1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/ethtool.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/delay.h> 37 #include <linux/vmalloc.h> 38 39 #include "e1000.h" 40 41 enum {NETDEV_STATS, E1000_STATS}; 42 43 struct e1000_stats { 44 char stat_string[ETH_GSTRING_LEN]; 45 int type; 46 int sizeof_stat; 47 int stat_offset; 48 }; 49 50 #define E1000_STAT(str, m) { \ 51 .stat_string = str, \ 52 .type = E1000_STATS, \ 53 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 54 .stat_offset = offsetof(struct e1000_adapter, m) } 55 #define E1000_NETDEV_STAT(str, m) { \ 56 .stat_string = str, \ 57 .type = NETDEV_STATS, \ 58 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 59 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 60 61 static const struct e1000_stats e1000_gstrings_stats[] = { 62 E1000_STAT("rx_packets", stats.gprc), 63 E1000_STAT("tx_packets", stats.gptc), 64 E1000_STAT("rx_bytes", stats.gorc), 65 E1000_STAT("tx_bytes", stats.gotc), 66 E1000_STAT("rx_broadcast", stats.bprc), 67 E1000_STAT("tx_broadcast", stats.bptc), 68 E1000_STAT("rx_multicast", stats.mprc), 69 E1000_STAT("tx_multicast", stats.mptc), 70 E1000_NETDEV_STAT("rx_errors", rx_errors), 71 E1000_NETDEV_STAT("tx_errors", tx_errors), 72 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 73 E1000_STAT("multicast", stats.mprc), 74 E1000_STAT("collisions", stats.colc), 75 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 76 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 77 E1000_STAT("rx_crc_errors", stats.crcerrs), 78 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 79 E1000_STAT("rx_no_buffer_count", stats.rnbc), 80 E1000_STAT("rx_missed_errors", stats.mpc), 81 E1000_STAT("tx_aborted_errors", stats.ecol), 82 E1000_STAT("tx_carrier_errors", stats.tncrs), 83 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 84 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 85 E1000_STAT("tx_window_errors", stats.latecol), 86 E1000_STAT("tx_abort_late_coll", stats.latecol), 87 E1000_STAT("tx_deferred_ok", stats.dc), 88 E1000_STAT("tx_single_coll_ok", stats.scc), 89 E1000_STAT("tx_multi_coll_ok", stats.mcc), 90 E1000_STAT("tx_timeout_count", tx_timeout_count), 91 E1000_STAT("tx_restart_queue", restart_queue), 92 E1000_STAT("rx_long_length_errors", stats.roc), 93 E1000_STAT("rx_short_length_errors", stats.ruc), 94 E1000_STAT("rx_align_errors", stats.algnerrc), 95 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 96 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 97 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 98 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 99 E1000_STAT("tx_flow_control_xon", stats.xontxc), 100 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 101 E1000_STAT("rx_long_byte_count", stats.gorc), 102 E1000_STAT("rx_csum_offload_good", hw_csum_good), 103 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 104 E1000_STAT("rx_header_split", rx_hdr_split), 105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 106 E1000_STAT("tx_smbus", stats.mgptc), 107 E1000_STAT("rx_smbus", stats.mgprc), 108 E1000_STAT("dropped_smbus", stats.mgpdc), 109 E1000_STAT("rx_dma_failed", rx_dma_failed), 110 E1000_STAT("tx_dma_failed", tx_dma_failed), 111 }; 112 113 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 116 "Register test (offline)", "Eeprom test (offline)", 117 "Interrupt test (offline)", "Loopback test (offline)", 118 "Link test (on/offline)" 119 }; 120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 121 122 static int e1000_get_settings(struct net_device *netdev, 123 struct ethtool_cmd *ecmd) 124 { 125 struct e1000_adapter *adapter = netdev_priv(netdev); 126 struct e1000_hw *hw = &adapter->hw; 127 u32 speed; 128 129 if (hw->phy.media_type == e1000_media_type_copper) { 130 131 ecmd->supported = (SUPPORTED_10baseT_Half | 132 SUPPORTED_10baseT_Full | 133 SUPPORTED_100baseT_Half | 134 SUPPORTED_100baseT_Full | 135 SUPPORTED_1000baseT_Full | 136 SUPPORTED_Autoneg | 137 SUPPORTED_TP); 138 if (hw->phy.type == e1000_phy_ife) 139 ecmd->supported &= ~SUPPORTED_1000baseT_Full; 140 ecmd->advertising = ADVERTISED_TP; 141 142 if (hw->mac.autoneg == 1) { 143 ecmd->advertising |= ADVERTISED_Autoneg; 144 /* the e1000 autoneg seems to match ethtool nicely */ 145 ecmd->advertising |= hw->phy.autoneg_advertised; 146 } 147 148 ecmd->port = PORT_TP; 149 ecmd->phy_address = hw->phy.addr; 150 ecmd->transceiver = XCVR_INTERNAL; 151 152 } else { 153 ecmd->supported = (SUPPORTED_1000baseT_Full | 154 SUPPORTED_FIBRE | 155 SUPPORTED_Autoneg); 156 157 ecmd->advertising = (ADVERTISED_1000baseT_Full | 158 ADVERTISED_FIBRE | 159 ADVERTISED_Autoneg); 160 161 ecmd->port = PORT_FIBRE; 162 ecmd->transceiver = XCVR_EXTERNAL; 163 } 164 165 speed = -1; 166 ecmd->duplex = -1; 167 168 if (netif_running(netdev)) { 169 if (netif_carrier_ok(netdev)) { 170 speed = adapter->link_speed; 171 ecmd->duplex = adapter->link_duplex - 1; 172 } 173 } else { 174 u32 status = er32(STATUS); 175 if (status & E1000_STATUS_LU) { 176 if (status & E1000_STATUS_SPEED_1000) 177 speed = SPEED_1000; 178 else if (status & E1000_STATUS_SPEED_100) 179 speed = SPEED_100; 180 else 181 speed = SPEED_10; 182 183 if (status & E1000_STATUS_FD) 184 ecmd->duplex = DUPLEX_FULL; 185 else 186 ecmd->duplex = DUPLEX_HALF; 187 } 188 } 189 190 ethtool_cmd_speed_set(ecmd, speed); 191 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 192 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 193 194 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 195 if ((hw->phy.media_type == e1000_media_type_copper) && 196 netif_carrier_ok(netdev)) 197 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 198 ETH_TP_MDI; 199 else 200 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 201 202 if (hw->phy.mdix == AUTO_ALL_MODES) 203 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 204 else 205 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 206 207 return 0; 208 } 209 210 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 211 { 212 struct e1000_mac_info *mac = &adapter->hw.mac; 213 214 mac->autoneg = 0; 215 216 /* Make sure dplx is at most 1 bit and lsb of speed is not set 217 * for the switch() below to work */ 218 if ((spd & 1) || (dplx & ~1)) 219 goto err_inval; 220 221 /* Fiber NICs only allow 1000 gbps Full duplex */ 222 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 223 spd != SPEED_1000 && 224 dplx != DUPLEX_FULL) { 225 goto err_inval; 226 } 227 228 switch (spd + dplx) { 229 case SPEED_10 + DUPLEX_HALF: 230 mac->forced_speed_duplex = ADVERTISE_10_HALF; 231 break; 232 case SPEED_10 + DUPLEX_FULL: 233 mac->forced_speed_duplex = ADVERTISE_10_FULL; 234 break; 235 case SPEED_100 + DUPLEX_HALF: 236 mac->forced_speed_duplex = ADVERTISE_100_HALF; 237 break; 238 case SPEED_100 + DUPLEX_FULL: 239 mac->forced_speed_duplex = ADVERTISE_100_FULL; 240 break; 241 case SPEED_1000 + DUPLEX_FULL: 242 mac->autoneg = 1; 243 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 244 break; 245 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 246 default: 247 goto err_inval; 248 } 249 250 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 251 adapter->hw.phy.mdix = AUTO_ALL_MODES; 252 253 return 0; 254 255 err_inval: 256 e_err("Unsupported Speed/Duplex configuration\n"); 257 return -EINVAL; 258 } 259 260 static int e1000_set_settings(struct net_device *netdev, 261 struct ethtool_cmd *ecmd) 262 { 263 struct e1000_adapter *adapter = netdev_priv(netdev); 264 struct e1000_hw *hw = &adapter->hw; 265 266 /* 267 * When SoL/IDER sessions are active, autoneg/speed/duplex 268 * cannot be changed 269 */ 270 if (hw->phy.ops.check_reset_block && 271 hw->phy.ops.check_reset_block(hw)) { 272 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 273 return -EINVAL; 274 } 275 276 /* 277 * MDI setting is only allowed when autoneg enabled because 278 * some hardware doesn't allow MDI setting when speed or 279 * duplex is forced. 