1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2011 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 38 #include "e1000.h" 39 40 enum {NETDEV_STATS, E1000_STATS}; 41 42 struct e1000_stats { 43 char stat_string[ETH_GSTRING_LEN]; 44 int type; 45 int sizeof_stat; 46 int stat_offset; 47 }; 48 49 #define E1000_STAT(str, m) { \ 50 .stat_string = str, \ 51 .type = E1000_STATS, \ 52 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 53 .stat_offset = offsetof(struct e1000_adapter, m) } 54 #define E1000_NETDEV_STAT(str, m) { \ 55 .stat_string = str, \ 56 .type = NETDEV_STATS, \ 57 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 58 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 59 60 static const struct e1000_stats e1000_gstrings_stats[] = { 61 E1000_STAT("rx_packets", stats.gprc), 62 E1000_STAT("tx_packets", stats.gptc), 63 E1000_STAT("rx_bytes", stats.gorc), 64 E1000_STAT("tx_bytes", stats.gotc), 65 E1000_STAT("rx_broadcast", stats.bprc), 66 E1000_STAT("tx_broadcast", stats.bptc), 67 E1000_STAT("rx_multicast", stats.mprc), 68 E1000_STAT("tx_multicast", stats.mptc), 69 E1000_NETDEV_STAT("rx_errors", rx_errors), 70 E1000_NETDEV_STAT("tx_errors", tx_errors), 71 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 72 E1000_STAT("multicast", stats.mprc), 73 E1000_STAT("collisions", stats.colc), 74 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 75 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 76 E1000_STAT("rx_crc_errors", stats.crcerrs), 77 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 78 E1000_STAT("rx_no_buffer_count", stats.rnbc), 79 E1000_STAT("rx_missed_errors", stats.mpc), 80 E1000_STAT("tx_aborted_errors", stats.ecol), 81 E1000_STAT("tx_carrier_errors", stats.tncrs), 82 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 83 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 84 E1000_STAT("tx_window_errors", stats.latecol), 85 E1000_STAT("tx_abort_late_coll", stats.latecol), 86 E1000_STAT("tx_deferred_ok", stats.dc), 87 E1000_STAT("tx_single_coll_ok", stats.scc), 88 E1000_STAT("tx_multi_coll_ok", stats.mcc), 89 E1000_STAT("tx_timeout_count", tx_timeout_count), 90 E1000_STAT("tx_restart_queue", restart_queue), 91 E1000_STAT("rx_long_length_errors", stats.roc), 92 E1000_STAT("rx_short_length_errors", stats.ruc), 93 E1000_STAT("rx_align_errors", stats.algnerrc), 94 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 95 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 96 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 97 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 98 E1000_STAT("tx_flow_control_xon", stats.xontxc), 99 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 100 E1000_STAT("rx_long_byte_count", stats.gorc), 101 E1000_STAT("rx_csum_offload_good", hw_csum_good), 102 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 103 E1000_STAT("rx_header_split", rx_hdr_split), 104 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 105 E1000_STAT("tx_smbus", stats.mgptc), 106 E1000_STAT("rx_smbus", stats.mgprc), 107 E1000_STAT("dropped_smbus", stats.mgpdc), 108 E1000_STAT("rx_dma_failed", rx_dma_failed), 109 E1000_STAT("tx_dma_failed", tx_dma_failed), 110 }; 111 112 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 113 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 114 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 115 "Register test (offline)", "Eeprom test (offline)", 116 "Interrupt test (offline)", "Loopback test (offline)", 117 "Link test (on/offline)" 118 }; 119 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 120 121 static int e1000_get_settings(struct net_device *netdev, 122 struct ethtool_cmd *ecmd) 123 { 124 struct e1000_adapter *adapter = netdev_priv(netdev); 125 struct e1000_hw *hw = &adapter->hw; 126 u32 speed; 127 128 if (hw->phy.media_type == e1000_media_type_copper) { 129 130 ecmd->supported = (SUPPORTED_10baseT_Half | 131 SUPPORTED_10baseT_Full | 132 SUPPORTED_100baseT_Half | 133 SUPPORTED_100baseT_Full | 134 SUPPORTED_1000baseT_Full | 135 SUPPORTED_Autoneg | 136 SUPPORTED_TP); 137 if (hw->phy.type == e1000_phy_ife) 138 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 139 ecmd->advertising = ADVERTISED_TP; 140 141 if (hw->mac.autoneg == 1) { 142 ecmd->advertising |= ADVERTISED_Autoneg; 143 /* the e1000 autoneg seems to match ethtool nicely */ 144 ecmd->advertising |= hw->phy.autoneg_advertised; 145 } 146 147 ecmd->port = PORT_TP; 148 ecmd->phy_address = hw->phy.addr; 149 ecmd->transceiver = XCVR_INTERNAL; 150 151 } else { 152 ecmd->supported = (SUPPORTED_1000baseT_Full | 153 SUPPORTED_FIBRE | 154 SUPPORTED_Autoneg); 155 156 ecmd->advertising = (ADVERTISED_1000baseT_Full | 157 ADVERTISED_FIBRE | 158 ADVERTISED_Autoneg); 159 160 ecmd->port = PORT_FIBRE; 161 ecmd->transceiver = XCVR_EXTERNAL; 162 } 163 164 speed = -1; 165 ecmd->duplex = -1; 166 167 if (netif_running(netdev)) { 168 if (netif_carrier_ok(netdev)) { 169 speed = adapter->link_speed; 170 ecmd->duplex = adapter->link_duplex - 1; 171 } 172 } else { 173 u32 status = er32(STATUS); 174 if (status & E1000_STATUS_LU) { 175 if (status & E1000_STATUS_SPEED_1000) 176 speed = SPEED_1000; 177 else if (status & E1000_STATUS_SPEED_100) 178 speed = SPEED_100; 179 else 180 speed = SPEED_10; 181 182 if (status & E1000_STATUS_FD) 183 ecmd->duplex = DUPLEX_FULL; 184 else 185 ecmd->duplex = DUPLEX_HALF; 186 } 187 } 188 189 ethtool_cmd_speed_set(ecmd, speed); 190 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 191 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 192 193 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 194 if ((hw->phy.media_type == e1000_media_type_copper) && 195 netif_carrier_ok(netdev)) 196 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 197 ETH_TP_MDI; 198 else 199 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 200 201 return 0; 202 } 203 204 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 205 { 206 struct e1000_mac_info *mac = &adapter->hw.mac; 207 208 mac->autoneg = 0; 209 210 /* Make sure dplx is at most 1 bit and lsb of speed is not set 211 * for the switch() below to work */ 212 if ((spd & 1) || (dplx & ~1)) 213 goto err_inval; 214 215 /* Fiber NICs only allow 1000 gbps Full duplex */ 216 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 217 spd != SPEED_1000 && 218 dplx != DUPLEX_FULL) { 219 goto err_inval; 220 } 221 222 switch (spd + dplx) { 223 case SPEED_10 + DUPLEX_HALF: 224 mac->forced_speed_duplex = ADVERTISE_10_HALF; 225 break; 226 case SPEED_10 + DUPLEX_FULL: 227 mac->forced_speed_duplex = ADVERTISE_10_FULL; 228 break; 229 case SPEED_100 + DUPLEX_HALF: 230 mac->forced_speed_duplex = ADVERTISE_100_HALF; 231 break; 232 case SPEED_100 + DUPLEX_FULL: 233 mac->forced_speed_duplex = ADVERTISE_100_FULL; 234 break; 235 case SPEED_1000 + DUPLEX_FULL: 236 mac->autoneg = 1; 237 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 238 break; 239 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 240 default: 241 goto err_inval; 242 } 243 return 0; 244 245 err_inval: 246 e_err("Unsupported Speed/Duplex configuration\n"); 247 return -EINVAL; 248 } 249 250 static int e1000_set_settings(struct net_device *netdev, 251 struct ethtool_cmd *ecmd) 252 { 253 struct e1000_adapter *adapter = netdev_priv(netdev); 254 struct e1000_hw *hw = &adapter->hw; 255 256 /* 257 * When SoL/IDER sessions are active, autoneg/speed/duplex 258 * cannot be changed 259 */ 260 if (e1000_check_reset_block(hw)) { 261 e_err("Cannot change link characteristics when SoL/IDER is " 262 "active.