xref: /linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision 67f49869106f78882a8a09b736d4884be85aba18)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* ethtool support for e1000 */
5 
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14 
15 #include "e1000.h"
16 
17 enum { NETDEV_STATS, E1000_STATS };
18 
19 struct e1000_stats {
20 	char stat_string[ETH_GSTRING_LEN];
21 	int type;
22 	int sizeof_stat;
23 	int stat_offset;
24 };
25 
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
28 	"s0ix-enabled",
29 };
30 
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32 
33 #define E1000_STAT(str, m) { \
34 		.stat_string = str, \
35 		.type = E1000_STATS, \
36 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 		.stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 		.stat_string = str, \
40 		.type = NETDEV_STATS, \
41 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
43 
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 	E1000_STAT("rx_packets", stats.gprc),
46 	E1000_STAT("tx_packets", stats.gptc),
47 	E1000_STAT("rx_bytes", stats.gorc),
48 	E1000_STAT("tx_bytes", stats.gotc),
49 	E1000_STAT("rx_broadcast", stats.bprc),
50 	E1000_STAT("tx_broadcast", stats.bptc),
51 	E1000_STAT("rx_multicast", stats.mprc),
52 	E1000_STAT("tx_multicast", stats.mptc),
53 	E1000_NETDEV_STAT("rx_errors", rx_errors),
54 	E1000_NETDEV_STAT("tx_errors", tx_errors),
55 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 	E1000_STAT("multicast", stats.mprc),
57 	E1000_STAT("collisions", stats.colc),
58 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 	E1000_STAT("rx_crc_errors", stats.crcerrs),
61 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 	E1000_STAT("rx_missed_errors", stats.mpc),
64 	E1000_STAT("tx_aborted_errors", stats.ecol),
65 	E1000_STAT("tx_carrier_errors", stats.tncrs),
66 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 	E1000_STAT("tx_window_errors", stats.latecol),
69 	E1000_STAT("tx_abort_late_coll", stats.latecol),
70 	E1000_STAT("tx_deferred_ok", stats.dc),
71 	E1000_STAT("tx_single_coll_ok", stats.scc),
72 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 	E1000_STAT("tx_timeout_count", tx_timeout_count),
74 	E1000_STAT("tx_restart_queue", restart_queue),
75 	E1000_STAT("rx_long_length_errors", stats.roc),
76 	E1000_STAT("rx_short_length_errors", stats.ruc),
77 	E1000_STAT("rx_align_errors", stats.algnerrc),
78 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 	E1000_STAT("rx_header_split", rx_hdr_split),
87 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 	E1000_STAT("tx_smbus", stats.mgptc),
89 	E1000_STAT("rx_smbus", stats.mgprc),
90 	E1000_STAT("dropped_smbus", stats.mgpdc),
91 	E1000_STAT("rx_dma_failed", rx_dma_failed),
92 	E1000_STAT("tx_dma_failed", tx_dma_failed),
93 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 	E1000_STAT("corr_ecc_errors", corr_errors),
96 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99 
100 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 	"Register test  (offline)", "Eeprom test    (offline)",
104 	"Interrupt test (offline)", "Loopback test  (offline)",
105 	"Link test   (on/offline)"
106 };
107 
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 
110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 				    struct ethtool_link_ksettings *cmd)
112 {
113 	struct e1000_adapter *adapter = netdev_priv(netdev);
114 	struct e1000_hw *hw = &adapter->hw;
115 	u32 speed, supported, advertising;
116 
117 	if (hw->phy.media_type == e1000_media_type_copper) {
118 		supported = (SUPPORTED_10baseT_Half |
119 			     SUPPORTED_10baseT_Full |
120 			     SUPPORTED_100baseT_Half |
121 			     SUPPORTED_100baseT_Full |
122 			     SUPPORTED_1000baseT_Full |
123 			     SUPPORTED_Autoneg |
124 			     SUPPORTED_TP);
125 		if (hw->phy.type == e1000_phy_ife)
126 			supported &= ~SUPPORTED_1000baseT_Full;
127 		advertising = ADVERTISED_TP;
128 
129 		if (hw->mac.autoneg == 1) {
130 			advertising |= ADVERTISED_Autoneg;
131 			/* the e1000 autoneg seems to match ethtool nicely */
132 			advertising |= hw->phy.autoneg_advertised;
133 		}
134 
135 		cmd->base.port = PORT_TP;
136 		cmd->base.phy_address = hw->phy.addr;
137 	} else {
138 		supported   = (SUPPORTED_1000baseT_Full |
139 			       SUPPORTED_FIBRE |
140 			       SUPPORTED_Autoneg);
141 
142 		advertising = (ADVERTISED_1000baseT_Full |
143 			       ADVERTISED_FIBRE |
144 			       ADVERTISED_Autoneg);
145 
146 		cmd->base.port = PORT_FIBRE;
147 	}
148 
149 	speed = SPEED_UNKNOWN;
150 	cmd->base.duplex = DUPLEX_UNKNOWN;
151 
152 	if (netif_running(netdev)) {
153 		if (netif_carrier_ok(netdev)) {
154 			speed = adapter->link_speed;
155 			cmd->base.duplex = adapter->link_duplex - 1;
156 		}
157 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
158 		u32 status = er32(STATUS);
159 
160 		if (status & E1000_STATUS_LU) {
161 			if (status & E1000_STATUS_SPEED_1000)
162 				speed = SPEED_1000;
163 			else if (status & E1000_STATUS_SPEED_100)
164 				speed = SPEED_100;
165 			else
166 				speed = SPEED_10;
167 
168 			if (status & E1000_STATUS_FD)
169 				cmd->base.duplex = DUPLEX_FULL;
170 			else
171 				cmd->base.duplex = DUPLEX_HALF;
172 		}
173 	}
174 
175 	cmd->base.speed = speed;
176 	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178 
179 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
180 	if ((hw->phy.media_type == e1000_media_type_copper) &&
181 	    netif_carrier_ok(netdev))
182 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
183 			ETH_TP_MDI_X : ETH_TP_MDI;
184 	else
185 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
186 
187 	if (hw->phy.mdix == AUTO_ALL_MODES)
188 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
189 	else
190 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
191 
192 	if (hw->phy.media_type != e1000_media_type_copper)
193 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
194 
195 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
196 						supported);
197 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
198 						advertising);
199 
200 	return 0;
201 }
202 
203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
204 {
205 	struct e1000_mac_info *mac = &adapter->hw.mac;
206 
207 	mac->autoneg = 0;
208 
209 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
210 	 * for the switch() below to work
211 	 */
212 	if ((spd & 1) || (dplx & ~1))
213 		goto err_inval;
214 
215 	/* Fiber NICs only allow 1000 gbps Full duplex */
216 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
217 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
218 		goto err_inval;
219 	}
220 
221 	switch (spd + dplx) {
222 	case SPEED_10 + DUPLEX_HALF:
223 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
224 		break;
225 	case SPEED_10 + DUPLEX_FULL:
226 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
227 		break;
228 	case SPEED_100 + DUPLEX_HALF:
229 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
230 		break;
231 	case SPEED_100 + DUPLEX_FULL:
232 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
233 		break;
234 	case SPEED_1000 + DUPLEX_FULL:
235 		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
236 			mac->autoneg = 1;
237 			adapter->hw.phy.autoneg_advertised =
238 				ADVERTISE_1000_FULL;
239 		} else {
240 			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
241 		}
242 		break;
243 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
244 	default:
245 		goto err_inval;
246 	}
247 
248 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
249 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
250 
251 	return 0;
252 
253 err_inval:
254 	e_err("Unsupported Speed/Duplex configuration\n");
255 	return -EINVAL;
256 }
257 
258 static int e1000_set_link_ksettings(struct net_device *netdev,
259 				    const struct ethtool_link_ksettings *cmd)
260 {
261 	struct e1000_adapter *adapter = netdev_priv(netdev);
262 	struct e1000_hw *hw = &adapter->hw;
263 	int ret_val = 0;
264 	u32 advertising;
265 
266 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
267 						cmd->link_modes.advertising);
268 
269 	pm_runtime_get_sync(netdev->dev.parent);
270 
271 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
272 	 * cannot be changed
273 	 */
274 	if (hw->phy.ops.check_reset_block &&
275 	    hw->phy.ops.check_reset_block(hw)) {
276 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
277 		ret_val = -EINVAL;
278 		goto out;
279 	}
280 
281 	/* MDI setting is only allowed when autoneg enabled because
282 	 * some hardware doesn't allow MDI setting when speed or
283 	 * duplex is forced.
