1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 #define E1000E_PRIV_FLAGS_DISABLE_K1 BIT(1) 30 "disable-k1", 31 }; 32 33 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 34 35 #define E1000_STAT(str, m) { \ 36 .stat_string = str, \ 37 .type = E1000_STATS, \ 38 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 39 .stat_offset = offsetof(struct e1000_adapter, m) } 40 #define E1000_NETDEV_STAT(str, m) { \ 41 .stat_string = str, \ 42 .type = NETDEV_STATS, \ 43 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 44 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 45 46 static const struct e1000_stats e1000_gstrings_stats[] = { 47 E1000_STAT("rx_packets", stats.gprc), 48 E1000_STAT("tx_packets", stats.gptc), 49 E1000_STAT("rx_bytes", stats.gorc), 50 E1000_STAT("tx_bytes", stats.gotc), 51 E1000_STAT("rx_broadcast", stats.bprc), 52 E1000_STAT("tx_broadcast", stats.bptc), 53 E1000_STAT("rx_multicast", stats.mprc), 54 E1000_STAT("tx_multicast", stats.mptc), 55 E1000_NETDEV_STAT("rx_errors", rx_errors), 56 E1000_NETDEV_STAT("tx_errors", tx_errors), 57 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 58 E1000_STAT("multicast", stats.mprc), 59 E1000_STAT("collisions", stats.colc), 60 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 61 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 62 E1000_STAT("rx_crc_errors", stats.crcerrs), 63 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 64 E1000_STAT("rx_no_buffer_count", stats.rnbc), 65 E1000_STAT("rx_missed_errors", stats.mpc), 66 E1000_STAT("tx_aborted_errors", stats.ecol), 67 E1000_STAT("tx_carrier_errors", stats.tncrs), 68 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 69 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 70 E1000_STAT("tx_window_errors", stats.latecol), 71 E1000_STAT("tx_abort_late_coll", stats.latecol), 72 E1000_STAT("tx_deferred_ok", stats.dc), 73 E1000_STAT("tx_single_coll_ok", stats.scc), 74 E1000_STAT("tx_multi_coll_ok", stats.mcc), 75 E1000_STAT("tx_timeout_count", tx_timeout_count), 76 E1000_STAT("tx_restart_queue", restart_queue), 77 E1000_STAT("rx_long_length_errors", stats.roc), 78 E1000_STAT("rx_short_length_errors", stats.ruc), 79 E1000_STAT("rx_align_errors", stats.algnerrc), 80 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 81 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 82 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 83 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 84 E1000_STAT("tx_flow_control_xon", stats.xontxc), 85 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 86 E1000_STAT("rx_csum_offload_good", hw_csum_good), 87 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 88 E1000_STAT("rx_header_split", rx_hdr_split), 89 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 90 E1000_STAT("tx_smbus", stats.mgptc), 91 E1000_STAT("rx_smbus", stats.mgprc), 92 E1000_STAT("dropped_smbus", stats.mgpdc), 93 E1000_STAT("rx_dma_failed", rx_dma_failed), 94 E1000_STAT("tx_dma_failed", tx_dma_failed), 95 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 96 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 97 E1000_STAT("corr_ecc_errors", corr_errors), 98 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 99 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 100 }; 101 102 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 103 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 104 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 105 "Register test (offline)", "Eeprom test (offline)", 106 "Interrupt test (offline)", "Loopback test (offline)", 107 "Link test (on/offline)" 108 }; 109 110 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 111 112 static int e1000_get_link_ksettings(struct net_device *netdev, 113 struct ethtool_link_ksettings *cmd) 114 { 115 u32 speed, supported, advertising, lp_advertising, lpa_t; 116 struct e1000_adapter *adapter = netdev_priv(netdev); 117 struct e1000_hw *hw = &adapter->hw; 118 119 if (hw->phy.media_type == e1000_media_type_copper) { 120 supported = (SUPPORTED_10baseT_Half | 121 SUPPORTED_10baseT_Full | 122 SUPPORTED_100baseT_Half | 123 SUPPORTED_100baseT_Full | 124 SUPPORTED_1000baseT_Full | 125 SUPPORTED_Asym_Pause | 126 SUPPORTED_Autoneg | 127 SUPPORTED_Pause | 128 SUPPORTED_TP); 129 if (hw->phy.type == e1000_phy_ife) 130 supported &= ~SUPPORTED_1000baseT_Full; 131 advertising = ADVERTISED_TP; 132 133 if (hw->mac.autoneg == 1) { 134 advertising |= ADVERTISED_Autoneg; 135 /* the e1000 autoneg seems to match ethtool nicely */ 136 advertising |= hw->phy.autoneg_advertised; 137 } 138 139 cmd->base.port = PORT_TP; 140 cmd->base.phy_address = hw->phy.addr; 141 } else { 142 supported = (SUPPORTED_1000baseT_Full | 143 SUPPORTED_FIBRE | 144 SUPPORTED_Autoneg); 145 146 advertising = (ADVERTISED_1000baseT_Full | 147 ADVERTISED_FIBRE | 148 ADVERTISED_Autoneg); 149 150 cmd->base.port = PORT_FIBRE; 151 } 152 153 speed = SPEED_UNKNOWN; 154 cmd->base.duplex = DUPLEX_UNKNOWN; 155 156 if (netif_running(netdev)) { 157 if (netif_carrier_ok(netdev)) { 158 speed = adapter->link_speed; 159 cmd->base.duplex = adapter->link_duplex - 1; 160 } 161 } else { 162 u32 status = er32(STATUS); 163 164 if (status & E1000_STATUS_LU) { 165 if (status & E1000_STATUS_SPEED_1000) 166 speed = SPEED_1000; 167 else if (status & E1000_STATUS_SPEED_100) 168 speed = SPEED_100; 169 else 170 speed = SPEED_10; 171 172 if (status & E1000_STATUS_FD) 173 cmd->base.duplex = DUPLEX_FULL; 174 else 175 cmd->base.duplex = DUPLEX_HALF; 176 } 177 } 178 179 cmd->base.speed = speed; 180 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 181 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 182 183 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 184 if ((hw->phy.media_type == e1000_media_type_copper) && 185 netif_carrier_ok(netdev)) 186 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 187 ETH_TP_MDI_X : ETH_TP_MDI; 188 else 189 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 190 191 if (hw->phy.mdix == AUTO_ALL_MODES) 192 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 193 else 194 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 195 196 if (hw->phy.media_type != e1000_media_type_copper) 197 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 198 199 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000); 200 lp_advertising = lpa_t | 201 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa); 202 203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 204 supported); 205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 206 advertising); 207 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 208 lp_advertising); 209 210 return 0; 211 } 212 213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 214 { 215 struct e1000_mac_info *mac = &adapter->hw.mac; 216 217 mac->autoneg = 0; 218 219 /* Make sure dplx is at most 1 bit and lsb of speed is not set 220 * for the switch() below to work 221 */ 222 if ((spd & 1) || (dplx & ~1)) 223 goto err_inval; 224 225 /* Fiber NICs only allow 1000 gbps Full duplex */ 226 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 227 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 228 goto err_inval; 229 } 230 231 switch (spd + dplx) { 232 case SPEED_10 + DUPLEX_HALF: 233 mac->forced_speed_duplex = ADVERTISE_10_HALF; 234 break; 235 case SPEED_10 + DUPLEX_FULL: 236 mac->forced_speed_duplex = ADVERTISE_10_FULL; 237 break; 238 case SPEED_100 + DUPLEX_HALF: 239 mac->forced_speed_duplex = ADVERTISE_100_HALF; 240 break; 241 case SPEED_100 + DUPLEX_FULL: 242 mac->forced_speed_duplex = ADVERTISE_100_FULL; 243 break; 244 case SPEED_1000 + DUPLEX_FULL: 245 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 246 mac->autoneg = 1; 247 adapter->hw.phy.autoneg_advertised = 248 ADVERTISE_1000_FULL; 249 } else { 250 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 251 } 252 break; 253 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 254 default: 255 goto err_inval; 256 } 257 258 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 259 adapter->hw.phy.mdix = AUTO_ALL_MODES; 260 261 return 0; 262 263 err_inval: 264 e_err("Unsupported Speed/Duplex configuration\n"); 265 return -EINVAL; 266 } 267 268 static int e1000_set_link_ksettings(struct net_device *netdev, 269 const struct ethtool_link_ksettings *cmd) 270 { 271 struct e1000_adapter *adapter = netdev_priv(netdev); 272 struct e1000_hw *hw = &adapter->hw; 273 int ret_val = 0; 274 u32 advertising; 275 276 ethtool_convert_link_mode_to_legacy_u32(&advertising, 277 cmd->link_modes.advertising); 278 279 /* When SoL/IDER sessions are active, autoneg/speed/duplex 280 * cannot be changed 281 */ 282 if (hw->phy.ops.check_reset_block && 283 hw->phy.ops.check_reset_block(hw)) { 284 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 285 return -EINVAL; 286 } 287 288 /* MDI setting is only allowed when autoneg enabled because 289 * some hardware doesn't allow MDI setting when speed or 290 * duplex is forced. 