\n"); 263 return -EINVAL; 264 } 265 266 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 267 usleep_range(1000, 2000); 268 269 if (ecmd->autoneg == AUTONEG_ENABLE) { 270 hw->mac.autoneg = 1; 271 if (hw->phy.media_type == e1000_media_type_fiber) 272 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 273 ADVERTISED_FIBRE | 274 ADVERTISED_Autoneg; 275 else 276 hw->phy.autoneg_advertised = ecmd->advertising | 277 ADVERTISED_TP | 278 ADVERTISED_Autoneg; 279 ecmd->advertising = hw->phy.autoneg_advertised; 280 if (adapter->fc_autoneg) 281 hw->fc.requested_mode = e1000_fc_default; 282 } else { 283 u32 speed = ethtool_cmd_speed(ecmd); 284 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 285 clear_bit(__E1000_RESETTING, &adapter->state); 286 return -EINVAL; 287 } 288 } 289 290 /* reset the link */ 291 292 if (netif_running(adapter->netdev)) { 293 e1000e_down(adapter); 294 e1000e_up(adapter); 295 } else { 296 e1000e_reset(adapter); 297 } 298 299 clear_bit(__E1000_RESETTING, &adapter->state); 300 return 0; 301 } 302 303 static void e1000_get_pauseparam(struct net_device *netdev, 304 struct ethtool_pauseparam *pause) 305 { 306 struct e1000_adapter *adapter = netdev_priv(netdev); 307 struct e1000_hw *hw = &adapter->hw; 308 309 pause->autoneg = 310 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 311 312 if (hw->fc.current_mode == e1000_fc_rx_pause) { 313 pause->rx_pause = 1; 314 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 315 pause->tx_pause = 1; 316 } else if (hw->fc.current_mode == e1000_fc_full) { 317 pause->rx_pause = 1; 318 pause->tx_pause = 1; 319 } 320 } 321 322 static int e1000_set_pauseparam(struct net_device *netdev, 323 struct ethtool_pauseparam *pause) 324 { 325 struct e1000_adapter *adapter = netdev_priv(netdev); 326 struct e1000_hw *hw = &adapter->hw; 327 int retval = 0; 328 329 adapter->fc_autoneg = pause->autoneg; 330 331 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 332 usleep_range(1000, 2000); 333 334 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 335 hw->fc.requested_mode = e1000_fc_default; 336 if (netif_running(adapter->netdev)) { 337 e1000e_down(adapter); 338 e1000e_up(adapter); 339 } else { 340 e1000e_reset(adapter); 341 } 342 } else { 343 if (pause->rx_pause && pause->tx_pause) 344 hw->fc.requested_mode = e1000_fc_full; 345 else if (pause->rx_pause && !pause->tx_pause) 346 hw->fc.requested_mode = e1000_fc_rx_pause; 347 else if (!pause->rx_pause && pause->tx_pause) 348 hw->fc.requested_mode = e1000_fc_tx_pause; 349 else if (!pause->rx_pause && !pause->tx_pause) 350 hw->fc.requested_mode = e1000_fc_none; 351 352 hw->fc.current_mode = hw->fc.requested_mode; 353 354 if (hw->phy.media_type == e1000_media_type_fiber) { 355 retval = hw->mac.ops.setup_link(hw); 356 /* implicit goto out */ 357 } else { 358 retval = e1000e_force_mac_fc(hw); 359 if (retval) 360 goto out; 361 e1000e_set_fc_watermarks(hw); 362 } 363 } 364 365 out: 366 clear_bit(__E1000_RESETTING, &adapter->state); 367 return retval; 368 } 369 370 static u32 e1000_get_msglevel(struct net_device *netdev) 371 { 372 struct e1000_adapter *adapter = netdev_priv(netdev); 373 return adapter->msg_enable; 374 } 375 376 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 377 { 378 struct e1000_adapter *adapter = netdev_priv(netdev); 379 adapter->msg_enable = data; 380 } 381 382 static int e1000_get_regs_len(struct net_device *netdev) 383 { 384 #define E1000_REGS_LEN 32 /* overestimate */ 385 return E1000_REGS_LEN * sizeof(u32); 386 } 387 388 static void e1000_get_regs(struct net_device *netdev, 389 struct ethtool_regs *regs, void *p) 390 { 391 struct e1000_adapter *adapter = netdev_priv(netdev); 392 struct e1000_hw *hw = &adapter->hw; 393 u32 *regs_buff = p; 394 u16 phy_data; 395 396 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 397 398 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 399 adapter->pdev->device; 400 401 regs_buff[0] = er32(CTRL); 402 regs_buff[1] = er32(STATUS); 403 404 regs_buff[2] = er32(RCTL); 405 regs_buff[3] = er32(RDLEN); 406 regs_buff[4] = er32(RDH); 407 regs_buff[5] = er32(RDT); 408 regs_buff[6] = er32(RDTR); 409 410 regs_buff[7] = er32(TCTL); 411 regs_buff[8] = er32(TDLEN); 412 regs_buff[9] = er32(TDH); 413 regs_buff[10] = er32(TDT); 414 regs_buff[11] = er32(TIDV); 415 416 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 417 418 /* ethtool doesn't use anything past this point, so all this 419 * code is likely legacy junk for apps that may or may not 420 * exist */ 421 if (hw->phy.type == e1000_phy_m88) { 422 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 423 regs_buff[13] = (u32)phy_data; /* cable length */ 424 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 425 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 426 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 427 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 428 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 429 regs_buff[18] = regs_buff[13]; /* cable polarity */ 430 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 431 regs_buff[20] = regs_buff[17]; /* polarity correction */ 432 /* phy receive errors */ 433 regs_buff[22] = adapter->phy_stats.receive_errors; 434 regs_buff[23] = regs_buff[13]; /* mdix mode */ 435 } 436 regs_buff[21] = 0; /* was idle_errors */ 437 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); 438 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 439 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 440 } 441 442 static int e1000_get_eeprom_len(struct net_device *netdev) 443 { 444 struct e1000_adapter *adapter = netdev_priv(netdev); 445 return adapter->hw.nvm.word_size * 2; 446 } 447 448 static int e1000_get_eeprom(struct net_device *netdev, 449 struct ethtool_eeprom *eeprom, u8 *bytes) 450 { 451 struct e1000_adapter *adapter = netdev_priv(netdev); 452 struct e1000_hw *hw = &adapter->hw; 453 u16 *eeprom_buff; 454 int first_word; 455 int last_word; 456 int ret_val = 0; 457 u16 i; 458 459 if (eeprom->len == 0) 460 return -EINVAL; 461 462 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 463 464 first_word = eeprom->offset >> 1; 465 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 466 467 eeprom_buff = kmalloc(sizeof(u16) * 468 (last_word - first_word + 1), GFP_KERNEL); 469 if (!eeprom_buff) 470 return -ENOMEM; 471 472 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 473 ret_val = e1000_read_nvm(hw, first_word, 474 last_word - first_word + 1, 475 eeprom_buff); 476 } else { 477 for (i = 0; i < last_word - first_word + 1; i++) { 478 ret_val = e1000_read_nvm(hw, first_word + i, 1, 479 &eeprom_buff[i]); 480 if (ret_val) 481 break; 482 } 483 } 484 485 if (ret_val) { 486 /* a read error occurred, throw away the result */ 487 memset(eeprom_buff, 0xff, sizeof(u16) * 488 (last_word - first_word + 1)); 489 } else { 490 /* Device's eeprom is always little-endian, word addressable */ 491 for (i = 0; i < last_word - first_word + 1; i++) 492 le16_to_cpus(&eeprom_buff[i]); 493 } 494 495 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 496 kfree(eeprom_buff); 497 498 return ret_val; 499 } 500 501 static int e1000_set_eeprom(struct net_device *netdev, 502 struct ethtool_eeprom *eeprom, u8 *bytes) 503 { 504 struct e1000_adapter *adapter = netdev_priv(netdev); 505 struct e1000_hw *hw = &adapter->hw; 506 u16 *eeprom_buff; 507 void *ptr; 508 int max_len; 509 int first_word; 510 int last_word; 511 int ret_val = 0; 512 u16 i; 513 514 if (eeprom->len == 0) 515 return -EOPNOTSUPP; 516 517 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) 518 return -EFAULT; 519 520 if (adapter->flags & FLAG_READ_ONLY_NVM) 521 return -EINVAL; 522 523 max_len = hw->nvm.word_size * 2; 524 525 first_word = eeprom->offset >> 1; 526 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 527 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 528 if (!eeprom_buff) 529 return -ENOMEM; 530 531 ptr = (void *)eeprom_buff; 532 533 if (eeprom->offset & 1) { 534 /* need read/modify/write of first changed EEPROM word */ 535 /* only the second byte of the word is being modified */ 536 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 537 ptr++; 538 } 539 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) 540 /* need read/modify/write of last changed EEPROM word */ 541 /* only the first byte of the word is being modified */ 542 ret_val = e1000_read_nvm(hw, last_word, 1, 543 &eeprom_buff[last_word - first_word]); 544 545 if (ret_val) 546 goto out; 547 548 /* Device's eeprom is always little-endian, word addressable */ 549 for (i = 0; i < last_word - first_word + 1; i++) 550 le16_to_cpus(&eeprom_buff[i]); 551 552 memcpy(ptr, bytes, eeprom->len); 553 554 for (i = 0; i < last_word - first_word + 1; i++) 555 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 556 557 ret_val = e1000_write_nvm(hw, first_word, 558 last_word - first_word + 1, eeprom_buff); 559 560 if (ret_val) 561 goto out; 562 563 /* 564 * Update the checksum over the first part of the EEPROM if needed 565 * and flush shadow RAM for applicable controllers 566 */ 567 if ((first_word <= NVM_CHECKSUM_REG) || 568 (hw->mac.type == e1000_82583) || 569 (hw->mac.type == e1000_82574) || 570 (hw->mac.type == e1000_82573)) 571 ret_val = e1000e_update_nvm_checksum(hw); 572 573 out: 574 kfree(eeprom_buff); 575 return ret_val; 576 } 577 578 static void e1000_get_drvinfo(struct net_device *netdev, 579 struct ethtool_drvinfo *drvinfo) 580 { 581 struct e1000_adapter *adapter = netdev_priv(netdev); 582 583 strlcpy(drvinfo->driver, e1000e_driver_name, 584 sizeof(drvinfo->driver)); 585 strlcpy(drvinfo->version, e1000e_driver_version, 586 sizeof(drvinfo->version)); 587 588 /* 589 * EEPROM image version # is reported as firmware version # for 590 * PCI-E controllers 591 */ 592 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 593 "%d.%d-%d", 594 (adapter->eeprom_vers & 0xF000) >> 12, 595 (adapter->eeprom_vers & 0x0FF0) >> 4, 596 (adapter->eeprom_vers & 0x000F)); 597 598 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 599 sizeof(drvinfo->bus_info)); 600 drvinfo->regdump_len = e1000_get_regs_len(netdev); 601 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 602 } 603 604 static void e1000_get_ringparam(struct net_device *netdev, 605 struct ethtool_ringparam *ring) 606 { 607 struct e1000_adapter *adapter = netdev_priv(netdev); 608 struct e1000_ring *tx_ring = adapter->tx_ring; 609 struct e1000_ring *rx_ring = adapter->rx_ring; 610 611 ring->rx_max_pending = E1000_MAX_RXD; 612 ring->tx_max_pending = E1000_MAX_TXD; 613 ring->rx_pending = rx_ring->count; 614 ring->tx_pending = tx_ring->count; 615 } 616 617 static int e1000_set_ringparam(struct net_device *netdev, 618 struct ethtool_ringparam *ring) 619 { 620 struct e1000_adapter *adapter = netdev_priv(netdev); 621 struct e1000_ring *tx_ring, *tx_old; 622 struct e1000_ring *rx_ring, *rx_old; 623 int err; 624 625 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 626 return -EINVAL; 627 628 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 629 usleep_range(1000, 2000); 630 631 if (netif_running(adapter->netdev)) 632 e1000e_down(adapter); 633 634 tx_old = adapter->tx_ring; 635 rx_old = adapter->rx_ring; 636 637 err = -ENOMEM; 638 tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL); 639 if (!tx_ring) 640 goto err_alloc_tx; 641 642 rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL); 643 if (!rx_ring) 644 goto err_alloc_rx; 645 646 adapter->tx_ring = tx_ring; 647 adapter->rx_ring = rx_ring; 648 649 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); 650 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD)); 651 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE); 652 653 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); 654 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD)); 655 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE); 656 657 if (netif_running(adapter->netdev)) { 658 /* Try to get new resources before deleting old */ 659 err = e1000e_setup_rx_resources(adapter); 660 if (err) 661 goto err_setup_rx; 662 err = e1000e_setup_tx_resources(adapter); 663 if (err) 664 goto err_setup_tx; 665 666 /* 667 * restore the old in order to free it, 668 * then add in the new 669 */ 670 adapter->rx_ring = rx_old; 671 adapter->tx_ring = tx_old; 672 e1000e_free_rx_resources(adapter); 673 e1000e_free_tx_resources(adapter); 674 kfree(tx_old); 675 kfree(rx_old); 676 adapter->rx_ring = rx_ring; 677 adapter->tx_ring = tx_ring; 678 err = e1000e_up(adapter); 679 if (err) 680 goto err_setup; 681 } 682 683 clear_bit(__E1000_RESETTING, &adapter->state); 684 return 0; 685 err_setup_tx: 686 e1000e_free_rx_resources(adapter); 687 err_setup_rx: 688 adapter->rx_ring = rx_old; 689 adapter->tx_ring = tx_old; 690 kfree(rx_ring); 691 err_alloc_rx: 692 kfree(tx_ring); 693 err_alloc_tx: 694 e1000e_up(adapter); 695 err_setup: 696 clear_bit(__E1000_RESETTING, &adapter->state); 697 return err; 698 } 699 700 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 701 int reg, int offset, u32 mask, u32 write) 702 { 703 u32 pat, val; 704 static const u32 test[] = { 705 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 706 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 707 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 708 (test[pat] & write)); 709 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 710 if (val != (test[pat] & write & mask)) { 711 e_err("pattern test reg %04X failed: got 0x%08X " 712 "expected 0x%08X\n", reg + offset, val, 713 (test[pat] & write & mask)); 714 *data = reg; 715 return 1; 716 } 717 } 718 return 0; 719 } 720 721 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 722 int reg, u32 mask, u32 write) 723 { 724 u32 val; 725 __ew32(&adapter->hw, reg, write & mask); 726 val = __er32(&adapter->hw, reg); 727 if ((write & mask) != (val & mask)) { 728 e_err("set/check reg %04X test failed: got 0x%08X " 729 "expected 0x%08X\n", reg, (val & mask), (write & mask)); 730 *data = reg; 731 return 1; 732 } 733 return 0; 734 } 735 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 736 do { \ 737 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 738 return 1; \ 739 } while (0) 740 #define REG_PATTERN_TEST(reg, mask, write) \ 741 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 742 743 #define REG_SET_AND_CHECK(reg, mask, write) \ 744 do { \ 745 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 746 return 1; \ 747 } while (0) 748 749 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 750 { 751 struct e1000_hw *hw = &adapter->hw; 752 struct e1000_mac_info *mac = &adapter->hw.mac; 753 u32 value; 754 u32 before; 755 u32 after; 756 u32 i; 757 u32 toggle; 758 u32 mask; 759 760 /* 761 * The status register is Read Only, so a write should fail. 762 * Some bits that get toggled are ignored. 