xref: /linux/drivers/net/ethernet/intel/e1000e/ethtool.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 
39 #include "e1000.h"
40 
41 enum {NETDEV_STATS, E1000_STATS};
42 
43 struct e1000_stats {
44 	char stat_string[ETH_GSTRING_LEN];
45 	int type;
46 	int sizeof_stat;
47 	int stat_offset;
48 };
49 
50 #define E1000_STAT(str, m) { \
51 		.stat_string = str, \
52 		.type = E1000_STATS, \
53 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54 		.stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56 		.stat_string = str, \
57 		.type = NETDEV_STATS, \
58 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
60 
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62 	E1000_STAT("rx_packets", stats.gprc),
63 	E1000_STAT("tx_packets", stats.gptc),
64 	E1000_STAT("rx_bytes", stats.gorc),
65 	E1000_STAT("tx_bytes", stats.gotc),
66 	E1000_STAT("rx_broadcast", stats.bprc),
67 	E1000_STAT("tx_broadcast", stats.bptc),
68 	E1000_STAT("rx_multicast", stats.mprc),
69 	E1000_STAT("tx_multicast", stats.mptc),
70 	E1000_NETDEV_STAT("rx_errors", rx_errors),
71 	E1000_NETDEV_STAT("tx_errors", tx_errors),
72 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73 	E1000_STAT("multicast", stats.mprc),
74 	E1000_STAT("collisions", stats.colc),
75 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77 	E1000_STAT("rx_crc_errors", stats.crcerrs),
78 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
80 	E1000_STAT("rx_missed_errors", stats.mpc),
81 	E1000_STAT("tx_aborted_errors", stats.ecol),
82 	E1000_STAT("tx_carrier_errors", stats.tncrs),
83 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85 	E1000_STAT("tx_window_errors", stats.latecol),
86 	E1000_STAT("tx_abort_late_coll", stats.latecol),
87 	E1000_STAT("tx_deferred_ok", stats.dc),
88 	E1000_STAT("tx_single_coll_ok", stats.scc),
89 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
90 	E1000_STAT("tx_timeout_count", tx_timeout_count),
91 	E1000_STAT("tx_restart_queue", restart_queue),
92 	E1000_STAT("rx_long_length_errors", stats.roc),
93 	E1000_STAT("rx_short_length_errors", stats.ruc),
94 	E1000_STAT("rx_align_errors", stats.algnerrc),
95 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
100 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101 	E1000_STAT("rx_long_byte_count", stats.gorc),
102 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 	E1000_STAT("rx_header_split", rx_hdr_split),
105 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 	E1000_STAT("tx_smbus", stats.mgptc),
107 	E1000_STAT("rx_smbus", stats.mgprc),
108 	E1000_STAT("dropped_smbus", stats.mgpdc),
109 	E1000_STAT("rx_dma_failed", rx_dma_failed),
110 	E1000_STAT("tx_dma_failed", tx_dma_failed),
111 };
112 
113 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116 	"Register test  (offline)", "Eeprom test    (offline)",
117 	"Interrupt test (offline)", "Loopback test  (offline)",
118 	"Link test   (on/offline)"
119 };
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121 
122 static int e1000_get_settings(struct net_device *netdev,
123 			      struct ethtool_cmd *ecmd)
124 {
125 	struct e1000_adapter *adapter = netdev_priv(netdev);
126 	struct e1000_hw *hw = &adapter->hw;
127 	u32 speed;
128 
129 	if (hw->phy.media_type == e1000_media_type_copper) {
130 
131 		ecmd->supported = (SUPPORTED_10baseT_Half |
132 				   SUPPORTED_10baseT_Full |
133 				   SUPPORTED_100baseT_Half |
134 				   SUPPORTED_100baseT_Full |
135 				   SUPPORTED_1000baseT_Full |
136 				   SUPPORTED_Autoneg |
137 				   SUPPORTED_TP);
138 		if (hw->phy.type == e1000_phy_ife)
139 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140 		ecmd->advertising = ADVERTISED_TP;
141 
142 		if (hw->mac.autoneg == 1) {
143 			ecmd->advertising |= ADVERTISED_Autoneg;
144 			/* the e1000 autoneg seems to match ethtool nicely */
145 			ecmd->advertising |= hw->phy.autoneg_advertised;
146 		}
147 
148 		ecmd->port = PORT_TP;
149 		ecmd->phy_address = hw->phy.addr;
150 		ecmd->transceiver = XCVR_INTERNAL;
151 
152 	} else {
153 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
154 				     SUPPORTED_FIBRE |
155 				     SUPPORTED_Autoneg);
156 
157 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
158 				     ADVERTISED_FIBRE |
159 				     ADVERTISED_Autoneg);
160 
161 		ecmd->port = PORT_FIBRE;
162 		ecmd->transceiver = XCVR_EXTERNAL;
163 	}
164 
165 	speed = -1;
166 	ecmd->duplex = -1;
167 
168 	if (netif_running(netdev)) {
169 		if (netif_carrier_ok(netdev)) {
170 			speed = adapter->link_speed;
171 			ecmd->duplex = adapter->link_duplex - 1;
172 		}
173 	} else {
174 		u32 status = er32(STATUS);
175 		if (status & E1000_STATUS_LU) {
176 			if (status & E1000_STATUS_SPEED_1000)
177 				speed = SPEED_1000;
178 			else if (status & E1000_STATUS_SPEED_100)
179 				speed = SPEED_100;
180 			else
181 				speed = SPEED_10;
182 
183 			if (status & E1000_STATUS_FD)
184 				ecmd->duplex = DUPLEX_FULL;
185 			else
186 				ecmd->duplex = DUPLEX_HALF;
187 		}
188 	}
189 
190 	ethtool_cmd_speed_set(ecmd, speed);
191 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193 
194 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
195 	if ((hw->phy.media_type == e1000_media_type_copper) &&
196 	    netif_carrier_ok(netdev))
197 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198 		                                      ETH_TP_MDI;
199 	else
200 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201 
202 	if (hw->phy.mdix == AUTO_ALL_MODES)
203 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
204 	else
205 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
206 
207 	return 0;
208 }
209 
210 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
211 {
212 	struct e1000_mac_info *mac = &adapter->hw.mac;
213 
214 	mac->autoneg = 0;
215 
216 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
217 	 * for the switch() below to work */
218 	if ((spd & 1) || (dplx & ~1))
219 		goto err_inval;
220 
221 	/* Fiber NICs only allow 1000 gbps Full duplex */
222 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
223 	    spd != SPEED_1000 &&
224 	    dplx != DUPLEX_FULL) {
225 		goto err_inval;
226 	}
227 
228 	switch (spd + dplx) {
229 	case SPEED_10 + DUPLEX_HALF:
230 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
231 		break;
232 	case SPEED_10 + DUPLEX_FULL:
233 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
234 		break;
235 	case SPEED_100 + DUPLEX_HALF:
236 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
237 		break;
238 	case SPEED_100 + DUPLEX_FULL:
239 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
240 		break;
241 	case SPEED_1000 + DUPLEX_FULL:
242 		mac->autoneg = 1;
243 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
244 		break;
245 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
246 	default:
247 		goto err_inval;
248 	}
249 
250 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
251 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
252 
253 	return 0;
254 
255 err_inval:
256 	e_err("Unsupported Speed/Duplex configuration\n");
257 	return -EINVAL;
258 }
259 
260 static int e1000_set_settings(struct net_device *netdev,
261 			      struct ethtool_cmd *ecmd)
262 {
263 	struct e1000_adapter *adapter = netdev_priv(netdev);
264 	struct e1000_hw *hw = &adapter->hw;
265 
266 	/*
267 	 * When SoL/IDER sessions are active, autoneg/speed/duplex
268 	 * cannot be changed
269 	 */
270 	if (hw->phy.ops.check_reset_block &&
271 	    hw->phy.ops.check_reset_block(hw)) {
272 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
273 		return -EINVAL;
274 	}
275 
276 	/*
277 	 * MDI setting is only allowed when autoneg enabled because
278 	 * some hardware doesn't allow MDI setting when speed or
279 	 * duplex is forced.