284 	 */
285 	if (cmd->base.eth_tp_mdix_ctrl) {
286 		if (hw->phy.media_type != e1000_media_type_copper) {
287 			ret_val = -EOPNOTSUPP;
288 			goto out;
289 		}
290 
291 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
292 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
293 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
294 			ret_val = -EINVAL;
295 			goto out;
296 		}
297 	}
298 
299 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300 		usleep_range(1000, 2000);
301 
302 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
303 		hw->mac.autoneg = 1;
304 		if (hw->phy.media_type == e1000_media_type_fiber)
305 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
306 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
307 		else
308 			hw->phy.autoneg_advertised = advertising |
309 			    ADVERTISED_TP | ADVERTISED_Autoneg;
310 		advertising = hw->phy.autoneg_advertised;
311 		if (adapter->fc_autoneg)
312 			hw->fc.requested_mode = e1000_fc_default;
313 	} else {
314 		u32 speed = cmd->base.speed;
315 		/* calling this overrides forced MDI setting */
316 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
317 			ret_val = -EINVAL;
318 			goto out;
319 		}
320 	}
321 
322 	/* MDI-X => 2; MDI => 1; Auto => 3 */
323 	if (cmd->base.eth_tp_mdix_ctrl) {
324 		/* fix up the value for auto (3 => 0) as zero is mapped
325 		 * internally to auto
326 		 */
327 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
328 			hw->phy.mdix = AUTO_ALL_MODES;
329 		else
330 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
331 	}
332 
333 	/* reset the link */
334 	if (netif_running(adapter->netdev)) {
335 		e1000e_down(adapter, true);
336 		e1000e_up(adapter);
337 	} else {
338 		e1000e_reset(adapter);
339 	}
340 
341 out:
342 	pm_runtime_put_sync(netdev->dev.parent);
343 	clear_bit(__E1000_RESETTING, &adapter->state);
344 	return ret_val;
345 }
346 
347 static void e1000_get_pauseparam(struct net_device *netdev,
348 				 struct ethtool_pauseparam *pause)
349 {
350 	struct e1000_adapter *adapter = netdev_priv(netdev);
351 	struct e1000_hw *hw = &adapter->hw;
352 
353 	pause->autoneg =
354 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
355 
356 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
357 		pause->rx_pause = 1;
358 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
359 		pause->tx_pause = 1;
360 	} else if (hw->fc.current_mode == e1000_fc_full) {
361 		pause->rx_pause = 1;
362 		pause->tx_pause = 1;
363 	}
364 }
365 
366 static int e1000_set_pauseparam(struct net_device *netdev,
367 				struct ethtool_pauseparam *pause)
368 {
369 	struct e1000_adapter *adapter = netdev_priv(netdev);
370 	struct e1000_hw *hw = &adapter->hw;
371 	int retval = 0;
372 
373 	adapter->fc_autoneg = pause->autoneg;
374 
375 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
376 		usleep_range(1000, 2000);
377 
378 	pm_runtime_get_sync(netdev->dev.parent);
379 
380 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
381 		hw->fc.requested_mode = e1000_fc_default;
382 		if (netif_running(adapter->netdev)) {
383 			e1000e_down(adapter, true);
384 			e1000e_up(adapter);
385 		} else {
386 			e1000e_reset(adapter);
387 		}
388 	} else {
389 		if (pause->rx_pause && pause->tx_pause)
390 			hw->fc.requested_mode = e1000_fc_full;
391 		else if (pause->rx_pause && !pause->tx_pause)
392 			hw->fc.requested_mode = e1000_fc_rx_pause;
393 		else if (!pause->rx_pause && pause->tx_pause)
394 			hw->fc.requested_mode = e1000_fc_tx_pause;
395 		else if (!pause->rx_pause && !pause->tx_pause)
396 			hw->fc.requested_mode = e1000_fc_none;
397 
398 		hw->fc.current_mode = hw->fc.requested_mode;
399 
400 		if (hw->phy.media_type == e1000_media_type_fiber) {
401 			retval = hw->mac.ops.setup_link(hw);
402 			/* implicit goto out */
403 		} else {
404 			retval = e1000e_force_mac_fc(hw);
405 			if (retval)
406 				goto out;
407 			e1000e_set_fc_watermarks(hw);
408 		}
409 	}
410 
411 out:
412 	pm_runtime_put_sync(netdev->dev.parent);
413 	clear_bit(__E1000_RESETTING, &adapter->state);
414 	return retval;
415 }
416 
417 static u32 e1000_get_msglevel(struct net_device *netdev)
418 {
419 	struct e1000_adapter *adapter = netdev_priv(netdev);
420 	return adapter->msg_enable;
421 }
422 
423 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
424 {
425 	struct e1000_adapter *adapter = netdev_priv(netdev);
426 	adapter->msg_enable = data;
427 }
428 
429 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
430 {
431 #define E1000_REGS_LEN 32	/* overestimate */
432 	return E1000_REGS_LEN * sizeof(u32);
433 }
434 
435 static void e1000_get_regs(struct net_device *netdev,
436 			   struct ethtool_regs *regs, void *p)
437 {
438 	struct e1000_adapter *adapter = netdev_priv(netdev);
439 	struct e1000_hw *hw = &adapter->hw;
440 	u32 *regs_buff = p;
441 	u16 phy_data;
442 
443 	pm_runtime_get_sync(netdev->dev.parent);
444 
445 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
446 
447 	regs->version = (1u << 24) |
448 			(adapter->pdev->revision << 16) |
449 			adapter->pdev->device;
450 
451 	regs_buff[0] = er32(CTRL);
452 	regs_buff[1] = er32(STATUS);
453 
454 	regs_buff[2] = er32(RCTL);
455 	regs_buff[3] = er32(RDLEN(0));
456 	regs_buff[4] = er32(RDH(0));
457 	regs_buff[5] = er32(RDT(0));
458 	regs_buff[6] = er32(RDTR);
459 
460 	regs_buff[7] = er32(TCTL);
461 	regs_buff[8] = er32(TDLEN(0));
462 	regs_buff[9] = er32(TDH(0));
463 	regs_buff[10] = er32(TDT(0));
464 	regs_buff[11] = er32(TIDV);
465 
466 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
467 
468 	/* ethtool doesn't use anything past this point, so all this
469 	 * code is likely legacy junk for apps that may or may not exist
470 	 */
471 	if (hw->phy.type == e1000_phy_m88) {
472 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
473 		regs_buff[13] = (u32)phy_data; /* cable length */
474 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
475 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
476 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
477 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
478 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
479 		regs_buff[18] = regs_buff[13]; /* cable polarity */
480 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
481 		regs_buff[20] = regs_buff[17]; /* polarity correction */
482 		/* phy receive errors */
483 		regs_buff[22] = adapter->phy_stats.receive_errors;
484 		regs_buff[23] = regs_buff[13]; /* mdix mode */
485 	}
486 	regs_buff[21] = 0;	/* was idle_errors */
487 	e1e_rphy(hw, MII_STAT1000, &phy_data);
488 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
489 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
490 
491 	pm_runtime_put_sync(netdev->dev.parent);
492 }
493 
494 static int e1000_get_eeprom_len(struct net_device *netdev)
495 {
496 	struct e1000_adapter *adapter = netdev_priv(netdev);
497 	return adapter->hw.nvm.word_size * 2;
498 }
499 
500 static int e1000_get_eeprom(struct net_device *netdev,
501 			    struct ethtool_eeprom *eeprom, u8 *bytes)
502 {
503 	struct e1000_adapter *adapter = netdev_priv(netdev);
504 	struct e1000_hw *hw = &adapter->hw;
505 	u16 *eeprom_buff;
506 	int first_word;
507 	int last_word;
508 	int ret_val = 0;
509 	u16 i;
510 
511 	if (eeprom->len == 0)
512 		return -EINVAL;
513 
514 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
515 
516 	first_word = eeprom->offset >> 1;
517 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518 
519 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
520 				    GFP_KERNEL);
521 	if (!eeprom_buff)
522 		return -ENOMEM;
523 
524 	pm_runtime_get_sync(netdev->dev.parent);
525 
526 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
527 		ret_val = e1000_read_nvm(hw, first_word,
528 					 last_word - first_word + 1,
529 					 eeprom_buff);
530 	} else {
531 		for (i = 0; i < last_word - first_word + 1; i++) {
532 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
533 						 &eeprom_buff[i]);
534 			if (ret_val)
535 				break;
536 		}
537 	}
538 
539 	pm_runtime_put_sync(netdev->dev.parent);
540 
541 	if (ret_val) {
542 		/* a read error occurred, throw away the result */
543 		memset(eeprom_buff, 0xff, sizeof(u16) *
544 		       (last_word - first_word + 1));
545 	} else {
546 		/* Device's eeprom is always little-endian, word addressable */
547 		for (i = 0; i < last_word - first_word + 1; i++)
548 			le16_to_cpus(&eeprom_buff[i]);
549 	}
550 
551 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
552 	kfree(eeprom_buff);
553 
554 	return ret_val;
555 }
556 
557 static int e1000_set_eeprom(struct net_device *netdev,
558 			    struct ethtool_eeprom *eeprom, u8 *bytes)
559 {
560 	struct e1000_adapter *adapter = netdev_priv(netdev);
561 	struct e1000_hw *hw = &adapter->hw;
562 	u16 *eeprom_buff;
563 	void *ptr;
564 	int max_len;
565 	int first_word;
566 	int last_word;