291 */ 292 if (cmd->base.eth_tp_mdix_ctrl) { 293 if (hw->phy.media_type != e1000_media_type_copper) 294 return -EOPNOTSUPP; 295 296 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 297 (cmd->base.autoneg != AUTONEG_ENABLE)) { 298 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 299 return -EINVAL; 300 } 301 } 302 303 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 304 usleep_range(1000, 2000); 305 306 if (cmd->base.autoneg == AUTONEG_ENABLE) { 307 hw->mac.autoneg = 1; 308 if (hw->phy.media_type == e1000_media_type_fiber) 309 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 310 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 311 else 312 hw->phy.autoneg_advertised = advertising | 313 ADVERTISED_TP | ADVERTISED_Autoneg; 314 advertising = hw->phy.autoneg_advertised; 315 if (adapter->fc_autoneg) 316 hw->fc.requested_mode = e1000_fc_default; 317 } else { 318 u32 speed = cmd->base.speed; 319 /* calling this overrides forced MDI setting */ 320 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 321 ret_val = -EINVAL; 322 goto out; 323 } 324 } 325 326 /* MDI-X => 2; MDI => 1; Auto => 3 */ 327 if (cmd->base.eth_tp_mdix_ctrl) { 328 /* fix up the value for auto (3 => 0) as zero is mapped 329 * internally to auto 330 */ 331 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 332 hw->phy.mdix = AUTO_ALL_MODES; 333 else 334 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 335 } 336 337 /* reset the link */ 338 if (netif_running(adapter->netdev)) { 339 e1000e_down(adapter, true); 340 e1000e_up(adapter); 341 } else { 342 e1000e_reset(adapter); 343 } 344 345 out: 346 clear_bit(__E1000_RESETTING, &adapter->state); 347 return ret_val; 348 } 349 350 static void e1000_get_pauseparam(struct net_device *netdev, 351 struct ethtool_pauseparam *pause) 352 { 353 struct e1000_adapter *adapter = netdev_priv(netdev); 354 struct e1000_hw *hw = &adapter->hw; 355 356 pause->autoneg = 357 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 358 359 if (hw->fc.current_mode == e1000_fc_rx_pause) { 360 pause->rx_pause = 1; 361 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 362 pause->tx_pause = 1; 363 } else if (hw->fc.current_mode == e1000_fc_full) { 364 pause->rx_pause = 1; 365 pause->tx_pause = 1; 366 } 367 } 368 369 static int e1000_set_pauseparam(struct net_device *netdev, 370 struct ethtool_pauseparam *pause) 371 { 372 struct e1000_adapter *adapter = netdev_priv(netdev); 373 struct e1000_hw *hw = &adapter->hw; 374 int retval = 0; 375 376 adapter->fc_autoneg = pause->autoneg; 377 378 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 379 usleep_range(1000, 2000); 380 381 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 382 hw->fc.requested_mode = e1000_fc_default; 383 if (netif_running(adapter->netdev)) { 384 e1000e_down(adapter, true); 385 e1000e_up(adapter); 386 } else { 387 e1000e_reset(adapter); 388 } 389 } else { 390 if (pause->rx_pause && pause->tx_pause) 391 hw->fc.requested_mode = e1000_fc_full; 392 else if (pause->rx_pause && !pause->tx_pause) 393 hw->fc.requested_mode = e1000_fc_rx_pause; 394 else if (!pause->rx_pause && pause->tx_pause) 395 hw->fc.requested_mode = e1000_fc_tx_pause; 396 else if (!pause->rx_pause && !pause->tx_pause) 397 hw->fc.requested_mode = e1000_fc_none; 398 399 hw->fc.current_mode = hw->fc.requested_mode; 400 401 if (hw->phy.media_type == e1000_media_type_fiber) { 402 retval = hw->mac.ops.setup_link(hw); 403 /* implicit goto out */ 404 } else { 405 retval = e1000e_force_mac_fc(hw); 406 if (retval) 407 goto out; 408 e1000e_set_fc_watermarks(hw); 409 } 410 } 411 412 out: 413 clear_bit(__E1000_RESETTING, &adapter->state); 414 return retval; 415 } 416 417 static u32 e1000_get_msglevel(struct net_device *netdev) 418 { 419 struct e1000_adapter *adapter = netdev_priv(netdev); 420 return adapter->msg_enable; 421 } 422 423 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 424 { 425 struct e1000_adapter *adapter = netdev_priv(netdev); 426 adapter->msg_enable = data; 427 } 428 429 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 430 { 431 #define E1000_REGS_LEN 32 /* overestimate */ 432 return E1000_REGS_LEN * sizeof(u32); 433 } 434 435 static void e1000_get_regs(struct net_device *netdev, 436 struct ethtool_regs *regs, void *p) 437 { 438 struct e1000_adapter *adapter = netdev_priv(netdev); 439 struct e1000_hw *hw = &adapter->hw; 440 u32 *regs_buff = p; 441 u16 phy_data; 442 443 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 444 445 regs->version = (1u << 24) | 446 (adapter->pdev->revision << 16) | 447 adapter->pdev->device; 448 449 regs_buff[0] = er32(CTRL); 450 regs_buff[1] = er32(STATUS); 451 452 regs_buff[2] = er32(RCTL); 453 regs_buff[3] = er32(RDLEN(0)); 454 regs_buff[4] = er32(RDH(0)); 455 regs_buff[5] = er32(RDT(0)); 456 regs_buff[6] = er32(RDTR); 457 458 regs_buff[7] = er32(TCTL); 459 regs_buff[8] = er32(TDLEN(0)); 460 regs_buff[9] = er32(TDH(0)); 461 regs_buff[10] = er32(TDT(0)); 462 regs_buff[11] = er32(TIDV); 463 464 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 465 466 /* ethtool doesn't use anything past this point, so all this 467 * code is likely legacy junk for apps that may or may not exist 468 */ 469 if (hw->phy.type == e1000_phy_m88) { 470 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 471 regs_buff[13] = (u32)phy_data; /* cable length */ 472 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 473 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 474 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 475 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 476 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 477 regs_buff[18] = regs_buff[13]; /* cable polarity */ 478 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 479 regs_buff[20] = regs_buff[17]; /* polarity correction */ 480 /* phy receive errors */ 481 regs_buff[22] = adapter->phy_stats.receive_errors; 482 regs_buff[23] = regs_buff[13]; /* mdix mode */ 483 } 484 regs_buff[21] = 0; /* was idle_errors */ 485 e1e_rphy(hw, MII_STAT1000, &phy_data); 486 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 487 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 488 } 489 490 static int e1000_get_eeprom_len(struct net_device *netdev) 491 { 492 struct e1000_adapter *adapter = netdev_priv(netdev); 493 return adapter->hw.nvm.word_size * 2; 494 } 495 496 static int e1000_get_eeprom(struct net_device *netdev, 497 struct ethtool_eeprom *eeprom, u8 *bytes) 498 { 499 struct e1000_adapter *adapter = netdev_priv(netdev); 500 struct e1000_hw *hw = &adapter->hw; 501 u16 *eeprom_buff; 502 int first_word; 503 int last_word; 504 int ret_val = 0; 505 u16 i; 506 507 if (eeprom->len == 0) 508 return -EINVAL; 509 510 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 511 512 first_word = eeprom->offset >> 1; 513 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 514 515 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 516 GFP_KERNEL); 517 if (!eeprom_buff) 518 return -ENOMEM; 519 520 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 521 ret_val = e1000_read_nvm(hw, first_word, 522 last_word - first_word + 1, 523 eeprom_buff); 524 } else { 525 for (i = 0; i < last_word - first_word + 1; i++) { 526 ret_val = e1000_read_nvm(hw, first_word + i, 1, 527 &eeprom_buff[i]); 528 if (ret_val) 529 break; 530 } 531 } 532 533 if (ret_val) { 534 /* a read error occurred, throw away the result */ 535 memset(eeprom_buff, 0xff, sizeof(u16) * 536 (last_word - first_word + 1)); 537 } else { 538 /* Device's eeprom is always little-endian, word addressable */ 539 for (i = 0; i < last_word - first_word + 1; i++) 540 le16_to_cpus(&eeprom_buff[i]); 541 } 542 543 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 544 kfree(eeprom_buff); 545 546 return ret_val; 547 } 548 549 static int e1000_set_eeprom(struct net_device *netdev, 550 struct ethtool_eeprom *eeprom, u8 *bytes) 551 { 552 struct e1000_adapter *adapter = netdev_priv(netdev); 553 struct e1000_hw *hw = &adapter->hw; 554 size_t total_len, max_len; 555 u16 *eeprom_buff; 556 int ret_val = 0; 557 int first_word; 558 int last_word; 559 void *ptr; 560 u16 i; 561 562 if (eeprom->len == 0) 563 return -EOPNOTSUPP; 564 565 if (eeprom->magic != 566 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 567 return -EFAULT; 568 569 if (adapter->flags & FLAG_READ_ONLY_NVM) 570 return -EINVAL; 571 572 max_len = hw->nvm.word_size * 2; 573 574 if (check_add_overflow(eeprom->offset, eeprom->len, &total_len) || 575 total_len > max_len) 576 return -EFBIG; 577 578 first_word = eeprom->offset >> 1; 579 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 580 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 581 if (!eeprom_buff) 582 return -ENOMEM; 583 584 ptr = (void *)eeprom_buff; 585 586 if (eeprom->offset & 1) { 587 /* need read/modify/write of first changed EEPROM word */ 588 /* only the second byte of the word is being modified */ 589 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 590 ptr++; 591 } 592 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 593 /* need read/modify/write of last changed EEPROM word */ 594 /* only the first byte of the word is being modified */ 595 ret_val = e1000_read_nvm(hw, last_word, 1, 596 &eeprom_buff[last_word - first_word]); 597 598 if (ret_val) 599 goto out; 600 601 /* Device's eeprom is always little-endian, word addressable */ 602 for (i = 0; i < last_word - first_word + 1; i++) 603 le16_to_cpus(&eeprom_buff[i]); 604 605 memcpy(ptr, bytes, eeprom->len); 606 607 for (i = 0; i < last_word - first_word + 1; i++) 608 cpu_to_le16s(&eeprom_buff[i]); 609 610 ret_val = e1000_write_nvm(hw, first_word, 611 last_word - first_word + 1, eeprom_buff); 612 613 if (ret_val) 614 goto out; 615 616 /* Update the checksum over the first part of the EEPROM if needed 617 * and flush shadow RAM for applicable controllers 618 */ 619 if ((first_word <= NVM_CHECKSUM_REG) || 620 (hw->mac.type == e1000_82583) || 621 (hw->mac.type == e1000_82574) || 622 (hw->mac.type == e1000_82573)) 623 ret_val = e1000e_update_nvm_checksum(hw); 624 625 out: 626 kfree(eeprom_buff); 627 return ret_val; 628 } 629 630 static void e1000_get_drvinfo(struct net_device *netdev, 631 struct ethtool_drvinfo *drvinfo) 632 { 633 struct e1000_adapter *adapter = netdev_priv(netdev); 634 635 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 636 637 /* EEPROM image version # is reported as firmware version # for 638 * PCI-E controllers 639 */ 640 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 641 "%d.%d-%d", 642 FIELD_GET(0xF000, adapter->eeprom_vers), 643 FIELD_GET(0x0FF0, adapter->eeprom_vers), 644 (adapter->eeprom_vers & 0x000F)); 645 646 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 647 sizeof(drvinfo->bus_info)); 648 } 649 650 static void e1000_get_ringparam(struct net_device *netdev, 651 struct ethtool_ringparam *ring, 652 struct kernel_ethtool_ringparam *kernel_ring, 653 struct netlink_ext_ack *extack) 654 { 655 struct e1000_adapter *adapter = netdev_priv(netdev); 656 657 ring->rx_max_pending = E1000_MAX_RXD; 658 ring->tx_max_pending = E1000_MAX_TXD; 659 ring->rx_pending = adapter->rx_ring_count; 660 ring->tx_pending = adapter->tx_ring_count; 661 } 662 663 static int e1000_set_ringparam(struct net_device *netdev, 664 struct ethtool_ringparam *ring, 665 struct kernel_ethtool_ringparam *kernel_ring, 666 struct netlink_ext_ack *extack) 667 { 668 struct e1000_adapter *adapter = netdev_priv(netdev); 669 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 670 int err = 0, size = sizeof(struct e1000_ring); 671 bool set_tx = false, set_rx = false; 672 u16 new_rx_count, new_tx_count; 673 674 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 675 return -EINVAL; 676 677 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 678 E1000_MAX_RXD); 679 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 680 681 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 682 E1000_MAX_TXD); 683 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 684 685 if ((new_tx_count == adapter->tx_ring_count) && 686 (new_rx_count == adapter->rx_ring_count)) 687 /* nothing to do */ 688 return 0; 689 690 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 691 usleep_range(1000, 2000); 692 693 if (!netif_running(adapter->netdev)) { 694 /* Set counts now and allocate resources during open() */ 695 adapter->tx_ring->count = new_tx_count; 696 adapter->rx_ring->count = new_rx_count; 697 adapter->tx_ring_count = new_tx_count; 698 adapter->rx_ring_count = new_rx_count; 699 goto clear_reset; 700 } 701 702 set_tx = (new_tx_count != adapter->tx_ring_count); 703 set_rx = (new_rx_count != adapter->rx_ring_count); 704 705 /* Allocate temporary storage for ring updates */ 706 if (set_tx) { 707 temp_tx = vmalloc(size); 708 if (!temp_tx) { 709 err = -ENOMEM; 710 goto free_temp; 711 } 712 } 713 if (set_rx) { 714 temp_rx = vmalloc(size); 715 if (!temp_rx) { 716 err = -ENOMEM; 717 goto free_temp; 718 } 719 } 720 721 e1000e_down(adapter, true); 722 723 /* We can't just free everything and then setup again, because the 724 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 725 * structs. First, attempt to allocate new resources... 726 */ 727 if (set_tx) { 728 memcpy(temp_tx, adapter->tx_ring, size); 729 temp_tx->count = new_tx_count; 730 err = e1000e_setup_tx_resources(temp_tx); 731 if (err) 732 goto err_setup; 733 } 734 if (set_rx) { 735 memcpy(temp_rx, adapter->rx_ring, size); 736 temp_rx->count = new_rx_count; 737 err = e1000e_setup_rx_resources(temp_rx); 738 if (err) 739 goto err_setup_rx; 740 } 741 742 /* ...then free the old resources and copy back any new ring data */ 743 if (set_tx) { 744 e1000e_free_tx_resources(adapter->tx_ring); 745 memcpy(adapter->tx_ring, temp_tx, size); 746 adapter->tx_ring_count = new_tx_count; 747 } 748 if (set_rx) { 749 e1000e_free_rx_resources(adapter->rx_ring); 750 memcpy(adapter->rx_ring, temp_rx, size); 751 adapter->rx_ring_count = new_rx_count; 752 } 753 754 err_setup_rx: 755 if (err && set_tx) 756 e1000e_free_tx_resources(temp_tx); 757 err_setup: 758 e1000e_up(adapter); 759 free_temp: 760 vfree(temp_tx); 761 vfree(temp_rx); 762 clear_reset: 763 clear_bit(__E1000_RESETTING, &adapter->state); 764 return err; 765 } 766 767 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 768 int reg, int offset, u32 mask, u32 write) 769 { 770 u32 pat, val; 771 static const u32 test[] = { 772 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 773 }; 774 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 775 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 776 (test[pat] & write)); 777 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 778 if (val != (test[pat] & write & mask)) { 779 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 780 reg + (offset << 2), val, 781 (test[pat] & write & mask)); 782 *data = reg; 783 return true; 784 } 785 } 786 return false; 787 } 788 789 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 790 int reg, u32 mask, u32 write) 791 { 792 u32 val; 793 794 __ew32(&adapter->hw, reg, write & mask); 795 val = __er32(&adapter->hw, reg); 796 if ((write & mask) != (val & mask)) { 797 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 798 reg, (val & mask), (write & mask)); 799 *data = reg; 800 return true; 801 } 802 return false; 803 } 804 805 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 806 do { \ 807 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 808 return 1; \ 809 } while (0) 810 #define REG_PATTERN_TEST(reg, mask, write) \ 811 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 812 813 #define REG_SET_AND_CHECK(reg, mask, write) \ 814 do { \ 815 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 816 return 1; \ 817 } while (0) 818 819 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 820 { 821 struct e1000_hw *hw = &adapter->hw; 822 struct e1000_mac_info *mac = &adapter->hw.mac; 823 u32 value; 824 u32 before; 825 u32 after; 826 u32 i; 827 u32 toggle; 828 u32 mask; 829 u32 wlock_mac = 0; 830 831 /* The status register is Read Only, so a write should fail. 832 * Some bits that get toggled are ignored. There are several bits 833 * on newer hardware that are r/w. 834 */ 835 switch (mac->type) { 836 case e1000_82571: 837 case e1000_82572: 838 case e1000_80003es2lan: 839 toggle = 0x7FFFF3FF; 840 break; 841 default: 842 toggle = 0x7FFFF033; 843 break; 844 } 845 846 before = er32(STATUS); 847 value = (er32(STATUS) & toggle); 848 ew32(STATUS, toggle); 849 after = er32(STATUS) & toggle; 850 if (value != after) { 851 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 852 after, value); 853 *data = 1; 854 return 1; 855 } 856 /* restore previous status */ 857 ew32(STATUS, before); 858 859 if (!(adapter->flags & FLAG_IS_ICH)) { 860 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 861 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 862 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 863 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 864 } 865 866 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 867 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 868 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 869 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 870 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 871 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 872 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 873 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 874 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 875 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 876 877 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 878 879 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 880 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 881 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 882 883 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 884 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 885 if (!