xref: /linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 
38 #include "e1000.h"
39 
40 enum {NETDEV_STATS, E1000_STATS};
41 
42 struct e1000_stats {
43 	char stat_string[ETH_GSTRING_LEN];
44 	int type;
45 	int sizeof_stat;
46 	int stat_offset;
47 };
48 
49 #define E1000_STAT(str, m) { \
50 		.stat_string = str, \
51 		.type = E1000_STATS, \
52 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
53 		.stat_offset = offsetof(struct e1000_adapter, m) }
54 #define E1000_NETDEV_STAT(str, m) { \
55 		.stat_string = str, \
56 		.type = NETDEV_STATS, \
57 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
58 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
59 
60 static const struct e1000_stats e1000_gstrings_stats[] = {
61 	E1000_STAT("rx_packets", stats.gprc),
62 	E1000_STAT("tx_packets", stats.gptc),
63 	E1000_STAT("rx_bytes", stats.gorc),
64 	E1000_STAT("tx_bytes", stats.gotc),
65 	E1000_STAT("rx_broadcast", stats.bprc),
66 	E1000_STAT("tx_broadcast", stats.bptc),
67 	E1000_STAT("rx_multicast", stats.mprc),
68 	E1000_STAT("tx_multicast", stats.mptc),
69 	E1000_NETDEV_STAT("rx_errors", rx_errors),
70 	E1000_NETDEV_STAT("tx_errors", tx_errors),
71 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
72 	E1000_STAT("multicast", stats.mprc),
73 	E1000_STAT("collisions", stats.colc),
74 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
75 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
76 	E1000_STAT("rx_crc_errors", stats.crcerrs),
77 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
78 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
79 	E1000_STAT("rx_missed_errors", stats.mpc),
80 	E1000_STAT("tx_aborted_errors", stats.ecol),
81 	E1000_STAT("tx_carrier_errors", stats.tncrs),
82 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
83 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
84 	E1000_STAT("tx_window_errors", stats.latecol),
85 	E1000_STAT("tx_abort_late_coll", stats.latecol),
86 	E1000_STAT("tx_deferred_ok", stats.dc),
87 	E1000_STAT("tx_single_coll_ok", stats.scc),
88 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
89 	E1000_STAT("tx_timeout_count", tx_timeout_count),
90 	E1000_STAT("tx_restart_queue", restart_queue),
91 	E1000_STAT("rx_long_length_errors", stats.roc),
92 	E1000_STAT("rx_short_length_errors", stats.ruc),
93 	E1000_STAT("rx_align_errors", stats.algnerrc),
94 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
95 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
96 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
97 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
98 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
99 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
100 	E1000_STAT("rx_long_byte_count", stats.gorc),
101 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
102 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
103 	E1000_STAT("rx_header_split", rx_hdr_split),
104 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
105 	E1000_STAT("tx_smbus", stats.mgptc),
106 	E1000_STAT("rx_smbus", stats.mgprc),
107 	E1000_STAT("dropped_smbus", stats.mgpdc),
108 	E1000_STAT("rx_dma_failed", rx_dma_failed),
109 	E1000_STAT("tx_dma_failed", tx_dma_failed),
110 };
111 
112 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
113 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
114 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
115 	"Register test  (offline)", "Eeprom test    (offline)",
116 	"Interrupt test (offline)", "Loopback test  (offline)",
117 	"Link test   (on/offline)"
118 };
119 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120 
121 static int e1000_get_settings(struct net_device *netdev,
122 			      struct ethtool_cmd *ecmd)
123 {
124 	struct e1000_adapter *adapter = netdev_priv(netdev);
125 	struct e1000_hw *hw = &adapter->hw;
126 	u32 speed;
127 
128 	if (hw->phy.media_type == e1000_media_type_copper) {
129 
130 		ecmd->supported = (SUPPORTED_10baseT_Half |
131 				   SUPPORTED_10baseT_Full |
132 				   SUPPORTED_100baseT_Half |
133 				   SUPPORTED_100baseT_Full |
134 				   SUPPORTED_1000baseT_Full |
135 				   SUPPORTED_Autoneg |
136 				   SUPPORTED_TP);
137 		if (hw->phy.type == e1000_phy_ife)
138 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
139 		ecmd->advertising = ADVERTISED_TP;
140 
141 		if (hw->mac.autoneg == 1) {
142 			ecmd->advertising |= ADVERTISED_Autoneg;
143 			/* the e1000 autoneg seems to match ethtool nicely */
144 			ecmd->advertising |= hw->phy.autoneg_advertised;
145 		}
146 
147 		ecmd->port = PORT_TP;
148 		ecmd->phy_address = hw->phy.addr;
149 		ecmd->transceiver = XCVR_INTERNAL;
150 
151 	} else {
152 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
153 				     SUPPORTED_FIBRE |
154 				     SUPPORTED_Autoneg);
155 
156 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
157 				     ADVERTISED_FIBRE |
158 				     ADVERTISED_Autoneg);
159 
160 		ecmd->port = PORT_FIBRE;
161 		ecmd->transceiver = XCVR_EXTERNAL;
162 	}
163 
164 	speed = -1;
165 	ecmd->duplex = -1;
166 
167 	if (netif_running(netdev)) {
168 		if (netif_carrier_ok(netdev)) {
169 			speed = adapter->link_speed;
170 			ecmd->duplex = adapter->link_duplex - 1;
171 		}
172 	} else {
173 		u32 status = er32(STATUS);
174 		if (status & E1000_STATUS_LU) {
175 			if (status & E1000_STATUS_SPEED_1000)
176 				speed = SPEED_1000;
177 			else if (status & E1000_STATUS_SPEED_100)
178 				speed = SPEED_100;
179 			else
180 				speed = SPEED_10;
181 
182 			if (status & E1000_STATUS_FD)
183 				ecmd->duplex = DUPLEX_FULL;
184 			else
185 				ecmd->duplex = DUPLEX_HALF;
186 		}
187 	}
188 
189 	ethtool_cmd_speed_set(ecmd, speed);
190 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
191 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
192 
193 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
194 	if ((hw->phy.media_type == e1000_media_type_copper) &&
195 	    netif_carrier_ok(netdev))
196 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
197 		                                      ETH_TP_MDI;
198 	else
199 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
200 
201 	return 0;
202 }
203 
204 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
205 {
206 	struct e1000_mac_info *mac = &adapter->hw.mac;
207 
208 	mac->autoneg = 0;
209 
210 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
211 	 * for the switch() below to work */
212 	if ((spd & 1) || (dplx & ~1))
213 		goto err_inval;
214 
215 	/* Fiber NICs only allow 1000 gbps Full duplex */
216 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 	    spd != SPEED_1000 &&
218 	    dplx != DUPLEX_FULL) {
219 		goto err_inval;
220 	}
221 
222 	switch (spd + dplx) {
223 	case SPEED_10 + DUPLEX_HALF:
224 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
225 		break;
226 	case SPEED_10 + DUPLEX_FULL:
227 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
228 		break;
229 	case SPEED_100 + DUPLEX_HALF:
230 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
231 		break;
232 	case SPEED_100 + DUPLEX_FULL:
233 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
234 		break;
235 	case SPEED_1000 + DUPLEX_FULL:
236 		mac->autoneg = 1;
237 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
238 		break;
239 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
240 	default:
241 		goto err_inval;
242 	}
243 	return 0;
244 
245 err_inval:
246 	e_err("Unsupported Speed/Duplex configuration\n");
247 	return -EINVAL;
248 }
249 
250 static int e1000_set_settings(struct net_device *netdev,
251 			      struct ethtool_cmd *ecmd)
252 {
253 	struct e1000_adapter *adapter = netdev_priv(netdev);
254 	struct e1000_hw *hw = &adapter->hw;
255 
256 	/*
257 	 * When SoL/IDER sessions are active, autoneg/speed/duplex
258 	 * cannot be changed
259 	 */
260 	if (e1000_check_reset_block(hw)) {
