1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 }; 30 31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 32 33 #define E1000_STAT(str, m) { \ 34 .stat_string = str, \ 35 .type = E1000_STATS, \ 36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 37 .stat_offset = offsetof(struct e1000_adapter, m) } 38 #define E1000_NETDEV_STAT(str, m) { \ 39 .stat_string = str, \ 40 .type = NETDEV_STATS, \ 41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 42 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 43 44 static const struct e1000_stats e1000_gstrings_stats[] = { 45 E1000_STAT("rx_packets", stats.gprc), 46 E1000_STAT("tx_packets", stats.gptc), 47 E1000_STAT("rx_bytes", stats.gorc), 48 E1000_STAT("tx_bytes", stats.gotc), 49 E1000_STAT("rx_broadcast", stats.bprc), 50 E1000_STAT("tx_broadcast", stats.bptc), 51 E1000_STAT("rx_multicast", stats.mprc), 52 E1000_STAT("tx_multicast", stats.mptc), 53 E1000_NETDEV_STAT("rx_errors", rx_errors), 54 E1000_NETDEV_STAT("tx_errors", tx_errors), 55 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 56 E1000_STAT("multicast", stats.mprc), 57 E1000_STAT("collisions", stats.colc), 58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 60 E1000_STAT("rx_crc_errors", stats.crcerrs), 61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 62 E1000_STAT("rx_no_buffer_count", stats.rnbc), 63 E1000_STAT("rx_missed_errors", stats.mpc), 64 E1000_STAT("tx_aborted_errors", stats.ecol), 65 E1000_STAT("tx_carrier_errors", stats.tncrs), 66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 68 E1000_STAT("tx_window_errors", stats.latecol), 69 E1000_STAT("tx_abort_late_coll", stats.latecol), 70 E1000_STAT("tx_deferred_ok", stats.dc), 71 E1000_STAT("tx_single_coll_ok", stats.scc), 72 E1000_STAT("tx_multi_coll_ok", stats.mcc), 73 E1000_STAT("tx_timeout_count", tx_timeout_count), 74 E1000_STAT("tx_restart_queue", restart_queue), 75 E1000_STAT("rx_long_length_errors", stats.roc), 76 E1000_STAT("rx_short_length_errors", stats.ruc), 77 E1000_STAT("rx_align_errors", stats.algnerrc), 78 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 80 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 82 E1000_STAT("tx_flow_control_xon", stats.xontxc), 83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 84 E1000_STAT("rx_csum_offload_good", hw_csum_good), 85 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 86 E1000_STAT("rx_header_split", rx_hdr_split), 87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 88 E1000_STAT("tx_smbus", stats.mgptc), 89 E1000_STAT("rx_smbus", stats.mgprc), 90 E1000_STAT("dropped_smbus", stats.mgpdc), 91 E1000_STAT("rx_dma_failed", rx_dma_failed), 92 E1000_STAT("tx_dma_failed", tx_dma_failed), 93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 95 E1000_STAT("corr_ecc_errors", corr_errors), 96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 98 }; 99 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 109 110 static int e1000_get_link_ksettings(struct net_device *netdev, 111 struct ethtool_link_ksettings *cmd) 112 { 113 u32 speed, supported, advertising, lp_advertising, lpa_t; 114 struct e1000_adapter *adapter = netdev_priv(netdev); 115 struct e1000_hw *hw = &adapter->hw; 116 117 if (hw->phy.media_type == e1000_media_type_copper) { 118 supported = (SUPPORTED_10baseT_Half | 119 SUPPORTED_10baseT_Full | 120 SUPPORTED_100baseT_Half | 121 SUPPORTED_100baseT_Full | 122 SUPPORTED_1000baseT_Full | 123 SUPPORTED_Asym_Pause | 124 SUPPORTED_Autoneg | 125 SUPPORTED_Pause | 126 SUPPORTED_TP); 127 if (hw->phy.type == e1000_phy_ife) 128 supported &= ~SUPPORTED_1000baseT_Full; 129 advertising = ADVERTISED_TP; 130 131 if (hw->mac.autoneg == 1) { 132 advertising |= ADVERTISED_Autoneg; 133 /* the e1000 autoneg seems to match ethtool nicely */ 134 advertising |= hw->phy.autoneg_advertised; 135 } 136 137 cmd->base.port = PORT_TP; 138 cmd->base.phy_address = hw->phy.addr; 139 } else { 140 supported = (SUPPORTED_1000baseT_Full | 141 SUPPORTED_FIBRE | 142 SUPPORTED_Autoneg); 143 144 advertising = (ADVERTISED_1000baseT_Full | 145 ADVERTISED_FIBRE | 146 ADVERTISED_Autoneg); 147 148 cmd->base.port = PORT_FIBRE; 149 } 150 151 speed = SPEED_UNKNOWN; 152 cmd->base.duplex = DUPLEX_UNKNOWN; 153 154 if (netif_running(netdev)) { 155 if (netif_carrier_ok(netdev)) { 156 speed = adapter->link_speed; 157 cmd->base.duplex = adapter->link_duplex - 1; 158 } 159 } else { 160 u32 status = er32(STATUS); 161 162 if (status & E1000_STATUS_LU) { 163 if (status & E1000_STATUS_SPEED_1000) 164 speed = SPEED_1000; 165 else if (status & E1000_STATUS_SPEED_100) 166 speed = SPEED_100; 167 else 168 speed = SPEED_10; 169 170 if (status & E1000_STATUS_FD) 171 cmd->base.duplex = DUPLEX_FULL; 172 else 173 cmd->base.duplex = DUPLEX_HALF; 174 } 175 } 176 177 cmd->base.speed = speed; 178 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 179 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 180 181 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 182 if ((hw->phy.media_type == e1000_media_type_copper) && 183 netif_carrier_ok(netdev)) 184 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 185 ETH_TP_MDI_X : ETH_TP_MDI; 186 else 187 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 188 189 if (hw->phy.mdix == AUTO_ALL_MODES) 190 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 191 else 192 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 193 194 if (hw->phy.media_type != e1000_media_type_copper) 195 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 196 197 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000); 198 lp_advertising = lpa_t | 199 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa); 200 201 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 202 supported); 203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 204 advertising); 205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 206 lp_advertising); 207 208 return 0; 209 } 210 211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 212 { 213 struct e1000_mac_info *mac = &adapter->hw.mac; 214 215 mac->autoneg = 0; 216 217 /* Make sure dplx is at most 1 bit and lsb of speed is not set 218 * for the switch() below to work 219 */ 220 if ((spd & 1) || (dplx & ~1)) 221 goto err_inval; 222 223 /* Fiber NICs only allow 1000 gbps Full duplex */ 224 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 225 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 226 goto err_inval; 227 } 228 229 switch (spd + dplx) { 230 case SPEED_10 + DUPLEX_HALF: 231 mac->forced_speed_duplex = ADVERTISE_10_HALF; 232 break; 233 case SPEED_10 + DUPLEX_FULL: 234 mac->forced_speed_duplex = ADVERTISE_10_FULL; 235 break; 236 case SPEED_100 + DUPLEX_HALF: 237 mac->forced_speed_duplex = ADVERTISE_100_HALF; 238 break; 239 case SPEED_100 + DUPLEX_FULL: 240 mac->forced_speed_duplex = ADVERTISE_100_FULL; 241 break; 242 case SPEED_1000 + DUPLEX_FULL: 243 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 244 mac->autoneg = 1; 245 adapter->hw.phy.autoneg_advertised = 246 ADVERTISE_1000_FULL; 247 } else { 248 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 249 } 250 break; 251 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 252 default: 253 goto err_inval; 254 } 255 256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 257 adapter->hw.phy.mdix = AUTO_ALL_MODES; 258 259 return 0; 260 261 err_inval: 262 e_err("Unsupported Speed/Duplex configuration\n"); 263 return -EINVAL; 264 } 265 266 static int e1000_set_link_ksettings(struct net_device *netdev, 267 const struct ethtool_link_ksettings *cmd) 268 { 269 struct e1000_adapter *adapter = netdev_priv(netdev); 270 struct e1000_hw *hw = &adapter->hw; 271 int ret_val = 0; 272 u32 advertising; 273 274 ethtool_convert_link_mode_to_legacy_u32(&advertising, 275 cmd->link_modes.advertising); 276 277 /* When SoL/IDER sessions are active, autoneg/speed/duplex 278 * cannot be changed 279 */ 280 if (hw->phy.ops.check_reset_block && 281 hw->phy.ops.check_reset_block(hw)) { 282 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 283 return -EINVAL; 284 } 285 286 /* MDI setting is only allowed when autoneg enabled because 287 * some hardware doesn't allow MDI setting when speed or 288 * duplex is forced. 