280 	 */
281 	if (ecmd->eth_tp_mdix_ctrl) {
282 		if (hw->phy.media_type != e1000_media_type_copper)
283 			return -EOPNOTSUPP;
284 
285 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
286 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
287 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
288 			return -EINVAL;
289 		}
290 	}
291 
292 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293 		usleep_range(1000, 2000);
294 
295 	if (ecmd->autoneg == AUTONEG_ENABLE) {
296 		hw->mac.autoneg = 1;
297 		if (hw->phy.media_type == e1000_media_type_fiber)
298 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299 						     ADVERTISED_FIBRE |
300 						     ADVERTISED_Autoneg;
301 		else
302 			hw->phy.autoneg_advertised = ecmd->advertising |
303 						     ADVERTISED_TP |
304 						     ADVERTISED_Autoneg;
305 		ecmd->advertising = hw->phy.autoneg_advertised;
306 		if (adapter->fc_autoneg)
307 			hw->fc.requested_mode = e1000_fc_default;
308 	} else {
309 		u32 speed = ethtool_cmd_speed(ecmd);
310 		/* calling this overrides forced MDI setting */
311 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
312 			clear_bit(__E1000_RESETTING, &adapter->state);
313 			return -EINVAL;
314 		}
315 	}
316 
317 	/* MDI-X => 2; MDI => 1; Auto => 3 */
318 	if (ecmd->eth_tp_mdix_ctrl) {
319 		/*
320 		 * fix up the value for auto (3 => 0) as zero is mapped
321 		 * internally to auto
322 		 */
323 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
324 			hw->phy.mdix = AUTO_ALL_MODES;
325 		else
326 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
327 	}
328 
329 	/* reset the link */
330 
331 	if (netif_running(adapter->netdev)) {
332 		e1000e_down(adapter);
333 		e1000e_up(adapter);
334 	} else
335 		e1000e_reset(adapter);
336 
337 	clear_bit(__E1000_RESETTING, &adapter->state);
338 	return 0;
339 }
340 
341 static void e1000_get_pauseparam(struct net_device *netdev,
342 				 struct ethtool_pauseparam *pause)
343 {
344 	struct e1000_adapter *adapter = netdev_priv(netdev);
345 	struct e1000_hw *hw = &adapter->hw;
346 
347 	pause->autoneg =
348 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
349 
350 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
351 		pause->rx_pause = 1;
352 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
353 		pause->tx_pause = 1;
354 	} else if (hw->fc.current_mode == e1000_fc_full) {
355 		pause->rx_pause = 1;
356 		pause->tx_pause = 1;
357 	}
358 }
359 
360 static int e1000_set_pauseparam(struct net_device *netdev,
361 				struct ethtool_pauseparam *pause)
362 {
363 	struct e1000_adapter *adapter = netdev_priv(netdev);
364 	struct e1000_hw *hw = &adapter->hw;
365 	int retval = 0;
366 
367 	adapter->fc_autoneg = pause->autoneg;
368 
369 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
370 		usleep_range(1000, 2000);
371 
372 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
373 		hw->fc.requested_mode = e1000_fc_default;
374 		if (netif_running(adapter->netdev)) {
375 			e1000e_down(adapter);
376 			e1000e_up(adapter);
377 		} else {
378 			e1000e_reset(adapter);
379 		}
380 	} else {
381 		if (pause->rx_pause && pause->tx_pause)
382 			hw->fc.requested_mode = e1000_fc_full;
383 		else if (pause->rx_pause && !pause->tx_pause)
384 			hw->fc.requested_mode = e1000_fc_rx_pause;
385 		else if (!pause->rx_pause && pause->tx_pause)
386 			hw->fc.requested_mode = e1000_fc_tx_pause;
387 		else if (!pause->rx_pause && !pause->tx_pause)
388 			hw->fc.requested_mode = e1000_fc_none;
389 
390 		hw->fc.current_mode = hw->fc.requested_mode;
391 
392 		if (hw->phy.media_type == e1000_media_type_fiber) {
393 			retval = hw->mac.ops.setup_link(hw);
394 			/* implicit goto out */
395 		} else {
396 			retval = e1000e_force_mac_fc(hw);
397 			if (retval)
398 				goto out;
399 			e1000e_set_fc_watermarks(hw);
400 		}
401 	}
402 
403 out:
404 	clear_bit(__E1000_RESETTING, &adapter->state);
405 	return retval;
406 }
407 
408 static u32 e1000_get_msglevel(struct net_device *netdev)
409 {
410 	struct e1000_adapter *adapter = netdev_priv(netdev);
411 	return adapter->msg_enable;
412 }
413 
414 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
415 {
416 	struct e1000_adapter *adapter = netdev_priv(netdev);
417 	adapter->msg_enable = data;
418 }
419 
420 static int e1000_get_regs_len(struct net_device *netdev)
421 {
422 #define E1000_REGS_LEN 32 /* overestimate */
423 	return E1000_REGS_LEN * sizeof(u32);
424 }
425 
426 static void e1000_get_regs(struct net_device *netdev,
427 			   struct ethtool_regs *regs, void *p)
428 {
429 	struct e1000_adapter *adapter = netdev_priv(netdev);
430 	struct e1000_hw *hw = &adapter->hw;
431 	u32 *regs_buff = p;
432 	u16 phy_data;
433 
434 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
435 
436 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
437 			adapter->pdev->device;
438 
439 	regs_buff[0]  = er32(CTRL);
440 	regs_buff[1]  = er32(STATUS);
441 
442 	regs_buff[2]  = er32(RCTL);
443 	regs_buff[3]  = er32(RDLEN(0));
444 	regs_buff[4]  = er32(RDH(0));
445 	regs_buff[5]  = er32(RDT(0));
446 	regs_buff[6]  = er32(RDTR);
447 
448 	regs_buff[7]  = er32(TCTL);
449 	regs_buff[8]  = er32(TDLEN(0));
450 	regs_buff[9]  = er32(TDH(0));
451 	regs_buff[10] = er32(TDT(0));
452 	regs_buff[11] = er32(TIDV);
453 
454 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
455 
456 	/* ethtool doesn't use anything past this point, so all this
457 	 * code is likely legacy junk for apps that may or may not
458 	 * exist */
459 	if (hw->phy.type == e1000_phy_m88) {
460 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
461 		regs_buff[13] = (u32)phy_data; /* cable length */
462 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
463 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
464 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
466 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
467 		regs_buff[18] = regs_buff[13]; /* cable polarity */
468 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469 		regs_buff[20] = regs_buff[17]; /* polarity correction */
470 		/* phy receive errors */
471 		regs_buff[22] = adapter->phy_stats.receive_errors;
472 		regs_buff[23] = regs_buff[13]; /* mdix mode */
473 	}
474 	regs_buff[21] = 0; /* was idle_errors */
475 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
476 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
477 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
478 }
479 
480 static int e1000_get_eeprom_len(struct net_device *netdev)
481 {
482 	struct e1000_adapter *adapter = netdev_priv(netdev);
483 	return adapter->hw.nvm.word_size * 2;
484 }
485 
486 static int e1000_get_eeprom(struct net_device *netdev,
487 			    struct ethtool_eeprom *eeprom, u8 *bytes)
488 {
489 	struct e1000_adapter *adapter = netdev_priv(netdev);
490 	struct e1000_hw *hw = &adapter->hw;
491 	u16 *eeprom_buff;
492 	int first_word;
493 	int last_word;
494 	int ret_val = 0;
495 	u16 i;
496 
497 	if (eeprom->len == 0)
498 		return -EINVAL;
499 
500 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
501 
502 	first_word = eeprom->offset >> 1;
503 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
504 
505 	eeprom_buff = kmalloc(sizeof(u16) *
506 			(last_word - first_word + 1), GFP_KERNEL);
507 	if (!eeprom_buff)
508 		return -ENOMEM;
509 
510 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
511 		ret_val = e1000_read_nvm(hw, first_word,
512 					 last_word - first_word + 1,
513 					 eeprom_buff);
514 	} else {
515 		for (i = 0; i < last_word - first_word + 1; i++) {
516 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
517 						      &eeprom_buff[i]);
518 			if (ret_val)
519 				break;
520 		}
521 	}
522 
523 	if (ret_val) {
524 		/* a read error occurred, throw away the result */
525 		memset(eeprom_buff, 0xff, sizeof(u16) *
526 		       (last_word - first_word + 1));
527 	} else {
528 		/* Device's eeprom is always little-endian, word addressable */
529 		for (i = 0; i < last_word - first_word + 1; i++)
530 			le16_to_cpus(&eeprom_buff[i]);
531 	}
532 
533 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
534 	kfree(eeprom_buff);
535 
536 	return ret_val;
537 }
538 
539 static int e1000_set_eeprom(struct net_device *netdev,
540 			    struct ethtool_eeprom *eeprom, u8 *bytes)
541 {
542 	struct e1000_adapter *adapter = netdev_priv(netdev);
543 	struct e1000_hw *hw = &adapter->hw;
544 	u16 *eeprom_buff;
545 	void *ptr;
546 	int max_len;
547 	int first_word;
548 	int last_word;
549 	int ret_val = 0;