261 		e_err("Cannot change link characteristics when SoL/IDER is "
262 		      "active.\n");
263 		return -EINVAL;
264 	}
265 
266 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
267 		usleep_range(1000, 2000);
268 
269 	if (ecmd->autoneg == AUTONEG_ENABLE) {
270 		hw->mac.autoneg = 1;
271 		if (hw->phy.media_type == e1000_media_type_fiber)
272 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
273 						     ADVERTISED_FIBRE |
274 						     ADVERTISED_Autoneg;
275 		else
276 			hw->phy.autoneg_advertised = ecmd->advertising |
277 						     ADVERTISED_TP |
278 						     ADVERTISED_Autoneg;
279 		ecmd->advertising = hw->phy.autoneg_advertised;
280 		if (adapter->fc_autoneg)
281 			hw->fc.requested_mode = e1000_fc_default;
282 	} else {
283 		u32 speed = ethtool_cmd_speed(ecmd);
284 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
285 			clear_bit(__E1000_RESETTING, &adapter->state);
286 			return -EINVAL;
287 		}
288 	}
289 
290 	/* reset the link */
291 
292 	if (netif_running(adapter->netdev)) {
293 		e1000e_down(adapter);
294 		e1000e_up(adapter);
295 	} else {
296 		e1000e_reset(adapter);
297 	}
298 
299 	clear_bit(__E1000_RESETTING, &adapter->state);
300 	return 0;
301 }
302 
303 static void e1000_get_pauseparam(struct net_device *netdev,
304 				 struct ethtool_pauseparam *pause)
305 {
306 	struct e1000_adapter *adapter = netdev_priv(netdev);
307 	struct e1000_hw *hw = &adapter->hw;
308 
309 	pause->autoneg =
310 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
311 
312 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
313 		pause->rx_pause = 1;
314 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
315 		pause->tx_pause = 1;
316 	} else if (hw->fc.current_mode == e1000_fc_full) {
317 		pause->rx_pause = 1;
318 		pause->tx_pause = 1;
319 	}
320 }
321 
322 static int e1000_set_pauseparam(struct net_device *netdev,
323 				struct ethtool_pauseparam *pause)
324 {
325 	struct e1000_adapter *adapter = netdev_priv(netdev);
326 	struct e1000_hw *hw = &adapter->hw;
327 	int retval = 0;
328 
329 	adapter->fc_autoneg = pause->autoneg;
330 
331 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
332 		usleep_range(1000, 2000);
333 
334 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
335 		hw->fc.requested_mode = e1000_fc_default;
336 		if (netif_running(adapter->netdev)) {
337 			e1000e_down(adapter);
338 			e1000e_up(adapter);
339 		} else {
340 			e1000e_reset(adapter);
341 		}
342 	} else {
343 		if (pause->rx_pause && pause->tx_pause)
344 			hw->fc.requested_mode = e1000_fc_full;
345 		else if (pause->rx_pause && !pause->tx_pause)
346 			hw->fc.requested_mode = e1000_fc_rx_pause;
347 		else if (!pause->rx_pause && pause->tx_pause)
348 			hw->fc.requested_mode = e1000_fc_tx_pause;
349 		else if (!pause->rx_pause && !pause->tx_pause)
350 			hw->fc.requested_mode = e1000_fc_none;
351 
352 		hw->fc.current_mode = hw->fc.requested_mode;
353 
354 		if (hw->phy.media_type == e1000_media_type_fiber) {
355 			retval = hw->mac.ops.setup_link(hw);
356 			/* implicit goto out */
357 		} else {
358 			retval = e1000e_force_mac_fc(hw);
359 			if (retval)
360 				goto out;
361 			e1000e_set_fc_watermarks(hw);
362 		}
363 	}
364 
365 out:
366 	clear_bit(__E1000_RESETTING, &adapter->state);
367 	return retval;
368 }
369 
370 static u32 e1000_get_msglevel(struct net_device *netdev)
371 {
372 	struct e1000_adapter *adapter = netdev_priv(netdev);
373 	return adapter->msg_enable;
374 }
375 
376 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
377 {
378 	struct e1000_adapter *adapter = netdev_priv(netdev);
379 	adapter->msg_enable = data;
380 }
381 
382 static int e1000_get_regs_len(struct net_device *netdev)
383 {
384 #define E1000_REGS_LEN 32 /* overestimate */
385 	return E1000_REGS_LEN * sizeof(u32);
386 }
387 
388 static void e1000_get_regs(struct net_device *netdev,
389 			   struct ethtool_regs *regs, void *p)
390 {
391 	struct e1000_adapter *adapter = netdev_priv(netdev);
392 	struct e1000_hw *hw = &adapter->hw;
393 	u32 *regs_buff = p;
394 	u16 phy_data;
395 
396 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
397 
398 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
399 			adapter->pdev->device;
400 
401 	regs_buff[0]  = er32(CTRL);
402 	regs_buff[1]  = er32(STATUS);
403 
404 	regs_buff[2]  = er32(RCTL);
405 	regs_buff[3]  = er32(RDLEN);
406 	regs_buff[4]  = er32(RDH);
407 	regs_buff[5]  = er32(RDT);
408 	regs_buff[6]  = er32(RDTR);
409 
410 	regs_buff[7]  = er32(TCTL);
411 	regs_buff[8]  = er32(TDLEN);
412 	regs_buff[9]  = er32(TDH);
413 	regs_buff[10] = er32(TDT);
414 	regs_buff[11] = er32(TIDV);
415 
416 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
417 
418 	/* ethtool doesn't use anything past this point, so all this
419 	 * code is likely legacy junk for apps that may or may not
420 	 * exist */
421 	if (hw->phy.type == e1000_phy_m88) {
422 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
423 		regs_buff[13] = (u32)phy_data; /* cable length */
424 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
425 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
427 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
428 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
429 		regs_buff[18] = regs_buff[13]; /* cable polarity */
430 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
431 		regs_buff[20] = regs_buff[17]; /* polarity correction */
432 		/* phy receive errors */
433 		regs_buff[22] = adapter->phy_stats.receive_errors;
434 		regs_buff[23] = regs_buff[13]; /* mdix mode */
435 	}
436 	regs_buff[21] = 0; /* was idle_errors */
437 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
438 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
439 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
440 }
441 
442 static int e1000_get_eeprom_len(struct net_device *netdev)
443 {
444 	struct e1000_adapter *adapter = netdev_priv(netdev);
445 	return adapter->hw.nvm.word_size * 2;
446 }
447 
448 static int e1000_get_eeprom(struct net_device *netdev,
449 			    struct ethtool_eeprom *eeprom, u8 *bytes)
450 {
451 	struct e1000_adapter *adapter = netdev_priv(netdev);
452 	struct e1000_hw *hw = &adapter->hw;
453 	u16 *eeprom_buff;
454 	int first_word;
455 	int last_word;
456 	int ret_val = 0;
457 	u16 i;
458 
459 	if (eeprom->len == 0)
460 		return -EINVAL;
461 
462 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
463 
464 	first_word = eeprom->offset >> 1;
465 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
466 
467 	eeprom_buff = kmalloc(sizeof(u16) *
468 			(last_word - first_word + 1), GFP_KERNEL);
469 	if (!eeprom_buff)
470 		return -ENOMEM;
471 
472 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
473 		ret_val = e1000_read_nvm(hw, first_word,
474 					 last_word - first_word + 1,
475 					 eeprom_buff);
476 	} else {
477 		for (i = 0; i < last_word - first_word + 1; i++) {
478 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
479 						      &eeprom_buff[i]);
480 			if (ret_val)
481 				break;
482 		}
483 	}
484 
485 	if (ret_val) {
486 		/* a read error occurred, throw away the result */
487 		memset(eeprom_buff, 0xff, sizeof(u16) *
488 		       (last_word - first_word + 1));
489 	} else {
490 		/* Device's eeprom is always little-endian, word addressable */
491 		for (i = 0; i < last_word - first_word + 1; i++)
492 			le16_to_cpus(&eeprom_buff[i]);
493 	}
494 
495 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
496 	kfree(eeprom_buff);
497 
498 	return ret_val;
499 }
500 
501 static int e1000_set_eeprom(struct net_device *netdev,
502 			    struct ethtool_eeprom *eeprom, u8 *bytes)
503 {
504 	struct e1000_adapter *adapter = netdev_priv(netdev);
505 	struct e1000_hw *hw = &adapter->hw;
506 	u16 *eeprom_buff;
507 	void *ptr;
508 	int max_len;
509 	int first_word;
510 	int last_word;
511 	int ret_val = 0;
512 	u16 i;
513 
514 	if (eeprom->len == 0)