289 */ 290 if (cmd->base.eth_tp_mdix_ctrl) { 291 if (hw->phy.media_type != e1000_media_type_copper) 292 return -EOPNOTSUPP; 293 294 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 295 (cmd->base.autoneg != AUTONEG_ENABLE)) { 296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 297 return -EINVAL; 298 } 299 } 300 301 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 302 usleep_range(1000, 2000); 303 304 if (cmd->base.autoneg == AUTONEG_ENABLE) { 305 hw->mac.autoneg = 1; 306 if (hw->phy.media_type == e1000_media_type_fiber) 307 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 308 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 309 else 310 hw->phy.autoneg_advertised = advertising | 311 ADVERTISED_TP | ADVERTISED_Autoneg; 312 advertising = hw->phy.autoneg_advertised; 313 if (adapter->fc_autoneg) 314 hw->fc.requested_mode = e1000_fc_default; 315 } else { 316 u32 speed = cmd->base.speed; 317 /* calling this overrides forced MDI setting */ 318 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 319 ret_val = -EINVAL; 320 goto out; 321 } 322 } 323 324 /* MDI-X => 2; MDI => 1; Auto => 3 */ 325 if (cmd->base.eth_tp_mdix_ctrl) { 326 /* fix up the value for auto (3 => 0) as zero is mapped 327 * internally to auto 328 */ 329 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 330 hw->phy.mdix = AUTO_ALL_MODES; 331 else 332 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 333 } 334 335 /* reset the link */ 336 if (netif_running(adapter->netdev)) { 337 e1000e_down(adapter, true); 338 e1000e_up(adapter); 339 } else { 340 e1000e_reset(adapter); 341 } 342 343 out: 344 clear_bit(__E1000_RESETTING, &adapter->state); 345 return ret_val; 346 } 347 348 static void e1000_get_pauseparam(struct net_device *netdev, 349 struct ethtool_pauseparam *pause) 350 { 351 struct e1000_adapter *adapter = netdev_priv(netdev); 352 struct e1000_hw *hw = &adapter->hw; 353 354 pause->autoneg = 355 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 356 357 if (hw->fc.current_mode == e1000_fc_rx_pause) { 358 pause->rx_pause = 1; 359 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 360 pause->tx_pause = 1; 361 } else if (hw->fc.current_mode == e1000_fc_full) { 362 pause->rx_pause = 1; 363 pause->tx_pause = 1; 364 } 365 } 366 367 static int e1000_set_pauseparam(struct net_device *netdev, 368 struct ethtool_pauseparam *pause) 369 { 370 struct e1000_adapter *adapter = netdev_priv(netdev); 371 struct e1000_hw *hw = &adapter->hw; 372 int retval = 0; 373 374 adapter->fc_autoneg = pause->autoneg; 375 376 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 377 usleep_range(1000, 2000); 378 379 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 380 hw->fc.requested_mode = e1000_fc_default; 381 if (netif_running(adapter->netdev)) { 382 e1000e_down(adapter, true); 383 e1000e_up(adapter); 384 } else { 385 e1000e_reset(adapter); 386 } 387 } else { 388 if (pause->rx_pause && pause->tx_pause) 389 hw->fc.requested_mode = e1000_fc_full; 390 else if (pause->rx_pause && !pause->tx_pause) 391 hw->fc.requested_mode = e1000_fc_rx_pause; 392 else if (!pause->rx_pause && pause->tx_pause) 393 hw->fc.requested_mode = e1000_fc_tx_pause; 394 else if (!pause->rx_pause && !pause->tx_pause) 395 hw->fc.requested_mode = e1000_fc_none; 396 397 hw->fc.current_mode = hw->fc.requested_mode; 398 399 if (hw->phy.media_type == e1000_media_type_fiber) { 400 retval = hw->mac.ops.setup_link(hw); 401 /* implicit goto out */ 402 } else { 403 retval = e1000e_force_mac_fc(hw); 404 if (retval) 405 goto out; 406 e1000e_set_fc_watermarks(hw); 407 } 408 } 409 410 out: 411 clear_bit(__E1000_RESETTING, &adapter->state); 412 return retval; 413 } 414 415 static u32 e1000_get_msglevel(struct net_device *netdev) 416 { 417 struct e1000_adapter *adapter = netdev_priv(netdev); 418 return adapter->msg_enable; 419 } 420 421 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 422 { 423 struct e1000_adapter *adapter = netdev_priv(netdev); 424 adapter->msg_enable = data; 425 } 426 427 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 428 { 429 #define E1000_REGS_LEN 32 /* overestimate */ 430 return E1000_REGS_LEN * sizeof(u32); 431 } 432 433 static void e1000_get_regs(struct net_device *netdev, 434 struct ethtool_regs *regs, void *p) 435 { 436 struct e1000_adapter *adapter = netdev_priv(netdev); 437 struct e1000_hw *hw = &adapter->hw; 438 u32 *regs_buff = p; 439 u16 phy_data; 440 441 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 442 443 regs->version = (1u << 24) | 444 (adapter->pdev->revision << 16) | 445 adapter->pdev->device; 446 447 regs_buff[0] = er32(CTRL); 448 regs_buff[1] = er32(STATUS); 449 450 regs_buff[2] = er32(RCTL); 451 regs_buff[3] = er32(RDLEN(0)); 452 regs_buff[4] = er32(RDH(0)); 453 regs_buff[5] = er32(RDT(0)); 454 regs_buff[6] = er32(RDTR); 455 456 regs_buff[7] = er32(TCTL); 457 regs_buff[8] = er32(TDLEN(0)); 458 regs_buff[9] = er32(TDH(0)); 459 regs_buff[10] = er32(TDT(0)); 460 regs_buff[11] = er32(TIDV); 461 462 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 463 464 /* ethtool doesn't use anything past this point, so all this 465 * code is likely legacy junk for apps that may or may not exist 466 */ 467 if (hw->phy.type == e1000_phy_m88) { 468 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 469 regs_buff[13] = (u32)phy_data; /* cable length */ 470 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 471 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 472 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 473 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 474 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 475 regs_buff[18] = regs_buff[13]; /* cable polarity */ 476 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 477 regs_buff[20] = regs_buff[17]; /* polarity correction */ 478 /* phy receive errors */ 479 regs_buff[22] = adapter->phy_stats.receive_errors; 480 regs_buff[23] = regs_buff[13]; /* mdix mode */ 481 } 482 regs_buff[21] = 0; /* was idle_errors */ 483 e1e_rphy(hw, MII_STAT1000, &phy_data); 484 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 485 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 486 } 487 488 static int e1000_get_eeprom_len(struct net_device *netdev) 489 { 490 struct e1000_adapter *adapter = netdev_priv(netdev); 491 return adapter->hw.nvm.word_size * 2; 492 } 493 494 static int e1000_get_eeprom(struct net_device *netdev, 495 struct ethtool_eeprom *eeprom, u8 *bytes) 496 { 497 struct e1000_adapter *adapter = netdev_priv(netdev); 498 struct e1000_hw *hw = &adapter->hw; 499 u16 *eeprom_buff; 500 int first_word; 501 int last_word; 502 int ret_val = 0; 503 u16 i; 504 505 if (eeprom->len == 0) 506 return -EINVAL; 507 508 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 509 510 first_word = eeprom->offset >> 1; 511 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 512 513 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 514 GFP_KERNEL); 515 if (!eeprom_buff) 516 return -ENOMEM; 517 518 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 519 ret_val = e1000_read_nvm(hw, first_word, 520 last_word - first_word + 1, 521 eeprom_buff); 522 } else { 523 for (i = 0; i < last_word - first_word + 1; i++) { 524 ret_val = e1000_read_nvm(hw, first_word + i, 1, 525 &eeprom_buff[i]); 526 if (ret_val) 527 break; 528 } 529 } 530 531 if (ret_val) { 532 /* a read error occurred, throw away the result */ 533 memset(eeprom_buff, 0xff, sizeof(u16) * 534 (last_word - first_word + 1)); 535 } else { 536 /* Device's eeprom is always little-endian, word addressable */ 537 for (i = 0; i < last_word - first_word + 1; i++) 538 le16_to_cpus(&eeprom_buff[i]); 539 } 540 541 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 542 kfree(eeprom_buff); 543 544 return ret_val; 545 } 546 547 static int e1000_set_eeprom(struct net_device *netdev, 548 struct ethtool_eeprom *eeprom, u8 *bytes) 549 { 550 struct e1000_adapter *adapter = netdev_priv(netdev); 551 struct e1000_hw *hw = &adapter->hw; 552 size_t total_len, max_len; 553 u16 *eeprom_buff; 554 int ret_val = 0; 555 int first_word; 556 int last_word; 557 void *ptr; 558 u16 i; 559 560 if (eeprom->len == 0) 561 return -EOPNOTSUPP; 562 563 if (eeprom->magic != 564 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 565 return -EFAULT; 566 567 if (adapter->flags & FLAG_READ_ONLY_NVM) 568 return -EINVAL; 569 570 max_len = hw->nvm.word_size * 2; 571 572 if (check_add_overflow(eeprom->offset, eeprom->len, &total_len) || 573 total_len > max_len) 574 return -EFBIG; 575 576 first_word = eeprom->offset >> 1; 577 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 578 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 579 if (!eeprom_buff) 580 return -ENOMEM; 581 582 ptr = (void *)eeprom_buff; 583 584 if (eeprom->offset & 1) { 585 /* need read/modify/write of first changed EEPROM word */ 586 /* only the second byte of the word is being modified */ 587 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 588 ptr++; 589 } 590 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 591 /* need read/modify/write of last changed EEPROM word */ 592 /* only the first byte of the