1 /* winbond-840.c: A Linux PCI network adapter device driver. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/drivers.html
19
20 Do not remove the copyright information.
21 Do not change the version information unless an improvement has been made.
22 Merely removing my name, as Compex has done in the past, does not count
23 as an improvement.
24
25 Changelog:
26 * ported to 2.4
27 ???
28 * spin lock update, memory barriers, new style dma mappings
29 limit each tx buffer to < 1024 bytes
30 remove DescIntr from Rx descriptors (that's an Tx flag)
31 remove next pointer from Tx descriptors
32 synchronize tx_q_bytes
33 software reset in tx_timeout
34 Copyright (C) 2000 Manfred Spraul
35 * further cleanups
36 power management.
37 support for big endian descriptors
38 Copyright (C) 2001 Manfred Spraul
39 * ethtool support (jgarzik)
40 * Replace some MII-related magic numbers with constants (jgarzik)
41
42 TODO:
43 * enable pci_power_off
44 * Wake-On-LAN
45 */
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #define DRV_NAME "winbond-840"
50
51 /* Automatically extracted configuration info:
52 probe-func: winbond840_probe
53 config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
54
55 c-help-name: Winbond W89c840 PCI Ethernet support
56 c-help-symbol: CONFIG_WINBOND_840
57 c-help: This driver is for the Winbond W89c840 chip. It also works with
58 c-help: the TX9882 chip on the Compex RL100-ATX board.
59 c-help: More specific information and updates are available from
60 c-help: http://www.scyld.com/network/drivers.html
61 */
62
63 /* The user-configurable values.
64 These may be modified when a driver module is loaded.*/
65
66 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
67 static int max_interrupt_work = 20;
68 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
69 The '840 uses a 64 element hash table based on the Ethernet CRC. */
70 static int multicast_filter_limit = 32;
71
72 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
73 Setting to > 1518 effectively disables this feature. */
74 static int rx_copybreak;
75
76 /* Used to pass the media type, etc.
77 Both 'options[]' and 'full_duplex[]' should exist for driver
78 interoperability.
79 The media type is usually passed in 'options[]'.
80 */
81 #define MAX_UNITS 8 /* More are supported, limit only on options */
82 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
83 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
84
85 /* Operational parameters that are set at compile time. */
86
87 /* Keep the ring sizes a power of two for compile efficiency.
88 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
89 Making the Tx ring too large decreases the effectiveness of channel
90 bonding and packet priority.
91 There are no ill effects from too-large receive rings. */
92 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
93 #define TX_QUEUE_LEN_RESTART 5
94
95 #define TX_BUFLIMIT (1024-128)
96
97 /* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
98 To avoid overflowing we don't queue again until we have room for a
99 full-size packet.
100 */
101 #define TX_FIFO_SIZE (2048)
102 #define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
103
104
105 /* Operational parameters that usually are not changed. */
106 /* Time in jiffies before concluding the transmitter is hung. */
107 #define TX_TIMEOUT (2*HZ)
108
109 /* Include files, designed to support most kernel versions 2.0.0 and later. */
110 #include <linux/module.h>
111 #include <linux/kernel.h>
112 #include <linux/string.h>
113 #include <linux/timer.h>
114 #include <linux/errno.h>
115 #include <linux/ioport.h>
116 #include <linux/interrupt.h>
117 #include <linux/pci.h>
118 #include <linux/dma-mapping.h>
119 #include <linux/netdevice.h>
120 #include <linux/etherdevice.h>
121 #include <linux/skbuff.h>
122 #include <linux/init.h>
123 #include <linux/delay.h>
124 #include <linux/ethtool.h>
125 #include <linux/mii.h>
126 #include <linux/rtnetlink.h>
127 #include <linux/crc32.h>
128 #include <linux/bitops.h>
129 #include <linux/uaccess.h>
130 #include <asm/processor.h> /* Processor type for cache alignment. */
131 #include <asm/io.h>
132 #include <asm/irq.h>
133
134 #include "tulip.h"
135
136 #undef PKT_BUF_SZ /* tulip.h also defines this */
137 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
138
139 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
140 MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
141 MODULE_LICENSE("GPL");
142
143 module_param(max_interrupt_work, int, 0);
144 module_param(debug, int, 0);
145 module_param(rx_copybreak, int, 0);
146 module_param(multicast_filter_limit, int, 0);
147 module_param_array(options, int, NULL, 0);
148 module_param_array(full_duplex, int, NULL, 0);
149 MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
150 MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
151 MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
152 MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
153 MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
154 MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
155
156 /*
157 Theory of Operation
158
159 I. Board Compatibility
160
161 This driver is for the Winbond w89c840 chip.
162
163 II. Board-specific settings
164
165 None.
166
167 III. Driver operation
168
169 This chip is very similar to the Digital 21*4* "Tulip" family. The first
170 twelve registers and the descriptor format are nearly identical. Read a
171 Tulip manual for operational details.
172
173 A significant difference is that the multicast filter and station address are
174 stored in registers rather than loaded through a pseudo-transmit packet.
175
176 Unlike the Tulip, transmit buffers are limited to 1KB. To transmit a
177 full-sized packet we must use both data buffers in a descriptor. Thus the
178 driver uses ring mode where descriptors are implicitly sequential in memory,
179 rather than using the second descriptor address as a chain pointer to
180 subsequent descriptors.
181
182 IV. Notes
183
184 If you are going to almost clone a Tulip, why not go all the way and avoid
185 the need for a new driver?
186
187 IVb. References
188
189 http://www.scyld.com/expert/100mbps.html
190 http://www.scyld.com/expert/NWay.html
191 http://www.winbond.com.tw/
192
193 IVc. Errata
194
195 A horrible bug exists in the transmit FIFO. Apparently the chip doesn't
196 correctly detect a full FIFO, and queuing more than 2048 bytes may result in
197 silent data corruption.
198
199 Test with 'ping -s 10000' on a fast computer.
200
201 */
202
203
204
205 /*
206 PCI probe table.
207 */
208 enum chip_capability_flags {
209 CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,
210 };
211
212 static const struct pci_device_id w840_pci_tbl[] = {
213 { 0x1050, 0x0840, PCI_ANY_ID, 0x8153, 0, 0, 0 },
214 { 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
215 { 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
216 { }
217 };
218 MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
219
220 enum {
221 netdev_res_size = 128, /* size of PCI BAR resource */
222 };
223
224 struct pci_id_info {
225 const char *name;
226 int drv_flags; /* Driver use, intended as capability flags. */
227 };
228
229 static const struct pci_id_info pci_id_tbl[] = {
230 { /* Sometime a Level-One switch card. */
231 "Winbond W89c840", CanHaveMII | HasBrokenTx | FDXOnNoMII},
232 { "Winbond W89c840", CanHaveMII | HasBrokenTx},
233 { "Compex RL100-ATX", CanHaveMII | HasBrokenTx},
234 { } /* terminate list. */
235 };
236
237 /* This driver was written to use PCI memory space, however some x86 systems
238 work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config
239 */
240
241 /* Offsets to the Command and Status Registers, "CSRs".