515 		return -EOPNOTSUPP;
516 
517 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
518 		return -EFAULT;
519 
520 	if (adapter->flags & FLAG_READ_ONLY_NVM)
521 		return -EINVAL;
522 
523 	max_len = hw->nvm.word_size * 2;
524 
525 	first_word = eeprom->offset >> 1;
526 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
527 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
528 	if (!eeprom_buff)
529 		return -ENOMEM;
530 
531 	ptr = (void *)eeprom_buff;
532 
533 	if (eeprom->offset & 1) {
534 		/* need read/modify/write of first changed EEPROM word */
535 		/* only the second byte of the word is being modified */
536 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
537 		ptr++;
538 	}
539 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
540 		/* need read/modify/write of last changed EEPROM word */
541 		/* only the first byte of the word is being modified */
542 		ret_val = e1000_read_nvm(hw, last_word, 1,
543 				  &eeprom_buff[last_word - first_word]);
544 
545 	if (ret_val)
546 		goto out;
547 
548 	/* Device's eeprom is always little-endian, word addressable */
549 	for (i = 0; i < last_word - first_word + 1; i++)
550 		le16_to_cpus(&eeprom_buff[i]);
551 
552 	memcpy(ptr, bytes, eeprom->len);
553 
554 	for (i = 0; i < last_word - first_word + 1; i++)
555 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
556 
557 	ret_val = e1000_write_nvm(hw, first_word,
558 				  last_word - first_word + 1, eeprom_buff);
559 
560 	if (ret_val)
561 		goto out;
562 
563 	/*
564 	 * Update the checksum over the first part of the EEPROM if needed
565 	 * and flush shadow RAM for applicable controllers
566 	 */
567 	if ((first_word <= NVM_CHECKSUM_REG) ||
568 	    (hw->mac.type == e1000_82583) ||
569 	    (hw->mac.type == e1000_82574) ||
570 	    (hw->mac.type == e1000_82573))
571 		ret_val = e1000e_update_nvm_checksum(hw);
572 
573 out:
574 	kfree(eeprom_buff);
575 	return ret_val;
576 }
577 
578 static void e1000_get_drvinfo(struct net_device *netdev,
579 			      struct ethtool_drvinfo *drvinfo)
580 {
581 	struct e1000_adapter *adapter = netdev_priv(netdev);
582 
583 	strlcpy(drvinfo->driver,  e1000e_driver_name,
584 		sizeof(drvinfo->driver));
585 	strlcpy(drvinfo->version, e1000e_driver_version,
586 		sizeof(drvinfo->version));
587 
588 	/*
589 	 * EEPROM image version # is reported as firmware version # for
590 	 * PCI-E controllers
591 	 */
592 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
593 		"%d.%d-%d",
594 		(adapter->eeprom_vers & 0xF000) >> 12,
595 		(adapter->eeprom_vers & 0x0FF0) >> 4,
596 		(adapter->eeprom_vers & 0x000F));
597 
598 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
599 		sizeof(drvinfo->bus_info));
600 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
601 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
602 }
603 
604 static void e1000_get_ringparam(struct net_device *netdev,
605 				struct ethtool_ringparam *ring)
606 {
607 	struct e1000_adapter *adapter = netdev_priv(netdev);
608 	struct e1000_ring *tx_ring = adapter->tx_ring;
609 	struct e1000_ring *rx_ring = adapter->rx_ring;
610 
611 	ring->rx_max_pending = E1000_MAX_RXD;
612 	ring->tx_max_pending = E1000_MAX_TXD;
613 	ring->rx_pending = rx_ring->count;
614 	ring->tx_pending = tx_ring->count;
615 }
616 
617 static int e1000_set_ringparam(struct net_device *netdev,
618 			       struct ethtool_ringparam *ring)
619 {
620 	struct e1000_adapter *adapter = netdev_priv(netdev);
621 	struct e1000_ring *tx_ring, *tx_old;
622 	struct e1000_ring *rx_ring, *rx_old;
623 	int err;
624 
625 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
626 		return -EINVAL;
627 
628 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
629 		usleep_range(1000, 2000);
630 
631 	if (netif_running(adapter->netdev))
632 		e1000e_down(adapter);
633 
634 	tx_old = adapter->tx_ring;
635 	rx_old = adapter->rx_ring;
636 
637 	err = -ENOMEM;
638 	tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
639 	if (!tx_ring)
640 		goto err_alloc_tx;
641 
642 	rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
643 	if (!rx_ring)
644 		goto err_alloc_rx;
645 
646 	adapter->tx_ring = tx_ring;
647 	adapter->rx_ring = rx_ring;
648 
649 	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
650 	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
651 	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
652 
653 	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
654 	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
655 	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
656 
657 	if (netif_running(adapter->netdev)) {
658 		/* Try to get new resources before deleting old */
659 		err = e1000e_setup_rx_resources(adapter);
660 		if (err)
661 			goto err_setup_rx;
662 		err = e1000e_setup_tx_resources(adapter);
663 		if (err)
664 			goto err_setup_tx;
665 
666 		/*
667 		 * restore the old in order to free it,
668 		 * then add in the new
669 		 */
670 		adapter->rx_ring = rx_old;
671 		adapter->tx_ring = tx_old;
672 		e1000e_free_rx_resources(adapter);
673 		e1000e_free_tx_resources(adapter);
674 		kfree(tx_old);
675 		kfree(rx_old);
676 		adapter->rx_ring = rx_ring;
677 		adapter->tx_ring = tx_ring;
678 		err = e1000e_up(adapter);
679 		if (err)
680 			goto err_setup;
681 	}
682 
683 	clear_bit(__E1000_RESETTING, &adapter->state);
684 	return 0;
685 err_setup_tx:
686 	e1000e_free_rx_resources(adapter);
687 err_setup_rx:
688 	adapter->rx_ring = rx_old;
689 	adapter->tx_ring = tx_old;
690 	kfree(rx_ring);
691 err_alloc_rx:
692 	kfree(tx_ring);
693 err_alloc_tx:
694 	e1000e_up(adapter);
695 err_setup:
696 	clear_bit(__E1000_RESETTING, &adapter->state);
697 	return err;
698 }
699 
700 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
701 			     int reg, int offset, u32 mask, u32 write)
702 {
703 	u32 pat, val;
704 	static const u32 test[] = {
705 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
706 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
707 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
708 				      (test[pat] & write));
709 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
710 		if (val != (test[pat] & write & mask)) {
711 			e_err("pattern test reg %04X failed: got 0x%08X "
712 			      "expected 0x%08X\n", reg + offset, val,
713 			      (test[pat] & write & mask));
714 			*data = reg;
715 			return 1;
716 		}
717 	}
718 	return 0;
719 }
720 
721 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
722 			      int reg, u32 mask, u32 write)
723 {
724 	u32 val;
725 	__ew32(&adapter->hw, reg, write & mask);
726 	val = __er32(&adapter->hw, reg);
727 	if ((write & mask) != (val & mask)) {
728 		e_err("set/check reg %04X test failed: got 0x%08X "
729 		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
730 		*data = reg;
731 		return 1;
732 	}
733 	return 0;
734 }
735 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
736 	do {                                                                   \
737 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
738 			return 1;                                              \
739 	} while (0)
740 #define REG_PATTERN_TEST(reg, mask, write)                                     \
741 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
742 
743 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
744 	do {                                                                   \
745 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
746 			return 1;                                              \
747 	} while (0)
748 
749 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
750 {
751 	struct e1000_hw *hw = &adapter->hw;
752 	struct e1000_mac_info *mac = &adapter->hw.mac;
753 	u32 value;
754 	u32 before;
755 	u32 after;
756 	u32 i;
757 	u32 toggle;
758 	u32 mask;
759 
760 	/*
761 	 * The status register is Read Only, so a write should fail.