word is being modified */ 593 ret_val = e1000_read_nvm(hw, last_word, 1, 594 &eeprom_buff[last_word - first_word]); 595 596 if (ret_val) 597 goto out; 598 599 /* Device's eeprom is always little-endian, word addressable */ 600 for (i = 0; i < last_word - first_word + 1; i++) 601 le16_to_cpus(&eeprom_buff[i]); 602 603 memcpy(ptr, bytes, eeprom->len); 604 605 for (i = 0; i < last_word - first_word + 1; i++) 606 cpu_to_le16s(&eeprom_buff[i]); 607 608 ret_val = e1000_write_nvm(hw, first_word, 609 last_word - first_word + 1, eeprom_buff); 610 611 if (ret_val) 612 goto out; 613 614 /* Update the checksum over the first part of the EEPROM if needed 615 * and flush shadow RAM for applicable controllers 616 */ 617 if ((first_word <= NVM_CHECKSUM_REG) || 618 (hw->mac.type == e1000_82583) || 619 (hw->mac.type == e1000_82574) || 620 (hw->mac.type == e1000_82573)) 621 ret_val = e1000e_update_nvm_checksum(hw); 622 623 out: 624 kfree(eeprom_buff); 625 return ret_val; 626 } 627 628 static void e1000_get_drvinfo(struct net_device *netdev, 629 struct ethtool_drvinfo *drvinfo) 630 { 631 struct e1000_adapter *adapter = netdev_priv(netdev); 632 633 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 634 635 /* EEPROM image version # is reported as firmware version # for 636 * PCI-E controllers 637 */ 638 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 639 "%d.%d-%d", 640 FIELD_GET(0xF000, adapter->eeprom_vers), 641 FIELD_GET(0x0FF0, adapter->eeprom_vers), 642 (adapter->eeprom_vers & 0x000F)); 643 644 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 645 sizeof(drvinfo->bus_info)); 646 } 647 648 static void e1000_get_ringparam(struct net_device *netdev, 649 struct ethtool_ringparam *ring, 650 struct kernel_ethtool_ringparam *kernel_ring, 651 struct netlink_ext_ack *extack) 652 { 653 struct e1000_adapter *adapter = netdev_priv(netdev); 654 655 ring->rx_max_pending = E1000_MAX_RXD; 656 ring->tx_max_pending = E1000_MAX_TXD; 657 ring->rx_pending = adapter->rx_ring_count; 658 ring->tx_pending = adapter->tx_ring_count; 659 } 660 661 static int e1000_set_ringparam(struct net_device *netdev, 662 struct ethtool_ringparam *ring, 663 struct kernel_ethtool_ringparam *kernel_ring, 664 struct netlink_ext_ack *extack) 665 { 666 struct e1000_adapter *adapter = netdev_priv(netdev); 667 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 668 int err = 0, size = sizeof(struct e1000_ring); 669 bool set_tx = false, set_rx = false; 670 u16 new_rx_count, new_tx_count; 671 672 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 673 return -EINVAL; 674 675 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 676 E1000_MAX_RXD); 677 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 678 679 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 680 E1000_MAX_TXD); 681 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 682 683 if ((new_tx_count == adapter->tx_ring_count) && 684 (new_rx_count == adapter->rx_ring_count)) 685 /* nothing to do */ 686 return 0; 687 688 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 689 usleep_range(1000, 2000); 690 691 if (!netif_running(adapter->netdev)) { 692 /* Set counts now and allocate resources during open() */ 693 adapter->tx_ring->count = new_tx_count; 694 adapter->rx_ring->count = new_rx_count; 695 adapter->tx_ring_count = new_tx_count; 696 adapter->rx_ring_count = new_rx_count; 697 goto clear_reset; 698 } 699 700 set_tx = (new_tx_count != adapter->tx_ring_count); 701 set_rx = (new_rx_count != adapter->rx_ring_count); 702 703 /* Allocate temporary storage for ring updates */ 704 if (set_tx) { 705 temp_tx = vmalloc(size); 706 if (!temp_tx) { 707 err = -ENOMEM; 708 goto free_temp; 709 } 710 } 711 if (set_rx) { 712 temp_rx = vmalloc(size); 713 if (!temp_rx) { 714 err = -ENOMEM; 715 goto free_temp; 716 } 717 } 718 719 e1000e_down(adapter, true); 720 721 /* We can't just free everything and then setup again, because the 722 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 723 * structs. First, attempt to allocate new resources... 724 */ 725 if (set_tx) { 726 memcpy(temp_tx, adapter->tx_ring, size); 727 temp_tx->count = new_tx_count; 728 err = e1000e_setup_tx_resources(temp_tx); 729 if (err) 730 goto err_setup; 731 } 732 if (set_rx) { 733 memcpy(temp_rx, adapter->rx_ring, size); 734 temp_rx->count = new_rx_count; 735 err = e1000e_setup_rx_resources(temp_rx); 736 if (err) 737 goto err_setup_rx; 738 } 739 740 /* ...then free the old resources and copy back any new ring data */ 741 if (set_tx) { 742 e1000e_free_tx_resources(adapter->tx_ring); 743 memcpy(adapter->tx_ring, temp_tx, size); 744 adapter->tx_ring_count = new_tx_count; 745 } 746 if (set_rx) { 747 e1000e_free_rx_resources(adapter->rx_ring); 748 memcpy(adapter->rx_ring, temp_rx, size); 749 adapter->rx_ring_count = new_rx_count; 750 } 751 752 err_setup_rx: 753 if (err && set_tx) 754 e1000e_free_tx_resources(temp_tx); 755 err_setup: 756 e1000e_up(adapter); 757 free_temp: 758 vfree(temp_tx); 759 vfree(temp_rx); 760 clear_reset: 761 clear_bit(__E1000_RESETTING, &adapter->state); 762 return err; 763 } 764 765 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 766 int reg, int offset, u32 mask, u32 write) 767 { 768 u32 pat, val; 769 static const u32 test[] = { 770 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 771 }; 772 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 773 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 774 (test[pat] & write)); 775 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 776 if (val != (test[pat] & write & mask)) { 777 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 778 reg + (offset << 2), val, 779 (test[pat] & write & mask)); 780 *data = reg; 781 return true; 782 } 783 } 784 return false; 785 } 786 787 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 788 int reg, u32 mask, u32 write) 789 { 790 u32 val; 791 792 __ew32(&adapter->hw, reg, write & mask); 793 val = __er32(&adapter->hw, reg); 794 if ((write & mask) != (val & mask)) { 795 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 796 reg, (val & mask), (write & mask)); 797 *data = reg; 798 return true; 799 } 800 return false; 801 } 802 803 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 804 do { \ 805 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 806 return 1; \ 807 } while (0) 808 #define REG_PATTERN_TEST(reg, mask, write) \ 809 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 810 811 #define REG_SET_AND_CHECK(reg, mask, write) \ 812 do { \ 813 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 814 return 1; \ 815 } while (0) 816 817 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 818 { 819 struct e1000_hw *hw = &adapter->hw; 820 struct e1000_mac_info *mac = &adapter->hw.mac; 821 u32 value; 822 u32 before; 823 u32 after; 824 u32 i; 825 u32 toggle; 826 u32 mask; 827 u32 wlock_mac = 0; 828 829 /* The status register is Read Only, so a write should fail. 830 * Some bits that get toggled are ignored. There are several bits 831 * on newer hardware that are r/w. 832 */ 833 switch (mac->type) { 834 case e1000_82571: 835 case e1000_82572: 836 case e1000_80003es2lan: 837 toggle = 0x7FFFF3FF; 838 break; 839 default: 840 toggle = 0x7FFFF033; 841 break; 842 } 843 844 before = er32(STATUS); 845 value = (er32(STATUS) & toggle); 846 ew32(STATUS, toggle); 847 after = er32(STATUS) & toggle; 848 if (value != after) { 849 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 850 after, value); 851 *data = 1; 852 return 1; 853 } 854 /* restore previous status */ 855 ew32(STATUS, before); 856 857 if (!(adapter->flags & FLAG_IS_ICH)) { 858 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 859 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 860 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 861 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 862 } 863 864 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 865 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 866 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 867 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 868 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 869 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 870 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 871 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 872 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 873 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 874 875 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 876 877 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 878 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 879 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 880 881 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 882 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 883 if (!