242 While similar to the Tulip, these registers are longword aligned.
243 Note: It's not useful to define symbolic names for every register bit in
244 the device. The name can only partially document the semantics and make
245 the driver longer and more difficult to read.
246 */
247 enum w840_offsets {
248 PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
249 RxRingPtr=0x0C, TxRingPtr=0x10,
250 IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
251 RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
252 CurRxDescAddr=0x30, CurRxBufAddr=0x34, /* Debug use */
253 MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
254 CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
255 };
256
257 /* Bits in the NetworkConfig register. */
258 enum rx_mode_bits {
259 AcceptErr=0x80,
260 RxAcceptBroadcast=0x20, AcceptMulticast=0x10,
261 RxAcceptAllPhys=0x08, AcceptMyPhys=0x02,
262 };
263
264 enum mii_reg_bits {
265 MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
266 MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
267 };
268
269 /* The Tulip Rx and Tx buffer descriptors. */
270 struct w840_rx_desc {
271 s32 status;
272 s32 length;
273 u32 buffer1;
274 u32 buffer2;
275 };
276
277 struct w840_tx_desc {
278 s32 status;
279 s32 length;
280 u32 buffer1, buffer2;
281 };
282
283 #define MII_CNT 1 /* winbond only supports one MII */
284 struct netdev_private {
285 struct w840_rx_desc *rx_ring;
286 dma_addr_t rx_addr[RX_RING_SIZE];
287 struct w840_tx_desc *tx_ring;
288 dma_addr_t tx_addr[TX_RING_SIZE];
289 dma_addr_t ring_dma_addr;
290 /* The addresses of receive-in-place skbuffs. */
291 struct sk_buff* rx_skbuff[RX_RING_SIZE];
292 /* The saved address of a sent-in-place packet/buffer, for later free(). */
293 struct sk_buff* tx_skbuff[TX_RING_SIZE];
294 struct net_device_stats stats;
295 struct timer_list timer; /* Media monitoring timer. */
296 /* Frequently used values: keep some adjacent for cache effect. */
297 spinlock_t lock;
298 int chip_id, drv_flags;
299 struct pci_dev *pci_dev;
300 int csr6;
301 struct w840_rx_desc *rx_head_desc;
302 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
303 unsigned int rx_buf_sz; /* Based on MTU+slack. */
304 unsigned int cur_tx, dirty_tx;
305 unsigned int tx_q_bytes;
306 unsigned int tx_full; /* The Tx queue is full. */
307 /* MII transceiver section. */
308 int mii_cnt; /* MII device addresses. */
309 unsigned char phys[MII_CNT]; /* MII device addresses, but only the first is used */
310 u32 mii;
311 struct mii_if_info mii_if;
312 void __iomem *base_addr;
313 };
314
315 static int eeprom_read(void __iomem *ioaddr, int location);
316 static int mdio_read(struct net_device *dev, int phy_id, int location);
317 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
318 static int netdev_open(struct net_device *dev);
319 static int update_link(struct net_device *dev);
320 static void netdev_timer(struct timer_list *t);
321 static void init_rxtx_rings(struct net_device *dev);
322 static void free_rxtx_rings(struct netdev_private *np);
323 static void init_registers(struct net_device *dev);
324 static void tx_timeout(struct net_device *dev, unsigned int txqueue);
325 static int alloc_ringdesc(struct net_device *dev);
326 static void free_ringdesc(struct netdev_private *np);
327 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
328 static irqreturn_t intr_handler(int irq, void *dev_instance);
329 static void netdev_error(struct net_device *dev, int intr_status);
330 static int netdev_rx(struct net_device *dev);
331 static u32 __set_rx_mode(struct net_device *dev);
332 static void set_rx_mode(struct net_device *dev);
333 static struct net_device_stats *get_stats(struct net_device *dev);
334 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
335 static const struct ethtool_ops netdev_ethtool_ops;
336 static int netdev_close(struct net_device *dev);
337
338 static const struct net_device_ops netdev_ops = {
339 .ndo_open = netdev_open,
340 .ndo_stop = netdev_close,
341 .ndo_start_xmit = start_tx,
342 .ndo_get_stats = get_stats,
343 .ndo_set_rx_mode = set_rx_mode,
344 .ndo_eth_ioctl = netdev_ioctl,
345 .ndo_tx_timeout = tx_timeout,
346 .ndo_set_mac_address = eth_mac_addr,
347 .ndo_validate_addr = eth_validate_addr,
348 };
349
w840_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)350 static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
351 {
352 struct net_device *dev;
353 struct netdev_private *np;
354 static int find_cnt;
355 int chip_idx = ent->driver_data;
356 int irq;
357 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
358 __le16 addr[ETH_ALEN / 2];
359 void __iomem *ioaddr;
360
361 i = pcim_enable_device(pdev);
362 if (i) return i;
363
364 pci_set_master(pdev);
365
366 irq = pdev->irq;
367
368 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
369 pr_warn("Device %s disabled due to DMA limitations\n",
370 pci_name(pdev));
371 return -EIO;
372 }
373 dev = alloc_etherdev(sizeof(*np));
374 if (!dev)
375 return -ENOMEM;
376 SET_NETDEV_DEV(dev, &pdev->dev);
377
378 if (pci_request_regions(pdev, DRV_NAME))
379 goto err_out_netdev;
380
381 ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size);
382 if (!ioaddr)
383 goto err_out_netdev;
384
385 for (i = 0; i < 3; i++)
386 addr[i] = cpu_to_le16(eeprom_read(ioaddr, i));
387 eth_hw_addr_set(dev, (u8 *)addr);
388
389 /* Reset the chip to erase previous misconfiguration.
390 No hold time required! */
391 iowrite32(0x00000001, ioaddr + PCIBusCfg);
392
393 np = netdev_priv(dev);
394 np->pci_dev = pdev;
395 np->chip_id = chip_idx;
396 np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
397 spin_lock_init(&np->lock);
398 np->mii_if.dev = dev;
399 np->mii_if.mdio_read = mdio_read;
400 np->mii_if.mdio_write = mdio_write;
401 np->base_addr = ioaddr;
402
403 pci_set_drvdata(pdev, dev);
404
405 if (dev->mem_start)
406 option = dev->mem_start;
407
408 /* The lower four bits are the media type. */
409 if (option > 0) {
410 if (option & 0x200)
411 np->mii_if.full_duplex = 1;
412 if (option & 15)
413 dev_info(&dev->dev,
414 "ignoring user supplied media type %d",
415 option & 15);
416 }
417 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
418 np->mii_if.full_duplex = 1;
419
420 if (np->mii_if.full_duplex)
421 np->mii_if.force_media = 1;
422
423 /* The chip-specific entries in the device structure. */
424 dev->netdev_ops = &netdev_ops;
425 dev->ethtool_ops = &netdev_ethtool_ops;
426 dev->watchdog_timeo = TX_TIMEOUT;
427
428 i = register_netdev(dev);
429 if (i)
430 goto err_out_cleardev;
431
432 dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n",
433 pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq);
434
435 if (np->drv_flags & CanHaveMII) {
436 int phy, phy_idx = 0;
437 for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
438 int mii_status = mdio_read(dev, phy, MII_BMSR);
439 if (mii_status != 0xffff && mii_status != 0x0000) {
440 np->phys[phy_idx++] = phy;
441 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
442 np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
443 mdio_read(dev, phy, MII_PHYSID2);
444 dev_info(&dev->dev,
445 "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n",
446 np->mii, phy, mii_status,
447 np->mii_if.advertising);
448 }
449 }
450 np->mii_cnt = phy_idx;
451 np->mii_if.phy_id = np->phys[0];
452 if (phy_idx == 0) {
453 dev_warn(&dev->dev,
454 "MII PHY not found -- this device may not operate correctly\n");
455 }
456 }
457
458 find_cnt++;
459 return 0;
460
461 err_out_cleardev:
462 pci_iounmap(pdev, ioaddr);
463 err_out_netdev:
464 free_netdev (dev);
465 return -ENODEV;
466 }
467
468
469 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. These are
470 often serial bit streams generated by the host processor.