762 	 * Some bits that get toggled are ignored.
763 	 */
764 	switch (mac->type) {
765 	/* there are several bits on newer hardware that are r/w */
766 	case e1000_82571:
767 	case e1000_82572:
768 	case e1000_80003es2lan:
769 		toggle = 0x7FFFF3FF;
770 		break;
771         default:
772 		toggle = 0x7FFFF033;
773 		break;
774 	}
775 
776 	before = er32(STATUS);
777 	value = (er32(STATUS) & toggle);
778 	ew32(STATUS, toggle);
779 	after = er32(STATUS) & toggle;
780 	if (value != after) {
781 		e_err("failed STATUS register test got: 0x%08X expected: "
782 		      "0x%08X\n", after, value);
783 		*data = 1;
784 		return 1;
785 	}
786 	/* restore previous status */
787 	ew32(STATUS, before);
788 
789 	if (!(adapter->flags & FLAG_IS_ICH)) {
790 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
791 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
792 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
793 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
794 	}
795 
796 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
797 	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
798 	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
799 	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
800 	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
801 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
802 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
803 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
804 	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
805 	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
806 
807 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
808 
809 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
810 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
811 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
812 
813 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
814 	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
815 	if (!(adapter->flags & FLAG_IS_ICH))
816 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
817 	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
818 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
819 	mask = 0x8003FFFF;
820 	switch (mac->type) {
821 	case e1000_ich10lan:
822 	case e1000_pchlan:
823 	case e1000_pch2lan:
824 		mask |= (1 << 18);
825 		break;
826 	default:
827 		break;
828 	}
829 	for (i = 0; i < mac->rar_entry_count; i++)
830 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
831 		                       mask, 0xFFFFFFFF);
832 
833 	for (i = 0; i < mac->mta_reg_count; i++)
834 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
835 
836 	*data = 0;
837 	return 0;
838 }
839 
840 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
841 {
842 	u16 temp;
843 	u16 checksum = 0;
844 	u16 i;
845 
846 	*data = 0;
847 	/* Read and add up the contents of the EEPROM */
848 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
849 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
850 			*data = 1;
851 			return *data;
852 		}
853 		checksum += temp;
854 	}
855 
856 	/* If Checksum is not Correct return error else test passed */
857 	if ((checksum != (u16) NVM_SUM) && !(*data))
858 		*data = 2;
859 
860 	return *data;
861 }
862 
863 static irqreturn_t e1000_test_intr(int irq, void *data)
864 {
865 	struct net_device *netdev = (struct net_device *) data;
866 	struct e1000_adapter *adapter = netdev_priv(netdev);
867 	struct e1000_hw *hw = &adapter->hw;
868 
869 	adapter->test_icr |= er32(ICR);
870 
871 	return IRQ_HANDLED;
872 }
873 
874 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
875 {
876 	struct net_device *netdev = adapter->netdev;
877 	struct e1000_hw *hw = &adapter->hw;
878 	u32 mask;
879 	u32 shared_int = 1;
880 	u32 irq = adapter->pdev->irq;
881 	int i;
882 	int ret_val = 0;
883 	int int_mode = E1000E_INT_MODE_LEGACY;
884 
885 	*data = 0;
886 
887 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
888 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
889 		int_mode = adapter->int_mode;
890 		e1000e_reset_interrupt_capability(adapter);
891 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
892 		e1000e_set_interrupt_capability(adapter);
893 	}
894 	/* Hook up test interrupt handler just for this test */
895 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
896 			 netdev)) {
897 		shared_int = 0;
898 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
899 		 netdev->name, netdev)) {
900 		*data = 1;
901 		ret_val = -1;
902 		goto out;
903 	}
904 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
905 
906 	/* Disable all the interrupts */
907 	ew32(IMC, 0xFFFFFFFF);
908 	e1e_flush();
909 	usleep_range(10000, 20000);
910 
911 	/* Test each interrupt */
912 	for (i = 0; i < 10; i++) {
913 		/* Interrupt to test */
914 		mask = 1 << i;
915 
916 		if (adapter->flags & FLAG_IS_ICH) {
917 			switch (mask) {
918 			case E1000_ICR_RXSEQ:
919 				continue;
920 			case 0x00000100:
921 				if (adapter->hw.mac.type == e1000_ich8lan ||
922 				    adapter->hw.mac.type == e1000_ich9lan)
923 					continue;
924 				break;
925 			default:
926 				break;
927 			}
928 		}
929 
930 		if (!shared_int) {
931 			/*
932 			 * Disable the interrupt to be reported in
933 			 * the cause register and then force the same
934 			 * interrupt and see if one gets posted.  If
935 			 * an interrupt was posted to the bus, the
936 			 * test failed.
937 			 */
938 			adapter->test_icr = 0;
939 			ew32(IMC, mask);
940 			ew32(ICS, mask);
941 			e1e_flush();
942 			usleep_range(10000, 20000);
943 
944 			if (adapter->test_icr & mask) {
945 				*data = 3;
946 				break;
947 			}
948 		}
949 
950 		/*
951 		 * Enable the interrupt to be reported in
952 		 * the cause register and then force the same
953 		 * interrupt and see if one gets posted.  If
954 		 * an interrupt was not posted to the bus, the
955 		 * test failed.
956 		 */
957 		adapter->test_icr = 0;
958 		ew32(IMS, mask);
959 		ew32(ICS, mask);
960 		e1e_flush();
961 		usleep_range(10000, 20000);
962 
963 		if (!(adapter->test_icr & mask)) {
964 			*data = 4;
965 			break;
966 		}
967 
968 		if (!shared_int) {
969 			/*
970 			 * Disable the other interrupts to be reported in
971 			 * the cause register and then force the other
972 			 * interrupts and see if any get posted.  If
973 			 * an interrupt was posted to the bus, the
974 			 * test failed.