(adapter->flags & FLAG_IS_ICH)) 884 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 885 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 886 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 887 mask = 0x8003FFFF; 888 switch (mac->type) { 889 case e1000_ich10lan: 890 case e1000_pchlan: 891 case e1000_pch2lan: 892 case e1000_pch_lpt: 893 case e1000_pch_spt: 894 case e1000_pch_cnp: 895 case e1000_pch_tgp: 896 case e1000_pch_adp: 897 case e1000_pch_mtp: 898 case e1000_pch_lnp: 899 case e1000_pch_ptp: 900 case e1000_pch_nvp: 901 mask |= BIT(18); 902 break; 903 default: 904 break; 905 } 906 907 if (mac->type >= e1000_pch_lpt) 908 wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM)); 909 910 for (i = 0; i < mac->rar_entry_count; i++) { 911 if (mac->type >= e1000_pch_lpt) { 912 /* Cannot test write-protected SHRAL[n] registers */ 913 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 914 continue; 915 916 /* SHRAH[9] different than the others */ 917 if (i == 10) 918 mask |= BIT(30); 919 else 920 mask &= ~BIT(30); 921 } 922 if (mac->type == e1000_pch2lan) { 923 /* SHRAH[0,1,2] different than previous */ 924 if (i == 1) 925 mask &= 0xFFF4FFFF; 926 /* SHRAH[3] different than SHRAH[0,1,2] */ 927 if (i == 4) 928 mask |= BIT(30); 929 /* RAR[1-6] owned by management engine - skipping */ 930 if (i > 0) 931 i += 6; 932 } 933 934 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 935 0xFFFFFFFF); 936 /* reset index to actual value */ 937 if ((mac->type == e1000_pch2lan) && (i > 6)) 938 i -= 6; 939 } 940 941 for (i = 0; i < mac->mta_reg_count; i++) 942 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 943 944 *data = 0; 945 946 return 0; 947 } 948 949 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 950 { 951 u16 temp; 952 u16 checksum = 0; 953 u16 i; 954 955 *data = 0; 956 /* Read and add up the contents of the EEPROM */ 957 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 958 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 959 *data = 1; 960 return *data; 961 } 962 checksum += temp; 963 } 964 965 /* If Checksum is not Correct return error else test passed */ 966 if ((checksum != (u16)NVM_SUM) && !(*data)) 967 *data = 2; 968 969 return *data; 970 } 971 972 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 973 { 974 struct net_device *netdev = (struct net_device *)data; 975 struct e1000_adapter *adapter = netdev_priv(netdev); 976 struct e1000_hw *hw = &adapter->hw; 977 978 adapter->test_icr |= er32(ICR); 979 980 return IRQ_HANDLED; 981 } 982 983 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 984 { 985 struct net_device *netdev = adapter->netdev; 986 struct e1000_hw *hw = &adapter->hw; 987 u32 mask; 988 u32 shared_int = 1; 989 u32 irq = adapter->pdev->irq; 990 int i; 991 int ret_val = 0; 992 int int_mode = E1000E_INT_MODE_LEGACY; 993 994 *data = 0; 995 996 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 997 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 998 int_mode = adapter->int_mode; 999 e1000e_reset_interrupt_capability(adapter); 1000 adapter->int_mode = E1000E_INT_MODE_LEGACY; 1001 e1000e_set_interrupt_capability(adapter); 1002 } 1003 /* Hook up test interrupt handler just for this test */ 1004 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1005 netdev)) { 1006 shared_int = 0; 1007 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1008 netdev)) { 1009 *data = 1; 1010 ret_val = -1; 1011 goto out; 1012 } 1013 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1014 1015 /* Disable all the interrupts */ 1016 ew32(IMC, 0xFFFFFFFF); 1017 e1e_flush(); 1018 usleep_range(10000, 11000); 1019 1020 /* Test each interrupt */ 1021 for (i = 0; i < 10; i++) { 1022 /* Interrupt to test */ 1023 mask = BIT(i); 1024 1025 if (adapter->flags & FLAG_IS_ICH) { 1026 switch (mask) { 1027 case E1000_ICR_RXSEQ: 1028 continue; 1029 case 0x00000100: 1030 if (adapter->hw.mac.type == e1000_ich8lan || 1031 adapter->hw.mac.type == e1000_ich9lan) 1032 continue; 1033 break; 1034 default: 1035 break; 1036 } 1037 } 1038 1039 if (!shared_int) { 1040 /* Disable the interrupt to be reported in 1041 * the cause register and then force the same 1042 * interrupt and see if one gets posted. If 1043 * an interrupt was posted to the bus, the 1044 * test failed. 1045 */ 1046 adapter->test_icr = 0; 1047 ew32(IMC, mask); 1048 ew32(ICS, mask); 1049 e1e_flush(); 1050 usleep_range(10000, 11000); 1051 1052 if (adapter->test_icr & mask) { 1053 *data = 3; 1054 break; 1055 } 1056 } 1057 1058 /* Enable the interrupt to be reported in 1059 * the cause register and then force the same 1060 * interrupt and see if one gets posted. If 1061 * an interrupt was not posted to the bus, the 1062 * test failed. 1063 */ 1064 adapter->test_icr = 0; 1065 ew32(IMS, mask); 1066 ew32(ICS, mask); 1067 e1e_flush(); 1068 usleep_range(10000, 11000); 1069 1070 if (!(adapter->test_icr & mask)) { 1071 *data = 4; 1072 break; 1073 } 1074 1075 if (!shared_int) { 1076 /* Disable the other interrupts to be reported in 1077 * the cause register and then force the other 1078 * interrupts and see if any get posted. If 1079 * an interrupt was posted to the bus, the 1080 * test failed. 1081 */ 1082 adapter->test_icr = 0; 1083 ew32(IMC, ~mask & 0x00007FFF); 1084 ew32(ICS, ~mask & 0x00007FFF); 1085 e1e_flush(); 1086 usleep_range(10000, 11000); 1087 1088 if (adapter->test_icr) { 1089 *data = 5; 1090 break; 1091 } 1092 } 1093 } 1094 1095 /* Disable all the interrupts */ 1096 ew32(IMC, 0xFFFFFFFF); 1097 e1e_flush(); 1098 usleep_range(10000, 11000); 1099 1100 /* Unhook test interrupt handler */ 1101 free_irq(irq, netdev); 1102 1103 out: 1104 if (int_mode == E1000E_INT_MODE_MSIX) { 1105 e1000e_reset_interrupt_capability(adapter); 1106 adapter->int_mode = int_mode; 1107 e1000e_set_interrupt_capability(adapter); 1108 } 1109 1110 return ret_val; 1111 } 1112 1113 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1114 { 1115 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1116 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1117 struct pci_dev *pdev = adapter->pdev; 1118 struct e1000_buffer *buffer_info; 1119 int i; 1120 1121 if (tx_ring->desc && tx_ring->buffer_info) { 1122 for (i = 0; i < tx_ring->count; i++) { 1123 buffer_info = &tx_ring->buffer_info[i]; 1124 1125 if (buffer_info->dma) 1126 dma_unmap_single(&pdev->dev, 1127 buffer_info->dma, 1128 buffer_info->length, 1129 DMA_TO_DEVICE); 1130 dev_kfree_skb(buffer_info->skb); 1131 } 1132 } 1133 1134 if (rx_ring->desc && rx_ring->buffer_info) { 1135 for (i = 0; i < rx_ring->count; i++) { 1136 buffer_info = &rx_ring->buffer_info[i]; 1137 1138 if (buffer_info->dma) 1139 dma_unmap_single(&pdev->dev, 1140 buffer_info->dma, 1141 2048, DMA_FROM_DEVICE); 1142 dev_kfree_skb(buffer_info->skb); 1143 } 1144 } 1145 1146 if (tx_ring->desc) { 1147 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1148 tx_ring->dma); 1149 tx_ring->desc = NULL; 1150 } 1151 if (rx_ring->desc) { 1152 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1153 rx_ring->dma); 1154 rx_ring->desc = NULL; 1155 } 1156 1157 kfree(tx_ring->buffer_info); 1158 tx_ring->buffer_info = NULL; 1159 kfree(rx_ring->buffer_info); 1160 rx_ring->buffer_info = NULL; 1161 } 1162 1163 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1164 { 1165 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1166 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1167 struct pci_dev *pdev = adapter->pdev; 1168 struct e1000_hw *hw = &adapter->hw; 1169 u32 rctl; 1170 int i; 1171 int ret_val; 1172 1173 /* Setup Tx descriptor ring and Tx buffers */ 1174 1175 if (!tx_ring->count) 1176 tx_ring->count = E1000_DEFAULT_TXD; 1177 1178 tx_ring->buffer_info = kcalloc(tx_ring->count, 1179 sizeof(struct e1000_buffer), GFP_KERNEL); 1180 if (!tx_ring->buffer_info) { 1181 ret_val = 1; 1182 goto err_nomem; 1183 } 1184 1185 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1186 tx_ring->size = ALIGN(tx_ring->size, 4096); 1187 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1188 &tx_ring->dma, GFP_KERNEL); 1189 if (!tx_ring->desc) { 1190 ret_val = 2; 1191 goto err_nomem; 1192 } 1193 tx_ring->next_to_use = 0; 1194 tx_ring->next_to_clean = 0; 1195 1196 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1197 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1198 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1199 ew32(TDH(0), 0); 1200 ew32(TDT(0), 0); 1201 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1202 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1203 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1204 