1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 }; 30 31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 32 33 #define E1000_STAT(str, m) { \ 34 .stat_string = str, \ 35 .type = E1000_STATS, \ 36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 37 .stat_offset = offsetof(struct e1000_adapter, m) } 38 #define E1000_NETDEV_STAT(str, m) { \ 39 .stat_string = str, \ 40 .type = NETDEV_STATS, \ 41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 42 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 43 44 static const struct e1000_stats e1000_gstrings_stats[] = { 45 E1000_STAT("rx_packets", stats.gprc), 46 E1000_STAT("tx_packets", stats.gptc), 47 E1000_STAT("rx_bytes", stats.gorc), 48 E1000_STAT("tx_bytes", stats.gotc), 49 E1000_STAT("rx_broadcast", stats.bprc), 50 E1000_STAT("tx_broadcast", stats.bptc), 51 E1000_STAT("rx_multicast", stats.mprc), 52 E1000_STAT("tx_multicast", stats.mptc), 53 E1000_NETDEV_STAT("rx_errors", rx_errors), 54 E1000_NETDEV_STAT("tx_errors", tx_errors), 55 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 56 E1000_STAT("multicast", stats.mprc), 57 E1000_STAT("collisions", stats.colc), 58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 60 E1000_STAT("rx_crc_errors", stats.crcerrs), 61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 62 E1000_STAT("rx_no_buffer_count", stats.rnbc), 63 E1000_STAT("rx_missed_errors", stats.mpc), 64 E1000_STAT("tx_aborted_errors", stats.ecol), 65 E1000_STAT("tx_carrier_errors", stats.tncrs), 66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 68 E1000_STAT("tx_window_errors", stats.latecol), 69 E1000_STAT("tx_abort_late_coll", stats.latecol), 70 E1000_STAT("tx_deferred_ok", stats.dc), 71 E1000_STAT("tx_single_coll_ok", stats.scc), 72 E1000_STAT("tx_multi_coll_ok", stats.mcc), 73 E1000_STAT("tx_timeout_count", tx_timeout_count), 74 E1000_STAT("tx_restart_queue", restart_queue), 75 E1000_STAT("rx_long_length_errors", stats.roc), 76 E1000_STAT("rx_short_length_errors", stats.ruc), 77 E1000_STAT("rx_align_errors", stats.algnerrc), 78 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 80 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 82 E1000_STAT("tx_flow_control_xon", stats.xontxc), 83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 84 E1000_STAT("rx_csum_offload_good", hw_csum_good), 85 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 86 E1000_STAT("rx_header_split", rx_hdr_split), 87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 88 E1000_STAT("tx_smbus", stats.mgptc), 89 E1000_STAT("rx_smbus", stats.mgprc), 90 E1000_STAT("dropped_smbus", stats.mgpdc), 91 E1000_STAT("rx_dma_failed", rx_dma_failed), 92 E1000_STAT("tx_dma_failed", tx_dma_failed), 93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 95 E1000_STAT("corr_ecc_errors", corr_errors), 96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 98 }; 99 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 109 110 static int e1000_get_link_ksettings(struct net_device *netdev, 111 struct ethtool_link_ksettings *cmd) 112 { 113 u32 speed, supported, advertising, lp_advertising, lpa_t; 114 struct e1000_adapter *adapter = netdev_priv(netdev); 115 struct e1000_hw *hw = &adapter->hw; 116 117 if (hw->phy.media_type == e1000_media_type_copper) { 118 supported = (SUPPORTED_10baseT_Half | 119 SUPPORTED_10baseT_Full | 120 SUPPORTED_100baseT_Half | 121 SUPPORTED_100baseT_Full | 122 SUPPORTED_1000baseT_Full | 123 SUPPORTED_Asym_Pause | 124 SUPPORTED_Autoneg | 125 SUPPORTED_Pause | 126 SUPPORTED_TP); 127 if (hw->phy.type == e1000_phy_ife) 128 supported &= ~SUPPORTED_1000baseT_Full; 129 advertising = ADVERTISED_TP; 130 131 if (hw->mac.autoneg == 1) { 132 advertising |= ADVERTISED_Autoneg; 133 /* the e1000 autoneg seems to match ethtool nicely */ 134 advertising |= hw->phy.autoneg_advertised; 135 } 136 137 cmd->base.port = PORT_TP; 138 cmd->base.phy_address = hw->phy.addr; 139 } else { 140 supported = (SUPPORTED_1000baseT_Full | 141 SUPPORTED_FIBRE | 142 SUPPORTED_Autoneg); 143 144 advertising = (ADVERTISED_1000baseT_Full | 145 ADVERTISED_FIBRE | 146 ADVERTISED_Autoneg); 147 148 cmd->base.port = PORT_FIBRE; 149 } 150 151 speed = SPEED_UNKNOWN; 152 cmd->base.duplex = DUPLEX_UNKNOWN; 153 154 if (netif_running(netdev)) { 155 if (netif_carrier_ok(netdev)) { 156 speed = adapter->link_speed; 157 cmd->base.duplex = adapter->link_duplex - 1; 158 } 159 } else { 160 u32 status = er32(STATUS); 161 162 if (status & E1000_STATUS_LU) { 163 if (status & E1000_STATUS_SPEED_1000) 164 speed = SPEED_1000; 165 else if (status & E1000_STATUS_SPEED_100) 166 speed = SPEED_100; 167 else 168 speed = SPEED_10; 169 170 if (status & E1000_STATUS_FD) 171 cmd->base.duplex = DUPLEX_FULL; 172 else 173 cmd->base.duplex = DUPLEX_HALF; 174 } 175 } 176 177 cmd->base.speed = speed; 178 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 179 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 180 181 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 182 if ((hw->phy.media_type == e1000_media_type_copper) && 183 netif_carrier_ok(netdev)) 184 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 185 ETH_TP_MDI_X : ETH_TP_MDI; 186 else 187 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 188 189 if (hw->phy.mdix == AUTO_ALL_MODES) 190 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 191 else 192 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 193 194 if (hw->phy.media_type != e1000_media_type_copper) 195 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 196 197 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000); 198 lp_advertising = lpa_t | 199 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa); 200 201 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 202 supported); 203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 204 advertising); 205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 206 lp_advertising); 207 208 return 0; 209 } 210 211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 212 { 213 struct e1000_mac_info *mac = &adapter->hw.mac; 214 215 mac->autoneg = 0; 216 217 /* Make sure dplx is at most 1 bit and lsb of speed is not set 218 * for the switch() below to work 219 */ 220 if ((spd & 1) || (dplx & ~1)) 221 goto err_inval; 222 223 /* Fiber NICs only allow 1000 gbps Full duplex */ 224 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 225 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 226 goto err_inval; 227 } 228 229 switch (spd + dplx) { 230 case SPEED_10 + DUPLEX_HALF: 231 mac->forced_speed_duplex = ADVERTISE_10_HALF; 232 break; 233 case SPEED_10 + DUPLEX_FULL: 234 mac->forced_speed_duplex = ADVERTISE_10_FULL; 235 break; 236 case SPEED_100 + DUPLEX_HALF: 237 mac->forced_speed_duplex = ADVERTISE_100_HALF; 238 break; 239 case SPEED_100 + DUPLEX_FULL: 240 mac->forced_speed_duplex = ADVERTISE_100_FULL; 241 break; 242 case SPEED_1000 + DUPLEX_FULL: 243 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 244 mac->autoneg = 1; 245 adapter->hw.phy.autoneg_advertised = 246 ADVERTISE_1000_FULL; 247 } else { 248 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 249 } 250 break; 251 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 252 default: 253 goto err_inval; 254 } 255 256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 257 adapter->hw.phy.mdix = AUTO_ALL_MODES; 258 259 return 0; 260 261 err_inval: 262 e_err("Unsupported Speed/Duplex configuration\n"); 263 return -EINVAL; 264 } 265 266 static int e1000_set_link_ksettings(struct net_device *netdev, 267 const struct ethtool_link_ksettings *cmd) 268 { 269 struct e1000_adapter *adapter = netdev_priv(netdev); 270 struct e1000_hw *hw = &adapter->hw; 271 int ret_val = 0; 272 u32 advertising; 273 274 ethtool_convert_link_mode_to_legacy_u32(&advertising, 275 cmd->link_modes.advertising); 276 277 /* When SoL/IDER sessions are active, autoneg/speed/duplex 278 * cannot be changed 279 */ 280 if (hw->phy.ops.check_reset_block && 281 hw->phy.ops.check_reset_block(hw)) { 282 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 283 return -EINVAL; 284 } 285 286 /* MDI setting is only allowed when autoneg enabled because 287 * some hardware doesn't allow MDI setting when speed or 288 * duplex is forced. 