(adapter->flags & FLAG_IS_ICH)) 886 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 887 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 888 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 889 mask = 0x8003FFFF; 890 switch (mac->type) { 891 case e1000_ich10lan: 892 case e1000_pchlan: 893 case e1000_pch2lan: 894 case e1000_pch_lpt: 895 case e1000_pch_spt: 896 case e1000_pch_cnp: 897 case e1000_pch_tgp: 898 case e1000_pch_adp: 899 case e1000_pch_mtp: 900 case e1000_pch_lnp: 901 case e1000_pch_ptp: 902 case e1000_pch_nvp: 903 mask |= BIT(18); 904 break; 905 default: 906 break; 907 } 908 909 if (mac->type >= e1000_pch_lpt) 910 wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM)); 911 912 for (i = 0; i < mac->rar_entry_count; i++) { 913 if (mac->type >= e1000_pch_lpt) { 914 /* Cannot test write-protected SHRAL[n] registers */ 915 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 916 continue; 917 918 /* SHRAH[9] different than the others */ 919 if (i == 10) 920 mask |= BIT(30); 921 else 922 mask &= ~BIT(30); 923 } 924 if (mac->type == e1000_pch2lan) { 925 /* SHRAH[0,1,2] different than previous */ 926 if (i == 1) 927 mask &= 0xFFF4FFFF; 928 /* SHRAH[3] different than SHRAH[0,1,2] */ 929 if (i == 4) 930 mask |= BIT(30); 931 /* RAR[1-6] owned by management engine - skipping */ 932 if (i > 0) 933 i += 6; 934 } 935 936 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 937 0xFFFFFFFF); 938 /* reset index to actual value */ 939 if ((mac->type == e1000_pch2lan) && (i > 6)) 940 i -= 6; 941 } 942 943 for (i = 0; i < mac->mta_reg_count; i++) 944 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 945 946 *data = 0; 947 948 return 0; 949 } 950 951 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 952 { 953 u16 temp; 954 u16 checksum = 0; 955 u16 i; 956 957 *data = 0; 958 /* Read and add up the contents of the EEPROM */ 959 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 960 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 961 *data = 1; 962 return *data; 963 } 964 checksum += temp; 965 } 966 967 /* If Checksum is not Correct return error else test passed */ 968 if (checksum != NVM_SUM && !(*data)) 969 *data = 2; 970 971 return *data; 972 } 973 974 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 975 { 976 struct net_device *netdev = (struct net_device *)data; 977 struct e1000_adapter *adapter = netdev_priv(netdev); 978 struct e1000_hw *hw = &adapter->hw; 979 980 adapter->test_icr |= er32(ICR); 981 982 return IRQ_HANDLED; 983 } 984 985 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 986 { 987 struct net_device *netdev = adapter->netdev; 988 struct e1000_hw *hw = &adapter->hw; 989 u32 mask; 990 u32 shared_int = 1; 991 u32 irq = adapter->pdev->irq; 992 int i; 993 int ret_val = 0; 994 int int_mode = E1000E_INT_MODE_LEGACY; 995 996 *data = 0; 997 998 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 999 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 1000 int_mode = adapter->int_mode; 1001 e1000e_reset_interrupt_capability(adapter); 1002 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1003 e1000e_set_interrupt_capability(adapter); 1004 } 1005 /* Hook up test interrupt handler just for this test */ 1006 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1007 netdev)) { 1008 shared_int = 0; 1009 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1010 netdev)) { 1011 *data = 1; 1012 ret_val = -1; 1013 goto out; 1014 } 1015 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1016 1017 /* Disable all the interrupts */ 1018 ew32(IMC, 0xFFFFFFFF); 1019 e1e_flush(); 1020 usleep_range(10000, 11000); 1021 1022 /* Test each interrupt */ 1023 for (i = 0; i < 10; i++) { 1024 /* Interrupt to test */ 1025 mask = BIT(i); 1026 1027 if (adapter->flags & FLAG_IS_ICH) { 1028 switch (mask) { 1029 case E1000_ICR_RXSEQ: 1030 continue; 1031 case 0x00000100: 1032 if (adapter->hw.mac.type == e1000_ich8lan || 1033 adapter->hw.mac.type == e1000_ich9lan) 1034 continue; 1035 break; 1036 default: 1037 break; 1038 } 1039 } 1040 1041 if (!shared_int) { 1042 /* Disable the interrupt to be reported in 1043 * the cause register and then force the same 1044 * interrupt and see if one gets posted. If 1045 * an interrupt was posted to the bus, the 1046 * test failed. 1047 */ 1048 adapter->test_icr = 0; 1049 ew32(IMC, mask); 1050 ew32(ICS, mask); 1051 e1e_flush(); 1052 usleep_range(10000, 11000); 1053 1054 if (adapter->test_icr & mask) { 1055 *data = 3; 1056 break; 1057 } 1058 } 1059 1060 /* Enable the interrupt to be reported in 1061 * the cause register and then force the same 1062 * interrupt and see if one gets posted. If 1063 * an interrupt was not posted to the bus, the 1064 * test failed. 1065 */ 1066 adapter->test_icr = 0; 1067 ew32(IMS, mask); 1068 ew32(ICS, mask); 1069 e1e_flush(); 1070 usleep_range(10000, 11000); 1071 1072 if (!(adapter->test_icr & mask)) { 1073 *data = 4; 1074 break; 1075 } 1076 1077 if (!shared_int) { 1078 /* Disable the other interrupts to be reported in 1079 * the cause register and then force the other 1080 * interrupts and see if any get posted. If 1081 * an interrupt was posted to the bus, the 1082 * test failed. 1083 */ 1084 adapter->test_icr = 0; 1085 ew32(IMC, ~mask & 0x00007FFF); 1086 ew32(ICS, ~mask & 0x00007FFF); 1087 e1e_flush(); 1088 usleep_range(10000, 11000); 1089 1090 if (adapter->test_icr) { 1091 *data = 5; 1092 break; 1093 } 1094 } 1095 } 1096 1097 /* Disable all the interrupts */ 1098 ew32(IMC, 0xFFFFFFFF); 1099 e1e_flush(); 1100 usleep_range(10000, 11000); 1101 1102 /* Unhook test interrupt handler */ 1103 free_irq(irq, netdev); 1104 1105 out: 1106 if (int_mode == E1000E_INT_MODE_MSIX) { 1107 e1000e_reset_interrupt_capability(adapter); 1108 adapter->int_mode = int_mode; 1109 e1000e_set_interrupt_capability(adapter); 1110 } 1111 1112 return ret_val; 1113 } 1114 1115 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1116 { 1117 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1118 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1119 struct pci_dev *pdev = adapter->pdev; 1120 struct e1000_buffer *buffer_info; 1121 int i; 1122 1123 if (tx_ring->desc && tx_ring->buffer_info) { 1124 for (i = 0; i < tx_ring->count; i++) { 1125 buffer_info = &tx_ring->buffer_info[i]; 1126 1127 if (buffer_info->dma) 1128 dma_unmap_single(&pdev->dev, 1129 buffer_info->dma, 1130 buffer_info->length, 1131 DMA_TO_DEVICE); 1132 dev_kfree_skb(buffer_info->skb); 1133 } 1134 } 1135 1136 if (rx_ring->desc && rx_ring->buffer_info) { 1137 for (i = 0; i < rx_ring->count; i++) { 1138 buffer_info = &rx_ring->buffer_info[i]; 1139 1140 if (buffer_info->dma) 1141 dma_unmap_single(&pdev->dev, 1142 buffer_info->dma, 1143 2048, DMA_FROM_DEVICE); 1144 dev_kfree_skb(buffer_info->skb); 1145 } 1146 } 1147 1148 if (tx_ring->desc) { 1149 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1150 tx_ring->dma); 1151 tx_ring->desc = NULL; 1152 } 1153 if (rx_ring->desc) { 1154 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1155 rx_ring->dma); 1156 rx_ring->desc = NULL; 1157 } 1158 1159 kfree(tx_ring->buffer_info); 1160 tx_ring->buffer_info = NULL; 1161 kfree(rx_ring->buffer_info); 1162 rx_ring->buffer_info = NULL; 1163 } 1164 1165 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1166 { 1167 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1168 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1169 struct pci_dev *pdev = adapter->pdev; 1170 struct e1000_hw *hw = &adapter->hw; 1171 u32 rctl; 1172 int i; 1173 int ret_val; 1174 1175 /* Setup Tx descriptor ring and Tx buffers */ 1176 1177 if (!tx_ring->count) 1178 tx_ring->count = E1000_DEFAULT_TXD; 1179 1180 tx_ring->buffer_info = kcalloc(tx_ring->count, 1181 sizeof(struct e1000_buffer), GFP_KERNEL); 1182 if (!tx_ring->buffer_info) { 1183 ret_val = 1; 1184 goto err_nomem; 1185 } 1186 1187 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1188 tx_ring->size = ALIGN(tx_ring->size, 4096); 1189 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1190 &tx_ring->dma, GFP_KERNEL); 1191 if (!tx_ring->desc) { 1192 ret_val = 2; 1193 goto err_nomem; 1194 } 1195 tx_ring->next_to_use = 0; 1196 tx_ring->next_to_clean = 0; 1197 1198 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1199 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1200 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1201 ew32(TDH(0), 0); 1202 ew32(TDT(0), 0); 1203 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1204 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1205 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1206 1207 for (i = 0; i < tx_ring->count; i++) { 