1205 for (i = 0; i < tx_ring->count; i++) { 1206 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1207 struct sk_buff *skb; 1208 unsigned int skb_size = 1024; 1209 1210 skb = alloc_skb(skb_size, GFP_KERNEL); 1211 if (!skb) { 1212 ret_val = 3; 1213 goto err_nomem; 1214 } 1215 skb_put(skb, skb_size); 1216 tx_ring->buffer_info[i].skb = skb; 1217 tx_ring->buffer_info[i].length = skb->len; 1218 tx_ring->buffer_info[i].dma = 1219 dma_map_single(&pdev->dev, skb->data, skb->len, 1220 DMA_TO_DEVICE); 1221 if (dma_mapping_error(&pdev->dev, 1222 tx_ring->buffer_info[i].dma)) { 1223 ret_val = 4; 1224 goto err_nomem; 1225 } 1226 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1227 tx_desc->lower.data = cpu_to_le32(skb->len); 1228 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1229 E1000_TXD_CMD_IFCS | 1230 E1000_TXD_CMD_RS); 1231 tx_desc->upper.data = 0; 1232 } 1233 1234 /* Setup Rx descriptor ring and Rx buffers */ 1235 1236 if (!rx_ring->count) 1237 rx_ring->count = E1000_DEFAULT_RXD; 1238 1239 rx_ring->buffer_info = kcalloc(rx_ring->count, 1240 sizeof(struct e1000_buffer), GFP_KERNEL); 1241 if (!rx_ring->buffer_info) { 1242 ret_val = 5; 1243 goto err_nomem; 1244 } 1245 1246 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1247 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1248 &rx_ring->dma, GFP_KERNEL); 1249 if (!rx_ring->desc) { 1250 ret_val = 6; 1251 goto err_nomem; 1252 } 1253 rx_ring->next_to_use = 0; 1254 rx_ring->next_to_clean = 0; 1255 1256 rctl = er32(RCTL); 1257 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1258 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1259 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1260 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1261 ew32(RDLEN(0), rx_ring->size); 1262 ew32(RDH(0), 0); 1263 ew32(RDT(0), 0); 1264 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1265 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1266 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1267 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1268 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1269 ew32(RCTL, rctl); 1270 1271 for (i = 0; i < rx_ring->count; i++) { 1272 union e1000_rx_desc_extended *rx_desc; 1273 struct sk_buff *skb; 1274 1275 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1276 if (!skb) { 1277 ret_val = 7; 1278 goto err_nomem; 1279 } 1280 skb_reserve(skb, NET_IP_ALIGN); 1281 rx_ring->buffer_info[i].skb = skb; 1282 rx_ring->buffer_info[i].dma = 1283 dma_map_single(&pdev->dev, skb->data, 2048, 1284 DMA_FROM_DEVICE); 1285 if (dma_mapping_error(&pdev->dev, 1286 rx_ring->buffer_info[i].dma)) { 1287 ret_val = 8; 1288 goto err_nomem; 1289 } 1290 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1291 rx_desc->read.buffer_addr = 1292 cpu_to_le64(rx_ring->buffer_info[i].dma); 1293 memset(skb->data, 0x00, skb->len); 1294 } 1295 1296 return 0; 1297 1298 err_nomem: 1299 e1000_free_desc_rings(adapter); 1300 return ret_val; 1301 } 1302 1303 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1304 { 1305 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1306 e1e_wphy(&adapter->hw, 29, 0x001F); 1307 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1308 e1e_wphy(&adapter->hw, 29, 0x001A); 1309 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1310 } 1311 1312 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1313 { 1314 struct e1000_hw *hw = &adapter->hw; 1315 u32 ctrl_reg = 0; 1316 u16 phy_reg = 0; 1317 s32 ret_val = 0; 1318 1319 hw->mac.autoneg = 0; 1320 1321 if (hw->phy.type == e1000_phy_ife) { 1322 /* force 100, set loopback */ 1323 e1e_wphy(hw, MII_BMCR, 0x6100); 1324 1325 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1326 ctrl_reg = er32(CTRL); 1327 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1328 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1329 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1330 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1331 E1000_CTRL_FD); /* Force Duplex to FULL */ 1332 1333 ew32(CTRL, ctrl_reg); 1334 e1e_flush(); 1335 usleep_range(500, 1000); 1336 1337 return 0; 1338 } 1339 1340 /* Specific PHY configuration for loopback */ 1341 switch (hw->phy.type) { 1342 case e1000_phy_m88: 1343 /* Auto-MDI/MDIX Off */ 1344 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1345 /* reset to update Auto-MDI/MDIX */ 1346 e1e_wphy(hw, MII_BMCR, 0x9140); 1347 /* autoneg off */ 1348 e1e_wphy(hw, MII_BMCR, 0x8140); 1349 break; 1350 case e1000_phy_gg82563: 1351 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1352 break; 1353 case e1000_phy_bm: 1354 /* Set Default MAC Interface speed to 1GB */ 1355 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1356 phy_reg &= ~0x0007; 1357 phy_reg |= 0x006; 1358 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1359 /* Assert SW reset for above settings to take effect */ 1360 hw->phy.ops.commit(hw); 1361 usleep_range(1000, 2000); 1362 /* Force Full Duplex */ 1363 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1364 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1365 /* Set Link Up (in force link) */ 1366 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1367 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1368 /* Force Link */ 1369 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1370 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1371 /* Set Early Link Enable */ 1372 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1373 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1374 break; 1375 case e1000_phy_82577: 1376 case e1000_phy_82578: 1377 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1378 ret_val = hw->phy.ops.acquire(hw); 1379 if (ret_val) { 1380 e_err("Cannot setup 1Gbps loopback.\n"); 1381 return ret_val; 1382 } 1383 e1000_configure_k1_ich8lan(hw, false); 1384 hw->phy.ops.release(hw); 1385 break; 1386 case e1000_phy_82579: 1387 /* Disable PHY energy detect power down */ 1388 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1389 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1390 /* Disable full chip energy detect */ 1391 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1392 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1393 /* Enable loopback on the PHY */ 1394 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1395 break; 1396 default: 1397 break; 1398 } 1399 1400 /* force 1000, set loopback */ 1401 e1e_wphy(hw, MII_BMCR, 0x4140); 1402 msleep(250); 1403 1404 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1405 ctrl_reg = er32(CTRL); 1406 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1407 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1408 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1409 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1410 E1000_CTRL_FD); /* Force Duplex to FULL */ 1411 1412 if (adapter->flags & FLAG_IS_ICH) 1413 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1414 1415 if (hw->phy.media_type == e1000_media_type_copper && 1416 hw->phy.type == e1000_phy_m88) { 1417 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1418 } else { 1419 /* Set the ILOS bit on the fiber Nic if half duplex link is 1420 * detected. 1421 */ 1422 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1423 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1424 } 1425 1426 ew32(CTRL, ctrl_reg); 1427 1428 /* Disable the receiver on the PHY so when a cable is plugged in, the 1429 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1430 */ 1431 if (hw->phy.type == e1000_phy_m88) 1432 e1000_phy_disable_receiver(adapter); 1433 1434 usleep_range(500, 1000); 1435 1436 return 0; 1437 } 1438 1439 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1440 { 1441 struct e1000_hw *hw = &adapter->hw; 1442 u32 ctrl = er32(CTRL); 1443 int link; 1444 1445 /* special requirements for 82571/82572 fiber adapters */ 1446 1447 /* jump through hoops to make sure link is up because serdes 1448 * link is hardwired up 1449 */ 1450 ctrl |= E1000_CTRL_SLU; 1451 ew32(CTRL, ctrl); 1452 1453 /* disable autoneg */ 1454 ctrl = er32(TXCW); 1455 ctrl &= ~BIT(31); 1456 ew32(TXCW, ctrl); 1457 1458 link = (er32(STATUS) & E1000_STATUS_LU); 1459 1460 if (!link) { 1461 /* set invert loss of signal */ 1462 ctrl = er32(CTRL); 1463 ctrl |= E1000_CTRL_ILOS; 1464 ew32(CTRL, ctrl); 1465 } 1466 1467 /* special write to serdes control register to enable SerDes analog 1468 * loopback 1469 */ 1470 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1471 e1e_flush(); 1472 usleep_range(10000, 11000); 1473 1474 return 0; 1475 } 1476 1477 /* only call this for fiber/serdes connections to es2lan */ 1478 