289 */ 290 if (cmd->base.eth_tp_mdix_ctrl) { 291 if (hw->phy.media_type != e1000_media_type_copper) 292 return -EOPNOTSUPP; 293 294 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 295 (cmd->base.autoneg != AUTONEG_ENABLE)) { 296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 297 return -EINVAL; 298 } 299 } 300 301 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 302 usleep_range(1000, 2000); 303 304 if (cmd->base.autoneg == AUTONEG_ENABLE) { 305 hw->mac.autoneg = 1; 306 if (hw->phy.media_type == e1000_media_type_fiber) 307 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 308 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 309 else 310 hw->phy.autoneg_advertised = advertising | 311 ADVERTISED_TP | ADVERTISED_Autoneg; 312 advertising = hw->phy.autoneg_advertised; 313 if (adapter->fc_autoneg) 314 hw->fc.requested_mode = e1000_fc_default; 315 } else { 316 u32 speed = cmd->base.speed; 317 /* calling this overrides forced MDI setting */ 318 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 319 ret_val = -EINVAL; 320 goto out; 321 } 322 } 323 324 /* MDI-X => 2; MDI => 1; Auto => 3 */ 325 if (cmd->base.eth_tp_mdix_ctrl) { 326 /* fix up the value for auto (3 => 0) as zero is mapped 327 * internally to auto 328 */ 329 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 330 hw->phy.mdix = AUTO_ALL_MODES; 331 else 332 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 333 } 334 335 /* reset the link */ 336 if (netif_running(adapter->netdev)) { 337 e1000e_down(adapter, true); 338 e1000e_up(adapter); 339 } else { 340 e1000e_reset(adapter); 341 } 342 343 out: 344 clear_bit(__E1000_RESETTING, &adapter->state); 345 return ret_val; 346 } 347 348 static void e1000_get_pauseparam(struct net_device *netdev, 349 struct ethtool_pauseparam *pause) 350 { 351 struct e1000_adapter *adapter = netdev_priv(netdev); 352 struct e1000_hw *hw = &adapter->hw; 353 354 pause->autoneg = 355 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 356 357 if (hw->fc.current_mode == e1000_fc_rx_pause) { 358 pause->rx_pause = 1; 359 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 360 pause->tx_pause = 1; 361 } else if (hw->fc.current_mode == e1000_fc_full) { 362 pause->rx_pause = 1; 363 pause->tx_pause = 1; 364 } 365 } 366 367 static int e1000_set_pauseparam(struct net_device *netdev, 368 struct ethtool_pauseparam *pause) 369 { 370 struct e1000_adapter *adapter = netdev_priv(netdev); 371 struct e1000_hw *hw = &adapter->hw; 372 int retval = 0; 373 374 adapter->fc_autoneg = pause->autoneg; 375 376 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 377 usleep_range(1000, 2000); 378 379 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 380 hw->fc.requested_mode = e1000_fc_default; 381 if (netif_running(adapter->netdev)) { 382 e1000e_down(adapter, true); 383 e1000e_up(adapter); 384 } else { 385 e1000e_reset(adapter); 386 } 387 } else { 388 if (pause->rx_pause && pause->tx_pause) 389 hw->fc.requested_mode = e1000_fc_full; 390 else if (pause->rx_pause && !pause->tx_pause) 391 hw->fc.requested_mode = e1000_fc_rx_pause; 392 else if (!pause->rx_pause && pause->tx_pause) 393 hw->fc.requested_mode = e1000_fc_tx_pause; 394 else if (!pause->rx_pause && !pause->tx_pause) 395 hw->fc.requested_mode = e1000_fc_none; 396 397 hw->fc.current_mode = hw->fc.requested_mode; 398 399 if (hw->phy.media_type == e1000_media_type_fiber) { 400 retval = hw->mac.ops.setup_link(hw); 401 /* implicit goto out */ 402 } else { 403 retval = e1000e_force_mac_fc(hw); 404 if (retval) 405 goto out; 406 e1000e_set_fc_watermarks(hw); 407 } 408 } 409 410 out: 411 clear_bit(__E1000_RESETTING, &adapter->state); 412 return retval; 413 } 414 415 static u32 e1000_get_msglevel(struct net_device *netdev) 416 { 417 struct e1000_adapter *adapter = netdev_priv(netdev); 418 return adapter->msg_enable; 419 } 420 421 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 422 { 423 struct e1000_adapter *adapter = netdev_priv(netdev); 424 adapter->msg_enable = data; 425 } 426 427 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 428 { 429 #define E1000_REGS_LEN 32 /* overestimate */ 430 return E1000_REGS_LEN * sizeof(u32); 431 } 432 433 static void e1000_get_regs(struct net_device *netdev, 434 struct ethtool_regs *regs, void *p) 435 { 436 struct e1000_adapter *adapter = netdev_priv(netdev); 437 struct e1000_hw *hw = &adapter->hw; 438 u32 *regs_buff = p; 439 u16 phy_data; 440 441 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 442 443 regs->version = (1u << 24) | 444 (adapter->pdev->revision << 16) | 445 adapter->pdev->device; 446 447 regs_buff[0] = er32(CTRL); 448 regs_buff[1] = er32(STATUS); 449 450 regs_buff[2] = er32(RCTL); 451 regs_buff[3] = er32(RDLEN(0)); 452 regs_buff[4] = er32(RDH(0)); 453 regs_buff[5] = er32(RDT(0)); 454 regs_buff[6] = er32(RDTR); 455 456 regs_buff[7] = er32(TCTL); 457 regs_buff[8] = er32(TDLEN(0)); 458 regs_buff[9] = er32(TDH(0)); 459 regs_buff[10] = er32(TDT(0)); 460 regs_buff[11] = er32(TIDV); 461 462 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 463 464 /* ethtool doesn't use anything past this point, so all this 465 * code is likely legacy junk for apps that may or may not exist 466 */ 467 if (hw->phy.type == e1000_phy_m88) { 468 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 469 regs_buff[13] = (u32)phy_data; /* cable length */ 470 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 471 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 472 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 473 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 474 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 475 regs_buff[18] = regs_buff[13]; /* cable polarity */ 476 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 477 regs_buff[20] = regs_buff[17]; /* polarity correction */ 478 /* phy receive errors */ 479 regs_buff[22] = adapter->phy_stats.receive_errors; 480 regs_buff[23] = regs_buff[13]; /* mdix mode */ 481 } 482 regs_buff[21] = 0; /* was idle_errors */ 483 e1e_rphy(hw, MII_STAT1000, &phy_data); 484 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 485 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 486 } 487 488 static int e1000_get_eeprom_len(struct net_device *netdev) 489 { 490 struct e1000_adapter *adapter = netdev_priv(netdev); 491 return adapter->hw.nvm.word_size * 2; 492 } 493 494 static int e1000_get_eeprom(struct net_device *netdev, 495 struct ethtool_eeprom *eeprom, u8 *bytes) 496 { 497 struct e1000_adapter *adapter = netdev_priv(netdev); 498 struct e1000_hw *hw = &adapter->hw; 499 u16 *eeprom_buff; 500 int first_word; 501 int last_word; 502 int ret_val = 0; 503 u16 i; 504 505 if (eeprom->len == 0) 506 return -EINVAL; 507 508 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 509 510 first_word = eeprom->offset >> 1; 511 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 512 513 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 514 GFP_KERNEL); 515 if (!eeprom_buff) 516 return -ENOMEM; 517 518 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 519 ret_val = e1000_read_nvm(hw, first_word, 520 last_word - first_word + 1, 521 eeprom_buff); 522 } else { 523 for (i = 0; i < last_word - first_word + 1; i++) { 524 ret_val = e1000_read_nvm(hw, first_word + i, 1, 525 &eeprom_buff[i]); 526 if (ret_val) 527 break; 528 } 529 } 530 531 if (ret_val) { 532 /* a read error occurred, throw away the result */ 533 memset(eeprom_buff, 0xff, sizeof(u16) * 534 (last_word - first_word + 1)); 535 } else { 536 /* Device's eeprom is always little-endian, word addressable */ 537 for (i = 0; i < last_word - first_word + 1; i++) 538 le16_to_cpus(&eeprom_buff[i]); 539 } 540 541 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 542 kfree(eeprom_buff); 543 544 return ret_val; 545 } 546 547 static int e1000_set_eeprom(struct net_device *netdev, 548 struct ethtool_eeprom *eeprom, u8 *bytes) 549 { 550 struct e1000_adapter *adapter = netdev_priv(netdev); 551 struct e1000_hw *hw = &adapter->hw; 552 u16 *eeprom_buff; 553 void *ptr; 554 int max_len; 555 int first_word; 556 int last_word; 557 int ret_val = 0; 558 u16 i; 559 560 if (eeprom->len == 0) 561 return -EOPNOTSUPP; 562 563 if (eeprom->magic != 564 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 565 return -EFAULT; 566 567 if (adapter->flags & FLAG_READ_ONLY_NVM) 568 return -EINVAL; 569 570 max_len = hw->nvm.word_size * 2; 571 572 first_word = eeprom->offset >> 1; 573 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 574 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 575 if (!eeprom_buff) 576 return -ENOMEM; 577 578 ptr = (void *)eeprom_buff; 579 580 if (eeprom->offset & 1) { 581 /* need read/modify/write of first changed EEPROM word */ 582 /* only the second byte of the word is being modified */ 583 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 584 ptr++; 585 } 586 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 587 /* need read/modify/write of last changed EEPROM word */ 588 /* only the first byte of the word is being modified */ 589 ret_val = e1000_read_nvm(hw, last_word, 1, 590 &eeprom_buff[last_word - first_word]); 591 592 if (ret_val) 593 goto out; 594 595 /* Device's eeprom is always little-endian, word addressable */ 596 for (i = 0; i < last_word - first_word + 1; i++) 597 le16_to_cpus(&eeprom_buff[i]); 598 599 memcpy(ptr, bytes, eeprom->len); 600 601 for (i = 0; i < last_word - first_word + 1; i++) 602 cpu_to_le16s(&eeprom_buff[i]); 603 604 ret_val = e1000_write_nvm(hw, first_word, 605 last_word - first_word + 1, eeprom_buff); 606 607 if (ret_val) 608 goto out; 609 610 /* Update the checksum over the first part of the EEPROM if needed 611 * and flush shadow RAM for applicable controllers 612 */ 613 if ((first_word <= NVM_CHECKSUM_REG) || 614 (hw->mac.type == e1000_82583) || 615 (hw->mac.type == e1000_82574) || 616 (hw->mac.type == e1000_82573)) 617 ret_val = e1000e_update_nvm_checksum(hw); 618 619 out: 620 kfree(eeprom_buff); 621 return ret_val; 622 } 623 624 static void e1000_get_drvinfo(struct net_device *netdev, 625 struct ethtool_drvinfo *drvinfo) 626 { 627 struct e1000_adapter *adapter = netdev_priv(netdev); 628 629 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 630 631 /* EEPROM image version # is reported as firmware version # for 632 * PCI-E controllers 633 */ 634 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 635 "%d.