471 The example below is for the common 93c46 EEPROM, 64 16 bit words. */
472
473 /* Delay between EEPROM clock transitions.
474 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
475 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
476 made udelay() unreliable.
477 */
478 #define eeprom_delay(ee_addr) ioread32(ee_addr)
479
480 enum EEPROM_Ctrl_Bits {
481 EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
482 EE_ChipSelect=0x801, EE_DataIn=0x08,
483 };
484
485 /* The EEPROM commands include the alway-set leading bit. */
486 enum EEPROM_Cmds {
487 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
488 };
489
eeprom_read(void __iomem * addr,int location)490 static int eeprom_read(void __iomem *addr, int location)
491 {
492 int i;
493 int retval = 0;
494 void __iomem *ee_addr = addr + EECtrl;
495 int read_cmd = location | EE_ReadCmd;
496 iowrite32(EE_ChipSelect, ee_addr);
497
498 /* Shift the read command bits out. */
499 for (i = 10; i >= 0; i--) {
500 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
501 iowrite32(dataval, ee_addr);
502 eeprom_delay(ee_addr);
503 iowrite32(dataval | EE_ShiftClk, ee_addr);
504 eeprom_delay(ee_addr);
505 }
506 iowrite32(EE_ChipSelect, ee_addr);
507 eeprom_delay(ee_addr);
508
509 for (i = 16; i > 0; i--) {
510 iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
511 eeprom_delay(ee_addr);
512 retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
513 iowrite32(EE_ChipSelect, ee_addr);
514 eeprom_delay(ee_addr);
515 }
516
517 /* Terminate the EEPROM access. */
518 iowrite32(0, ee_addr);
519 return retval;
520 }
521
522 /* MII transceiver control section.
523 Read and write the MII registers using software-generated serial
524 MDIO protocol. See the MII specifications or DP83840A data sheet
525 for details.
526
527 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
528 met by back-to-back 33Mhz PCI cycles. */
529 #define mdio_delay(mdio_addr) ioread32(mdio_addr)
530
531 /* Set iff a MII transceiver on any interface requires mdio preamble.
532 This only set with older transceivers, so the extra
533 code size of a per-interface flag is not worthwhile. */
534 static char mii_preamble_required = 1;
535
536 #define MDIO_WRITE0 (MDIO_EnbOutput)
537 #define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
538
539 /* Generate the preamble required for initial synchronization and
540 a few older transceivers. */
mdio_sync(void __iomem * mdio_addr)541 static void mdio_sync(void __iomem *mdio_addr)
542 {
543 int bits = 32;
544
545 /* Establish sync by sending at least 32 logic ones. */
546 while (--bits >= 0) {
547 iowrite32(MDIO_WRITE1, mdio_addr);
548 mdio_delay(mdio_addr);
549 iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
550 mdio_delay(mdio_addr);
551 }
552 }
553
mdio_read(struct net_device * dev,int phy_id,int location)554 static int mdio_read(struct net_device *dev, int phy_id, int location)
555 {
556 struct netdev_private *np = netdev_priv(dev);
557 void __iomem *mdio_addr = np->base_addr + MIICtrl;
558 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
559 int i, retval = 0;
560
561 if (mii_preamble_required)
562 mdio_sync(mdio_addr);
563
564 /* Shift the read command bits out. */
565 for (i = 15; i >= 0; i--) {
566 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
567
568 iowrite32(dataval, mdio_addr);
569 mdio_delay(mdio_addr);
570 iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
571 mdio_delay(mdio_addr);
572 }
573 /* Read the two transition, 16 data, and wire-idle bits. */
574 for (i = 20; i > 0; i--) {
575 iowrite32(MDIO_EnbIn, mdio_addr);
576 mdio_delay(mdio_addr);
577 retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
578 iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
579 mdio_delay(mdio_addr);
580 }
581 return (retval>>1) & 0xffff;
582 }
583
mdio_write(struct net_device * dev,int phy_id,int location,int value)584 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
585 {
586 struct netdev_private *np = netdev_priv(dev);
587 void __iomem *mdio_addr = np->base_addr + MIICtrl;
588 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
589 int i;
590
591 if (location == 4 && phy_id == np->phys[0])
592 np->mii_if.advertising = value;
593
594 if (mii_preamble_required)
595 mdio_sync(mdio_addr);
596
597 /* Shift the command bits out. */
598 for (i = 31; i >= 0; i--) {
599 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
600
601 iowrite32(dataval, mdio_addr);
602 mdio_delay(mdio_addr);
603 iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
604 mdio_delay(mdio_addr);
605 }
606 /* Clear out extra bits. */
607 for (i = 2; i > 0; i--) {
608 iowrite32(MDIO_EnbIn, mdio_addr);
609 mdio_delay(mdio_addr);
610 iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
611 mdio_delay(mdio_addr);
612 }
613 }
614
615
netdev_open(struct net_device * dev)616 static int netdev_open(struct net_device *dev)
617 {
618 struct netdev_private *np = netdev_priv(dev);
619 void __iomem *ioaddr = np->base_addr;
620 const int irq = np->pci_dev->irq;
621 int i;
622
623 iowrite32(0x00000001, ioaddr + PCIBusCfg); /* Reset */
624
625 netif_device_detach(dev);
626 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
627 if (i)
628 goto out_err;
629
630 if (debug > 1)
631 netdev_dbg(dev, "%s() irq %d\n", __func__, irq);
632
633 i = alloc_ringdesc(dev);
634 if (i)
635 goto out_err;
636
637 spin_lock_irq(&np->lock);
638 netif_device_attach(dev);
639 init_registers(dev);
640 spin_unlock_irq(&np->lock);
641
642 netif_start_queue(dev);
643 if (debug > 2)
644 netdev_dbg(dev, "Done %s()\n", __func__);
645
646 /* Set the timer to check for link beat. */
647 timer_setup(&np->timer, netdev_timer, 0);
648 np->timer.expires = jiffies + 1*HZ;
649 add_timer(&np->timer);
650 return 0;
651 out_err:
652 netif_device_attach(dev);
653 return i;
654 }
655
656 #define MII_DAVICOM_DM9101 0x0181b800
657
update_link(struct net_device * dev)658 static int update_link(struct net_device *dev)
659 {
660 struct netdev_private *np = netdev_priv(dev);
661 int duplex, fasteth, result, mii_reg;
662
663 /* BSMR */
664 mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
665
666 if (mii_reg == 0xffff)
667 return np->csr6;
668 /* reread: the link status bit is sticky */
669 mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
670 if (!(mii_reg & 0x4)) {
671 if (netif_carrier_ok(dev)) {
672 if (debug)
673 dev_info(&dev->dev,
674 "MII #%d reports no link. Disabling watchdog\n",
675 np->phys[0]);
676 netif_carrier_off(dev);
677 }
678 return np->csr6;
679 }
680 if (!netif_carrier_ok(dev)) {
681 if (debug)
682 dev_info(&dev->dev,
683 "MII #%d link is back. Enabling watchdog\n",
684 np->phys[0]);
685 netif_carrier_on(dev);
686 }
687
688 if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
689 /* If the link partner doesn't support autonegotiation
690 * the MII detects it's abilities with the "parallel detection".