550 	u16 i;
551 
552 	if (eeprom->len == 0)
553 		return -EOPNOTSUPP;
554 
555 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
556 		return -EFAULT;
557 
558 	if (adapter->flags & FLAG_READ_ONLY_NVM)
559 		return -EINVAL;
560 
561 	max_len = hw->nvm.word_size * 2;
562 
563 	first_word = eeprom->offset >> 1;
564 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
565 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
566 	if (!eeprom_buff)
567 		return -ENOMEM;
568 
569 	ptr = (void *)eeprom_buff;
570 
571 	if (eeprom->offset & 1) {
572 		/* need read/modify/write of first changed EEPROM word */
573 		/* only the second byte of the word is being modified */
574 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
575 		ptr++;
576 	}
577 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
578 		/* need read/modify/write of last changed EEPROM word */
579 		/* only the first byte of the word is being modified */
580 		ret_val = e1000_read_nvm(hw, last_word, 1,
581 				  &eeprom_buff[last_word - first_word]);
582 
583 	if (ret_val)
584 		goto out;
585 
586 	/* Device's eeprom is always little-endian, word addressable */
587 	for (i = 0; i < last_word - first_word + 1; i++)
588 		le16_to_cpus(&eeprom_buff[i]);
589 
590 	memcpy(ptr, bytes, eeprom->len);
591 
592 	for (i = 0; i < last_word - first_word + 1; i++)
593 		cpu_to_le16s(&eeprom_buff[i]);
594 
595 	ret_val = e1000_write_nvm(hw, first_word,
596 				  last_word - first_word + 1, eeprom_buff);
597 
598 	if (ret_val)
599 		goto out;
600 
601 	/*
602 	 * Update the checksum over the first part of the EEPROM if needed
603 	 * and flush shadow RAM for applicable controllers
604 	 */
605 	if ((first_word <= NVM_CHECKSUM_REG) ||
606 	    (hw->mac.type == e1000_82583) ||
607 	    (hw->mac.type == e1000_82574) ||
608 	    (hw->mac.type == e1000_82573))
609 		ret_val = e1000e_update_nvm_checksum(hw);
610 
611 out:
612 	kfree(eeprom_buff);
613 	return ret_val;
614 }
615 
616 static void e1000_get_drvinfo(struct net_device *netdev,
617 			      struct ethtool_drvinfo *drvinfo)
618 {
619 	struct e1000_adapter *adapter = netdev_priv(netdev);
620 
621 	strlcpy(drvinfo->driver,  e1000e_driver_name,
622 		sizeof(drvinfo->driver));
623 	strlcpy(drvinfo->version, e1000e_driver_version,
624 		sizeof(drvinfo->version));
625 
626 	/*
627 	 * EEPROM image version # is reported as firmware version # for
628 	 * PCI-E controllers
629 	 */
630 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
631 		"%d.%d-%d",
632 		(adapter->eeprom_vers & 0xF000) >> 12,
633 		(adapter->eeprom_vers & 0x0FF0) >> 4,
634 		(adapter->eeprom_vers & 0x000F));
635 
636 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
637 		sizeof(drvinfo->bus_info));
638 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
639 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
640 }
641 
642 static void e1000_get_ringparam(struct net_device *netdev,
643 				struct ethtool_ringparam *ring)
644 {
645 	struct e1000_adapter *adapter = netdev_priv(netdev);
646 
647 	ring->rx_max_pending = E1000_MAX_RXD;
648 	ring->tx_max_pending = E1000_MAX_TXD;
649 	ring->rx_pending = adapter->rx_ring_count;
650 	ring->tx_pending = adapter->tx_ring_count;
651 }
652 
653 static int e1000_set_ringparam(struct net_device *netdev,
654 			       struct ethtool_ringparam *ring)
655 {
656 	struct e1000_adapter *adapter = netdev_priv(netdev);
657 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
658 	int err = 0, size = sizeof(struct e1000_ring);
659 	bool set_tx = false, set_rx = false;
660 	u16 new_rx_count, new_tx_count;
661 
662 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
663 		return -EINVAL;
664 
665 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
666 			       E1000_MAX_RXD);
667 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
668 
669 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
670 			       E1000_MAX_TXD);
671 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
672 
673 	if ((new_tx_count == adapter->tx_ring_count) &&
674 	    (new_rx_count == adapter->rx_ring_count))
675 		/* nothing to do */
676 		return 0;
677 
678 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
679 		usleep_range(1000, 2000);
680 
681 	if (!netif_running(adapter->netdev)) {
682 		/* Set counts now and allocate resources during open() */
683 		adapter->tx_ring->count = new_tx_count;
684 		adapter->rx_ring->count = new_rx_count;
685 		adapter->tx_ring_count = new_tx_count;
686 		adapter->rx_ring_count = new_rx_count;
687 		goto clear_reset;
688 	}
689 
690 	set_tx = (new_tx_count != adapter->tx_ring_count);
691 	set_rx = (new_rx_count != adapter->rx_ring_count);
692 
693 	/* Allocate temporary storage for ring updates */
694 	if (set_tx) {
695 		temp_tx = vmalloc(size);
696 		if (!temp_tx) {
697 			err = -ENOMEM;
698 			goto free_temp;
699 		}
700 	}
701 	if (set_rx) {
702 		temp_rx = vmalloc(size);
703 		if (!temp_rx) {
704 			err = -ENOMEM;
705 			goto free_temp;
706 		}
707 	}
708 
709 	e1000e_down(adapter);
710 
711 	/*
712 	 * We can't just free everything and then setup again, because the
713 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
714 	 * structs.  First, attempt to allocate new resources...
715 	 */
716 	if (set_tx) {
717 		memcpy(temp_tx, adapter->tx_ring, size);
718 		temp_tx->count = new_tx_count;
719 		err = e1000e_setup_tx_resources(temp_tx);
720 		if (err)
721 			goto err_setup;
722 	}
723 	if (set_rx) {
724 		memcpy(temp_rx, adapter->rx_ring, size);
725 		temp_rx->count = new_rx_count;
726 		err = e1000e_setup_rx_resources(temp_rx);
727 		if (err)
728 			goto err_setup_rx;
729 	}
730 
731 	/* ...then free the old resources and copy back any new ring data */
732 	if (set_tx) {
733 		e1000e_free_tx_resources(adapter->tx_ring);
734 		memcpy(adapter->tx_ring, temp_tx, size);
735 		adapter->tx_ring_count = new_tx_count;
736 	}
737 	if (set_rx) {
738 		e1000e_free_rx_resources(adapter->rx_ring);
739 		memcpy(adapter->rx_ring, temp_rx, size);
740 		adapter->rx_ring_count = new_rx_count;
741 	}
742 
743 err_setup_rx:
744 	if (err && set_tx)
745 		e1000e_free_tx_resources(temp_tx);
746 err_setup:
747 	e1000e_up(adapter);
748 free_temp:
749 	vfree(temp_tx);
750 	vfree(temp_rx);
751 clear_reset:
752 	clear_bit(__E1000_RESETTING, &adapter->state);
753 	return err;
754 }
755 
756 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
757 			     int reg, int offset, u32 mask, u32 write)
758 {
759 	u32 pat, val;
760 	static const u32 test[] = {
761 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
762 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
763 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
764 				      (test[pat] & write));
765 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
766 		if (val != (test[pat] & write & mask)) {
767 			e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
768 			      reg + offset, val, (test[pat] & write & mask));
769 			*data = reg;
770 			return 1;
771 		}
772 	}
773 	return 0;
774 }
775 
776 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
777 			      int reg, u32 mask, u32 write)
778 {
779 	u32 val;
780 	__ew32(&adapter->hw, reg, write & mask);
781 	val = __er32(&adapter->hw, reg);
782 	if ((write & mask) != (val & mask)) {
783 		e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
784 		      reg, (val & mask), (write & mask));
785 		*data = reg;
786 		return 1;
787 	}
788 	return 0;
789 }
790 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
791 	do {                                                                   \
792 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
793 			return 1;                                              \
794 	} while (0)
795 #define REG_PATTERN_TEST(reg, mask, write)                                     \
796 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
797 
798 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
799 	do {                                                                   \
800 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
801 			return 1;                                              \
802 	} while (0)
803 
804 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
805 {
806 	struct e1000_hw *hw = &adapter->hw;
807 	struct e1000_mac_info *mac = &adapter->hw.mac;
808 	u32 value;
809 	u32 before;
810 	u32 after;
811 	u32 i;
812 	u32 toggle;
813 	u32 mask;
814 	u32 wlock_mac = 0;
815 
816 	/*
817 	 * The status register is Read Only, so a write should fail.