%d-%d", 636 FIELD_GET(0xF000, adapter->eeprom_vers), 637 FIELD_GET(0x0FF0, adapter->eeprom_vers), 638 (adapter->eeprom_vers & 0x000F)); 639 640 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 641 sizeof(drvinfo->bus_info)); 642 } 643 644 static void e1000_get_ringparam(struct net_device *netdev, 645 struct ethtool_ringparam *ring, 646 struct kernel_ethtool_ringparam *kernel_ring, 647 struct netlink_ext_ack *extack) 648 { 649 struct e1000_adapter *adapter = netdev_priv(netdev); 650 651 ring->rx_max_pending = E1000_MAX_RXD; 652 ring->tx_max_pending = E1000_MAX_TXD; 653 ring->rx_pending = adapter->rx_ring_count; 654 ring->tx_pending = adapter->tx_ring_count; 655 } 656 657 static int e1000_set_ringparam(struct net_device *netdev, 658 struct ethtool_ringparam *ring, 659 struct kernel_ethtool_ringparam *kernel_ring, 660 struct netlink_ext_ack *extack) 661 { 662 struct e1000_adapter *adapter = netdev_priv(netdev); 663 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 664 int err = 0, size = sizeof(struct e1000_ring); 665 bool set_tx = false, set_rx = false; 666 u16 new_rx_count, new_tx_count; 667 668 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 669 return -EINVAL; 670 671 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 672 E1000_MAX_RXD); 673 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 674 675 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 676 E1000_MAX_TXD); 677 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 678 679 if ((new_tx_count == adapter->tx_ring_count) && 680 (new_rx_count == adapter->rx_ring_count)) 681 /* nothing to do */ 682 return 0; 683 684 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 685 usleep_range(1000, 2000); 686 687 if (!netif_running(adapter->netdev)) { 688 /* Set counts now and allocate resources during open() */ 689 adapter->tx_ring->count = new_tx_count; 690 adapter->rx_ring->count = new_rx_count; 691 adapter->tx_ring_count = new_tx_count; 692 adapter->rx_ring_count = new_rx_count; 693 goto clear_reset; 694 } 695 696 set_tx = (new_tx_count != adapter->tx_ring_count); 697 set_rx = (new_rx_count != adapter->rx_ring_count); 698 699 /* Allocate temporary storage for ring updates */ 700 if (set_tx) { 701 temp_tx = vmalloc(size); 702 if (!temp_tx) { 703 err = -ENOMEM; 704 goto free_temp; 705 } 706 } 707 if (set_rx) { 708 temp_rx = vmalloc(size); 709 if (!temp_rx) { 710 err = -ENOMEM; 711 goto free_temp; 712 } 713 } 714 715 e1000e_down(adapter, true); 716 717 /* We can't just free everything and then setup again, because the 718 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 719 * structs. First, attempt to allocate new resources... 720 */ 721 if (set_tx) { 722 memcpy(temp_tx, adapter->tx_ring, size); 723 temp_tx->count = new_tx_count; 724 err = e1000e_setup_tx_resources(temp_tx); 725 if (err) 726 goto err_setup; 727 } 728 if (set_rx) { 729 memcpy(temp_rx, adapter->rx_ring, size); 730 temp_rx->count = new_rx_count; 731 err = e1000e_setup_rx_resources(temp_rx); 732 if (err) 733 goto err_setup_rx; 734 } 735 736 /* ...then free the old resources and copy back any new ring data */ 737 if (set_tx) { 738 e1000e_free_tx_resources(adapter->tx_ring); 739 memcpy(adapter->tx_ring, temp_tx, size); 740 adapter->tx_ring_count = new_tx_count; 741 } 742 if (set_rx) { 743 e1000e_free_rx_resources(adapter->rx_ring); 744 memcpy(adapter->rx_ring, temp_rx, size); 745 adapter->rx_ring_count = new_rx_count; 746 } 747 748 err_setup_rx: 749 if (err && set_tx) 750 e1000e_free_tx_resources(temp_tx); 751 err_setup: 752 e1000e_up(adapter); 753 free_temp: 754 vfree(temp_tx); 755 vfree(temp_rx); 756 clear_reset: 757 clear_bit(__E1000_RESETTING, &adapter->state); 758 return err; 759 } 760 761 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 762 int reg, int offset, u32 mask, u32 write) 763 { 764 u32 pat, val; 765 static const u32 test[] = { 766 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 767 }; 768 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 769 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 770 (test[pat] & write)); 771 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 772 if (val != (test[pat] & write & mask)) { 773 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 774 reg + (offset << 2), val, 775 (test[pat] & write & mask)); 776 *data = reg; 777 return true; 778 } 779 } 780 return false; 781 } 782 783 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 784 int reg, u32 mask, u32 write) 785 { 786 u32 val; 787 788 __ew32(&adapter->hw, reg, write & mask); 789 val = __er32(&adapter->hw, reg); 790 if ((write & mask) != (val & mask)) { 791 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 792 reg, (val & mask), (write & mask)); 793 *data = reg; 794 return true; 795 } 796 return false; 797 } 798 799 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 800 do { \ 801 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 802 return 1; \ 803 } while (0) 804 #define REG_PATTERN_TEST(reg, mask, write) \ 805 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 806 807 #define REG_SET_AND_CHECK(reg, mask, write) \ 808 do { \ 809 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 810 return 1; \ 811 } while (0) 812 813 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 814 { 815 struct e1000_hw *hw = &adapter->hw; 816 struct e1000_mac_info *mac = &adapter->hw.mac; 817 u32 value; 818 u32 before; 819 u32 after; 820 u32 i; 821 u32 toggle; 822 u32 mask; 823 u32 wlock_mac = 0; 824 825 /* The status register is Read Only, so a write should fail. 826 * Some bits that get toggled are ignored. There are several bits 827 * on newer hardware that are r/w. 828 */ 829 switch (mac->type) { 830 case e1000_82571: 831 case e1000_82572: 832 case e1000_80003es2lan: 833 toggle = 0x7FFFF3FF; 834 break; 835 default: 836 toggle = 0x7FFFF033; 837 break; 838 } 839 840 before = er32(STATUS); 841 value = (er32(STATUS) & toggle); 842 ew32(STATUS, toggle); 843 after = er32(STATUS) & toggle; 844 if (value != after) { 845 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 846 after, value); 847 *data = 1; 848 return 1; 849 } 850 /* restore previous status */ 851 ew32(STATUS, before); 852 853 if (!(adapter->flags & FLAG_IS_ICH)) { 854 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 855 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 856 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 857 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 858 } 859 860 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 861 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 862 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 863 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 864 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 865 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 866 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 867 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 868 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 869 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 870 871 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 872 873 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 874 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 875 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 876 877 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 878 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 879 if (!