567 	int ret_val = 0;
568 	u16 i;
569 
570 	if (eeprom->len == 0)
571 		return -EOPNOTSUPP;
572 
573 	if (eeprom->magic !=
574 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
575 		return -EFAULT;
576 
577 	if (adapter->flags & FLAG_READ_ONLY_NVM)
578 		return -EINVAL;
579 
580 	max_len = hw->nvm.word_size * 2;
581 
582 	first_word = eeprom->offset >> 1;
583 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
584 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
585 	if (!eeprom_buff)
586 		return -ENOMEM;
587 
588 	ptr = (void *)eeprom_buff;
589 
590 	pm_runtime_get_sync(netdev->dev.parent);
591 
592 	if (eeprom->offset & 1) {
593 		/* need read/modify/write of first changed EEPROM word */
594 		/* only the second byte of the word is being modified */
595 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
596 		ptr++;
597 	}
598 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
599 		/* need read/modify/write of last changed EEPROM word */
600 		/* only the first byte of the word is being modified */
601 		ret_val = e1000_read_nvm(hw, last_word, 1,
602 					 &eeprom_buff[last_word - first_word]);
603 
604 	if (ret_val)
605 		goto out;
606 
607 	/* Device's eeprom is always little-endian, word addressable */
608 	for (i = 0; i < last_word - first_word + 1; i++)
609 		le16_to_cpus(&eeprom_buff[i]);
610 
611 	memcpy(ptr, bytes, eeprom->len);
612 
613 	for (i = 0; i < last_word - first_word + 1; i++)
614 		cpu_to_le16s(&eeprom_buff[i]);
615 
616 	ret_val = e1000_write_nvm(hw, first_word,
617 				  last_word - first_word + 1, eeprom_buff);
618 
619 	if (ret_val)
620 		goto out;
621 
622 	/* Update the checksum over the first part of the EEPROM if needed
623 	 * and flush shadow RAM for applicable controllers
624 	 */
625 	if ((first_word <= NVM_CHECKSUM_REG) ||
626 	    (hw->mac.type == e1000_82583) ||
627 	    (hw->mac.type == e1000_82574) ||
628 	    (hw->mac.type == e1000_82573))
629 		ret_val = e1000e_update_nvm_checksum(hw);
630 
631 out:
632 	pm_runtime_put_sync(netdev->dev.parent);
633 	kfree(eeprom_buff);
634 	return ret_val;
635 }
636 
637 static void e1000_get_drvinfo(struct net_device *netdev,
638 			      struct ethtool_drvinfo *drvinfo)
639 {
640 	struct e1000_adapter *adapter = netdev_priv(netdev);
641 
642 	strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
643 
644 	/* EEPROM image version # is reported as firmware version # for
645 	 * PCI-E controllers
646 	 */
647 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
648 		 "%d.%d-%d",
649 		 (adapter->eeprom_vers & 0xF000) >> 12,
650 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
651 		 (adapter->eeprom_vers & 0x000F));
652 
653 	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
654 		sizeof(drvinfo->bus_info));
655 }
656 
657 static void e1000_get_ringparam(struct net_device *netdev,
658 				struct ethtool_ringparam *ring,
659 				struct kernel_ethtool_ringparam *kernel_ring,
660 				struct netlink_ext_ack *extack)
661 {
662 	struct e1000_adapter *adapter = netdev_priv(netdev);
663 
664 	ring->rx_max_pending = E1000_MAX_RXD;
665 	ring->tx_max_pending = E1000_MAX_TXD;
666 	ring->rx_pending = adapter->rx_ring_count;
667 	ring->tx_pending = adapter->tx_ring_count;
668 }
669 
670 static int e1000_set_ringparam(struct net_device *netdev,
671 			       struct ethtool_ringparam *ring,
672 			       struct kernel_ethtool_ringparam *kernel_ring,
673 			       struct netlink_ext_ack *extack)
674 {
675 	struct e1000_adapter *adapter = netdev_priv(netdev);
676 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
677 	int err = 0, size = sizeof(struct e1000_ring);
678 	bool set_tx = false, set_rx = false;
679 	u16 new_rx_count, new_tx_count;
680 
681 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
682 		return -EINVAL;
683 
684 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
685 			       E1000_MAX_RXD);
686 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
687 
688 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
689 			       E1000_MAX_TXD);
690 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
691 
692 	if ((new_tx_count == adapter->tx_ring_count) &&
693 	    (new_rx_count == adapter->rx_ring_count))
694 		/* nothing to do */
695 		return 0;
696 
697 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
698 		usleep_range(1000, 2000);
699 
700 	if (!netif_running(adapter->netdev)) {
701 		/* Set counts now and allocate resources during open() */
702 		adapter->tx_ring->count = new_tx_count;
703 		adapter->rx_ring->count = new_rx_count;
704 		adapter->tx_ring_count = new_tx_count;
705 		adapter->rx_ring_count = new_rx_count;
706 		goto clear_reset;
707 	}
708 
709 	set_tx = (new_tx_count != adapter->tx_ring_count);
710 	set_rx = (new_rx_count != adapter->rx_ring_count);
711 
712 	/* Allocate temporary storage for ring updates */
713 	if (set_tx) {
714 		temp_tx = vmalloc(size);
715 		if (!temp_tx) {
716 			err = -ENOMEM;
717 			goto free_temp;
718 		}
719 	}
720 	if (set_rx) {
721 		temp_rx = vmalloc(size);
722 		if (!temp_rx) {
723 			err = -ENOMEM;
724 			goto free_temp;
725 		}
726 	}
727 
728 	pm_runtime_get_sync(netdev->dev.parent);
729 
730 	e1000e_down(adapter, true);
731 
732 	/* We can't just free everything and then setup again, because the
733 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
734 	 * structs.  First, attempt to allocate new resources...
735 	 */
736 	if (set_tx) {
737 		memcpy(temp_tx, adapter->tx_ring, size);
738 		temp_tx->count = new_tx_count;
739 		err = e1000e_setup_tx_resources(temp_tx);
740 		if (err)
741 			goto err_setup;
742 	}
743 	if (set_rx) {
744 		memcpy(temp_rx, adapter->rx_ring, size);
745 		temp_rx->count = new_rx_count;
746 		err = e1000e_setup_rx_resources(temp_rx);
747 		if (err)
748 			goto err_setup_rx;
749 	}
750 
751 	/* ...then free the old resources and copy back any new ring data */
752 	if (set_tx) {
753 		e1000e_free_tx_resources(adapter->tx_ring);
754 		memcpy(adapter->tx_ring, temp_tx, size);
755 		adapter->tx_ring_count = new_tx_count;
756 	}
757 	if (set_rx) {
758 		e1000e_free_rx_resources(adapter->rx_ring);
759 		memcpy(adapter->rx_ring, temp_rx, size);
760 		adapter->rx_ring_count = new_rx_count;
761 	}
762 
763 err_setup_rx:
764 	if (err && set_tx)
765 		e1000e_free_tx_resources(temp_tx);
766 err_setup:
767 	e1000e_up(adapter);
768 	pm_runtime_put_sync(netdev->dev.parent);
769 free_temp:
770 	vfree(temp_tx);
771 	vfree(temp_rx);
772 clear_reset:
773 	clear_bit(__E1000_RESETTING, &adapter->state);
774 	return err;
775 }
776 
777 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
778 			     int reg, int offset, u32 mask, u32 write)
779 {
780 	u32 pat, val;
781 	static const u32 test[] = {
782 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
783 	};
784 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
785 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
786 				      (test[pat] & write));
787 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
788 		if (val != (test[pat] & write & mask)) {
789 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
790 			      reg + (offset << 2), val,
791 			      (test[pat] & write & mask));
792 			*data = reg;
793 			return true;
794 		}
795 	}
796 	return false;
797 }
798 
799 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
800 			      int reg, u32 mask, u32 write)
801 {
802 	u32 val;
803 
804 	__ew32(&adapter->hw, reg, write & mask);
805 	val = __er32(&adapter->hw, reg);
806 	if ((write & mask) != (val & mask)) {
807 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
808 		      reg, (val & mask), (write & mask));
809 		*data = reg;
810 		return true;
811 	}
812 	return false;
813 }
814 
815 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
816 	do {                                                                   \
817 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
818 			return 1;                                              \
819 	} while (0)
820 #define REG_PATTERN_TEST(reg, mask, write)                                     \
821 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
822 
823 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
824 	do {                                                                   \
825 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
826 			return 1;                                              \
827 	} while (0)
828 
829 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
830 {
831 	struct e1000_hw *hw = &adapter->hw;
832 	struct e1000_mac_info *mac = &adapter->hw.mac;
833 	u32 value;
834 	u32 before;
835 	u32 after;
836 	u32 i;
837 	u32 toggle;
838 	u32 mask;
839 	u32 wlock_mac = 0;
840 
841 	/* The status register is Read Only, so a write should fail.
842 	 * Some bits that get toggled are ignored.  There are several bits
843 	 * on newer hardware that are r/w.