818 	 * Some bits that get toggled are ignored.
819 	 */
820 	switch (mac->type) {
821 	/* there are several bits on newer hardware that are r/w */
822 	case e1000_82571:
823 	case e1000_82572:
824 	case e1000_80003es2lan:
825 		toggle = 0x7FFFF3FF;
826 		break;
827         default:
828 		toggle = 0x7FFFF033;
829 		break;
830 	}
831 
832 	before = er32(STATUS);
833 	value = (er32(STATUS) & toggle);
834 	ew32(STATUS, toggle);
835 	after = er32(STATUS) & toggle;
836 	if (value != after) {
837 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
838 		      after, value);
839 		*data = 1;
840 		return 1;
841 	}
842 	/* restore previous status */
843 	ew32(STATUS, before);
844 
845 	if (!(adapter->flags & FLAG_IS_ICH)) {
846 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
847 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
848 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
849 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
850 	}
851 
852 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
853 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
854 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
855 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
856 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
857 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
858 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
859 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
860 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
861 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
862 
863 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
864 
865 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
866 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
867 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
868 
869 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
870 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
871 	if (!(adapter->flags & FLAG_IS_ICH))
872 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
873 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
874 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
875 	mask = 0x8003FFFF;
876 	switch (mac->type) {
877 	case e1000_ich10lan:
878 	case e1000_pchlan:
879 	case e1000_pch2lan:
880 	case e1000_pch_lpt:
881 		mask |= (1 << 18);
882 		break;
883 	default:
884 		break;
885 	}
886 
887 	if (mac->type == e1000_pch_lpt)
888 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
889 		    E1000_FWSM_WLOCK_MAC_SHIFT;
890 
891 	for (i = 0; i < mac->rar_entry_count; i++) {
892 		/* Cannot test write-protected SHRAL[n] registers */
893 		if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
894 			continue;
895 
896 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
897 				       mask, 0xFFFFFFFF);
898 	}
899 
900 	for (i = 0; i < mac->mta_reg_count; i++)
901 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
902 
903 	*data = 0;
904 
905 	return 0;
906 }
907 
908 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
909 {
910 	u16 temp;
911 	u16 checksum = 0;
912 	u16 i;
913 
914 	*data = 0;
915 	/* Read and add up the contents of the EEPROM */
916 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
917 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
918 			*data = 1;
919 			return *data;
920 		}
921 		checksum += temp;
922 	}
923 
924 	/* If Checksum is not Correct return error else test passed */
925 	if ((checksum != (u16) NVM_SUM) && !(*data))
926 		*data = 2;
927 
928 	return *data;
929 }
930 
931 static irqreturn_t e1000_test_intr(int irq, void *data)
932 {
933 	struct net_device *netdev = (struct net_device *) data;
934 	struct e1000_adapter *adapter = netdev_priv(netdev);
935 	struct e1000_hw *hw = &adapter->hw;
936 
937 	adapter->test_icr |= er32(ICR);
938 
939 	return IRQ_HANDLED;
940 }
941 
942 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
943 {
944 	struct net_device *netdev = adapter->netdev;
945 	struct e1000_hw *hw = &adapter->hw;
946 	u32 mask;
947 	u32 shared_int = 1;
948 	u32 irq = adapter->pdev->irq;
949 	int i;
950 	int ret_val = 0;
951 	int int_mode = E1000E_INT_MODE_LEGACY;
952 
953 	*data = 0;
954 
955 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
956 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
957 		int_mode = adapter->int_mode;
958 		e1000e_reset_interrupt_capability(adapter);
959 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
960 		e1000e_set_interrupt_capability(adapter);
961 	}
962 	/* Hook up test interrupt handler just for this test */
963 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
964 			 netdev)) {
965 		shared_int = 0;
966 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
967 		 netdev->name, netdev)) {
968 		*data = 1;
969 		ret_val = -1;
970 		goto out;
971 	}
972 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
973 
974 	/* Disable all the interrupts */
975 	ew32(IMC, 0xFFFFFFFF);
976 	e1e_flush();
977 	usleep_range(10000, 20000);
978 
979 	/* Test each interrupt */
980 	for (i = 0; i < 10; i++) {
981 		/* Interrupt to test */
982 		mask = 1 << i;
983 
984 		if (adapter->flags & FLAG_IS_ICH) {
985 			switch (mask) {
986 			case E1000_ICR_RXSEQ:
987 				continue;
988 			case 0x00000100:
989 				if (adapter->hw.mac.type == e1000_ich8lan ||
990 				    adapter->hw.mac.type == e1000_ich9lan)
991 					continue;
992 				break;
993 			default:
994 				break;
995 			}
996 		}
997 
998 		if (!shared_int) {
999 			/*
1000 			 * Disable the interrupt to be reported in
1001 			 * the cause register and then force the same
1002 			 * interrupt and see if one gets posted.  If
1003 			 * an interrupt was posted to the bus, the
1004 			 * test failed.
1005 			 */
1006 			adapter->test_icr = 0;
1007 			ew32(IMC, mask);
1008 			ew32(ICS, mask);
1009 			e1e_flush();
1010 			usleep_range(10000, 20000);
1011 
1012 			if (adapter->test_icr & mask) {
1013 				*data = 3;
1014 				break;
1015 			}
1016 		}
1017 
1018 		/*
1019 		 * Enable the interrupt to be reported in
1020 		 * the cause register and then force the same
1021 		 * interrupt and see if one gets posted.  If
1022 		 * an interrupt was not posted to the bus, the
1023 		 * test failed.
1024 		 */
1025 		adapter->test_icr = 0;
1026 		ew32(IMS, mask);
1027 		ew32(ICS, mask);
1028 		e1e_flush();
1029 		usleep_range(10000, 20000);
1030 
1031 		if (!(adapter->test_icr & mask)) {
1032 			*data = 4;
1033 			break;
1034 		}
1035 
1036 		if (!shared_int) {
1037 			/*
1038 			 * Disable the other interrupts to be reported in
1039 			 * the cause register and then force the other
1040 			 * interrupts and see if any get posted.  If
1041 			 * an interrupt was posted to the bus, the
1042 			 * test failed.