(adapter->flags & FLAG_IS_ICH)) 880 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 881 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 882 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 883 mask = 0x8003FFFF; 884 switch (mac->type) { 885 case e1000_ich10lan: 886 case e1000_pchlan: 887 case e1000_pch2lan: 888 case e1000_pch_lpt: 889 case e1000_pch_spt: 890 case e1000_pch_cnp: 891 case e1000_pch_tgp: 892 case e1000_pch_adp: 893 case e1000_pch_mtp: 894 case e1000_pch_lnp: 895 case e1000_pch_ptp: 896 case e1000_pch_nvp: 897 mask |= BIT(18); 898 break; 899 default: 900 break; 901 } 902 903 if (mac->type >= e1000_pch_lpt) 904 wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM)); 905 906 for (i = 0; i < mac->rar_entry_count; i++) { 907 if (mac->type >= e1000_pch_lpt) { 908 /* Cannot test write-protected SHRAL[n] registers */ 909 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 910 continue; 911 912 /* SHRAH[9] different than the others */ 913 if (i == 10) 914 mask |= BIT(30); 915 else 916 mask &= ~BIT(30); 917 } 918 if (mac->type == e1000_pch2lan) { 919 /* SHRAH[0,1,2] different than previous */ 920 if (i == 1) 921 mask &= 0xFFF4FFFF; 922 /* SHRAH[3] different than SHRAH[0,1,2] */ 923 if (i == 4) 924 mask |= BIT(30); 925 /* RAR[1-6] owned by management engine - skipping */ 926 if (i > 0) 927 i += 6; 928 } 929 930 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 931 0xFFFFFFFF); 932 /* reset index to actual value */ 933 if ((mac->type == e1000_pch2lan) && (i > 6)) 934 i -= 6; 935 } 936 937 for (i = 0; i < mac->mta_reg_count; i++) 938 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 939 940 *data = 0; 941 942 return 0; 943 } 944 945 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 946 { 947 u16 temp; 948 u16 checksum = 0; 949 u16 i; 950 951 *data = 0; 952 /* Read and add up the contents of the EEPROM */ 953 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 954 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 955 *data = 1; 956 return *data; 957 } 958 checksum += temp; 959 } 960 961 /* If Checksum is not Correct return error else test passed */ 962 if ((checksum != (u16)NVM_SUM) && !(*data)) 963 *data = 2; 964 965 return *data; 966 } 967 968 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 969 { 970 struct net_device *netdev = (struct net_device *)data; 971 struct e1000_adapter *adapter = netdev_priv(netdev); 972 struct e1000_hw *hw = &adapter->hw; 973 974 adapter->test_icr |= er32(ICR); 975 976 return IRQ_HANDLED; 977 } 978 979 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 980 { 981 struct net_device *netdev = adapter->netdev; 982 struct e1000_hw *hw = &adapter->hw; 983 u32 mask; 984 u32 shared_int = 1; 985 u32 irq = adapter->pdev->irq; 986 int i; 987 int ret_val = 0; 988 int int_mode = E1000E_INT_MODE_LEGACY; 989 990 *data = 0; 991 992 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 993 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 994 int_mode = adapter->int_mode; 995 e1000e_reset_interrupt_capability(adapter); 996 adapter->int_mode = E1000E_INT_MODE_LEGACY; 997 e1000e_set_interrupt_capability(adapter); 998 } 999 /* Hook up test interrupt handler just for this test */ 1000 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1001 netdev)) { 1002 shared_int = 0; 1003 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1004 netdev)) { 1005 *data = 1; 1006 ret_val = -1; 1007 goto out; 1008 } 1009 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1010 1011 /* Disable all the interrupts */ 1012 ew32(IMC, 0xFFFFFFFF); 1013 e1e_flush(); 1014 usleep_range(10000, 11000); 1015 1016 /* Test each interrupt */ 1017 for (i = 0; i < 10; i++) { 1018 /* Interrupt to test */ 1019 mask = BIT(i); 1020 1021 if (adapter->flags & FLAG_IS_ICH) { 1022 switch (mask) { 1023 case E1000_ICR_RXSEQ: 1024 continue; 1025 case 0x00000100: 1026 if (adapter->hw.mac.type == e1000_ich8lan || 1027 adapter->hw.mac.type == e1000_ich9lan) 1028 continue; 1029 break; 1030 default: 1031 break; 1032 } 1033 } 1034 1035 if (!shared_int) { 1036 /* Disable the interrupt to be reported in 1037 * the cause register and then force the same 1038 * interrupt and see if one gets posted. If 1039 * an interrupt was posted to the bus, the 1040 * test failed. 1041 */ 1042 adapter->test_icr = 0; 1043 ew32(IMC, mask); 1044 ew32(ICS, mask); 1045 e1e_flush(); 1046 usleep_range(10000, 11000); 1047 1048 if (adapter->test_icr & mask) { 1049 *data = 3; 1050 break; 1051 } 1052 } 1053 1054 /* Enable the interrupt to be reported in 1055 * the cause register and then force the same 1056 * interrupt and see if one gets posted. If 1057 * an interrupt was not posted to the bus, the 1058 * test failed. 1059 */ 1060 adapter->test_icr = 0; 1061 ew32(IMS, mask); 1062 ew32(ICS, mask); 1063 e1e_flush(); 1064 usleep_range(10000, 11000); 1065 1066 if (!(adapter->test_icr & mask)) { 1067 *data = 4; 1068 break; 1069 } 1070 1071 if (!shared_int) { 1072 /* Disable the other interrupts to be reported in 1073 * the cause register and then force the other 1074 * interrupts and see if any get posted. If 1075 * an interrupt was posted to the bus, the 1076 * test failed. 1077 */ 1078 adapter->test_icr = 0; 1079 ew32(IMC, ~mask & 0x00007FFF); 1080 ew32(ICS, ~mask & 0x00007FFF); 1081 e1e_flush(); 1082 usleep_range(10000, 11000); 1083 1084 if (adapter->test_icr) { 1085 *data = 5; 1086 break; 1087 } 1088 } 1089 } 1090 1091 /* Disable all the interrupts */ 1092 ew32(IMC, 0xFFFFFFFF); 1093 e1e_flush(); 1094 usleep_range(10000, 11000); 1095 1096 /* Unhook test interrupt handler */ 1097 free_irq(irq, netdev); 1098 1099 out: 1100 if (int_mode == E1000E_INT_MODE_MSIX) { 1101 e1000e_reset_interrupt_capability(adapter); 1102 adapter->int_mode = int_mode; 1103 e1000e_set_interrupt_capability(adapter); 1104 } 1105 1106 return ret_val; 1107 } 1108 1109 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1110 { 1111 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1112 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1113 struct pci_dev *pdev = adapter->pdev; 1114 struct e1000_buffer *buffer_info; 1115 int i; 1116 1117 if (tx_ring->desc && tx_ring->buffer_info) { 1118 for (i = 0; i < tx_ring->count; i++) { 1119 buffer_info = &tx_ring->buffer_info[i]; 1120 1121 if (buffer_info->dma) 1122 dma_unmap_single(&pdev->dev, 1123 buffer_info->dma, 1124 buffer_info->length, 1125 DMA_TO_DEVICE); 1126 dev_kfree_skb(buffer_info->skb); 1127 } 1128 } 1129 1130 if (rx_ring->desc && rx_ring->buffer_info) { 1131 for (i = 0; i < rx_ring->count; i++) { 1132 buffer_info = &rx_ring->buffer_info[i]; 1133 1134 if (buffer_info->dma) 1135 dma_unmap_single(&pdev->dev, 1136 buffer_info->dma, 1137 2048, DMA_FROM_DEVICE); 1138 dev_kfree_skb(buffer_info->skb); 1139 } 1140 } 1141 1142 if (tx_ring->desc) { 1143 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1144 tx_ring->dma); 1145 tx_ring->desc = NULL; 1146 } 1147 if (rx_ring->desc) { 1148 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1149 rx_ring->dma); 1150 rx_ring->desc = NULL; 1151 } 1152 1153 kfree(tx_ring->buffer_info); 1154 tx_ring->buffer_info = NULL; 1155 kfree(rx_ring->buffer_info); 1156 rx_ring->buffer_info = NULL; 1157 } 1158 1159 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1160 { 1161 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1162 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1163 struct pci_dev *pdev = adapter->pdev; 1164 struct e1000_hw *hw = &adapter->hw; 1165 u32 rctl; 1166 int i; 1167 int ret_val; 1168 1169 /* Setup Tx descriptor ring and Tx buffers */ 1170 1171 if (!tx_ring->count) 1172 tx_ring->count = E1000_DEFAULT_TXD; 1173 1174 tx_ring->buffer_info = kcalloc(tx_ring->count, 1175 sizeof(struct e1000_buffer), GFP_KERNEL); 1176 if (!tx_ring->buffer_info) { 1177 ret_val = 1; 1178 goto err_nomem; 1179 } 1180 1181 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1182 tx_ring->size = ALIGN(tx_ring->size, 4096); 1183 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1184 &tx_ring->dma, GFP_KERNEL); 1185 if (!tx_ring->desc) { 1186 ret_val = 2; 1187 goto err_nomem; 1188 } 1189 tx_ring->next_to_use = 0; 1190 tx_ring->next_to_clean = 0; 1191 1192 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1193 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1194 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1195 ew32(TDH(0), 0); 1196 ew32(TDT(0), 0); 1197 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1198 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1199 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1200 1201 for (i = 0; i < tx_ring->count; i++) { 1202 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1203 