		/* save speed, duplex, autoneg settings */
1736 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1737 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1738 		autoneg = adapter->hw.mac.autoneg;
1739 
1740 		e_info("offline testing starting\n");
1741 
1742 		if (if_running)
1743 			/* indicate we're in test mode */
1744 			dev_close(netdev);
1745 
1746 		if (e1000_reg_test(adapter, &data[0]))
1747 			eth_test->flags |= ETH_TEST_FL_FAILED;
1748 
1749 		e1000e_reset(adapter);
1750 		if (e1000_eeprom_test(adapter, &data[1]))
1751 			eth_test->flags |= ETH_TEST_FL_FAILED;
1752 
1753 		e1000e_reset(adapter);
1754 		if (e1000_intr_test(adapter, &data[2]))
1755 			eth_test->flags |= ETH_TEST_FL_FAILED;
1756 
1757 		e1000e_reset(adapter);
1758 		if (e1000_loopback_test(adapter, &data[3]))
1759 			eth_test->flags |= ETH_TEST_FL_FAILED;
1760 
1761 		/* force this routine to wait until autoneg complete/timeout */
1762 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1763 		e1000e_reset(adapter);
1764 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1765 
1766 		if (e1000_link_test(adapter, &data[4]))
1767 			eth_test->flags |= ETH_TEST_FL_FAILED;
1768 
1769 		/* restore speed, duplex, autoneg settings */
1770 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1771 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1772 		adapter->hw.mac.autoneg = autoneg;
1773 		e1000e_reset(adapter);
1774 
1775 		clear_bit(__E1000_TESTING, &adapter->state);
1776 		if (if_running)
1777 			dev_open(netdev);
1778 	} else {
1779 		/* Online tests */
1780 
1781 		e_info("online testing starting\n");
1782 
1783 		/* register, eeprom, intr and loopback tests not run online */
1784 		data[0] = 0;
1785 		data[1] = 0;
1786 		data[2] = 0;
1787 		data[3] = 0;
1788 
1789 		if (e1000_link_test(adapter, &data[4]))
1790 			eth_test->flags |= ETH_TEST_FL_FAILED;
1791 
1792 		clear_bit(__E1000_TESTING, &adapter->state);
1793 	}
1794 
1795 	if (!if_running) {
1796 		e1000e_reset(adapter);
1797 
1798 		if (adapter->flags & FLAG_HAS_AMT)
1799 			e1000e_release_hw_control(adapter);
1800 	}
1801 
1802 	msleep_interruptible(4 * 1000);
1803 }
1804 
1805 static void e1000_get_wol(struct net_device *netdev,
1806 			  struct ethtool_wolinfo *wol)
1807 {
1808 	struct e1000_adapter *adapter = netdev_priv(netdev);
1809 
1810 	wol->supported = 0;
1811 	wol->wolopts = 0;
1812 
1813 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1814 	    !device_can_wakeup(&adapter->pdev->dev))
1815 		return;
1816 
1817 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1818 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1819 
1820 	/* apply any specific unsupported masks here */
1821 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1822 		wol->supported &= ~WAKE_UCAST;
1823 
1824 		if (adapter->wol & E1000_WUFC_EX)
1825 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1826 	}
1827 
1828 	if (adapter->wol & E1000_WUFC_EX)
1829 		wol->wolopts |= WAKE_UCAST;
1830 	if (adapter->wol & E1000_WUFC_MC)
1831 		wol->wolopts |= WAKE_MCAST;
1832 	if (adapter->wol & E1000_WUFC_BC)
1833 		wol->wolopts |= WAKE_BCAST;
1834 	if (adapter->wol & E1000_WUFC_MAG)
1835 		wol->wolopts |= WAKE_MAGIC;
1836 	if (adapter->wol & E1000_WUFC_LNKC)
1837 		wol->wolopts |= WAKE_PHY;
1838 }
1839 
1840 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1841 {
1842 	struct e1000_adapter *adapter = netdev_priv(netdev);
1843 
1844 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1845 	    !device_can_wakeup(&adapter->pdev->dev) ||
1846 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1847 			      WAKE_MAGIC | WAKE_PHY)))