763 */ 764 switch (mac->type) { 765 /* there are several bits on newer hardware that are r/w */ 766 case e1000_82571: 767 case e1000_82572: 768 case e1000_80003es2lan: 769 toggle = 0x7FFFF3FF; 770 break; 771 default: 772 toggle = 0x7FFFF033; 773 break; 774 } 775 776 before = er32(STATUS); 777 value = (er32(STATUS) & toggle); 778 ew32(STATUS, toggle); 779 after = er32(STATUS) & toggle; 780 if (value != after) { 781 e_err("failed STATUS register test got: 0x%08X expected: " 782 "0x%08X\n", after, value); 783 *data = 1; 784 return 1; 785 } 786 /* restore previous status */ 787 ew32(STATUS, before); 788 789 if (!(adapter->flags & FLAG_IS_ICH)) { 790 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 791 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 792 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 793 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 794 } 795 796 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 797 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 798 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF); 799 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF); 800 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF); 801 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 802 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 803 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 804 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 805 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF); 806 807 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 808 809 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 810 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 811 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 812 813 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 814 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 815 if (!(adapter->flags & FLAG_IS_ICH)) 816 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 817 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 818 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 819 mask = 0x8003FFFF; 820 switch (mac->type) { 821 case e1000_ich10lan: 822 case e1000_pchlan: 823 case e1000_pch2lan: 824 mask |= (1 << 18); 825 break; 826 default: 827 break; 828 } 829 for (i = 0; i < mac->rar_entry_count; i++) 830 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), 831 mask, 0xFFFFFFFF); 832 833 for (i = 0; i < mac->mta_reg_count; i++) 834 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 835 836 *data = 0; 837 return 0; 838 } 839 840 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 841 { 842 u16 temp; 843 u16 checksum = 0; 844 u16 i; 845 846 *data = 0; 847 /* Read and add up the contents of the EEPROM */ 848 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 849 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 850 *data = 1; 851 return *data; 852 } 853 checksum += temp; 854 } 855 856 /* If Checksum is not Correct return error else test passed */ 857 if ((checksum != (u16) NVM_SUM) && !(*data)) 858 *data = 2; 859 860 return *data; 861 } 862 863 static irqreturn_t e1000_test_intr(int irq, void *data) 864 { 865 struct net_device *netdev = (struct net_device *) data; 866 struct e1000_adapter *adapter = netdev_priv(netdev); 867 struct e1000_hw *hw = &adapter->hw; 868 869 adapter->test_icr |= er32(ICR); 870 871 return IRQ_HANDLED; 872 } 873 874 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 875 { 876 struct net_device *netdev = adapter->netdev; 877 struct e1000_hw *hw = &adapter->hw; 878 u32 mask; 879 u32 shared_int = 1; 880 u32 irq = adapter->pdev->irq; 881 int i; 882 int ret_val = 0; 883 int int_mode = E1000E_INT_MODE_LEGACY; 884 885 *data = 0; 886 887 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 888 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 889 int_mode = adapter->int_mode; 890 e1000e_reset_interrupt_capability(adapter); 891 adapter->int_mode = E1000E_INT_MODE_LEGACY; 892 e1000e_set_interrupt_capability(adapter); 893 } 894 /* Hook up test interrupt handler just for this test */ 895 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 896 netdev)) { 897 shared_int = 0; 898 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 899 netdev->name, netdev)) { 900 *data = 1; 901 ret_val = -1; 902 goto out; 903 } 904 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 905 906 /* Disable all the interrupts */ 907 ew32(IMC, 0xFFFFFFFF); 908 e1e_flush(); 909 usleep_range(10000, 20000); 910 911 /* Test each interrupt */ 912 for (i = 0; i < 10; i++) { 913 /* Interrupt to test */ 914 mask = 1 << i; 915 916 if (adapter->flags & FLAG_IS_ICH) { 917 switch (mask) { 918 case E1000_ICR_RXSEQ: 919 continue; 920 case 0x00000100: 921 if (adapter->hw.mac.type == e1000_ich8lan || 922 adapter->hw.mac.type == e1000_ich9lan) 923 continue; 924 break; 925 default: 926 break; 927 } 928 } 929 930 if (!shared_int) { 931 /* 932 * Disable the interrupt to be reported in 933 * the cause register and then force the same 934 * interrupt and see if one gets posted. If 935 * an interrupt was posted to the bus, the 936 * test failed. 937 */ 938 adapter->test_icr = 0; 939 ew32(IMC, mask); 940 ew32(ICS, mask); 941 e1e_flush(); 942 usleep_range(10000, 20000); 943 944 if (adapter->test_icr & mask) { 945 *data = 3; 946 break; 947 } 948 } 949 950 /* 951 * Enable the interrupt to be reported in 952 * the cause register and then force the same 953 * interrupt and see if one gets posted. If 954 * an interrupt was not posted to the bus, the 955 * test failed. 956 */ 957 adapter->test_icr = 0; 958 ew32(IMS, mask); 959 ew32(ICS, mask); 960 e1e_flush(); 961 usleep_range(10000, 20000); 962 963 if (!(adapter->test_icr & mask)) { 964 *data = 4; 965 break; 966 } 967 968 if (!shared_int) { 969 /* 970 * Disable the other interrupts to be reported in 971 * the cause register and then force the other 972 * interrupts and see if any get posted. If 973 * an interrupt was posted to the bus, the 974 * test failed. 