844 	 */
845 	switch (mac->type) {
846 	case e1000_82571:
847 	case e1000_82572:
848 	case e1000_80003es2lan:
849 		toggle = 0x7FFFF3FF;
850 		break;
851 	default:
852 		toggle = 0x7FFFF033;
853 		break;
854 	}
855 
856 	before = er32(STATUS);
857 	value = (er32(STATUS) & toggle);
858 	ew32(STATUS, toggle);
859 	after = er32(STATUS) & toggle;
860 	if (value != after) {
861 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
862 		      after, value);
863 		*data = 1;
864 		return 1;
865 	}
866 	/* restore previous status */
867 	ew32(STATUS, before);
868 
869 	if (!(adapter->flags & FLAG_IS_ICH)) {
870 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
871 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
872 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
873 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
874 	}
875 
876 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
877 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
878 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
879 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
880 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
881 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
882 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
883 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
884 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
885 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
886 
887 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
888 
889 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
890 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
891 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
892 
893 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
894 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
895 	if (!(adapter->flags & FLAG_IS_ICH))
896 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
897 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
898 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
899 	mask = 0x8003FFFF;
900 	switch (mac->type) {
901 	case e1000_ich10lan:
902 	case e1000_pchlan:
903 	case e1000_pch2lan:
904 	case e1000_pch_lpt:
905 	case e1000_pch_spt:
906 	case e1000_pch_cnp:
907 	case e1000_pch_tgp:
908 	case e1000_pch_adp:
909 	case e1000_pch_mtp:
910 	case e1000_pch_lnp:
911 	case e1000_pch_ptp:
912 		mask |= BIT(18);
913 		break;
914 	default:
915 		break;
916 	}
917 
918 	if (mac->type >= e1000_pch_lpt)
919 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
920 		    E1000_FWSM_WLOCK_MAC_SHIFT;
921 
922 	for (i = 0; i < mac->rar_entry_count; i++) {
923 		if (mac->type >= e1000_pch_lpt) {
924 			/* Cannot test write-protected SHRAL[n] registers */
925 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
926 				continue;
927 
928 			/* SHRAH[9] different than the others */
929 			if (i == 10)
930 				mask |= BIT(30);
931 			else
932 				mask &= ~BIT(30);
933 		}
934 		if (mac->type == e1000_pch2lan) {
935 			/* SHRAH[0,1,2] different than previous */
936 			if (i == 1)
937 				mask &= 0xFFF4FFFF;
938 			/* SHRAH[3] different than SHRAH[0,1,2] */
939 			if (i == 4)
940 				mask |= BIT(30);
941 			/* RAR[1-6] owned by management engine - skipping */
942 			if (i > 0)
943 				i += 6;
944 		}
945 
946 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
947 				       0xFFFFFFFF);
948 		/* reset index to actual value */
949 		if ((mac->type == e1000_pch2lan) && (i > 6))
950 			i -= 6;
951 	}
952 
953 	for (i = 0; i < mac->mta_reg_count; i++)
954 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
955 
956 	*data = 0;
957 
958 	return 0;
959 }
960 
961 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
962 {
963 	u16 temp;
964 	u16 checksum = 0;
965 	u16 i;
966 
967 	*data = 0;
968 	/* Read and add up the contents of the EEPROM */
969 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
970 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
971 			*data = 1;
972 			return *data;
973 		}
974 		checksum += temp;
975 	}
976 
977 	/* If Checksum is not Correct return error else test passed */
978 	if ((checksum != (u16)NVM_SUM) && !(*data))
979 		*data = 2;
980 
981 	return *data;
982 }
983 
984 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
985 {
986 	struct net_device *netdev = (struct net_device *)data;
987 	struct e1000_adapter *adapter = netdev_priv(netdev);
988 	struct e1000_hw *hw = &adapter->hw;
989 
990 	adapter->test_icr |= er32(ICR);
991 
992 	return IRQ_HANDLED;
993 }
994 
995 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
996 {
997 	struct net_device *netdev = adapter->netdev;
998 	struct e1000_hw *hw = &adapter->hw;
999 	u32 mask;
1000 	u32 shared_int = 1;
1001 	u32 irq = adapter->pdev->irq;
1002 	int i;
1003 	int ret_val = 0;
1004 	int int_mode = E1000E_INT_MODE_LEGACY;
1005 
1006 	*data = 0;
1007 
1008 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1009 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1010 		int_mode = adapter->int_mode;
1011 		e1000e_reset_interrupt_capability(adapter);
1012 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1013 		e1000e_set_interrupt_capability(adapter);
1014 	}
1015 	/* Hook up test interrupt handler just for this test */
1016 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1017 			 netdev)) {
1018 		shared_int = 0;
1019 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1020 			       netdev)) {
1021 		*data = 1;
1022 		ret_val = -1;
1023 		goto out;
1024 	}
1025 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1026 
1027 	/* Disable all the interrupts */
1028 	ew32(IMC, 0xFFFFFFFF);
1029 	e1e_flush();
1030 	usleep_range(10000, 11000);
1031 
1032 	/* Test each interrupt */
1033 	for (i = 0; i < 10; i++) {
1034 		/* Interrupt to test */
1035 		mask = BIT(i);
1036 
1037 		if (adapter->flags & FLAG_IS_ICH) {
1038 			switch (mask) {
1039 			case E1000_ICR_RXSEQ:
1040 				continue;
1041 			case 0x00000100:
1042 				if (adapter->hw.mac.type == e1000_ich8lan ||
1043 				    adapter->hw.mac.type == e1000_ich9lan)
1044 					continue;
1045 				break;
1046 			default:
1047 				break;
1048 			}
1049 		}
1050 
1051 		if (!shared_int) {
1052 			/* Disable the interrupt to be reported in
1053 			 * the cause register and then force the same
1054 			 * interrupt and see if one gets posted.  If
1055 			 * an interrupt was posted to the bus, the
1056 			 * test failed.
1057 			 */
1058 			adapter->test_icr = 0;
1059 			ew32(IMC, mask);
1060 			ew32(ICS, mask);
1061 			e1e_flush();
1062 			usleep_range(10000, 11000);
1063 
1064 			if (adapter->test_icr & mask) {
1065 				*data = 3;
1066 				break;
1067 			}
1068 		}
1069 
1070 		/* Enable the interrupt to be reported in
1071 		 * the cause register and then force the same
1072 		 * interrupt and see if one gets posted.  If
1073 		 * an interrupt was not posted to the bus, the
1074 		 * test failed.
1075 		 */
1076 		adapter->test_icr = 0;
1077 		ew32(IMS, mask);
1078 		ew32(ICS, mask);
1079 		e1e_flush();
1080 		usleep_range(10000, 11000);
1081 
1082 		if (!(adapter->test_icr & mask)) {
1083 			*data = 4;
1084 			break;
1085 		}
1086 
1087 		if (!shared_int) {
1088 			/* Disable the other interrupts to be reported in
1089 			 * the cause register and then force the other
1090 			 * interrupts and see if any get posted.  If
1091 			 * an interrupt was posted to the bus, the
1092 			 * test failed.
1093 			 */
1094 			adapter->test_icr = 0;
1095 			ew32(IMC, ~mask & 0x00007FFF);
1096 			ew32(ICS, ~mask & 0x00007FFF);
1097 			e1e_flush();
1098 			usleep_range(10000, 11000);
1099 
1100 			if (adapter->test_icr) {
1101 				*data = 5;
1102 				break;
1103 			}
1104 		}
1105 	}
1106 
1107 	/* Disable all the interrupts */
1108 	ew32(IMC, 0xFFFFFFFF);
1109 	e1e_flush();
1110 	usleep_range(10000, 11000);
1111 
1112 	/* Unhook test interrupt handler */
1113 	free_irq(irq, netdev);
1114 
1115 out:
1116 	if (int_mode == E1000E_INT_MODE_MSIX) {
1117 		e1000e_reset_interrupt_capability(adapter);
1118 		adapter->int_mode = int_mode;
1119 		e1000e_set_interrupt_capability(adapter);
1120 	}
1121 
1122 	return ret_val;
1123 }
1124 
1125 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1126 {
1127 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1128 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1129 	struct pci_dev *pdev = adapter->pdev;
1130 	struct e1000_buffer *buffer_info;
1131 	int i;
1132 
1133 	if (tx_ring->desc && tx_ring->buffer_info) {
1134 		for (i = 0; i < tx_ring->count; i++) {
1135 			buffer_info = &tx_ring->buffer_info[i];
1136 
1137 			if (buffer_info->dma)
1138 				dma_unmap_single(&pdev->dev,
1139 						 buffer_info->dma,
1140 						 buffer_info->length,
1141 						 DMA_TO_DEVICE);
1142 			dev_kfree_skb(buffer_info->skb);
1143 		}
1144 	}
1145 
1146 	if (rx_ring->desc && rx_ring->buffer_info) {
1147 		for (i = 0; i < rx_ring->count; i++) {
1148 			buffer_info = &rx_ring->buffer_info[i];
1149 
1150 			if (buffer_info->dma)
1151 				dma_unmap_single(&pdev->dev,
1152 						 buffer_info->dma,
1153 						 2048, DMA_FROM_DEVICE);
1154 			dev_kfree_skb(buffer_info->skb);
1155 		}
1156 	}
1157 
1158 	if (tx_ring->desc) {
1159 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1160 				  tx_ring->dma);
1161 		tx_ring->desc = NULL;
1162 	}
1163 	if (rx_ring->desc) {
1164 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1165 				  rx_ring->dma);
1166 		rx_ring->desc = NULL;
1167 	}
1168 
1169 	kfree(tx_ring->buffer_info);
1170 	tx_ring->buffer_info = NULL;
1171 	kfree(rx_ring->buffer_info);
1172 	rx_ring->buffer_info = NULL;
1173 }
1174 
1175 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1176 {
