1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 #include <linux/vmalloc.h> 38 39 #include "e1000.h" 40 41 enum {NETDEV_STATS, E1000_STATS}; 42 43 struct e1000_stats { 44 char stat_string[ETH_GSTRING_LEN]; 45 int type; 46 int sizeof_stat; 47 int stat_offset; 48 }; 49 50 #define E1000_STAT(str, m) { \ 51 .stat_string = str, \ 52 .type = E1000_STATS, \ 53 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 54 .stat_offset = offsetof(struct e1000_adapter, m) } 55 #define E1000_NETDEV_STAT(str, m) { \ 56 .stat_string = str, \ 57 .type = NETDEV_STATS, \ 58 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 59 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 60 61 static const struct e1000_stats e1000_gstrings_stats[] = { 62 E1000_STAT("rx_packets", stats.gprc), 63 E1000_STAT("tx_packets", stats.gptc), 64 E1000_STAT("rx_bytes", stats.gorc), 65 E1000_STAT("tx_bytes", stats.gotc), 66 E1000_STAT("rx_broadcast", stats.bprc), 67 E1000_STAT("tx_broadcast", stats.bptc), 68 E1000_STAT("rx_multicast", stats.mprc), 69 E1000_STAT("tx_multicast", stats.mptc), 70 E1000_NETDEV_STAT("rx_errors", rx_errors), 71 E1000_NETDEV_STAT("tx_errors", tx_errors), 72 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 73 E1000_STAT("multicast", stats.mprc), 74 E1000_STAT("collisions", stats.colc), 75 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 76 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 77 E1000_STAT("rx_crc_errors", stats.crcerrs), 78 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 79 E1000_STAT("rx_no_buffer_count", stats.rnbc), 80 E1000_STAT("rx_missed_errors", stats.mpc), 81 E1000_STAT("tx_aborted_errors", stats.ecol), 82 E1000_STAT("tx_carrier_errors", stats.tncrs), 83 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 84 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 85 E1000_STAT("tx_window_errors", stats.latecol), 86 E1000_STAT("tx_abort_late_coll", stats.latecol), 87 E1000_STAT("tx_deferred_ok", stats.dc), 88 E1000_STAT("tx_single_coll_ok", stats.scc), 89 E1000_STAT("tx_multi_coll_ok", stats.mcc), 90 E1000_STAT("tx_timeout_count", tx_timeout_count), 91 E1000_STAT("tx_restart_queue", restart_queue), 92 E1000_STAT("rx_long_length_errors", stats.roc), 93 E1000_STAT("rx_short_length_errors", stats.ruc), 94 E1000_STAT("rx_align_errors", stats.algnerrc), 95 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 96 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 97 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 98 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 99 E1000_STAT("tx_flow_control_xon", stats.xontxc), 100 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 101 E1000_STAT("rx_long_byte_count", stats.gorc), 102 E1000_STAT("rx_csum_offload_good", hw_csum_good), 103 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 104 E1000_STAT("rx_header_split", rx_hdr_split), 105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 106 E1000_STAT("tx_smbus", stats.mgptc), 107 E1000_STAT("rx_smbus", stats.mgprc), 108 E1000_STAT("dropped_smbus", stats.mgpdc), 109 E1000_STAT("rx_dma_failed", rx_dma_failed), 110 E1000_STAT("tx_dma_failed", tx_dma_failed), 111 }; 112 113 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 116 "Register test (offline)", "Eeprom test (offline)", 117 "Interrupt test (offline)", "Loopback test (offline)", 118 "Link test (on/offline)" 119 }; 120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 121 122 static int e1000_get_settings(struct net_device *netdev, 123 struct ethtool_cmd *ecmd) 124 { 125 struct e1000_adapter *adapter = netdev_priv(netdev); 126 struct e1000_hw *hw = &adapter->hw; 127 u32 speed; 128 129 if (hw->phy.media_type == e1000_media_type_copper) { 130 131 ecmd->supported = (SUPPORTED_10baseT_Half | 132 SUPPORTED_10baseT_Full | 133 SUPPORTED_100baseT_Half | 134 SUPPORTED_100baseT_Full | 135 SUPPORTED_1000baseT_Full | 136 SUPPORTED_Autoneg | 137 SUPPORTED_TP); 138 if (hw->phy.type == e1000_phy_ife) 139 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 140 ecmd->advertising = ADVERTISED_TP; 141 142 if (hw->mac.autoneg == 1) { 143 ecmd->advertising |= ADVERTISED_Autoneg; 144 /* the e1000 autoneg seems to match ethtool nicely */ 145 ecmd->advertising |= hw->phy.autoneg_advertised; 146 } 147 148 ecmd->port = PORT_TP; 149 ecmd->phy_address = hw->phy.addr; 150 ecmd->transceiver = XCVR_INTERNAL; 151 152 } else { 153 ecmd->supported = (SUPPORTED_1000baseT_Full | 154 SUPPORTED_FIBRE | 155 SUPPORTED_Autoneg); 156 157 ecmd->advertising = (ADVERTISED_1000baseT_Full | 158 ADVERTISED_FIBRE | 159 ADVERTISED_Autoneg); 160 161 ecmd->port = PORT_FIBRE; 162 ecmd->transceiver = XCVR_EXTERNAL; 163 } 164 165 speed = -1; 166 ecmd->duplex = -1; 167 168 if (netif_running(netdev)) { 169 if (netif_carrier_ok(netdev)) { 170 speed = adapter->link_speed; 171 ecmd->duplex = adapter->link_duplex - 1; 172 } 173 } else { 174 u32 status = er32(STATUS); 175 if (status & E1000_STATUS_LU) { 176 if (status & E1000_STATUS_SPEED_1000) 177 speed = SPEED_1000; 178 else if (status & E1000_STATUS_SPEED_100) 179 speed = SPEED_100; 180 else 181 speed = SPEED_10; 182 183 if (status & E1000_STATUS_FD) 184 ecmd->duplex = DUPLEX_FULL; 185 else 186 ecmd->duplex = DUPLEX_HALF; 187 } 188 } 189 190 ethtool_cmd_speed_set(ecmd, speed); 191 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 192 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 193 194 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 195 if ((hw->phy.media_type == e1000_media_type_copper) && 196 netif_carrier_ok(netdev)) 197 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 198 ETH_TP_MDI; 199 else 200 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 201 202 if (hw->phy.mdix == AUTO_ALL_MODES) 203 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 204 else 205 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 206 207 return 0; 208 } 209 210 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 211 { 212 struct e1000_mac_info *mac = &adapter->hw.mac; 213 214 mac->autoneg = 0; 215 216 /* Make sure dplx is at most 1 bit and lsb of speed is not set 217 * for the switch() below to work 218 */ 219 if ((spd & 1) || (dplx & ~1)) 220 goto err_inval; 221 222 /* Fiber NICs only allow 1000 gbps Full duplex */ 223 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 224 spd != SPEED_1000 && 225 dplx != DUPLEX_FULL) { 226 goto err_inval; 227 } 228 229 switch (spd + dplx) { 230 case SPEED_10 + DUPLEX_HALF: 231 mac->forced_speed_duplex = ADVERTISE_10_HALF; 232 break; 233 case SPEED_10 + DUPLEX_FULL: 234 mac->forced_speed_duplex = ADVERTISE_10_FULL; 235 break; 236 case SPEED_100 + DUPLEX_HALF: 237 mac->forced_speed_duplex = ADVERTISE_100_HALF; 238 break; 239 case SPEED_100 + DUPLEX_FULL: 240 mac->forced_speed_duplex = ADVERTISE_100_FULL; 241 break; 242 case SPEED_1000 + DUPLEX_FULL: 243 mac->autoneg = 1; 244 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 245 break; 246 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 247 default: 248 goto err_inval; 249 } 250 251 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 252 adapter->hw.phy.mdix = AUTO_ALL_MODES; 253 254 return 0; 255 256 err_inval: 257 e_err("Unsupported Speed/Duplex configuration\n"); 258 return -EINVAL; 259 } 260 261 static int e1000_set_settings(struct net_device *netdev, 262 struct ethtool_cmd *ecmd) 263 { 264 struct e1000_adapter *adapter = netdev_priv(netdev); 265 struct e1000_hw *hw = &adapter->hw; 266 267 /* When SoL/IDER sessions are active, autoneg/speed/duplex 268 * cannot be changed 269 */ 270 if (hw->phy.ops.check_reset_block && 271 hw->phy.ops.check_reset_block(hw)) { 272 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 273 return -EINVAL; 274 } 275 276 /* MDI setting is only allowed when autoneg enabled because 277 * some hardware doesn't allow MDI setting when speed or 278 * duplex is forced. 