1208 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1209 struct sk_buff *skb; 1210 unsigned int skb_size = 1024; 1211 1212 skb = alloc_skb(skb_size, GFP_KERNEL); 1213 if (!skb) { 1214 ret_val = 3; 1215 goto err_nomem; 1216 } 1217 skb_put(skb, skb_size); 1218 tx_ring->buffer_info[i].skb = skb; 1219 tx_ring->buffer_info[i].length = skb->len; 1220 tx_ring->buffer_info[i].dma = 1221 dma_map_single(&pdev->dev, skb->data, skb->len, 1222 DMA_TO_DEVICE); 1223 if (dma_mapping_error(&pdev->dev, 1224 tx_ring->buffer_info[i].dma)) { 1225 ret_val = 4; 1226 goto err_nomem; 1227 } 1228 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1229 tx_desc->lower.data = cpu_to_le32(skb->len); 1230 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1231 E1000_TXD_CMD_IFCS | 1232 E1000_TXD_CMD_RS); 1233 tx_desc->upper.data = 0; 1234 } 1235 1236 /* Setup Rx descriptor ring and Rx buffers */ 1237 1238 if (!rx_ring->count) 1239 rx_ring->count = E1000_DEFAULT_RXD; 1240 1241 rx_ring->buffer_info = kcalloc(rx_ring->count, 1242 sizeof(struct e1000_buffer), GFP_KERNEL); 1243 if (!rx_ring->buffer_info) { 1244 ret_val = 5; 1245 goto err_nomem; 1246 } 1247 1248 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1249 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1250 &rx_ring->dma, GFP_KERNEL); 1251 if (!rx_ring->desc) { 1252 ret_val = 6; 1253 goto err_nomem; 1254 } 1255 rx_ring->next_to_use = 0; 1256 rx_ring->next_to_clean = 0; 1257 1258 rctl = er32(RCTL); 1259 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1260 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1261 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1262 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1263 ew32(RDLEN(0), rx_ring->size); 1264 ew32(RDH(0), 0); 1265 ew32(RDT(0), 0); 1266 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1267 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1268 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1269 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1270 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1271 ew32(RCTL, rctl); 1272 1273 for (i = 0; i < rx_ring->count; i++) { 1274 union e1000_rx_desc_extended *rx_desc; 1275 struct sk_buff *skb; 1276 1277 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1278 if (!skb) { 1279 ret_val = 7; 1280 goto err_nomem; 1281 } 1282 skb_reserve(skb, NET_IP_ALIGN); 1283 rx_ring->buffer_info[i].skb = skb; 1284 rx_ring->buffer_info[i].dma = 1285 dma_map_single(&pdev->dev, skb->data, 2048, 1286 DMA_FROM_DEVICE); 1287 if (dma_mapping_error(&pdev->dev, 1288 rx_ring->buffer_info[i].dma)) { 1289 ret_val = 8; 1290 goto err_nomem; 1291 } 1292 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1293 rx_desc->read.buffer_addr = 1294 cpu_to_le64(rx_ring->buffer_info[i].dma); 1295 memset(skb->data, 0x00, skb->len); 1296 } 1297 1298 return 0; 1299 1300 err_nomem: 1301 e1000_free_desc_rings(adapter); 1302 return ret_val; 1303 } 1304 1305 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1306 { 1307 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1308 e1e_wphy(&adapter->hw, 29, 0x001F); 1309 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1310 e1e_wphy(&adapter->hw, 29, 0x001A); 1311 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1312 } 1313 1314 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1315 { 1316 struct e1000_hw *hw = &adapter->hw; 1317 u32 ctrl_reg = 0; 1318 u16 phy_reg = 0; 1319 s32 ret_val = 0; 1320 1321 hw->mac.autoneg = 0; 1322 1323 if (hw->phy.type == e1000_phy_ife) { 1324 /* force 100, set loopback */ 1325 e1e_wphy(hw, MII_BMCR, 0x6100); 1326 1327 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1328 ctrl_reg = er32(CTRL); 1329 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1330 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1331 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1332 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1333 E1000_CTRL_FD); /* Force Duplex to FULL */ 1334 1335 ew32(CTRL, ctrl_reg); 1336 e1e_flush(); 1337 usleep_range(500, 1000); 1338 1339 return 0; 1340 } 1341 1342 /* Specific PHY configuration for loopback */ 1343 switch (hw->phy.type) { 1344 case e1000_phy_m88: 1345 /* Auto-MDI/MDIX Off */ 1346 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1347 /* reset to update Auto-MDI/MDIX */ 1348 e1e_wphy(hw, MII_BMCR, 0x9140); 1349 /* autoneg off */ 1350 e1e_wphy(hw, MII_BMCR, 0x8140); 1351 break; 1352 case e1000_phy_gg82563: 1353 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1354 break; 1355 case e1000_phy_bm: 1356 /* Set Default MAC Interface speed to 1GB */ 1357 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1358 phy_reg &= ~0x0007; 1359 phy_reg |= 0x006; 1360 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1361 /* Assert SW reset for above settings to take effect */ 1362 hw->phy.ops.commit(hw); 1363 usleep_range(1000, 2000); 1364 /* Force Full Duplex */ 1365 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1366 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1367 /* Set Link Up (in force link) */ 1368 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1369 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1370 /* Force Link */ 1371 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1372 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1373 /* Set Early Link Enable */ 1374 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1375 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1376 break; 1377 case e1000_phy_82577: 1378 case e1000_phy_82578: 1379 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1380 ret_val = hw->phy.ops.acquire(hw); 1381 if (ret_val) { 1382 e_err("Cannot setup 1Gbps loopback.\n"); 1383 return ret_val; 1384 } 1385 e1000_configure_k1_ich8lan(hw, false); 1386 hw->phy.ops.release(hw); 1387 break; 1388 case e1000_phy_82579: 1389 /* Disable PHY energy detect power down */ 1390 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1391 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1392 /* Disable full chip energy detect */ 1393 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1394 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1395 /* Enable loopback on the PHY */ 1396 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1397 break; 1398 default: 1399 break; 1400 } 1401 1402 /* force 1000, set loopback */ 1403 e1e_wphy(hw, MII_BMCR, 0x4140); 1404 msleep(250); 1405 1406 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1407 ctrl_reg = er32(CTRL); 1408 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1409 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1410 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1411 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1412 E1000_CTRL_FD); /* Force Duplex to FULL */ 1413 1414 if (adapter->flags & FLAG_IS_ICH) 1415 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1416 1417 if (hw->phy.media_type == e1000_media_type_copper && 1418 hw->phy.type == e1000_phy_m88) { 1419 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1420 } else { 1421 /* Set the ILOS bit on the fiber Nic if half duplex link is 1422 * detected. 1423 */ 1424 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1425 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1426 } 1427 1428 ew32(CTRL, ctrl_reg); 1429 1430 /* Disable the receiver on the PHY so when a cable is plugged in, the 1431 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1432 */ 1433 if (hw->phy.type == e1000_phy_m88) 1434 e1000_phy_disable_receiver(adapter); 1435 1436 usleep_range(500, 1000); 1437 1438 return 0; 1439 } 1440 1441 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1442 { 1443 struct e1000_hw *hw = &adapter->hw; 1444 u32 ctrl = er32(CTRL); 1445 int link; 1446 1447 /* special requirements for 82571/82572 fiber adapters */ 1448 1449 /* jump through hoops to make sure link is up because serdes 1450 * link is hardwired up 1451 */ 1452 ctrl |= E1000_CTRL_SLU; 1453 ew32(CTRL, ctrl); 1454 1455 /* disable autoneg */ 1456 ctrl = er32(TXCW); 1457 ctrl &= ~BIT(31); 1458 ew32(TXCW, ctrl); 1459 1460 link = (er32(STATUS) & E1000_STATUS_LU); 1461 1462 if (!link) { 1463 /* set invert loss of signal */ 1464 ctrl = er32(CTRL); 1465 ctrl |= E1000_CTRL_ILOS; 1466 ew32(CTRL, ctrl); 1467 } 1468 1469 /* special write to serdes control register to enable SerDes analog 1470 * loopback 1471 */ 1472 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1473 e1e_flush(); 1474 usleep_range(10000, 11000); 1475 1476 return 0; 1477 } 1478 1479 /* only call this for fiber/serdes connections to es2lan */ 1480 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1481 { 1482 struct e1000_hw *hw = &adapter->hw; 1483 u32 ctrlext = er32(CTRL_EXT); 1484 u32 ctrl = er32(CTRL); 1485 1486 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1487 * on mac_type 80003es2lan) 1488 */ 1489 adapter->tx_fifo_head = ctrlext; 1490 1491 /* clear the serdes mode bits, putting the device into mac loopback */ 1492 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1493 ew32(CTRL_EXT, ctrlext); 1494 1495 /* force speed to 1000/FD, link up */ 1496 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1497 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1498 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1499 ew32(CTRL, ctrl); 1500 1501 /* set mac loopback */ 1502 ctrl = er32(RCTL); 1503 ctrl |= E1000_RCTL_LBM_MAC; 1504 ew32(RCTL, ctrl); 1505 1506 /* set testing mode parameters (no need to reset later) */ 1507 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1508 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1509 ew32(KMRNCTRLSTA, 1510 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1511 1512 return 0; 1513 } 1514 1515 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1516 { 1517 struct e1000_hw *hw = &adapter->hw; 1518 u32 rctl, fext_nvm11, tarc0; 1519 1520 if (hw->mac.type >= e1000_pch_spt) { 1521 fext_nvm11 = er32(FEXTNVM11); 1522 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1523 ew32(FEXTNVM11, fext_nvm11); 1524 tarc0 = er32(TARC(0)); 1525 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1526 tarc0 &= 0xcfffffff; 1527 /* set bit 29 (value of MULR requests is now 2) */ 1528 tarc0 |= 0x20000000; 1529 ew32(TARC(0), tarc0); 1530 } 1531 if (hw->phy.media_type == e1000_media_type_fiber || 1532 hw->phy.media_type == e1000_media_type_internal_serdes) { 1533 switch (hw->mac.type) { 1534 case e1000_80003es2lan: 1535 return e1000_set_es2lan_mac_loopback(adapter); 1536 case e1000_82571: 1537 case e1000_82572: 1538 return e1000_set_82571_fiber_loopback(adapter); 1539 default: 1540 rctl = er32(RCTL); 1541 rctl |= E1000_RCTL_LBM_TCVR; 1542 ew32(RCTL, rctl); 1543 return 0; 1544 } 1545 } else if (hw->phy.media_type == e1000_media_type_copper) { 1546 return e1000_integrated_phy_loopback(adapter); 1547 } 1548 1549 return 7; 1550 } 1551 1552 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1553 { 1554 struct e1000_hw *hw = &adapter->hw; 1555 u32 rctl, fext_nvm11, tarc0; 1556 u16 phy_reg; 1557 1558 rctl = er32(RCTL); 1559 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1560 ew32(RCTL, rctl); 1561 1562 switch (hw->mac.type) { 1563 case e1000_pch_spt: 1564 case e1000_pch_cnp: 1565 case e1000_pch_tgp: 1566 case e1000_pch_adp: 1567 case e1000_pch_mtp: 1568 case e1000_pch_lnp: 1569 case e1000_pch_ptp: 1570 case e1000_pch_nvp: 1571 fext_nvm11 = er32(FEXTNVM11); 1572 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1573 ew32(FEXTNVM11, fext_nvm11); 1574 tarc0 = er32(TARC(0)); 1575 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1576 /* set bit 29 (value of MULR requests is now 0) */ 1577 tarc0 &= 0xcfffffff; 1578 ew32(TARC(0), tarc0); 1579 fallthrough; 1580 case e1000_80003es2lan: 1581 if (hw->phy.media_type == e1000_media_type_fiber || 1582 hw->phy.media_type == e1000_media_type_internal_serdes) { 1583 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1584 ew32(CTRL_EXT, adapter->tx_fifo_head); 1585 adapter->tx_fifo_head = 0; 1586 } 1587 fallthrough; 1588 case e1000_82571: 1589 case e1000_82572: 1590 if (hw->phy.media_type == e1000_media_type_fiber || 1591 hw->phy.media_type == e1000_media_type_internal_serdes) { 1592 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1593 e1e_flush(); 1594 usleep_range(10000, 11000); 1595 break; 1596 } 1597 fallthrough; 1598 default: 1599 hw->mac.autoneg = 1; 1600 if (hw->phy.type == e1000_phy_gg82563) 1601 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1602 e1e_rphy(hw, MII_BMCR, &phy_reg); 1603 if (phy_reg & BMCR_LOOPBACK) { 1604 phy_reg &= ~BMCR_LOOPBACK; 1605 e1e_wphy(hw, MII_BMCR, phy_reg); 1606 if (hw->phy.ops.commit) 1607 hw->phy.ops.commit(hw); 1608 } 1609 break; 1610 } 1611 } 1612 1613 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1614 unsigned int frame_size) 1615 { 1616 memset(skb->data, 0xFF, frame_size); 1617 frame_size &= ~1; 1618 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1619 skb->data[frame_size / 2 + 10] = 0xBE; 1620 skb->data[frame_size / 2 + 12] = 0xAF; 1621 } 1622 1623 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1624 unsigned int frame_size) 1625 { 1626 frame_size &= ~1; 1627 if (*(skb->data + 3) == 0xFF) 1628 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1629 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1630 return 0; 1631 return 13; 1632 } 1633 1634 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1635 { 1636 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1637 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1638 struct pci_dev *pdev = adapter->pdev; 1639 struct e1000_hw *hw = &adapter->hw; 1640 struct e1000_buffer *buffer_info; 1641 int i, j, k, l; 1642 int lc; 1643 int good_cnt; 1644 int ret_val = 0; 1645 unsigned long time; 1646 1647 ew32(RDT(0), rx_ring->count - 1); 1648 1649 /* Calculate the loop count based on the largest descriptor ring 1650 * The idea is to wrap the largest ring a number of times using 64 1651 * send/receive pairs during each loop 1652 */ 1653 1654 if (rx_ring->count <= tx_ring->count) 1655 lc = ((tx_ring->count / 64) * 2) + 1; 1656 else 1657 lc = ((rx_ring->count / 64) * 2) + 1; 1658 1659 k = 0; 1660 l = 0; 1661 /* loop count loop */ 1662 for (j = 0; j <= lc; j++) { 1663 /* send the packets */ 1664 for (i = 0; i < 64; i++) { 1665 buffer_info = &tx_ring->buffer_info[k]; 1666 1667 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1668 dma_sync_single_for_device(&pdev->dev, 1669 buffer_info->dma, 1670 buffer_info->length, 1671 DMA_TO_DEVICE); 1672 k++; 1673 if (k == tx_ring->count) 1674 k = 0; 1675 } 1676 ew32(TDT(0), k); 1677 e1e_flush(); 1678 msleep(200); 1679 time = jiffies; /* set the start time for the receive */ 1680 good_cnt = 0; 1681 /* receive the sent packets */ 1682 do { 1683 buffer_info = &rx_ring->buffer_info[l]; 1684 1685 dma_sync_single_for_cpu(&pdev->dev, 1686 buffer_info->dma, 2048, 1687 DMA_FROM_DEVICE); 1688 1689 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1690 1024); 1691 if (!ret_val) 1692 good_cnt++; 1693 l++; 1694 if (l == rx_ring->count) 1695 l = 0; 1696 /* time + 20 msecs (200 msecs on 2.4) is more than 1697 * enough time to complete the receives, if it's 1698 * exceeded, break and error off 1699 */ 1700 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1701 if (good_cnt != 64) { 1702 ret_val = 13; /* ret_val is the same as mis-compare */ 1703 break; 1704 } 1705 if (time_after(jiffies, time + 20)) { 1706 ret_val = 14; /* error code for time out error */ 1707 break; 1708 } 1709 } 1710 return ret_val; 1711 } 1712 1713 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1714 { 1715 struct e1000_hw *hw = &adapter->hw; 1716 1717 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1718 if (hw->phy.ops.check_reset_block && 1719 hw->phy.ops.check_reset_block(hw)) { 1720 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1721 *data = 0; 1722 goto out; 1723 } 1724 1725 *data = e1000_setup_desc_rings(adapter); 1726 if (*data) 1727 goto out; 1728 1729 *data = e1000_setup_loopback_test(adapter); 1730 if (*data) 1731 goto err_loopback; 1732 1733 *data = e1000_run_loopback_test(adapter); 1734 e1000_loopback_cleanup(adapter); 1735 1736 err_loopback: 1737 e1000_free_desc_rings(adapter); 1738 out: 1739 return *data; 1740 } 1741 1742 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1743 { 1744 struct e1000_hw *hw = &adapter->hw; 1745 1746 *data = 0; 1747 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1748 int i = 0; 1749 1750 hw->mac.serdes_has_link = false; 1751 1752 /* On some blade server designs, link establishment 1753 * could take as long as 2-3 minutes 1754 */ 1755 do { 1756 hw->mac.ops.check_for_link(hw); 1757 if (hw->mac.serdes_has_link) 1758 return *data; 1759 msleep(20); 1760 } while (i++ < 3750); 1761 1762 *data = 1; 1763 } else { 1764 hw->mac.ops.check_for_link(hw); 1765 if (hw->mac.autoneg) 1766 /* On some Phy/switch combinations, link establishment 1767 * can take a few seconds more than expected. 1768 */ 1769 msleep_interruptible(5000); 1770 1771 if (!