280 */ 281 if (ecmd->eth_tp_mdix_ctrl) { 282 if (hw->phy.media_type != e1000_media_type_copper) 283 return -EOPNOTSUPP; 284 285 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 286 (ecmd->autoneg != AUTONEG_ENABLE)) { 287 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 288 return -EINVAL; 289 } 290 } 291 292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 293 usleep_range(1000, 2000); 294 295 if (ecmd->autoneg == AUTONEG_ENABLE) { 296 hw->mac.autoneg = 1; 297 if (hw->phy.media_type == e1000_media_type_fiber) 298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 299 ADVERTISED_FIBRE | 300 ADVERTISED_Autoneg; 301 else 302 hw->phy.autoneg_advertised = ecmd->advertising | 303 ADVERTISED_TP | 304 ADVERTISED_Autoneg; 305 ecmd->advertising = hw->phy.autoneg_advertised; 306 if (adapter->fc_autoneg) 307 hw->fc.requested_mode = e1000_fc_default; 308 } else { 309 u32 speed = ethtool_cmd_speed(ecmd); 310 /* calling this overrides forced MDI setting */ 311 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 312 clear_bit(__E1000_RESETTING, &adapter->state); 313 return -EINVAL; 314 } 315 } 316 317 /* MDI-X => 2; MDI => 1; Auto => 3 */ 318 if (ecmd->eth_tp_mdix_ctrl) { 319 /* 320 * fix up the value for auto (3 => 0) as zero is mapped 321 * internally to auto 322 */ 323 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 324 hw->phy.mdix = AUTO_ALL_MODES; 325 else 326 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 327 } 328 329 /* reset the link */ 330 331 if (netif_running(adapter->netdev)) { 332 e1000e_down(adapter); 333 e1000e_up(adapter); 334 } else 335 e1000e_reset(adapter); 336 337 clear_bit(__E1000_RESETTING, &adapter->state); 338 return 0; 339 } 340 341 static void e1000_get_pauseparam(struct net_device *netdev, 342 struct ethtool_pauseparam *pause) 343 { 344 struct e1000_adapter *adapter = netdev_priv(netdev); 345 struct e1000_hw *hw = &adapter->hw; 346 347 pause->autoneg = 348 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 349 350 if (hw->fc.current_mode == e1000_fc_rx_pause) { 351 pause->rx_pause = 1; 352 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 353 pause->tx_pause = 1; 354 } else if (hw->fc.current_mode == e1000_fc_full) { 355 pause->rx_pause = 1; 356 pause->tx_pause = 1; 357 } 358 } 359 360 static int e1000_set_pauseparam(struct net_device *netdev, 361 struct ethtool_pauseparam *pause) 362 { 363 struct e1000_adapter *adapter = netdev_priv(netdev); 364 struct e1000_hw *hw = &adapter->hw; 365 int retval = 0; 366 367 adapter->fc_autoneg = pause->autoneg; 368 369 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 370 usleep_range(1000, 2000); 371 372 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 373 hw->fc.requested_mode = e1000_fc_default; 374 if (netif_running(adapter->netdev)) { 375 e1000e_down(adapter); 376 e1000e_up(adapter); 377 } else { 378 e1000e_reset(adapter); 379 } 380 } else { 381 if (pause->rx_pause && pause->tx_pause) 382 hw->fc.requested_mode = e1000_fc_full; 383 else if (pause->rx_pause && !pause->tx_pause) 384 hw->fc.requested_mode = e1000_fc_rx_pause; 385 else if (!pause->rx_pause && pause->tx_pause) 386 hw->fc.requested_mode = e1000_fc_tx_pause; 387 else if (!pause->rx_pause && !pause->tx_pause) 388 hw->fc.requested_mode = e1000_fc_none; 389 390 hw->fc.current_mode = hw->fc.requested_mode; 391 392 if (hw->phy.media_type == e1000_media_type_fiber) { 393 retval = hw->mac.ops.setup_link(hw); 394 /* implicit goto out */ 395 } else { 396 retval = e1000e_force_mac_fc(hw); 397 if (retval) 398 goto out; 399 e1000e_set_fc_watermarks(hw); 400 } 401 } 402 403 out: 404 clear_bit(__E1000_RESETTING, &adapter->state); 405 return retval; 406 } 407 408 static u32 e1000_get_msglevel(struct net_device *netdev) 409 { 410 struct e1000_adapter *adapter = netdev_priv(netdev); 411 return adapter->msg_enable; 412 } 413 414 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 415 { 416 struct e1000_adapter *adapter = netdev_priv(netdev); 417 adapter->msg_enable = data; 418 } 419 420 static int e1000_get_regs_len(struct net_device *netdev) 421 { 422 #define E1000_REGS_LEN 32 /* overestimate */ 423 return E1000_REGS_LEN * sizeof(u32); 424 } 425 426 static void e1000_get_regs(struct net_device *netdev, 427 struct ethtool_regs *regs, void *p) 428 { 429 struct e1000_adapter *adapter = netdev_priv(netdev); 430 struct e1000_hw *hw = &adapter->hw; 431 u32 *regs_buff = p; 432 u16 phy_data; 433 434 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 435 436 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 437 adapter->pdev->device; 438 439 regs_buff[0] = er32(CTRL); 440 regs_buff[1] = er32(STATUS); 441 442 regs_buff[2] = er32(RCTL); 443 regs_buff[3] = er32(RDLEN(0)); 444 regs_buff[4] = er32(RDH(0)); 445 regs_buff[5] = er32(RDT(0)); 446 regs_buff[6] = er32(RDTR); 447 448 regs_buff[7] = er32(TCTL); 449 regs_buff[8] = er32(TDLEN(0)); 450 regs_buff[9] = er32(TDH(0)); 451 regs_buff[10] = er32(TDT(0)); 452 regs_buff[11] = er32(TIDV); 453 454 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 455 456 /* ethtool doesn't use anything past this point, so all this 457 * code is likely legacy junk for apps that may or may not 458 * exist */ 459 if (hw->phy.type == e1000_phy_m88) { 460 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 461 regs_buff[13] = (u32)phy_data; /* cable length */ 462 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 463 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 464 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 465 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 466 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 467 regs_buff[18] = regs_buff[13]; /* cable polarity */ 468 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 469 regs_buff[20] = regs_buff[17]; /* polarity correction */ 470 /* phy receive errors */ 471 regs_buff[22] = adapter->phy_stats.receive_errors; 472 regs_buff[23] = regs_buff[13]; /* mdix mode */ 473 } 474 regs_buff[21] = 0; /* was idle_errors */ 475 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); 476 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 477 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 478 } 479 480 static int e1000_get_eeprom_len(struct net_device *netdev) 481 { 482 struct e1000_adapter *adapter = netdev_priv(netdev); 483 return adapter->hw.nvm.word_size * 2; 484 } 485 486 static int e1000_get_eeprom(struct net_device *netdev, 487 struct ethtool_eeprom *eeprom, u8 *bytes) 488 { 489 struct e1000_adapter *adapter = netdev_priv(netdev); 490 struct e1000_hw *hw = &adapter->hw; 491 u16 *eeprom_buff; 492 int first_word; 493 int last_word; 494 int ret_val = 0; 495 u16 i; 496 497 if (eeprom->len == 0) 498 return -EINVAL; 499 500 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 501 502 first_word = eeprom->offset >> 1; 503 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 504 505 eeprom_buff = kmalloc(sizeof(u16) * 506 (last_word - first_word + 1), GFP_KERNEL); 507 if (!eeprom_buff) 508 return -ENOMEM; 509 510 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 511 ret_val = e1000_read_nvm(hw, first_word, 512 last_word - first_word + 1, 513 eeprom_buff); 514 } else { 515 for (i = 0; i < last_word - first_word + 1; i++) { 516 ret_val = e1000_read_nvm(hw, first_word + i, 1, 517 &eeprom_buff[i]); 518 if (ret_val) 519 break; 520 } 521 } 522 523 if (ret_val) { 524 /* a read error occurred, throw away the result */ 525 memset(eeprom_buff, 0xff, sizeof(u16) * 526 (last_word - first_word + 1)); 527 } else { 528 /* Device's eeprom is always little-endian, word addressable */ 529 for (i = 0; i < last_word - first_word + 1; i++) 530 le16_to_cpus(&eeprom_buff[i]); 531 } 532 533 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 534 kfree(eeprom_buff); 535 536 return ret_val; 537 } 538 539 static int e1000_set_eeprom(struct net_device *netdev, 540 struct ethtool_eeprom *eeprom, u8 *bytes) 541 { 542 struct e1000_adapter *adapter = netdev_priv(netdev); 543 struct e1000_hw *hw = &adapter->hw; 544 u16 *eeprom_buff; 545 void *ptr; 546 int max_len; 547 int first_word; 548 int last_word; 549 int ret_val = 0; 550 u16 i; 551 552 if (eeprom->len == 0) 553 return -EOPNOTSUPP; 554 555 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) 556 return -EFAULT; 557 558 if (adapter->flags & FLAG_READ_ONLY_NVM) 559 return -EINVAL; 560 561 max_len = hw->nvm.word_size * 2; 562 563 first_word = eeprom->offset >> 1; 564 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 565 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 566 if (!eeprom_buff) 567 return -ENOMEM; 568 569 ptr = (void *)eeprom_buff; 570 571 if (eeprom->offset & 1) { 572 /* need read/modify/write of first changed EEPROM word */ 573 /* only the second byte of the word is being modified */ 574 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 575 ptr++; 576 } 577 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 578 /* need read/modify/write of last changed EEPROM word */ 579 /* only the first byte of the word is being modified */ 580 ret_val = e1000_read_nvm(hw, last_word, 1, 581 &eeprom_buff[last_word - first_word]); 582 583 if (ret_val) 584 goto out; 585 586 /* Device's eeprom is always little-endian, word addressable */ 587 for (i = 0; i < last_word - first_word + 1; i++) 588 le16_to_cpus(&eeprom_buff[i]); 589 590 memcpy(ptr, bytes, eeprom->len); 591 592 for (i = 0; i < last_word - first_word + 1; i++) 593 cpu_to_le16s(&eeprom_buff[i]); 594 595 ret_val = e1000_write_nvm(hw, first_word, 596 last_word - first_word + 1, eeprom_buff); 597 598 if (ret_val) 599 goto out; 600 601 /* 602 * Update the checksum over the first part of the EEPROM if needed 603 * and flush shadow RAM for applicable controllers 604 */ 605 if ((first_word <= NVM_CHECKSUM_REG) || 606 (hw->mac.type == e1000_82583) || 607 (hw->mac.type == e1000_82574) || 608 (hw->mac.type == e1000_82573)) 609 ret_val = e1000e_update_nvm_checksum(hw); 610 611 out: 612 kfree(eeprom_buff); 613 return ret_val; 614 } 615 616 static void e1000_get_drvinfo(struct net_device *netdev, 617 struct ethtool_drvinfo *drvinfo) 618 { 619 struct e1000_adapter *adapter = netdev_priv(netdev); 620 621 strlcpy(drvinfo->driver, e1000e_driver_name, 622 sizeof(drvinfo->driver)); 623 strlcpy(drvinfo->version, e1000e_driver_version, 624 sizeof(drvinfo->version)); 625 626 /* 627 * EEPROM image version # is reported as firmware version # for 628 * PCI-E controllers 629 */ 630 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 631 "%d.%d-%d", 632 (adapter->eeprom_vers & 0xF000) >> 12, 633 (adapter->eeprom_vers & 0x0FF0) >> 4, 634 (adapter->eeprom_vers & 0x000F)); 635 636 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 637 sizeof(drvinfo->bus_info)); 638 drvinfo->regdump_len = e1000_get_regs_len(netdev); 639 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 640 } 641 642 static void e1000_get_ringparam(struct net_device *netdev, 643 struct ethtool_ringparam *ring) 644 { 645 struct e1000_adapter *adapter = netdev_priv(netdev); 646 647 ring->rx_max_pending = E1000_MAX_RXD; 648 ring->tx_max_pending = E1000_MAX_TXD; 649 ring->rx_pending = adapter->rx_ring_count; 650 ring->tx_pending = adapter->tx_ring_count; 651 } 652 653 static int e1000_set_ringparam(struct net_device *netdev, 654 struct ethtool_ringparam *ring) 655 { 656 struct e1000_adapter *adapter = netdev_priv(netdev); 657 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 658 int err = 0, size = sizeof(struct e1000_ring); 659 bool set_tx = false, set_rx = false; 660 u16 new_rx_count, new_tx_count; 661 662 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 663 return -EINVAL; 664 665 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 666 E1000_MAX_RXD); 667 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 668 669 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 670 E1000_MAX_TXD); 671 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 672 673 if ((new_tx_count == adapter->tx_ring_count) && 674 (new_rx_count == adapter->rx_ring_count)) 675 /* nothing to do */ 676 return 0; 677 678 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 679 usleep_range(1000, 2000); 680 681 if (!netif_running(adapter->netdev)) { 682 /* Set counts now and allocate resources during open() */ 683 adapter->tx_ring->count = new_tx_count; 684 adapter->rx_ring->count = new_rx_count; 685 adapter->tx_ring_count = new_tx_count; 686 adapter->rx_ring_count = new_rx_count; 687 goto clear_reset; 688 } 689 690 set_tx = (new_tx_count != adapter->tx_ring_count); 691 set_rx = (new_rx_count != adapter->rx_ring_count); 692 693 /* Allocate temporary storage for ring updates */ 694 if (set_tx) { 695 temp_tx = vmalloc(size); 696 if (!temp_tx) { 697 err = -ENOMEM; 698 goto free_temp; 699 } 700 } 701 if (set_rx) { 702 temp_rx = vmalloc(size); 703 if (!temp_rx) { 704 err = -ENOMEM; 705 goto free_temp; 706 } 707 } 708 709 e1000e_down(adapter); 710 711 /* 712 * We can't just free everything and then setup again, because the 713 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 714 * structs. First, attempt to allocate new resources... 715 */ 716 if (set_tx) { 717 memcpy(temp_tx, adapter->tx_ring, size); 718 temp_tx->count = new_tx_count; 719 err = e1000e_setup_tx_resources(temp_tx); 720 if (err) 721 goto err_setup; 722 } 723 if (set_rx) { 724 memcpy(temp_rx, adapter->rx_ring, size); 725 temp_rx->count = new_rx_count; 726 err = e1000e_setup_rx_resources(temp_rx); 727 if (err) 728 goto err_setup_rx; 729 } 730 731 /* ...then free the old resources and copy back any new ring data */ 732 if (set_tx) { 733 e1000e_free_tx_resources(adapter->tx_ring); 734 memcpy(adapter->tx_ring, temp_tx, size); 735 adapter->tx_ring_count = new_tx_count; 736 } 737 if (set_rx) { 738 e1000e_free_rx_resources(adapter->rx_ring); 739 memcpy(adapter->rx_ring, temp_rx, size); 740 adapter->rx_ring_count = new_rx_count; 741 } 742 743 err_setup_rx: 744 if (err && set_tx) 745 e1000e_free_tx_resources(temp_tx); 746 err_setup: 747 e1000e_up(adapter); 748 free_temp: 749 vfree(temp_tx); 750 vfree(temp_rx); 751 clear_reset: 752 clear_bit(__E1000_RESETTING, &adapter->state); 753 return err; 754 } 755 756 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 757 int reg, int offset, u32 mask, u32 write) 758 { 759 u32 pat, val; 760 static const u32 test[] = { 761 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 762 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 763 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 764 (test[pat] & write)); 765 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 766 if (val != (test[pat] & write & mask)) { 767 e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 768 reg + offset, val, (test[pat] & write & mask)); 769 *data = reg; 770 return 1; 771 } 772 } 773 return 0; 774 } 775 776 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 777 int reg, u32 mask, u32 write) 778 { 779 u32 val; 780 __ew32(&adapter->hw, reg, write & mask); 781 val = __er32(&adapter->hw, reg); 782 if ((write & mask) != (val & mask)) { 783 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 784 reg, (val & mask), (write & mask)); 785 *data = reg; 786 return 1; 787 } 788 return 0; 789 } 790 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 791 do { \ 792 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 793 return 1; \ 794 } while (0) 795 #define REG_PATTERN_TEST(reg, mask, write) \ 796 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 797 798 #define REG_SET_AND_CHECK(reg, mask, write) \ 799 do { \ 800 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 801 return 1; \ 802 } while (0) 803 804 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 805 { 806 struct e1000_hw *hw = &adapter->hw; 807 struct e1000_mac_info *mac = &adapter->hw.mac; 808 u32 value; 809 u32 before; 810 u32 after; 811 u32 i; 812 u32 toggle; 813 u32 mask; 814 u32 wlock_mac = 0; 815 816 /* 817 * The status register is Read Only, so a write should fail. 818 * Some bits that get toggled are ignored. 