struct sk_buff *skb; 1204 unsigned int skb_size = 1024; 1205 1206 skb = alloc_skb(skb_size, GFP_KERNEL); 1207 if (!skb) { 1208 ret_val = 3; 1209 goto err_nomem; 1210 } 1211 skb_put(skb, skb_size); 1212 tx_ring->buffer_info[i].skb = skb; 1213 tx_ring->buffer_info[i].length = skb->len; 1214 tx_ring->buffer_info[i].dma = 1215 dma_map_single(&pdev->dev, skb->data, skb->len, 1216 DMA_TO_DEVICE); 1217 if (dma_mapping_error(&pdev->dev, 1218 tx_ring->buffer_info[i].dma)) { 1219 ret_val = 4; 1220 goto err_nomem; 1221 } 1222 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1223 tx_desc->lower.data = cpu_to_le32(skb->len); 1224 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1225 E1000_TXD_CMD_IFCS | 1226 E1000_TXD_CMD_RS); 1227 tx_desc->upper.data = 0; 1228 } 1229 1230 /* Setup Rx descriptor ring and Rx buffers */ 1231 1232 if (!rx_ring->count) 1233 rx_ring->count = E1000_DEFAULT_RXD; 1234 1235 rx_ring->buffer_info = kcalloc(rx_ring->count, 1236 sizeof(struct e1000_buffer), GFP_KERNEL); 1237 if (!rx_ring->buffer_info) { 1238 ret_val = 5; 1239 goto err_nomem; 1240 } 1241 1242 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1243 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1244 &rx_ring->dma, GFP_KERNEL); 1245 if (!rx_ring->desc) { 1246 ret_val = 6; 1247 goto err_nomem; 1248 } 1249 rx_ring->next_to_use = 0; 1250 rx_ring->next_to_clean = 0; 1251 1252 rctl = er32(RCTL); 1253 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1254 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1255 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1256 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1257 ew32(RDLEN(0), rx_ring->size); 1258 ew32(RDH(0), 0); 1259 ew32(RDT(0), 0); 1260 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1261 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1262 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1263 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1264 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1265 ew32(RCTL, rctl); 1266 1267 for (i = 0; i < rx_ring->count; i++) { 1268 union e1000_rx_desc_extended *rx_desc; 1269 struct sk_buff *skb; 1270 1271 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1272 if (!skb) { 1273 ret_val = 7; 1274 goto err_nomem; 1275 } 1276 skb_reserve(skb, NET_IP_ALIGN); 1277 rx_ring->buffer_info[i].skb = skb; 1278 rx_ring->buffer_info[i].dma = 1279 dma_map_single(&pdev->dev, skb->data, 2048, 1280 DMA_FROM_DEVICE); 1281 if (dma_mapping_error(&pdev->dev, 1282 rx_ring->buffer_info[i].dma)) { 1283 ret_val = 8; 1284 goto err_nomem; 1285 } 1286 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1287 rx_desc->read.buffer_addr = 1288 cpu_to_le64(rx_ring->buffer_info[i].dma); 1289 memset(skb->data, 0x00, skb->len); 1290 } 1291 1292 return 0; 1293 1294 err_nomem: 1295 e1000_free_desc_rings(adapter); 1296 return ret_val; 1297 } 1298 1299 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1300 { 1301 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1302 e1e_wphy(&adapter->hw, 29, 0x001F); 1303 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1304 e1e_wphy(&adapter->hw, 29, 0x001A); 1305 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1306 } 1307 1308 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1309 { 1310 struct e1000_hw *hw = &adapter->hw; 1311 u32 ctrl_reg = 0; 1312 u16 phy_reg = 0; 1313 s32 ret_val = 0; 1314 1315 hw->mac.autoneg = 0; 1316 1317 if (hw->phy.type == e1000_phy_ife) { 1318 /* force 100, set loopback */ 1319 e1e_wphy(hw, MII_BMCR, 0x6100); 1320 1321 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1322 ctrl_reg = er32(CTRL); 1323 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1324 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1325 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1326 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1327 E1000_CTRL_FD); /* Force Duplex to FULL */ 1328 1329 ew32(CTRL, ctrl_reg); 1330 e1e_flush(); 1331 usleep_range(500, 1000); 1332 1333 return 0; 1334 } 1335 1336 /* Specific PHY configuration for loopback */ 1337 switch (hw->phy.type) { 1338 case e1000_phy_m88: 1339 /* Auto-MDI/MDIX Off */ 1340 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1341 /* reset to update Auto-MDI/MDIX */ 1342 e1e_wphy(hw, MII_BMCR, 0x9140); 1343 /* autoneg off */ 1344 e1e_wphy(hw, MII_BMCR, 0x8140); 1345 break; 1346 case e1000_phy_gg82563: 1347 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1348 break; 1349 case e1000_phy_bm: 1350 /* Set Default MAC Interface speed to 1GB */ 1351 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1352 phy_reg &= ~0x0007; 1353 phy_reg |= 0x006; 1354 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1355 /* Assert SW reset for above settings to take effect */ 1356 hw->phy.ops.commit(hw); 1357 usleep_range(1000, 2000); 1358 /* Force Full Duplex */ 1359 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1360 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1361 /* Set Link Up (in force link) */ 1362 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1363 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1364 /* Force Link */ 1365 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1366 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1367 /* Set Early Link Enable */ 1368 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1369 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1370 break; 1371 case e1000_phy_82577: 1372 case e1000_phy_82578: 1373 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1374 ret_val = hw->phy.ops.acquire(hw); 1375 if (ret_val) { 1376 e_err("Cannot setup 1Gbps loopback.\n"); 1377 return ret_val; 1378 } 1379 e1000_configure_k1_ich8lan(hw, false); 1380 hw->phy.ops.release(hw); 1381 break; 1382 case e1000_phy_82579: 1383 /* Disable PHY energy detect power down */ 1384 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1385 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1386 /* Disable full chip energy detect */ 1387 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1388 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1389 /* Enable loopback on the PHY */ 1390 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1391 break; 1392 default: 1393 break; 1394 } 1395 1396 /* force 1000, set loopback */ 1397 e1e_wphy(hw, MII_BMCR, 0x4140); 1398 msleep(250); 1399 1400 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1401 ctrl_reg = er32(CTRL); 1402 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1403 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1404 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1405 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1406 E1000_CTRL_FD); /* Force Duplex to FULL */ 1407 1408 if (adapter->flags & FLAG_IS_ICH) 1409 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1410 1411 if (hw->phy.media_type == e1000_media_type_copper && 1412 hw->phy.type == e1000_phy_m88) { 1413 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1414 } else { 1415 /* Set the ILOS bit on the fiber Nic if half duplex link is 1416 * detected. 1417 */ 1418 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1419 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1420 } 1421 1422 ew32(CTRL, ctrl_reg); 1423 1424 /* Disable the receiver on the PHY so when a cable is plugged in, the 1425 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1426 */ 1427 if (hw->phy.type == e1000_phy_m88) 1428 e1000_phy_disable_receiver(adapter); 1429 1430 usleep_range(500, 1000); 1431 1432 return 0; 1433 } 1434 1435 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1436 { 1437 struct e1000_hw *hw = &adapter->hw; 1438 u32 ctrl = er32(CTRL); 1439 int link; 1440 1441 /* special requirements for 82571/82572 fiber adapters */ 1442 1443 /* jump through hoops to make sure link is up because serdes 1444 * link is hardwired up 1445 */ 1446 ctrl |= E1000_CTRL_SLU; 1447 ew32(CTRL, ctrl); 1448 1449 /* disable autoneg */ 1450 ctrl = er32(TXCW); 1451 ctrl &= ~BIT(31); 1452 ew32(TXCW, ctrl); 1453 1454 link = (er32(STATUS) & E1000_STATUS_LU); 1455 1456 if (!link) { 1457 /* set invert loss of signal */ 1458 ctrl = er32(CTRL); 1459 ctrl |= E1000_CTRL_ILOS; 1460 ew32(CTRL, ctrl); 1461 } 1462 1463 /* special write to serdes control register to enable SerDes analog 1464 * loopback 1465 */ 1466 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1467 e1e_flush(); 1468 usleep_range(10000, 11000); 1469 1470 return 0; 1471 } 1472 1473 /* only call this for fiber/serdes connections to es2lan */ 1474 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1475 { 1476 struct e1000_hw *hw = &adapter->hw; 1477 u32 ctrlext = er32(CTRL_EXT); 1478 u32 ctrl = er32(CTRL); 1479 1480 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1481 * on mac_type 80003es2lan) 1482 */ 1483 adapter->tx_fifo_head = ctrlext; 1484 1485 /* clear the serdes mode bits, putting the device into mac loopback */ 1486 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1487 ew32(CTRL_EXT, ctrlext); 1488 1489 /* force speed to 1000/FD, link up */ 1490 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1491 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1492 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1493 ew32(CTRL, ctrl); 1494 1495 /* set mac loopback */ 1496 ctrl = er32(RCTL); 1497 ctrl |= E1000_RCTL_LBM_MAC; 1498 ew32(RCTL, ctrl); 1499 1500 /* set testing mode parameters (no need to reset later) */ 1501 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1502 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1503 ew32(KMRNCTRLSTA, 1504 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1505 1506 return 0; 1507 } 1508 1509 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1510 { 1511 struct e1000_hw *hw = &adapter->hw; 1512 u32 rctl, fext_nvm11, tarc0; 1513 1514 if (hw->mac.type >= e1000_pch_spt) { 1515 fext_nvm11 = er32(FEXTNVM11); 1516 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1517 ew32(FEXTNVM11, fext_nvm11); 1518 tarc0 = er32(TARC(0)); 1519 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1520 tarc0 &= 0xcfffffff; 1521 /* set bit 29 (value of MULR requests is now 2) */ 1522 tarc0 |= 0x20000000; 1523 ew32(TARC(0), tarc0); 1524 } 1525 if (hw->phy.media_type == e1000_media_type_fiber || 1526 hw->phy.media_type == e1000_media_type_internal_serdes) { 1527 switch (hw->mac.type) { 1528 case e1000_80003es2lan: 1529 return e1000_set_es2lan_mac_loopback(adapter); 1530 case e1000_82571: 1531 case e1000_82572: 1532 return e1000_set_82571_fiber_loopback(adapter); 1533 default: 1534 rctl = er32(RCTL); 1535 rctl |= E1000_RCTL_LBM_TCVR; 1536 ew32(RCTL, rctl); 1537 return 0; 1538 } 1539 } else if (hw->phy.media_type == e1000_media_type_copper) { 1540 return e1000_integrated_phy_loopback(adapter); 1541 } 1542 1543 return 7; 1544 } 1545 1546 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1547 { 1548 struct e1000_hw *hw = &adapter->hw; 1549 u32 rctl, fext_nvm11, tarc0; 1550 u16 phy_reg; 1551 1552 rctl = er32(RCTL); 1553 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1554 ew32(RCTL, rctl); 1555 1556 switch (hw->mac.type) { 1557 case e1000_pch_spt: 1558 case e1000_pch_cnp: 1559 case e1000_pch_tgp: 1560 case e1000_pch_adp: 1561 case e1000_pch_mtp: 1562 case e1000_pch_lnp: 1563 case e1000_pch_ptp: 1564 case e1000_pch_nvp: 1565 fext_nvm11 = er32(FEXTNVM11); 1566 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1567 ew32(FEXTNVM11, fext_nvm11); 1568 tarc0 = er32(TARC(0)); 1569 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1570 /* set bit 29 (value of MULR requests is now 0) */ 1571 tarc0 &= 0xcfffffff; 1572 ew32(TARC(0), tarc0); 1573 fallthrough; 1574 case e1000_80003es2lan: 1575 if (hw->phy.media_type == e1000_media_type_fiber || 1576 hw->phy.media_type == e1000_media_type_internal_serdes) { 1577 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1578 ew32(CTRL_EXT, adapter->tx_fifo_head); 1579 adapter->tx_fifo_head = 0; 1580 } 1581 fallthrough; 1582 case e1000_82571: 1583 case e1000_82572: 1584 if (hw->phy.media_type == e1000_media_type_fiber || 1585 hw->phy.media_type == e1000_media_type_internal_serdes) { 1586 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1587 e1e_flush(); 1588 usleep_range(10000, 11000); 1589 break; 1590 } 1591 fallthrough; 1592 default: 1593 hw->mac.autoneg = 1; 1594 if (hw->phy.type == e1000_phy_gg82563) 1595 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1596 e1e_rphy(hw, MII_BMCR, &phy_reg); 1597 if (phy_reg & BMCR_LOOPBACK) { 1598 phy_reg &= ~BMCR_LOOPBACK; 1599 e1e_wphy(hw, MII_BMCR, phy_reg); 1600 if (hw->phy.ops.commit) 1601 hw->phy.ops.commit(hw); 1602 } 1603 break; 1604 } 1605 } 1606 1607 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1608 unsigned int frame_size) 1609 { 1610 memset(skb->data, 0xFF, frame_size); 1611 frame_size &= ~1; 1612 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1613 skb->data[frame_size / 2 + 10] = 0xBE; 1614 skb->data[frame_size / 2 + 12] = 0xAF; 1615 } 1616 1617 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1618 unsigned int frame_size) 1619 { 1620 frame_size &= ~1; 1621 if (*(skb->data + 3) == 0xFF) 1622 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1623 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1624 return 0; 1625 return 13; 1626 } 1627 1628 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1629 { 1630 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1631 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1632 struct pci_dev *pdev = adapter->pdev; 1633 struct e1000_hw *hw = &adapter->hw; 1634 struct e1000_buffer *buffer_info; 1635 int i, j, k, l; 1636 int lc; 1637 int good_cnt; 1638 int ret_val = 0; 1639 unsigned long time; 1640 1641 ew32(RDT(0), rx_ring->count - 1); 1642 1643 /* Calculate the loop count based on the largest descriptor ring 1644 * The idea is to wrap the largest ring a number of times using 64 1645 * send/receive pairs during each loop 1646 */ 1647 1648 if (rx_ring->count <= tx_ring->count) 1649 lc = ((tx_ring->count / 64) * 2) + 1; 1650 else 1651 lc = ((rx_ring->count / 64) * 2) + 1; 1652 1653 k = 0; 1654 l = 0; 1655 /* loop count loop */ 1656 for (j = 0; j <= lc; j++) { 1657 /* send the packets */ 1658 for (i = 0; i < 64; i++) { 1659 buffer_info = &tx_ring->buffer_info[k]; 1660 1661 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1662 dma_sync_single_for_device(&pdev->dev, 1663 buffer_info->dma, 1664 buffer_info->length, 1665 DMA_TO_DEVICE); 1666 k++; 1667 if (k == tx_ring->count) 1668 k = 0; 1669 } 1670 ew32(TDT(0), k); 1671 e1e_flush(); 1672 msleep(200); 1673 time = jiffies; /* set the start time for the receive */ 1674 good_cnt = 0; 1675 /* receive the sent packets */ 1676 do { 1677 buffer_info = &rx_ring->buffer_info[l]; 1678 1679 dma_sync_single_for_cpu(&pdev->dev, 1680 buffer_info->dma, 2048, 1681 DMA_FROM_DEVICE); 1682 1683 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1684 1024); 1685 if (!ret_val) 1686 good_cnt++; 1687 l++; 1688 if (l == rx_ring->count) 1689 l = 0; 1690 /* time + 20 msecs (200 msecs on 2.4) is more than 1691 * enough time to complete the receives, if it's 1692 * exceeded, break and error off 1693 */ 1694 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1695 if (good_cnt != 64) { 1696 ret_val = 13; /* ret_val is the same as mis-compare */ 1697 break; 1698 } 1699 if (time_after(jiffies, time + 20)) { 1700 ret_val = 14; /* error code for time out error */ 1701 break; 1702 } 1703 } 1704 return ret_val; 1705 } 1706 1707 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1708 { 1709 struct e1000_hw *hw = &adapter->hw; 1710 1711 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1712 if (hw->phy.ops.check_reset_block && 1713 hw->phy.ops.check_reset_block(hw)) { 1714 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1715 *data = 0; 1716 goto out; 1717 } 1718 1719 *data = e1000_setup_desc_rings(adapter); 1720 if (*data) 1721 goto out; 1722 1723 *data = e1000_setup_loopback_test(adapter); 1724 if (*data) 1725 goto err_loopback; 1726 1727 *data = e1000_run_loopback_test(adapter); 1728 e1000_loopback_cleanup(adapter); 1729 1730 err_loopback: 1731 e1000_free_desc_rings(adapter); 1732 out: 1733 return *data; 1734 } 1735 1736 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1737 { 1738 struct e1000_hw *hw = &adapter->hw; 1739 1740 *data = 0; 1741 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1742 int i = 0; 1743 1744 hw->mac.serdes_has_link = false; 1745 1746 /* On some blade server designs, link establishment 1747 * could take as long as 2-3 minutes 1748 */ 1749 do { 1750 hw->mac.ops.check_for_link(hw); 1751 if (hw->mac.serdes_has_link) 1752 return *data; 1753 msleep(20); 1754 } while (i++ < 3750); 1755 1756 *data = 1; 1757 } else { 1758 hw->mac.ops.check_for_link(hw); 1759 if (hw->mac.autoneg) 1760 /* On some Phy/switch combinations, link establishment 1761 * can take a few seconds more than expected. 1762 */ 1763 msleep_interruptible(5000); 1764 1765 if (!