975 			 */
976 			adapter->test_icr = 0;
977 			ew32(IMC, ~mask & 0x00007FFF);
978 			ew32(ICS, ~mask & 0x00007FFF);
979 			e1e_flush();
980 			usleep_range(10000, 20000);
981 
982 			if (adapter->test_icr) {
983 				*data = 5;
984 				break;
985 			}
986 		}
987 	}
988 
989 	/* Disable all the interrupts */
990 	ew32(IMC, 0xFFFFFFFF);
991 	e1e_flush();
992 	usleep_range(10000, 20000);
993 
994 	/* Unhook test interrupt handler */
995 	free_irq(irq, netdev);
996 
997 out:
998 	if (int_mode == E1000E_INT_MODE_MSIX) {
999 		e1000e_reset_interrupt_capability(adapter);
1000 		adapter->int_mode = int_mode;
1001 		e1000e_set_interrupt_capability(adapter);
1002 	}
1003 
1004 	return ret_val;
1005 }
1006 
1007 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1008 {
1009 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1010 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1011 	struct pci_dev *pdev = adapter->pdev;
1012 	int i;
1013 
1014 	if (tx_ring->desc && tx_ring->buffer_info) {
1015 		for (i = 0; i < tx_ring->count; i++) {
1016 			if (tx_ring->buffer_info[i].dma)
1017 				dma_unmap_single(&pdev->dev,
1018 					tx_ring->buffer_info[i].dma,
1019 					tx_ring->buffer_info[i].length,
1020 					DMA_TO_DEVICE);
1021 			if (tx_ring->buffer_info[i].skb)
1022 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1023 		}
1024 	}
1025 
1026 	if (rx_ring->desc && rx_ring->buffer_info) {
1027 		for (i = 0; i < rx_ring->count; i++) {
1028 			if (rx_ring->buffer_info[i].dma)
1029 				dma_unmap_single(&pdev->dev,
1030 					rx_ring->buffer_info[i].dma,
1031 					2048, DMA_FROM_DEVICE);
1032 			if (rx_ring->buffer_info[i].skb)
1033 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1034 		}
1035 	}
1036 
1037 	if (tx_ring->desc) {
1038 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1039 				  tx_ring->dma);
1040 		tx_ring->desc = NULL;
1041 	}
1042 	if (rx_ring->desc) {
1043 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1044 				  rx_ring->dma);
1045 		rx_ring->desc = NULL;
1046 	}
1047 
1048 	kfree(tx_ring->buffer_info);
1049 	tx_ring->buffer_info = NULL;
1050 	kfree(rx_ring->buffer_info);
1051 	rx_ring->buffer_info = NULL;
1052 }
1053 
1054 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1055 {
1056 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1057 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1058 	struct pci_dev *pdev = adapter->pdev;
1059 	struct e1000_hw *hw = &adapter->hw;
1060 	u32 rctl;
1061 	int i;
1062 	int ret_val;
1063 
1064 	/* Setup Tx descriptor ring and Tx buffers */
1065 
1066 	if (!tx_ring->count)
1067 		tx_ring->count = E1000_DEFAULT_TXD;
1068 
1069 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1070 				       sizeof(struct e1000_buffer),
1071 				       GFP_KERNEL);
1072 	if (!(tx_ring->buffer_info)) {
1073 		ret_val = 1;
1074 		goto err_nomem;
1075 	}
1076 
1077 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1078 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1079 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1080 					   &tx_ring->dma, GFP_KERNEL);
1081 	if (!tx_ring->desc) {
1082 		ret_val = 2;
1083 		goto err_nomem;
1084 	}
1085 	tx_ring->next_to_use = 0;
1086 	tx_ring->next_to_clean = 0;
1087 
1088 	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1089 	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1090 	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1091 	ew32(TDH, 0);
1092 	ew32(TDT, 0);
1093 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1094 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1095 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1096 
1097 	for (i = 0; i < tx_ring->count; i++) {
1098 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1099 		struct sk_buff *skb;
1100 		unsigned int skb_size = 1024;
1101 
1102 		skb = alloc_skb(skb_size, GFP_KERNEL);
1103 		if (!skb) {
1104 			ret_val = 3;
1105 			goto err_nomem;
1106 		}
1107 		skb_put(skb, skb_size);
1108 		tx_ring->buffer_info[i].skb = skb;
1109 		tx_ring->buffer_info[i].length = skb->len;
1110 		tx_ring->buffer_info[i].dma =
1111 			dma_map_single(&pdev->dev, skb->data, skb->len,
1112 				       DMA_TO_DEVICE);
1113 		if (dma_mapping_error(&pdev->dev,
1114 				      tx_ring->buffer_info[i].dma)) {
1115 			ret_val = 4;
1116 			goto err_nomem;
1117 		}
1118 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1119 		tx_desc->lower.data = cpu_to_le32(skb->len);
1120 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1121 						   E1000_TXD_CMD_IFCS |
1122 						   E1000_TXD_CMD_RS);
1123 		tx_desc->upper.data = 0;
1124 	}
1125 
1126 	/* Setup Rx descriptor ring and Rx buffers */
1127 
1128 	if (!rx_ring->count)
1129 		rx_ring->count = E1000_DEFAULT_RXD;
1130 
1131 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1132 				       sizeof(struct e1000_buffer),
1133 				       GFP_KERNEL);
1134 	if (!(rx_ring->buffer_info)) {
1135 		ret_val = 5;
1136 		goto err_nomem;
1137 	}
1138 
1139 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1140 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1141 					   &rx_ring->dma, GFP_KERNEL);
1142 	if (!rx_ring->desc) {
1143 		ret_val = 6;
1144 		goto err_nomem;
1145 	}
1146 	rx_ring->next_to_use = 0;
1147 	rx_ring->next_to_clean = 0;
1148 
1149 	rctl = er32(RCTL);
1150 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1151 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1152 	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1153 	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1154 	ew32(RDLEN, rx_ring->size);
1155 	ew32(RDH, 0);
1156 	ew32(RDT, 0);
1157 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1158 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1159 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1160 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1161 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1162 	ew32(RCTL, rctl);
1163 
1164 	for (i = 0; i < rx_ring->count; i++) {
1165 		union e1000_rx_desc_extended *rx_desc;
1166 		struct sk_buff *skb;
1167 
1168 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1169 		if (!skb) {
1170 			ret_val = 7;
1171 			goto err_nomem;
1172 		}
1173 		skb_reserve(skb, NET_IP_ALIGN);
1174 		rx_ring->buffer_info[i].skb = skb;
1175 		rx_ring->buffer_info[i].dma =
1176 			dma_map_single(&pdev->dev, skb->data, 2048,
1177 				       DMA_FROM_DEVICE);
1178 		if (dma_mapping_error(&pdev->dev,
1179 				      rx_ring->buffer_info[i].dma)) {
1180 			ret_val = 8;
1181 			goto err_nomem;
1182 		}
1183 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1184 		rx_desc->read.buffer_addr =
1185 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1186 		memset(skb->data, 0x00, skb->len);
1187 	}
1188 
1189 	return 0;
1190 
1191 err_nomem:
1192 	e1000_free_desc_rings(adapter);
1193 	return ret_val;
1194 }
1195 
1196 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1197 {
1198 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1199 	e1e_wphy(&adapter->hw, 29, 0x001F);
1200 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1201 	e1e_wphy(&adapter->hw, 29, 0x001A);
1202 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1203 }
1204 
1205 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1206 {
1207 	struct e1000_hw *hw = &adapter->hw;
1208 	u32 ctrl_reg = 0;
1209 	u16 phy_reg = 0;
1210 	s32 ret_val = 0;
1211 
1212 	hw->mac.autoneg = 0;
1213 
1214 	if (hw->phy.type == e1000_phy_ife) {
1215 		/* force 100, set loopback */
1216 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
1217 
1218 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1219 		ctrl_reg = er32(CTRL);
1220 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1221 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1222 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1223 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1224 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1225 
1226 		ew32(CTRL, ctrl_reg);
1227 		e1e_flush();
1228 		udelay(500);
1229 
1230 		return 0;
1231 	}
1232 
1233 	/* Specific PHY configuration for loopback */
1234 	switch (hw->phy.type) {
1235 	case e1000_phy_m88:
1236 		/* Auto-MDI/MDIX Off */
1237 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1238 		/* reset to update Auto-MDI/MDIX */
1239 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
1240 		/* autoneg off */
1241 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1242 		break;
1243 	case e1000_phy_gg82563:
1244 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1245 		break;
1246 	case e1000_phy_bm:
1247 		/* Set Default MAC Interface speed to 1GB */
1248 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1249 		phy_reg &= ~0x0007;
1250 		phy_reg |= 0x006;
1251 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1252 		/* Assert SW reset for above settings to take effect */
1253 		e1000e_commit_phy(hw);
1254 		mdelay(1);
1255 		/* Force Full Duplex */
1256 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1257 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1258 		/* Set Link Up (in force link) */
1259 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1260 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1261 		/* Force Link */
1262 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1263 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1264 		/* Set Early Link Enable */
1265 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1266 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1267 		break;
1268 	case e1000_phy_82577:
1269 	case e1000_phy_82578:
1270 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1271 		ret_val = hw->phy.ops.acquire(hw);
1272 		if (ret_val) {
1273 			e_err("Cannot setup 1Gbps loopback.\n");
1274 			return ret_val;
1275 		}
1276 		e1000_configure_k1_ich8lan(hw, false);
1277 		hw->phy.ops.release(hw);
1278 		break;
1279 	case e1000_phy_82579:
1280 		/* Disable PHY energy detect power down */
1281 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1282 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1283 		/* Disable full chip energy detect */
1284 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1285 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1286 		/* Enable loopback on the PHY */
1287 #define I82577_PHY_LBK_CTRL          19
1288 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1289 		break;
1290 	default:
1291 		break;
1292 	}
1293 
1294 	/* force 1000, set loopback */
1295 	e1e_wphy(hw, PHY_CONTROL, 0x4140);
1296 	mdelay(250);
1297 
1298 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1299 	ctrl_reg = er32(CTRL);
1300 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1301 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1302 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1303 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1304 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1305 
1306 	if (adapter->flags & FLAG_IS_ICH)
1307 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1308 
1309 	if (hw->phy.media_type == e1000_media_type_copper &&
1310 	    hw->phy.type == e1000_phy_m88) {
1311 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1312 	} else {
1313 		/*
1314 		 * Set the ILOS bit on the fiber Nic if half duplex link is
1315 		 * detected.