1848 		return -EOPNOTSUPP;
1849 
1850 	/* these settings will always override what we currently have */
1851 	adapter->wol = 0;
1852 
1853 	if (wol->wolopts & WAKE_UCAST)
1854 		adapter->wol |= E1000_WUFC_EX;
1855 	if (wol->wolopts & WAKE_MCAST)
1856 		adapter->wol |= E1000_WUFC_MC;
1857 	if (wol->wolopts & WAKE_BCAST)
1858 		adapter->wol |= E1000_WUFC_BC;
1859 	if (wol->wolopts & WAKE_MAGIC)
1860 		adapter->wol |= E1000_WUFC_MAG;
1861 	if (wol->wolopts & WAKE_PHY)
1862 		adapter->wol |= E1000_WUFC_LNKC;
1863 
1864 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1865 
1866 	return 0;
1867 }
1868 
1869 static int e1000_set_phys_id(struct net_device *netdev,
1870 			     enum ethtool_phys_id_state state)
1871 {
1872 	struct e1000_adapter *adapter = netdev_priv(netdev);
1873 	struct e1000_hw *hw = &adapter->hw;
1874 
1875 	switch (state) {
1876 	case ETHTOOL_ID_ACTIVE:
1877 		if (!hw->mac.ops.blink_led)
1878 			return 2;	/* cycle on/off twice per second */
1879 
1880 		hw->mac.ops.blink_led(hw);
1881 		break;
1882 
1883 	case ETHTOOL_ID_INACTIVE:
1884 		if (hw->phy.type == e1000_phy_ife)
1885 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1886 		hw->mac.ops.led_off(hw);
1887 		hw->mac.ops.cleanup_led(hw);
1888 		break;
1889 
1890 	case ETHTOOL_ID_ON:
1891 		hw->mac.ops.led_on(hw);
1892 		break;
1893 
1894 	case ETHTOOL_ID_OFF:
1895 		hw->mac.ops.led_off(hw);
1896 		break;
1897 	}
1898 	return 0;
1899 }
1900 
1901 static int e1000_get_coalesce(struct net_device *netdev,
1902 			      struct ethtool_coalesce *ec)
1903 {
1904 	struct e1000_adapter *adapter = netdev_priv(netdev);
1905 
1906 	if (adapter->itr_setting <= 4)
1907 		ec->rx_coalesce_usecs = adapter->itr_setting;
1908 	else
1909 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1910 
1911 	return 0;
1912 }
1913 
1914 static int e1000_set_coalesce(struct net_device *netdev,
1915 			      struct ethtool_coalesce *ec)
1916 {
1917 	struct e1000_adapter *adapter = netdev_priv(netdev);
1918 
1919 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1920 	    ((ec->rx_coalesce_usecs > 4) &&
1921 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1922 	    (ec->rx_coalesce_usecs == 2))
1923 		return -EINVAL;
1924 
1925 	if (ec->rx_coalesce_usecs == 4) {
1926 		adapter->itr_setting = 4;
1927 		adapter->itr = adapter->itr_setting;
1928 	} else if (ec->rx_coalesce_usecs <= 3) {
1929 		adapter->itr = 20000;
1930 		adapter->itr_setting = ec->rx_coalesce_usecs;
1931 	} else {
1932 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1933 		adapter->itr_setting = adapter->itr & ~3;
1934 	}
1935 
1936 	if (adapter->itr_setting != 0)
1937 		e1000e_write_itr(adapter, adapter->itr);
1938 	else
1939 		e1000e_write_itr(adapter, 0);
1940 
1941 	return 0;
1942 }
1943 
1944 static int e1000_nway_reset(struct net_device *netdev)
1945 {
1946 	struct e1000_adapter *adapter = netdev_priv(netdev);
1947 
1948 	if (!netif_running(netdev))
1949 		return -EAGAIN;
1950 
1951 	if (!adapter->hw.mac.autoneg)
1952 		return -EINVAL;
1953 
1954 	e1000e_reinit_locked(adapter);
1955 
1956 	return 0;
1957 }
1958 
1959 static void e1000_get_ethtool_stats(struct net_device *netdev,
1960 				    struct ethtool_stats *stats,
1961 				    u64 *data)
1962 {
1963 	struct e1000_adapter *adapter = netdev_priv(netdev);
1964 	struct rtnl_link_stats64 net_stats;
1965 	int i;
1966 	char *p = NULL;
1967 
1968 	e1000e_get_stats64(netdev, &net_stats);
1969 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1970 		switch (e1000_gstrings_stats[i].type) {
1971 		case NETDEV_STATS:
1972 			p = (char *) &net_stats +
