xref: /linux/drivers/net/ethernet/google/gve/gve_tx.c (revision cbc16bceea784210d585a42ac9f8f10ce62b300e)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/ip.h>
11 #include <linux/tcp.h>
12 #include <linux/vmalloc.h>
13 #include <linux/skbuff.h>
14 #include <net/xdp_sock_drv.h>
15 
16 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
17 				       struct gve_queue_resources *q_resources,
18 				       u32 val)
19 {
20 	iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
21 }
22 
23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid)
24 {
25 	u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
26 	struct gve_tx_ring *tx = &priv->tx[tx_qid];
27 
28 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
29 }
30 
31 /* gvnic can only transmit from a Registered Segment.
32  * We copy skb payloads into the registered segment before writing Tx
33  * descriptors and ringing the Tx doorbell.
34  *
35  * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
36  * free allocations in the order they were allocated.
37  */
38 
39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
40 {
41 	fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
42 			  PAGE_KERNEL);
43 	if (unlikely(!fifo->base)) {
44 		netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
45 			  fifo->qpl->id);
46 		return -ENOMEM;
47 	}
48 
49 	fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
50 	atomic_set(&fifo->available, fifo->size);
51 	fifo->head = 0;
52 	return 0;
53 }
54 
55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
56 {
57 	WARN(atomic_read(&fifo->available) != fifo->size,
58 	     "Releasing non-empty fifo");
59 
60 	vunmap(fifo->base);
61 }
62 
63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
64 					  size_t bytes)
65 {
66 	return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
67 }
68 
69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
70 {
71 	return (atomic_read(&fifo->available) <= bytes) ? false : true;
72 }
73 
74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
75  * @fifo: FIFO to allocate from
76  * @bytes: Allocation size
77  * @iov: Scatter-gather elements to fill with allocation fragment base/len
78  *
79  * Returns number of valid elements in iov[] or negative on error.
80  *
81  * Allocations from a given FIFO must be externally synchronized but concurrent
82  * allocation and frees are allowed.
83  */
84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
85 			     struct gve_tx_iovec iov[2])
86 {
87 	size_t overflow, padding;
88 	u32 aligned_head;
89 	int nfrags = 0;
90 
91 	if (!bytes)
92 		return 0;
93 
94 	/* This check happens before we know how much padding is needed to
95 	 * align to a cacheline boundary for the payload, but that is fine,
96 	 * because the FIFO head always start aligned, and the FIFO's boundaries
97 	 * are aligned, so if there is space for the data, there is space for
98 	 * the padding to the next alignment.
99 	 */
100 	WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
101 	     "Reached %s when there's not enough space in the fifo", __func__);
102 
103 	nfrags++;
104 
105 	iov[0].iov_offset = fifo->head;
106 	iov[0].iov_len = bytes;
107 	fifo->head += bytes;
108 
109 	if (fifo->head > fifo->size) {
110 		/* If the allocation did not fit in the tail fragment of the
111 		 * FIFO, also use the head fragment.
112 		 */
113 		nfrags++;
114 		overflow = fifo->head - fifo->size;
115 		iov[0].iov_len -= overflow;
116 		iov[1].iov_offset = 0;	/* Start of fifo*/
117 		iov[1].iov_len = overflow;
118 
119 		fifo->head = overflow;
120 	}
121 
122 	/* Re-align to a cacheline boundary */
123 	aligned_head = L1_CACHE_ALIGN(fifo->head);
124 	padding = aligned_head - fifo->head;
125 	iov[nfrags - 1].iov_padding = padding;
126 	atomic_sub(bytes + padding, &fifo->available);