1043 			 */
1044 			adapter->test_icr = 0;
1045 			ew32(IMC, ~mask & 0x00007FFF);
1046 			ew32(ICS, ~mask & 0x00007FFF);
1047 			e1e_flush();
1048 			usleep_range(10000, 20000);
1049 
1050 			if (adapter->test_icr) {
1051 				*data = 5;
1052 				break;
1053 			}
1054 		}
1055 	}
1056 
1057 	/* Disable all the interrupts */
1058 	ew32(IMC, 0xFFFFFFFF);
1059 	e1e_flush();
1060 	usleep_range(10000, 20000);
1061 
1062 	/* Unhook test interrupt handler */
1063 	free_irq(irq, netdev);
1064 
1065 out:
1066 	if (int_mode == E1000E_INT_MODE_MSIX) {
1067 		e1000e_reset_interrupt_capability(adapter);
1068 		adapter->int_mode = int_mode;
1069 		e1000e_set_interrupt_capability(adapter);
1070 	}
1071 
1072 	return ret_val;
1073 }
1074 
1075 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1076 {
1077 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1078 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1079 	struct pci_dev *pdev = adapter->pdev;
1080 	int i;
1081 
1082 	if (tx_ring->desc && tx_ring->buffer_info) {
1083 		for (i = 0; i < tx_ring->count; i++) {
1084 			if (tx_ring->buffer_info[i].dma)
1085 				dma_unmap_single(&pdev->dev,
1086 					tx_ring->buffer_info[i].dma,
1087 					tx_ring->buffer_info[i].length,
1088 					DMA_TO_DEVICE);
1089 			if (tx_ring->buffer_info[i].skb)
1090 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
1091 		}
1092 	}
1093 
1094 	if (rx_ring->desc && rx_ring->buffer_info) {
1095 		for (i = 0; i < rx_ring->count; i++) {
1096 			if (rx_ring->buffer_info[i].dma)
1097 				dma_unmap_single(&pdev->dev,
1098 					rx_ring->buffer_info[i].dma,
1099 					2048, DMA_FROM_DEVICE);
1100 			if (rx_ring->buffer_info[i].skb)
1101 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
1102 		}
1103 	}
1104 
1105 	if (tx_ring->desc) {
1106 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1107 				  tx_ring->dma);
1108 		tx_ring->desc = NULL;
1109 	}
1110 	if (rx_ring->desc) {
1111 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1112 				  rx_ring->dma);
1113 		rx_ring->desc = NULL;
1114 	}
1115 
1116 	kfree(tx_ring->buffer_info);
1117 	tx_ring->buffer_info = NULL;
1118 	kfree(rx_ring->buffer_info);
1119 	rx_ring->buffer_info = NULL;
1120 }
1121 
1122 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1123 {
1124 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1125 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1126 	struct pci_dev *pdev = adapter->pdev;
1127 	struct e1000_hw *hw = &adapter->hw;
1128 	u32 rctl;
1129 	int i;
1130 	int ret_val;
1131 
1132 	/* Setup Tx descriptor ring and Tx buffers */
1133 
1134 	if (!tx_ring->count)
1135 		tx_ring->count = E1000_DEFAULT_TXD;
1136 
1137 	tx_ring->buffer_info = kcalloc(tx_ring->count,
1138 				       sizeof(struct e1000_buffer),
1139 				       GFP_KERNEL);
1140 	if (!tx_ring->buffer_info) {
1141 		ret_val = 1;
1142 		goto err_nomem;
1143 	}
1144 
1145 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1146 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1147 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1148 					   &tx_ring->dma, GFP_KERNEL);
1149 	if (!tx_ring->desc) {
1150 		ret_val = 2;
1151 		goto err_nomem;
1152 	}
1153 	tx_ring->next_to_use = 0;
1154 	tx_ring->next_to_clean = 0;
1155 
1156 	ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1157 	ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1158 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1159 	ew32(TDH(0), 0);
1160 	ew32(TDT(0), 0);
1161 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1162 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1163 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1164 
1165 	for (i = 0; i < tx_ring->count; i++) {
1166 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1167 		struct sk_buff *skb;
1168 		unsigned int skb_size = 1024;
1169 
1170 		skb = alloc_skb(skb_size, GFP_KERNEL);
1171 		if (!skb) {
1172 			ret_val = 3;
1173 			goto err_nomem;
1174 		}
1175 		skb_put(skb, skb_size);
1176 		tx_ring->buffer_info[i].skb = skb;
1177 		tx_ring->buffer_info[i].length = skb->len;
1178 		tx_ring->buffer_info[i].dma =
1179 			dma_map_single(&pdev->dev, skb->data, skb->len,
1180 				       DMA_TO_DEVICE);
1181 		if (dma_mapping_error(&pdev->dev,
1182 				      tx_ring->buffer_info[i].dma)) {
1183 			ret_val = 4;
1184 			goto err_nomem;
1185 		}
1186 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1187 		tx_desc->lower.data = cpu_to_le32(skb->len);
1188 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1189 						   E1000_TXD_CMD_IFCS |
1190 						   E1000_TXD_CMD_RS);
1191 		tx_desc->upper.data = 0;
1192 	}
1193 
1194 	/* Setup Rx descriptor ring and Rx buffers */
1195 
1196 	if (!rx_ring->count)
1197 		rx_ring->count = E1000_DEFAULT_RXD;
1198 
1199 	rx_ring->buffer_info = kcalloc(rx_ring->count,
1200 				       sizeof(struct e1000_buffer),
1201 				       GFP_KERNEL);
1202 	if (!rx_ring->buffer_info) {
1203 		ret_val = 5;
1204 		goto err_nomem;
1205 	}
1206 
1207 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1208 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1209 					   &rx_ring->dma, GFP_KERNEL);
1210 	if (!rx_ring->desc) {
1211 		ret_val = 6;
1212 		goto err_nomem;
1213 	}
1214 	rx_ring->next_to_use = 0;
1215 	rx_ring->next_to_clean = 0;
1216 
1217 	rctl = er32(RCTL);
1218 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1219 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1220 	ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1221 	ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1222 	ew32(RDLEN(0), rx_ring->size);
1223 	ew32(RDH(0), 0);
1224 	ew32(RDT(0), 0);
1225 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1226 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1227 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
1228 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1229 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1230 	ew32(RCTL, rctl);
1231 
1232 	for (i = 0; i < rx_ring->count; i++) {
1233 		union e1000_rx_desc_extended *rx_desc;
1234 		struct sk_buff *skb;
1235 
1236 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1237 		if (!skb) {
1238 			ret_val = 7;
1239 			goto err_nomem;
1240 		}
1241 		skb_reserve(skb, NET_IP_ALIGN);
1242 		rx_ring->buffer_info[i].skb = skb;
1243 		rx_ring->buffer_info[i].dma =
1244 			dma_map_single(&pdev->dev, skb->data, 2048,
1245 				       DMA_FROM_DEVICE);
1246 		if (dma_mapping_error(&pdev->dev,
1247 				      rx_ring->buffer_info[i].dma)) {
1248 			ret_val = 8;
1249 			goto err_nomem;
1250 		}
1251 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1252 		rx_desc->read.buffer_addr =
1253 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1254 		memset(skb->data, 0x00, skb->len);
1255 	}
1256 
1257 	return 0;
1258 
1259 err_nomem:
1260 	e1000_free_desc_rings(adapter);
1261 	return ret_val;
1262 }
1263 
1264 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1265 {
1266 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1267 	e1e_wphy(&adapter->hw, 29, 0x001F);
1268 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1269 	e1e_wphy(&adapter->hw, 29, 0x001A);
1270 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1271 }
1272 
1273 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1274 {
1275 	struct e1000_hw *hw = &adapter->hw;
1276 	u32 ctrl_reg = 0;
1277 	u16 phy_reg = 0;
1278 	s32 ret_val = 0;
1279 
1280 	hw->mac.autoneg = 0;
1281 
1282 	if (hw->phy.type == e1000_phy_ife) {
1283 		/* force 100, set loopback */
1284 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
1285 
1286 		/* Now set up the MAC to the same speed/duplex as the PHY. */
1287 		ctrl_reg = er32(CTRL);
1288 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1289 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1290 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1291 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1292 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1293 
1294 		ew32(CTRL, ctrl_reg);
1295 		e1e_flush();
1296 		udelay(500);
1297 
1298 		return 0;
1299 	}
1300 
1301 	/* Specific PHY configuration for loopback */
1302 	switch (hw->phy.type) {
1303 	case e1000_phy_m88:
1304 		/* Auto-MDI/MDIX Off */
1305 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1306 		/* reset to update Auto-MDI/MDIX */
1307 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
1308 		/* autoneg off */
1309 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
1310 		break;
1311 	case e1000_phy_gg82563:
1312 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1313 		break;
1314 	case e1000_phy_bm:
1315 		/* Set Default MAC Interface speed to 1GB */
1316 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1317 		phy_reg &= ~0x0007;
1318 		phy_reg |= 0x006;
1319 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1320 		/* Assert SW reset for above settings to take effect */
1321 		e1000e_commit_phy(hw);
1322 		mdelay(1);
1323 		/* Force Full Duplex */
1324 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1325 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1326 		/* Set Link Up (in force link) */
1327 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1328 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1329 		/* Force Link */
1330 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1331 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1332 		/* Set Early Link Enable */
1333 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1334 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1335 		break;
1336 	case e1000_phy_82577:
1337 	case e1000_phy_82578:
1338 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1339 		ret_val = hw->phy.ops.acquire(hw);
1340 		if (ret_val) {
1341 			e_err("Cannot setup 1Gbps loopback.\n");
1342 			return ret_val;
1343 		}
1344 		e1000_configure_k1_ich8lan(hw, false);
1345 		hw->phy.ops.release(hw);
1346 		break;
1347 	case e1000_phy_82579:
1348 		/* Disable PHY energy detect power down */
1349 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1350 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1351 		/* Disable full chip energy detect */
1352 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1353 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1354 		/* Enable loopback on the PHY */
1355 #define I82577_PHY_LBK_CTRL          19
1356 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1357 		break;
1358 	default:
1359 		break;
1360 	}
1361 
1362 	/* force 1000, set loopback */
1363 	e1e_wphy(hw, PHY_CONTROL, 0x4140);
1364 	mdelay(250);
1365 
1366 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1367 	ctrl_reg = er32(CTRL);
1368 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1369 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1370 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1371 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1372 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1373 
1374 	if (adapter->flags & FLAG_IS_ICH)
1375 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1376 
1377 	if (hw->phy.media_type == e1000_media_type_copper &&
1378 	    hw->phy.type == e1000_phy_m88) {
1379 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1380 	} else {
1381 		/*
1382 		 * Set the ILOS bit on the fiber Nic if half duplex link is
1383 		 * detected.