(er32(STATUS) & E1000_STATUS_LU)) 1772 *data = 1; 1773 } 1774 return *data; 1775 } 1776 1777 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1778 int sset) 1779 { 1780 switch (sset) { 1781 case ETH_SS_TEST: 1782 return E1000_TEST_LEN; 1783 case ETH_SS_STATS: 1784 return E1000_STATS_LEN; 1785 case ETH_SS_PRIV_FLAGS: 1786 return E1000E_PRIV_FLAGS_STR_LEN; 1787 default: 1788 return -EOPNOTSUPP; 1789 } 1790 } 1791 1792 static void e1000_diag_test(struct net_device *netdev, 1793 struct ethtool_test *eth_test, u64 *data) 1794 { 1795 struct e1000_adapter *adapter = netdev_priv(netdev); 1796 u16 autoneg_advertised; 1797 u8 forced_speed_duplex; 1798 u8 autoneg; 1799 bool if_running = netif_running(netdev); 1800 1801 set_bit(__E1000_TESTING, &adapter->state); 1802 1803 if (!if_running) { 1804 /* Get control of and reset hardware */ 1805 if (adapter->flags & FLAG_HAS_AMT) 1806 e1000e_get_hw_control(adapter); 1807 1808 e1000e_power_up_phy(adapter); 1809 1810 adapter->hw.phy.autoneg_wait_to_complete = 1; 1811 e1000e_reset(adapter); 1812 adapter->hw.phy.autoneg_wait_to_complete = 0; 1813 } 1814 1815 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1816 /* Offline tests */ 1817 1818 /* save speed, duplex, autoneg settings */ 1819 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1820 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1821 autoneg = adapter->hw.mac.autoneg; 1822 1823 e_info("offline testing starting\n"); 1824 1825 if (if_running) 1826 /* indicate we're in test mode */ 1827 e1000e_close(netdev); 1828 1829 if (e1000_reg_test(adapter, &data[0])) 1830 eth_test->flags |= ETH_TEST_FL_FAILED; 1831 1832 e1000e_reset(adapter); 1833 if (e1000_eeprom_test(adapter, &data[1])) 1834 eth_test->flags |= ETH_TEST_FL_FAILED; 1835 1836 e1000e_reset(adapter); 1837 if (e1000_intr_test(adapter, &data[2])) 1838 eth_test->flags |= ETH_TEST_FL_FAILED; 1839 1840 e1000e_reset(adapter); 1841 if (e1000_loopback_test(adapter, &data[3])) 1842 eth_test->flags |= ETH_TEST_FL_FAILED; 1843 1844 /* force this routine to wait until autoneg complete/timeout */ 1845 adapter->hw.phy.autoneg_wait_to_complete = 1; 1846 e1000e_reset(adapter); 1847 adapter->hw.phy.autoneg_wait_to_complete = 0; 1848 1849 if (e1000_link_test(adapter, &data[4])) 1850 eth_test->flags |= ETH_TEST_FL_FAILED; 1851 1852 /* restore speed, duplex, autoneg settings */ 1853 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1854 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1855 adapter->hw.mac.autoneg = autoneg; 1856 e1000e_reset(adapter); 1857 1858 clear_bit(__E1000_TESTING, &adapter->state); 1859 if (if_running) 1860 e1000e_open(netdev); 1861 } else { 1862 /* Online tests */ 1863 1864 e_info("online testing starting\n"); 1865 1866 /* register, eeprom, intr and loopback tests not run online */ 1867 data[0] = 0; 1868 data[1] = 0; 1869 data[2] = 0; 1870 data[3] = 0; 1871 1872 if (e1000_link_test(adapter, &data[4])) 1873 eth_test->flags |= ETH_TEST_FL_FAILED; 1874 1875 clear_bit(__E1000_TESTING, &adapter->state); 1876 } 1877 1878 if (!if_running) { 1879 e1000e_reset(adapter); 1880 1881 if (adapter->flags & FLAG_HAS_AMT) 1882 e1000e_release_hw_control(adapter); 1883 } 1884 1885 msleep_interruptible(4 * 1000); 1886 } 1887 1888 static void e1000_get_wol(struct net_device *netdev, 1889 struct ethtool_wolinfo *wol) 1890 { 1891 struct e1000_adapter *adapter = netdev_priv(netdev); 1892 1893 wol->supported = 0; 1894 wol->wolopts = 0; 1895 1896 if (!(adapter->flags & FLAG_HAS_WOL) || 1897 !device_can_wakeup(&adapter->pdev->dev)) 1898 return; 1899 1900 wol->supported = WAKE_UCAST | WAKE_MCAST | 1901 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1902 1903 /* apply any specific unsupported masks here */ 1904 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1905 wol->supported &= ~WAKE_UCAST; 1906 1907 if (adapter->wol & E1000_WUFC_EX) 1908 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1909 } 1910 1911 if (adapter->wol & E1000_WUFC_EX) 1912 wol->wolopts |= WAKE_UCAST; 1913 if (adapter->wol & E1000_WUFC_MC) 1914 wol->wolopts |= WAKE_MCAST; 1915 if (adapter->wol & E1000_WUFC_BC) 1916 wol->wolopts |= WAKE_BCAST; 1917 if (adapter->wol & E1000_WUFC_MAG) 1918 wol->wolopts |= WAKE_MAGIC; 1919 if (adapter->wol & E1000_WUFC_LNKC) 1920 wol->wolopts |= WAKE_PHY; 1921 } 1922 1923 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1924 { 1925 struct e1000_adapter *adapter = netdev_priv(netdev); 1926 1927 if (!(adapter->flags & FLAG_HAS_WOL) || 1928 !device_can_wakeup(&adapter->pdev->dev) || 1929 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1930 WAKE_MAGIC | WAKE_PHY))) 1931 return -EOPNOTSUPP; 1932 1933 /* these settings will always override what we currently have */ 1934 adapter->wol = 0; 1935 1936 if (wol->wolopts & WAKE_UCAST) 1937 adapter->wol |= E1000_WUFC_EX; 1938 if (wol->wolopts & WAKE_MCAST) 1939 adapter->wol |= E1000_WUFC_MC; 1940 if (wol->wolopts & WAKE_BCAST) 1941 adapter->wol |= E1000_WUFC_BC; 1942 if (wol->wolopts & WAKE_MAGIC) 1943 adapter->wol |= E1000_WUFC_MAG; 1944 if (wol->wolopts & WAKE_PHY) 1945 adapter->wol |= E1000_WUFC_LNKC; 1946 1947 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1948 1949 return 0; 1950 } 1951 1952 static int e1000_set_phys_id(struct net_device *netdev, 1953 enum ethtool_phys_id_state state) 1954 { 1955 struct e1000_adapter *adapter = netdev_priv(netdev); 1956 struct e1000_hw *hw = &adapter->hw; 1957 1958 switch (state) { 1959 case ETHTOOL_ID_ACTIVE: 1960 pm_runtime_get_sync(netdev->dev.parent); 1961 1962 if (!hw->mac.ops.blink_led) 1963 return 2; /* cycle on/off twice per second */ 1964 1965 hw->mac.ops.blink_led(hw); 1966 break; 1967 1968 case ETHTOOL_ID_INACTIVE: 1969 if (hw->phy.type == e1000_phy_ife) 1970 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1971 hw->mac.ops.led_off(hw); 1972 hw->mac.ops.cleanup_led(hw); 1973 pm_runtime_put_sync(netdev->dev.parent); 1974 break; 1975 1976 case ETHTOOL_ID_ON: 1977 hw->mac.ops.led_on(hw); 1978 break; 1979 1980 case ETHTOOL_ID_OFF: 1981 hw->mac.ops.led_off(hw); 1982 break; 1983 } 1984 1985 return 0; 1986 } 1987 1988 static int e1000_get_coalesce(struct net_device *netdev, 1989 struct ethtool_coalesce *ec, 1990 struct kernel_ethtool_coalesce *kernel_coal, 1991 struct netlink_ext_ack *extack) 1992 { 1993 struct e1000_adapter *adapter = netdev_priv(netdev); 1994 1995 if (adapter->itr_setting <= 4) 1996 ec->rx_coalesce_usecs = adapter->itr_setting; 1997 else 1998 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1999 2000 return 0; 2001 } 2002 2003 static int e1000_set_coalesce(struct net_device *netdev, 2004 struct ethtool_coalesce *ec, 2005 struct kernel_ethtool_coalesce *kernel_coal, 2006 struct netlink_ext_ack *extack) 2007 { 2008 struct e1000_adapter *adapter = netdev_priv(netdev); 2009 2010 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2011 ((ec->rx_coalesce_usecs > 4) && 2012 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2013 (ec->rx_coalesce_usecs == 2)) 2014 return -EINVAL; 2015 2016 if (ec->rx_coalesce_usecs == 4) { 2017 adapter->itr_setting = 4; 2018 adapter->itr = adapter->itr_setting; 2019 } else if (ec->rx_coalesce_usecs <= 3) { 2020 adapter->itr = 20000; 2021 adapter->itr_setting = ec->rx_coalesce_usecs; 2022 } else { 2023 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2024 adapter->itr_setting = adapter->itr & ~3; 2025 } 2026 2027 if (adapter->itr_setting != 0) 2028 e1000e_write_itr(adapter, adapter->itr); 2029 else 2030 e1000e_write_itr(adapter, 0); 2031 2032 return 0; 2033 } 2034 2035 static int e1000_nway_reset(struct net_device *netdev) 2036 { 2037 struct e1000_adapter *adapter = netdev_priv(netdev); 2038 2039 if (!netif_running(netdev)) 2040 return -EAGAIN; 2041 2042 if (!adapter->hw.mac.autoneg) 2043 return -EINVAL; 2044 2045 e1000e_reinit_locked(adapter); 2046 2047 return 0; 2048 } 2049 2050 static void e1000_get_ethtool_stats(struct net_device *netdev, 2051 struct ethtool_stats __always_unused *stats, 2052 u64 *data) 2053 { 2054 struct e1000_adapter *adapter = netdev_priv(netdev); 2055 struct rtnl_link_stats64 net_stats; 2056 int i; 2057 char *p = NULL; 2058 2059 dev_get_stats(netdev, &net_stats); 2060 2061 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2062 switch (e1000_gstrings_stats[i].type) { 2063 case NETDEV_STATS: 2064 p = (char *)&net_stats + 2065 e1000_gstrings_stats[i].stat_offset; 2066 break; 2067 case E1000_STATS: 2068 p = (char *)adapter + 2069 e1000_gstrings_stats[i].stat_offset; 2070 break; 2071 default: 2072 data[i] = 0; 2073 continue; 2074 } 2075 2076 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2077 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2078 } 2079 } 2080 2081 static void e1000_get_strings(struct net_device __always_unused *netdev, 2082 u32 stringset, u8 *data) 2083 { 2084 u8 *p = data; 2085 int i; 2086 2087 switch (stringset) { 2088 case ETH_SS_TEST: 2089 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2090 break; 2091 case ETH_SS_STATS: 2092 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2093 memcpy(p, e1000_gstrings_stats[i].stat_string, 2094 ETH_GSTRING_LEN); 2095 p += ETH_GSTRING_LEN; 2096 } 2097 break; 2098 case ETH_SS_PRIV_FLAGS: 2099 memcpy(data, e1000e_priv_flags_strings, 2100 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2101 break; 2102 } 2103 } 2104 2105 static int e1000_get_rxfh_fields(struct net_device *netdev, 2106 struct ethtool_rxfh_fields *info) 2107 { 2108 struct e1000_adapter *adapter = netdev_priv(netdev); 2109 struct e1000_hw *hw = &adapter->hw; 2110 u32 mrqc; 2111 2112 info->data = 0; 2113 2114 mrqc = er32(MRQC); 2115 