127 	fifo->head = aligned_head;
128 
129 	if (fifo->head == fifo->size)
130 		fifo->head = 0;
131 
132 	return nfrags;
133 }
134 
135 /* gve_tx_free_fifo - Return space to Tx FIFO
136  * @fifo: FIFO to return fragments to
137  * @bytes: Bytes to free
138  */
139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
140 {
141 	atomic_add(bytes, &fifo->available);
142 }
143 
144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info)
145 {
146 	size_t space_freed = 0;
147 	int i;
148 
149 	for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
150 		space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
151 		info->iov[i].iov_len = 0;
152 		info->iov[i].iov_padding = 0;
153 	}
154 	return space_freed;
155 }
156 
157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx,
158 			      u32 to_do)
159 {
160 	struct gve_tx_buffer_state *info;
161 	u64 pkts = 0, bytes = 0;
162 	size_t space_freed = 0;
163 	u32 xsk_complete = 0;
164 	u32 idx;
165 	int i;
166 
167 	for (i = 0; i < to_do; i++) {
168 		idx = tx->done & tx->mask;
169 		info = &tx->info[idx];
170 		tx->done++;
171 
172 		if (unlikely(!info->xdp.size))
173 			continue;
174 
175 		bytes += info->xdp.size;
176 		pkts++;
177 		xsk_complete += info->xdp.is_xsk;
178 
179 		info->xdp.size = 0;
180 		if (info->xdp_frame) {
181 			xdp_return_frame(info->xdp_frame);
182 			info->xdp_frame = NULL;
183 		}
184 		space_freed += gve_tx_clear_buffer_state(info);
185 	}
186 
187 	gve_tx_free_fifo(&tx->tx_fifo, space_freed);
188 	if (xsk_complete > 0 && tx->xsk_pool)
189 		xsk_tx_completed(tx->xsk_pool, xsk_complete);
190 	u64_stats_update_begin(&tx->statss);
191 	tx->bytes_done += bytes;
192 	tx->pkt_done += pkts;
193 	u64_stats_update_end(&tx->statss);
194 	return pkts;
195 }
196 
197 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
198 			     u32 to_do, bool try_to_wake);
199 
200 void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx)
201 {
202 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
203 	struct gve_tx_ring *tx = &priv->tx[idx];
204 
205 	if (!gve_tx_was_added_to_block(priv, idx))
206 		return;
207 
208 	gve_remove_napi(priv, ntfy_idx);
209 	if (tx->q_num < priv->tx_cfg.num_queues)
210 		gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false);
211 	else
212 		gve_clean_xdp_done(priv, tx, priv->tx_desc_cnt);
213 	netdev_tx_reset_queue(tx->netdev_txq);
214 	gve_tx_remove_from_block(priv, idx);
215 }
216 
217 static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx,
218 				 struct gve_tx_alloc_rings_cfg *cfg)
219 {
220 	struct device *hdev = &priv->pdev->dev;
221 	int idx = tx->q_num;
222 	size_t bytes;
223 	u32 qpl_id;
224 	u32 slots;
225 
226 	slots = tx->mask + 1;
227 	dma_free_coherent(hdev, sizeof(*tx->q_resources),
228 			  tx->q_resources, tx->q_resources_bus);
229 	tx->q_resources = NULL;
230 
231 	if (tx->tx_fifo.qpl) {
232 		if (tx->tx_fifo.base)
233 			gve_tx_fifo_release(priv, &tx->tx_fifo);
234 
235 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
236 		gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id);
237 		tx->tx_fifo.qpl = NULL;
238 	}
239 
240 	bytes = sizeof(*tx->desc) * slots;
241 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
242 	tx->desc = NULL;
243 
244 	vfree(tx->info);
245 	tx->info = NULL;
246 
247 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
248 }
249 
250 void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx)
251 {
252 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
253 	struct gve_tx_ring *tx = &priv->tx[idx];
254 
255 	gve_tx_add_to_block(priv, idx);
256 
257 	tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
258 	gve_add_napi(priv, ntfy_idx, gve_napi_poll);
259 }
260 
261 static int gve_tx_alloc_ring_gqi(struct gve_priv *priv,