1177 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1178 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1179 	struct pci_dev *pdev = adapter->pdev;
1180 	struct e1000_hw *hw = &adapter->hw;
1181 	u32 rctl;
1182 	int i;
1183 	int ret_val;
1184 
1185 	/* Setup Tx descriptor ring and Tx buffers */
1186 
1187 	if (!tx_ring->count)
1188 		tx_ring->count = E1000_DEFAULT_TXD;
1189 
1190 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1191 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1192 	if (!tx_ring->buffer_info) {
1193 		ret_val = 1;
1194 		goto err_nomem;
1195 	}
1196 
1197 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1198 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1199 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1200 					   &tx_ring->dma, GFP_KERNEL);
1201 	if (!tx_ring->desc) {
1202 		ret_val = 2;
1203 		goto err_nomem;
1204 	}
1205 	tx_ring->next_to_use = 0;
1206 	tx_ring->next_to_clean = 0;
1207 
1208 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1209 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1210 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1211 	ew32(TDH(0), 0);
1212 	ew32(TDT(0), 0);
1213 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1214 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1215 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1216 
1217 	for (i = 0; i < tx_ring->count; i++) {
1218 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1219 		struct sk_buff *skb;
1220 		unsigned int skb_size = 1024;
1221 
1222 		skb = alloc_skb(skb_size, GFP_KERNEL);
1223 		if (!skb) {
1224 			ret_val = 3;
1225 			goto err_nomem;
1226 		}
1227 		skb_put(skb, skb_size);
1228 		tx_ring->buffer_info[i].skb = skb;
1229 		tx_ring->buffer_info[i].length = skb->len;
1230 		tx_ring->buffer_info[i].dma =
1231 		    dma_map_single(&pdev->dev, skb->data, skb->len,
1232 				   DMA_TO_DEVICE);
1233 		if (dma_mapping_error(&pdev->dev,
1234 				      tx_ring->buffer_info[i].dma)) {
1235 			ret_val = 4;
1236 			goto err_nomem;
1237 		}
1238 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1239 		tx_desc->lower.data = cpu_to_le32(skb->len);
1240 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1241 						   E1000_TXD_CMD_IFCS |
1242 						   E1000_TXD_CMD_RS);
1243 		tx_desc->upper.data = 0;
1244 	}
1245 
1246 	/* Setup Rx descriptor ring and Rx buffers */
1247 
1248 	if (!rx_ring->count)
1249 		rx_ring->count = E1000_DEFAULT_RXD;
1250 
1251 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1252 				       sizeof(struct e1000_buffer), GFP_KERNEL);
1253 	if (!rx_ring->buffer_info) {
1254 		ret_val = 5;
1255 		goto err_nomem;
1256 	}
1257 
1258 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1259 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1260 					   &rx_ring->dma, GFP_KERNEL);
1261 	if (!rx_ring->desc) {
1262 		ret_val = 6;
1263 		goto err_nomem;
1264 	}
1265 	rx_ring->next_to_use = 0;
1266 	rx_ring->next_to_clean = 0;
1267 
1268 	rctl = er32(RCTL);
1269 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1270 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1271 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1272 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1273 	ew32(RDLEN(0), rx_ring->size);
1274 	ew32(RDH(0), 0);
1275 	ew32(RDT(0), 0);
1276 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1277 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1278 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1279 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1280 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1281 	ew32(RCTL, rctl);
1282 
1283 	for (i = 0; i < rx_ring->count; i++) {
1284 		union e1000_rx_desc_extended *rx_desc;
1285 		struct sk_buff *skb;
1286 
1287 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1288 		if (!skb) {
1289 			ret_val = 7;
1290 			goto err_nomem;
1291 		}
1292 		skb_reserve(skb, NET_IP_ALIGN);
1293 		rx_ring->buffer_info[i].skb = skb;
1294 		rx_ring->buffer_info[i].dma =
1295 		    dma_map_single(&pdev->dev, skb->data, 2048,
1296 				   DMA_FROM_DEVICE);
1297 		if (dma_mapping_error(&pdev->dev,
1298 				      rx_ring->buffer_info[i].dma)) {
1299 			ret_val = 8;
1300 			goto err_nomem;
1301 		}
1302 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1303 		rx_desc->read.buffer_addr =
1304 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1305 		memset(skb->data, 0x00, skb->len);
1306 	}
1307 
1308 	return 0;
1309 
1310 err_nomem:
1311 	e1000_free_desc_rings(adapter);
1312 	return ret_val;
1313 }
1314 
1315 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1316 {
1317 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1318 	e1e_wphy(&adapter->hw, 29, 0x001F);
1319 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1320 	e1e_wphy(&adapter->hw, 29, 0x001A);
1321 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1322 }
1323 
1324 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1325 {
1326 	struct e1000_hw *hw = &adapter->hw;
1327 	u32 ctrl_reg = 0;
1328 	u16 phy_reg = 0;
1329 	s32 ret_val = 0;
1330 
1331 	hw->mac.autoneg = 0;
1332 
1333 	if (hw->phy.type == e1000_phy_ife) {
1334 		/* force 100, set loopback */
1335 		e1e_wphy(hw, MII_BMCR, 0x6100);
1336 
1337 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1338 		ctrl_reg = er32(CTRL);
1339 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1340 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1341 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1342 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1343 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1344 
1345 		ew32(CTRL, ctrl_reg);
1346 		e1e_flush();
1347 		usleep_range(500, 1000);
1348 
1349 		return 0;
1350 	}
1351 
1352 	/* Specific PHY configuration for loopback */
1353 	switch (hw->phy.type) {
1354 	case e1000_phy_m88:
1355 		/* Auto-MDI/MDIX Off */
1356 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1357 		/* reset to update Auto-MDI/MDIX */
1358 		e1e_wphy(hw, MII_BMCR, 0x9140);
1359 		/* autoneg off */
1360 		e1e_wphy(hw, MII_BMCR, 0x8140);
1361 		break;
1362 	case e1000_phy_gg82563:
1363 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1364 		break;
1365 	case e1000_phy_bm:
1366 		/* Set Default MAC Interface speed to 1GB */
1367 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1368 		phy_reg &= ~0x0007;
1369 		phy_reg |= 0x006;
1370 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1371 		/* Assert SW reset for above settings to take effect */
1372 		hw->phy.ops.commit(hw);
1373 		usleep_range(1000, 2000);
1374 		/* Force Full Duplex */
1375 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1376 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1377 		/* Set Link Up (in force link) */
1378 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1379 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1380 		/* Force Link */
1381 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1382 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1383 		/* Set Early Link Enable */
1384 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1385 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1386 		break;
1387 	case e1000_phy_82577:
1388 	case e1000_phy_82578:
1389 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1390 		ret_val = hw->phy.ops.acquire(hw);
1391 		if (ret_val) {
1392 			e_err("Cannot setup 1Gbps loopback.\n");
1393 			return ret_val;
1394 		}
1395 		e1000_configure_k1_ich8lan(hw, false);
1396 		hw->phy.ops.release(hw);
1397 		break;
1398 	case e1000_phy_82579:
1399 		/* Disable PHY energy detect power down */
1400 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1401 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1402 		/* Disable full chip energy detect */
1403 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1404 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1405 		/* Enable loopback on the PHY */
1406 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1407 		break;
1408 	default:
1409 		break;
1410 	}
1411 
1412 	/* force 1000, set loopback */
1413 	e1e_wphy(hw, MII_BMCR, 0x4140);
1414 	msleep(250);
1415 
1416 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1417 	ctrl_reg = er32(CTRL);
1418 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1419 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1420 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1421 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1422 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1423 
1424 	if (adapter->flags & FLAG_IS_ICH)
1425 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1426 
1427 	if (hw->phy.media_type == e1000_media_type_copper &&
1428 	    hw->phy.type == e1000_phy_m88) {
1429 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1430 	} else {
1431 		/* Set the ILOS bit on the fiber Nic if half duplex link is
1432 		 * detected.
1433 		 */
1434 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1435 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1436 	}
1437 
1438 	ew32(CTRL, ctrl_reg);
1439 
1440 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1441 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1442 	 */
1443 	if (hw->phy.type == e1000_phy_m88)
1444 		e1000_phy_disable_receiver(adapter);
1445 
1446 	usleep_range(500, 1000);
1447 
1448 	return 0;
1449 }
1450 
1451 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1452 {
1453 	struct e1000_hw *hw = &adapter->hw;
1454 	u32 ctrl = er32(CTRL);
1455 	int link;
1456 
1457 	/* special requirements for 82571/82572 fiber adapters */