975 */ 976 adapter->test_icr = 0; 977 ew32(IMC, ~mask & 0x00007FFF); 978 ew32(ICS, ~mask & 0x00007FFF); 979 e1e_flush(); 980 usleep_range(10000, 20000); 981 982 if (adapter->test_icr) { 983 *data = 5; 984 break; 985 } 986 } 987 } 988 989 /* Disable all the interrupts */ 990 ew32(IMC, 0xFFFFFFFF); 991 e1e_flush(); 992 usleep_range(10000, 20000); 993 994 /* Unhook test interrupt handler */ 995 free_irq(irq, netdev); 996 997 out: 998 if (int_mode == E1000E_INT_MODE_MSIX) { 999 e1000e_reset_interrupt_capability(adapter); 1000 adapter->int_mode = int_mode; 1001 e1000e_set_interrupt_capability(adapter); 1002 } 1003 1004 return ret_val; 1005 } 1006 1007 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1008 { 1009 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1010 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1011 struct pci_dev *pdev = adapter->pdev; 1012 int i; 1013 1014 if (tx_ring->desc && tx_ring->buffer_info) { 1015 for (i = 0; i < tx_ring->count; i++) { 1016 if (tx_ring->buffer_info[i].dma) 1017 dma_unmap_single(&pdev->dev, 1018 tx_ring->buffer_info[i].dma, 1019 tx_ring->buffer_info[i].length, 1020 DMA_TO_DEVICE); 1021 if (tx_ring->buffer_info[i].skb) 1022 dev_kfree_skb(tx_ring->buffer_info[i].skb); 1023 } 1024 } 1025 1026 if (rx_ring->desc && rx_ring->buffer_info) { 1027 for (i = 0; i < rx_ring->count; i++) { 1028 if (rx_ring->buffer_info[i].dma) 1029 dma_unmap_single(&pdev->dev, 1030 rx_ring->buffer_info[i].dma, 1031 2048, DMA_FROM_DEVICE); 1032 if (rx_ring->buffer_info[i].skb) 1033 dev_kfree_skb(rx_ring->buffer_info[i].skb); 1034 } 1035 } 1036 1037 if (tx_ring->desc) { 1038 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1039 tx_ring->dma); 1040 tx_ring->desc = NULL; 1041 } 1042 if (rx_ring->desc) { 1043 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1044 rx_ring->dma); 1045 rx_ring->desc = NULL; 1046 } 1047 1048 kfree(tx_ring->buffer_info); 1049 tx_ring->buffer_info = NULL; 1050 kfree(rx_ring->buffer_info); 1051 rx_ring->buffer_info = NULL; 1052 } 1053 1054 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1055 { 1056 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1057 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1058 struct pci_dev *pdev = adapter->pdev; 1059 struct e1000_hw *hw = &adapter->hw; 1060 u32 rctl; 1061 int i; 1062 int ret_val; 1063 1064 /* Setup Tx descriptor ring and Tx buffers */ 1065 1066 if (!tx_ring->count) 1067 tx_ring->count = E1000_DEFAULT_TXD; 1068 1069 tx_ring->buffer_info = kcalloc(tx_ring->count, 1070 sizeof(struct e1000_buffer), 1071 GFP_KERNEL); 1072 if (!(tx_ring->buffer_info)) { 1073 ret_val = 1; 1074 goto err_nomem; 1075 } 1076 1077 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1078 tx_ring->size = ALIGN(tx_ring->size, 4096); 1079 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1080 &tx_ring->dma, GFP_KERNEL); 1081 if (!tx_ring->desc) { 1082 ret_val = 2; 1083 goto err_nomem; 1084 } 1085 tx_ring->next_to_use = 0; 1086 tx_ring->next_to_clean = 0; 1087 1088 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); 1089 ew32(TDBAH, ((u64) tx_ring->dma >> 32)); 1090 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc)); 1091 ew32(TDH, 0); 1092 ew32(TDT, 0); 1093 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1094 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1095 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1096 1097 for (i = 0; i < tx_ring->count; i++) { 1098 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1099 struct sk_buff *skb; 1100 unsigned int skb_size = 1024; 1101 1102 skb = alloc_skb(skb_size, GFP_KERNEL); 1103 if (!skb) { 1104 ret_val = 3; 1105 goto err_nomem; 1106 } 1107 skb_put(skb, skb_size); 1108 tx_ring->buffer_info[i].skb = skb; 1109 tx_ring->buffer_info[i].length = skb->len; 1110 tx_ring->buffer_info[i].dma = 1111 dma_map_single(&pdev->dev, skb->data, skb->len, 1112 DMA_TO_DEVICE); 1113 if (dma_mapping_error(&pdev->dev, 1114 tx_ring->buffer_info[i].dma)) { 1115 ret_val = 4; 1116 goto err_nomem; 1117 } 1118 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1119 tx_desc->lower.data = cpu_to_le32(skb->len); 1120 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1121 E1000_TXD_CMD_IFCS | 1122 E1000_TXD_CMD_RS); 1123 tx_desc->upper.data = 0; 1124 } 1125 1126 /* Setup Rx descriptor ring and Rx buffers */ 1127 1128 if (!rx_ring->count) 1129 rx_ring->count = E1000_DEFAULT_RXD; 1130 1131 rx_ring->buffer_info = kcalloc(rx_ring->count, 1132 sizeof(struct e1000_buffer), 1133 GFP_KERNEL); 1134 if (!(rx_ring->buffer_info)) { 1135 ret_val = 5; 1136 goto err_nomem; 1137 } 1138 1139 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1140 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1141 &rx_ring->dma, GFP_KERNEL); 1142 if (!rx_ring->desc) { 1143 ret_val = 6; 1144 goto err_nomem; 1145 } 1146 rx_ring->next_to_use = 0; 1147 rx_ring->next_to_clean = 0; 1148 1149 rctl = er32(RCTL); 1150 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1151 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1152 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF)); 1153 ew32(RDBAH, ((u64) rx_ring->dma >> 32)); 1154 ew32(RDLEN, rx_ring->size); 1155 ew32(RDH, 0); 1156 ew32(RDT, 0); 1157 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1158 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1159 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1160 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1161 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1162 ew32(RCTL, rctl); 1163 1164 for (i = 0; i < rx_ring->count; i++) { 1165 union e1000_rx_desc_extended *rx_desc; 1166 struct sk_buff *skb; 1167 1168 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1169 if (!skb) { 1170 ret_val = 7; 1171 goto err_nomem; 1172 } 1173 skb_reserve(skb, NET_IP_ALIGN); 1174 rx_ring->buffer_info[i].skb = skb; 1175 rx_ring->buffer_info[i].dma = 1176 dma_map_single(&pdev->dev, skb->data, 2048, 1177 DMA_FROM_DEVICE); 1178 if (dma_mapping_error(&pdev->dev, 1179 rx_ring->buffer_info[i].dma)) { 1180 ret_val = 8; 1181 goto err_nomem; 1182 } 1183 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1184 rx_desc->read.buffer_addr = 1185 cpu_to_le64(rx_ring->buffer_info[i].dma); 1186 memset(skb->data, 0x00, skb->len); 1187 } 1188 1189 return 0; 1190 1191 err_nomem: 1192 e1000_free_desc_rings(adapter); 1193 return ret_val; 1194 } 1195 1196 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1197 { 1198 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1199 e1e_wphy(&adapter->hw, 29, 0x001F); 1200 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1201 e1e_wphy(&adapter->hw, 29, 0x001A); 1202 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1203 } 1204 1205 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1206 { 1207 struct e1000_hw *hw = &adapter->hw; 1208 u32 ctrl_reg = 0; 1209 u16 phy_reg = 0; 1210 s32 ret_val = 0; 1211 1212 hw->mac.autoneg = 0; 1213 1214 if (hw->phy.type == e1000_phy_ife) { 1215 /* force 100, set loopback */ 1216 e1e_wphy(hw, PHY_CONTROL, 0x6100); 1217 1218 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1219 ctrl_reg = er32(CTRL); 1220 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1221 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1222 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1223 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1224 E1000_CTRL_FD); /* Force Duplex to FULL */ 1225 1226 ew32(CTRL, ctrl_reg); 1227 e1e_flush(); 1228 udelay(500); 1229 1230 return 0; 1231 } 1232 1233 /* Specific PHY configuration for loopback */ 1234 switch (hw->phy.type) { 1235 case e1000_phy_m88: 1236 /* Auto-MDI/MDIX Off */ 1237 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1238 /* reset to update Auto-MDI/MDIX */ 1239 e1e_wphy(hw, PHY_CONTROL, 0x9140); 1240 /* autoneg off */ 1241 e1e_wphy(hw, PHY_CONTROL, 0x8140); 1242 break; 1243 case e1000_phy_gg82563: 