262 				 struct gve_tx_alloc_rings_cfg *cfg,
263 				 struct gve_tx_ring *tx,
264 				 int idx)
265 {
266 	struct device *hdev = &priv->pdev->dev;
267 	int qpl_page_cnt;
268 	u32 qpl_id = 0;
269 	size_t bytes;
270 
271 	/* Make sure everything is zeroed to start */
272 	memset(tx, 0, sizeof(*tx));
273 	spin_lock_init(&tx->clean_lock);
274 	spin_lock_init(&tx->xdp_lock);
275 	tx->q_num = idx;
276 
277 	tx->mask = cfg->ring_size - 1;
278 
279 	/* alloc metadata */
280 	tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info));
281 	if (!tx->info)
282 		return -ENOMEM;
283 
284 	/* alloc tx queue */
285 	bytes = sizeof(*tx->desc) * cfg->ring_size;
286 	tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
287 	if (!tx->desc)
288 		goto abort_with_info;
289 
290 	tx->raw_addressing = cfg->raw_addressing;
291 	tx->dev = hdev;
292 	if (!tx->raw_addressing) {
293 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
294 		qpl_page_cnt = priv->tx_pages_per_qpl;
295 
296 		tx->tx_fifo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
297 							    qpl_page_cnt);
298 		if (!tx->tx_fifo.qpl)
299 			goto abort_with_desc;
300 
301 		/* map Tx FIFO */
302 		if (gve_tx_fifo_init(priv, &tx->tx_fifo))
303 			goto abort_with_qpl;
304 	}
305 
306 	tx->q_resources =
307 		dma_alloc_coherent(hdev,
308 				   sizeof(*tx->q_resources),
309 				   &tx->q_resources_bus,
310 				   GFP_KERNEL);
311 	if (!tx->q_resources)
312 		goto abort_with_fifo;
313 
314 	return 0;
315 
316 abort_with_fifo:
317 	if (!tx->raw_addressing)
318 		gve_tx_fifo_release(priv, &tx->tx_fifo);
319 abort_with_qpl:
320 	if (!tx->raw_addressing) {
321 		gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id);
322 		tx->tx_fifo.qpl = NULL;
323 	}
324 abort_with_desc:
325 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
326 	tx->desc = NULL;
327 abort_with_info:
328 	vfree(tx->info);
329 	tx->info = NULL;
330 	return -ENOMEM;
331 }
332 
333 int gve_tx_alloc_rings_gqi(struct gve_priv *priv,
334 			   struct gve_tx_alloc_rings_cfg *cfg)
335 {
336 	struct gve_tx_ring *tx = cfg->tx;
337 	int err = 0;
338 	int i, j;
339 
340 	if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) {
341 		netif_err(priv, drv, priv->dev,
342 			  "Cannot alloc more than the max num of Tx rings\n");
343 		return -EINVAL;
344 	}
345 
346 	if (cfg->start_idx == 0) {
347 		tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
348 			      GFP_KERNEL);
349 		if (!tx)
350 			return -ENOMEM;
351 	} else if (!tx) {
352 		netif_err(priv, drv, priv->dev,
353 			  "Cannot alloc tx rings from a nonzero start idx without tx array\n");
354 		return -EINVAL;
355 	}
356 
357 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) {
358 		err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i);
359 		if (err) {
360 			netif_err(priv, drv, priv->dev,
361 				  "Failed to alloc tx ring=%d: err=%d\n",
362 				  i, err);
363 			goto cleanup;
364 		}
365 	}
366 
367 	cfg->tx = tx;
368 	return 0;
369 
370 cleanup:
371 	for (j = 0; j < i; j++)
372 		gve_tx_free_ring_gqi(priv, &tx[j], cfg);
373 	if (cfg->start_idx == 0)
374 		kvfree(tx);
375 	return err;
376 }
377 
378 void gve_tx_free_rings_gqi(struct gve_priv *priv,
379 			   struct gve_tx_alloc_rings_cfg *cfg)
380 {
381 	struct gve_tx_ring *tx = cfg->tx;
382 	int i;
383 
384 	if (!tx)
385 		return;
386 
387 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++)
388 		gve_tx_free_ring_gqi(priv, &tx[i], cfg);
389 
390 	if (cfg->start_idx == 0) {
391 		kvfree(tx);
392 		cfg->tx = NULL;
393 	}
394 }
395 
396 /* gve_tx_avail - Calculates the number of slots available in the ring
397  * @tx: tx ring to check
398  *
399  * Returns the number of slots available
400  *
401  * The capacity of the queue is mask + 1. We don't need to reserve an entry.