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1479 { 1480 struct e1000_hw *hw = &adapter->hw; 1481 u32 ctrlext = er32(CTRL_EXT); 1482 u32 ctrl = er32(CTRL); 1483 1484 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1485 * on mac_type 80003es2lan) 1486 */ 1487 adapter->tx_fifo_head = ctrlext; 1488 1489 /* clear the serdes mode bits, putting the device into mac loopback */ 1490 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1491 ew32(CTRL_EXT, ctrlext); 1492 1493 /* force speed to 1000/FD, link up */ 1494 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1495 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1496 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1497 ew32(CTRL, ctrl); 1498 1499 /* set mac loopback */ 1500 ctrl = er32(RCTL); 1501 ctrl |= E1000_RCTL_LBM_MAC; 1502 ew32(RCTL, ctrl); 1503 1504 /* set testing mode parameters (no need to reset later) */ 1505 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1506 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1507 ew32(KMRNCTRLSTA, 1508 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1509 1510 return 0; 1511 } 1512 1513 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1514 { 1515 struct e1000_hw *hw = &adapter->hw; 1516 u32 rctl, fext_nvm11, tarc0; 1517 1518 if (hw->mac.type >= e1000_pch_spt) { 1519 fext_nvm11 = er32(FEXTNVM11); 1520 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1521 ew32(FEXTNVM11, fext_nvm11); 1522 tarc0 = er32(TARC(0)); 1523 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1524 tarc0 &= 0xcfffffff; 1525 /* set bit 29 (value of MULR requests is now 2) */ 1526 tarc0 |= 0x20000000; 1527 ew32(TARC(0), tarc0); 1528 } 1529 if (hw->phy.media_type == e1000_media_type_fiber || 1530 hw->phy.media_type == e1000_media_type_internal_serdes) { 1531 switch (hw->mac.type) { 1532 case e1000_80003es2lan: 1533 return e1000_set_es2lan_mac_loopback(adapter); 1534 case e1000_82571: 1535 case e1000_82572: 1536 return e1000_set_82571_fiber_loopback(adapter); 1537 default: 1538 rctl = er32(RCTL); 1539 rctl |= E1000_RCTL_LBM_TCVR; 1540 ew32(RCTL, rctl); 1541 return 0; 1542 } 1543 } else if (hw->phy.media_type == e1000_media_type_copper) { 1544 return e1000_integrated_phy_loopback(adapter); 1545 } 1546 1547 return 7; 1548 } 1549 1550 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1551 { 1552 struct e1000_hw *hw = &adapter->hw; 1553 u32 rctl, fext_nvm11, tarc0; 1554 u16 phy_reg; 1555 1556 rctl = er32(RCTL); 1557 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1558 ew32(RCTL, rctl); 1559 1560 switch (hw->mac.type) { 1561 case e1000_pch_spt: 1562 case e1000_pch_cnp: 1563 case e1000_pch_tgp: 1564 case e1000_pch_adp: 1565 case e1000_pch_mtp: 1566 case e1000_pch_lnp: 1567 case e1000_pch_ptp: 1568 case e1000_pch_nvp: 1569 fext_nvm11 = er32(FEXTNVM11); 1570 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1571 ew32(FEXTNVM11, fext_nvm11); 1572 tarc0 = er32(TARC(0)); 1573 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1574 /* set bit 29 (value of MULR requests is now 0) */ 1575 tarc0 &= 0xcfffffff; 1576 ew32(TARC(0), tarc0); 1577 fallthrough; 1578 case e1000_80003es2lan: 1579 if (hw->phy.media_type == e1000_media_type_fiber || 1580 hw->phy.media_type == e1000_media_type_internal_serdes) { 1581 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1582 ew32(CTRL_EXT, adapter->tx_fifo_head); 1583 adapter->tx_fifo_head = 0; 1584 } 1585 fallthrough; 1586 case e1000_82571: 1587 case e1000_82572: 1588 if (hw->phy.media_type == e1000_media_type_fiber || 1589 hw->phy.media_type == e1000_media_type_internal_serdes) { 1590 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1591 e1e_flush(); 1592 usleep_range(10000, 11000); 1593 break; 1594 } 1595 fallthrough; 1596 default: 1597 hw->mac.autoneg = 1; 1598 if (hw->phy.type == e1000_phy_gg82563) 1599 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1600 e1e_rphy(hw, MII_BMCR, &phy_reg); 1601 if (phy_reg & BMCR_LOOPBACK) { 1602 phy_reg &= ~BMCR_LOOPBACK; 1603 e1e_wphy(hw, MII_BMCR, phy_reg); 1604 if (hw->phy.ops.commit) 1605 hw->phy.ops.commit(hw); 1606 } 1607 break; 1608 } 1609 } 1610 1611 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1612 unsigned int frame_size) 1613 { 1614 memset(skb->data, 0xFF, frame_size); 1615 frame_size &= ~1; 1616 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1617 skb->data[frame_size / 2 + 10] = 0xBE; 1618 skb->data[frame_size / 2 + 12] = 0xAF; 1619 } 1620 1621 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1622 unsigned int frame_size) 1623 { 1624 frame_size &= ~1; 1625 if (*(skb->data + 3) == 0xFF) 1626 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1627 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1628 return 0; 1629 return 13; 1630 } 1631 1632 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1633 { 1634 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1635 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1636 struct pci_dev *pdev = adapter->pdev; 1637 struct e1000_hw *hw = &adapter->hw; 1638 struct e1000_buffer *buffer_info; 1639 int i, j, k, l; 1640 int lc; 1641 int good_cnt; 1642 int ret_val = 0; 1643 unsigned long time; 1644 1645 ew32(RDT(0), rx_ring->count - 1); 1646 1647 /* Calculate the loop count based on the largest descriptor ring 1648 * The idea is to wrap the largest ring a number of times using 64 1649 * send/receive pairs during each loop 1650 */ 1651 1652 if (rx_ring->count <= tx_ring->count) 1653 lc = ((tx_ring->count / 64) * 2) + 1; 1654 else 1655 lc = ((rx_ring->count / 64) * 2) + 1; 1656 1657 k = 0; 1658 l = 0; 1659 /* loop count loop */ 1660 for (j = 0; j <= lc; j++) { 1661 /* send the packets */ 1662 for (i = 0; i < 64; i++) { 1663 buffer_info = &tx_ring->buffer_info[k]; 1664 1665 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1666 dma_sync_single_for_device(&pdev->dev, 1667 buffer_info->dma, 1668 buffer_info->length, 1669 DMA_TO_DEVICE); 1670 k++; 1671 if (k == tx_ring->count) 1672 k = 0; 1673 } 1674 ew32(TDT(0), k); 1675 e1e_flush(); 1676 msleep(200); 1677 time = jiffies; /* set the start time for the receive */ 1678 good_cnt = 0; 1679 /* receive the sent packets */ 1680 do { 1681 buffer_info = &rx_ring->buffer_info[l]; 1682 1683 dma_sync_single_for_cpu(&pdev->dev, 1684 buffer_info->dma, 2048, 1685 DMA_FROM_DEVICE); 1686 1687 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1688 1024); 1689 if (!ret_val) 1690 good_cnt++; 1691 l++; 1692 if (l == rx_ring->count) 1693 l = 0; 1694 /* time + 20 msecs (200 msecs on 2.4) is more than 1695 * enough time to complete the receives, if it's 1696 * exceeded, break and error off 1697 */ 1698 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1699 if (good_cnt != 64) { 1700 ret_val = 13; /* ret_val is the same as mis-compare */ 1701 break; 1702 } 1703 if (time_after(jiffies, time + 20)) { 1704 ret_val = 14; /* error code for time out error */ 1705 break; 1706 } 1707 } 1708 return ret_val; 1709 } 1710 1711 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1712 { 1713 struct e1000_hw *hw = &adapter->hw; 1714 1715 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1716 if (hw->phy.ops.check_reset_block && 1717 hw->phy.ops.check_reset_block(hw)) { 1718 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1719 *data = 0; 1720 goto out; 1721 } 1722 1723 *data = e1000_setup_desc_rings(adapter); 1724 if (*data) 1725 goto out; 1726 1727 *data = e1000_setup_loopback_test(adapter); 1728 if (*data) 1729 goto err_loopback; 1730 1731 *data = e1000_run_loopback_test(adapter); 1732 e1000_loopback_cleanup(adapter); 1733 1734 err_loopback: 1735 e1000_free_desc_rings(adapter); 1736 out: 1737 return *data; 1738 } 1739 1740 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1741 { 1742 struct e1000_hw *hw = &adapter->hw; 1743 1744 *data = 0; 1745 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1746 int i = 0; 1747 1748 hw->mac.serdes_has_link = false; 1749 1750 /* On some blade server designs, link establishment 1751 * could take as long as 2-3 minutes 1752 */ 1753 do { 1754 hw->mac.ops.check_for_link(hw); 1755 if (hw->mac.serdes_has_link) 1756 return *data; 1757 msleep(20); 1758 } while (i++ < 3750); 1759 1760 *data = 1; 1761 } else { 1762 hw->mac.ops.check_for_link(hw); 1763 if (hw->mac.autoneg) 1764 /* On some Phy/switch combinations, link establishment 1765 * can take a few seconds more than expected. 1766 */ 1767 msleep_interruptible(5000); 1768 1769 if (!