279 */ 280 if (ecmd->eth_tp_mdix_ctrl) { 281 if (hw->phy.media_type != e1000_media_type_copper) 282 return -EOPNOTSUPP; 283 284 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 285 (ecmd->autoneg != AUTONEG_ENABLE)) { 286 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 287 return -EINVAL; 288 } 289 } 290 291 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 292 usleep_range(1000, 2000); 293 294 if (ecmd->autoneg == AUTONEG_ENABLE) { 295 hw->mac.autoneg = 1; 296 if (hw->phy.media_type == e1000_media_type_fiber) 297 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 298 ADVERTISED_FIBRE | 299 ADVERTISED_Autoneg; 300 else 301 hw->phy.autoneg_advertised = ecmd->advertising | 302 ADVERTISED_TP | 303 ADVERTISED_Autoneg; 304 ecmd->advertising = hw->phy.autoneg_advertised; 305 if (adapter->fc_autoneg) 306 hw->fc.requested_mode = e1000_fc_default; 307 } else { 308 u32 speed = ethtool_cmd_speed(ecmd); 309 /* calling this overrides forced MDI setting */ 310 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 311 clear_bit(__E1000_RESETTING, &adapter->state); 312 return -EINVAL; 313 } 314 } 315 316 /* MDI-X => 2; MDI => 1; Auto => 3 */ 317 if (ecmd->eth_tp_mdix_ctrl) { 318 /* fix up the value for auto (3 => 0) as zero is mapped 319 * internally to auto 320 */ 321 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 322 hw->phy.mdix = AUTO_ALL_MODES; 323 else 324 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 325 } 326 327 /* reset the link */ 328 329 if (netif_running(adapter->netdev)) { 330 e1000e_down(adapter); 331 e1000e_up(adapter); 332 } else 333 e1000e_reset(adapter); 334 335 clear_bit(__E1000_RESETTING, &adapter->state); 336 return 0; 337 } 338 339 static void e1000_get_pauseparam(struct net_device *netdev, 340 struct ethtool_pauseparam *pause) 341 { 342 struct e1000_adapter *adapter = netdev_priv(netdev); 343 struct e1000_hw *hw = &adapter->hw; 344 345 pause->autoneg = 346 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 347 348 if (hw->fc.current_mode == e1000_fc_rx_pause) { 349 pause->rx_pause = 1; 350 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 351 pause->tx_pause = 1; 352 } else if (hw->fc.current_mode == e1000_fc_full) { 353 pause->rx_pause = 1; 354 pause->tx_pause = 1; 355 } 356 } 357 358 static int e1000_set_pauseparam(struct net_device *netdev, 359 struct ethtool_pauseparam *pause) 360 { 361 struct e1000_adapter *adapter = netdev_priv(netdev); 362 struct e1000_hw *hw = &adapter->hw; 363 int retval = 0; 364 365 adapter->fc_autoneg = pause->autoneg; 366 367 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 368 usleep_range(1000, 2000); 369 370 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 371 hw->fc.requested_mode = e1000_fc_default; 372 if (netif_running(adapter->netdev)) { 373 e1000e_down(adapter); 374 e1000e_up(adapter); 375 } else { 376 e1000e_reset(adapter); 377 } 378 } else { 379 if (pause->rx_pause && pause->tx_pause) 380 hw->fc.requested_mode = e1000_fc_full; 381 else if (pause->rx_pause && !pause->tx_pause) 382 hw->fc.requested_mode = e1000_fc_rx_pause; 383 else if (!pause->rx_pause && pause->tx_pause) 384 hw->fc.requested_mode = e1000_fc_tx_pause; 385 else if (!pause->rx_pause && !pause->tx_pause) 386 hw->fc.requested_mode = e1000_fc_none; 387 388 hw->fc.current_mode = hw->fc.requested_mode; 389 390 if (hw->phy.media_type == e1000_media_type_fiber) { 391 retval = hw->mac.ops.setup_link(hw); 392 /* implicit goto out */ 393 } else { 394 retval = e1000e_force_mac_fc(hw); 395 if (retval) 396 goto out; 397 e1000e_set_fc_watermarks(hw); 398 } 399 } 400 401 out: 402 clear_bit(__E1000_RESETTING, &adapter->state); 403 return retval; 404 } 405 406 static u32 e1000_get_msglevel(struct net_device *netdev) 407 { 408 struct e1000_adapter *adapter = netdev_priv(netdev); 409 return adapter->msg_enable; 410 } 411 412 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 413 { 414 struct e1000_adapter *adapter = netdev_priv(netdev); 415 adapter->msg_enable = data; 416 } 417 418 static int e1000_get_regs_len(struct net_device *netdev) 419 { 420 #define E1000_REGS_LEN 32 /* overestimate */ 421 return E1000_REGS_LEN * sizeof(u32); 422 } 423 424 static void e1000_get_regs(struct net_device *netdev, 425 struct ethtool_regs *regs, void *p) 426 { 427 struct e1000_adapter *adapter = netdev_priv(netdev); 428 struct e1000_hw *hw = &adapter->hw; 429 u32 *regs_buff = p; 430 u16 phy_data; 431 432 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 433 434 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 435 adapter->pdev->device; 436 437 regs_buff[0] = er32(CTRL); 438 regs_buff[1] = er32(STATUS); 439 440 regs_buff[2] = er32(RCTL); 441 regs_buff[3] = er32(RDLEN(0)); 442 regs_buff[4] = er32(RDH(0)); 443 regs_buff[5] = er32(RDT(0)); 444 regs_buff[6] = er32(RDTR); 445 446 regs_buff[7] = er32(TCTL); 447 regs_buff[8] = er32(TDLEN(0)); 448 regs_buff[9] = er32(TDH(0)); 449 regs_buff[10] = er32(TDT(0)); 450 regs_buff[11] = er32(TIDV); 451 452 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 453 454 /* ethtool doesn't use anything past this point, so all this 455 * code is likely legacy junk for apps that may or may not exist 456 */ 457 if (hw->phy.type == e1000_phy_m88) { 458 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 459 regs_buff[13] = (u32)phy_data; /* cable length */ 460 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 461 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 462 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 463 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 464 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 465 regs_buff[18] = regs_buff[13]; /* cable polarity */ 466 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 467 regs_buff[20] = regs_buff[17]; /* polarity correction */ 468 /* phy receive errors */ 469 regs_buff[22] = adapter->phy_stats.receive_errors; 470 regs_buff[23] = regs_buff[13]; /* mdix mode */ 471 } 472 regs_buff[21] = 0; /* was idle_errors */ 473 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); 474 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 475 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 476 } 477 478 static int e1000_get_eeprom_len(struct net_device *netdev) 479 { 480 struct e1000_adapter *adapter = netdev_priv(netdev); 481 return adapter->hw.nvm.word_size * 2; 482 } 483 484 static int e1000_get_eeprom(struct net_device *netdev, 485 struct ethtool_eeprom *eeprom, u8 *bytes) 486 { 487 struct e1000_adapter *adapter = netdev_priv(netdev); 488 struct e1000_hw *hw = &adapter->hw; 489 u16 *eeprom_buff; 490 int first_word; 491 int last_word; 492 int ret_val = 0; 493 u16 i; 494 495 if (eeprom->len == 0) 496 return -EINVAL; 497 498 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 499 500 first_word = eeprom->offset >> 1; 501 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 502 503 eeprom_buff = kmalloc(sizeof(u16) * 504 (last_word - first_word + 1), GFP_KERNEL); 505 if (!eeprom_buff) 506 return -ENOMEM; 507 508 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 509 ret_val = e1000_read_nvm(hw, first_word, 510 last_word - first_word + 1, 511 eeprom_buff); 512 } else { 513 for (i = 0; i < last_word - first_word + 1; i++) { 514 ret_val = e1000_read_nvm(hw, first_word + i, 1, 515 &eeprom_buff[i]); 516 if (ret_val) 517 break; 518 } 519 } 520 521 if (ret_val) { 522 /* a read