402  **/
403 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
404 {
405 	return tx->mask + 1 - (tx->req - tx->done);
406 }
407 
408 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
409 					      struct sk_buff *skb)
410 {
411 	int pad_bytes, align_hdr_pad;
412 	int bytes;
413 	int hlen;
414 
415 	hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) :
416 				 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
417 
418 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
419 						   hlen);
420 	/* We need to take into account the header alignment padding. */
421 	align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
422 	bytes = align_hdr_pad + pad_bytes + skb->len;
423 
424 	return bytes;
425 }
426 
427 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 :
428  * 1 for each skb frag
429  * 1 for the skb linear portion
430  * 1 for when tcp hdr needs to be in separate descriptor
431  * 1 if the payload wraps to the beginning of the FIFO
432  * 1 for metadata descriptor
433  */
434 #define MAX_TX_DESC_NEEDED	(MAX_SKB_FRAGS + 4)
435 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
436 {
437 	if (info->skb) {
438 		dma_unmap_single(dev, dma_unmap_addr(info, dma),
439 				 dma_unmap_len(info, len),
440 				 DMA_TO_DEVICE);
441 		dma_unmap_len_set(info, len, 0);
442 	} else {
443 		dma_unmap_page(dev, dma_unmap_addr(info, dma),
444 			       dma_unmap_len(info, len),
445 			       DMA_TO_DEVICE);
446 		dma_unmap_len_set(info, len, 0);
447 	}
448 }
449 
450 /* Check if sufficient resources (descriptor ring space, FIFO space) are
451  * available to transmit the given number of bytes.
452  */
453 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
454 {
455 	bool can_alloc = true;
456 
457 	if (!tx->raw_addressing)
458 		can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
459 
460 	return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
461 }
462 
463 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED);
464 
465 /* Stops the queue if the skb cannot be transmitted. */
466 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
467 			     struct sk_buff *skb)
468 {
469 	int bytes_required = 0;
470 	u32 nic_done;
471 	u32 to_do;
472 	int ret;
473 
474 	if (!tx->raw_addressing)
475 		bytes_required = gve_skb_fifo_bytes_required(tx, skb);
476 
477 	if (likely(gve_can_tx(tx, bytes_required)))
478 		return 0;
479 
480 	ret = -EBUSY;
481 	spin_lock(&tx->clean_lock);
482 	nic_done = gve_tx_load_event_counter(priv, tx);
483 	to_do = nic_done - tx->done;
484 
485 	/* Only try to clean if there is hope for TX */
486 	if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) {
487 		if (to_do > 0) {
488 			to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT);
489 			gve_clean_tx_done(priv, tx, to_do, false);
490 		}
491 		if (likely(gve_can_tx(tx, bytes_required)))
492 			ret = 0;
493 	}
494 	if (ret) {
495 		/* No space, so stop the queue */
496 		tx->stop_queue++;
497 		netif_tx_stop_queue(tx->netdev_txq);
498 	}
499 	spin_unlock(&tx->clean_lock);
500 
501 	return ret;
502 }
503 
504 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
505 				 u16 csum_offset, u8 ip_summed, bool is_gso,
506 				 int l4_hdr_offset, u32 desc_cnt,
507 				 u16 hlen, u64 addr, u16 pkt_len)
508 {
509 	/* l4_hdr_offset and csum_offset are in units of 16-bit words */
510 	if (is_gso) {
511 		pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
512 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
513 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
514 	} else if (likely(ip_summed == CHECKSUM_PARTIAL)) {
515 		pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
516 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
517 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
518 	} else {
519 		pkt_desc->pkt.type_flags = GVE_TXD_STD;
520 		pkt_desc->pkt.l4_csum_offset = 0;
521 		pkt_desc->pkt.l4_hdr_offset = 0;
522 	}
523 	pkt_desc->pkt.desc_cnt = desc_cnt;
524 	pkt_desc->pkt.len = cpu_to_be16(pkt_len);
525 	pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
526 	pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
527 }
528 
529 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc,
530 				 struct sk_buff *skb)
531 {
532 	BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt));
533 
534 	mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH;
535 	mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT |
536 				   GVE_MTD_PATH_HASH_L4;
537 	mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash);
538 	mtd_desc->mtd.reserved0 = 0;
539 	mtd_desc->mtd.reserved1 = 0;
540 }
541 
542 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
543 				 u16 l3_offset, u16 gso_size,
544 				 bool is_gso_v6, bool is_gso,
545 				 u16 len, u64 addr)
546 {
547 	seg_desc->seg.type_flags = GVE_TXD_SEG;
548 	if (is_gso) {
549 		if (is_gso_v6)
550 			seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
551 		seg_desc->seg.l3_offset = l3_offset >> 1;
552 		seg_desc->seg.mss = cpu_to_be16(gso_size);
553 	}
554 	seg_desc->seg.seg_len = cpu_to_be16(len);
555 	seg_desc->seg.seg_addr = cpu_to_be64(addr);
556 }
557 
558 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
559 				    u64 iov_offset, u64 iov_len)
560 {
561 	u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
562 	u64 first_page = iov_offset / PAGE_SIZE;
563 	u64 page;
564 
565 	for (page = first_page; page <= last_page; page++)
566 		dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
567 }
568 
569 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
570 {
571 	int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
572 	union gve_tx_desc *pkt_desc, *seg_desc;
573 	struct gve_tx_buffer_state *info;
574 	int mtd_desc_nr = !!skb->l4_hash;
575 	bool is_gso = skb_is_gso(skb);
576 	u32 idx = tx->req & tx->mask;
577 	int payload_iov = 2;
578 	int copy_offset;
579 	u32 next_idx;
580 	int i;
581 
582 	info = &tx->info[idx];
583 	pkt_desc = &tx->desc[idx];
584 
585 	l4_hdr_offset = skb_checksum_start_offset(skb);
586 	/* If the skb is gso, then we want the tcp header alone in the first segment
587 	 * otherwise we want the minimum required by the gVNIC spec.