819 */ 820 switch (mac->type) { 821 /* there are several bits on newer hardware that are r/w */ 822 case e1000_82571: 823 case e1000_82572: 824 case e1000_80003es2lan: 825 toggle = 0x7FFFF3FF; 826 break; 827 default: 828 toggle = 0x7FFFF033; 829 break; 830 } 831 832 before = er32(STATUS); 833 value = (er32(STATUS) & toggle); 834 ew32(STATUS, toggle); 835 after = er32(STATUS) & toggle; 836 if (value != after) { 837 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 838 after, value); 839 *data = 1; 840 return 1; 841 } 842 /* restore previous status */ 843 ew32(STATUS, before); 844 845 if (!(adapter->flags & FLAG_IS_ICH)) { 846 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 847 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 848 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 849 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 850 } 851 852 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 853 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 854 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 855 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 856 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 857 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 858 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 859 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 860 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 861 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 862 863 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 864 865 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 866 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 867 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 868 869 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 870 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 871 if (!(adapter->flags & FLAG_IS_ICH)) 872 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 873 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 874 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 875 mask = 0x8003FFFF; 876 switch (mac->type) { 877 case e1000_ich10lan: 878 case e1000_pchlan: 879 case e1000_pch2lan: 880 case e1000_pch_lpt: 881 mask |= (1 << 18); 882 break; 883 default: 884 break; 885 } 886 887 if (mac->type == e1000_pch_lpt) 888 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> 889 E1000_FWSM_WLOCK_MAC_SHIFT; 890 891 for (i = 0; i < mac->rar_entry_count; i++) { 892 /* Cannot test write-protected SHRAL[n] registers */ 893 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 894 continue; 895 896 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), 897 mask, 0xFFFFFFFF); 898 } 899 900 for (i = 0; i < mac->mta_reg_count; i++) 901 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 902 903 *data = 0; 904 905 return 0; 906 } 907 908 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 909 { 910 u16 temp; 911 u16 checksum = 0; 912 u16 i; 913 914 *data = 0; 915 /* Read and add up the contents of the EEPROM */ 916 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 917 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 918 *data = 1; 919 return *data; 920 } 921 checksum += temp; 922 } 923 924 /* If Checksum is not Correct return error else test passed */ 925 if ((checksum != (u16) NVM_SUM) && !(*data)) 926 *data = 2; 927 928 return *data; 929 } 930 931 static irqreturn_t e1000_test_intr(int irq, void *data) 932 { 933 struct net_device *netdev = (struct net_device *) data; 934 struct e1000_adapter *adapter = netdev_priv(netdev); 935 struct e1000_hw *hw = &adapter->hw; 936 937 adapter->test_icr |= er32(ICR); 938 939 return IRQ_HANDLED; 940 } 941 942 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 943 { 944 struct net_device *netdev = adapter->netdev; 945 struct e1000_hw *hw = &adapter->hw; 946 u32 mask; 947 u32 shared_int = 1; 948 u32 irq = adapter->pdev->irq; 949 int i; 950 int ret_val = 0; 951 int int_mode = E1000E_INT_MODE_LEGACY; 952 953 *data = 0; 954 955 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 956 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 957 int_mode = adapter->int_mode; 958 e1000e_reset_interrupt_capability(adapter); 959 adapter->int_mode = E1000E_INT_MODE_LEGACY; 960 e1000e_set_interrupt_capability(adapter); 961 } 962 /* Hook up test interrupt handler just for this test */ 963 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 964 netdev)) { 965 shared_int = 0; 966 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 967 netdev->name, netdev)) { 968 *data = 1; 969 ret_val = -1; 970 goto out; 971 } 972 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 973 974 /* Disable all the interrupts */ 975 ew32(IMC, 0xFFFFFFFF); 976 e1e_flush(); 977 usleep_range(10000, 20000); 978 979 /* Test each interrupt */ 980 for (i = 0; i < 10; i++) { 981 /* Interrupt to test */ 982 mask = 1 << i; 983 984 if (adapter->flags & FLAG_IS_ICH) { 985 switch (mask) { 986 case E1000_ICR_RXSEQ: 987 continue; 988 case 0x00000100: 989 if (adapter->hw.mac.type == e1000_ich8lan || 990 adapter->hw.mac.type == e1000_ich9lan) 991 continue; 992 break; 993 default: 994 break; 995 } 996 } 997 998 if (!shared_int) { 999 /* 1000 * Disable the interrupt to be reported in 1001 * the cause register and then force the same 1002 * interrupt and see if one gets posted. If 1003 * an interrupt was posted to the bus, the 1004 * test failed. 1005 */ 1006 adapter->test_icr = 0; 1007 ew32(IMC, mask); 1008 ew32(ICS, mask); 1009 e1e_flush(); 1010 usleep_range(10000, 20000); 1011 1012 if (adapter->test_icr & mask) { 1013 *data = 3; 1014 break; 1015 } 1016 } 1017 1018 /* 1019 * Enable the interrupt to be reported in 1020 * the cause register and then force the same 1021 * interrupt and see if one gets posted. If 1022 * an interrupt was not posted to the bus, the 1023 * test failed. 1024 */ 1025 adapter->test_icr = 0; 1026 ew32(IMS, mask); 1027 ew32(ICS, mask); 1028 e1e_flush(); 1029 usleep_range(10000, 20000); 1030 1031 if (!(adapter->test_icr & mask)) { 1032 *data = 4; 1033 break; 1034 } 1035 1036 if (!shared_int) { 1037 /* 1038 * Disable the other interrupts to be reported in 1039 * the cause register and then force the other 1040 * interrupts and see if any get posted. If 1041 * an interrupt was posted to the bus, the 1042 * test failed. 