(er32(STATUS) & E1000_STATUS_LU)) 1766 *data = 1; 1767 } 1768 return *data; 1769 } 1770 1771 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1772 int sset) 1773 { 1774 switch (sset) { 1775 case ETH_SS_TEST: 1776 return E1000_TEST_LEN; 1777 case ETH_SS_STATS: 1778 return E1000_STATS_LEN; 1779 case ETH_SS_PRIV_FLAGS: 1780 return E1000E_PRIV_FLAGS_STR_LEN; 1781 default: 1782 return -EOPNOTSUPP; 1783 } 1784 } 1785 1786 static void e1000_diag_test(struct net_device *netdev, 1787 struct ethtool_test *eth_test, u64 *data) 1788 { 1789 struct e1000_adapter *adapter = netdev_priv(netdev); 1790 u16 autoneg_advertised; 1791 u8 forced_speed_duplex; 1792 u8 autoneg; 1793 bool if_running = netif_running(netdev); 1794 1795 set_bit(__E1000_TESTING, &adapter->state); 1796 1797 if (!if_running) { 1798 /* Get control of and reset hardware */ 1799 if (adapter->flags & FLAG_HAS_AMT) 1800 e1000e_get_hw_control(adapter); 1801 1802 e1000e_power_up_phy(adapter); 1803 1804 adapter->hw.phy.autoneg_wait_to_complete = 1; 1805 e1000e_reset(adapter); 1806 adapter->hw.phy.autoneg_wait_to_complete = 0; 1807 } 1808 1809 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1810 /* Offline tests */ 1811 1812 /* save speed, duplex, autoneg settings */ 1813 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1814 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1815 autoneg = adapter->hw.mac.autoneg; 1816 1817 e_info("offline testing starting\n"); 1818 1819 if (if_running) 1820 /* indicate we're in test mode */ 1821 e1000e_close(netdev); 1822 1823 if (e1000_reg_test(adapter, &data[0])) 1824 eth_test->flags |= ETH_TEST_FL_FAILED; 1825 1826 e1000e_reset(adapter); 1827 if (e1000_eeprom_test(adapter, &data[1])) 1828 eth_test->flags |= ETH_TEST_FL_FAILED; 1829 1830 e1000e_reset(adapter); 1831 if (e1000_intr_test(adapter, &data[2])) 1832 eth_test->flags |= ETH_TEST_FL_FAILED; 1833 1834 e1000e_reset(adapter); 1835 if (e1000_loopback_test(adapter, &data[3])) 1836 eth_test->flags |= ETH_TEST_FL_FAILED; 1837 1838 /* force this routine to wait until autoneg complete/timeout */ 1839 adapter->hw.phy.autoneg_wait_to_complete = 1; 1840 e1000e_reset(adapter); 1841 adapter->hw.phy.autoneg_wait_to_complete = 0; 1842 1843 if (e1000_link_test(adapter, &data[4])) 1844 eth_test->flags |= ETH_TEST_FL_FAILED; 1845 1846 /* restore speed, duplex, autoneg settings */ 1847 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1848 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1849 adapter->hw.mac.autoneg = autoneg; 1850 e1000e_reset(adapter); 1851 1852 clear_bit(__E1000_TESTING, &adapter->state); 1853 if (if_running) 1854 e1000e_open(netdev); 1855 } else { 1856 /* Online tests */ 1857 1858 e_info("online testing starting\n"); 1859 1860 /* register, eeprom, intr and loopback tests not run online */ 1861 data[0] = 0; 1862 data[1] = 0; 1863 data[2] = 0; 1864 data[3] = 0; 1865 1866 if (e1000_link_test(adapter, &data[4])) 1867 eth_test->flags |= ETH_TEST_FL_FAILED; 1868 1869 clear_bit(__E1000_TESTING, &adapter->state); 1870 } 1871 1872 if (!if_running) { 1873 e1000e_reset(adapter); 1874 1875 if (adapter->flags & FLAG_HAS_AMT) 1876 e1000e_release_hw_control(adapter); 1877 } 1878 1879 msleep_interruptible(4 * 1000); 1880 } 1881 1882 static void e1000_get_wol(struct net_device *netdev, 1883 struct ethtool_wolinfo *wol) 1884 { 1885 struct e1000_adapter *adapter = netdev_priv(netdev); 1886 1887 wol->supported = 0; 1888 wol->wolopts = 0; 1889 1890 if (!(adapter->flags & FLAG_HAS_WOL) || 1891 !device_can_wakeup(&adapter->pdev->dev)) 1892 return; 1893 1894 wol->supported = WAKE_UCAST | WAKE_MCAST | 1895 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1896 1897 /* apply any specific unsupported masks here */ 1898 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1899 wol->supported &= ~WAKE_UCAST; 1900 1901 if (adapter->wol & E1000_WUFC_EX) 1902 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1903 } 1904 1905 if (adapter->wol & E1000_WUFC_EX) 1906 wol->wolopts |= WAKE_UCAST; 1907 if (adapter->wol & E1000_WUFC_MC) 1908 wol->wolopts |= WAKE_MCAST; 1909 if (adapter->wol & E1000_WUFC_BC) 1910 wol->wolopts |= WAKE_BCAST; 1911 if (adapter->wol & E1000_WUFC_MAG) 1912 wol->wolopts |= WAKE_MAGIC; 1913 if (adapter->wol & E1000_WUFC_LNKC) 1914 wol->wolopts |= WAKE_PHY; 1915 } 1916 1917 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1918 { 1919 struct e1000_adapter *adapter = netdev_priv(netdev); 1920 1921 if (!(adapter->flags & FLAG_HAS_WOL) || 1922 !device_can_wakeup(&adapter->pdev->dev) || 1923 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1924 WAKE_MAGIC | WAKE_PHY))) 1925 return -EOPNOTSUPP; 1926 1927 /* these settings will always override what we currently have */ 1928 adapter->wol = 0; 1929 1930 if (wol->wolopts & WAKE_UCAST) 1931 adapter->wol |= E1000_WUFC_EX; 1932 if (wol->wolopts & WAKE_MCAST) 1933 adapter->wol |= E1000_WUFC_MC; 1934 if (wol->wolopts & WAKE_BCAST) 1935 adapter->wol |= E1000_WUFC_BC; 1936 if (wol->wolopts & WAKE_MAGIC) 1937 adapter->wol |= E1000_WUFC_MAG; 1938 if (wol->wolopts & WAKE_PHY) 1939 adapter->wol |= E1000_WUFC_LNKC; 1940 1941 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1942 1943 return 0; 1944 } 1945 1946 static int e1000_set_phys_id(struct net_device *netdev, 1947 enum ethtool_phys_id_state state) 1948 { 1949 struct e1000_adapter *adapter = netdev_priv(netdev); 1950 struct e1000_hw *hw = &adapter->hw; 1951 1952 switch (state) { 1953 case ETHTOOL_ID_ACTIVE: 1954 pm_runtime_get_sync(netdev->dev.parent); 1955 1956 if (!hw->mac.ops.blink_led) 1957 return 2; /* cycle on/off twice per second */ 1958 1959 hw->mac.ops.blink_led(hw); 1960 break; 1961 1962 case ETHTOOL_ID_INACTIVE: 1963 if (hw->phy.type == e1000_phy_ife) 1964 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1965 hw->mac.ops.led_off(hw); 1966 hw->mac.ops.cleanup_led(hw); 1967 pm_runtime_put_sync(netdev->dev.parent); 1968 break; 1969 1970 case ETHTOOL_ID_ON: 1971 hw->mac.ops.led_on(hw); 1972 break; 1973 1974 case ETHTOOL_ID_OFF: 1975 hw->mac.ops.led_off(hw); 1976 break; 1977 } 1978 1979 return 0; 1980 } 1981 1982 static int e1000_get_coalesce(struct net_device *netdev, 1983 struct ethtool_coalesce *ec, 1984 struct kernel_ethtool_coalesce *kernel_coal, 1985 struct netlink_ext_ack *extack) 1986 { 1987 struct e1000_adapter *adapter = netdev_priv(netdev); 1988 1989 if (adapter->itr_setting <= 4) 1990 ec->rx_coalesce_usecs = adapter->itr_setting; 1991 else 1992 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1993 1994 return 0; 1995 } 1996 1997 static int e1000_set_coalesce(struct net_device *netdev, 1998 struct ethtool_coalesce *ec, 1999 struct kernel_ethtool_coalesce *kernel_coal, 2000 struct netlink_ext_ack *extack) 2001 { 2002 struct e1000_adapter *adapter = netdev_priv(netdev); 2003 2004 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2005 ((ec->rx_coalesce_usecs > 4) && 2006 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2007 (ec->rx_coalesce_usecs == 2)) 2008 return -EINVAL; 2009 2010 if (ec->rx_coalesce_usecs == 4) { 2011 adapter->itr_setting = 4; 2012 adapter->itr = adapter->itr_setting; 2013 } else if (ec->rx_coalesce_usecs <= 3) { 2014 adapter->itr = 20000; 2015 adapter->itr_setting = ec->rx_coalesce_usecs; 2016 } else { 2017 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2018 adapter->itr_setting = adapter->itr & ~3; 2019 } 2020 2021 if (adapter->itr_setting != 0) 2022 e1000e_write_itr(adapter, adapter->itr); 2023 else 2024 e1000e_write_itr(adapter, 0); 2025 2026 return 0; 2027 } 2028 2029 static int e1000_nway_reset(struct net_device *netdev) 2030 { 2031 struct e1000_adapter *adapter = netdev_priv(netdev); 2032 2033 if (!netif_running(netdev)) 2034 return -EAGAIN; 2035 2036 if (!adapter->hw.mac.autoneg) 2037 return -EINVAL; 2038 2039 e1000e_reinit_locked(adapter); 2040 2041 return 0; 2042 } 2043 2044 static void e1000_get_ethtool_stats(struct net_device *netdev, 2045 struct ethtool_stats __always_unused *stats, 2046 u64 *data) 2047 { 2048 struct e1000_adapter *adapter = netdev_priv(netdev); 2049 struct rtnl_link_stats64 net_stats; 2050 int i; 2051 char *p = NULL; 2052 2053 dev_get_stats(netdev, &net_stats); 2054 2055 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2056 switch (e1000_gstrings_stats[i].type) { 2057 case NETDEV_STATS: 2058 p = (char *)&net_stats + 2059 e1000_gstrings_stats[i].stat_offset; 2060 break; 2061 case E1000_STATS: 2062 p = (char *)adapter + 2063 e1000_gstrings_stats[i].stat_offset; 2064 break; 2065 default: 2066 data[i] = 0; 2067 continue; 2068 } 2069 2070 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2071 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2072 } 2073 } 2074 2075 static void e1000_get_strings(struct net_device __always_unused *netdev, 2076 u32 stringset, u8 *data) 2077 { 2078 u8 *p = data; 2079 int i; 2080 2081 switch (stringset) { 2082 case ETH_SS_TEST: 2083 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2084 break; 2085 case ETH_SS_STATS: 2086 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2087 