588 	 */
589 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
590 			min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
591 
592 	info->skb =  skb;
593 	/* We don't want to split the header, so if necessary, pad to the end
594 	 * of the fifo and then put the header at the beginning of the fifo.
595 	 */
596 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
597 	hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
598 				       &info->iov[0]);
599 	WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
600 	payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
601 					   &info->iov[payload_iov]);
602 
603 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
604 			     is_gso, l4_hdr_offset,
605 			     1 + mtd_desc_nr + payload_nfrags, hlen,
606 			     info->iov[hdr_nfrags - 1].iov_offset, skb->len);
607 
608 	skb_copy_bits(skb, 0,
609 		      tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
610 		      hlen);
611 	gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
612 				info->iov[hdr_nfrags - 1].iov_offset,
613 				info->iov[hdr_nfrags - 1].iov_len);
614 	copy_offset = hlen;
615 
616 	if (mtd_desc_nr) {
617 		next_idx = (tx->req + 1) & tx->mask;
618 		gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb);
619 	}
620 
621 	for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
622 		next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask;
623 		seg_desc = &tx->desc[next_idx];
624 
625 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
626 				     skb_shinfo(skb)->gso_size,
627 				     skb_is_gso_v6(skb), is_gso,
628 				     info->iov[i].iov_len,
629 				     info->iov[i].iov_offset);
630 
631 		skb_copy_bits(skb, copy_offset,
632 			      tx->tx_fifo.base + info->iov[i].iov_offset,
633 			      info->iov[i].iov_len);
634 		gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
635 					info->iov[i].iov_offset,
636 					info->iov[i].iov_len);
637 		copy_offset += info->iov[i].iov_len;
638 	}
639 
640 	return 1 + mtd_desc_nr + payload_nfrags;
641 }
642 
643 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
644 				  struct sk_buff *skb)
645 {
646 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
647 	int hlen, num_descriptors, l4_hdr_offset;
648 	union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc;
649 	struct gve_tx_buffer_state *info;
650 	int mtd_desc_nr = !!skb->l4_hash;
651 	bool is_gso = skb_is_gso(skb);
652 	u32 idx = tx->req & tx->mask;
653 	u64 addr;
654 	u32 len;
655 	int i;
656 
657 	info = &tx->info[idx];
658 	pkt_desc = &tx->desc[idx];
659 
660 	l4_hdr_offset = skb_checksum_start_offset(skb);
661 	/* If the skb is gso, then we want only up to the tcp header in the first segment
662 	 * to efficiently replicate on each segment otherwise we want the linear portion
663 	 * of the skb (which will contain the checksum because skb->csum_start and
664 	 * skb->csum_offset are given relative to skb->head) in the first segment.