1244 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1245 break; 1246 case e1000_phy_bm: 1247 /* Set Default MAC Interface speed to 1GB */ 1248 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1249 phy_reg &= ~0x0007; 1250 phy_reg |= 0x006; 1251 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1252 /* Assert SW reset for above settings to take effect */ 1253 e1000e_commit_phy(hw); 1254 mdelay(1); 1255 /* Force Full Duplex */ 1256 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1257 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1258 /* Set Link Up (in force link) */ 1259 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1260 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1261 /* Force Link */ 1262 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1263 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1264 /* Set Early Link Enable */ 1265 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1266 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1267 break; 1268 case e1000_phy_82577: 1269 case e1000_phy_82578: 1270 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1271 ret_val = hw->phy.ops.acquire(hw); 1272 if (ret_val) { 1273 e_err("Cannot setup 1Gbps loopback.\n"); 1274 return ret_val; 1275 } 1276 e1000_configure_k1_ich8lan(hw, false); 1277 hw->phy.ops.release(hw); 1278 break; 1279 case e1000_phy_82579: 1280 /* Disable PHY energy detect power down */ 1281 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1282 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1283 /* Disable full chip energy detect */ 1284 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1285 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1286 /* Enable loopback on the PHY */ 1287 #define I82577_PHY_LBK_CTRL 19 1288 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1289 break; 1290 default: 1291 break; 1292 } 1293 1294 /* force 1000, set loopback */ 1295 e1e_wphy(hw, PHY_CONTROL, 0x4140); 1296 mdelay(250); 1297 1298 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1299 ctrl_reg = er32(CTRL); 1300 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1301 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1302 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1303 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1304 E1000_CTRL_FD); /* Force Duplex to FULL */ 1305 1306 if (adapter->flags & FLAG_IS_ICH) 1307 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1308 1309 if (hw->phy.media_type == e1000_media_type_copper && 1310 hw->phy.type == e1000_phy_m88) { 1311 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1312 } else { 1313 /* 1314 * Set the ILOS bit on the fiber Nic if half duplex link is 1315 * detected. 1316 */ 1317 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1318 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1319 } 1320 1321 ew32(CTRL, ctrl_reg); 1322 1323 /* 1324 * Disable the receiver on the PHY so when a cable is plugged in, the 1325 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1326 */ 1327 if (hw->phy.type == e1000_phy_m88) 1328 e1000_phy_disable_receiver(adapter); 1329 1330 udelay(500); 1331 1332 return 0; 1333 } 1334 1335 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1336 { 1337 struct e1000_hw *hw = &adapter->hw; 1338 u32 ctrl = er32(CTRL); 1339 int link = 0; 1340 1341 /* special requirements for 82571/82572 fiber adapters */ 1342 1343 /* 1344 * jump through hoops to make sure link is up because serdes 1345 * link is hardwired up 1346 */ 1347 ctrl |= E1000_CTRL_SLU; 1348 ew32(CTRL, ctrl); 1349 1350 /* disable autoneg */ 1351 ctrl = er32(TXCW); 1352 ctrl &= ~(1 << 31); 1353 ew32(TXCW, ctrl); 1354 1355 link = (er32(STATUS) & E1000_STATUS_LU); 1356 1357 if (!link) { 1358 /* set invert loss of signal */ 1359 ctrl = er32(CTRL); 1360 ctrl |= E1000_CTRL_ILOS; 1361 ew32(CTRL, ctrl); 1362 } 1363 1364 /* 1365 * special write to serdes control register to enable SerDes analog 1366 * loopback 1367 */ 1368 #define E1000_SERDES_LB_ON 0x410 1369 ew32(SCTL, E1000_SERDES_LB_ON); 1370 e1e_flush(); 1371 usleep_range(10000, 20000); 1372 1373 return 0; 1374 } 1375 1376 /* only call this for fiber/serdes connections to es2lan */ 1377 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1378 { 1379 struct e1000_hw *hw = &adapter->hw; 1380 u32 ctrlext = er32(CTRL_EXT); 1381 u32 ctrl = er32(CTRL); 1382 1383 /* 1384 * save CTRL_EXT to restore later, reuse an empty variable (unused 1385 * on mac_type 80003es2lan) 1386 */ 1387 adapter->tx_fifo_head = ctrlext; 1388 1389 /* clear the serdes mode bits, putting the device into mac loopback */ 1390 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1391 ew32(CTRL_EXT, ctrlext); 1392 1393 /* force speed to 1000/FD, link up */ 1394 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1395 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1396 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1397 ew32(CTRL, ctrl); 1398 1399 /* set mac loopback */ 1400 ctrl = er32(RCTL); 1401 ctrl |= E1000_RCTL_LBM_MAC; 1402 ew32(RCTL, ctrl); 1403 1404 /* set testing mode parameters (no need to reset later) */ 1405 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1406 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1407 ew32(KMRNCTRLSTA, 1408 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1409 1410 return 0; 1411 } 1412 1413 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1414 { 1415 struct e1000_hw *hw = &adapter->hw; 1416 u32 rctl; 1417 1418 if (hw->phy.media_type == e1000_media_type_fiber || 1419 hw->phy.media_type == e1000_media_type_internal_serdes) { 1420 switch (hw->mac.type) { 1421 case e1000_80003es2lan: 1422 return e1000_set_es2lan_mac_loopback(adapter); 1423 break; 1424 case e1000_82571: 1425 case e1000_82572: 1426 return e1000_set_82571_fiber_loopback(adapter); 1427 break; 1428 default: 1429 rctl = er32(RCTL); 1430 rctl |= E1000_RCTL_LBM_TCVR; 1431 ew32(RCTL, rctl); 1432 return 0; 1433 } 1434 } else if (hw->phy.media_type == e1000_media_type_copper) { 1435 return e1000_integrated_phy_loopback(adapter); 1436 } 1437 1438 return 7; 1439 } 1440 1441 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1442 { 1443 struct e1000_hw *hw = &adapter->hw; 1444 u32 rctl; 1445 u16 phy_reg; 1446 1447 rctl = er32(RCTL); 1448 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1449 ew32(RCTL, rctl); 1450 1451 switch (hw->mac.type) { 1452 case e1000_80003es2lan: 1453 if (hw->phy.media_type == e1000_media_type_fiber || 1454 hw->phy.media_type == e1000_media_type_internal_serdes) { 1455 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1456 ew32(CTRL_EXT, adapter->tx_fifo_head); 1457 adapter->tx_fifo_head = 0; 1458 } 1459 /* fall through */ 1460 case e1000_82571: 1461 case e1000_82572: 1462 if (hw->phy.media_type == e1000_media_type_fiber || 1463 hw->phy.media_type == e1000_media_type_internal_serdes) { 1464 #define E1000_SERDES_LB_OFF 0x400 1465 ew32(SCTL, E1000_SERDES_LB_OFF); 1466 e1e_flush(); 1467 usleep_range(10000, 20000); 1468 break; 1469 } 1470 /* Fall Through */ 1471 default: 1472 hw->mac.autoneg = 1; 1473 if (hw->phy.type == e1000_phy_gg82563) 1474 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1475 e1e_rphy(hw, PHY_CONTROL, &phy_reg); 1476 