error occurred, throw away the result */ 523 memset(eeprom_buff, 0xff, sizeof(u16) * 524 (last_word - first_word + 1)); 525 } else { 526 /* Device's eeprom is always little-endian, word addressable */ 527 for (i = 0; i < last_word - first_word + 1; i++) 528 le16_to_cpus(&eeprom_buff[i]); 529 } 530 531 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 532 kfree(eeprom_buff); 533 534 return ret_val; 535 } 536 537 static int e1000_set_eeprom(struct net_device *netdev, 538 struct ethtool_eeprom *eeprom, u8 *bytes) 539 { 540 struct e1000_adapter *adapter = netdev_priv(netdev); 541 struct e1000_hw *hw = &adapter->hw; 542 u16 *eeprom_buff; 543 void *ptr; 544 int max_len; 545 int first_word; 546 int last_word; 547 int ret_val = 0; 548 u16 i; 549 550 if (eeprom->len == 0) 551 return -EOPNOTSUPP; 552 553 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) 554 return -EFAULT; 555 556 if (adapter->flags & FLAG_READ_ONLY_NVM) 557 return -EINVAL; 558 559 max_len = hw->nvm.word_size * 2; 560 561 first_word = eeprom->offset >> 1; 562 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 563 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 564 if (!eeprom_buff) 565 return -ENOMEM; 566 567 ptr = (void *)eeprom_buff; 568 569 if (eeprom->offset & 1) { 570 /* need read/modify/write of first changed EEPROM word */ 571 /* only the second byte of the word is being modified */ 572 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 573 ptr++; 574 } 575 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 576 /* need read/modify/write of last changed EEPROM word */ 577 /* only the first byte of the word is being modified */ 578 ret_val = e1000_read_nvm(hw, last_word, 1, 579 &eeprom_buff[last_word - first_word]); 580 581 if (ret_val) 582 goto out; 583 584 /* Device's eeprom is always little-endian, word addressable */ 585 for (i = 0; i < last_word - first_word + 1; i++) 586 le16_to_cpus(&eeprom_buff[i]); 587 588 memcpy(ptr, bytes, eeprom->len); 589 590 for (i = 0; i < last_word - first_word + 1; i++) 591 cpu_to_le16s(&eeprom_buff[i]); 592 593 ret_val = e1000_write_nvm(hw, first_word, 594 last_word - first_word + 1, eeprom_buff); 595 596 if (ret_val) 597 goto out; 598 599 /* Update the checksum over the first part of the EEPROM if needed 600 * and flush shadow RAM for applicable controllers 601 */ 602 if ((first_word <= NVM_CHECKSUM_REG) || 603 (hw->mac.type == e1000_82583) || 604 (hw->mac.type == e1000_82574) || 605 (hw->mac.type == e1000_82573)) 606 ret_val = e1000e_update_nvm_checksum(hw); 607 608 out: 609 kfree(eeprom_buff); 610 return ret_val; 611 } 612 613 static void e1000_get_drvinfo(struct net_device *netdev, 614 struct ethtool_drvinfo *drvinfo) 615 { 616 struct e1000_adapter *adapter = netdev_priv(netdev); 617 618 strlcpy(drvinfo->driver, e1000e_driver_name, 619 sizeof(drvinfo->driver)); 620 strlcpy(drvinfo->version, e1000e_driver_version, 621 sizeof(drvinfo->version)); 622 623 /* EEPROM image version # is reported as firmware version # for 624 * PCI-E controllers 625 */ 626 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 627 "%d.%d-%d", 628 (adapter->eeprom_vers & 0xF000) >> 12, 629 (adapter->eeprom_vers & 0x0FF0) >> 4, 630 (adapter->eeprom_vers & 0x000F)); 631 632 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 633 sizeof(drvinfo->bus_info)); 634 drvinfo->regdump_len = e1000_get_regs_len(netdev); 635 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 636 } 637 638 static void e1000_get_ringparam(struct net_device *netdev, 639 struct ethtool_ringparam *ring) 640 { 641 struct e1000_adapter *adapter = netdev_priv(netdev); 642 643 ring->rx_max_pending = E1000_MAX_RXD; 644 ring->tx_max_pending = E1000_MAX_TXD; 645 ring->rx_pending = adapter->rx_ring_count; 646 ring->tx_pending = adapter->tx_ring_count; 647 } 648 649 static int e1000_set_ringparam(struct net_device *netdev, 650 struct ethtool_ringparam *ring) 651 { 652 struct e1000_adapter *adapter = netdev_priv(netdev); 653 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 654 int err = 0, size = sizeof(struct e1000_ring); 655 bool set_tx = false, set_rx = false; 656 u16 new_rx_count, new_tx_count; 657 658 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 659 return -EINVAL; 660 661 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 662 E1000_MAX_RXD); 663 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 664 665 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 666 E1000_MAX_TXD); 667 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 668 669 if ((new_tx_count == adapter->tx_ring_count) && 670 (new_rx_count == adapter->rx_ring_count)) 671 /* nothing to do */ 672 return 0; 673 674 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 675 usleep_range(1000, 2000); 676 677 if (!netif_running(adapter->netdev)) { 678 /* Set counts now and allocate resources during open() */ 679 adapter->tx_ring->count = new_tx_count; 680 adapter->rx_ring->count = new_rx_count; 681 adapter->tx_ring_count = new_tx_count; 682 adapter->rx_ring_count = new_rx_count; 683 goto clear_reset; 684 } 685 686 set_tx = (new_tx_count != adapter->tx_ring_count); 687 set_rx = (new_rx_count != adapter->rx_ring_count); 688 689 /* Allocate temporary storage for ring updates */ 690 if (set_tx) { 691 temp_tx = vmalloc(size); 692 if (!temp_tx) { 693 err = -ENOMEM; 694 goto free_temp; 695 } 696 } 697 if (set_rx) { 698 temp_rx = vmalloc(size); 699 if (!temp_rx) { 700 err = -ENOMEM; 701 goto free_temp; 702 } 703 } 704 705 e1000e_down(adapter); 706 707 /* We can't just free everything and then setup again, because the 708 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 709 * structs. First, attempt to allocate new resources... 710 */ 711 if (set_tx) { 712 memcpy(temp_tx, adapter->tx_ring, size); 713 temp_tx->count = new_tx_count; 714 err = e1000e_setup_tx_resources(temp_tx); 715 if (err) 716 goto err_setup; 717 } 718 if (set_rx) { 719 memcpy(temp_rx, adapter->rx_ring, size); 720 temp_rx->count = new_rx_count; 721 err = e1000e_setup_rx_resources(temp_rx); 722 if (err) 723 goto err_setup_rx; 724 } 725 726 /* ...then free the old resources and copy back any new ring data */ 727 if (set_tx) { 728 e1000e_free_tx_resources(adapter->tx_ring); 729 memcpy(adapter->tx_ring, temp_tx, size); 730 adapter->tx_ring_count = new_tx_count; 731 } 732 if (set_rx) { 733 e1000e_free_rx_resources(adapter->rx_ring); 734 memcpy(adapter->rx_ring, temp_rx, size); 735 adapter->rx_ring_count = new_rx_count; 736 } 737 738 err_setup_rx: 739 if (err && set_tx) 740 e1000e_free_tx_resources(temp_tx); 741 err_setup: 742 e1000e_up(adapter); 743 free_temp: 744 vfree(temp_tx); 745 vfree(temp_rx); 746 clear_reset: 747 clear_bit(__E1000_RESETTING, &adapter->state); 748 return err; 749 } 750 751 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 752 int reg, int offset, u32 mask, u32 write) 753 { 754 u32 pat, val; 755 static const u32 test[] = { 756 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 757 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 758 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 759 (test[pat] & write)); 760 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 761 if (val != (test[pat] & write & mask)) { 762 e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 763 reg + offset, val, (test[pat] & write & mask)); 764 *data = reg; 765 return 1; 766 } 767 } 768 return 0; 769 } 770 771 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 772 int reg, u32 mask, u32 write) 773 { 774 u32 val; 775 __ew32(&adapter->hw, reg, write & mask); 776 val = __er32(&adapter->hw, reg); 777 if ((write & mask) != (val & mask)) { 778 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 779 reg, (val & mask), (write & mask)); 780 *data = reg; 781 return 1; 782 } 783 return 0; 784 } 785 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 786 do { \ 787 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 788 return 1; \ 789 } while (0) 790 #define REG_PATTERN_TEST(reg, mask, write) \ 791 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 792 793 #define REG_SET_AND_CHECK(reg, mask, write) \ 794 do { \ 795 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 796 return 1; \ 797 } while (0) 798 799 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 800 { 801 struct e1000_hw *hw = &adapter->hw; 802 struct e1000_mac_info *mac = &adapter->hw.mac; 803 u32 value; 804 u32 before; 805 u32 after; 806 u32 i; 807 u32 toggle; 808 u32 mask; 809 u32 wlock_mac = 0; 810 811 /* The status register is Read Only, so a write should fail. 812 * Some bits that get toggled are ignored. 