691 * Some MIIs update the LPA register to the result of the parallel
692 * detection, some don't.
693 * The Davicom PHY [at least 0181b800] doesn't.
694 * Instead bit 9 and 13 of the BMCR are updated to the result
695 * of the negotiation..
696 */
697 mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
698 duplex = mii_reg & BMCR_FULLDPLX;
699 fasteth = mii_reg & BMCR_SPEED100;
700 } else {
701 int negotiated;
702 mii_reg = mdio_read(dev, np->phys[0], MII_LPA);
703 negotiated = mii_reg & np->mii_if.advertising;
704
705 duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
706 fasteth = negotiated & 0x380;
707 }
708 duplex |= np->mii_if.force_media;
709 /* remove fastether and fullduplex */
710 result = np->csr6 & ~0x20000200;
711 if (duplex)
712 result |= 0x200;
713 if (fasteth)
714 result |= 0x20000000;
715 if (result != np->csr6 && debug)
716 dev_info(&dev->dev,
717 "Setting %dMBit-%s-duplex based on MII#%d\n",
718 fasteth ? 100 : 10, duplex ? "full" : "half",
719 np->phys[0]);
720 return result;
721 }
722
723 #define RXTX_TIMEOUT 2000
update_csr6(struct net_device * dev,int new)724 static inline void update_csr6(struct net_device *dev, int new)
725 {
726 struct netdev_private *np = netdev_priv(dev);
727 void __iomem *ioaddr = np->base_addr;
728 int limit = RXTX_TIMEOUT;
729
730 if (!netif_device_present(dev))
731 new = 0;
732 if (new==np->csr6)
733 return;
734 /* stop both Tx and Rx processes */
735 iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
736 /* wait until they have really stopped */
737 for (;;) {
738 int csr5 = ioread32(ioaddr + IntrStatus);
739 int t;
740
741 t = (csr5 >> 17) & 0x07;
742 if (t==0||t==1) {
743 /* rx stopped */
744 t = (csr5 >> 20) & 0x07;
745 if (t==0||t==1)
746 break;
747 }
748
749 limit--;
750 if(!limit) {
751 dev_info(&dev->dev,
752 "couldn't stop rxtx, IntrStatus %xh\n", csr5);
753 break;
754 }
755 udelay(1);
756 }
757 np->csr6 = new;
758 /* and restart them with the new configuration */
759 iowrite32(np->csr6, ioaddr + NetworkConfig);
760 if (new & 0x200)
761 np->mii_if.full_duplex = 1;
762 }
763
netdev_timer(struct timer_list * t)764 static void netdev_timer(struct timer_list *t)
765 {
766 struct netdev_private *np = from_timer(np, t, timer);
767 struct net_device *dev = pci_get_drvdata(np->pci_dev);
768 void __iomem *ioaddr = np->base_addr;
769
770 if (debug > 2)
771 netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n",
772 ioread32(ioaddr + IntrStatus),
773 ioread32(ioaddr + NetworkConfig));
774 spin_lock_irq(&np->lock);
775 update_csr6(dev, update_link(dev));
776 spin_unlock_irq(&np->lock);
777 np->timer.expires = jiffies + 10*HZ;
778 add_timer(&np->timer);
779 }
780
init_rxtx_rings(struct net_device * dev)781 static void init_rxtx_rings(struct net_device *dev)
782 {
783 struct netdev_private *np = netdev_priv(dev);
784 int i;
785
786 np->rx_head_desc = &np->rx_ring[0];
787 np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
788
789 /* Initial all Rx descriptors. */
790 for (i = 0; i < RX_RING_SIZE; i++) {
791 np->rx_ring[i].length = np->rx_buf_sz;
792 np->rx_ring[i].status = 0;
793 np->rx_skbuff[i] = NULL;
794 }
795 /* Mark the last entry as wrapping the ring. */
796 np->rx_ring[i-1].length |= DescEndRing;
797
798 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
799 for (i = 0; i < RX_RING_SIZE; i++) {
800 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
801 np->rx_skbuff[i] = skb;
802 if (skb == NULL)
803 break;
804 np->rx_addr[i] = dma_map_single(&np->pci_dev->dev, skb->data,
805 np->rx_buf_sz,
806 DMA_FROM_DEVICE);
807
808 np->rx_ring[i].buffer1 = np->rx_addr[i];
809 np->rx_ring[i].status = DescOwned;
810 }
811
812 np->cur_rx = 0;
813 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
814
815 /* Initialize the Tx descriptors */
816 for (i = 0; i < TX_RING_SIZE; i++) {
817 np->tx_skbuff[i] = NULL;
818 np->tx_ring[i].status = 0;
819 }
820 np->tx_full = 0;
821 np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
822
823 iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
824 iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
825 np->base_addr + TxRingPtr);
826
827 }
828
free_rxtx_rings(struct netdev_private * np)829 static void free_rxtx_rings(struct netdev_private* np)
830 {
831 int i;
832 /* Free all the skbuffs in the Rx queue. */
833 for (i = 0; i < RX_RING_SIZE; i++) {
834 np->rx_ring[i].status = 0;
835 if (np->rx_skbuff[i]) {
836 dma_unmap_single(&np->pci_dev->dev, np->rx_addr[i],
837 np->rx_skbuff[i]->len,
838 DMA_FROM_DEVICE);
839 dev_kfree_skb(np->rx_skbuff[i]);
840 }
841 np->rx_skbuff[i] = NULL;
842 }
843 for (i = 0; i < TX_RING_SIZE; i++) {
844 if (np->tx_skbuff[i]) {
845 dma_unmap_single(&np->pci_dev->dev, np->tx_addr[i],
846 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
847 dev_kfree_skb(np->tx_skbuff[i]);
848 }
849 np->tx_skbuff[i] = NULL;
850 }
851 }
852
init_registers(struct net_device * dev)853 static void init_registers(struct net_device *dev)
854 {
855 struct netdev_private *np = netdev_priv(dev);
856 void __iomem *ioaddr = np->base_addr;
857 int i;
858
859 for (i = 0; i < 6; i++)
860 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
861
862 /* Initialize other registers. */
863 #ifdef __BIG_ENDIAN
864 i = (1<<20); /* Big-endian descriptors */
865 #else
866 i = 0;
867 #endif
868 i |= (0x04<<2); /* skip length 4 u32 */
869 i |= 0x02; /* give Rx priority */
870
871 /* Configure the PCI bus bursts and FIFO thresholds.