if (phy_reg & MII_CR_LOOPBACK) { 1477 phy_reg &= ~MII_CR_LOOPBACK; 1478 e1e_wphy(hw, PHY_CONTROL, phy_reg); 1479 e1000e_commit_phy(hw); 1480 } 1481 break; 1482 } 1483 } 1484 1485 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1486 unsigned int frame_size) 1487 { 1488 memset(skb->data, 0xFF, frame_size); 1489 frame_size &= ~1; 1490 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1491 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1492 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1493 } 1494 1495 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1496 unsigned int frame_size) 1497 { 1498 frame_size &= ~1; 1499 if (*(skb->data + 3) == 0xFF) 1500 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1501 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1502 return 0; 1503 return 13; 1504 } 1505 1506 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1507 { 1508 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1509 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1510 struct pci_dev *pdev = adapter->pdev; 1511 struct e1000_hw *hw = &adapter->hw; 1512 int i, j, k, l; 1513 int lc; 1514 int good_cnt; 1515 int ret_val = 0; 1516 unsigned long time; 1517 1518 ew32(RDT, rx_ring->count - 1); 1519 1520 /* 1521 * Calculate the loop count based on the largest descriptor ring 1522 * The idea is to wrap the largest ring a number of times using 64 1523 * send/receive pairs during each loop 1524 */ 1525 1526 if (rx_ring->count <= tx_ring->count) 1527 lc = ((tx_ring->count / 64) * 2) + 1; 1528 else 1529 lc = ((rx_ring->count / 64) * 2) + 1; 1530 1531 k = 0; 1532 l = 0; 1533 for (j = 0; j <= lc; j++) { /* loop count loop */ 1534 for (i = 0; i < 64; i++) { /* send the packets */ 1535 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, 1536 1024); 1537 dma_sync_single_for_device(&pdev->dev, 1538 tx_ring->buffer_info[k].dma, 1539 tx_ring->buffer_info[k].length, 1540 DMA_TO_DEVICE); 1541 k++; 1542 if (k == tx_ring->count) 1543 k = 0; 1544 } 1545 ew32(TDT, k); 1546 e1e_flush(); 1547 msleep(200); 1548 time = jiffies; /* set the start time for the receive */ 1549 good_cnt = 0; 1550 do { /* receive the sent packets */ 1551 dma_sync_single_for_cpu(&pdev->dev, 1552 rx_ring->buffer_info[l].dma, 2048, 1553 DMA_FROM_DEVICE); 1554 1555 ret_val = e1000_check_lbtest_frame( 1556 rx_ring->buffer_info[l].skb, 1024); 1557 if (!ret_val) 1558 good_cnt++; 1559 l++; 1560 if (l == rx_ring->count) 1561 l = 0; 1562 /* 1563 * time + 20 msecs (200 msecs on 2.4) is more than 1564 * enough time to complete the receives, if it's 1565 * exceeded, break and error off 1566 */ 1567 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1568 if (good_cnt != 64) { 1569 ret_val = 13; /* ret_val is the same as mis-compare */ 1570 break; 1571 } 1572 if (jiffies >= (time + 20)) { 1573 ret_val = 14; /* error code for time out error */ 1574 break; 1575 } 1576 } /* end loop count loop */ 1577 return ret_val; 1578 } 1579 1580 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1581 { 1582 /* 1583 * PHY loopback cannot be performed if SoL/IDER 1584 * sessions are active 1585 */ 1586 if (e1000_check_reset_block(&adapter->hw)) { 1587 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1588 *data = 0; 1589 goto out; 1590 } 1591 1592 *data = e1000_setup_desc_rings(adapter); 1593 if (*data) 1594 goto out; 1595 1596 *data = e1000_setup_loopback_test(adapter); 1597 if (*data) 1598 goto err_loopback; 1599 1600 *data = e1000_run_loopback_test(adapter); 1601 e1000_loopback_cleanup(adapter); 1602 1603 err_loopback: 1604 e1000_free_desc_rings(adapter); 1605 out: 1606 return *data; 1607 } 1608 1609 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1610 { 1611 struct e1000_hw *hw = &adapter->hw; 1612 1613 *data = 0; 1614 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1615 int i = 0; 1616 hw->mac.serdes_has_link = false; 1617 1618 /* 1619 * On some blade server designs, link establishment 1620 * could take as long as 2-3 minutes 1621 */ 1622 do { 1623 hw->mac.ops.check_for_link(hw); 1624 if (hw->mac.serdes_has_link) 1625 return *data; 1626 msleep(20); 1627 } while (i++ < 3750); 1628 1629 *data = 1; 1630 } else { 1631 hw->mac.ops.check_for_link(hw); 1632 if (hw->mac.autoneg) 1633 /* 1634 * On some Phy/switch combinations, link establishment 1635 * can take a few seconds more than expected. 1636 */ 1637 msleep(5000); 1638 1639 if (!(er32(STATUS) & E1000_STATUS_LU)) 1640 *data = 1; 1641 } 1642 return *data; 1643 } 1644 1645 static int e1000e_get_sset_count(struct net_device *netdev, int sset) 1646 { 1647 switch (sset) { 1648 case ETH_SS_TEST: 1649 return E1000_TEST_LEN; 1650 case ETH_SS_STATS: 1651 return E1000_STATS_LEN; 1652 default: 1653 return -EOPNOTSUPP; 1654 } 1655 } 1656 1657 static void e1000_diag_test(struct net_device *netdev, 1658 struct ethtool_test *eth_test, u64 *data) 1659 { 1660 struct e1000_adapter *adapter = netdev_priv(netdev); 1661 u16 autoneg_advertised; 1662 u8 forced_speed_duplex; 1663 u8 autoneg; 1664 bool if_running = netif_running(netdev); 1665 1666 set_bit(__E1000_TESTING, &adapter->state); 1667 1668 if (!if_running) { 1669 /* Get control of and reset hardware */ 1670 if (adapter->flags & FLAG_HAS_AMT) 1671 e1000e_get_hw_control(adapter); 1672 1673 e1000e_power_up_phy(adapter); 1674 1675 adapter->hw.phy.autoneg_wait_to_complete = 1; 1676 e1000e_reset(adapter); 1677 adapter->hw.phy.autoneg_wait_to_complete = 0; 1678 } 1679 1680 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1681 /* Offline tests */ 1682 1683 /* save speed, duplex, autoneg settings */ 1684 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1685 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1686 autoneg = adapter->hw.mac.autoneg; 1687 1688 e_info("offline testing starting\n"); 1689 1690 if (if_running) 1691 /* indicate we're in test mode */ 1692 dev_close(netdev); 1693 1694 if (e1000_reg_test(adapter, &data[0])) 1695 eth_test->flags |= ETH_TEST_FL_FAILED; 1696 1697 e1000e_reset(adapter); 1698 if (e1000_eeprom_test(adapter, &data[1])) 1699 eth_test->flags |= ETH_TEST_FL_FAILED; 1700 1701 e1000e_reset(adapter); 1702 if (e1000_intr_test(adapter, &data[2])) 1703 eth_test->flags |= ETH_TEST_FL_FAILED; 1704 1705 e1000e_reset(adapter); 1706 if (e1000_loopback_test(adapter, &data[3])) 1707 eth_test->flags |= ETH_TEST_FL_FAILED; 1708 1709 /* force this routine to wait until autoneg complete/timeout */ 1710 adapter->hw.phy.autoneg_wait_to_complete = 1; 1711 e1000e_reset(adapter); 1712 adapter->hw.phy.autoneg_wait_to_complete = 0; 1713 1714 if (e1000_link_test(adapter, &data[4])) 1715 eth_test->flags |= ETH_TEST_FL_FAILED; 1716 1717 /* restore speed, duplex, autoneg settings */ 1718 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1719 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1720 adapter->hw.mac.autoneg = autoneg; 1721 e1000e_reset(adapter); 1722 1723 clear_bit(__E1000_TESTING, &adapter->state); 1724 if (if_running) 1725 dev_open(netdev); 1726 } else { 1727 /* Online tests */ 1728 1729 e_info("online testing starting\n"); 1730 1731 /* register, eeprom, intr and loopback tests not run online */ 1732 data[0] = 0; 1733 data[1] = 0; 1734 data[2] = 0; 1735 data[3] = 0; 1736 1737 if (e1000_link_test(adapter, &data[4])) 1738 eth_test->flags |= ETH_TEST_FL_FAILED; 1739 1740 clear_bit(__E1000_TESTING, &adapter->state); 1741 } 1742 1743 if (!if_running) { 1744 e1000e_reset(adapter); 1745 1746 if (adapter->flags & FLAG_HAS_AMT) 1747 e1000e_release_hw_control(adapter); 1748 } 1749 1750 msleep_interruptible(4 * 1000); 1751 } 1752 1753 static void e1000_get_wol(struct net_device *netdev, 1754 struct ethtool_wolinfo *wol) 1755 { 1756 struct e1000_adapter *adapter = netdev_priv(netdev); 1757 1758 wol->supported = 0; 1759 wol->wolopts = 0; 1760 1761 if (!