2116 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2117 return 0; 2118 2119 switch (info->flow_type) { 2120 case TCP_V4_FLOW: 2121 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2122 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2123 fallthrough; 2124 case UDP_V4_FLOW: 2125 case SCTP_V4_FLOW: 2126 case AH_ESP_V4_FLOW: 2127 case IPV4_FLOW: 2128 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2129 info->data |= RXH_IP_SRC | RXH_IP_DST; 2130 break; 2131 case TCP_V6_FLOW: 2132 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2133 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2134 fallthrough; 2135 case UDP_V6_FLOW: 2136 case SCTP_V6_FLOW: 2137 case AH_ESP_V6_FLOW: 2138 case IPV6_FLOW: 2139 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2140 info->data |= RXH_IP_SRC | RXH_IP_DST; 2141 break; 2142 default: 2143 break; 2144 } 2145 return 0; 2146 } 2147 2148 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata) 2149 { 2150 struct e1000_adapter *adapter = netdev_priv(netdev); 2151 struct e1000_hw *hw = &adapter->hw; 2152 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2153 u32 ret_val; 2154 2155 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2156 return -EOPNOTSUPP; 2157 2158 switch (hw->phy.type) { 2159 case e1000_phy_82579: 2160 cap_addr = I82579_EEE_CAPABILITY; 2161 lpa_addr = I82579_EEE_LP_ABILITY; 2162 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2163 break; 2164 case e1000_phy_i217: 2165 cap_addr = I217_EEE_CAPABILITY; 2166 lpa_addr = I217_EEE_LP_ABILITY; 2167 pcs_stat_addr = I217_EEE_PCS_STATUS; 2168 break; 2169 default: 2170 return -EOPNOTSUPP; 2171 } 2172 2173 ret_val = hw->phy.ops.acquire(hw); 2174 if (ret_val) 2175 return -EBUSY; 2176 2177 /* EEE Capability */ 2178 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2179 if (ret_val) 2180 goto release; 2181 mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data); 2182 2183 /* EEE Advertised */ 2184 mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert); 2185 2186 /* EEE Link Partner Advertised */ 2187 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2188 if (ret_val) 2189 goto release; 2190 mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data); 2191 2192 /* EEE PCS Status */ 2193 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2194 if (ret_val) 2195 goto release; 2196 if (hw->phy.type == e1000_phy_82579) 2197 phy_data <<= 8; 2198 2199 /* Result of the EEE auto negotiation - there is no register that 2200 * has the status of the EEE negotiation so do a best-guess based 2201 * on whether Tx or Rx LPI indications have been received. 2202 */ 2203 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2204 edata->eee_active = true; 2205 2206 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2207 edata->tx_lpi_enabled = true; 2208 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2209 2210 release: 2211 hw->phy.ops.release(hw); 2212 if (ret_val) 2213 ret_val = -ENODATA; 2214 2215 return ret_val; 2216 } 2217 2218 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata) 2219 { 2220 struct e1000_adapter *adapter = netdev_priv(netdev); 2221 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {}; 2222 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {}; 2223 struct e1000_hw *hw = &adapter->hw; 2224 struct ethtool_keee eee_curr; 2225 s32 ret_val; 2226 2227 ret_val = e1000e_get_eee(netdev, &eee_curr); 2228 if (ret_val) 2229 return ret_val; 2230 2231 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2232 e_err("Setting EEE tx-lpi is not supported\n"); 2233 return -EINVAL; 2234 } 2235 2236 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2237 e_err("Setting EEE Tx LPI timer is not supported\n"); 2238 return -EINVAL; 2239 } 2240 2241 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2242 supported); 2243 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, 2244 supported); 2245 2246 if (linkmode_andnot(tmp, edata->advertised, supported)) { 2247 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2248 return -EINVAL; 2249 } 2250 2251 adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised); 2252 2253 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2254 2255 /* reset the link */ 2256 if (netif_running(netdev)) 2257 e1000e_reinit_locked(adapter); 2258 else 2259 e1000e_reset(adapter); 2260 2261 return 0; 2262 } 2263 2264 static int e1000e_get_ts_info(struct net_device *netdev, 2265 struct kernel_ethtool_ts_info *info) 2266 { 2267 struct e1000_adapter *adapter = netdev_priv(netdev); 2268 2269 ethtool_op_get_ts_info(netdev, info); 2270 2271 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2272 return 0; 2273 2274 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2275 SOF_TIMESTAMPING_RX_HARDWARE | 2276 SOF_TIMESTAMPING_RAW_HARDWARE); 2277 2278 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2279 2280 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2281 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2282 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2283 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2284 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2285 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2286 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2287 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2288 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2289 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2290 BIT(HWTSTAMP_FILTER_ALL)); 2291 2292 if (adapter->ptp_clock) 2293 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2294 2295 return 0; 2296 } 2297 2298 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2299 { 2300 struct e1000_adapter *adapter = netdev_priv(netdev); 2301 u32 priv_flags = 0; 2302 2303 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2304 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2305 2306 if (adapter->flags2 & FLAG2_DISABLE_K1) 2307 priv_flags |= E1000E_PRIV_FLAGS_DISABLE_K1; 2308 2309 return priv_flags; 2310 } 2311 2312 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2313 { 2314 struct e1000_adapter *adapter = netdev_priv(netdev); 2315 struct e1000_hw *hw = &adapter->hw; 2316 unsigned int flags2 = adapter->flags2; 2317 unsigned int changed; 2318 2319 flags2 &= ~(FLAG2_ENABLE_S0IX_FLOWS | FLAG2_DISABLE_K1); 2320 2321 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2322 if (hw->mac.type < e1000_pch_cnp) { 2323 e_err("S0ix is not supported on this device\n"); 2324 return -EINVAL; 2325 } 2326 2327 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2328 } 2329 2330 if (priv_flags & E1000E_PRIV_FLAGS_DISABLE_K1) { 2331 if (hw->mac.type < e1000_ich8lan) { 2332 e_err("Disabling K1 is not supported on this device\n"); 2333 return -EINVAL; 2334 } 2335 2336 flags2 |= FLAG2_DISABLE_K1; 2337 } 2338 2339 changed = adapter->flags2 ^ flags2; 2340 if (changed) 2341 adapter->flags2 = flags2; 2342 2343 if (changed & FLAG2_DISABLE_K1) { 2344 /* reset the hardware to apply the changes */ 2345 while (test_and_set_bit(__E1000_RESETTING, 2346 &adapter->state)) 2347 usleep_range(1000, 2000); 2348 2349 if (netif_running(adapter->netdev)) { 2350 e1000e_down(adapter, true); 2351 e1000e_up(adapter); 2352 } else { 2353 e1000e_reset(adapter); 2354 } 2355 2356 clear_bit(__E1000_RESETTING, &adapter->state); 2357 } 2358 2359 return 0; 2360 } 2361 2362 static const struct ethtool_ops e1000_ethtool_ops = { 2363 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2364 .get_drvinfo = e1000_get_drvinfo, 2365 .get_regs_len = e1000_get_regs_len, 2366 .get_regs = e1000_get_regs, 2367 .get_wol = e1000_get_wol, 2368 .set_wol = e1000_set_wol, 2369 .get_msglevel = e1000_get_msglevel, 2370 .set_msglevel = e1000_set_msglevel, 2371 .nway_reset = e1000_nway_reset, 2372 .get_link = ethtool_op_get_link, 2373 .get_eeprom_len = e1000_get_eeprom_len, 2374 .get_eeprom = e1000_get_eeprom, 2375 .set_eeprom = e1000_set_eeprom, 2376 .get_ringparam = e1000_get_ringparam, 2377 .set_ringparam = e1000_set_ringparam, 2378 .get_pauseparam = e1000_get_pauseparam, 2379 .set_pauseparam = e1000_set_pauseparam, 2380 .self_test = e1000_diag_test, 2381 .get_strings = e1000_get_strings, 2382 .set_phys_id = e1000_set_phys_id, 2383 .get_ethtool_stats = e1000_get_ethtool_stats, 2384 .get_sset_count = e1000e_get_sset_count, 2385 .get_coalesce = e1000_get_coalesce, 2386 .set_coalesce = e1000_set_coalesce, 2387 .get_rxfh_fields = e1000_get_rxfh_fields, 2388 .get_ts_info = e1000e_get_ts_info, 2389 .get_eee = e1000e_get_eee, 2390 .set_eee = e1000e_set_eee, 2391 .get_link_ksettings = e1000_get_link_ksettings, 2392 .set_link_ksettings = e1000_set_link_ksettings, 2393 .get_priv_flags = e1000e_get_priv_flags, 2394 .set_priv_flags = e1000e_set_priv_flags, 2395 }; 2396 2397 void e1000e_set_ethtool_ops(struct net_device *netdev) 2398 { 2399 netdev->ethtool_ops = &e1000_ethtool_ops; 2400 } 2401