1384 		 */
1385 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1386 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1387 	}
1388 
1389 	ew32(CTRL, ctrl_reg);
1390 
1391 	/*
1392 	 * Disable the receiver on the PHY so when a cable is plugged in, the
1393 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1394 	 */
1395 	if (hw->phy.type == e1000_phy_m88)
1396 		e1000_phy_disable_receiver(adapter);
1397 
1398 	udelay(500);
1399 
1400 	return 0;
1401 }
1402 
1403 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1404 {
1405 	struct e1000_hw *hw = &adapter->hw;
1406 	u32 ctrl = er32(CTRL);
1407 	int link = 0;
1408 
1409 	/* special requirements for 82571/82572 fiber adapters */
1410 
1411 	/*
1412 	 * jump through hoops to make sure link is up because serdes
1413 	 * link is hardwired up
1414 	 */
1415 	ctrl |= E1000_CTRL_SLU;
1416 	ew32(CTRL, ctrl);
1417 
1418 	/* disable autoneg */
1419 	ctrl = er32(TXCW);
1420 	ctrl &= ~(1 << 31);
1421 	ew32(TXCW, ctrl);
1422 
1423 	link = (er32(STATUS) & E1000_STATUS_LU);
1424 
1425 	if (!link) {
1426 		/* set invert loss of signal */
1427 		ctrl = er32(CTRL);
1428 		ctrl |= E1000_CTRL_ILOS;
1429 		ew32(CTRL, ctrl);
1430 	}
1431 
1432 	/*
1433 	 * special write to serdes control register to enable SerDes analog
1434 	 * loopback
1435 	 */
1436 #define E1000_SERDES_LB_ON 0x410
1437 	ew32(SCTL, E1000_SERDES_LB_ON);
1438 	e1e_flush();
1439 	usleep_range(10000, 20000);
1440 
1441 	return 0;
1442 }
1443 
1444 /* only call this for fiber/serdes connections to es2lan */
1445 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1446 {
1447 	struct e1000_hw *hw = &adapter->hw;
1448 	u32 ctrlext = er32(CTRL_EXT);
1449 	u32 ctrl = er32(CTRL);
1450 
1451 	/*
1452 	 * save CTRL_EXT to restore later, reuse an empty variable (unused
1453 	 * on mac_type 80003es2lan)
1454 	 */
1455 	adapter->tx_fifo_head = ctrlext;
1456 
1457 	/* clear the serdes mode bits, putting the device into mac loopback */
1458 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1459 	ew32(CTRL_EXT, ctrlext);
1460 
1461 	/* force speed to 1000/FD, link up */
1462 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1463 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1464 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1465 	ew32(CTRL, ctrl);
1466 
1467 	/* set mac loopback */
1468 	ctrl = er32(RCTL);
1469 	ctrl |= E1000_RCTL_LBM_MAC;
1470 	ew32(RCTL, ctrl);
1471 
1472 	/* set testing mode parameters (no need to reset later) */
1473 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1474 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1475 	ew32(KMRNCTRLSTA,
1476 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1477 
1478 	return 0;
1479 }
1480 
1481 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1482 {
1483 	struct e1000_hw *hw = &adapter->hw;
1484 	u32 rctl;
1485 
1486 	if (hw->phy.media_type == e1000_media_type_fiber ||
1487 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1488 		switch (hw->mac.type) {
1489 		case e1000_80003es2lan:
1490 			return e1000_set_es2lan_mac_loopback(adapter);
1491 			break;
1492 		case e1000_82571:
1493 		case e1000_82572:
1494 			return e1000_set_82571_fiber_loopback(adapter);
1495 			break;
1496 		default:
1497 			rctl = er32(RCTL);
1498 			rctl |= E1000_RCTL_LBM_TCVR;
1499 			ew32(RCTL, rctl);
1500 			return 0;
1501 		}
1502 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1503 		return e1000_integrated_phy_loopback(adapter);
1504 	}
1505 
1506 	return 7;
1507 }
1508 
1509 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1510 {
1511 	struct e1000_hw *hw = &adapter->hw;
1512 	u32 rctl;
1513 	u16 phy_reg;
1514 
1515 	rctl = er32(RCTL);
1516 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1517 	ew32(RCTL, rctl);
1518 
1519 	switch (hw->mac.type) {
1520 	case e1000_80003es2lan:
1521 		if (hw->phy.media_type == e1000_media_type_fiber ||
1522 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1523 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1524 			ew32(CTRL_EXT, adapter->tx_fifo_head);
1525 			adapter->tx_fifo_head = 0;
1526 		}
1527 		/* fall through */
1528 	case e1000_82571:
1529 	case e1000_82572:
1530 		if (hw->phy.media_type == e1000_media_type_fiber ||
1531 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1532 #define E1000_SERDES_LB_OFF 0x400
1533 			ew32(SCTL, E1000_SERDES_LB_OFF);
1534 			e1e_flush();
1535 			usleep_range(10000, 20000);
1536 			break;
1537 		}
1538 		/* Fall Through */
1539 	default:
1540 		hw->mac.autoneg = 1;
1541 		if (hw->phy.type == e1000_phy_gg82563)
1542 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1543 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1544 		if (phy_reg & MII_CR_LOOPBACK) {
1545 			phy_reg &= ~MII_CR_LOOPBACK;
1546 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
1547 			e1000e_commit_phy(hw);
1548 		}
1549 		break;
1550 	}
1551 }
1552 
1553 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1554 				      unsigned int frame_size)
1555 {
1556 	memset(skb->data, 0xFF, frame_size);
1557 	frame_size &= ~1;
1558 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1559 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1560 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1561 }
1562 
1563 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1564 				    unsigned int frame_size)
1565 {
1566 	frame_size &= ~1;
1567 	if (*(skb->data + 3) == 0xFF)
1568 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1569 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
1570 			return 0;
1571 	return 13;
1572 }
1573 
1574 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1575 {
1576 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1577 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1578 	struct pci_dev *pdev = adapter->pdev;
1579 	struct e1000_hw *hw = &adapter->hw;
1580 	int i, j, k, l;
1581 	int lc;
1582 	int good_cnt;
1583 	int ret_val = 0;
1584 	unsigned long time;
1585 
1586 	ew32(RDT(0), rx_ring->count - 1);
1587 
1588 	/*
1589 	 * Calculate the loop count based on the largest descriptor ring
1590 	 * The idea is to wrap the largest ring a number of times using 64
1591 	 * send/receive pairs during each loop
1592 	 */
1593 
1594 	if (rx_ring->count <= tx_ring->count)
1595 		lc = ((tx_ring->count / 64) * 2) + 1;
1596 	else
1597 		lc = ((rx_ring->count / 64) * 2) + 1;
1598 
1599 	k = 0;
1600 	l = 0;
1601 	for (j = 0; j <= lc; j++) { /* loop count loop */
1602 		for (i = 0; i < 64; i++) { /* send the packets */
1603 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1604 						  1024);
1605 			dma_sync_single_for_device(&pdev->dev,
1606 					tx_ring->buffer_info[k].dma,
1607 					tx_ring->buffer_info[k].length,
1608 					DMA_TO_DEVICE);
1609 			k++;
1610 			if (k == tx_ring->count)
1611 				k = 0;
1612 		}
1613 		ew32(TDT(0), k);
1614 		e1e_flush();
1615 		msleep(200);
1616 		time = jiffies; /* set the start time for the receive */
1617 		good_cnt = 0;
1618 		do { /* receive the sent packets */
1619 			dma_sync_single_for_cpu(&pdev->dev,
1620 					rx_ring->buffer_info[l].dma, 2048,
1621 					DMA_FROM_DEVICE);
1622 
1623 			ret_val = e1000_check_lbtest_frame(
1624 					rx_ring->buffer_info[l].skb, 1024);
1625 			if (!ret_val)
1626 				good_cnt++;
1627 			l++;
1628 			if (l == rx_ring->count)
1629 				l = 0;
1630 			/*
1631 			 * time + 20 msecs (200 msecs on 2.4) is more than
1632 			 * enough time to complete the receives, if it's
1633 			 * exceeded, break and error off
1634 			 */
1635 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1636 		if (good_cnt != 64) {
1637 			ret_val = 13; /* ret_val is the same as mis-compare */
1638 			break;
1639 		}
1640 		if (jiffies >= (time + 20)) {
1641 			ret_val = 14; /* error code for time out error */
1642 			break;
1643 		}
1644 	} /* end loop count loop */
1645 	return ret_val;
1646 }
1647 
1648 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1649 {
1650 	struct e1000_hw *hw = &adapter->hw;
1651 
1652 	/*
1653 	 * PHY loopback cannot be performed if SoL/IDER
1654 	 * sessions are active
1655 	 */
1656 	if (hw->phy.ops.check_reset_block &&
1657 	    hw->phy.ops.check_reset_block(hw)) {
1658 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1659 		*data = 0;
1660 		goto out;
1661 	}
1662 
1663 	*data = e1000_setup_desc_rings(adapter);
1664 	if (*data)
1665 		goto out;
1666 
1667 	*data = e1000_setup_loopback_test(adapter);
1668 	if (*data)
1669 		goto err_loopback;
1670 
1671 	*data = e1000_run_loopback_test(adapter);
1672 	e1000_loopback_cleanup(adapter);
1673 
1674 err_loopback:
1675 	e1000_free_desc_rings(adapter);
1676 out:
1677 	return *data;
1678 }
1679 
1680 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1681 {
1682 	struct e1000_hw *hw = &adapter->hw;
1683 
1684 	*data = 0;
1685 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1686 		int i = 0;
1687 		hw->mac.serdes_has_link = false;
1688 
1689 		/*
1690 		 * On some blade server designs, link establishment
1691 		 * could take as long as 2-3 minutes
1692 		 */
1693 		do {
1694 			hw->mac.ops.check_for_link(hw);
1695 			if (hw->mac.serdes_has_link)
1696 				return *data;
1697 			msleep(20);
1698 		} while (i++ < 3750);
1699 
1700 		*data = 1;
1701 	} else {
1702 		hw->mac.ops.check_for_link(hw);
1703 		if (hw->mac.autoneg)
1704 			/*
1705 			 * On some Phy/switch combinations, link establishment
1706 			 * can take a few seconds more than expected.