memcpy(p, e1000_gstrings_stats[i].stat_string, 2088 ETH_GSTRING_LEN); 2089 p += ETH_GSTRING_LEN; 2090 } 2091 break; 2092 case ETH_SS_PRIV_FLAGS: 2093 memcpy(data, e1000e_priv_flags_strings, 2094 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2095 break; 2096 } 2097 } 2098 2099 static int e1000_get_rxnfc(struct net_device *netdev, 2100 struct ethtool_rxnfc *info, 2101 u32 __always_unused *rule_locs) 2102 { 2103 info->data = 0; 2104 2105 switch (info->cmd) { 2106 case ETHTOOL_GRXFH: { 2107 struct e1000_adapter *adapter = netdev_priv(netdev); 2108 struct e1000_hw *hw = &adapter->hw; 2109 u32 mrqc; 2110 2111 mrqc = er32(MRQC); 2112 2113 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2114 return 0; 2115 2116 switch (info->flow_type) { 2117 case TCP_V4_FLOW: 2118 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2119 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2120 fallthrough; 2121 case UDP_V4_FLOW: 2122 case SCTP_V4_FLOW: 2123 case AH_ESP_V4_FLOW: 2124 case IPV4_FLOW: 2125 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2126 info->data |= RXH_IP_SRC | RXH_IP_DST; 2127 break; 2128 case TCP_V6_FLOW: 2129 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2130 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2131 fallthrough; 2132 case UDP_V6_FLOW: 2133 case SCTP_V6_FLOW: 2134 case AH_ESP_V6_FLOW: 2135 case IPV6_FLOW: 2136 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2137 info->data |= RXH_IP_SRC | RXH_IP_DST; 2138 break; 2139 default: 2140 break; 2141 } 2142 return 0; 2143 } 2144 default: 2145 return -EOPNOTSUPP; 2146 } 2147 } 2148 2149 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata) 2150 { 2151 struct e1000_adapter *adapter = netdev_priv(netdev); 2152 struct e1000_hw *hw = &adapter->hw; 2153 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2154 u32 ret_val; 2155 2156 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2157 return -EOPNOTSUPP; 2158 2159 switch (hw->phy.type) { 2160 case e1000_phy_82579: 2161 cap_addr = I82579_EEE_CAPABILITY; 2162 lpa_addr = I82579_EEE_LP_ABILITY; 2163 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2164 break; 2165 case e1000_phy_i217: 2166 cap_addr = I217_EEE_CAPABILITY; 2167 lpa_addr = I217_EEE_LP_ABILITY; 2168 pcs_stat_addr = I217_EEE_PCS_STATUS; 2169 break; 2170 default: 2171 return -EOPNOTSUPP; 2172 } 2173 2174 ret_val = hw->phy.ops.acquire(hw); 2175 if (ret_val) 2176 return -EBUSY; 2177 2178 /* EEE Capability */ 2179 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2180 if (ret_val) 2181 goto release; 2182 mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data); 2183 2184 /* EEE Advertised */ 2185 mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert); 2186 2187 /* EEE Link Partner Advertised */ 2188 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2189 if (ret_val) 2190 goto release; 2191 mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data); 2192 2193 /* EEE PCS Status */ 2194 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2195 if (ret_val) 2196 goto release; 2197 if (hw->phy.type == e1000_phy_82579) 2198 phy_data <<= 8; 2199 2200 /* Result of the EEE auto negotiation - there is no register that 2201 * has the status of the EEE negotiation so do a best-guess based 2202 * on whether Tx or Rx LPI indications have been received. 2203 */ 2204 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2205 edata->eee_active = true; 2206 2207 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2208 edata->tx_lpi_enabled = true; 2209 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2210 2211 release: 2212 hw->phy.ops.release(hw); 2213 if (ret_val) 2214 ret_val = -ENODATA; 2215 2216 return ret_val; 2217 } 2218 2219 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata) 2220 { 2221 struct e1000_adapter *adapter = netdev_priv(netdev); 2222 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {}; 2223 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {}; 2224 struct e1000_hw *hw = &adapter->hw; 2225 struct ethtool_keee eee_curr; 2226 s32 ret_val; 2227 2228 ret_val = e1000e_get_eee(netdev, &eee_curr); 2229 if (ret_val) 2230 return ret_val; 2231 2232 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2233 e_err("Setting EEE tx-lpi is not supported\n"); 2234 return -EINVAL; 2235 } 2236 2237 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2238 e_err("Setting EEE Tx LPI timer is not supported\n"); 2239 return -EINVAL; 2240 } 2241 2242 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2243 supported); 2244 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, 2245 supported); 2246 2247 if (linkmode_andnot(tmp, edata->advertised, supported)) { 2248 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2249 return -EINVAL; 2250 } 2251 2252 adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised); 2253 2254 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2255 2256 /* reset the link */ 2257 if (netif_running(netdev)) 2258 e1000e_reinit_locked(adapter); 2259 else 2260 e1000e_reset(adapter); 2261 2262 return 0; 2263 } 2264 2265 static int e1000e_get_ts_info(struct net_device *netdev, 2266 struct ethtool_ts_info *info) 2267 { 2268 struct e1000_adapter *adapter = netdev_priv(netdev); 2269 2270 ethtool_op_get_ts_info(netdev, info); 2271 2272 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2273 return 0; 2274 2275 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2276 SOF_TIMESTAMPING_RX_HARDWARE | 2277 SOF_TIMESTAMPING_RAW_HARDWARE); 2278 2279 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2280 2281 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2282 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2283 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2284 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2285 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2286 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2287 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2288 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2289 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2290 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2291 BIT(HWTSTAMP_FILTER_ALL)); 2292 2293 if (adapter->ptp_clock) 2294 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2295 2296 return 0; 2297 } 2298 2299 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2300 { 2301 struct e1000_adapter *adapter = netdev_priv(netdev); 2302 u32 priv_flags = 0; 2303 2304 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2305 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2306 2307 return priv_flags; 2308 } 2309 2310 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2311 { 2312 struct e1000_adapter *adapter = netdev_priv(netdev); 2313 unsigned int flags2 = adapter->flags2; 2314 2315 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS; 2316 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2317 struct e1000_hw *hw = &adapter->hw; 2318 2319 if (hw->mac.type < e1000_pch_cnp) 2320 return -EINVAL; 2321 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2322 } 2323 2324 if (flags2 != adapter->flags2) 2325 adapter->flags2 = flags2; 2326 2327 return 0; 2328 } 2329 2330 static const struct ethtool_ops e1000_ethtool_ops = { 2331 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2332 .get_drvinfo = e1000_get_drvinfo, 2333 .get_regs_len = e1000_get_regs_len, 2334 .get_regs = e1000_get_regs, 2335 .get_wol = e1000_get_wol, 2336 .set_wol = e1000_set_wol, 2337 .get_msglevel = e1000_get_msglevel, 2338 .set_msglevel = e1000_set_msglevel, 2339 .nway_reset = e1000_nway_reset, 2340 .get_link = ethtool_op_get_link, 2341 .get_eeprom_len = e1000_get_eeprom_len, 2342 .get_eeprom = e1000_get_eeprom, 2343 .set_eeprom = e1000_set_eeprom, 2344 .get_ringparam = e1000_get_ringparam, 2345 .set_ringparam = e1000_set_ringparam, 2346 .get_pauseparam = e1000_get_pauseparam, 2347 .set_pauseparam = e1000_set_pauseparam, 2348 .self_test = e1000_diag_test, 2349 .get_strings = e1000_get_strings, 2350 .set_phys_id = e1000_set_phys_id, 2351 .get_ethtool_stats = e1000_get_ethtool_stats, 2352 .get_sset_count = e1000e_get_sset_count, 2353 .get_coalesce = e1000_get_coalesce, 2354 .set_coalesce = e1000_set_coalesce, 2355 .get_rxnfc = e1000_get_rxnfc, 2356 .get_ts_info = e1000e_get_ts_info, 2357 .get_eee = e1000e_get_eee, 2358 .set_eee = e1000e_set_eee, 2359 .get_link_ksettings = e1000_get_link_ksettings, 2360 .set_link_ksettings = e1000_set_link_ksettings, 2361 .get_priv_flags = e1000e_get_priv_flags, 2362 .set_priv_flags = e1000e_set_priv_flags, 2363 }; 2364 2365 void e1000e_set_ethtool_ops(struct net_device *netdev) 2366 { 2367 netdev->ethtool_ops = &e1000_ethtool_ops; 2368 } 2369