// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* Google virtual Ethernet (gve) driver * * Copyright (C) 2015-2021 Google, Inc. */ #include "gve.h" #include "gve_adminq.h" #include "gve_utils.h" #include #include #include #include #include static inline void gve_tx_put_doorbell(struct gve_priv *priv, struct gve_queue_resources *q_resources, u32 val) { iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); } void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid) { u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid); struct gve_tx_ring *tx = &priv->tx[tx_qid]; gve_tx_put_doorbell(priv, tx->q_resources, tx->req); } /* gvnic can only transmit from a Registered Segment. * We copy skb payloads into the registered segment before writing Tx * descriptors and ringing the Tx doorbell. * * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must * free allocations in the order they were allocated. */ static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) { fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, PAGE_KERNEL); if (unlikely(!fifo->base)) { netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", fifo->qpl->id); return -ENOMEM; } fifo->size = fifo->qpl->num_entries * PAGE_SIZE; atomic_set(&fifo->available, fifo->size); fifo->head = 0; return 0; } static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) { WARN(atomic_read(&fifo->available) != fifo->size, "Releasing non-empty fifo"); vunmap(fifo->base); } static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, size_t bytes) { return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; } static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) { return (atomic_read(&fifo->available) <= bytes) ? false : true; } /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO * @fifo: FIFO to allocate from * @bytes: Allocation size * @iov: Scatter-gather elements to fill with allocation fragment base/len * * Returns number of valid elements in iov[] or negative on error. * * Allocations from a given FIFO must be externally synchronized but concurrent * allocation and frees are allowed. */ static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, struct gve_tx_iovec iov[2]) { size_t overflow, padding; u32 aligned_head; int nfrags = 0; if (!bytes) return 0; /* This check happens before we know how much padding is needed to * align to a cacheline boundary for the payload, but that is fine, * because the FIFO head always start aligned, and the FIFO's boundaries * are aligned, so if there is space for the data, there is space for * the padding to the next alignment. */ WARN(!gve_tx_fifo_can_alloc(fifo, bytes), "Reached %s when there's not enough space in the fifo", __func__); nfrags++; iov[0].iov_offset = fifo->head; iov[0].iov_len = bytes; fifo->head += bytes; if (fifo->head > fifo->size) { /* If the allocation did not fit in the tail fragment of the * FIFO, also use the head fragment. */ nfrags++; overflow = fifo->head - fifo->size; iov[0].iov_len -= overflow; iov[1].iov_offset = 0; /* Start of fifo*/ iov[1].iov_len = overflow; fifo->head = overflow; } /* Re-align to a cacheline boundary */ aligned_head = L1_CACHE_ALIGN(fifo->head); padding = aligned_head - fifo->head; iov[nfrags - 1].iov_padding = padding; atomic_sub(bytes + padding, &fifo->available); fifo->head = aligned_head; if (fifo->head == fifo->size) fifo->head = 0; return nfrags; } /* gve_tx_free_fifo - Return space to Tx FIFO * @fifo: FIFO to return fragments to * @bytes: Bytes to free */ static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) { atomic_add(bytes, &fifo->available); } static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info) { size_t space_freed = 0; int i; for (i = 0; i < ARRAY_SIZE(info->iov); i++) { space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; info->iov[i].iov_len = 0; info->iov[i].iov_padding = 0; } return space_freed; } static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx, u32 to_do) { struct gve_tx_buffer_state *info; u64 pkts = 0, bytes = 0; size_t space_freed = 0; u32 xsk_complete = 0; u32 idx; int i; for (i = 0; i < to_do; i++) { idx = tx->done & tx->mask; info = &tx->info[idx]; tx->done++; if (unlikely(!info->xdp.size)) continue; bytes += info->xdp.size; pkts++; xsk_complete += info->xdp.is_xsk; info->xdp.size = 0; if (info->xdp_frame) { xdp_return_frame(info->xdp_frame); info->xdp_frame = NULL; } space_freed += gve_tx_clear_buffer_state(info); } gve_tx_free_fifo(&tx->tx_fifo, space_freed); if (xsk_complete > 0 && tx->xsk_pool) xsk_tx_completed(tx->xsk_pool, xsk_complete); u64_stats_update_begin(&tx->statss); tx->bytes_done += bytes; tx->pkt_done += pkts; u64_stats_update_end(&tx->statss); return pkts; } static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, u32 to_do, bool try_to_wake); void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx) { int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); struct gve_tx_ring *tx = &priv->tx[idx]; if (!gve_tx_was_added_to_block(priv, idx)) return; gve_remove_napi(priv, ntfy_idx); if (tx->q_num < priv->tx_cfg.num_queues) gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false); else gve_clean_xdp_done(priv, tx, priv->tx_desc_cnt); netdev_tx_reset_queue(tx->netdev_txq); gve_tx_remove_from_block(priv, idx); } static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx, struct gve_tx_alloc_rings_cfg *cfg) { struct device *hdev = &priv->pdev->dev; int idx = tx->q_num; size_t bytes; u32 qpl_id; u32 slots; slots = tx->mask + 1; dma_free_coherent(hdev, sizeof(*tx->q_resources), tx->q_resources, tx->q_resources_bus); tx->q_resources = NULL; if (tx->tx_fifo.qpl) { if (tx->tx_fifo.base) gve_tx_fifo_release(priv, &tx->tx_fifo); qpl_id = gve_tx_qpl_id(priv, tx->q_num); gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id); tx->tx_fifo.qpl = NULL; } bytes = sizeof(*tx->desc) * slots; dma_free_coherent(hdev, bytes, tx->desc, tx->bus); tx->desc = NULL; vfree(tx->info); tx->info = NULL; netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); } void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx) { int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); struct gve_tx_ring *tx = &priv->tx[idx]; gve_tx_add_to_block(priv, idx); tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); gve_add_napi(priv, ntfy_idx, gve_napi_poll); } static int gve_tx_alloc_ring_gqi(struct gve_priv *priv, struct gve_tx_alloc_rings_cfg *cfg, struct gve_tx_ring *tx, int idx) { struct device *hdev = &priv->pdev->dev; int qpl_page_cnt; u32 qpl_id = 0; size_t bytes; /* Make sure everything is zeroed to start */ memset(tx, 0, sizeof(*tx)); spin_lock_init(&tx->clean_lock); spin_lock_init(&tx->xdp_lock); tx->q_num = idx; tx->mask = cfg->ring_size - 1; /* alloc metadata */ tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info)); if (!tx->info) return -ENOMEM; /* alloc tx queue */ bytes = sizeof(*tx->desc) * cfg->ring_size; tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); if (!tx->desc) goto abort_with_info; tx->raw_addressing = cfg->raw_addressing; tx->dev = hdev; if (!tx->raw_addressing) { qpl_id = gve_tx_qpl_id(priv, tx->q_num); qpl_page_cnt = priv->tx_pages_per_qpl; tx->tx_fifo.qpl = gve_alloc_queue_page_list(priv, qpl_id, qpl_page_cnt); if (!tx->tx_fifo.qpl) goto abort_with_desc; /* map Tx FIFO */ if (gve_tx_fifo_init(priv, &tx->tx_fifo)) goto abort_with_qpl; } tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources), &tx->q_resources_bus, GFP_KERNEL); if (!tx->q_resources) goto abort_with_fifo; return 0; abort_with_fifo: if (!tx->raw_addressing) gve_tx_fifo_release(priv, &tx->tx_fifo); abort_with_qpl: if (!tx->raw_addressing) { gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id); tx->tx_fifo.qpl = NULL; } abort_with_desc: dma_free_coherent(hdev, bytes, tx->desc, tx->bus); tx->desc = NULL; abort_with_info: vfree(tx->info); tx->info = NULL; return -ENOMEM; } int gve_tx_alloc_rings_gqi(struct gve_priv *priv, struct gve_tx_alloc_rings_cfg *cfg) { struct gve_tx_ring *tx = cfg->tx; int err = 0; int i, j; if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) { netif_err(priv, drv, priv->dev, "Cannot alloc more than the max num of Tx rings\n"); return -EINVAL; } if (cfg->start_idx == 0) { tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), GFP_KERNEL); if (!tx) return -ENOMEM; } else if (!tx) { netif_err(priv, drv, priv->dev, "Cannot alloc tx rings from a nonzero start idx without tx array\n"); return -EINVAL; } for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) { err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i); if (err) { netif_err(priv, drv, priv->dev, "Failed to alloc tx ring=%d: err=%d\n", i, err); goto cleanup; } } cfg->tx = tx; return 0; cleanup: for (j = 0; j < i; j++) gve_tx_free_ring_gqi(priv, &tx[j], cfg); if (cfg->start_idx == 0) kvfree(tx); return err; } void gve_tx_free_rings_gqi(struct gve_priv *priv, struct gve_tx_alloc_rings_cfg *cfg) { struct gve_tx_ring *tx = cfg->tx; int i; if (!tx) return; for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) gve_tx_free_ring_gqi(priv, &tx[i], cfg); if (cfg->start_idx == 0) { kvfree(tx); cfg->tx = NULL; } } /* gve_tx_avail - Calculates the number of slots available in the ring * @tx: tx ring to check * * Returns the number of slots available * * The capacity of the queue is mask + 1. We don't need to reserve an entry. **/ static inline u32 gve_tx_avail(struct gve_tx_ring *tx) { return tx->mask + 1 - (tx->req - tx->done); } static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, struct sk_buff *skb) { int pad_bytes, align_hdr_pad; int bytes; int hlen; hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) : min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); /* We need to take into account the header alignment padding. */ align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; bytes = align_hdr_pad + pad_bytes + skb->len; return bytes; } /* The most descriptors we could need is MAX_SKB_FRAGS + 4 : * 1 for each skb frag * 1 for the skb linear portion * 1 for when tcp hdr needs to be in separate descriptor * 1 if the payload wraps to the beginning of the FIFO * 1 for metadata descriptor */ #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4) static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) { if (info->skb) { dma_unmap_single(dev, dma_unmap_addr(info, dma), dma_unmap_len(info, len), DMA_TO_DEVICE); dma_unmap_len_set(info, len, 0); } else { dma_unmap_page(dev, dma_unmap_addr(info, dma), dma_unmap_len(info, len), DMA_TO_DEVICE); dma_unmap_len_set(info, len, 0); } } /* Check if sufficient resources (descriptor ring space, FIFO space) are * available to transmit the given number of bytes. */ static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) { bool can_alloc = true; if (!tx->raw_addressing) can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); } static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED); /* Stops the queue if the skb cannot be transmitted. */ static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) { int bytes_required = 0; u32 nic_done; u32 to_do; int ret; if (!tx->raw_addressing) bytes_required = gve_skb_fifo_bytes_required(tx, skb); if (likely(gve_can_tx(tx, bytes_required))) return 0; ret = -EBUSY; spin_lock(&tx->clean_lock); nic_done = gve_tx_load_event_counter(priv, tx); to_do = nic_done - tx->done; /* Only try to clean if there is hope for TX */ if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) { if (to_do > 0) { to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT); gve_clean_tx_done(priv, tx, to_do, false); } if (likely(gve_can_tx(tx, bytes_required))) ret = 0; } if (ret) { /* No space, so stop the queue */ tx->stop_queue++; netif_tx_stop_queue(tx->netdev_txq); } spin_unlock(&tx->clean_lock); return ret; } static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, u16 csum_offset, u8 ip_summed, bool is_gso, int l4_hdr_offset, u32 desc_cnt, u16 hlen, u64 addr, u16 pkt_len) { /* l4_hdr_offset and csum_offset are in units of 16-bit words */ if (is_gso) { pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; } else if (likely(ip_summed == CHECKSUM_PARTIAL)) { pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; } else { pkt_desc->pkt.type_flags = GVE_TXD_STD; pkt_desc->pkt.l4_csum_offset = 0; pkt_desc->pkt.l4_hdr_offset = 0; } pkt_desc->pkt.desc_cnt = desc_cnt; pkt_desc->pkt.len = cpu_to_be16(pkt_len); pkt_desc->pkt.seg_len = cpu_to_be16(hlen); pkt_desc->pkt.seg_addr = cpu_to_be64(addr); } static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc, struct sk_buff *skb) { BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt)); mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH; mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT | GVE_MTD_PATH_HASH_L4; mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash); mtd_desc->mtd.reserved0 = 0; mtd_desc->mtd.reserved1 = 0; } static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, u16 l3_offset, u16 gso_size, bool is_gso_v6, bool is_gso, u16 len, u64 addr) { seg_desc->seg.type_flags = GVE_TXD_SEG; if (is_gso) { if (is_gso_v6) seg_desc->seg.type_flags |= GVE_TXSF_IPV6; seg_desc->seg.l3_offset = l3_offset >> 1; seg_desc->seg.mss = cpu_to_be16(gso_size); } seg_desc->seg.seg_len = cpu_to_be16(len); seg_desc->seg.seg_addr = cpu_to_be64(addr); } static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, u64 iov_offset, u64 iov_len) { u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; u64 first_page = iov_offset / PAGE_SIZE; u64 page; for (page = first_page; page <= last_page; page++) dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); } static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) { int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; union gve_tx_desc *pkt_desc, *seg_desc; struct gve_tx_buffer_state *info; int mtd_desc_nr = !!skb->l4_hash; bool is_gso = skb_is_gso(skb); u32 idx = tx->req & tx->mask; int payload_iov = 2; int copy_offset; u32 next_idx; int i; info = &tx->info[idx]; pkt_desc = &tx->desc[idx]; l4_hdr_offset = skb_checksum_start_offset(skb); /* If the skb is gso, then we want the tcp header alone in the first segment * otherwise we want the minimum required by the gVNIC spec. */ hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); info->skb = skb; /* We don't want to split the header, so if necessary, pad to the end * of the fifo and then put the header at the beginning of the fifo. */ pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, &info->iov[0]); WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, &info->iov[payload_iov]); gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, is_gso, l4_hdr_offset, 1 + mtd_desc_nr + payload_nfrags, hlen, info->iov[hdr_nfrags - 1].iov_offset, skb->len); skb_copy_bits(skb, 0, tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, hlen); gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, info->iov[hdr_nfrags - 1].iov_offset, info->iov[hdr_nfrags - 1].iov_len); copy_offset = hlen; if (mtd_desc_nr) { next_idx = (tx->req + 1) & tx->mask; gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb); } for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask; seg_desc = &tx->desc[next_idx]; gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), skb_shinfo(skb)->gso_size, skb_is_gso_v6(skb), is_gso, info->iov[i].iov_len, info->iov[i].iov_offset); skb_copy_bits(skb, copy_offset, tx->tx_fifo.base + info->iov[i].iov_offset, info->iov[i].iov_len); gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, info->iov[i].iov_offset, info->iov[i].iov_len); copy_offset += info->iov[i].iov_len; } return 1 + mtd_desc_nr + payload_nfrags; } static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) { const struct skb_shared_info *shinfo = skb_shinfo(skb); int hlen, num_descriptors, l4_hdr_offset; union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc; struct gve_tx_buffer_state *info; int mtd_desc_nr = !!skb->l4_hash; bool is_gso = skb_is_gso(skb); u32 idx = tx->req & tx->mask; u64 addr; u32 len; int i; info = &tx->info[idx]; pkt_desc = &tx->desc[idx]; l4_hdr_offset = skb_checksum_start_offset(skb); /* If the skb is gso, then we want only up to the tcp header in the first segment * to efficiently replicate on each segment otherwise we want the linear portion * of the skb (which will contain the checksum because skb->csum_start and * skb->csum_offset are given relative to skb->head) in the first segment. */ hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); len = skb_headlen(skb); info->skb = skb; addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx->dev, addr))) { tx->dma_mapping_error++; goto drop; } dma_unmap_len_set(info, len, len); dma_unmap_addr_set(info, dma, addr); num_descriptors = 1 + shinfo->nr_frags; if (hlen < len) num_descriptors++; if (mtd_desc_nr) num_descriptors++; gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, is_gso, l4_hdr_offset, num_descriptors, hlen, addr, skb->len); if (mtd_desc_nr) { idx = (idx + 1) & tx->mask; mtd_desc = &tx->desc[idx]; gve_tx_fill_mtd_desc(mtd_desc, skb); } if (hlen < len) { /* For gso the rest of the linear portion of the skb needs to * be in its own descriptor. */ len -= hlen; addr += hlen; idx = (idx + 1) & tx->mask; seg_desc = &tx->desc[idx]; gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), skb_shinfo(skb)->gso_size, skb_is_gso_v6(skb), is_gso, len, addr); } for (i = 0; i < shinfo->nr_frags; i++) { const skb_frag_t *frag = &shinfo->frags[i]; idx = (idx + 1) & tx->mask; seg_desc = &tx->desc[idx]; len = skb_frag_size(frag); addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx->dev, addr))) { tx->dma_mapping_error++; goto unmap_drop; } tx->info[idx].skb = NULL; dma_unmap_len_set(&tx->info[idx], len, len); dma_unmap_addr_set(&tx->info[idx], dma, addr); gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), skb_shinfo(skb)->gso_size, skb_is_gso_v6(skb), is_gso, len, addr); } return num_descriptors; unmap_drop: i += num_descriptors - shinfo->nr_frags; while (i--) { /* Skip metadata descriptor, if set */ if (i == 1 && mtd_desc_nr == 1) continue; idx--; gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); } drop: tx->dropped_pkt++; return 0; } netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) { struct gve_priv *priv = netdev_priv(dev); struct gve_tx_ring *tx; int nsegs; WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues, "skb queue index out of range"); tx = &priv->tx[skb_get_queue_mapping(skb)]; if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) { /* We need to ring the txq doorbell -- we have stopped the Tx * queue for want of resources, but prior calls to gve_tx() * may have added descriptors without ringing the doorbell. */ gve_tx_put_doorbell(priv, tx->q_resources, tx->req); return NETDEV_TX_BUSY; } if (tx->raw_addressing) nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); else nsegs = gve_tx_add_skb_copy(priv, tx, skb); /* If the packet is getting sent, we need to update the skb */ if (nsegs) { netdev_tx_sent_queue(tx->netdev_txq, skb->len); skb_tx_timestamp(skb); tx->req += nsegs; } else { dev_kfree_skb_any(skb); } if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) return NETDEV_TX_OK; /* Give packets to NIC. Even if this packet failed to send the doorbell * might need to be rung because of xmit_more. */ gve_tx_put_doorbell(priv, tx->q_resources, tx->req); return NETDEV_TX_OK; } static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx, void *data, int len, void *frame_p, bool is_xsk) { int pad, nfrags, ndescs, iovi, offset; struct gve_tx_buffer_state *info; u32 reqi = tx->req; pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len); if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES) pad = 0; info = &tx->info[reqi & tx->mask]; info->xdp_frame = frame_p; info->xdp.size = len; info->xdp.is_xsk = is_xsk; nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len, &info->iov[0]); iovi = pad > 0; ndescs = nfrags - iovi; offset = 0; while (iovi < nfrags) { if (!offset) gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0, CHECKSUM_NONE, false, 0, ndescs, info->iov[iovi].iov_len, info->iov[iovi].iov_offset, len); else gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask], 0, 0, false, false, info->iov[iovi].iov_len, info->iov[iovi].iov_offset); memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset, data + offset, info->iov[iovi].iov_len); gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, info->iov[iovi].iov_offset, info->iov[iovi].iov_len); offset += info->iov[iovi].iov_len; iovi++; reqi++; } return ndescs; } int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags) { struct gve_priv *priv = netdev_priv(dev); struct gve_tx_ring *tx; int i, err = 0, qid; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK) || !priv->xdp_prog) return -EINVAL; if (!gve_get_napi_enabled(priv)) return -ENETDOWN; qid = gve_xdp_tx_queue_id(priv, smp_processor_id() % priv->num_xdp_queues); tx = &priv->tx[qid]; spin_lock(&tx->xdp_lock); for (i = 0; i < n; i++) { err = gve_xdp_xmit_one(priv, tx, frames[i]->data, frames[i]->len, frames[i]); if (err) break; } if (flags & XDP_XMIT_FLUSH) gve_tx_put_doorbell(priv, tx->q_resources, tx->req); spin_unlock(&tx->xdp_lock); u64_stats_update_begin(&tx->statss); tx->xdp_xmit += n; tx->xdp_xmit_errors += n - i; u64_stats_update_end(&tx->statss); return i ? i : err; } int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx, void *data, int len, void *frame_p) { int nsegs; if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1)) return -EBUSY; nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false); tx->req += nsegs; return 0; } #define GVE_TX_START_THRESH 4096 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, u32 to_do, bool try_to_wake) { struct gve_tx_buffer_state *info; u64 pkts = 0, bytes = 0; size_t space_freed = 0; struct sk_buff *skb; u32 idx; int j; for (j = 0; j < to_do; j++) { idx = tx->done & tx->mask; netif_info(priv, tx_done, priv->dev, "[%d] %s: idx=%d (req=%u done=%u)\n", tx->q_num, __func__, idx, tx->req, tx->done); info = &tx->info[idx]; skb = info->skb; /* Unmap the buffer */ if (tx->raw_addressing) gve_tx_unmap_buf(tx->dev, info); tx->done++; /* Mark as free */ if (skb) { info->skb = NULL; bytes += skb->len; pkts++; dev_consume_skb_any(skb); if (tx->raw_addressing) continue; space_freed += gve_tx_clear_buffer_state(info); } } if (!tx->raw_addressing) gve_tx_free_fifo(&tx->tx_fifo, space_freed); u64_stats_update_begin(&tx->statss); tx->bytes_done += bytes; tx->pkt_done += pkts; u64_stats_update_end(&tx->statss); netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); /* start the queue if we've stopped it */ #ifndef CONFIG_BQL /* Make sure that the doorbells are synced */ smp_mb(); #endif if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { tx->wake_queue++; netif_tx_wake_queue(tx->netdev_txq); } return pkts; } u32 gve_tx_load_event_counter(struct gve_priv *priv, struct gve_tx_ring *tx) { u32 counter_index = be32_to_cpu(tx->q_resources->counter_index); __be32 counter = READ_ONCE(priv->counter_array[counter_index]); return be32_to_cpu(counter); } static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx, int budget) { struct xdp_desc desc; int sent = 0, nsegs; void *data; spin_lock(&tx->xdp_lock); while (sent < budget) { if (!gve_can_tx(tx, GVE_TX_START_THRESH)) goto out; if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) { tx->xdp_xsk_done = tx->xdp_xsk_wakeup; goto out; } data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr); nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true); tx->req += nsegs; sent++; } out: if (sent > 0) { gve_tx_put_doorbell(priv, tx->q_resources, tx->req); xsk_tx_release(tx->xsk_pool); } spin_unlock(&tx->xdp_lock); return sent; } int gve_xsk_tx_poll(struct gve_notify_block *rx_block, int budget) { struct gve_rx_ring *rx = rx_block->rx; struct gve_priv *priv = rx->gve; struct gve_tx_ring *tx; int sent = 0; tx = &priv->tx[gve_xdp_tx_queue_id(priv, rx->q_num)]; if (tx->xsk_pool) { sent = gve_xsk_tx(priv, tx, budget); u64_stats_update_begin(&tx->statss); tx->xdp_xsk_sent += sent; u64_stats_update_end(&tx->statss); if (xsk_uses_need_wakeup(tx->xsk_pool)) xsk_set_tx_need_wakeup(tx->xsk_pool); } return sent; } bool gve_xdp_poll(struct gve_notify_block *block, int budget) { struct gve_priv *priv = block->priv; struct gve_tx_ring *tx = block->tx; u32 nic_done; u32 to_do; /* Find out how much work there is to be done */ nic_done = gve_tx_load_event_counter(priv, tx); to_do = min_t(u32, (nic_done - tx->done), budget); gve_clean_xdp_done(priv, tx, to_do); /* If we still have work we want to repoll */ return nic_done != tx->done; } bool gve_tx_poll(struct gve_notify_block *block, int budget) { struct gve_priv *priv = block->priv; struct gve_tx_ring *tx = block->tx; u32 nic_done; u32 to_do; /* If budget is 0, do all the work */ if (budget == 0) budget = INT_MAX; /* In TX path, it may try to clean completed pkts in order to xmit, * to avoid cleaning conflict, use spin_lock(), it yields better * concurrency between xmit/clean than netif's lock. */ spin_lock(&tx->clean_lock); /* Find out how much work there is to be done */ nic_done = gve_tx_load_event_counter(priv, tx); to_do = min_t(u32, (nic_done - tx->done), budget); gve_clean_tx_done(priv, tx, to_do, true); spin_unlock(&tx->clean_lock); /* If we still have work we want to repoll */ return nic_done != tx->done; } bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx) { u32 nic_done = gve_tx_load_event_counter(priv, tx); return nic_done != tx->done; }