1043 */ 1044 adapter->test_icr = 0; 1045 ew32(IMC, ~mask & 0x00007FFF); 1046 ew32(ICS, ~mask & 0x00007FFF); 1047 e1e_flush(); 1048 usleep_range(10000, 20000); 1049 1050 if (adapter->test_icr) { 1051 *data = 5; 1052 break; 1053 } 1054 } 1055 } 1056 1057 /* Disable all the interrupts */ 1058 ew32(IMC, 0xFFFFFFFF); 1059 e1e_flush(); 1060 usleep_range(10000, 20000); 1061 1062 /* Unhook test interrupt handler */ 1063 free_irq(irq, netdev); 1064 1065 out: 1066 if (int_mode == E1000E_INT_MODE_MSIX) { 1067 e1000e_reset_interrupt_capability(adapter); 1068 adapter->int_mode = int_mode; 1069 e1000e_set_interrupt_capability(adapter); 1070 } 1071 1072 return ret_val; 1073 } 1074 1075 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1076 { 1077 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1078 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1079 struct pci_dev *pdev = adapter->pdev; 1080 int i; 1081 1082 if (tx_ring->desc && tx_ring->buffer_info) { 1083 for (i = 0; i < tx_ring->count; i++) { 1084 if (tx_ring->buffer_info[i].dma) 1085 dma_unmap_single(&pdev->dev, 1086 tx_ring->buffer_info[i].dma, 1087 tx_ring->buffer_info[i].length, 1088 DMA_TO_DEVICE); 1089 if (tx_ring->buffer_info[i].skb) 1090 dev_kfree_skb(tx_ring->buffer_info[i].skb); 1091 } 1092 } 1093 1094 if (rx_ring->desc && rx_ring->buffer_info) { 1095 for (i = 0; i < rx_ring->count; i++) { 1096 if (rx_ring->buffer_info[i].dma) 1097 dma_unmap_single(&pdev->dev, 1098 rx_ring->buffer_info[i].dma, 1099 2048, DMA_FROM_DEVICE); 1100 if (rx_ring->buffer_info[i].skb) 1101 dev_kfree_skb(rx_ring->buffer_info[i].skb); 1102 } 1103 } 1104 1105 if (tx_ring->desc) { 1106 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1107 tx_ring->dma); 1108 tx_ring->desc = NULL; 1109 } 1110 if (rx_ring->desc) { 1111 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1112 rx_ring->dma); 1113 rx_ring->desc = NULL; 1114 } 1115 1116 kfree(tx_ring->buffer_info); 1117 tx_ring->buffer_info = NULL; 1118 kfree(rx_ring->buffer_info); 1119 rx_ring->buffer_info = NULL; 1120 } 1121 1122 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1123 { 1124 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1125 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1126 struct pci_dev *pdev = adapter->pdev; 1127 struct e1000_hw *hw = &adapter->hw; 1128 u32 rctl; 1129 int i; 1130 int ret_val; 1131 1132 /* Setup Tx descriptor ring and Tx buffers */ 1133 1134 if (!tx_ring->count) 1135 tx_ring->count = E1000_DEFAULT_TXD; 1136 1137 tx_ring->buffer_info = kcalloc(tx_ring->count, 1138 sizeof(struct e1000_buffer), 1139 GFP_KERNEL); 1140 if (!tx_ring->buffer_info) { 1141 ret_val = 1; 1142 goto err_nomem; 1143 } 1144 1145 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1146 tx_ring->size = ALIGN(tx_ring->size, 4096); 1147 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1148 &tx_ring->dma, GFP_KERNEL); 1149 if (!tx_ring->desc) { 1150 ret_val = 2; 1151 goto err_nomem; 1152 } 1153 tx_ring->next_to_use = 0; 1154 tx_ring->next_to_clean = 0; 1155 1156 ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); 1157 ew32(TDBAH(0), ((u64) tx_ring->dma >> 32)); 1158 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1159 ew32(TDH(0), 0); 1160 ew32(TDT(0), 0); 1161 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1162 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1163 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1164 1165 for (i = 0; i < tx_ring->count; i++) { 1166 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1167 struct sk_buff *skb; 1168 unsigned int skb_size = 1024; 1169 1170 skb = alloc_skb(skb_size, GFP_KERNEL); 1171 if (!skb) { 1172 ret_val = 3; 1173 goto err_nomem; 1174 } 1175 skb_put(skb, skb_size); 1176 tx_ring->buffer_info[i].skb = skb; 1177 tx_ring->buffer_info[i].length = skb->len; 1178 tx_ring->buffer_info[i].dma = 1179 dma_map_single(&pdev->dev, skb->data, skb->len, 1180 DMA_TO_DEVICE); 1181 if (dma_mapping_error(&pdev->dev, 1182 tx_ring->buffer_info[i].dma)) { 1183 ret_val = 4; 1184 goto err_nomem; 1185 } 1186 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1187 tx_desc->lower.data = cpu_to_le32(skb->len); 1188 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1189 E1000_TXD_CMD_IFCS | 1190 E1000_TXD_CMD_RS); 1191 tx_desc->upper.data = 0; 1192 } 1193 1194 /* Setup Rx descriptor ring and Rx buffers */ 1195 1196 if (!rx_ring->count) 1197 rx_ring->count = E1000_DEFAULT_RXD; 1198 1199 rx_ring->buffer_info = kcalloc(rx_ring->count, 1200 sizeof(struct e1000_buffer), 1201 GFP_KERNEL); 1202 if (!rx_ring->buffer_info) { 1203 ret_val = 5; 1204 goto err_nomem; 1205 } 1206 1207 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1208 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1209 &rx_ring->dma, GFP_KERNEL); 1210 if (!rx_ring->desc) { 1211 ret_val = 6; 1212 goto err_nomem; 1213 } 1214 rx_ring->next_to_use = 0; 1215 rx_ring->next_to_clean = 0; 1216 1217 rctl = er32(RCTL); 1218 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1219 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1220 ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF)); 1221 ew32(RDBAH(0), ((u64) rx_ring->dma >> 32)); 1222 ew32(RDLEN(0), rx_ring->size); 1223 ew32(RDH(0), 0); 1224 ew32(RDT(0), 0); 1225 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1226 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1227 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1228 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1229 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1230 ew32(RCTL, rctl); 1231 1232 for (i = 0; i < rx_ring->count; i++) { 1233 union e1000_rx_desc_extended *rx_desc; 1234 struct sk_buff *skb; 1235 1236 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1237 if (!skb) { 1238 ret_val = 7; 1239 goto err_nomem; 1240 } 1241 skb_reserve(skb, NET_IP_ALIGN); 1242 rx_ring->buffer_info[i].skb = skb; 1243 rx_ring->buffer_info[i].dma = 1244 dma_map_single(&pdev->dev, skb->data, 2048, 1245 DMA_FROM_DEVICE); 1246 if (dma_mapping_error(&pdev->dev, 1247 rx_ring->buffer_info[i].dma)) { 1248 ret_val = 8; 1249 goto err_nomem; 1250 } 1251 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1252 rx_desc->read.buffer_addr = 1253 cpu_to_le64(rx_ring->buffer_info[i].dma); 1254 memset(skb->data, 0x00, skb->len); 1255 } 1256 1257 return 0; 1258 1259 err_nomem: 1260 e1000_free_desc_rings(adapter); 1261 return ret_val; 1262 } 1263 1264 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1265 { 1266 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1267 e1e_wphy(&adapter->hw, 29, 0x001F); 1268 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1269 e1e_wphy(&adapter->hw, 29, 0x001A); 1270 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1271 } 1272 1273 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1274 { 1275 struct e1000_hw *hw = &adapter->hw; 1276 u32 ctrl_reg = 0; 1277 u16 phy_reg = 0; 1278 s32 ret_val = 0; 1279 1280 hw->mac.autoneg = 0; 1281 1282 if (hw->phy.type == e1000_phy_ife) { 1283 /* force 100, set loopback */ 1284 e1e_wphy(hw, PHY_CONTROL, 0x6100); 1285 1286 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1287 ctrl_reg = er32(CTRL); 1288 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1289 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1290 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1291 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1292 E1000_CTRL_FD); /* Force Duplex to FULL */ 1293 1294 ew32(CTRL, ctrl_reg); 1295 e1e_flush(); 1296 udelay(500); 1297 1298 return 0; 1299 } 1300 1301 /* Specific PHY configuration for loopback */ 1302 switch (hw->phy.type) { 1303 case e1000_phy_m88: 1304 /* Auto-MDI/MDIX Off */ 1305 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1306 /* reset to update Auto-MDI/MDIX */ 1307 e1e_wphy(hw, PHY_CONTROL, 0x9140); 1308 /* autoneg off */ 1309 e1e_wphy(hw, PHY_CONTROL, 0x8140); 1310 break; 1311 case e1000_phy_gg82563: 1312 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1313 break; 1314 case e1000_phy_bm: 1315 /* Set Default MAC Interface speed to 1GB */ 1316 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1317 phy_reg &= ~0x0007; 1318 phy_reg |= 0x006; 1319 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1320 /* Assert SW reset for above settings to take effect */ 1321 e1000e_commit_phy(hw); 1322 mdelay(1); 1323 /* Force Full Duplex */ 1324 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1325 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1326 /* Set Link Up (in force link) */ 1327 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1328 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1329 /* Force Link */ 1330 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1331 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1332 /* Set Early Link Enable */ 1333 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1334 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1335 break; 1336 case e1000_phy_82577: 1337 case e1000_phy_82578: 1338 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1339 ret_val = hw->phy.ops.acquire(hw); 1340 if (ret_val) { 1341 e_err("Cannot setup 1Gbps loopback.