1707 			 */
1708 			msleep(5000);
1709 
1710 		if (!(er32(STATUS) & E1000_STATUS_LU))
1711 			*data = 1;
1712 	}
1713 	return *data;
1714 }
1715 
1716 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1717 {
1718 	switch (sset) {
1719 	case ETH_SS_TEST:
1720 		return E1000_TEST_LEN;
1721 	case ETH_SS_STATS:
1722 		return E1000_STATS_LEN;
1723 	default:
1724 		return -EOPNOTSUPP;
1725 	}
1726 }
1727 
1728 static void e1000_diag_test(struct net_device *netdev,
1729 			    struct ethtool_test *eth_test, u64 *data)
1730 {
1731 	struct e1000_adapter *adapter = netdev_priv(netdev);
1732 	u16 autoneg_advertised;
1733 	u8 forced_speed_duplex;
1734 	u8 autoneg;
1735 	bool if_running = netif_running(netdev);
1736 
1737 	set_bit(__E1000_TESTING, &adapter->state);
1738 
1739 	if (!if_running) {
1740 		/* Get control of and reset hardware */
1741 		if (adapter->flags & FLAG_HAS_AMT)
1742 			e1000e_get_hw_control(adapter);
1743 
1744 		e1000e_power_up_phy(adapter);
1745 
1746 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1747 		e1000e_reset(adapter);
1748 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1749 	}
1750 
1751 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1752 		/* Offline tests */
1753 
1754 		/* save speed, duplex, autoneg settings */
1755 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1756 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1757 		autoneg = adapter->hw.mac.autoneg;
1758 
1759 		e_info("offline testing starting\n");
1760 
1761 		if (if_running)
1762 			/* indicate we're in test mode */
1763 			dev_close(netdev);
1764 
1765 		if (e1000_reg_test(adapter, &data[0]))
1766 			eth_test->flags |= ETH_TEST_FL_FAILED;
1767 
1768 		e1000e_reset(adapter);
1769 		if (e1000_eeprom_test(adapter, &data[1]))
1770 			eth_test->flags |= ETH_TEST_FL_FAILED;
1771 
1772 		e1000e_reset(adapter);
1773 		if (e1000_intr_test(adapter, &data[2]))
1774 			eth_test->flags |= ETH_TEST_FL_FAILED;
1775 
1776 		e1000e_reset(adapter);
1777 		if (e1000_loopback_test(adapter, &data[3]))
1778 			eth_test->flags |= ETH_TEST_FL_FAILED;
1779 
1780 		/* force this routine to wait until autoneg complete/timeout */
1781 		adapter->hw.phy.autoneg_wait_to_complete = 1;
1782 		e1000e_reset(adapter);
1783 		adapter->hw.phy.autoneg_wait_to_complete = 0;
1784 
1785 		if (e1000_link_test(adapter, &data[4]))
1786 			eth_test->flags |= ETH_TEST_FL_FAILED;
1787 
1788 		/* restore speed, duplex, autoneg settings */
1789 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1790 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1791 		adapter->hw.mac.autoneg = autoneg;
1792 		e1000e_reset(adapter);
1793 
1794 		clear_bit(__E1000_TESTING, &adapter->state);
1795 		if (if_running)
1796 			dev_open(netdev);
1797 	} else {
1798 		/* Online tests */
1799 
1800 		e_info("online testing starting\n");
1801 
1802 		/* register, eeprom, intr and loopback tests not run online */
1803 		data[0] = 0;
1804 		data[1] = 0;
1805 		data[2] = 0;
1806 		data[3] = 0;
1807 
1808 		if (e1000_link_test(adapter, &data[4]))
1809 			eth_test->flags |= ETH_TEST_FL_FAILED;
1810 
1811 		clear_bit(__E1000_TESTING, &adapter->state);
1812 	}
1813 
1814 	if (!if_running) {
1815 		e1000e_reset(adapter);
1816 
1817 		if (adapter->flags & FLAG_HAS_AMT)
1818 			e1000e_release_hw_control(adapter);
1819 	}
1820 
1821 	msleep_interruptible(4 * 1000);
1822 }
1823 
1824 static void e1000_get_wol(struct net_device *netdev,
1825 			  struct ethtool_wolinfo *wol)
1826 {
1827 	struct e1000_adapter *adapter = netdev_priv(netdev);
1828 
1829 	wol->supported = 0;
1830 	wol->wolopts = 0;
1831 
1832 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1833 	    !device_can_wakeup(&adapter->pdev->dev))
1834 		return;
1835 
1836 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1837 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1838 
1839 	/* apply any specific unsupported masks here */
1840 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1841 		wol->supported &= ~WAKE_UCAST;
1842 
1843 		if (adapter->wol & E1000_WUFC_EX)
1844 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1845 	}
1846 
1847 	if (adapter->wol & E1000_WUFC_EX)
1848 		wol->wolopts |= WAKE_UCAST;
1849 	if (adapter->wol & E1000_WUFC_MC)
1850 		wol->wolopts |= WAKE_MCAST;
1851 	if (adapter->wol & E1000_WUFC_BC)
1852 		wol->wolopts |= WAKE_BCAST;
1853 	if (adapter->wol & E1000_WUFC_MAG)
1854 		wol->wolopts |= WAKE_MAGIC;
1855 	if (adapter->wol & E1000_WUFC_LNKC)
1856 		wol->wolopts |= WAKE_PHY;
1857 }
1858 
1859 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1860 {
1861 	struct e1000_adapter *adapter = netdev_priv(netdev);
1862 
1863 	if (!(adapter->flags & FLAG_HAS_WOL) ||
1864 	    !device_can_wakeup(&adapter->pdev->dev) ||
1865 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1866 			      WAKE_MAGIC | WAKE_PHY)))
1867 		return -EOPNOTSUPP;
1868 
1869 	/* these settings will always override what we currently have */
1870 	adapter->wol = 0;
1871 
1872 	if (wol->wolopts & WAKE_UCAST)
1873 		adapter->wol |= E1000_WUFC_EX;
1874 	if (wol->wolopts & WAKE_MCAST)
1875 		adapter->wol |= E1000_WUFC_MC;
1876 	if (wol->wolopts & WAKE_BCAST)
1877 		adapter->wol |= E1000_WUFC_BC;
1878 	if (wol->wolopts & WAKE_MAGIC)
1879 		adapter->wol |= E1000_WUFC_MAG;
1880 	if (wol->wolopts & WAKE_PHY)
1881 		adapter->wol |= E1000_WUFC_LNKC;
1882 
1883 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1884 
1885 	return 0;
1886 }
1887 
1888 static int e1000_set_phys_id(struct net_device *netdev,
1889 			     enum ethtool_phys_id_state state)
1890 {
1891 	struct e1000_adapter *adapter = netdev_priv(netdev);
1892 	struct e1000_hw *hw = &adapter->hw;
1893 
1894 	switch (state) {
1895 	case ETHTOOL_ID_ACTIVE:
1896 		if (!hw->mac.ops.blink_led)
1897 			return 2;	/* cycle on/off twice per second */
1898 
1899 		hw->mac.ops.blink_led(hw);
1900 		break;
1901 
1902 	case ETHTOOL_ID_INACTIVE:
1903 		if (hw->phy.type == e1000_phy_ife)
1904 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1905 		hw->mac.ops.led_off(hw);