665 	 */
666 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
667 	len = skb_headlen(skb);
668 
669 	info->skb =  skb;
670 
671 	addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
672 	if (unlikely(dma_mapping_error(tx->dev, addr))) {
673 		tx->dma_mapping_error++;
674 		goto drop;
675 	}
676 	dma_unmap_len_set(info, len, len);
677 	dma_unmap_addr_set(info, dma, addr);
678 
679 	num_descriptors = 1 + shinfo->nr_frags;
680 	if (hlen < len)
681 		num_descriptors++;
682 	if (mtd_desc_nr)
683 		num_descriptors++;
684 
685 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
686 			     is_gso, l4_hdr_offset,
687 			     num_descriptors, hlen, addr, skb->len);
688 
689 	if (mtd_desc_nr) {
690 		idx = (idx + 1) & tx->mask;
691 		mtd_desc = &tx->desc[idx];
692 		gve_tx_fill_mtd_desc(mtd_desc, skb);
693 	}
694 
695 	if (hlen < len) {
696 		/* For gso the rest of the linear portion of the skb needs to
697 		 * be in its own descriptor.
698 		 */
699 		len -= hlen;
700 		addr += hlen;
701 		idx = (idx + 1) & tx->mask;
702 		seg_desc = &tx->desc[idx];
703 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
704 				     skb_shinfo(skb)->gso_size,
705 				     skb_is_gso_v6(skb), is_gso, len, addr);
706 	}
707 
708 	for (i = 0; i < shinfo->nr_frags; i++) {
709 		const skb_frag_t *frag = &shinfo->frags[i];
710 
711 		idx = (idx + 1) & tx->mask;
712 		seg_desc = &tx->desc[idx];
713 		len = skb_frag_size(frag);
714 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
715 		if (unlikely(dma_mapping_error(tx->dev, addr))) {
716 			tx->dma_mapping_error++;
717 			goto unmap_drop;
718 		}
719 		tx->info[idx].skb = NULL;
720 		dma_unmap_len_set(&tx->info[idx], len, len);
721 		dma_unmap_addr_set(&tx->info[idx], dma, addr);
722 
723 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
724 				     skb_shinfo(skb)->gso_size,
725 				     skb_is_gso_v6(skb), is_gso, len, addr);
726 	}
727 
728 	return num_descriptors;
729 
730 unmap_drop:
731 	i += num_descriptors - shinfo->nr_frags;
732 	while (i--) {
733 		/* Skip metadata descriptor, if set */
734 		if (i == 1 && mtd_desc_nr == 1)
735 			continue;
736 		idx--;
737 		gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
738 	}
739 drop:
740 	tx->dropped_pkt++;
741 	return 0;
742 }
743 
744 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
745 {
746 	struct gve_priv *priv = netdev_priv(dev);
747 	struct gve_tx_ring *tx;
748 	int nsegs;
749 
750 	WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
751 	     "skb queue index out of range");
752 	tx = &priv->tx[skb_get_queue_mapping(skb)];
753 	if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) {
754 		/* We need to ring the txq doorbell -- we have stopped the Tx
755 		 * queue for want of resources, but prior calls to gve_tx()
756 		 * may have added descriptors without ringing the doorbell.
757 		 */
758 
759 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
760 		return NETDEV_TX_BUSY;
761 	}
762 	if (tx->raw_addressing)
763 		nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
764 	else
765 		nsegs = gve_tx_add_skb_copy(priv, tx, skb);
766 
767 	/* If the packet is getting sent, we need to update the skb */
768 	if (nsegs) {
769 		netdev_tx_sent_queue(tx->netdev_txq, skb->len);
770 		skb_tx_timestamp(skb);
771 		tx->req += nsegs;
772 	} else {
773 		dev_kfree_skb_any(skb);
774 	}
775 
776 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
777 		return NETDEV_TX_OK;
778 
779 	/* Give packets to NIC. Even if this packet failed to send the doorbell
780 	 * might need to be rung because of xmit_more.