1458 
1459 	/* jump through hoops to make sure link is up because serdes
1460 	 * link is hardwired up
1461 	 */
1462 	ctrl |= E1000_CTRL_SLU;
1463 	ew32(CTRL, ctrl);
1464 
1465 	/* disable autoneg */
1466 	ctrl = er32(TXCW);
1467 	ctrl &= ~BIT(31);
1468 	ew32(TXCW, ctrl);
1469 
1470 	link = (er32(STATUS) & E1000_STATUS_LU);
1471 
1472 	if (!link) {
1473 		/* set invert loss of signal */
1474 		ctrl = er32(CTRL);
1475 		ctrl |= E1000_CTRL_ILOS;
1476 		ew32(CTRL, ctrl);
1477 	}
1478 
1479 	/* special write to serdes control register to enable SerDes analog
1480 	 * loopback
1481 	 */
1482 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1483 	e1e_flush();
1484 	usleep_range(10000, 11000);
1485 
1486 	return 0;
1487 }
1488 
1489 /* only call this for fiber/serdes connections to es2lan */
1490 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1491 {
1492 	struct e1000_hw *hw = &adapter->hw;
1493 	u32 ctrlext = er32(CTRL_EXT);
1494 	u32 ctrl = er32(CTRL);
1495 
1496 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1497 	 * on mac_type 80003es2lan)
1498 	 */
1499 	adapter->tx_fifo_head = ctrlext;
1500 
1501 	/* clear the serdes mode bits, putting the device into mac loopback */
1502 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1503 	ew32(CTRL_EXT, ctrlext);
1504 
1505 	/* force speed to 1000/FD, link up */
1506 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1507 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1508 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1509 	ew32(CTRL, ctrl);
1510 
1511 	/* set mac loopback */
1512 	ctrl = er32(RCTL);
1513 	ctrl |= E1000_RCTL_LBM_MAC;
1514 	ew32(RCTL, ctrl);
1515 
1516 	/* set testing mode parameters (no need to reset later) */
1517 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1518 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1519 	ew32(KMRNCTRLSTA,
1520 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1521 
1522 	return 0;
1523 }
1524 
1525 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1526 {
1527 	struct e1000_hw *hw = &adapter->hw;
1528 	u32 rctl, fext_nvm11, tarc0;
1529 
1530 	if (hw->mac.type >= e1000_pch_spt) {
1531 		fext_nvm11 = er32(FEXTNVM11);
1532 		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1533 		ew32(FEXTNVM11, fext_nvm11);
1534 		tarc0 = er32(TARC(0));
1535 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1536 		tarc0 &= 0xcfffffff;
1537 		/* set bit 29 (value of MULR requests is now 2) */
1538 		tarc0 |= 0x20000000;
1539 		ew32(TARC(0), tarc0);
1540 	}
1541 	if (hw->phy.media_type == e1000_media_type_fiber ||
1542 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1543 		switch (hw->mac.type) {
1544 		case e1000_80003es2lan:
1545 			return e1000_set_es2lan_mac_loopback(adapter);
1546 		case e1000_82571:
1547 		case e1000_82572:
1548 			return e1000_set_82571_fiber_loopback(adapter);
1549 		default:
1550 			rctl = er32(RCTL);
1551 			rctl |= E1000_RCTL_LBM_TCVR;
1552 			ew32(RCTL, rctl);
1553 			return 0;
1554 		}
1555 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1556 		return e1000_integrated_phy_loopback(adapter);
1557 	}
1558 
1559 	return 7;
1560 }
1561 
1562 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1563 {
1564 	struct e1000_hw *hw = &adapter->hw;
1565 	u32 rctl, fext_nvm11, tarc0;
1566 	u16 phy_reg;
1567 
1568 	rctl = er32(RCTL);
1569 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1570 	ew32(RCTL, rctl);
1571 
1572 	switch (hw->mac.type) {
1573 	case e1000_pch_spt:
1574 	case e1000_pch_cnp:
1575 	case e1000_pch_tgp:
1576 	case e1000_pch_adp:
1577 	case e1000_pch_mtp:
1578 	case e1000_pch_lnp:
1579 	case e1000_pch_ptp:
1580 		fext_nvm11 = er32(FEXTNVM11);
1581 		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1582 		ew32(FEXTNVM11, fext_nvm11);
1583 		tarc0 = er32(TARC(0));
1584 		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1585 		/* set bit 29 (value of MULR requests is now 0) */
1586 		tarc0 &= 0xcfffffff;
1587 		ew32(TARC(0), tarc0);
1588 		fallthrough;
1589 	case e1000_80003es2lan:
1590 		if (hw->phy.media_type == e1000_media_type_fiber ||
1591 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1592 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1593 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1594 			adapter->tx_fifo_head = 0;
1595 		}
1596 		fallthrough;
1597 	case e1000_82571:
1598 	case e1000_82572:
1599 		if (hw->phy.media_type == e1000_media_type_fiber ||
1600 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1601 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1602 			e1e_flush();
1603 			usleep_range(10000, 11000);
1604 			break;
1605 		}
1606 		fallthrough;
1607 	default:
1608 		hw->mac.autoneg = 1;
1609 		if (hw->phy.type == e1000_phy_gg82563)
1610 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1611 		e1e_rphy(hw, MII_BMCR, &phy_reg);
1612 		if (phy_reg & BMCR_LOOPBACK) {
1613 			phy_reg &= ~BMCR_LOOPBACK;
1614 			e1e_wphy(hw, MII_BMCR, phy_reg);
1615 			if (hw->phy.ops.commit)
1616 				hw->phy.ops.commit(hw);
1617 		}
1618 		break;
1619 	}
1620 }
1621 
1622 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1623 				      unsigned int frame_size)
1624 {
1625 	memset(skb->data, 0xFF, frame_size);
1626 	frame_size &= ~1;
1627 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1628 	skb->data[frame_size / 2 + 10] = 0xBE;
1629 	skb->data[frame_size / 2 + 12] = 0xAF;
1630 }
1631 
1632 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1633 				    unsigned int frame_size)
1634 {
1635 	frame_size &= ~1;
1636 	if (*(skb->data + 3) == 0xFF)
1637 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1638 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1639 			return 0;
1640 	return 13;
1641 }
1642 
1643 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1644 {
1645 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1646 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1647 	struct pci_dev *pdev = adapter->pdev;
1648 	struct e1000_hw *hw = &adapter->hw;
1649 	struct e1000_buffer *buffer_info;
1650 	int i, j, k, l;
1651 	int lc;
1652 	int good_cnt;
1653 	int ret_val = 0;
1654 	unsigned long time;
1655 
1656 	ew32(RDT(0), rx_ring->count - 1);
1657 
1658 	/* Calculate the loop count based on the largest descriptor ring
1659 	 * The idea is to wrap the largest ring a number of times using 64
1660 	 * send/receive pairs during each loop
1661 	 */
1662 
1663 	if (rx_ring->count <= tx_ring->count)
1664 		lc = ((tx_ring->count / 64) * 2) + 1;
1665 	else
1666 		lc = ((rx_ring->count / 64) * 2) + 1;
1667 
1668 	k = 0;
1669 	l = 0;
1670 	/* loop count loop */
1671 	for (j = 0; j <= lc; j++) {
1672 		/* send the packets */
1673 		for (i = 0; i < 64; i++) {
1674 			buffer_info = &tx_ring->buffer_info[k];
1675 
1676 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1677 			dma_sync_single_for_device(&pdev->dev,
1678 						   buffer_info->dma,
1679 						   buffer_info->length,
1680 						   DMA_TO_DEVICE);
1681 			k++;
1682 			if (k == tx_ring->count)
1683 				k = 0;
1684 		}
1685 		ew32(TDT(0), k);
1686 		e1e_flush();
1687 		msleep(200);
1688 		time = jiffies;	/* set the start time for the receive */
1689 		good_cnt = 0;
1690 		/* receive the sent packets */
1691 		do {
1692 			buffer_info = &rx_ring->buffer_info[l];
1693 
1694 			dma_sync_single_for_cpu(&pdev->dev,
1695 						buffer_info->dma, 2048,
1696 						DMA_FROM_DEVICE);
1697 
1698 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1699 							   1024);
1700 			if (!ret_val)
1701 				good_cnt++;
1702 			l++;
1703 			if (l == rx_ring->count)
1704 				l = 0;
1705 			/* time + 20 msecs (200 msecs on 2.4) is more than
1706 			 * enough time to complete the receives, if it's
1707 			 * exceeded, break and error off
1708 			 */
1709 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1710 		if (good_cnt != 64) {
1711 			ret_val = 13;	/* ret_val is the same as mis-compare */
1712 			break;
1713 		}
1714 		if (time_after(jiffies, time + 20)) {
1715 			ret_val = 14;	/* error code for time out error */
1716 			break;
1717 		}
1718 	}
1719 	return ret_val;
1720 }
1721 
1722 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1723 {
1724 	struct e1000_hw *hw = &adapter->hw;
1725 
1726 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1727 	if (hw->phy.ops.check_reset_block &&
1728 	    hw->phy.ops.check_reset_block(hw)) {
1729 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1730 		*data = 0;
1731 		goto out;
1732 	}
1733 
1734 	*data = e1000_setup_desc_rings(adapter);
1735 	if (*data)
1736 		goto out;
1737 
1738 	*data = e1000_setup_loopback_test(adapter);
1739 	if (*data)
1740 		goto err_loopback;
1741 
1742 	*data = e1000_run_loopback_test(adapter);
1743 	e1000_loopback_cleanup(adapter);
1744 
1745 err_loopback:
1746 	e1000_free_desc_rings(adapter);
1747 out:
1748 	return *data;
1749 }
1750 
1751 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1752 {
1753 	struct e1000_hw *hw = &adapter->hw;
1754 
1755 	*data = 0;
1756 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1757 		int i = 0;
1758 
1759 		hw->mac.serdes_has_link = false;
1760 
1761 		/* On some blade server designs, link establishment
1762 		 * could take as long as 2-3 minutes
1763 		 */
1764 		do {
1765 			hw->mac.ops.check_for_link(hw);
1766 			if (hw->mac.serdes_has_link)
1767 				return *data;
1768 			msleep(20);
1769 		} while (i++ < 3750);
1770 
1771 		*data = 1;
1772 	} else {
1773 		hw->mac.ops.check_for_link(hw);
1774 		if (hw->mac.autoneg)
1775 			/* On some Phy/switch combinations, link establishment
1776 			 * can take a few seconds more than expected.