1973 					e1000_gstrings_stats[i].stat_offset;
1974 			break;
1975 		case E1000_STATS:
1976 			p = (char *) adapter +
1977 					e1000_gstrings_stats[i].stat_offset;
1978 			break;
1979 		default:
1980 			data[i] = 0;
1981 			continue;
1982 		}
1983 
1984 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1985 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1986 	}
1987 }
1988 
1989 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1990 			      u8 *data)
1991 {
1992 	u8 *p = data;
1993 	int i;
1994 
1995 	switch (stringset) {
1996 	case ETH_SS_TEST:
1997 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1998 		break;
1999 	case ETH_SS_STATS:
2000 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2001 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2002 			       ETH_GSTRING_LEN);
2003 			p += ETH_GSTRING_LEN;
2004 		}
2005 		break;
2006 	}
2007 }
2008 
2009 static int e1000_get_rxnfc(struct net_device *netdev,
2010 			   struct ethtool_rxnfc *info, u32 *rule_locs)
2011 {
2012 	info->data = 0;
2013 
2014 	switch (info->cmd) {
2015 	case ETHTOOL_GRXFH: {
2016 		struct e1000_adapter *adapter = netdev_priv(netdev);
2017 		struct e1000_hw *hw = &adapter->hw;
2018 		u32 mrqc = er32(MRQC);
2019 
2020 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2021 			return 0;
2022 
2023 		switch (info->flow_type) {
2024 		case TCP_V4_FLOW:
2025 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2026 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2027 			/* fall through */
2028 		case UDP_V4_FLOW:
2029 		case SCTP_V4_FLOW:
2030 		case AH_ESP_V4_FLOW:
2031 		case IPV4_FLOW:
2032 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2033 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2034 			break;
2035 		case TCP_V6_FLOW:
2036 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2037 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2038 			/* fall through */
2039 		case UDP_V6_FLOW:
2040 		case SCTP_V6_FLOW:
2041 		case AH_ESP_V6_FLOW:
2042 		case IPV6_FLOW:
2043 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2044 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2045 			break;
2046 		default:
2047 			break;
2048 		}
2049 		return 0;
2050 	}
2051 	default:
2052 		return -EOPNOTSUPP;
2053 	}
2054 }
2055 
2056 static const struct ethtool_ops e1000_ethtool_ops = {
2057 	.get_settings		= e1000_get_settings,
2058 	.set_settings		= e1000_set_settings,
2059 	.get_drvinfo		= e1000_get_drvinfo,
2060 	.get_regs_len		= e1000_get_regs_len,
2061 	.get_regs		= e1000_get_regs,
2062 	.get_wol		= e1000_get_wol,
2063 	.set_wol		= e1000_set_wol,
2064 	.get_msglevel		= e1000_get_msglevel,
2065 	.set_msglevel		= e1000_set_msglevel,
2066 	.nway_reset		= e1000_nway_reset,
2067 	.get_link		= ethtool_op_get_link,
2068 	.get_eeprom_len		= e1000_get_eeprom_len,
2069 	.get_eeprom		= e1000_get_eeprom,
2070 	.set_eeprom		= e1000_set_eeprom,
2071 	.get_ringparam		= e1000_get_ringparam,
2072 	.set_ringparam		= e1000_set_ringparam,
2073 	.get_pauseparam		= e1000_get_pauseparam,
2074 	.set_pauseparam		= e1000_set_pauseparam,
2075 	.self_test		= e1000_diag_test,
2076 	.get_strings		= e1000_get_strings,
2077 	.set_phys_id		= e1000_set_phys_id,
2078 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2079 	.get_sset_count		= e1000e_get_sset_count,
2080 	.get_coalesce		= e1000_get_coalesce,
2081 	.set_coalesce		= e1000_set_coalesce,
2082 	.get_rxnfc		= e1000_get_rxnfc,
2083 	.get_ts_info		= ethtool_op_get_ts_info,
2084 };
2085 
2086 void e1000e_set_ethtool_ops(struct net_device *netdev)
2087 {
2088 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2089 }
2090