\n"); 1342 return ret_val; 1343 } 1344 e1000_configure_k1_ich8lan(hw, false); 1345 hw->phy.ops.release(hw); 1346 break; 1347 case e1000_phy_82579: 1348 /* Disable PHY energy detect power down */ 1349 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1350 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); 1351 /* Disable full chip energy detect */ 1352 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1353 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1354 /* Enable loopback on the PHY */ 1355 #define I82577_PHY_LBK_CTRL 19 1356 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1357 break; 1358 default: 1359 break; 1360 } 1361 1362 /* force 1000, set loopback */ 1363 e1e_wphy(hw, PHY_CONTROL, 0x4140); 1364 mdelay(250); 1365 1366 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1367 ctrl_reg = er32(CTRL); 1368 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1369 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1370 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1371 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1372 E1000_CTRL_FD); /* Force Duplex to FULL */ 1373 1374 if (adapter->flags & FLAG_IS_ICH) 1375 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1376 1377 if (hw->phy.media_type == e1000_media_type_copper && 1378 hw->phy.type == e1000_phy_m88) { 1379 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1380 } else { 1381 /* 1382 * Set the ILOS bit on the fiber Nic if half duplex link is 1383 * detected. 1384 */ 1385 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1386 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1387 } 1388 1389 ew32(CTRL, ctrl_reg); 1390 1391 /* 1392 * Disable the receiver on the PHY so when a cable is plugged in, the 1393 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1394 */ 1395 if (hw->phy.type == e1000_phy_m88) 1396 e1000_phy_disable_receiver(adapter); 1397 1398 udelay(500); 1399 1400 return 0; 1401 } 1402 1403 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1404 { 1405 struct e1000_hw *hw = &adapter->hw; 1406 u32 ctrl = er32(CTRL); 1407 int link = 0; 1408 1409 /* special requirements for 82571/82572 fiber adapters */ 1410 1411 /* 1412 * jump through hoops to make sure link is up because serdes 1413 * link is hardwired up 1414 */ 1415 ctrl |= E1000_CTRL_SLU; 1416 ew32(CTRL, ctrl); 1417 1418 /* disable autoneg */ 1419 ctrl = er32(TXCW); 1420 ctrl &= ~(1 << 31); 1421 ew32(TXCW, ctrl); 1422 1423 link = (er32(STATUS) & E1000_STATUS_LU); 1424 1425 if (!link) { 1426 /* set invert loss of signal */ 1427 ctrl = er32(CTRL); 1428 ctrl |= E1000_CTRL_ILOS; 1429 ew32(CTRL, ctrl); 1430 } 1431 1432 /* 1433 * special write to serdes control register to enable SerDes analog 1434 * loopback 1435 */ 1436 #define E1000_SERDES_LB_ON 0x410 1437 ew32(SCTL, E1000_SERDES_LB_ON); 1438 e1e_flush(); 1439 usleep_range(10000, 20000); 1440 1441 return 0; 1442 } 1443 1444 /* only call this for fiber/serdes connections to es2lan */ 1445 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1446 { 1447 struct e1000_hw *hw = &adapter->hw; 1448 u32 ctrlext = er32(CTRL_EXT); 1449 u32 ctrl = er32(CTRL); 1450 1451 /* 1452 * save CTRL_EXT to restore later, reuse an empty variable (unused 1453 * on mac_type 80003es2lan) 1454 */ 1455 adapter->tx_fifo_head = ctrlext; 1456 1457 /* clear the serdes mode bits, putting the device into mac loopback */ 1458 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1459 ew32(CTRL_EXT, ctrlext); 1460 1461 /* force speed to 1000/FD, link up */ 1462 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1463 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1464 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1465 ew32(CTRL, ctrl); 1466 1467 /* set mac loopback */ 1468 ctrl = er32(RCTL); 1469 ctrl |= E1000_RCTL_LBM_MAC; 1470 ew32(RCTL, ctrl); 1471 1472 /* set testing mode parameters (no need to reset later) */ 1473 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1474 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1475 ew32(KMRNCTRLSTA, 1476 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1477 1478 return 0; 1479 } 1480 1481 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1482 { 1483 struct e1000_hw *hw = &adapter->hw; 1484 u32 rctl; 1485 1486 if (hw->phy.media_type == e1000_media_type_fiber || 1487 hw->phy.media_type == e1000_media_type_internal_serdes) { 1488 switch (hw->mac.type) { 1489 case e1000_80003es2lan: 1490 return e1000_set_es2lan_mac_loopback(adapter); 1491 break; 1492 case e1000_82571: 1493 case e1000_82572: 1494 return e1000_set_82571_fiber_loopback(adapter); 1495 break; 1496 default: 1497 rctl = er32(RCTL); 1498 rctl |= E1000_RCTL_LBM_TCVR; 1499 ew32(RCTL, rctl); 1500 return 0; 1501 } 1502 } else if (hw->phy.media_type == e1000_media_type_copper) { 1503 return e1000_integrated_phy_loopback(adapter); 1504 } 1505 1506 return 7; 1507 } 1508 1509 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1510 { 1511 struct e1000_hw *hw = &adapter->hw; 1512 u32 rctl; 1513 u16 phy_reg; 1514 1515 rctl = er32(RCTL); 1516 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1517 ew32(RCTL, rctl); 1518 1519 switch (hw->mac.type) { 1520 case e1000_80003es2lan: 1521 if (hw->phy.media_type == e1000_media_type_fiber || 1522 hw->phy.media_type == e1000_media_type_internal_serdes) { 1523 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1524 ew32(CTRL_EXT, adapter->tx_fifo_head); 1525 adapter->tx_fifo_head = 0; 1526 } 1527 /* fall through */ 1528 case e1000_82571: 1529 case e1000_82572: 1530 if (hw->phy.media_type == e1000_media_type_fiber || 1531 hw->phy.media_type == e1000_media_type_internal_serdes) { 1532 #define E1000_SERDES_LB_OFF 0x400 1533 ew32(SCTL, E1000_SERDES_LB_OFF); 1534 e1e_flush(); 1535 usleep_range(10000, 20000); 1536 break; 1537 } 1538 /* Fall Through */ 1539 default: 1540 hw->mac.autoneg = 1; 1541 if (hw->phy.type == e1000_phy_gg82563) 1542 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1543 e1e_rphy(hw, PHY_CONTROL, &phy_reg); 1544 if (phy_reg & MII_CR_LOOPBACK) { 1545 phy_reg &= ~MII_CR_LOOPBACK; 1546 e1e_wphy(hw, PHY_CONTROL, phy_reg); 1547 e1000e_commit_phy(hw); 1548 } 1549 break; 1550 } 1551 } 1552 1553 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1554 unsigned int frame_size) 1555 { 1556 memset(skb->data, 0xFF, frame_size); 1557 frame_size &= ~1; 1558 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1559 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1560 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1561 } 1562 1563 