872 486: Set 8 longword cache alignment, 8 longword burst.
873 586: Set 16 longword cache alignment, no burst limit.
874 Cache alignment bits 15:14 Burst length 13:8
875 0000 <not allowed> 0000 align to cache 0800 8 longwords
876 4000 8 longwords 0100 1 longword 1000 16 longwords
877 8000 16 longwords 0200 2 longwords 2000 32 longwords
878 C000 32 longwords 0400 4 longwords */
879
880 #if defined (__i386__) && !defined(MODULE) && !defined(CONFIG_UML)
881 /* When not a module we can work around broken '486 PCI boards. */
882 if (boot_cpu_data.x86 <= 4) {
883 i |= 0x4800;
884 dev_info(&dev->dev,
885 "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n");
886 } else {
887 i |= 0xE000;
888 }
889 #elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
890 i |= 0xE000;
891 #elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM)
892 i |= 0x4800;
893 #else
894 dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n");
895 i |= 0x4800;
896 #endif
897 iowrite32(i, ioaddr + PCIBusCfg);
898
899 np->csr6 = 0;
900 /* 128 byte Tx threshold;
901 Transmit on; Receive on; */
902 update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
903
904 /* Clear and Enable interrupts by setting the interrupt mask. */
905 iowrite32(0x1A0F5, ioaddr + IntrStatus);
906 iowrite32(0x1A0F5, ioaddr + IntrEnable);
907
908 iowrite32(0, ioaddr + RxStartDemand);
909 }
910
tx_timeout(struct net_device * dev,unsigned int txqueue)911 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
912 {
913 struct netdev_private *np = netdev_priv(dev);
914 void __iomem *ioaddr = np->base_addr;
915 const int irq = np->pci_dev->irq;
916
917 dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n",
918 ioread32(ioaddr + IntrStatus));
919
920 {
921 int i;
922 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring);
923 for (i = 0; i < RX_RING_SIZE; i++)
924 printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status);
925 printk(KERN_CONT "\n");
926 printk(KERN_DEBUG " Tx ring %p: ", np->tx_ring);
927 for (i = 0; i < TX_RING_SIZE; i++)
928 printk(KERN_CONT " %08x", np->tx_ring[i].status);
929 printk(KERN_CONT "\n");
930 }
931 printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n",
932 np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
933 printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C));
934
935 disable_irq(irq);
936 spin_lock_irq(&np->lock);
937 /*
938 * Under high load dirty_tx and the internal tx descriptor pointer
939 * come out of sync, thus perform a software reset and reinitialize
940 * everything.
941 */
942
943 iowrite32(1, np->base_addr+PCIBusCfg);
944 udelay(1);
945
946 free_rxtx_rings(np);
947 init_rxtx_rings(dev);
948 init_registers(dev);
949 spin_unlock_irq(&np->lock);
950 enable_irq(irq);
951
952 netif_wake_queue(dev);
953 netif_trans_update(dev); /* prevent tx timeout */
954 np->stats.tx_errors++;
955 }
956
957 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
alloc_ringdesc(struct net_device * dev)958 static int alloc_ringdesc(struct net_device *dev)
959 {
960 struct netdev_private *np = netdev_priv(dev);
961
962 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
963
964 np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
965 sizeof(struct w840_rx_desc) * RX_RING_SIZE +
966 sizeof(struct w840_tx_desc) * TX_RING_SIZE,
967 &np->ring_dma_addr, GFP_KERNEL);
968 if(!np->rx_ring)
969 return -ENOMEM;
970 init_rxtx_rings(dev);
971 return 0;
972 }
973
free_ringdesc(struct netdev_private * np)974 static void free_ringdesc(struct netdev_private *np)
975 {
976 dma_free_coherent(&np->pci_dev->dev,
977 sizeof(struct w840_rx_desc) * RX_RING_SIZE +
978 sizeof(struct w840_tx_desc) * TX_RING_SIZE,
979 np->rx_ring, np->ring_dma_addr);
980
981 }
982
start_tx(struct sk_buff * skb,struct net_device * dev)983 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
984 {
985 struct netdev_private *np = netdev_priv(dev);
986 unsigned entry;
987
988 /* Caution: the write order is important here, set the field
989 with the "ownership" bits last. */
990
991 /* Calculate the next Tx descriptor entry. */
992 entry = np->cur_tx % TX_RING_SIZE;
993
994 np->tx_addr[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
995 skb->len, DMA_TO_DEVICE);
996 np->tx_skbuff[entry] = skb;
997
998 np->tx_ring[entry].buffer1 = np->tx_addr[entry];
999 if (skb->len < TX_BUFLIMIT) {
1000 np->tx_ring[entry].length = DescWholePkt | skb->len;
1001 } else {
1002 int len = skb->len - TX_BUFLIMIT;
1003
1004 np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1005 np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1006 }
1007 if(entry == TX_RING_SIZE-1)
1008 np->tx_ring[entry].length |= DescEndRing;
1009
1010 /* Now acquire the irq spinlock.
1011 * The difficult race is the ordering between
1012 * increasing np->cur_tx and setting DescOwned:
1013 * - if np->cur_tx is increased first the interrupt
1014 * handler could consider the packet as transmitted
1015 * since DescOwned is cleared.
1016 * - If DescOwned is set first the NIC could report the
1017 * packet as sent, but the interrupt handler would ignore it
1018 * since the np->cur_tx was not yet increased.