781 	 */
782 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
783 	return NETDEV_TX_OK;
784 }
785 
786 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx,
787 			   void *data, int len, void *frame_p, bool is_xsk)
788 {
789 	int pad, nfrags, ndescs, iovi, offset;
790 	struct gve_tx_buffer_state *info;
791 	u32 reqi = tx->req;
792 
793 	pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len);
794 	if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES)
795 		pad = 0;
796 	info = &tx->info[reqi & tx->mask];
797 	info->xdp_frame = frame_p;
798 	info->xdp.size = len;
799 	info->xdp.is_xsk = is_xsk;
800 
801 	nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len,
802 				   &info->iov[0]);
803 	iovi = pad > 0;
804 	ndescs = nfrags - iovi;
805 	offset = 0;
806 
807 	while (iovi < nfrags) {
808 		if (!offset)
809 			gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0,
810 					     CHECKSUM_NONE, false, 0, ndescs,
811 					     info->iov[iovi].iov_len,
812 					     info->iov[iovi].iov_offset, len);
813 		else
814 			gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask],
815 					     0, 0, false, false,
816 					     info->iov[iovi].iov_len,
817 					     info->iov[iovi].iov_offset);
818 
819 		memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset,
820 		       data + offset, info->iov[iovi].iov_len);
821 		gve_dma_sync_for_device(&priv->pdev->dev,
822 					tx->tx_fifo.qpl->page_buses,
823 					info->iov[iovi].iov_offset,
824 					info->iov[iovi].iov_len);
825 		offset += info->iov[iovi].iov_len;
826 		iovi++;
827 		reqi++;
828 	}
829 
830 	return ndescs;
831 }
832 
833 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
834 		 u32 flags)
835 {
836 	struct gve_priv *priv = netdev_priv(dev);
837 	struct gve_tx_ring *tx;
838 	int i, err = 0, qid;
839 
840 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK) || !priv->xdp_prog)
841 		return -EINVAL;
842 
843 	if (!gve_get_napi_enabled(priv))
844 		return -ENETDOWN;
845 
846 	qid = gve_xdp_tx_queue_id(priv,
847 				  smp_processor_id() % priv->num_xdp_queues);
848 
849 	tx = &priv->tx[qid];
850 
851 	spin_lock(&tx->xdp_lock);
852 	for (i = 0; i < n; i++) {
853 		err = gve_xdp_xmit_one(priv, tx, frames[i]->data,
854 				       frames[i]->len, frames[i]);
855 		if (err)
856 			break;
857 	}
858 
859 	if (flags & XDP_XMIT_FLUSH)
860 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
861 
862 	spin_unlock(&tx->xdp_lock);
863 
864 	u64_stats_update_begin(&tx->statss);
865 	tx->xdp_xmit += n;
866 	tx->xdp_xmit_errors += n - i;
867 	u64_stats_update_end(&tx->statss);
868 
869 	return i ? i : err;
870 }
871 
872 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx,
873 		     void *data, int len, void *frame_p)
874 {
875 	int nsegs;
876 
877 	if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1))
878 		return -EBUSY;
879 
880 	nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false);
881 	tx->req += nsegs;
882 
883 	return 0;
884 }
885 
886 #define GVE_TX_START_THRESH	4096
887 
888 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
889 			     u32 to_do, bool try_to_wake)
890 {
891 	struct gve_tx_buffer_state *info;
892 	u64 pkts = 0, bytes = 0;
893 	size_t space_freed = 0;
894 	struct sk_buff *skb;
895 	u32 idx;
896 	int j;
897 
898 	for (j = 0; j < to_do; j++) {
899 		idx = tx->done & tx->mask;
900 		netif_info(priv, tx_done, priv->dev,
901 			   "[%d] %s: idx=%d (req=%u done=%u)\n",
902 			   tx->q_num, __func__, idx, tx->req, tx->done);
903 		info = &tx->info[idx];
904 		skb = info->skb;
905 
906 		/* Unmap the buffer */
907 		if (tx->raw_addressing)
908 			gve_tx_unmap_buf(tx->dev, info);
909 		tx->done++;
910 		/* Mark as free */
911 		if (skb) {
912 			info->skb = NULL;
913 			bytes += skb->len;
914 			pkts++;
915 			dev_consume_skb_any(skb);
916 			if (tx->raw_addressing)
917 				continue;
918 			space_freed += gve_tx_clear_buffer_state(info);
919 		}
920 	}
921 