(er32(STATUS) & E1000_STATUS_LU)) 1770 *data = 1; 1771 } 1772 return *data; 1773 } 1774 1775 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1776 int sset) 1777 { 1778 switch (sset) { 1779 case ETH_SS_TEST: 1780 return E1000_TEST_LEN; 1781 case ETH_SS_STATS: 1782 return E1000_STATS_LEN; 1783 case ETH_SS_PRIV_FLAGS: 1784 return E1000E_PRIV_FLAGS_STR_LEN; 1785 default: 1786 return -EOPNOTSUPP; 1787 } 1788 } 1789 1790 static void e1000_diag_test(struct net_device *netdev, 1791 struct ethtool_test *eth_test, u64 *data) 1792 { 1793 struct e1000_adapter *adapter = netdev_priv(netdev); 1794 u16 autoneg_advertised; 1795 u8 forced_speed_duplex; 1796 u8 autoneg; 1797 bool if_running = netif_running(netdev); 1798 1799 set_bit(__E1000_TESTING, &adapter->state); 1800 1801 if (!if_running) { 1802 /* Get control of and reset hardware */ 1803 if (adapter->flags & FLAG_HAS_AMT) 1804 e1000e_get_hw_control(adapter); 1805 1806 e1000e_power_up_phy(adapter); 1807 1808 adapter->hw.phy.autoneg_wait_to_complete = 1; 1809 e1000e_reset(adapter); 1810 adapter->hw.phy.autoneg_wait_to_complete = 0; 1811 } 1812 1813 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1814 /* Offline tests */ 1815 1816 /* save speed, duplex, autoneg settings */ 1817 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1818 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1819 autoneg = adapter->hw.mac.autoneg; 1820 1821 e_info("offline testing starting\n"); 1822 1823 if (if_running) 1824 /* indicate we're in test mode */ 1825 e1000e_close(netdev); 1826 1827 if (e1000_reg_test(adapter, &data[0])) 1828 eth_test->flags |= ETH_TEST_FL_FAILED; 1829 1830 e1000e_reset(adapter); 1831 if (e1000_eeprom_test(adapter, &data[1])) 1832 eth_test->flags |= ETH_TEST_FL_FAILED; 1833 1834 e1000e_reset(adapter); 1835 if (e1000_intr_test(adapter, &data[2])) 1836 eth_test->flags |= ETH_TEST_FL_FAILED; 1837 1838 e1000e_reset(adapter); 1839 if (e1000_loopback_test(adapter, &data[3])) 1840 eth_test->flags |= ETH_TEST_FL_FAILED; 1841 1842 /* force this routine to wait until autoneg complete/timeout */ 1843 adapter->hw.phy.autoneg_wait_to_complete = 1; 1844 e1000e_reset(adapter); 1845 adapter->hw.phy.autoneg_wait_to_complete = 0; 1846 1847 if (e1000_link_test(adapter, &data[4])) 1848 eth_test->flags |= ETH_TEST_FL_FAILED; 1849 1850 /* restore speed, duplex, autoneg settings */ 1851 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1852 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1853 adapter->hw.mac.autoneg = autoneg; 1854 e1000e_reset(adapter); 1855 1856 clear_bit(__E1000_TESTING, &adapter->state); 1857 if (if_running) 1858 e1000e_open(netdev); 1859 } else { 1860 /* Online tests */ 1861 1862 e_info("online testing starting\n"); 1863 1864 /* register, eeprom, intr and loopback tests not run online */ 1865 data[0] = 0; 1866 data[1] = 0; 1867 data[2] = 0; 1868 data[3] = 0; 1869 1870 if (e1000_link_test(adapter, &data[4])) 1871 eth_test->flags |= ETH_TEST_FL_FAILED; 1872 1873 clear_bit(__E1000_TESTING, &adapter->state); 1874 } 1875 1876 if (!if_running) { 1877 e1000e_reset(adapter); 1878 1879 if (adapter->flags & FLAG_HAS_AMT) 1880 e1000e_release_hw_control(adapter); 1881 } 1882 1883 msleep_interruptible(4 * 1000); 1884 } 1885 1886 static void e1000_get_wol(struct net_device *netdev, 1887 struct ethtool_wolinfo *wol) 1888 { 1889 struct e1000_adapter *adapter = netdev_priv(netdev); 1890 1891 wol->supported = 0; 1892 wol->wolopts = 0; 1893 1894 if (!(adapter->flags & FLAG_HAS_WOL) || 1895 !device_can_wakeup(&adapter->pdev->dev)) 1896 return; 1897 1898 wol->supported = WAKE_UCAST | WAKE_MCAST | 1899 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1900 1901 /* apply any specific unsupported masks here */ 1902 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1903 wol->supported &= ~WAKE_UCAST; 1904 1905 if (adapter->wol & E1000_WUFC_EX) 1906 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1907 } 1908 1909 if (adapter->wol & E1000_WUFC_EX) 1910 wol->wolopts |= WAKE_UCAST; 1911 if (adapter->wol & E1000_WUFC_MC) 1912 wol->wolopts |= WAKE_MCAST; 1913 if (adapter->wol & E1000_WUFC_BC) 1914 wol->wolopts |= WAKE_BCAST; 1915 if (adapter->wol & E1000_WUFC_MAG) 1916 wol->wolopts |= WAKE_MAGIC; 1917 if (adapter->wol & E1000_WUFC_LNKC) 1918 wol->wolopts |= WAKE_PHY; 1919 } 1920 1921 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1922 { 1923 struct e1000_adapter *adapter = netdev_priv(netdev); 1924 1925 if (!(adapter->flags & FLAG_HAS_WOL) || 1926 !device_can_wakeup(&adapter->pdev->dev) || 1927 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1928 WAKE_MAGIC | WAKE_PHY))) 1929 return -EOPNOTSUPP; 1930 1931 /* these settings will always override what we currently have */ 1932 adapter->wol = 0; 1933 1934 if (wol->wolopts & WAKE_UCAST) 1935 adapter->wol |= E1000_WUFC_EX; 1936 if (wol->wolopts & WAKE_MCAST) 1937 adapter->wol |= E1000_WUFC_MC; 1938 if (wol->wolopts & WAKE_BCAST) 1939 adapter->wol |= E1000_WUFC_BC; 1940 if (wol->wolopts & WAKE_MAGIC) 1941 adapter->wol |= E1000_WUFC_MAG; 1942 if (wol->wolopts & WAKE_PHY) 1943 adapter->wol |= E1000_WUFC_LNKC; 1944 1945 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1946 1947 return 0; 1948 } 1949 1950 static int e1000_set_phys_id(struct net_device *netdev, 1951 enum ethtool_phys_id_state state) 1952 { 1953 struct e1000_adapter *adapter = netdev_priv(netdev); 1954 struct e1000_hw *hw = &adapter->hw; 1955 1956 switch (state) { 1957 case ETHTOOL_ID_ACTIVE: 1958 pm_runtime_get_sync(netdev->dev.parent); 1959 1960 if (!hw->mac.ops.blink_led) 1961 return 2; /* cycle on/off twice per second */ 1962 1963 hw->mac.ops.blink_led(hw); 1964 break; 1965 1966 case ETHTOOL_ID_INACTIVE: 1967 if (hw->phy.type == e1000_phy_ife) 1968 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1969 hw->mac.ops.led_off(hw); 1970 hw->mac.ops.cleanup_led(hw); 1971 pm_runtime_put_sync(netdev->dev.parent); 1972 break; 1973 1974 case ETHTOOL_ID_ON: 1975 hw->mac.ops.led_on(hw); 1976 break; 1977 1978 case ETHTOOL_ID_OFF: 1979 hw->mac.ops.led_off(hw); 1980 break; 1981 } 1982 1983 return 0; 1984 } 1985 1986 static int e1000_get_coalesce(struct net_device *netdev, 1987 struct ethtool_coalesce *ec, 1988 struct kernel_ethtool_coalesce *kernel_coal, 1989 struct netlink_ext_ack *extack) 1990 { 1991 struct e1000_adapter *adapter = netdev_priv(netdev); 1992 1993 if (adapter->itr_setting <= 4) 1994 ec->rx_coalesce_usecs = adapter->itr_setting; 1995 else 1996 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1997 1998 return 0; 1999 } 2000 2001 static int e1000_set_coalesce(struct net_device *netdev, 2002 struct ethtool_coalesce *ec, 2003 struct kernel_ethtool_coalesce *kernel_coal, 2004 struct netlink_ext_ack *extack) 2005 { 2006 struct e1000_adapter *adapter = netdev_priv(netdev); 2007 2008 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2009 ((ec->rx_coalesce_usecs > 4) && 2010 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2011 (ec->rx_coalesce_usecs == 2)) 2012 return -EINVAL; 2013 2014 if (ec->rx_coalesce_usecs == 4) { 2015 adapter->itr_setting = 4; 2016 adapter->itr = adapter->itr_setting; 2017 } else if (ec->rx_coalesce_usecs <= 3) { 2018 adapter->itr = 20000; 2019 adapter->itr_setting = ec->rx_coalesce_usecs; 2020 } else { 2021 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2022 adapter->itr_setting = adapter->itr & ~3; 2023 } 2024 2025 if (adapter->itr_setting != 0) 2026 e1000e_write_itr(adapter, adapter->itr); 2027 else 2028 e1000e_write_itr(adapter, 0); 2029 2030 return 0; 2031 } 2032 2033 static int e1000_nway_reset(struct net_device *netdev) 2034 { 2035 struct e1000_adapter *adapter = netdev_priv(netdev); 2036 2037 if (!netif_running(netdev)) 2038 return -EAGAIN; 2039 2040 if (!adapter->hw.mac.autoneg) 2041 return -EINVAL; 2042 2043 e1000e_reinit_locked(adapter); 2044 2045 return 0; 2046 } 2047 2048 static void e1000_get_ethtool_stats(struct net_device *netdev, 2049 struct ethtool_stats __always_unused *stats, 2050 u64 *data) 2051 { 2052 struct e1000_adapter *adapter = netdev_priv(netdev); 2053 struct rtnl_link_stats64 net_stats; 2054 int i; 2055 char *p = NULL; 2056 2057 dev_get_stats(netdev, &net_stats); 2058 2059 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2060 switch (e1000_gstrings_stats[i].type) { 2061 case NETDEV_STATS: 2062 p = (char *)&net_stats + 2063 e1000_gstrings_stats[i].stat_offset; 2064 break; 2065 case E1000_STATS: 2066 p = (char *)adapter + 2067 e1000_gstrings_stats[i].stat_offset; 2068 break; 2069 default: 2070 data[i] = 0; 2071 continue; 2072 } 2073 2074 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2075 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2076 } 2077 } 2078 2079 static void e1000_get_strings(struct net_device __always_unused *netdev, 2080 u32 stringset, u8 *data) 2081 { 2082 u8 *p = data; 2083 int i; 2084 2085 switch (stringset) { 2086 case ETH_SS_TEST: 2087 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2088 