813 */ 814 switch (mac->type) { 815 /* there are several bits on newer hardware that are r/w */ 816 case e1000_82571: 817 case e1000_82572: 818 case e1000_80003es2lan: 819 toggle = 0x7FFFF3FF; 820 break; 821 default: 822 toggle = 0x7FFFF033; 823 break; 824 } 825 826 before = er32(STATUS); 827 value = (er32(STATUS) & toggle); 828 ew32(STATUS, toggle); 829 after = er32(STATUS) & toggle; 830 if (value != after) { 831 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 832 after, value); 833 *data = 1; 834 return 1; 835 } 836 /* restore previous status */ 837 ew32(STATUS, before); 838 839 if (!(adapter->flags & FLAG_IS_ICH)) { 840 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 841 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 842 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 843 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 844 } 845 846 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 847 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 848 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 849 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 850 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 851 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 852 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 853 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 854 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 855 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 856 857 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 858 859 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 860 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 861 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 862 863 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 864 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 865 if (!(adapter->flags & FLAG_IS_ICH)) 866 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 867 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 868 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 869 mask = 0x8003FFFF; 870 switch (mac->type) { 871 case e1000_ich10lan: 872 case e1000_pchlan: 873 case e1000_pch2lan: 874 case e1000_pch_lpt: 875 mask |= (1 << 18); 876 break; 877 default: 878 break; 879 } 880 881 if (mac->type == e1000_pch_lpt) 882 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 883 E1000_FWSM_WLOCK_MAC_SHIFT; 884 885 for (i = 0; i < mac->rar_entry_count; i++) { 886 /* Cannot test write-protected SHRAL[n] registers */ 887 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 888 continue; 889 890 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), 891 mask, 0xFFFFFFFF); 892 } 893 894 for (i = 0; i < mac->mta_reg_count; i++) 895 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 896 897 *data = 0; 898 899 return 0; 900 } 901 902 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 903 { 904 u16 temp; 905 u16 checksum = 0; 906 u16 i; 907 908 *data = 0; 909 /* Read and add up the contents of the EEPROM */ 910 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 911 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 912 *data = 1; 913 return *data; 914 } 915 checksum += temp; 916 } 917 918 /* If Checksum is not Correct return error else test passed */ 919 if ((checksum != (u16) NVM_SUM) && !(*data)) 920 *data = 2; 921 922 return *data; 923 } 924 925 static irqreturn_t e1000_test_intr(int irq, void *data) 926 { 927 struct net_device *netdev = (struct net_device *) data; 928 struct e1000_adapter *adapter = netdev_priv(netdev); 929 struct e1000_hw *hw = &adapter->hw; 930 931 adapter->test_icr |= er32(ICR); 932 933 return IRQ_HANDLED; 934 } 935 936 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 937 { 938 struct net_device *netdev = adapter->netdev; 939 struct e1000_hw *hw = &adapter->hw; 940 u32 mask; 941 u32 shared_int = 1; 942 u32 irq = adapter->pdev->irq; 943 int i; 944 int ret_val = 0; 945 int int_mode = E1000E_INT_MODE_LEGACY; 946 947 *data = 0; 948 949 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 950 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 951 int_mode = adapter->int_mode; 952 e1000e_reset_interrupt_capability(adapter); 953 adapter->int_mode = E1000E_INT_MODE_LEGACY; 954 e1000e_set_interrupt_capability(adapter); 955 } 956 /* Hook up test interrupt handler just for this test */ 957 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 958 netdev)) { 959 shared_int = 0; 960 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 961 netdev->name, netdev)) { 962 *data = 1; 963 ret_val = -1; 964 goto out; 965 } 966 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 967 968 /* Disable all the interrupts */ 969 ew32(IMC, 0xFFFFFFFF); 970 e1e_flush(); 971 usleep_range(10000, 20000); 972 973 /* Test each interrupt */ 974 for (i = 0; i < 10; i++) { 975 /* Interrupt to test */ 976 mask = 1 << i; 977 978 if (adapter->flags & FLAG_IS_ICH) { 979 switch (mask) { 980 case E1000_ICR_RXSEQ: 981 continue; 982 case 0x00000100: 983 if (adapter->hw.mac.type == e1000_ich8lan || 984 adapter->hw.mac.type == e1000_ich9lan) 985 continue; 986 break; 987 default: 988 break; 989 } 990 } 991 992 if (!shared_int) { 993 /* Disable the interrupt to be reported in 994 * the cause register and then force the same 995 * interrupt and see if one gets posted. If 996 * an interrupt was posted to the bus, the 997 * test failed. 998 */ 999 adapter->test_icr = 0; 1000 ew32(IMC, mask); 1001 ew32(ICS, mask); 1002 e1e_flush(); 1003 usleep_range(10000, 20000); 1004 1005 if (adapter->test_icr & mask) { 1006 *data = 3; 1007 break; 1008 } 1009 } 1010 1011 /* Enable the interrupt to be reported in 1012 * the cause register and then force the same 1013 * interrupt and see if one gets posted. If 1014 * an interrupt was not posted to the bus, the 1015 * test failed. 1016 */ 1017 adapter->test_icr = 0; 1018 ew32(IMS, mask); 1019 ew32(ICS, mask); 1020 e1e_flush(); 1021 usleep_range(10000, 20000); 1022 1023 if (!(adapter->test_icr & mask)) { 1024 *data = 4; 1025 break; 1026 } 1027 1028 if (!shared_int) { 1029 /* Disable the other interrupts to be reported in 1030 * the cause register and then force the other 1031 * interrupts and see if any get posted. If 1032 * an interrupt was posted to the bus, the 1033 * test failed. 