1316 		 */
1317 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1318 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1319 	}
1320 
1321 	ew32(CTRL, ctrl_reg);
1322 
1323 	/*
1324 	 * Disable the receiver on the PHY so when a cable is plugged in, the
1325 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1326 	 */
1327 	if (hw->phy.type == e1000_phy_m88)
1328 		e1000_phy_disable_receiver(adapter);
1329 
1330 	udelay(500);
1331 
1332 	return 0;
1333 }
1334 
1335 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1336 {
1337 	struct e1000_hw *hw = &adapter->hw;
1338 	u32 ctrl = er32(CTRL);
1339 	int link = 0;
1340 
1341 	/* special requirements for 82571/82572 fiber adapters */
1342 
1343 	/*
1344 	 * jump through hoops to make sure link is up because serdes
1345 	 * link is hardwired up
1346 	 */
1347 	ctrl |= E1000_CTRL_SLU;
1348 	ew32(CTRL, ctrl);
1349 
1350 	/* disable autoneg */
1351 	ctrl = er32(TXCW);
1352 	ctrl &= ~(1 << 31);
1353 	ew32(TXCW, ctrl);
1354 
1355 	link = (er32(STATUS) & E1000_STATUS_LU);
1356 
1357 	if (!link) {
1358 		/* set invert loss of signal */
1359 		ctrl = er32(CTRL);
1360 		ctrl |= E1000_CTRL_ILOS;
1361 		ew32(CTRL, ctrl);
1362 	}
1363 
1364 	/*
1365 	 * special write to serdes control register to enable SerDes analog
1366 	 * loopback
1367 	 */
1368 #define E1000_SERDES_LB_ON 0x410
1369 	ew32(SCTL, E1000_SERDES_LB_ON);
1370 	e1e_flush();
1371 	usleep_range(10000, 20000);
1372 
1373 	return 0;
1374 }
1375 
1376 /* only call this for fiber/serdes connections to es2lan */
1377 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1378 {
1379 	struct e1000_hw *hw = &adapter->hw;
1380 	u32 ctrlext = er32(CTRL_EXT);
1381 	u32 ctrl = er32(CTRL);
1382 
1383 	/*
1384 	 * save CTRL_EXT to restore later, reuse an empty variable (unused
1385 	 * on mac_type 80003es2lan)
1386 	 */
1387 	adapter->tx_fifo_head = ctrlext;
1388 
1389 	/* clear the serdes mode bits, putting the device into mac loopback */
1390 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1391 	ew32(CTRL_EXT, ctrlext);
1392 
1393 	/* force speed to 1000/FD, link up */
1394 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1395 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1396 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1397 	ew32(CTRL, ctrl);
1398 
1399 	/* set mac loopback */
1400 	ctrl = er32(RCTL);
1401 	ctrl |= E1000_RCTL_LBM_MAC;
1402 	ew32(RCTL, ctrl);
1403 
1404 	/* set testing mode parameters (no need to reset later) */
1405 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1406 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1407 	ew32(KMRNCTRLSTA,
1408 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1409 
1410 	return 0;
1411 }
1412 
1413 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1414 {
1415 	struct e1000_hw *hw = &adapter->hw;
1416 	u32 rctl;
1417 
1418 	if (hw->phy.media_type == e1000_media_type_fiber ||
1419 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1420 		switch (hw->mac.type) {
1421 		case e1000_80003es2lan:
1422 			return e1000_set_es2lan_mac_loopback(adapter);
1423 			break;
1424 		case e1000_82571:
1425 		case e1000_82572:
1426 			return e1000_set_82571_fiber_loopback(adapter);
1427 			break;
1428 		default:
1429 			rctl = er32(RCTL);
1430 			rctl |= E1000_RCTL_LBM_TCVR;
1431 			ew32(RCTL, rctl);
1432 			return 0;
1433 		}
1434 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1435 		return e1000_integrated_phy_loopback(adapter);
1436 	}
1437 
1438 	return 7;
1439 }
1440 
1441 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1442 {
1443 	struct e1000_hw *hw = &adapter->hw;
1444 	u32 rctl;
1445 	u16 phy_reg;
1446 
1447 	rctl = er32(RCTL);
1448 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1449 	ew32(RCTL, rctl);
1450 
1451 	switch (hw->mac.type) {
1452 	case e1000_80003es2lan:
1453 		if (hw->phy.media_type == e1000_media_type_fiber ||
1454 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1455 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1456 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1457 			adapter->tx_fifo_head = 0;
1458 		}
1459 		/* fall through */
1460 	case e1000_82571:
1461 	case e1000_82572:
1462 		if (hw->phy.media_type == e1000_media_type_fiber ||
1463 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1464 #define E1000_SERDES_LB_OFF 0x400
1465 			ew32(SCTL, E1000_SERDES_LB_OFF);
1466 			e1e_flush();
1467 			usleep_range(10000, 20000);
1468 			break;
1469 		}
1470 		/* Fall Through */
1471 	default:
1472 		hw->mac.autoneg = 1;
1473 		if (hw->phy.type == e1000_phy_gg82563)
1474 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1475 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1476 		if (phy_reg & MII_CR_LOOPBACK) {
1477 			phy_reg &= ~MII_CR_LOOPBACK;
1478 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
1479 			e1000e_commit_phy(hw);
1480 		}
1481 		break;
1482 	}
1483 }
1484 
1485 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1486 				      unsigned int frame_size)
1487 {
1488 	memset(skb->data, 0xFF, frame_size);
1489 	frame_size &= ~1;
1490 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1491 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1492 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1493 }
1494 
1495 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1496 				    unsigned int frame_size)
1497 {
1498 	frame_size &= ~1;
1499 	if (*(skb->data + 3) == 0xFF)
1500 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1501 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1502 			return 0;
1503 	return 13;
1504 }
1505 
1506 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1507 {
1508 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1509 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1510 	struct pci_dev *pdev = adapter->pdev;
1511 	struct e1000_hw *hw = &adapter->hw;
1512 	int i, j, k, l;
1513 	int lc;
1514 	int good_cnt;
1515 	int ret_val = 0;
1516 	unsigned long time;
1517 
1518 	ew32(RDT, rx_ring->count - 1);
1519 
1520 	/*
1521 	 * Calculate the loop count based on the largest descriptor ring
1522 	 * The idea is to wrap the largest ring a number of times using 64
1523 	 * send/receive pairs during each loop
1524 	 */
1525 
1526 	if (rx_ring->count <= tx_ring->count)
1527 		lc = ((tx_ring->count / 64) * 2) + 1;
1528 	else
1529 		lc = ((rx_ring->count / 64) * 2) + 1;
1530 
1531 	k = 0;
1532 	l = 0;
1533 	for (j = 0; j <= lc; j++) { /* loop count loop */
1534 		for (i = 0; i < 64; i++) { /* send the packets */
1535 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1536 						  1024);
1537 			dma_sync_single_for_device(&pdev->dev,
1538 					tx_ring->buffer_info[k].dma,