break; 2089 case ETH_SS_STATS: 2090 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2091 memcpy(p, e1000_gstrings_stats[i].stat_string, 2092 ETH_GSTRING_LEN); 2093 p += ETH_GSTRING_LEN; 2094 } 2095 break; 2096 case ETH_SS_PRIV_FLAGS: 2097 memcpy(data, e1000e_priv_flags_strings, 2098 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2099 break; 2100 } 2101 } 2102 2103 static int e1000_get_rxfh_fields(struct net_device *netdev, 2104 struct ethtool_rxfh_fields *info) 2105 { 2106 struct e1000_adapter *adapter = netdev_priv(netdev); 2107 struct e1000_hw *hw = &adapter->hw; 2108 u32 mrqc; 2109 2110 info->data = 0; 2111 2112 mrqc = er32(MRQC); 2113 2114 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2115 return 0; 2116 2117 switch (info->flow_type) { 2118 case TCP_V4_FLOW: 2119 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2120 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2121 fallthrough; 2122 case UDP_V4_FLOW: 2123 case SCTP_V4_FLOW: 2124 case AH_ESP_V4_FLOW: 2125 case IPV4_FLOW: 2126 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2127 info->data |= RXH_IP_SRC | RXH_IP_DST; 2128 break; 2129 case TCP_V6_FLOW: 2130 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2131 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2132 fallthrough; 2133 case UDP_V6_FLOW: 2134 case SCTP_V6_FLOW: 2135 case AH_ESP_V6_FLOW: 2136 case IPV6_FLOW: 2137 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2138 info->data |= RXH_IP_SRC | RXH_IP_DST; 2139 break; 2140 default: 2141 break; 2142 } 2143 return 0; 2144 } 2145 2146 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata) 2147 { 2148 struct e1000_adapter *adapter = netdev_priv(netdev); 2149 struct e1000_hw *hw = &adapter->hw; 2150 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2151 u32 ret_val; 2152 2153 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2154 return -EOPNOTSUPP; 2155 2156 switch (hw->phy.type) { 2157 case e1000_phy_82579: 2158 cap_addr = I82579_EEE_CAPABILITY; 2159 lpa_addr = I82579_EEE_LP_ABILITY; 2160 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2161 break; 2162 case e1000_phy_i217: 2163 cap_addr = I217_EEE_CAPABILITY; 2164 lpa_addr = I217_EEE_LP_ABILITY; 2165 pcs_stat_addr = I217_EEE_PCS_STATUS; 2166 break; 2167 default: 2168 return -EOPNOTSUPP; 2169 } 2170 2171 ret_val = hw->phy.ops.acquire(hw); 2172 if (ret_val) 2173 return -EBUSY; 2174 2175 /* EEE Capability */ 2176 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2177 if (ret_val) 2178 goto release; 2179 mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data); 2180 2181 /* EEE Advertised */ 2182 mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert); 2183 2184 /* EEE Link Partner Advertised */ 2185 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2186 if (ret_val) 2187 goto release; 2188 mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data); 2189 2190 /* EEE PCS Status */ 2191 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2192 if (ret_val) 2193 goto release; 2194 if (hw->phy.type == e1000_phy_82579) 2195 phy_data <<= 8; 2196 2197 /* Result of the EEE auto negotiation - there is no register that 2198 * has the status of the EEE negotiation so do a best-guess based 2199 * on whether Tx or Rx LPI indications have been received. 2200 */ 2201 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2202 edata->eee_active = true; 2203 2204 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2205 edata->tx_lpi_enabled = true; 2206 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2207 2208 release: 2209 hw->phy.ops.release(hw); 2210 if (ret_val) 2211 ret_val = -ENODATA; 2212 2213 return ret_val; 2214 } 2215 2216 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata) 2217 { 2218 struct e1000_adapter *adapter = netdev_priv(netdev); 2219 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {}; 2220 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {}; 2221 struct e1000_hw *hw = &adapter->hw; 2222 struct ethtool_keee eee_curr; 2223 s32 ret_val; 2224 2225 ret_val = e1000e_get_eee(netdev, &eee_curr); 2226 if (ret_val) 2227 return ret_val; 2228 2229 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2230 e_err("Setting EEE tx-lpi is not supported\n"); 2231 return -EINVAL; 2232 } 2233 2234 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2235 e_err("Setting EEE Tx LPI timer is not supported\n"); 2236 return -EINVAL; 2237 } 2238 2239 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2240 supported); 2241 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, 2242 supported); 2243 2244 if (linkmode_andnot(tmp, edata->advertised, supported)) { 2245 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2246 return -EINVAL; 2247 } 2248 2249 adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised); 2250 2251 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2252 2253 /* reset the link */ 2254 if (netif_running(netdev)) 2255 e1000e_reinit_locked(adapter); 2256 else 2257 e1000e_reset(adapter); 2258 2259 return 0; 2260 } 2261 2262 static int e1000e_get_ts_info(struct net_device *netdev, 2263 struct kernel_ethtool_ts_info *info) 2264 { 2265 struct e1000_adapter *adapter = netdev_priv(netdev); 2266 2267 ethtool_op_get_ts_info(netdev, info); 2268 2269 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2270 return 0; 2271 2272 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2273 SOF_TIMESTAMPING_RX_HARDWARE | 2274 SOF_TIMESTAMPING_RAW_HARDWARE); 2275 2276 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2277 2278 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2279 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2280 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2281 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2282 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2283 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2284 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2285 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2286 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2287 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2288 BIT(HWTSTAMP_FILTER_ALL)); 2289 2290 if (adapter->ptp_clock) 2291 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2292 2293 return 0; 2294 } 2295 2296 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2297 { 2298 struct e1000_adapter *adapter = netdev_priv(netdev); 2299 u32 priv_flags = 0; 2300 2301 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2302 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2303 2304 return priv_flags; 2305 } 2306 2307 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2308 { 2309 struct e1000_adapter *adapter = netdev_priv(netdev); 2310 unsigned int flags2 = adapter->flags2; 2311 2312 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS; 2313 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2314 struct e1000_hw *hw = &adapter->hw; 2315 2316 if (hw->mac.type < e1000_pch_cnp) 2317 return -EINVAL; 2318 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2319 } 2320 2321 if (flags2 != adapter->flags2) 2322 adapter->flags2 = flags2; 2323 2324 return 0; 2325 } 2326 2327 static const struct ethtool_ops e1000_ethtool_ops = { 2328 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2329 .get_drvinfo = e1000_get_drvinfo, 2330 .get_regs_len = e1000_get_regs_len, 2331 .get_regs = e1000_get_regs, 2332 .get_wol = e1000_get_wol, 2333 .set_wol = e1000_set_wol, 2334 .get_msglevel = e1000_get_msglevel, 2335 .set_msglevel = e1000_set_msglevel, 2336 .nway_reset = e1000_nway_reset, 2337 .get_link = ethtool_op_get_link, 2338 .get_eeprom_len = e1000_get_eeprom_len, 2339 .get_eeprom = e1000_get_eeprom, 2340 .set_eeprom = e1000_set_eeprom, 2341 .get_ringparam = e1000_get_ringparam, 2342 .set_ringparam = e1000_set_ringparam, 2343 .get_pauseparam = e1000_get_pauseparam, 2344 .set_pauseparam = e1000_set_pauseparam, 2345 .self_test = e1000_diag_test, 2346 .get_strings = e1000_get_strings, 2347 .set_phys_id = e1000_set_phys_id, 2348 .get_ethtool_stats = e1000_get_ethtool_stats, 2349 .get_sset_count = e1000e_get_sset_count, 2350 .get_coalesce = e1000_get_coalesce, 2351 .set_coalesce = e1000_set_coalesce, 2352 .get_rxfh_fields = e1000_get_rxfh_fields, 2353 .get_ts_info = e1000e_get_ts_info, 2354 .get_eee = e1000e_get_eee, 2355 .set_eee = e1000e_set_eee, 2356 .get_link_ksettings = e1000_get_link_ksettings, 2357 .set_link_ksettings = e1000_set_link_ksettings, 2358 .get_priv_flags = e1000e_get_priv_flags, 2359 .set_priv_flags = e1000e_set_priv_flags, 2360 }; 2361 2362 void e1000e_set_ethtool_ops(struct net_device *netdev) 2363 { 2364 netdev->ethtool_ops = &e1000_ethtool_ops; 2365 } 2366