(adapter->flags & FLAG_HAS_WOL) || 1762 !device_can_wakeup(&adapter->pdev->dev)) 1763 return; 1764 1765 wol->supported = WAKE_UCAST | WAKE_MCAST | 1766 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1767 1768 /* apply any specific unsupported masks here */ 1769 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1770 wol->supported &= ~WAKE_UCAST; 1771 1772 if (adapter->wol & E1000_WUFC_EX) 1773 e_err("Interface does not support directed (unicast) " 1774 "frame wake-up packets\n"); 1775 } 1776 1777 if (adapter->wol & E1000_WUFC_EX) 1778 wol->wolopts |= WAKE_UCAST; 1779 if (adapter->wol & E1000_WUFC_MC) 1780 wol->wolopts |= WAKE_MCAST; 1781 if (adapter->wol & E1000_WUFC_BC) 1782 wol->wolopts |= WAKE_BCAST; 1783 if (adapter->wol & E1000_WUFC_MAG) 1784 wol->wolopts |= WAKE_MAGIC; 1785 if (adapter->wol & E1000_WUFC_LNKC) 1786 wol->wolopts |= WAKE_PHY; 1787 } 1788 1789 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1790 { 1791 struct e1000_adapter *adapter = netdev_priv(netdev); 1792 1793 if (!(adapter->flags & FLAG_HAS_WOL) || 1794 !device_can_wakeup(&adapter->pdev->dev) || 1795 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1796 WAKE_MAGIC | WAKE_PHY))) 1797 return -EOPNOTSUPP; 1798 1799 /* these settings will always override what we currently have */ 1800 adapter->wol = 0; 1801 1802 if (wol->wolopts & WAKE_UCAST) 1803 adapter->wol |= E1000_WUFC_EX; 1804 if (wol->wolopts & WAKE_MCAST) 1805 adapter->wol |= E1000_WUFC_MC; 1806 if (wol->wolopts & WAKE_BCAST) 1807 adapter->wol |= E1000_WUFC_BC; 1808 if (wol->wolopts & WAKE_MAGIC) 1809 adapter->wol |= E1000_WUFC_MAG; 1810 if (wol->wolopts & WAKE_PHY) 1811 adapter->wol |= E1000_WUFC_LNKC; 1812 1813 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1814 1815 return 0; 1816 } 1817 1818 static int e1000_set_phys_id(struct net_device *netdev, 1819 enum ethtool_phys_id_state state) 1820 { 1821 struct e1000_adapter *adapter = netdev_priv(netdev); 1822 struct e1000_hw *hw = &adapter->hw; 1823 1824 switch (state) { 1825 case ETHTOOL_ID_ACTIVE: 1826 if (!hw->mac.ops.blink_led) 1827 return 2; /* cycle on/off twice per second */ 1828 1829 hw->mac.ops.blink_led(hw); 1830 break; 1831 1832 case ETHTOOL_ID_INACTIVE: 1833 if (hw->phy.type == e1000_phy_ife) 1834 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1835 hw->mac.ops.led_off(hw); 1836 hw->mac.ops.cleanup_led(hw); 1837 break; 1838 1839 case ETHTOOL_ID_ON: 1840 adapter->hw.mac.ops.led_on(&adapter->hw); 1841 break; 1842 1843 case ETHTOOL_ID_OFF: 1844 adapter->hw.mac.ops.led_off(&adapter->hw); 1845 break; 1846 } 1847 return 0; 1848 } 1849 1850 static int e1000_get_coalesce(struct net_device *netdev, 1851 struct ethtool_coalesce *ec) 1852 { 1853 struct e1000_adapter *adapter = netdev_priv(netdev); 1854 1855 if (adapter->itr_setting <= 4) 1856 ec->rx_coalesce_usecs = adapter->itr_setting; 1857 else 1858 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1859 1860 return 0; 1861 } 1862 1863 static int e1000_set_coalesce(struct net_device *netdev, 1864 struct ethtool_coalesce *ec) 1865 { 1866 struct e1000_adapter *adapter = netdev_priv(netdev); 1867 struct e1000_hw *hw = &adapter->hw; 1868 1869 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1870 ((ec->rx_coalesce_usecs > 4) && 1871 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1872 (ec->rx_coalesce_usecs == 2)) 1873 return -EINVAL; 1874 1875 if (ec->rx_coalesce_usecs == 4) { 1876 adapter->itr = adapter->itr_setting = 4; 1877 } else if (ec->rx_coalesce_usecs <= 3) { 1878 adapter->itr = 20000; 1879 adapter->itr_setting = ec->rx_coalesce_usecs; 1880 } else { 1881 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1882 adapter->itr_setting = adapter->itr & ~3; 1883 } 1884 1885 if (adapter->itr_setting != 0) 1886 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1887 else 1888 ew32(ITR, 0); 1889 1890 return 0; 1891 } 1892 1893 static int e1000_nway_reset(struct net_device *netdev) 1894 { 1895 struct e1000_adapter *adapter = netdev_priv(netdev); 1896 1897 if (!netif_running(netdev)) 1898 return -EAGAIN; 1899 1900 if (!adapter->hw.mac.autoneg) 1901 return -EINVAL; 1902 1903 e1000e_reinit_locked(adapter); 1904 1905 return 0; 1906 } 1907 1908 static void e1000_get_ethtool_stats(struct net_device *netdev, 1909 struct ethtool_stats *stats, 1910 u64 *data) 1911 { 1912 struct e1000_adapter *adapter = netdev_priv(netdev); 1913 struct rtnl_link_stats64 net_stats; 1914 int i; 1915 char *p = NULL; 1916 1917 e1000e_get_stats64(netdev, &net_stats); 1918 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1919 switch (e1000_gstrings_stats[i].type) { 1920 case NETDEV_STATS: 1921 p = (char *) &net_stats + 1922 e1000_gstrings_stats[i].stat_offset; 1923 break; 1924 case E1000_STATS: 1925 p = (char *) adapter + 1926 e1000_gstrings_stats[i].stat_offset; 1927 break; 1928 default: 1929 data[i] = 0; 1930 continue; 1931 } 1932 1933 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1934 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1935 } 1936 } 1937 1938 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1939 u8 *data) 1940 { 1941 u8 *p = data; 1942 int i; 1943 1944 switch (stringset) { 1945 case ETH_SS_TEST: 1946 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1947 break; 1948 case ETH_SS_STATS: 1949 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1950 memcpy(p, e1000_gstrings_stats[i].stat_string, 1951 ETH_GSTRING_LEN); 1952 p += ETH_GSTRING_LEN; 1953 } 1954 break; 1955 } 1956 } 1957 1958 static const struct ethtool_ops e1000_ethtool_ops = { 1959 .get_settings = e1000_get_settings, 1960 .set_settings = e1000_set_settings, 1961 .get_drvinfo = e1000_get_drvinfo, 1962 .get_regs_len = e1000_get_regs_len, 1963 .get_regs = e1000_get_regs, 1964 .get_wol = e1000_get_wol, 1965 .set_wol = e1000_set_wol, 1966 .get_msglevel = e1000_get_msglevel, 1967 .set_msglevel = e1000_set_msglevel, 1968 .nway_reset = e1000_nway_reset, 1969 .get_link = ethtool_op_get_link, 1970 .get_eeprom_len = e1000_get_eeprom_len, 1971 .get_eeprom = e1000_get_eeprom, 1972 .set_eeprom = e1000_set_eeprom, 1973 .get_ringparam = e1000_get_ringparam, 1974 .set_ringparam = e1000_set_ringparam, 1975 .get_pauseparam = e1000_get_pauseparam, 1976 .set_pauseparam = e1000_set_pauseparam, 1977 .self_test = e1000_diag_test, 1978 .get_strings = e1000_get_strings, 1979 .set_phys_id = e1000_set_phys_id, 1980 .get_ethtool_stats = e1000_get_ethtool_stats, 1981 .get_sset_count = e1000e_get_sset_count, 1982 .get_coalesce = e1000_get_coalesce, 1983 .set_coalesce = e1000_set_coalesce, 1984 }; 1985 1986 void e1000e_set_ethtool_ops(struct net_device *netdev) 1987 { 1988 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 1989 } 1990