1539 					tx_ring->buffer_info[k].length,
1540 					DMA_TO_DEVICE);
1541 			k++;
1542 			if (k == tx_ring->count)
1543 				k = 0;
1544 		}
1545 		ew32(TDT, k);
1546 		e1e_flush();
1547 		msleep(200);
1548 		time = jiffies; /* set the start time for the receive */
1549 		good_cnt = 0;
1550 		do { /* receive the sent packets */
1551 			dma_sync_single_for_cpu(&pdev->dev,
1552 					rx_ring->buffer_info[l].dma, 2048,
1553 					DMA_FROM_DEVICE);
1554 
1555 			ret_val = e1000_check_lbtest_frame(
1556 					rx_ring->buffer_info[l].skb, 1024);
1557 			if (!ret_val)
1558 				good_cnt++;
1559 			l++;
1560 			if (l == rx_ring->count)
1561 				l = 0;
1562 			/*
1563 			 * time + 20 msecs (200 msecs on 2.4) is more than
1564 			 * enough time to complete the receives, if it's
1565 			 * exceeded, break and error off
1566 			 */
1567 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1568 		if (good_cnt != 64) {
1569 			ret_val = 13; /* ret_val is the same as mis-compare */
1570 			break;
1571 		}
1572 		if (jiffies >= (time + 20)) {
1573 			ret_val = 14; /* error code for time out error */
1574 			break;
1575 		}
1576 	} /* end loop count loop */
1577 	return ret_val;
1578 }
1579 
1580 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1581 {
1582 	/*
1583 	 * PHY loopback cannot be performed if SoL/IDER
1584 	 * sessions are active
1585 	 */
1586 	if (e1000_check_reset_block(&adapter->hw)) {
1587 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1588 		*data = 0;
1589 		goto out;
1590 	}
1591 
1592 	*data = e1000_setup_desc_rings(adapter);
1593 	if (*data)
1594 		goto out;
1595 
1596 	*data = e1000_setup_loopback_test(adapter);
1597 	if (*data)
1598 		goto err_loopback;
1599 
1600 	*data = e1000_run_loopback_test(adapter);
1601 	e1000_loopback_cleanup(adapter);
1602 
1603 err_loopback:
1604 	e1000_free_desc_rings(adapter);
1605 out:
1606 	return *data;
1607 }
1608 
1609 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1610 {
1611 	struct e1000_hw *hw = &adapter->hw;
1612 
1613 	*data = 0;
1614 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1615 		int i = 0;
1616 		hw->mac.serdes_has_link = false;
1617 
1618 		/*
1619 		 * On some blade server designs, link establishment
1620 		 * could take as long as 2-3 minutes
1621 		 */
1622 		do {
1623 			hw->mac.ops.check_for_link(hw);
1624 			if (hw->mac.serdes_has_link)
1625 				return *data;
1626 			msleep(20);
1627 		} while (i++ < 3750);
1628 
1629 		*data = 1;
1630 	} else {
1631 		hw->mac.ops.check_for_link(hw);
1632 		if (hw->mac.autoneg)
1633 			/*
1634 			 * On some Phy/switch combinations, link establishment
1635 			 * can take a few seconds more than expected.
1636 			 */
1637 			msleep(5000);
1638 
1639 		if (!(er32(STATUS) & E1000_STATUS_LU))
1640 			*data = 1;
1641 	}
1642 	return *data;
1643 }
1644 
1645 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1646 {
1647 	switch (sset) {
1648 	case ETH_SS_TEST:
1649 		return E1000_TEST_LEN;
1650 	case ETH_SS_STATS:
1651 		return E1000_STATS_LEN;
1652 	default:
1653 		return -EOPNOTSUPP;
1654 	}
1655 }
1656 
1657 static void e1000_diag_test(struct net_device *netdev,
1658 			    struct ethtool_test *eth_test, u64 *data)
1659 {
1660 	struct e1000_adapter *adapter = netdev_priv(netdev);
1661 	u16 autoneg_advertised;
1662 	u8 forced_speed_duplex;
1663 	u8 autoneg;
1664 	bool if_running = netif_running(netdev);
1665 
1666 	set_bit(__E1000_TESTING, &adapter->state);
1667 
1668 	if (!if_running) {
1669 		/* Get control of and reset hardware */
1670 		if (adapter->flags & FLAG_HAS_AMT)
1671 			e1000e_get_hw_control(adapter);
1672 
1673 		e1000e_power_up_phy(adapter);
1674 
1675 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1676 		e1000e_reset(adapter);
1677 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1678 	}
1679 
1680 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1681 		/* Offline tests */
1682 
1683 		/* save speed, duplex, autoneg settings */
1684 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1685 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1686 		autoneg = adapter->hw.mac.autoneg;
1687 
1688 		e_info("offline testing starting\n");
1689 
1690 		if (if_running)
1691 			/* indicate we're in test mode */
1692 			dev_close(netdev);
1693 
1694 		if (e1000_reg_test(adapter, &data[0]))
1695 			eth_test->flags |= ETH_TEST_FL_FAILED;
1696 
1697 		e1000e_reset(adapter);
1698 		if (e1000_eeprom_test(adapter, &data[1]))
1699 			eth_test->flags |= ETH_TEST_FL_FAILED;
1700 
1701 		e1000e_reset(adapter);
1702 		if (e1000_intr_test(adapter, &data[2]))
1703 			eth_test->flags |= ETH_TEST_FL_FAILED;
1704 
1705 		e1000e_reset(adapter);
1706 		if (e1000_loopback_test(adapter, &data[3]))
1707 			eth_test->flags |= ETH_TEST_FL_FAILED;
1708 
1709 		/* force this routine to wait until autoneg complete/timeout */
1710 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1711 		e1000e_reset(adapter);
1712 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1713 
1714 		if (e1000_link_test(adapter, &data[4]))
1715 			eth_test->flags |= ETH_TEST_FL_FAILED;
1716 
1717 		/* restore speed, duplex, autoneg settings */
1718 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1719 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1720 		adapter->hw.mac.autoneg = autoneg;
1721 		e1000e_reset(adapter);
1722 
1723 		clear_bit(__E1000_TESTING, &adapter->state);
1724 		if (if_running)
1725 			dev_open(netdev);
1726 	} else {
1727 		/* Online tests */
1728 
1729 		e_info("online testing starting\n");
1730 
1731 		/* register, eeprom, intr and loopback tests not run online */
1732 		data[0] = 0;
1733 		data[1] = 0;
1734 		data[2] = 0;
1735 		data[3] = 0;
1736 
1737 		if (e1000_link_test(adapter, &data[4]))
1738 			eth_test->flags |= ETH_TEST_FL_FAILED;
1739 
1740 		clear_bit(__E1000_TESTING, &adapter->state);
1741 	}
1742 
1743 	if (!if_running) {
1744 		e1000e_reset(adapter);
1745 
1746 		if (adapter->flags & FLAG_HAS_AMT)
1747 			e1000e_release_hw_control(adapter);
1748 	}
1749 
1750 	msleep_interruptible(4 * 1000);
1751 }
1752 
1753 static void e1000_get_wol(struct net_device *netdev,
1754 			  struct ethtool_wolinfo *wol)
1755 {
1756 	struct e1000_adapter *adapter = netdev_priv(netdev);
1757 
1758 	wol->supported = 0;
1759 	wol->wolopts = 0;
1760 
1761 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1762 	    !device_can_wakeup(&adapter->pdev->dev))
1763 		return;
1764 
1765 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1766 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1767 
1768 	/* apply any specific unsupported masks here */
1769 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1770 		wol->supported &= ~WAKE_UCAST;