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1564 unsigned int frame_size) 1565 { 1566 frame_size &= ~1; 1567 if (*(skb->data + 3) == 0xFF) 1568 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1569 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1570 return 0; 1571 return 13; 1572 } 1573 1574 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1575 { 1576 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1577 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1578 struct pci_dev *pdev = adapter->pdev; 1579 struct e1000_hw *hw = &adapter->hw; 1580 int i, j, k, l; 1581 int lc; 1582 int good_cnt; 1583 int ret_val = 0; 1584 unsigned long time; 1585 1586 ew32(RDT(0), rx_ring->count - 1); 1587 1588 /* 1589 * Calculate the loop count based on the largest descriptor ring 1590 * The idea is to wrap the largest ring a number of times using 64 1591 * send/receive pairs during each loop 1592 */ 1593 1594 if (rx_ring->count <= tx_ring->count) 1595 lc = ((tx_ring->count / 64) * 2) + 1; 1596 else 1597 lc = ((rx_ring->count / 64) * 2) + 1; 1598 1599 k = 0; 1600 l = 0; 1601 for (j = 0; j <= lc; j++) { /* loop count loop */ 1602 for (i = 0; i < 64; i++) { /* send the packets */ 1603 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, 1604 1024); 1605 dma_sync_single_for_device(&pdev->dev, 1606 tx_ring->buffer_info[k].dma, 1607 tx_ring->buffer_info[k].length, 1608 DMA_TO_DEVICE); 1609 k++; 1610 if (k == tx_ring->count) 1611 k = 0; 1612 } 1613 ew32(TDT(0), k); 1614 e1e_flush(); 1615 msleep(200); 1616 time = jiffies; /* set the start time for the receive */ 1617 good_cnt = 0; 1618 do { /* receive the sent packets */ 1619 dma_sync_single_for_cpu(&pdev->dev, 1620 rx_ring->buffer_info[l].dma, 2048, 1621 DMA_FROM_DEVICE); 1622 1623 ret_val = e1000_check_lbtest_frame( 1624 rx_ring->buffer_info[l].skb, 1024); 1625 if (!ret_val) 1626 good_cnt++; 1627 l++; 1628 if (l == rx_ring->count) 1629 l = 0; 1630 /* 1631 * time + 20 msecs (200 msecs on 2.4) is more than 1632 * enough time to complete the receives, if it's 1633 * exceeded, break and error off 1634 */ 1635 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1636 if (good_cnt != 64) { 1637 ret_val = 13; /* ret_val is the same as mis-compare */ 1638 break; 1639 } 1640 if (jiffies >= (time + 20)) { 1641 ret_val = 14; /* error code for time out error */ 1642 break; 1643 } 1644 } /* end loop count loop */ 1645 return ret_val; 1646 } 1647 1648 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1649 { 1650 struct e1000_hw *hw = &adapter->hw; 1651 1652 /* 1653 * PHY loopback cannot be performed if SoL/IDER 1654 * sessions are active 1655 */ 1656 if (hw->phy.ops.check_reset_block && 1657 hw->phy.ops.check_reset_block(hw)) { 1658 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1659 *data = 0; 1660 goto out; 1661 } 1662 1663 *data = e1000_setup_desc_rings(adapter); 1664 if (*data) 1665 goto out; 1666 1667 *data = e1000_setup_loopback_test(adapter); 1668 if (*data) 1669 goto err_loopback; 1670 1671 *data = e1000_run_loopback_test(adapter); 1672 e1000_loopback_cleanup(adapter); 1673 1674 err_loopback: 1675 e1000_free_desc_rings(adapter); 1676 out: 1677 return *data; 1678 } 1679 1680 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1681 { 1682 struct e1000_hw *hw = &adapter->hw; 1683 1684 *data = 0; 1685 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1686 int i = 0; 1687 hw->mac.serdes_has_link = false; 1688 1689 /* 1690 * On some blade server designs, link establishment 1691 * could take as long as 2-3 minutes 1692 */ 1693 do { 1694 hw->mac.ops.check_for_link(hw); 1695 if (hw->mac.serdes_has_link) 1696 return *data; 1697 msleep(20); 1698 } while (i++ < 3750); 1699 1700 *data = 1; 1701 } else { 1702 hw->mac.ops.check_for_link(hw); 1703 if (hw->mac.autoneg) 1704 /* 1705 * On some Phy/switch combinations, link establishment 1706 * can take a few seconds more than expected. 1707 */ 1708 msleep(5000); 1709 1710 if (!(er32(STATUS) & E1000_STATUS_LU)) 1711 *data = 1; 1712 } 1713 return *data; 1714 } 1715 1716 static int e1000e_get_sset_count(struct net_device *netdev, int sset) 1717 { 1718 switch (sset) { 1719 case ETH_SS_TEST: 1720 return E1000_TEST_LEN; 1721 case ETH_SS_STATS: 1722 return E1000_STATS_LEN; 1723 default: 1724 return -EOPNOTSUPP; 1725 } 1726 } 1727 1728 static void e1000_diag_test(struct net_device *netdev, 1729 struct ethtool_test *eth_test, u64 *data) 1730 { 1731 struct e1000_adapter *adapter = netdev_priv(netdev); 1732 u16 autoneg_advertised; 1733 u8 forced_speed_duplex; 1734 u8 autoneg; 1735 bool if_running = netif_running(netdev); 1736 1737 set_bit(__E1000_TESTING, &adapter->state); 1738 1739 if (!if_running) { 1740 /* Get control of and reset hardware */ 1741 if (adapter->flags & FLAG_HAS_AMT) 1742 e1000e_get_hw_control(adapter); 1743 1744 e1000e_power_up_phy(adapter); 1745 1746 adapter->hw.phy.autoneg_wait_to_complete = 1; 1747 e1000e_reset(adapter); 1748 adapter->hw.phy.autoneg_wait_to_complete = 0; 1749 } 1750 1751 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1752 /* Offline tests */ 1753 1754 /* save speed, duplex, autoneg settings */ 1755 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1756 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1757 autoneg = adapter->hw.mac.autoneg; 1758 1759 e_info("offline testing starting\n"); 1760 1761 if (if_running) 1762 /* indicate we're in test mode */ 1763 dev_close(netdev); 1764 1765 if (e1000_reg_test(adapter, &data[0])) 1766 eth_test->flags |= ETH_TEST_FL_FAILED; 1767 1768 e1000e_reset(adapter); 1769 if (e1000_eeprom_test(adapter, &data[1])) 1770 eth_test->flags |= ETH_TEST_FL_FAILED; 1771 1772 e1000e_reset(adapter); 1773 if (e1000_intr_test(adapter, &data[2])) 1774 eth_test->flags |= ETH_TEST_FL_FAILED; 1775 1776 e1000e_reset(adapter); 1777 if (e1000_loopback_test(adapter, &data[3])) 1778 eth_test->flags |= ETH_TEST_FL_FAILED; 1779 1780 /* force this routine to wait until autoneg complete/timeout */ 1781 adapter->hw.phy.autoneg_wait_to_complete = 1; 1782 e1000e_reset(adapter); 1783 adapter->hw.phy.autoneg_wait_to_complete = 0; 1784 1785 if (e1000_link_test(adapter, &data[4])) 1786 eth_test->flags |= ETH_TEST_FL_FAILED; 1787 1788 /* restore speed, duplex, autoneg settings */ 1789 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1790 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1791 adapter->hw.mac.autoneg = autoneg; 1792 e1000e_reset(adapter); 1793 1794 clear_bit(__E1000_TESTING, &adapter->state); 1795 if (if_running) 1796 dev_open(netdev); 1797 } else { 1798 /* Online tests */ 1799 1800 e_info("online testing starting\n"); 1801 1802 /* register, eeprom, intr and loopback tests not run online */ 1803 data[0] = 0; 1804 data[1] = 0; 1805 data[2] = 0; 1806 data[3] = 0; 1807 1808 if (e1000_link_test(adapter, &data[4])) 1809 eth_test->flags |= ETH_TEST_FL_FAILED; 1810 1811 clear_bit(__E1000_TESTING, &adapter->state); 1812 } 1813 1814 if (!if_running) { 1815 e1000e_reset(adapter); 1816 1817 if (adapter->flags & FLAG_HAS_AMT) 1818 e1000e_release_hw_control(adapter); 1819 } 1820 1821 msleep_interruptible(4 * 1000); 1822 } 1823 1824 static void e1000_get_wol(struct net_device *netdev, 1825 struct ethtool_wolinfo *wol) 1826 { 1827 struct e1000_adapter *adapter = netdev_priv(netdev); 1828 1829 wol->supported = 0; 1830 wol->wolopts = 0; 1831 1832 if (!