1034 */ 1035 adapter->test_icr = 0; 1036 ew32(IMC, ~mask & 0x00007FFF); 1037 ew32(ICS, ~mask & 0x00007FFF); 1038 e1e_flush(); 1039 usleep_range(10000, 20000); 1040 1041 if (adapter->test_icr) { 1042 *data = 5; 1043 break; 1044 } 1045 } 1046 } 1047 1048 /* Disable all the interrupts */ 1049 ew32(IMC, 0xFFFFFFFF); 1050 e1e_flush(); 1051 usleep_range(10000, 20000); 1052 1053 /* Unhook test interrupt handler */ 1054 free_irq(irq, netdev); 1055 1056 out: 1057 if (int_mode == E1000E_INT_MODE_MSIX) { 1058 e1000e_reset_interrupt_capability(adapter); 1059 adapter->int_mode = int_mode; 1060 e1000e_set_interrupt_capability(adapter); 1061 } 1062 1063 return ret_val; 1064 } 1065 1066 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1067 { 1068 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1069 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1070 struct pci_dev *pdev = adapter->pdev; 1071 int i; 1072 1073 if (tx_ring->desc && tx_ring->buffer_info) { 1074 for (i = 0; i < tx_ring->count; i++) { 1075 if (tx_ring->buffer_info[i].dma) 1076 dma_unmap_single(&pdev->dev, 1077 tx_ring->buffer_info[i].dma, 1078 tx_ring->buffer_info[i].length, 1079 DMA_TO_DEVICE); 1080 if (tx_ring->buffer_info[i].skb) 1081 dev_kfree_skb(tx_ring->buffer_info[i].skb); 1082 } 1083 } 1084 1085 if (rx_ring->desc && rx_ring->buffer_info) { 1086 for (i = 0; i < rx_ring->count; i++) { 1087 if (rx_ring->buffer_info[i].dma) 1088 dma_unmap_single(&pdev->dev, 1089 rx_ring->buffer_info[i].dma, 1090 2048, DMA_FROM_DEVICE); 1091 if (rx_ring->buffer_info[i].skb) 1092 dev_kfree_skb(rx_ring->buffer_info[i].skb); 1093 } 1094 } 1095 1096 if (tx_ring->desc) { 1097 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1098 tx_ring->dma); 1099 tx_ring->desc = NULL; 1100 } 1101 if (rx_ring->desc) { 1102 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1103 rx_ring->dma); 1104 rx_ring->desc = NULL; 1105 } 1106 1107 kfree(tx_ring->buffer_info); 1108 tx_ring->buffer_info = NULL; 1109 kfree(rx_ring->buffer_info); 1110 rx_ring->buffer_info = NULL; 1111 } 1112 1113 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1114 { 1115 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1116 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1117 struct pci_dev *pdev = adapter->pdev; 1118 struct e1000_hw *hw = &adapter->hw; 1119 u32 rctl; 1120 int i; 1121 int ret_val; 1122 1123 /* Setup Tx descriptor ring and Tx buffers */ 1124 1125 if (!tx_ring->count) 1126 tx_ring->count = E1000_DEFAULT_TXD; 1127 1128 tx_ring->buffer_info = kcalloc(tx_ring->count, 1129 sizeof(struct e1000_buffer), 1130 GFP_KERNEL); 1131 if (!tx_ring->buffer_info) { 1132 ret_val = 1; 1133 goto err_nomem; 1134 } 1135 1136 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1137 tx_ring->size = ALIGN(tx_ring->size, 4096); 1138 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1139 &tx_ring->dma, GFP_KERNEL); 1140 if (!tx_ring->desc) { 1141 ret_val = 2; 1142 goto err_nomem; 1143 } 1144 tx_ring->next_to_use = 0; 1145 tx_ring->next_to_clean = 0; 1146 1147 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); 1148 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32)); 1149 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1150 ew32(TDH(0), 0); 1151 ew32(TDT(0), 0); 1152 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1153 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1154 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1155 1156 for (i = 0; i < tx_ring->count; i++) { 1157 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1158 struct sk_buff *skb; 1159 unsigned int skb_size = 1024; 1160 1161 skb = alloc_skb(skb_size, GFP_KERNEL); 1162 if (!skb) { 1163 ret_val = 3; 1164 goto err_nomem; 1165 } 1166 skb_put(skb, skb_size); 1167 tx_ring->buffer_info[i].skb = skb; 1168 tx_ring->buffer_info[i].length = skb->len; 1169 tx_ring->buffer_info[i].dma = 1170 dma_map_single(&pdev->dev, skb->data, skb->len, 1171 DMA_TO_DEVICE); 1172 if (dma_mapping_error(&pdev->dev, 1173 tx_ring->buffer_info[i].dma)) { 1174 ret_val = 4; 1175 goto err_nomem; 1176 } 1177 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1178 tx_desc->lower.data = cpu_to_le32(skb->len); 1179 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1180 E1000_TXD_CMD_IFCS | 1181 E1000_TXD_CMD_RS); 1182 tx_desc->upper.data = 0; 1183 } 1184 1185 /* Setup Rx descriptor ring and Rx buffers */ 1186 1187 if (!rx_ring->count) 1188 rx_ring->count = E1000_DEFAULT_RXD; 1189 1190 rx_ring->buffer_info = kcalloc(rx_ring->count, 1191 sizeof(struct e1000_buffer), 1192 GFP_KERNEL); 1193 if (!rx_ring->buffer_info) { 1194 ret_val = 5; 1195 goto err_nomem; 1196 } 1197 1198 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1199 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1200 &rx_ring->dma, GFP_KERNEL); 1201 if (!rx_ring->desc) { 1202 ret_val = 6; 1203 goto err_nomem; 1204 } 1205 rx_ring->next_to_use = 0; 1206 rx_ring->next_to_clean = 0; 1207 1208 rctl = er32(RCTL); 1209 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1210 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1211 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF)); 1212 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32)); 1213 ew32(RDLEN(0), rx_ring->size); 1214 ew32(RDH(0), 0); 1215 ew32(RDT(0), 0); 1216 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1217 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1218 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1219 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1220 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1221 ew32(RCTL, rctl); 1222 1223 for (i = 0; i < rx_ring->count; i++) { 1224 union e1000_rx_desc_extended *rx_desc; 1225 struct sk_buff *skb; 1226 1227 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1228 if (!skb) { 1229 ret_val = 7; 1230 goto err_nomem; 1231 } 1232 skb_reserve(skb, NET_IP_ALIGN); 1233 rx_ring->buffer_info[i].skb = skb; 1234 rx_ring->buffer_info[i].dma = 1235 dma_map_single(&pdev->dev, skb->data, 2048, 1236 DMA_FROM_DEVICE); 1237 if (dma_mapping_error(&pdev->dev, 1238 rx_ring->buffer_info[i].dma)) { 1239 ret_val = 8; 1240 goto err_nomem; 1241 } 1242 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1243 rx_desc->read.buffer_addr = 1244 cpu_to_le64(rx_ring->buffer_info[i].dma); 1245 memset(skb->data, 0x00, skb->len); 1246 } 1247 1248 return 0; 1249 1250 err_nomem: 1251 e1000_free_desc_rings(adapter); 1252 return ret_val; 1253 } 1254 1255 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1256 { 1257 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1258 e1e_wphy(&adapter->hw, 29, 0x001F); 1259 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1260 e1e_wphy(&adapter->hw, 29, 0x001A); 1261 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1262 } 1263 1264 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1265 { 1266 struct e1000_hw *hw = &adapter->hw; 1267 u32 ctrl_reg = 0; 1268 u16 phy_reg = 0; 1269 s32 ret_val = 0; 1270 1271 hw->mac.autoneg = 0; 1272 1273 if (hw->phy.type == e1000_phy_ife) { 1274 /* force 100, set loopback */ 1275 e1e_wphy(hw, PHY_CONTROL, 0x6100); 1276 1277 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1278 ctrl_reg = er32(CTRL); 1279 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1280 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1281 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1282 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1283 E1000_CTRL_FD); /* Force Duplex to FULL */ 1284 1285 ew32(CTRL, ctrl_reg); 1286 e1e_flush(); 1287 udelay(500); 1288 1289 return 0; 1290 } 1291 1292 /* Specific PHY configuration for loopback */ 1293 switch (hw->phy.type) { 1294 case e1000_phy_m88: 1295 /* Auto-MDI/MDIX Off */ 1296 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1297 /* reset to update Auto-MDI/MDIX */ 1298 e1e_wphy(hw, PHY_CONTROL, 0x9140); 1299 /* autoneg off */ 1300 e1e_wphy(hw, PHY_CONTROL, 0x8140); 1301 break; 1302 case e1000_phy_gg82563: 1303 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1304 break; 1305 case e1000_phy_bm: 1306 /* Set Default MAC Interface speed to 1GB */ 1307 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1308 phy_reg &= ~0x0007; 1309 phy_reg |= 0x006; 1310 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1311 /* Assert SW reset for above settings to take effect */ 1312 e1000e_commit_phy(hw); 1313 mdelay(1); 1314 /* Force Full Duplex */ 1315 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1316 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1317 /* Set Link Up (in force link) */ 1318 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1319 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1320 /* Force Link */ 1321 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1322 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1323 /* Set Early Link Enable */ 1324 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1325 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1326 break; 1327 case e1000_phy_82577: 1328 case e1000_phy_82578: 1329 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1330 ret_val = hw->phy.ops.acquire(hw); 1331 if (ret_val) { 1332 e_err("Cannot setup 1Gbps loopback.