1777 			 */
1778 			msleep_interruptible(5000);
1779 
1780 		if (!(er32(STATUS) & E1000_STATUS_LU))
1781 			*data = 1;
1782 	}
1783 	return *data;
1784 }
1785 
1786 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1787 				 int sset)
1788 {
1789 	switch (sset) {
1790 	case ETH_SS_TEST:
1791 		return E1000_TEST_LEN;
1792 	case ETH_SS_STATS:
1793 		return E1000_STATS_LEN;
1794 	case ETH_SS_PRIV_FLAGS:
1795 		return E1000E_PRIV_FLAGS_STR_LEN;
1796 	default:
1797 		return -EOPNOTSUPP;
1798 	}
1799 }
1800 
1801 static void e1000_diag_test(struct net_device *netdev,
1802 			    struct ethtool_test *eth_test, u64 *data)
1803 {
1804 	struct e1000_adapter *adapter = netdev_priv(netdev);
1805 	u16 autoneg_advertised;
1806 	u8 forced_speed_duplex;
1807 	u8 autoneg;
1808 	bool if_running = netif_running(netdev);
1809 
1810 	pm_runtime_get_sync(netdev->dev.parent);
1811 
1812 	set_bit(__E1000_TESTING, &adapter->state);
1813 
1814 	if (!if_running) {
1815 		/* Get control of and reset hardware */
1816 		if (adapter->flags & FLAG_HAS_AMT)
1817 			e1000e_get_hw_control(adapter);
1818 
1819 		e1000e_power_up_phy(adapter);
1820 
1821 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1822 		e1000e_reset(adapter);
1823 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1824 	}
1825 
1826 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1827 		/* Offline tests */
1828 
1829 		/* save speed, duplex, autoneg settings */
1830 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1831 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1832 		autoneg = adapter->hw.mac.autoneg;
1833 
1834 		e_info("offline testing starting\n");
1835 
1836 		if (if_running)
1837 			/* indicate we're in test mode */
1838 			e1000e_close(netdev);
1839 
1840 		if (e1000_reg_test(adapter, &data[0]))
1841 			eth_test->flags |= ETH_TEST_FL_FAILED;
1842 
1843 		e1000e_reset(adapter);
1844 		if (e1000_eeprom_test(adapter, &data[1]))
1845 			eth_test->flags |= ETH_TEST_FL_FAILED;
1846 
1847 		e1000e_reset(adapter);
1848 		if (e1000_intr_test(adapter, &data[2]))
1849 			eth_test->flags |= ETH_TEST_FL_FAILED;
1850 
1851 		e1000e_reset(adapter);
1852 		if (e1000_loopback_test(adapter, &data[3]))
1853 			eth_test->flags |= ETH_TEST_FL_FAILED;
1854 
1855 		/* force this routine to wait until autoneg complete/timeout */
1856 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1857 		e1000e_reset(adapter);
1858 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1859 
1860 		if (e1000_link_test(adapter, &data[4]))
1861 			eth_test->flags |= ETH_TEST_FL_FAILED;
1862 
1863 		/* restore speed, duplex, autoneg settings */
1864 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1865 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1866 		adapter->hw.mac.autoneg = autoneg;
1867 		e1000e_reset(adapter);
1868 
1869 		clear_bit(__E1000_TESTING, &adapter->state);
1870 		if (if_running)
1871 			e1000e_open(netdev);
1872 	} else {
1873 		/* Online tests */
1874 
1875 		e_info("online testing starting\n");
1876 
1877 		/* register, eeprom, intr and loopback tests not run online */
1878 		data[0] = 0;
1879 		data[1] = 0;
1880 		data[2] = 0;
1881 		data[3] = 0;
1882 
1883 		if (e1000_link_test(adapter, &data[4]))
1884 			eth_test->flags |= ETH_TEST_FL_FAILED;
1885 
1886 		clear_bit(__E1000_TESTING, &adapter->state);
1887 	}
1888 
1889 	if (!if_running) {
1890 		e1000e_reset(adapter);
1891 
1892 		if (adapter->flags & FLAG_HAS_AMT)
1893 			e1000e_release_hw_control(adapter);
1894 	}
1895 
1896 	msleep_interruptible(4 * 1000);
1897 
1898 	pm_runtime_put_sync(netdev->dev.parent);
1899 }
1900 
1901 static void e1000_get_wol(struct net_device *netdev,
1902 			  struct ethtool_wolinfo *wol)
1903 {
1904 	struct e1000_adapter *adapter = netdev_priv(netdev);
1905 
1906 	wol->supported = 0;
1907 	wol->wolopts = 0;
1908 
1909 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1910 	    !device_can_wakeup(&adapter->pdev->dev))
1911 		return;
1912 
1913 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1914 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1915 
1916 	/* apply any specific unsupported masks here */
1917 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1918 		wol->supported &= ~WAKE_UCAST;
1919 
1920 		if (adapter->wol & E1000_WUFC_EX)
1921 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1922 	}
1923 
1924 	if (adapter->wol & E1000_WUFC_EX)
1925 		wol->wolopts |= WAKE_UCAST;
1926 	if (adapter->wol & E1000_WUFC_MC)
1927 		wol->wolopts |= WAKE_MCAST;
1928 	if (adapter->wol & E1000_WUFC_BC)
1929 		wol->wolopts |= WAKE_BCAST;
1930 	if (adapter->wol & E1000_WUFC_MAG)
1931 		wol->wolopts |= WAKE_MAGIC;
1932 	if (adapter->wol & E1000_WUFC_LNKC)
1933 		wol->wolopts |= WAKE_PHY;
1934 }
1935 
1936 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1937 {
1938 	struct e1000_adapter *adapter = netdev_priv(netdev);
1939 
1940 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1941 	    !device_can_wakeup(&adapter->pdev->dev) ||
1942 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1943 			      WAKE_MAGIC | WAKE_PHY)))
1944 		return -EOPNOTSUPP;
1945 
1946 	/* these settings will always override what we currently have */
1947 	adapter->wol = 0;
1948 
1949 	if (wol->wolopts & WAKE_UCAST)
1950 		adapter->wol |= E1000_WUFC_EX;
1951 	if (wol->wolopts & WAKE_MCAST)
1952 		adapter->wol |= E1000_WUFC_MC;
1953 	if (wol->wolopts & WAKE_BCAST)
1954 		adapter->wol |= E1000_WUFC_BC;
1955 	if (wol->wolopts & WAKE_MAGIC)
1956 		adapter->wol |= E1000_WUFC_MAG;
1957 	if (wol->wolopts & WAKE_PHY)
1958 		adapter->wol |= E1000_WUFC_LNKC;
1959 
1960 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1961 
1962 	return 0;
1963 }
1964 
1965 static int e1000_set_phys_id(struct net_device *netdev,
1966 			     enum ethtool_phys_id_state state)
1967 {
1968 	struct e1000_adapter *adapter = netdev_priv(netdev);
1969 	struct e1000_hw *hw = &adapter->hw;
1970 
1971 	switch (state) {
1972 	case ETHTOOL_ID_ACTIVE:
1973 		pm_runtime_get_sync(netdev->dev.parent);
1974 
1975 		if (!hw->mac.ops.blink_led)
1976 			return 2;	/* cycle on/off twice per second */
1977 
1978 		hw->mac.ops.blink_led(hw);
1979 		break;
1980 
1981 	case ETHTOOL_ID_INACTIVE:
1982 		if (hw->phy.type == e1000_phy_ife)
1983 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1984 		hw->mac.ops.led_off(hw);
1985 		hw->mac.ops.cleanup_led(hw);
1986 		pm_runtime_put_sync(netdev->dev.parent);
1987 		break;
1988 
1989 	case ETHTOOL_ID_ON:
1990 		hw->mac.ops.led_on(hw);
1991 		break;
1992 
1993 	case ETHTOOL_ID_OFF:
1994 		hw->mac.ops.led_off(hw);
1995 		break;
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 static int e1000_get_coalesce(struct net_device *netdev,
2002 			      struct ethtool_coalesce *ec,
2003 			      struct kernel_ethtool_coalesce *kernel_coal,
2004 			      struct netlink_ext_ack *extack)
2005 {
2006 	struct e1000_adapter *adapter = netdev_priv(netdev);
2007 
2008 	if (adapter->itr_setting <= 4)
2009 		ec->rx_coalesce_usecs = adapter->itr_setting;
2010 	else
2011 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2012 
2013 	return 0;
2014 }
2015 
2016 static int e1000_set_coalesce(struct net_device *netdev,
2017 			      struct ethtool_coalesce *ec,
2018 			      struct kernel_ethtool_coalesce *kernel_coal,
2019 			      struct netlink_ext_ack *extack)
2020 {
2021 	struct e1000_adapter *adapter = netdev_priv(netdev);
2022 
2023 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2024 	    ((ec->rx_coalesce_usecs > 4) &&
2025 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2026 	    (ec->rx_coalesce_usecs == 2))
2027 		return -EINVAL;
2028 
2029 	if (ec->rx_coalesce_usecs == 4) {
2030 		adapter->itr_setting = 4;
2031 		adapter->itr = adapter->itr_setting;
2032 	} else if (ec->rx_coalesce_usecs <= 3) {
2033 		adapter->itr = 20000;
2034 		adapter->itr_setting = ec->rx_coalesce_usecs;
2035 	} else {
2036 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2037 		adapter->itr_setting = adapter->itr & ~3;
2038 	}
2039 
2040 	pm_runtime_get_sync(netdev->dev.parent);
2041 
2042 	if (adapter->itr_setting != 0)
2043 		e1000e_write_itr(adapter, adapter->itr);
2044 	else
2045 		e1000e_write_itr(adapter, 0);
2046 
2047 	pm_runtime_put_sync(netdev->dev.parent);
2048 
2049 	return 0;
2050 }
2051 
2052 static int e1000_nway_reset(struct net_device *netdev)
2053 {
2054 	struct e1000_adapter *adapter = netdev_priv(netdev);
2055 
2056 	if (!netif_running(netdev))
2057 		return -EAGAIN;
2058 
2059 	if (!adapter->hw.mac.autoneg)
2060 		return -EINVAL;
2061 
2062 	pm_runtime_get_sync(netdev->dev.parent);
2063 	e1000e_reinit_locked(adapter);
2064 	pm_runtime_put_sync(netdev->dev.parent);
2065 
2066 	return 0;
2067 }
2068 
2069 static void e1000_get_ethtool_stats(struct net_device *netdev,
2070 				    struct ethtool_stats __always_unused *stats,
2071 				    u64 *data)
2072 {
2073 	struct e1000_adapter *adapter = netdev_priv(netdev);
2074 	struct rtnl_link_stats64 net_stats;
2075 	int i;
2076 	char *p = NULL;
2077 
2078 	pm_runtime_get_sync(netdev->dev.parent);
2079 
2080 	dev_get_stats(netdev, &net_stats);
2081 
2082 	pm_runtime_put_sync(netdev->dev.parent);
2083 
2084 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2085 		switch (e1000_gstrings_stats[i].type) {
2086 		case NETDEV_STATS:
2087 			p = (char *)&net_stats +
2088 			    e1000_gstrings_stats[i].stat_offset;
2089 			break;
2090 		case E1000_STATS:
2091 			p = (char *)adapter +
2092 			    e1000_gstrings_stats[i].stat_offset;
2093 			break;
2094 		default:
2095 			data[i] = 0;
2096 			continue;
2097 		}
2098 