922 	if (!tx->raw_addressing)
923 		gve_tx_free_fifo(&tx->tx_fifo, space_freed);
924 	u64_stats_update_begin(&tx->statss);
925 	tx->bytes_done += bytes;
926 	tx->pkt_done += pkts;
927 	u64_stats_update_end(&tx->statss);
928 	netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
929 
930 	/* start the queue if we've stopped it */
931 #ifndef CONFIG_BQL
932 	/* Make sure that the doorbells are synced */
933 	smp_mb();
934 #endif
935 	if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
936 	    likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
937 		tx->wake_queue++;
938 		netif_tx_wake_queue(tx->netdev_txq);
939 	}
940 
941 	return pkts;
942 }
943 
944 u32 gve_tx_load_event_counter(struct gve_priv *priv,
945 			      struct gve_tx_ring *tx)
946 {
947 	u32 counter_index = be32_to_cpu(tx->q_resources->counter_index);
948 	__be32 counter = READ_ONCE(priv->counter_array[counter_index]);
949 
950 	return be32_to_cpu(counter);
951 }
952 
953 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
954 		      int budget)
955 {
956 	struct xdp_desc desc;
957 	int sent = 0, nsegs;
958 	void *data;
959 
960 	spin_lock(&tx->xdp_lock);
961 	while (sent < budget) {
962 		if (!gve_can_tx(tx, GVE_TX_START_THRESH))
963 			goto out;
964 
965 		if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) {
966 			tx->xdp_xsk_done = tx->xdp_xsk_wakeup;
967 			goto out;
968 		}
969 
970 		data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr);
971 		nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true);
972 		tx->req += nsegs;
973 		sent++;
974 	}
975 out:
976 	if (sent > 0) {
977 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
978 		xsk_tx_release(tx->xsk_pool);
979 	}
980 	spin_unlock(&tx->xdp_lock);
981 	return sent;
982 }
983 
984 int gve_xsk_tx_poll(struct gve_notify_block *rx_block, int budget)
985 {
986 	struct gve_rx_ring *rx = rx_block->rx;
987 	struct gve_priv *priv = rx->gve;
988 	struct gve_tx_ring *tx;
989 	int sent = 0;
990 
991 	tx = &priv->tx[gve_xdp_tx_queue_id(priv, rx->q_num)];
992 	if (tx->xsk_pool) {
993 		sent = gve_xsk_tx(priv, tx, budget);
994 
995 		u64_stats_update_begin(&tx->statss);
996 		tx->xdp_xsk_sent += sent;
997 		u64_stats_update_end(&tx->statss);
998 		if (xsk_uses_need_wakeup(tx->xsk_pool))
999 			xsk_set_tx_need_wakeup(tx->xsk_pool);
1000 	}
1001 
1002 	return sent;
1003 }
1004 
1005 bool gve_xdp_poll(struct gve_notify_block *block, int budget)
1006 {
1007 	struct gve_priv *priv = block->priv;
1008 	struct gve_tx_ring *tx = block->tx;
1009 	u32 nic_done;
1010 	u32 to_do;
1011 
1012 	/* Find out how much work there is to be done */
1013 	nic_done = gve_tx_load_event_counter(priv, tx);
1014 	to_do = min_t(u32, (nic_done - tx->done), budget);
1015 	gve_clean_xdp_done(priv, tx, to_do);
1016 
1017 	/* If we still have work we want to repoll */
1018 	return nic_done != tx->done;
1019 }
1020 
1021 bool gve_tx_poll(struct gve_notify_block *block, int budget)
1022 {
1023 	struct gve_priv *priv = block->priv;
1024 	struct gve_tx_ring *tx = block->tx;
1025 	u32 nic_done;
1026 	u32 to_do;
1027 
1028 	/* If budget is 0, do all the work */
1029 	if (budget == 0)
1030 		budget = INT_MAX;
1031 
1032 	/* In TX path, it may try to clean completed pkts in order to xmit,
1033 	 * to avoid cleaning conflict, use spin_lock(), it yields better
1034 	 * concurrency between xmit/clean than netif's lock.
1035 	 */
1036 	spin_lock(&tx->clean_lock);
1037 	/* Find out how much work there is to be done */
1038 	nic_done = gve_tx_load_event_counter(priv, tx);
1039 	to_do = min_t(u32, (nic_done - tx->done), budget);
1040 	gve_clean_tx_done(priv, tx, to_do, true);
1041 	spin_unlock(&tx->clean_lock);
1042 	/* If we still have work we want to repoll */
1043 	return nic_done != tx->done;
1044 }
1045 
1046 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx)
1047 {
1048 	u32 nic_done = gve_tx_load_event_counter(priv, tx);
1049 
1050 	return nic_done != tx->done;
1051 }
1052