1771 
1772 		if (adapter->wol & E1000_WUFC_EX)
1773 			e_err("Interface does not support directed (unicast) "
1774 			      "frame wake-up packets\n");
1775 	}
1776 
1777 	if (adapter->wol & E1000_WUFC_EX)
1778 		wol->wolopts |= WAKE_UCAST;
1779 	if (adapter->wol & E1000_WUFC_MC)
1780 		wol->wolopts |= WAKE_MCAST;
1781 	if (adapter->wol & E1000_WUFC_BC)
1782 		wol->wolopts |= WAKE_BCAST;
1783 	if (adapter->wol & E1000_WUFC_MAG)
1784 		wol->wolopts |= WAKE_MAGIC;
1785 	if (adapter->wol & E1000_WUFC_LNKC)
1786 		wol->wolopts |= WAKE_PHY;
1787 }
1788 
1789 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1790 {
1791 	struct e1000_adapter *adapter = netdev_priv(netdev);
1792 
1793 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1794 	    !device_can_wakeup(&adapter->pdev->dev) ||
1795 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1796 			      WAKE_MAGIC | WAKE_PHY)))
1797 		return -EOPNOTSUPP;
1798 
1799 	/* these settings will always override what we currently have */
1800 	adapter->wol = 0;
1801 
1802 	if (wol->wolopts & WAKE_UCAST)
1803 		adapter->wol |= E1000_WUFC_EX;
1804 	if (wol->wolopts & WAKE_MCAST)
1805 		adapter->wol |= E1000_WUFC_MC;
1806 	if (wol->wolopts & WAKE_BCAST)
1807 		adapter->wol |= E1000_WUFC_BC;
1808 	if (wol->wolopts & WAKE_MAGIC)
1809 		adapter->wol |= E1000_WUFC_MAG;
1810 	if (wol->wolopts & WAKE_PHY)
1811 		adapter->wol |= E1000_WUFC_LNKC;
1812 
1813 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1814 
1815 	return 0;
1816 }
1817 
1818 static int e1000_set_phys_id(struct net_device *netdev,
1819 			     enum ethtool_phys_id_state state)
1820 {
1821 	struct e1000_adapter *adapter = netdev_priv(netdev);
1822 	struct e1000_hw *hw = &adapter->hw;
1823 
1824 	switch (state) {
1825 	case ETHTOOL_ID_ACTIVE:
1826 		if (!hw->mac.ops.blink_led)
1827 			return 2;	/* cycle on/off twice per second */
1828 
1829 		hw->mac.ops.blink_led(hw);
1830 		break;
1831 
1832 	case ETHTOOL_ID_INACTIVE:
1833 		if (hw->phy.type == e1000_phy_ife)
1834 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1835 		hw->mac.ops.led_off(hw);
1836 		hw->mac.ops.cleanup_led(hw);
1837 		break;
1838 
1839 	case ETHTOOL_ID_ON:
1840 		adapter->hw.mac.ops.led_on(&adapter->hw);
1841 		break;
1842 
1843 	case ETHTOOL_ID_OFF:
1844 		adapter->hw.mac.ops.led_off(&adapter->hw);
1845 		break;
1846 	}
1847 	return 0;
1848 }
1849 
1850 static int e1000_get_coalesce(struct net_device *netdev,
1851 			      struct ethtool_coalesce *ec)
1852 {
1853 	struct e1000_adapter *adapter = netdev_priv(netdev);
1854 
1855 	if (adapter->itr_setting <= 4)
1856 		ec->rx_coalesce_usecs = adapter->itr_setting;
1857 	else
1858 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1859 
1860 	return 0;
1861 }
1862 
1863 static int e1000_set_coalesce(struct net_device *netdev,
1864 			      struct ethtool_coalesce *ec)
1865 {
1866 	struct e1000_adapter *adapter = netdev_priv(netdev);
1867 	struct e1000_hw *hw = &adapter->hw;
1868 
1869 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1870 	    ((ec->rx_coalesce_usecs > 4) &&
1871 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1872 	    (ec->rx_coalesce_usecs == 2))
1873 		return -EINVAL;
1874 
1875 	if (ec->rx_coalesce_usecs == 4) {
1876 		adapter->itr = adapter->itr_setting = 4;
1877 	} else if (ec->rx_coalesce_usecs <= 3) {
1878 		adapter->itr = 20000;
1879 		adapter->itr_setting = ec->rx_coalesce_usecs;
1880 	} else {
1881 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1882 		adapter->itr_setting = adapter->itr & ~3;
1883 	}
1884 
1885 	if (adapter->itr_setting != 0)
1886 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1887 	else
1888 		ew32(ITR, 0);
1889 
1890 	return 0;
1891 }
1892 
1893 static int e1000_nway_reset(struct net_device *netdev)
1894 {
1895 	struct e1000_adapter *adapter = netdev_priv(netdev);
1896 
1897 	if (!netif_running(netdev))
1898 		return -EAGAIN;
1899 
1900 	if (!adapter->hw.mac.autoneg)
1901 		return -EINVAL;
1902 
1903 	e1000e_reinit_locked(adapter);
1904 
1905 	return 0;
1906 }
1907 
1908 static void e1000_get_ethtool_stats(struct net_device *netdev,
1909 				    struct ethtool_stats *stats,
1910 				    u64 *data)
1911 {
1912 	struct e1000_adapter *adapter = netdev_priv(netdev);
1913 	struct rtnl_link_stats64 net_stats;
1914 	int i;
1915 	char *p = NULL;
1916 
1917 	e1000e_get_stats64(netdev, &net_stats);
1918 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1919 		switch (e1000_gstrings_stats[i].type) {
1920 		case NETDEV_STATS:
1921 			p = (char *) &net_stats +
1922 					e1000_gstrings_stats[i].stat_offset;
1923 			break;
1924 		case E1000_STATS:
1925 			p = (char *) adapter +
1926 					e1000_gstrings_stats[i].stat_offset;
1927 			break;
1928 		default:
1929 			data[i] = 0;
1930 			continue;
1931 		}
1932 
1933 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1934 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1935 	}
1936 }
1937 
1938 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1939 			      u8 *data)
1940 {
1941 	u8 *p = data;
1942 	int i;
1943 
1944 	switch (stringset) {
1945 	case ETH_SS_TEST:
1946 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1947 		break;
1948 	case ETH_SS_STATS:
1949 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1950 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1951 			       ETH_GSTRING_LEN);
1952 			p += ETH_GSTRING_LEN;
1953 		}
1954 		break;
1955 	}
1956 }
1957 
1958 static const struct ethtool_ops e1000_ethtool_ops = {
1959 	.get_settings		= e1000_get_settings,
1960 	.set_settings		= e1000_set_settings,
1961 	.get_drvinfo		= e1000_get_drvinfo,
1962 	.get_regs_len		= e1000_get_regs_len,
1963 	.get_regs		= e1000_get_regs,
1964 	.get_wol		= e1000_get_wol,
1965 	.set_wol		= e1000_set_wol,
1966 	.get_msglevel		= e1000_get_msglevel,
1967 	.set_msglevel		= e1000_set_msglevel,
1968 	.nway_reset		= e1000_nway_reset,
1969 	.get_link		= ethtool_op_get_link,
1970 	.get_eeprom_len		= e1000_get_eeprom_len,
1971 	.get_eeprom		= e1000_get_eeprom,
1972 	.set_eeprom		= e1000_set_eeprom,
1973 	.get_ringparam		= e1000_get_ringparam,
1974 	.set_ringparam		= e1000_set_ringparam,
1975 	.get_pauseparam		= e1000_get_pauseparam,
1976 	.set_pauseparam		= e1000_set_pauseparam,
1977 	.self_test		= e1000_diag_test,
1978 	.get_strings		= e1000_get_strings,
1979 	.set_phys_id		= e1000_set_phys_id,
1980 	.get_ethtool_stats	= e1000_get_ethtool_stats,
1981 	.get_sset_count		= e1000e_get_sset_count,
1982 	.get_coalesce		= e1000_get_coalesce,
1983 	.set_coalesce		= e1000_set_coalesce,
1984 };
1985 
1986 void e1000e_set_ethtool_ops(struct net_device *netdev)
1987 {
1988 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1989 }
1990