2099 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2100 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2101 	}
2102 }
2103 
2104 static void e1000_get_strings(struct net_device __always_unused *netdev,
2105 			      u32 stringset, u8 *data)
2106 {
2107 	u8 *p = data;
2108 	int i;
2109 
2110 	switch (stringset) {
2111 	case ETH_SS_TEST:
2112 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2113 		break;
2114 	case ETH_SS_STATS:
2115 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2116 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2117 			       ETH_GSTRING_LEN);
2118 			p += ETH_GSTRING_LEN;
2119 		}
2120 		break;
2121 	case ETH_SS_PRIV_FLAGS:
2122 		memcpy(data, e1000e_priv_flags_strings,
2123 		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2124 		break;
2125 	}
2126 }
2127 
2128 static int e1000_get_rxnfc(struct net_device *netdev,
2129 			   struct ethtool_rxnfc *info,
2130 			   u32 __always_unused *rule_locs)
2131 {
2132 	info->data = 0;
2133 
2134 	switch (info->cmd) {
2135 	case ETHTOOL_GRXFH: {
2136 		struct e1000_adapter *adapter = netdev_priv(netdev);
2137 		struct e1000_hw *hw = &adapter->hw;
2138 		u32 mrqc;
2139 
2140 		pm_runtime_get_sync(netdev->dev.parent);
2141 		mrqc = er32(MRQC);
2142 		pm_runtime_put_sync(netdev->dev.parent);
2143 
2144 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2145 			return 0;
2146 
2147 		switch (info->flow_type) {
2148 		case TCP_V4_FLOW:
2149 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2150 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2151 			fallthrough;
2152 		case UDP_V4_FLOW:
2153 		case SCTP_V4_FLOW:
2154 		case AH_ESP_V4_FLOW:
2155 		case IPV4_FLOW:
2156 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2157 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2158 			break;
2159 		case TCP_V6_FLOW:
2160 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2161 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2162 			fallthrough;
2163 		case UDP_V6_FLOW:
2164 		case SCTP_V6_FLOW:
2165 		case AH_ESP_V6_FLOW:
2166 		case IPV6_FLOW:
2167 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2168 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2169 			break;
2170 		default:
2171 			break;
2172 		}
2173 		return 0;
2174 	}
2175 	default:
2176 		return -EOPNOTSUPP;
2177 	}
2178 }
2179 
2180 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2181 {
2182 	struct e1000_adapter *adapter = netdev_priv(netdev);
2183 	struct e1000_hw *hw = &adapter->hw;
2184 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2185 	u32 ret_val;
2186 
2187 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2188 		return -EOPNOTSUPP;
2189 
2190 	switch (hw->phy.type) {
2191 	case e1000_phy_82579:
2192 		cap_addr = I82579_EEE_CAPABILITY;
2193 		lpa_addr = I82579_EEE_LP_ABILITY;
2194 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2195 		break;
2196 	case e1000_phy_i217:
2197 		cap_addr = I217_EEE_CAPABILITY;
2198 		lpa_addr = I217_EEE_LP_ABILITY;
2199 		pcs_stat_addr = I217_EEE_PCS_STATUS;
2200 		break;
2201 	default:
2202 		return -EOPNOTSUPP;
2203 	}
2204 
2205 	pm_runtime_get_sync(netdev->dev.parent);
2206 
2207 	ret_val = hw->phy.ops.acquire(hw);
2208 	if (ret_val) {
2209 		pm_runtime_put_sync(netdev->dev.parent);
2210 		return -EBUSY;
2211 	}
2212 
2213 	/* EEE Capability */
2214 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2215 	if (ret_val)
2216 		goto release;
2217 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2218 
2219 	/* EEE Advertised */
2220 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2221 
2222 	/* EEE Link Partner Advertised */
2223 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2224 	if (ret_val)
2225 		goto release;
2226 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2227 
2228 	/* EEE PCS Status */
2229 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2230 	if (ret_val)
2231 		goto release;
2232 	if (hw->phy.type == e1000_phy_82579)
2233 		phy_data <<= 8;
2234 
2235 	/* Result of the EEE auto negotiation - there is no register that
2236 	 * has the status of the EEE negotiation so do a best-guess based
2237 	 * on whether Tx or Rx LPI indications have been received.
2238 	 */
2239 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2240 		edata->eee_active = true;
2241 
2242 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2243 	edata->tx_lpi_enabled = true;
2244 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2245 
2246 release:
2247 	hw->phy.ops.release(hw);
2248 	if (ret_val)
2249 		ret_val = -ENODATA;
2250 
2251 	pm_runtime_put_sync(netdev->dev.parent);
2252 
2253 	return ret_val;
2254 }
2255 
2256 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2257 {
2258 	struct e1000_adapter *adapter = netdev_priv(netdev);
2259 	struct e1000_hw *hw = &adapter->hw;
2260 	struct ethtool_eee eee_curr;
2261 	s32 ret_val;
2262 
2263 	ret_val = e1000e_get_eee(netdev, &eee_curr);
2264 	if (ret_val)
2265 		return ret_val;
2266 
2267 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2268 		e_err("Setting EEE tx-lpi is not supported\n");
2269 		return -EINVAL;
2270 	}
2271 
2272 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2273 		e_err("Setting EEE Tx LPI timer is not supported\n");
2274 		return -EINVAL;
2275 	}
2276 
2277 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2278 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2279 		return -EINVAL;
2280 	}
2281 
2282 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2283 
2284 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2285 
2286 	pm_runtime_get_sync(netdev->dev.parent);
2287 
2288 	/* reset the link */
2289 	if (netif_running(netdev))
2290 		e1000e_reinit_locked(adapter);
2291 	else
2292 		e1000e_reset(adapter);
2293 
2294 	pm_runtime_put_sync(netdev->dev.parent);
2295 
2296 	return 0;
2297 }
2298 
2299 static int e1000e_get_ts_info(struct net_device *netdev,
2300 			      struct ethtool_ts_info *info)
2301 {
2302 	struct e1000_adapter *adapter = netdev_priv(netdev);
2303 
2304 	ethtool_op_get_ts_info(netdev, info);
2305 
2306 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2307 		return 0;
2308 
2309 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2310 				  SOF_TIMESTAMPING_RX_HARDWARE |
2311 				  SOF_TIMESTAMPING_RAW_HARDWARE);
2312 
2313 	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2314 
2315 	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2316 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2317 			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2318 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2319 			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2320 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2321 			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2322 			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2323 			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2324 			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2325 			    BIT(HWTSTAMP_FILTER_ALL));
2326 
2327 	if (adapter->ptp_clock)
2328 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2329 
2330 	return 0;
2331 }
2332 
2333 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2334 {
2335 	struct e1000_adapter *adapter = netdev_priv(netdev);
2336 	u32 priv_flags = 0;
2337 
2338 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2339 		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2340 
2341 	return priv_flags;
2342 }
2343 
2344 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2345 {
2346 	struct e1000_adapter *adapter = netdev_priv(netdev);
2347 	unsigned int flags2 = adapter->flags2;
2348 
2349 	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2350 	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2351 		struct e1000_hw *hw = &adapter->hw;
2352 
2353 		if (hw->mac.type < e1000_pch_cnp)
2354 			return -EINVAL;
2355 		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2356 	}
2357 
2358 	if (flags2 != adapter->flags2)
2359 		adapter->flags2 = flags2;
2360 
2361 	return 0;
2362 }
2363 
2364 static const struct ethtool_ops e1000_ethtool_ops = {
2365 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2366 	.get_drvinfo		= e1000_get_drvinfo,
2367 	.get_regs_len		= e1000_get_regs_len,
2368 	.get_regs		= e1000_get_regs,
2369 	.get_wol		= e1000_get_wol,
2370 	.set_wol		= e1000_set_wol,
2371 	.get_msglevel		= e1000_get_msglevel,
2372 	.set_msglevel		= e1000_set_msglevel,
2373 	.nway_reset		= e1000_nway_reset,
2374 	.get_link		= ethtool_op_get_link,
2375 	.get_eeprom_len		= e1000_get_eeprom_len,
2376 	.get_eeprom		= e1000_get_eeprom,
2377 	.set_eeprom		= e1000_set_eeprom,
2378 	.get_ringparam		= e1000_get_ringparam,
2379 	.set_ringparam		= e1000_set_ringparam,
2380 	.get_pauseparam		= e1000_get_pauseparam,
2381 	.set_pauseparam		= e1000_set_pauseparam,
2382 	.self_test		= e1000_diag_test,
2383 	.get_strings		= e1000_get_strings,
2384 	.set_phys_id		= e1000_set_phys_id,
2385 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2386 	.get_sset_count		= e1000e_get_sset_count,
2387 	.get_coalesce		= e1000_get_coalesce,
2388 	.set_coalesce		= e1000_set_coalesce,
2389 	.get_rxnfc		= e1000_get_rxnfc,
2390 	.get_ts_info		= e1000e_get_ts_info,
2391 	.get_eee		= e1000e_get_eee,
2392 	.set_eee		= e1000e_set_eee,
2393 	.get_link_ksettings	= e1000_get_link_ksettings,
2394 	.set_link_ksettings	= e1000_set_link_ksettings,
2395 	.get_priv_flags		= e1000e_get_priv_flags,
2396 	.set_priv_flags		= e1000e_set_priv_flags,
2397 };
2398 
2399 void e1000e_set_ethtool_ops(struct net_device *netdev)
2400 {
2401 	netdev->ethtool_ops = &e1000_ethtool_ops;
2402 }
2403