1019 */
1020 spin_lock_irq(&np->lock);
1021 np->cur_tx++;
1022
1023 wmb(); /* flush length, buffer1, buffer2 */
1024 np->tx_ring[entry].status = DescOwned;
1025 wmb(); /* flush status and kick the hardware */
1026 iowrite32(0, np->base_addr + TxStartDemand);
1027 np->tx_q_bytes += skb->len;
1028 /* Work around horrible bug in the chip by marking the queue as full
1029 when we do not have FIFO room for a maximum sized packet. */
1030 if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1031 ((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1032 netif_stop_queue(dev);
1033 wmb();
1034 np->tx_full = 1;
1035 }
1036 spin_unlock_irq(&np->lock);
1037
1038 if (debug > 4) {
1039 netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1040 np->cur_tx, entry);
1041 }
1042 return NETDEV_TX_OK;
1043 }
1044
netdev_tx_done(struct net_device * dev)1045 static void netdev_tx_done(struct net_device *dev)
1046 {
1047 struct netdev_private *np = netdev_priv(dev);
1048 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1049 int entry = np->dirty_tx % TX_RING_SIZE;
1050 int tx_status = np->tx_ring[entry].status;
1051
1052 if (tx_status < 0)
1053 break;
1054 if (tx_status & 0x8000) { /* There was an error, log it. */
1055 #ifndef final_version
1056 if (debug > 1)
1057 netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1058 tx_status);
1059 #endif
1060 np->stats.tx_errors++;
1061 if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1062 if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1063 if (tx_status & 0x0200) np->stats.tx_window_errors++;
1064 if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1065 if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1066 np->stats.tx_heartbeat_errors++;
1067 } else {
1068 #ifndef final_version
1069 if (debug > 3)
1070 netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n",
1071 entry, tx_status);
1072 #endif
1073 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1074 np->stats.collisions += (tx_status >> 3) & 15;
1075 np->stats.tx_packets++;
1076 }
1077 /* Free the original skb. */
1078 dma_unmap_single(&np->pci_dev->dev, np->tx_addr[entry],
1079 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
1080 np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1081 dev_kfree_skb_irq(np->tx_skbuff[entry]);
1082 np->tx_skbuff[entry] = NULL;
1083 }
1084 if (np->tx_full &&
1085 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1086 np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1087 /* The ring is no longer full, clear tbusy. */
1088 np->tx_full = 0;
1089 wmb();
1090 netif_wake_queue(dev);
1091 }
1092 }
1093
1094 /* The interrupt handler does all of the Rx thread work and cleans up
1095 after the Tx thread. */
intr_handler(int irq,void * dev_instance)1096 static irqreturn_t intr_handler(int irq, void *dev_instance)
1097 {
1098 struct net_device *dev = (struct net_device *)dev_instance;
1099 struct netdev_private *np = netdev_priv(dev);
1100 void __iomem *ioaddr = np->base_addr;
1101 int work_limit = max_interrupt_work;
1102 int handled = 0;
1103
1104 if (!netif_device_present(dev))
1105 return IRQ_NONE;
1106 do {
1107 u32 intr_status = ioread32(ioaddr + IntrStatus);
1108
1109 /* Acknowledge all of the current interrupt sources ASAP. */
1110 iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1111
1112 if (debug > 4)
1113 netdev_dbg(dev, "Interrupt, status %04x\n", intr_status);
1114
1115 if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1116 break;
1117
1118 handled = 1;
1119
1120 if (intr_status & (RxIntr | RxNoBuf))
1121 netdev_rx(dev);
1122 if (intr_status & RxNoBuf)
1123 iowrite32(0, ioaddr + RxStartDemand);
1124
1125 if (intr_status & (TxNoBuf | TxIntr) &&
1126 np->cur_tx != np->dirty_tx) {
1127 spin_lock(&np->lock);
1128 netdev_tx_done(dev);
1129 spin_unlock(&np->lock);
1130 }
1131
1132 /* Abnormal error summary/uncommon events handlers. */
1133 if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError |
1134 TimerInt | TxDied))
1135 netdev_error(dev, intr_status);
1136
1137 if (--work_limit < 0) {
1138 dev_warn(&dev->dev,
1139 "Too much work at interrupt, status=0x%04x\n",
1140 intr_status);
1141 /* Set the timer to re-enable the other interrupts after
1142 10*82usec ticks. */
1143 spin_lock(&np->lock);
1144 if (netif_device_present(dev)) {
1145 iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1146 iowrite32(10, ioaddr + GPTimer);
1147 }
1148 spin_unlock(&np->lock);
1149 break;
1150 }
1151 } while (1);
1152
1153 if (debug > 3)
1154 netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n",
1155 ioread32(ioaddr + IntrStatus));
1156 return IRQ_RETVAL(handled);
1157 }
1158
1159 /* This routine is logically part of the interrupt handler, but separated
1160 for clarity and better register allocation. */
netdev_rx(struct net_device * dev)1161 static int netdev_rx(struct net_device *dev)
1162 {
1163 struct netdev_private *np = netdev_priv(dev);
1164 int entry = np->cur_rx % RX_RING_SIZE;
1165 int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1166
1167 if (debug > 4) {
1168 netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n",
1169 entry, np->rx_ring[entry].status);
1170 }
1171
1172 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1173 while (--work_limit >= 0) {
1174 struct w840_rx_desc *desc = np->rx_head_desc;
1175 s32 status = desc->status;
1176
1177 if (debug > 4)
1178 netdev_dbg(dev, " netdev_rx() status was %08x\n",
1179 status);
1180 if (status < 0)
1181 break;
1182 if ((status & 0x38008300) != 0x0300) {
1183 if ((status & 0x38000300) != 0x0300) {
1184 /* Ingore earlier buffers. */
1185 if ((status & 0xffff) != 0x7fff) {
1186 dev_warn(&dev->dev,
1187 "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n",
1188 np->cur_rx, status);
1189 np->stats.rx_length_errors++;
1190 }
1191 } else if (status & 0x8000) {
1192 /* There was a fatal error. */
1193 if (debug > 2)
1194 netdev_dbg(dev, "Receive error, Rx status %08x\n",
1195 status);
1196 np->stats.rx_errors++; /* end of a packet.*/
1197 if (status & 0x0890) np->stats.rx_length_errors++;
1198 if (status & 0x004C) np->stats.rx_frame_errors++;
1199 if (status & 0x0002) np->stats.rx_crc_errors++;
1200 }
1201 } else {
1202 struct sk_buff *skb;
1203 /* Omit the four octet CRC from the length. */
1204 int pkt_len = ((status >> 16) & 0x7ff) - 4;
1205
1206 #ifndef final_version
1207 if (debug > 4)
1208 netdev_dbg(dev, " netdev_rx() normal Rx pkt length %d status %x\n",
1209 pkt_len, status);
1210 #endif
1211 /* Check if the packet is long enough to accept without copying
1212 to a minimally-sized skbuff. */
1213 if (pkt_len < rx_copybreak &&