\n"); 1333 return ret_val; 1334 } 1335 e1000_configure_k1_ich8lan(hw, false); 1336 hw->phy.ops.release(hw); 1337 break; 1338 case e1000_phy_82579: 1339 /* Disable PHY energy detect power down */ 1340 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1341 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1342 /* Disable full chip energy detect */ 1343 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1344 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1345 /* Enable loopback on the PHY */ 1346 #define I82577_PHY_LBK_CTRL 19 1347 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1348 break; 1349 default: 1350 break; 1351 } 1352 1353 /* force 1000, set loopback */ 1354 e1e_wphy(hw, PHY_CONTROL, 0x4140); 1355 mdelay(250); 1356 1357 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1358 ctrl_reg = er32(CTRL); 1359 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1360 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1361 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1362 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1363 E1000_CTRL_FD); /* Force Duplex to FULL */ 1364 1365 if (adapter->flags & FLAG_IS_ICH) 1366 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1367 1368 if (hw->phy.media_type == e1000_media_type_copper && 1369 hw->phy.type == e1000_phy_m88) { 1370 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1371 } else { 1372 /* Set the ILOS bit on the fiber Nic if half duplex link is 1373 * detected. 1374 */ 1375 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1376 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1377 } 1378 1379 ew32(CTRL, ctrl_reg); 1380 1381 /* Disable the receiver on the PHY so when a cable is plugged in, the 1382 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1383 */ 1384 if (hw->phy.type == e1000_phy_m88) 1385 e1000_phy_disable_receiver(adapter); 1386 1387 udelay(500); 1388 1389 return 0; 1390 } 1391 1392 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1393 { 1394 struct e1000_hw *hw = &adapter->hw; 1395 u32 ctrl = er32(CTRL); 1396 int link = 0; 1397 1398 /* special requirements for 82571/82572 fiber adapters */ 1399 1400 /* jump through hoops to make sure link is up because serdes 1401 * link is hardwired up 1402 */ 1403 ctrl |= E1000_CTRL_SLU; 1404 ew32(CTRL, ctrl); 1405 1406 /* disable autoneg */ 1407 ctrl = er32(TXCW); 1408 ctrl &= ~(1 << 31); 1409 ew32(TXCW, ctrl); 1410 1411 link = (er32(STATUS) & E1000_STATUS_LU); 1412 1413 if (!link) { 1414 /* set invert loss of signal */ 1415 ctrl = er32(CTRL); 1416 ctrl |= E1000_CTRL_ILOS; 1417 ew32(CTRL, ctrl); 1418 } 1419 1420 /* special write to serdes control register to enable SerDes analog 1421 * loopback 1422 */ 1423 #define E1000_SERDES_LB_ON 0x410 1424 ew32(SCTL, E1000_SERDES_LB_ON); 1425 e1e_flush(); 1426 usleep_range(10000, 20000); 1427 1428 return 0; 1429 } 1430 1431 /* only call this for fiber/serdes connections to es2lan */ 1432 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1433 { 1434 struct e1000_hw *hw = &adapter->hw; 1435 u32 ctrlext = er32(CTRL_EXT); 1436 u32 ctrl = er32(CTRL); 1437 1438 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1439 * on mac_type 80003es2lan) 1440 */ 1441 adapter->tx_fifo_head = ctrlext; 1442 1443 /* clear the serdes mode bits, putting the device into mac loopback */ 1444 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1445 ew32(CTRL_EXT, ctrlext); 1446 1447 /* force speed to 1000/FD, link up */ 1448 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1449 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1450 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1451 ew32(CTRL, ctrl); 1452 1453 /* set mac loopback */ 1454 ctrl = er32(RCTL); 1455 ctrl |= E1000_RCTL_LBM_MAC; 1456 ew32(RCTL, ctrl); 1457 1458 /* set testing mode parameters (no need to reset later) */ 1459 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1460 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1461 ew32(KMRNCTRLSTA, 1462 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1463 1464 return 0; 1465 } 1466 1467 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1468 { 1469 struct e1000_hw *hw = &adapter->hw; 1470 u32 rctl; 1471 1472 if (hw->phy.media_type == e1000_media_type_fiber || 1473 hw->phy.media_type == e1000_media_type_internal_serdes) { 1474 switch (hw->mac.type) { 1475 case e1000_80003es2lan: 1476 return e1000_set_es2lan_mac_loopback(adapter); 1477 break; 1478 case e1000_82571: 1479 case e1000_82572: 1480 return e1000_set_82571_fiber_loopback(adapter); 1481 break; 1482 default: 1483 rctl = er32(RCTL); 1484 rctl |= E1000_RCTL_LBM_TCVR; 1485 ew32(RCTL, rctl); 1486 return 0; 1487 } 1488 } else if (hw->phy.media_type == e1000_media_type_copper) { 1489 return e1000_integrated_phy_loopback(adapter); 1490 } 1491 1492 return 7; 1493 } 1494 1495 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1496 { 1497 struct e1000_hw *hw = &adapter->hw; 1498 u32 rctl; 1499 u16 phy_reg; 1500 1501 rctl = er32(RCTL); 1502 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1503 ew32(RCTL, rctl); 1504 1505 switch (hw->mac.type) { 1506 case e1000_80003es2lan: 1507 if (hw->phy.media_type == e1000_media_type_fiber || 1508 hw->phy.media_type == e1000_media_type_internal_serdes) { 1509 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1510 ew32(CTRL_EXT, adapter->tx_fifo_head); 1511 adapter->tx_fifo_head = 0; 1512 } 1513 /* fall through */ 1514 case e1000_82571: 1515 case e1000_82572: 1516 if (hw->phy.media_type == e1000_media_type_fiber || 1517 hw->phy.media_type == e1000_media_type_internal_serdes) { 1518 #define E1000_SERDES_LB_OFF 0x400 1519 ew32(SCTL, E1000_SERDES_LB_OFF); 1520 e1e_flush(); 1521 usleep_range(10000, 20000); 1522 break; 1523 } 1524 /* Fall Through */ 1525 default: 1526 hw->mac.autoneg = 1; 1527 if (hw->phy.type == e1000_phy_gg82563) 1528 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1529 e1e_rphy(hw, PHY_CONTROL, &phy_reg); 1530 if (phy_reg & MII_CR_LOOPBACK) { 1531 phy_reg &= ~MII_CR_LOOPBACK; 1532 e1e_wphy(hw, PHY_CONTROL, phy_reg); 1533 e1000e_commit_phy(hw); 1534 } 1535 break; 1536 } 1537 } 1538 1539 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1540 unsigned int frame_size) 1541 { 1542 memset(skb->data, 0xFF, frame_size); 1543 frame_size &= ~1; 1544 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1545 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1546 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1547 } 1548 1549 