1906 		hw->mac.ops.cleanup_led(hw);
1907 		break;
1908 
1909 	case ETHTOOL_ID_ON:
1910 		hw->mac.ops.led_on(hw);
1911 		break;
1912 
1913 	case ETHTOOL_ID_OFF:
1914 		hw->mac.ops.led_off(hw);
1915 		break;
1916 	}
1917 	return 0;
1918 }
1919 
1920 static int e1000_get_coalesce(struct net_device *netdev,
1921 			      struct ethtool_coalesce *ec)
1922 {
1923 	struct e1000_adapter *adapter = netdev_priv(netdev);
1924 
1925 	if (adapter->itr_setting <= 4)
1926 		ec->rx_coalesce_usecs = adapter->itr_setting;
1927 	else
1928 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1929 
1930 	return 0;
1931 }
1932 
1933 static int e1000_set_coalesce(struct net_device *netdev,
1934 			      struct ethtool_coalesce *ec)
1935 {
1936 	struct e1000_adapter *adapter = netdev_priv(netdev);
1937 
1938 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1939 	    ((ec->rx_coalesce_usecs > 4) &&
1940 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1941 	    (ec->rx_coalesce_usecs == 2))
1942 		return -EINVAL;
1943 
1944 	if (ec->rx_coalesce_usecs == 4) {
1945 		adapter->itr_setting = 4;
1946 		adapter->itr = adapter->itr_setting;
1947 	} else if (ec->rx_coalesce_usecs <= 3) {
1948 		adapter->itr = 20000;
1949 		adapter->itr_setting = ec->rx_coalesce_usecs;
1950 	} else {
1951 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1952 		adapter->itr_setting = adapter->itr & ~3;
1953 	}
1954 
1955 	if (adapter->itr_setting != 0)
1956 		e1000e_write_itr(adapter, adapter->itr);
1957 	else
1958 		e1000e_write_itr(adapter, 0);
1959 
1960 	return 0;
1961 }
1962 
1963 static int e1000_nway_reset(struct net_device *netdev)
1964 {
1965 	struct e1000_adapter *adapter = netdev_priv(netdev);
1966 
1967 	if (!netif_running(netdev))
1968 		return -EAGAIN;
1969 
1970 	if (!adapter->hw.mac.autoneg)
1971 		return -EINVAL;
1972 
1973 	e1000e_reinit_locked(adapter);
1974 
1975 	return 0;
1976 }
1977 
1978 static void e1000_get_ethtool_stats(struct net_device *netdev,
1979 				    struct ethtool_stats *stats,
1980 				    u64 *data)
1981 {
1982 	struct e1000_adapter *adapter = netdev_priv(netdev);
1983 	struct rtnl_link_stats64 net_stats;
1984 	int i;
1985 	char *p = NULL;
1986 
1987 	e1000e_get_stats64(netdev, &net_stats);
1988 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1989 		switch (e1000_gstrings_stats[i].type) {
1990 		case NETDEV_STATS:
1991 			p = (char *) &net_stats +
1992 					e1000_gstrings_stats[i].stat_offset;
1993 			break;
1994 		case E1000_STATS:
1995 			p = (char *) adapter +
1996 					e1000_gstrings_stats[i].stat_offset;
1997 			break;
1998 		default:
1999 			data[i] = 0;
2000 			continue;
2001 		}
2002 
2003 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2004 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2005 	}
2006 }
2007 
2008 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
2009 			      u8 *data)
2010 {
2011 	u8 *p = data;
2012 	int i;
2013 
2014 	switch (stringset) {
2015 	case ETH_SS_TEST:
2016 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2017 		break;
2018 	case ETH_SS_STATS:
2019 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2020 			memcpy(p, e1000_gstrings_stats[i].stat_string,
2021 			       ETH_GSTRING_LEN);
2022 			p += ETH_GSTRING_LEN;
2023 		}
2024 		break;
2025 	}
2026 }
2027 
2028 static int e1000_get_rxnfc(struct net_device *netdev,
2029 			   struct ethtool_rxnfc *info, u32 *rule_locs)
2030 {
2031 	info->data = 0;
2032 
2033 	switch (info->cmd) {
2034 	case ETHTOOL_GRXFH: {
2035 		struct e1000_adapter *adapter = netdev_priv(netdev);
2036 		struct e1000_hw *hw = &adapter->hw;
2037 		u32 mrqc = er32(MRQC);
2038 
2039 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2040 			return 0;
2041 
2042 		switch (info->flow_type) {
2043 		case TCP_V4_FLOW:
2044 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2045 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2046 			/* fall through */
2047 		case UDP_V4_FLOW:
2048 		case SCTP_V4_FLOW:
2049 		case AH_ESP_V4_FLOW:
2050 		case IPV4_FLOW:
2051 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2052 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2053 			break;
2054 		case TCP_V6_FLOW:
2055 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2056 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2057 			/* fall through */
2058 		case UDP_V6_FLOW:
2059 		case SCTP_V6_FLOW:
2060 		case AH_ESP_V6_FLOW:
2061 		case IPV6_FLOW:
2062 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2063 				info->data |= RXH_IP_SRC | RXH_IP_DST;
2064 			break;
2065 		default:
2066 			break;
2067 		}
2068 		return 0;
2069 	}
2070 	default:
2071 		return -EOPNOTSUPP;
2072 	}
2073 }
2074 
2075 static const struct ethtool_ops e1000_ethtool_ops = {
2076 	.get_settings		= e1000_get_settings,
2077 	.set_settings		= e1000_set_settings,
2078 	.get_drvinfo		= e1000_get_drvinfo,
2079 	.get_regs_len		= e1000_get_regs_len,
2080 	.get_regs		= e1000_get_regs,
2081 	.get_wol		= e1000_get_wol,
2082 	.set_wol		= e1000_set_wol,
2083 	.get_msglevel		= e1000_get_msglevel,
2084 	.set_msglevel		= e1000_set_msglevel,
2085 	.nway_reset		= e1000_nway_reset,
2086 	.get_link		= ethtool_op_get_link,
2087 	.get_eeprom_len		= e1000_get_eeprom_len,
2088 	.get_eeprom		= e1000_get_eeprom,
2089 	.set_eeprom		= e1000_set_eeprom,
2090 	.get_ringparam		= e1000_get_ringparam,
2091 	.set_ringparam		= e1000_set_ringparam,
2092 	.get_pauseparam		= e1000_get_pauseparam,
2093 	.set_pauseparam		= e1000_set_pauseparam,
2094 	.self_test		= e1000_diag_test,
2095 	.get_strings		= e1000_get_strings,
2096 	.set_phys_id		= e1000_set_phys_id,
2097 	.get_ethtool_stats	= e1000_get_ethtool_stats,
2098 	.get_sset_count		= e1000e_get_sset_count,
2099 	.get_coalesce		= e1000_get_coalesce,
2100 	.set_coalesce		= e1000_set_coalesce,
2101 	.get_rxnfc		= e1000_get_rxnfc,
2102 	.get_ts_info		= ethtool_op_get_ts_info,
2103 };
2104 
2105 void e1000e_set_ethtool_ops(struct net_device *netdev)
2106 {
2107 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2108 }
2109