1214 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1215 skb_reserve(skb, 2); /* 16 byte align the IP header */
1216 dma_sync_single_for_cpu(&np->pci_dev->dev,
1217 np->rx_addr[entry],
1218 np->rx_skbuff[entry]->len,
1219 DMA_FROM_DEVICE);
1220 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1221 skb_put(skb, pkt_len);
1222 dma_sync_single_for_device(&np->pci_dev->dev,
1223 np->rx_addr[entry],
1224 np->rx_skbuff[entry]->len,
1225 DMA_FROM_DEVICE);
1226 } else {
1227 dma_unmap_single(&np->pci_dev->dev,
1228 np->rx_addr[entry],
1229 np->rx_skbuff[entry]->len,
1230 DMA_FROM_DEVICE);
1231 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1232 np->rx_skbuff[entry] = NULL;
1233 }
1234 #ifndef final_version /* Remove after testing. */
1235 /* You will want this info for the initial debug. */
1236 if (debug > 5)
1237 netdev_dbg(dev, " Rx data %pM %pM %02x%02x %pI4\n",
1238 &skb->data[0], &skb->data[6],
1239 skb->data[12], skb->data[13],
1240 &skb->data[14]);
1241 #endif
1242 skb->protocol = eth_type_trans(skb, dev);
1243 netif_rx(skb);
1244 np->stats.rx_packets++;
1245 np->stats.rx_bytes += pkt_len;
1246 }
1247 entry = (++np->cur_rx) % RX_RING_SIZE;
1248 np->rx_head_desc = &np->rx_ring[entry];
1249 }
1250
1251 /* Refill the Rx ring buffers. */
1252 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1253 struct sk_buff *skb;
1254 entry = np->dirty_rx % RX_RING_SIZE;
1255 if (np->rx_skbuff[entry] == NULL) {
1256 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1257 np->rx_skbuff[entry] = skb;
1258 if (skb == NULL)
1259 break; /* Better luck next round. */
1260 np->rx_addr[entry] = dma_map_single(&np->pci_dev->dev,
1261 skb->data,
1262 np->rx_buf_sz,
1263 DMA_FROM_DEVICE);
1264 np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1265 }
1266 wmb();
1267 np->rx_ring[entry].status = DescOwned;
1268 }
1269
1270 return 0;
1271 }
1272
netdev_error(struct net_device * dev,int intr_status)1273 static void netdev_error(struct net_device *dev, int intr_status)
1274 {
1275 struct netdev_private *np = netdev_priv(dev);
1276 void __iomem *ioaddr = np->base_addr;
1277
1278 if (debug > 2)
1279 netdev_dbg(dev, "Abnormal event, %08x\n", intr_status);
1280 if (intr_status == 0xffffffff)
1281 return;
1282 spin_lock(&np->lock);
1283 if (intr_status & TxFIFOUnderflow) {
1284 int new;
1285 /* Bump up the Tx threshold */
1286 #if 0
1287 /* This causes lots of dropped packets,
1288 * and under high load even tx_timeouts
1289 */
1290 new = np->csr6 + 0x4000;
1291 #else
1292 new = (np->csr6 >> 14)&0x7f;
1293 if (new < 64)
1294 new *= 2;
1295 else
1296 new = 127; /* load full packet before starting */
1297 new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1298 #endif
1299 netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new);
1300 update_csr6(dev, new);
1301 }
1302 if (intr_status & RxDied) { /* Missed a Rx frame. */
1303 np->stats.rx_errors++;
1304 }
1305 if (intr_status & TimerInt) {
1306 /* Re-enable other interrupts. */
1307 if (netif_device_present(dev))
1308 iowrite32(0x1A0F5, ioaddr + IntrEnable);
1309 }
1310 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1311 iowrite32(0, ioaddr + RxStartDemand);
1312 spin_unlock(&np->lock);
1313 }
1314
get_stats(struct net_device * dev)1315 static struct net_device_stats *get_stats(struct net_device *dev)
1316 {
1317 struct netdev_private *np = netdev_priv(dev);
1318 void __iomem *ioaddr = np->base_addr;
1319
1320 /* The chip only need report frame silently dropped. */
1321 spin_lock_irq(&np->lock);
1322 if (netif_running(dev) && netif_device_present(dev))
1323 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1324 spin_unlock_irq(&np->lock);
1325
1326 return &np->stats;
1327 }
1328
1329
__set_rx_mode(struct net_device * dev)1330 static u32 __set_rx_mode(struct net_device *dev)
1331 {
1332 struct netdev_private *np = netdev_priv(dev);
1333 void __iomem *ioaddr = np->base_addr;
1334 u32 mc_filter[2]; /* Multicast hash filter */
1335 u32 rx_mode;
1336
1337 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1338 memset(mc_filter, 0xff, sizeof(mc_filter));
1339 rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys
1340 | AcceptMyPhys;
1341 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1342 (dev->flags & IFF_ALLMULTI)) {
1343 /* Too many to match, or accept all multicasts. */
1344 memset(mc_filter, 0xff, sizeof(mc_filter));
1345 rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1346 } else {
1347 struct netdev_hw_addr *ha;
1348
1349 memset(mc_filter, 0, sizeof(mc_filter));
1350 netdev_for_each_mc_addr(ha, dev) {
1351 int filbit;
1352
1353 filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1354 filbit &= 0x3f;
1355 mc_filter[filbit >> 5] |= 1 << (filbit & 31);
1356 }
1357 rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1358 }
1359 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1360 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1361 return rx_mode;
1362 }
1363
set_rx_mode(struct net_device * dev)1364 static void set_rx_mode(struct net_device *dev)
1365 {
1366 struct netdev_private *np = netdev_priv(dev);
1367 u32 rx_mode = __set_rx_mode(dev);
1368 spin_lock_irq(&np->lock);
1369 update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1370 spin_unlock_irq(&np->lock);
1371 }
1372
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1373 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1374 {
1375 struct netdev_private *np = netdev_priv(dev);
1376
1377 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1378 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1379 }
1380
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1381 static int netdev_get_link_ksettings(struct net_device *dev,
1382 struct ethtool_link_ksettings *cmd)
1383 {
1384 struct netdev_private *np = netdev_priv(dev);
1385
1386 spin_lock_irq(&np->lock);
1387 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1388 spin_unlock_irq(&np->lock);
1389
1390 return 0;
1391 }
1392
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1393 static int netdev_set_link_ksettings(struct net_device *dev,
1394 const struct ethtool_link_ksettings *cmd)
1395 {
1396 struct netdev_private *np = netdev_priv(dev);
1397 int rc;
1398
1399 spin_lock_irq(&np->lock);
1400 rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1401 spin_unlock_irq(&np->lock);
1402
1403 return rc;
1404 }
1405
netdev_nway_reset(struct net_device * dev)1406 static int netdev_nway_reset(struct net_device *dev)
1407 {
1408 struct netdev_private *np = netdev_priv(dev);
1409 return mii_nway_restart(&np->mii_if);
1410 }
1411
netdev_get_link(struct net_device * dev)1412 static u32 netdev_get_link(struct net_device *dev)