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1550 unsigned int frame_size) 1551 { 1552 frame_size &= ~1; 1553 if (*(skb->data + 3) == 0xFF) 1554 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1555 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1556 return 0; 1557 return 13; 1558 } 1559 1560 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1561 { 1562 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1563 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1564 struct pci_dev *pdev = adapter->pdev; 1565 struct e1000_hw *hw = &adapter->hw; 1566 int i, j, k, l; 1567 int lc; 1568 int good_cnt; 1569 int ret_val = 0; 1570 unsigned long time; 1571 1572 ew32(RDT(0), rx_ring->count - 1); 1573 1574 /* Calculate the loop count based on the largest descriptor ring 1575 * The idea is to wrap the largest ring a number of times using 64 1576 * send/receive pairs during each loop 1577 */ 1578 1579 if (rx_ring->count <= tx_ring->count) 1580 lc = ((tx_ring->count / 64) * 2) + 1; 1581 else 1582 lc = ((rx_ring->count / 64) * 2) + 1; 1583 1584 k = 0; 1585 l = 0; 1586 for (j = 0; j <= lc; j++) { /* loop count loop */ 1587 for (i = 0; i < 64; i++) { /* send the packets */ 1588 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, 1589 1024); 1590 dma_sync_single_for_device(&pdev->dev, 1591 tx_ring->buffer_info[k].dma, 1592 tx_ring->buffer_info[k].length, 1593 DMA_TO_DEVICE); 1594 k++; 1595 if (k == tx_ring->count) 1596 k = 0; 1597 } 1598 ew32(TDT(0), k); 1599 e1e_flush(); 1600 msleep(200); 1601 time = jiffies; /* set the start time for the receive */ 1602 good_cnt = 0; 1603 do { /* receive the sent packets */ 1604 dma_sync_single_for_cpu(&pdev->dev, 1605 rx_ring->buffer_info[l].dma, 2048, 1606 DMA_FROM_DEVICE); 1607 1608 ret_val = e1000_check_lbtest_frame( 1609 rx_ring->buffer_info[l].skb, 1024); 1610 if (!ret_val) 1611 good_cnt++; 1612 l++; 1613 if (l == rx_ring->count) 1614 l = 0; 1615 /* time + 20 msecs (200 msecs on 2.4) is more than 1616 * enough time to complete the receives, if it's 1617 * exceeded, break and error off 1618 */ 1619 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1620 if (good_cnt != 64) { 1621 ret_val = 13; /* ret_val is the same as mis-compare */ 1622 break; 1623 } 1624 if (jiffies >= (time + 20)) { 1625 ret_val = 14; /* error code for time out error */ 1626 break; 1627 } 1628 } /* end loop count loop */ 1629 return ret_val; 1630 } 1631 1632 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1633 { 1634 struct e1000_hw *hw = &adapter->hw; 1635 1636 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1637 if (hw->phy.ops.check_reset_block && 1638 hw->phy.ops.check_reset_block(hw)) { 1639 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1640 *data = 0; 1641 goto out; 1642 } 1643 1644 *data = e1000_setup_desc_rings(adapter); 1645 if (*data) 1646 goto out; 1647 1648 *data = e1000_setup_loopback_test(adapter); 1649 if (*data) 1650 goto err_loopback; 1651 1652 *data = e1000_run_loopback_test(adapter); 1653 e1000_loopback_cleanup(adapter); 1654 1655 err_loopback: 1656 e1000_free_desc_rings(adapter); 1657 out: 1658 return *data; 1659 } 1660 1661 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1662 { 1663 struct e1000_hw *hw = &adapter->hw; 1664 1665 *data = 0; 1666 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1667 int i = 0; 1668 hw->mac.serdes_has_link = false; 1669 1670 /* On some blade server designs, link establishment 1671 * could take as long as 2-3 minutes 1672 */ 1673 do { 1674 hw->mac.ops.check_for_link(hw); 1675 if (hw->mac.serdes_has_link) 1676 return *data; 1677 msleep(20); 1678 } while (i++ < 3750); 1679 1680 *data = 1; 1681 } else { 1682 hw->mac.ops.check_for_link(hw); 1683 if (hw->mac.autoneg) 1684 /* On some Phy/switch combinations, link establishment 1685 * can take a few seconds more than expected. 1686 */ 1687 msleep(5000); 1688 1689 if (!(er32(STATUS) & E1000_STATUS_LU)) 1690 *data = 1; 1691 } 1692 return *data; 1693 } 1694 1695 static int e1000e_get_sset_count(struct net_device *netdev, int sset) 1696 { 1697 switch (sset) { 1698 case ETH_SS_TEST: 1699 return E1000_TEST_LEN; 1700 case ETH_SS_STATS: 1701 return E1000_STATS_LEN; 1702 default: 1703 return -EOPNOTSUPP; 1704 } 1705 } 1706 1707 static void e1000_diag_test(struct net_device *netdev, 1708 struct ethtool_test *eth_test, u64 *data) 1709 { 1710 struct e1000_adapter *adapter = netdev_priv(netdev); 1711 u16 autoneg_advertised; 1712 u8 forced_speed_duplex; 1713 u8 autoneg; 1714 bool if_running = netif_running(netdev); 1715 1716 set_bit(__E1000_TESTING, &adapter->state); 1717 1718 if (!if_running) { 1719 /* Get control of and reset hardware */ 1720 if (adapter->flags & FLAG_HAS_AMT) 1721 e1000e_get_hw_control(adapter); 1722 1723 e1000e_power_up_phy(adapter); 1724 1725 adapter->hw.phy.autoneg_wait_to_complete = 1; 1726 e1000e_reset(adapter); 1727 adapter->hw.phy.autoneg_wait_to_complete = 0; 1728 } 1729 1730 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1731 /* Offline tests */ 1732 1733 /* save speed, duplex, autoneg settings */ 1734 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1735 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1736 autoneg = adapter->hw.mac.autoneg; 1737 1738 e_info("offline testing starting\n"); 1739 1740 if (if_running) 1741 /* indicate we're in test mode */ 1742 dev_close(netdev); 1743 1744 if (e1000_reg_test(adapter, &data[0])) 1745 eth_test->flags |= ETH_TEST_FL_FAILED; 1746 1747 e1000e_reset(adapter); 1748 if (e1000_eeprom_test(adapter, &data[1])) 1749 eth_test->flags |= ETH_TEST_FL_FAILED; 1750 1751 e1000e_reset(adapter); 1752 if (e1000_intr_test(adapter, &data[2])) 1753 eth_test->flags |= ETH_TEST_FL_FAILED; 1754 1755 e1000e_reset(adapter); 1756 if (e1000_loopback_test(adapter, &data[3])) 1757 eth_test->flags |= ETH_TEST_FL_FAILED; 1758 1759 /* force this routine to wait until autoneg complete/timeout */ 1760 adapter->hw.phy.autoneg_wait_to_complete = 1; 1761 e1000e_reset(adapter); 1762 adapter->hw.phy.autoneg_wait_to_complete = 0; 1763 1764 if (e1000_link_test(adapter, &data[4])) 1765 eth_test->flags |= ETH_TEST_FL_FAILED; 1766 1767 /* restore speed, duplex, autoneg settings */ 1768 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1769 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1770 adapter->hw.mac.autoneg = autoneg; 1771 e1000e_reset(adapter); 1772 1773 clear_bit(__E1000_TESTING, &adapter->state); 1774 if (if_running) 1775 dev_open(netdev); 1776 } else { 1777 /* Online tests */ 1778 1779 e_info("online testing starting\n"); 1780 1781 /* register, eeprom, intr and loopback tests not run online */ 1782 data[0] = 0; 1783 data[1] = 0; 1784 data[2] = 0; 1785 data[3] = 0; 1786 1787 if (e1000_link_test(adapter, &data[4])) 1788 eth_test->flags |= ETH_TEST_FL_FAILED; 1789 1790 clear_bit(__E1000_TESTING, &adapter->state); 1791 } 1792 1793 if (!if_running) { 1794 e1000e_reset(adapter); 1795 1796 if (adapter->flags & FLAG_HAS_AMT) 1797 e1000e_release_hw_control(adapter); 1798 } 1799 1800 msleep_interruptible(4 * 1000); 1801 } 1802 1803 static void e1000_get_wol(struct net_device *netdev, 1804 struct ethtool_wolinfo *wol) 1805 { 1806 struct e1000_adapter *adapter = netdev_priv(netdev); 1807 1808 wol->supported = 0; 1809 wol->wolopts = 0; 1810 1811 if (!