(adapter->flags & FLAG_HAS_WOL) || 1833 !device_can_wakeup(&adapter->pdev->dev)) 1834 return; 1835 1836 wol->supported = WAKE_UCAST | WAKE_MCAST | 1837 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1838 1839 /* apply any specific unsupported masks here */ 1840 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1841 wol->supported &= ~WAKE_UCAST; 1842 1843 if (adapter->wol & E1000_WUFC_EX) 1844 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1845 } 1846 1847 if (adapter->wol & E1000_WUFC_EX) 1848 wol->wolopts |= WAKE_UCAST; 1849 if (adapter->wol & E1000_WUFC_MC) 1850 wol->wolopts |= WAKE_MCAST; 1851 if (adapter->wol & E1000_WUFC_BC) 1852 wol->wolopts |= WAKE_BCAST; 1853 if (adapter->wol & E1000_WUFC_MAG) 1854 wol->wolopts |= WAKE_MAGIC; 1855 if (adapter->wol & E1000_WUFC_LNKC) 1856 wol->wolopts |= WAKE_PHY; 1857 } 1858 1859 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1860 { 1861 struct e1000_adapter *adapter = netdev_priv(netdev); 1862 1863 if (!(adapter->flags & FLAG_HAS_WOL) || 1864 !device_can_wakeup(&adapter->pdev->dev) || 1865 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1866 WAKE_MAGIC | WAKE_PHY))) 1867 return -EOPNOTSUPP; 1868 1869 /* these settings will always override what we currently have */ 1870 adapter->wol = 0; 1871 1872 if (wol->wolopts & WAKE_UCAST) 1873 adapter->wol |= E1000_WUFC_EX; 1874 if (wol->wolopts & WAKE_MCAST) 1875 adapter->wol |= E1000_WUFC_MC; 1876 if (wol->wolopts & WAKE_BCAST) 1877 adapter->wol |= E1000_WUFC_BC; 1878 if (wol->wolopts & WAKE_MAGIC) 1879 adapter->wol |= E1000_WUFC_MAG; 1880 if (wol->wolopts & WAKE_PHY) 1881 adapter->wol |= E1000_WUFC_LNKC; 1882 1883 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1884 1885 return 0; 1886 } 1887 1888 static int e1000_set_phys_id(struct net_device *netdev, 1889 enum ethtool_phys_id_state state) 1890 { 1891 struct e1000_adapter *adapter = netdev_priv(netdev); 1892 struct e1000_hw *hw = &adapter->hw; 1893 1894 switch (state) { 1895 case ETHTOOL_ID_ACTIVE: 1896 if (!hw->mac.ops.blink_led) 1897 return 2; /* cycle on/off twice per second */ 1898 1899 hw->mac.ops.blink_led(hw); 1900 break; 1901 1902 case ETHTOOL_ID_INACTIVE: 1903 if (hw->phy.type == e1000_phy_ife) 1904 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1905 hw->mac.ops.led_off(hw); 1906 hw->mac.ops.cleanup_led(hw); 1907 break; 1908 1909 case ETHTOOL_ID_ON: 1910 hw->mac.ops.led_on(hw); 1911 break; 1912 1913 case ETHTOOL_ID_OFF: 1914 hw->mac.ops.led_off(hw); 1915 break; 1916 } 1917 return 0; 1918 } 1919 1920 static int e1000_get_coalesce(struct net_device *netdev, 1921 struct ethtool_coalesce *ec) 1922 { 1923 struct e1000_adapter *adapter = netdev_priv(netdev); 1924 1925 if (adapter->itr_setting <= 4) 1926 ec->rx_coalesce_usecs = adapter->itr_setting; 1927 else 1928 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1929 1930 return 0; 1931 } 1932 1933 static int e1000_set_coalesce(struct net_device *netdev, 1934 struct ethtool_coalesce *ec) 1935 { 1936 struct e1000_adapter *adapter = netdev_priv(netdev); 1937 1938 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1939 ((ec->rx_coalesce_usecs > 4) && 1940 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1941 (ec->rx_coalesce_usecs == 2)) 1942 return -EINVAL; 1943 1944 if (ec->rx_coalesce_usecs == 4) { 1945 adapter->itr_setting = 4; 1946 adapter->itr = adapter->itr_setting; 1947 } else if (ec->rx_coalesce_usecs <= 3) { 1948 adapter->itr = 20000; 1949 adapter->itr_setting = ec->rx_coalesce_usecs; 1950 } else { 1951 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1952 adapter->itr_setting = adapter->itr & ~3; 1953 } 1954 1955 if (adapter->itr_setting != 0) 1956 e1000e_write_itr(adapter, adapter->itr); 1957 else 1958 e1000e_write_itr(adapter, 0); 1959 1960 return 0; 1961 } 1962 1963 static int e1000_nway_reset(struct net_device *netdev) 1964 { 1965 struct e1000_adapter *adapter = netdev_priv(netdev); 1966 1967 if (!netif_running(netdev)) 1968 return -EAGAIN; 1969 1970 if (!adapter->hw.mac.autoneg) 1971 return -EINVAL; 1972 1973 e1000e_reinit_locked(adapter); 1974 1975 return 0; 1976 } 1977 1978 static void e1000_get_ethtool_stats(struct net_device *netdev, 1979 struct ethtool_stats *stats, 1980 u64 *data) 1981 { 1982 struct e1000_adapter *adapter = netdev_priv(netdev); 1983 struct rtnl_link_stats64 net_stats; 1984 int i; 1985 char *p = NULL; 1986 1987 e1000e_get_stats64(netdev, &net_stats); 1988 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1989 switch (e1000_gstrings_stats[i].type) { 1990 case NETDEV_STATS: 1991 p = (char *) &net_stats + 1992 e1000_gstrings_stats[i].stat_offset; 1993 break; 1994 case E1000_STATS: 1995 p = (char *) adapter + 1996 e1000_gstrings_stats[i].stat_offset; 1997 break; 1998 default: 1999 data[i] = 0; 2000 continue; 2001 } 2002 2003 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2004 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2005 } 2006 } 2007 2008 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 2009 u8 *data) 2010 { 2011 u8 *p = data; 2012 int i; 2013 2014 switch (stringset) { 2015 case ETH_SS_TEST: 2016 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2017 break; 2018 case ETH_SS_STATS: 2019 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2020 memcpy(p, e1000_gstrings_stats[i].stat_string, 2021 ETH_GSTRING_LEN); 2022 p += ETH_GSTRING_LEN; 2023 } 2024 break; 2025 } 2026 } 2027 2028 static int e1000_get_rxnfc(struct net_device *netdev, 2029 struct ethtool_rxnfc *info, u32 *rule_locs) 2030 { 2031 info->data = 0; 2032 2033 switch (info->cmd) { 2034 case ETHTOOL_GRXFH: { 2035 struct e1000_adapter *adapter = netdev_priv(netdev); 2036 struct e1000_hw *hw = &adapter->hw; 2037 u32 mrqc = er32(MRQC); 2038 2039 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2040 return 0; 2041 2042 switch (info->flow_type) { 2043 case TCP_V4_FLOW: 2044 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2045 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2046 /* fall through */ 2047 case UDP_V4_FLOW: 2048 case SCTP_V4_FLOW: 2049 case AH_ESP_V4_FLOW: 2050 case IPV4_FLOW: 2051 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2052 info->data |= RXH_IP_SRC | RXH_IP_DST; 2053 break; 2054 case TCP_V6_FLOW: 2055 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2056 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2057 /* fall through */ 2058 case UDP_V6_FLOW: 2059 case SCTP_V6_FLOW: 2060 case AH_ESP_V6_FLOW: 2061 case IPV6_FLOW: 2062 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2063 info->data |= RXH_IP_SRC | RXH_IP_DST; 2064 break; 2065 default: 2066 break; 2067 } 2068 return 0; 2069 } 2070 default: 2071 return -EOPNOTSUPP; 2072 } 2073 } 2074 2075 static const struct ethtool_ops e1000_ethtool_ops = { 2076 .get_settings = e1000_get_settings, 2077 .set_settings = e1000_set_settings, 2078 .get_drvinfo = e1000_get_drvinfo, 2079 .get_regs_len = e1000_get_regs_len, 2080 .get_regs = e1000_get_regs, 2081 .get_wol = e1000_get_wol, 2082 .set_wol = e1000_set_wol, 2083 .get_msglevel = e1000_get_msglevel, 2084 .set_msglevel = e1000_set_msglevel, 2085 .nway_reset = e1000_nway_reset, 2086 .get_link = ethtool_op_get_link, 2087 .get_eeprom_len = e1000_get_eeprom_len, 2088 .get_eeprom = e1000_get_eeprom, 2089 .set_eeprom = e1000_set_eeprom, 2090 .get_ringparam = e1000_get_ringparam, 2091 .set_ringparam = e1000_set_ringparam, 2092 .get_pauseparam = e1000_get_pauseparam, 2093 .set_pauseparam = e1000_set_pauseparam, 2094 .self_test = e1000_diag_test, 2095 .get_strings = e1000_get_strings, 2096 .set_phys_id = e1000_set_phys_id, 2097 .get_ethtool_stats = e1000_get_ethtool_stats, 2098 .get_sset_count = e1000e_get_sset_count, 2099 .get_coalesce = e1000_get_coalesce, 2100 .set_coalesce = e1000_set_coalesce, 2101 .get_rxnfc = e1000_get_rxnfc, 2102 .get_ts_info = ethtool_op_get_ts_info, 2103 }; 2104 2105 void e1000e_set_ethtool_ops(struct net_device *netdev) 2106 { 2107 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 2108 } 2109