1413 {
1414 struct netdev_private *np = netdev_priv(dev);
1415 return mii_link_ok(&np->mii_if);
1416 }
1417
netdev_get_msglevel(struct net_device * dev)1418 static u32 netdev_get_msglevel(struct net_device *dev)
1419 {
1420 return debug;
1421 }
1422
netdev_set_msglevel(struct net_device * dev,u32 value)1423 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1424 {
1425 debug = value;
1426 }
1427
1428 static const struct ethtool_ops netdev_ethtool_ops = {
1429 .get_drvinfo = netdev_get_drvinfo,
1430 .nway_reset = netdev_nway_reset,
1431 .get_link = netdev_get_link,
1432 .get_msglevel = netdev_get_msglevel,
1433 .set_msglevel = netdev_set_msglevel,
1434 .get_link_ksettings = netdev_get_link_ksettings,
1435 .set_link_ksettings = netdev_set_link_ksettings,
1436 };
1437
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1438 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1439 {
1440 struct mii_ioctl_data *data = if_mii(rq);
1441 struct netdev_private *np = netdev_priv(dev);
1442
1443 switch(cmd) {
1444 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1445 data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1446 fallthrough;
1447
1448 case SIOCGMIIREG: /* Read MII PHY register. */
1449 spin_lock_irq(&np->lock);
1450 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1451 spin_unlock_irq(&np->lock);
1452 return 0;
1453
1454 case SIOCSMIIREG: /* Write MII PHY register. */
1455 spin_lock_irq(&np->lock);
1456 mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1457 spin_unlock_irq(&np->lock);
1458 return 0;
1459 default:
1460 return -EOPNOTSUPP;
1461 }
1462 }
1463
netdev_close(struct net_device * dev)1464 static int netdev_close(struct net_device *dev)
1465 {
1466 struct netdev_private *np = netdev_priv(dev);
1467 void __iomem *ioaddr = np->base_addr;
1468
1469 netif_stop_queue(dev);
1470
1471 if (debug > 1) {
1472 netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n",
1473 ioread32(ioaddr + IntrStatus),
1474 ioread32(ioaddr + NetworkConfig));
1475 netdev_dbg(dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n",
1476 np->cur_tx, np->dirty_tx,
1477 np->cur_rx, np->dirty_rx);
1478 }
1479
1480 /* Stop the chip's Tx and Rx processes. */
1481 spin_lock_irq(&np->lock);
1482 netif_device_detach(dev);
1483 update_csr6(dev, 0);
1484 iowrite32(0x0000, ioaddr + IntrEnable);
1485 spin_unlock_irq(&np->lock);
1486
1487 free_irq(np->pci_dev->irq, dev);
1488 wmb();
1489 netif_device_attach(dev);
1490
1491 if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1492 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1493
1494 #ifdef __i386__
1495 if (debug > 2) {
1496 int i;
1497
1498 printk(KERN_DEBUG" Tx ring at %p:\n", np->tx_ring);
1499 for (i = 0; i < TX_RING_SIZE; i++)
1500 printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1501 i, np->tx_ring[i].length,
1502 np->tx_ring[i].status, np->tx_ring[i].buffer1);
1503 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1504 for (i = 0; i < RX_RING_SIZE; i++) {
1505 printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1506 i, np->rx_ring[i].length,
1507 np->rx_ring[i].status, np->rx_ring[i].buffer1);
1508 }
1509 }
1510 #endif /* __i386__ debugging only */
1511
1512 del_timer_sync(&np->timer);
1513
1514 free_rxtx_rings(np);
1515 free_ringdesc(np);
1516
1517 return 0;
1518 }
1519
w840_remove1(struct pci_dev * pdev)1520 static void w840_remove1(struct pci_dev *pdev)
1521 {
1522 struct net_device *dev = pci_get_drvdata(pdev);
1523
1524 if (dev) {
1525 struct netdev_private *np = netdev_priv(dev);
1526 unregister_netdev(dev);
1527 pci_iounmap(pdev, np->base_addr);
1528 free_netdev(dev);
1529 }
1530 }
1531
1532 /*
1533 * suspend/resume synchronization:
1534 * - open, close, do_ioctl:
1535 * rtnl_lock, & netif_device_detach after the rtnl_unlock.
1536 * - get_stats:
1537 * spin_lock_irq(np->lock), doesn't touch hw if not present
1538 * - start_xmit:
1539 * synchronize_irq + netif_tx_disable;
1540 * - tx_timeout:
1541 * netif_device_detach + netif_tx_disable;
1542 * - set_multicast_list
1543 * netif_device_detach + netif_tx_disable;
1544 * - interrupt handler
1545 * doesn't touch hw if not present, synchronize_irq waits for
1546 * running instances of the interrupt handler.
1547 *
1548 * Disabling hw requires clearing csr6 & IntrEnable.
1549 * update_csr6 & all function that write IntrEnable check netif_device_present
1550 * before settings any bits.
1551 *
1552 * Detach must occur under spin_unlock_irq(), interrupts from a detached
1553 * device would cause an irq storm.
1554 */
w840_suspend(struct device * dev_d)1555 static int __maybe_unused w840_suspend(struct device *dev_d)
1556 {
1557 struct net_device *dev = dev_get_drvdata(dev_d);
1558 struct netdev_private *np = netdev_priv(dev);
1559 void __iomem *ioaddr = np->base_addr;
1560
1561 rtnl_lock();
1562 if (netif_running (dev)) {
1563 del_timer_sync(&np->timer);
1564
1565 spin_lock_irq(&np->lock);
1566 netif_device_detach(dev);
1567 update_csr6(dev, 0);
1568 iowrite32(0, ioaddr + IntrEnable);
1569 spin_unlock_irq(&np->lock);
1570
1571 synchronize_irq(np->pci_dev->irq);
1572 netif_tx_disable(dev);
1573
1574 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1575
1576 /* no more hardware accesses behind this line. */
1577
1578 BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable));
1579
1580 /* pci_power_off(pdev, -1); */
1581
1582 free_rxtx_rings(np);
1583 } else {
1584 netif_device_detach(dev);
1585 }
1586 rtnl_unlock();
1587 return 0;
1588 }
1589
w840_resume(struct device * dev_d)1590 static int __maybe_unused w840_resume(struct device *dev_d)
1591 {
1592 struct net_device *dev = dev_get_drvdata(dev_d);
1593 struct netdev_private *np = netdev_priv(dev);
1594
1595 rtnl_lock();
1596 if (netif_device_present(dev))
1597 goto out; /* device not suspended */
1598 if (netif_running(dev)) {
1599 spin_lock_irq(&np->lock);
1600 iowrite32(1, np->base_addr+PCIBusCfg);
1601 ioread32(np->base_addr+PCIBusCfg);
1602 udelay(1);
1603 netif_device_attach(dev);
1604 init_rxtx_rings(dev);
1605 init_registers(dev);
1606 spin_unlock_irq(&np->lock);
1607
1608 netif_wake_queue(dev);
1609
1610 mod_timer(&np->timer, jiffies + 1*HZ);
1611 } else {
1612 netif_device_attach(dev);
1613 }
1614 out:
1615 rtnl_unlock();
1616 return 0;
1617 }
1618
1619 static SIMPLE_DEV_PM_OPS(w840_pm_ops, w840_suspend, w840_resume);
1620
1621 static struct pci_driver w840_driver = {
1622 .name = DRV_NAME,
1623 .id_table = w840_pci_tbl,
1624 .probe = w840_probe1,
1625 .remove = w840_remove1,
1626 .driver.pm = &w840_pm_ops,
1627 };
1628
1629 module_pci_driver(w840_driver);
1630