(adapter->flags & FLAG_HAS_WOL) || 1812 !device_can_wakeup(&adapter->pdev->dev)) 1813 return; 1814 1815 wol->supported = WAKE_UCAST | WAKE_MCAST | 1816 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1817 1818 /* apply any specific unsupported masks here */ 1819 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1820 wol->supported &= ~WAKE_UCAST; 1821 1822 if (adapter->wol & E1000_WUFC_EX) 1823 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1824 } 1825 1826 if (adapter->wol & E1000_WUFC_EX) 1827 wol->wolopts |= WAKE_UCAST; 1828 if (adapter->wol & E1000_WUFC_MC) 1829 wol->wolopts |= WAKE_MCAST; 1830 if (adapter->wol & E1000_WUFC_BC) 1831 wol->wolopts |= WAKE_BCAST; 1832 if (adapter->wol & E1000_WUFC_MAG) 1833 wol->wolopts |= WAKE_MAGIC; 1834 if (adapter->wol & E1000_WUFC_LNKC) 1835 wol->wolopts |= WAKE_PHY; 1836 } 1837 1838 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1839 { 1840 struct e1000_adapter *adapter = netdev_priv(netdev); 1841 1842 if (!(adapter->flags & FLAG_HAS_WOL) || 1843 !device_can_wakeup(&adapter->pdev->dev) || 1844 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1845 WAKE_MAGIC | WAKE_PHY))) 1846 return -EOPNOTSUPP; 1847 1848 /* these settings will always override what we currently have */ 1849 adapter->wol = 0; 1850 1851 if (wol->wolopts & WAKE_UCAST) 1852 adapter->wol |= E1000_WUFC_EX; 1853 if (wol->wolopts & WAKE_MCAST) 1854 adapter->wol |= E1000_WUFC_MC; 1855 if (wol->wolopts & WAKE_BCAST) 1856 adapter->wol |= E1000_WUFC_BC; 1857 if (wol->wolopts & WAKE_MAGIC) 1858 adapter->wol |= E1000_WUFC_MAG; 1859 if (wol->wolopts & WAKE_PHY) 1860 adapter->wol |= E1000_WUFC_LNKC; 1861 1862 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1863 1864 return 0; 1865 } 1866 1867 static int e1000_set_phys_id(struct net_device *netdev, 1868 enum ethtool_phys_id_state state) 1869 { 1870 struct e1000_adapter *adapter = netdev_priv(netdev); 1871 struct e1000_hw *hw = &adapter->hw; 1872 1873 switch (state) { 1874 case ETHTOOL_ID_ACTIVE: 1875 if (!hw->mac.ops.blink_led) 1876 return 2; /* cycle on/off twice per second */ 1877 1878 hw->mac.ops.blink_led(hw); 1879 break; 1880 1881 case ETHTOOL_ID_INACTIVE: 1882 if (hw->phy.type == e1000_phy_ife) 1883 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1884 hw->mac.ops.led_off(hw); 1885 hw->mac.ops.cleanup_led(hw); 1886 break; 1887 1888 case ETHTOOL_ID_ON: 1889 hw->mac.ops.led_on(hw); 1890 break; 1891 1892 case ETHTOOL_ID_OFF: 1893 hw->mac.ops.led_off(hw); 1894 break; 1895 } 1896 return 0; 1897 } 1898 1899 static int e1000_get_coalesce(struct net_device *netdev, 1900 struct ethtool_coalesce *ec) 1901 { 1902 struct e1000_adapter *adapter = netdev_priv(netdev); 1903 1904 if (adapter->itr_setting <= 4) 1905 ec->rx_coalesce_usecs = adapter->itr_setting; 1906 else 1907 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1908 1909 return 0; 1910 } 1911 1912 static int e1000_set_coalesce(struct net_device *netdev, 1913 struct ethtool_coalesce *ec) 1914 { 1915 struct e1000_adapter *adapter = netdev_priv(netdev); 1916 1917 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1918 ((ec->rx_coalesce_usecs > 4) && 1919 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1920 (ec->rx_coalesce_usecs == 2)) 1921 return -EINVAL; 1922 1923 if (ec->rx_coalesce_usecs == 4) { 1924 adapter->itr_setting = 4; 1925 adapter->itr = adapter->itr_setting; 1926 } else if (ec->rx_coalesce_usecs <= 3) { 1927 adapter->itr = 20000; 1928 adapter->itr_setting = ec->rx_coalesce_usecs; 1929 } else { 1930 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1931 adapter->itr_setting = adapter->itr & ~3; 1932 } 1933 1934 if (adapter->itr_setting != 0) 1935 e1000e_write_itr(adapter, adapter->itr); 1936 else 1937 e1000e_write_itr(adapter, 0); 1938 1939 return 0; 1940 } 1941 1942 static int e1000_nway_reset(struct net_device *netdev) 1943 { 1944 struct e1000_adapter *adapter = netdev_priv(netdev); 1945 1946 if (!netif_running(netdev)) 1947 return -EAGAIN; 1948 1949 if (!adapter->hw.mac.autoneg) 1950 return -EINVAL; 1951 1952 e1000e_reinit_locked(adapter); 1953 1954 return 0; 1955 } 1956 1957 static void e1000_get_ethtool_stats(struct net_device *netdev, 1958 struct ethtool_stats *stats, 1959 u64 *data) 1960 { 1961 struct e1000_adapter *adapter = netdev_priv(netdev); 1962 struct rtnl_link_stats64 net_stats; 1963 int i; 1964 char *p = NULL; 1965 1966 e1000e_get_stats64(netdev, &net_stats); 1967 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1968 switch (e1000_gstrings_stats[i].type) { 1969 case NETDEV_STATS: 1970 p = (char *) &net_stats + 1971 e1000_gstrings_stats[i].stat_offset; 1972 break; 1973 case E1000_STATS: 1974 p = (char *) adapter + 1975 e1000_gstrings_stats[i].stat_offset; 1976 break; 1977 default: 1978 data[i] = 0; 1979 continue; 1980 } 1981 1982 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1983 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1984 } 1985 } 1986 1987 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1988 u8 *data) 1989 { 1990 u8 *p = data; 1991 int i; 1992 1993 switch (stringset) { 1994 case ETH_SS_TEST: 1995 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1996 break; 1997 case ETH_SS_STATS: 1998 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1999 memcpy(p, e1000_gstrings_stats[i].stat_string, 2000 ETH_GSTRING_LEN); 2001 p += ETH_GSTRING_LEN; 2002 } 2003 break; 2004 } 2005 } 2006 2007 static int e1000_get_rxnfc(struct net_device *netdev, 2008 struct ethtool_rxnfc *info, u32 *rule_locs) 2009 { 2010 info->data = 0; 2011 2012 switch (info->cmd) { 2013 case ETHTOOL_GRXFH: { 2014 struct e1000_adapter *adapter = netdev_priv(netdev); 2015 struct e1000_hw *hw = &adapter->hw; 2016 u32 mrqc = er32(MRQC); 2017 2018 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2019 return 0; 2020 2021 switch (info->flow_type) { 2022 case TCP_V4_FLOW: 2023 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2024 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2025 /* fall through */ 2026 case UDP_V4_FLOW: 2027 case SCTP_V4_FLOW: 2028 case AH_ESP_V4_FLOW: 2029 case IPV4_FLOW: 2030 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2031 info->data |= RXH_IP_SRC | RXH_IP_DST; 2032 break; 2033 case TCP_V6_FLOW: 2034 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2035 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2036 /* fall through */ 2037 case UDP_V6_FLOW: 2038 case SCTP_V6_FLOW: 2039 case AH_ESP_V6_FLOW: 2040 case IPV6_FLOW: 2041 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2042 info->data |= RXH_IP_SRC | RXH_IP_DST; 2043 break; 2044 default: 2045 break; 2046 } 2047 return 0; 2048 } 2049 default: 2050 return -EOPNOTSUPP; 2051 } 2052 } 2053 2054 static const struct ethtool_ops e1000_ethtool_ops = { 2055 .get_settings = e1000_get_settings, 2056 .set_settings = e1000_set_settings, 2057 .get_drvinfo = e1000_get_drvinfo, 2058 .get_regs_len = e1000_get_regs_len, 2059 .get_regs = e1000_get_regs, 2060 .get_wol = e1000_get_wol, 2061 .set_wol = e1000_set_wol, 2062 .get_msglevel = e1000_get_msglevel, 2063 .set_msglevel = e1000_set_msglevel, 2064 .nway_reset = e1000_nway_reset, 2065 .get_link = ethtool_op_get_link, 2066 .get_eeprom_len = e1000_get_eeprom_len, 2067 .get_eeprom = e1000_get_eeprom, 2068 .set_eeprom = e1000_set_eeprom, 2069 .get_ringparam = e1000_get_ringparam, 2070 .set_ringparam = e1000_set_ringparam, 2071 .get_pauseparam = e1000_get_pauseparam, 2072 .set_pauseparam = e1000_set_pauseparam, 2073 .self_test = e1000_diag_test, 2074 .get_strings = e1000_get_strings, 2075 .set_phys_id = e1000_set_phys_id, 2076 .get_ethtool_stats = e1000_get_ethtool_stats, 2077 .get_sset_count = e1000e_get_sset_count, 2078 .get_coalesce = e1000_get_coalesce, 2079 .set_coalesce = e1000_set_coalesce, 2080 .get_rxnfc = e1000_get_rxnfc, 2081 .get_ts_info = ethtool_op_get_ts_info, 2082 }; 2083 2084 void e1000e_set_ethtool_ops(struct net_device *netdev) 2085 { 2086 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 2087 } 2088