xref: /linux/drivers/net/ethernet/chelsio/cxgb4vf/sge.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
45 
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48 
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4_values.h"
51 #include "../cxgb4/t4fw_api.h"
52 #include "../cxgb4/t4_msg.h"
53 
54 /*
55  * Constants ...
56  */
57 enum {
58 	/*
59 	 * Egress Queue sizes, producer and consumer indices are all in units
60 	 * of Egress Context Units bytes.  Note that as far as the hardware is
61 	 * concerned, the free list is an Egress Queue (the host produces free
62 	 * buffers which the hardware consumes) and free list entries are
63 	 * 64-bit PCI DMA addresses.
64 	 */
65 	EQ_UNIT = SGE_EQ_IDXSIZE,
66 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
68 
69 	/*
70 	 * Max number of TX descriptors we clean up at a time.  Should be
71 	 * modest as freeing skbs isn't cheap and it happens while holding
72 	 * locks.  We just need to free packets faster than they arrive, we
73 	 * eventually catch up and keep the amortized cost reasonable.
74 	 */
75 	MAX_TX_RECLAIM = 16,
76 
77 	/*
78 	 * Max number of Rx buffers we replenish at a time.  Again keep this
79 	 * modest, allocating buffers isn't cheap either.
80 	 */
81 	MAX_RX_REFILL = 16,
82 
83 	/*
84 	 * Period of the Rx queue check timer.  This timer is infrequent as it
85 	 * has something to do only when the system experiences severe memory
86 	 * shortage.
87 	 */
88 	RX_QCHECK_PERIOD = (HZ / 2),
89 
90 	/*
91 	 * Period of the TX queue check timer and the maximum number of TX
92 	 * descriptors to be reclaimed by the TX timer.
93 	 */
94 	TX_QCHECK_PERIOD = (HZ / 2),
95 	MAX_TIMER_TX_RECLAIM = 100,
96 
97 	/*
98 	 * Suspend an Ethernet TX queue with fewer available descriptors than
99 	 * this.  We always want to have room for a maximum sized packet:
100 	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
101 	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
102 	 * (see that function and its helpers for a description of the
103 	 * calculation).
104 	 */
105 	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
106 	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
107 				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
108 				   2),
109 	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
110 			  sizeof(struct cpl_tx_pkt_lso_core) +
111 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
112 	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
113 
114 	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
115 
116 	/*
117 	 * Max TX descriptor space we allow for an Ethernet packet to be
118 	 * inlined into a WR.  This is limited by the maximum value which
119 	 * we can specify for immediate data in the firmware Ethernet TX
120 	 * Work Request.
121 	 */
122 	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
123 
124 	/*
125 	 * Max size of a WR sent through a control TX queue.
126 	 */
127 	MAX_CTRL_WR_LEN = 256,
128 
129 	/*
130 	 * Maximum amount of data which we'll ever need to inline into a
131 	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
132 	 */
133 	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
134 			  ? MAX_IMM_TX_PKT_LEN
135 			  : MAX_CTRL_WR_LEN),
136 
137 	/*
138 	 * For incoming packets less than RX_COPY_THRES, we copy the data into
139 	 * an skb rather than referencing the data.  We allocate enough
140 	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
141 	 * of the data (header).
142 	 */
143 	RX_COPY_THRES = 256,
144 	RX_PULL_LEN = 128,
145 
146 	/*
147 	 * Main body length for sk_buffs used for RX Ethernet packets with
148 	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
149 	 * pskb_may_pull() some room.
150 	 */
151 	RX_SKB_LEN = 512,
152 };
153 
154 /*
155  * Software state per TX descriptor.
156  */
157 struct tx_sw_desc {
158 	struct sk_buff *skb;		/* socket buffer of TX data source */
159 	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
160 };
161 
162 /*
163  * Software state per RX Free List descriptor.  We keep track of the allocated
164  * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
165  * page size and its PCI DMA mapped state are stored in the low bits of the
166  * PCI DMA address as per below.
167  */
168 struct rx_sw_desc {
169 	struct page *page;		/* Free List page buffer */
170 	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
171 					/*   and flags (see below) */
172 };
173 
174 /*
175  * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
176  * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
177  * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
178  * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
179  * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
180  * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
181  * maintained in an inverse sense so the hardware never sees that bit high.
182  */
183 enum {
184 	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
185 	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
186 };
187 
188 /**
189  *	get_buf_addr - return DMA buffer address of software descriptor
190  *	@sdesc: pointer to the software buffer descriptor
191  *
192  *	Return the DMA buffer address of a software descriptor (stripping out
193  *	our low-order flag bits).
194  */
195 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
196 {
197 	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
198 }
199 
200 /**
201  *	is_buf_mapped - is buffer mapped for DMA?
202  *	@sdesc: pointer to the software buffer descriptor
203  *
204  *	Determine whether the buffer associated with a software descriptor in
205  *	mapped for DMA or not.
206  */
207 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
208 {
209 	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
210 }
211 
212 /**
213  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
214  *
215  *	Returns true if the platform needs sk_buff unmapping.  The compiler
216  *	optimizes away unnecessary code if this returns true.
217  */
218 static inline int need_skb_unmap(void)
219 {
220 #ifdef CONFIG_NEED_DMA_MAP_STATE
221 	return 1;
222 #else
223 	return 0;
224 #endif
225 }
226 
227 /**
228  *	txq_avail - return the number of available slots in a TX queue
229  *	@tq: the TX queue
230  *
231  *	Returns the number of available descriptors in a TX queue.
232  */
233 static inline unsigned int txq_avail(const struct sge_txq *tq)
234 {
235 	return tq->size - 1 - tq->in_use;
236 }
237 
238 /**
239  *	fl_cap - return the capacity of a Free List
240  *	@fl: the Free List
241  *
242  *	Returns the capacity of a Free List.  The capacity is less than the
243  *	size because an Egress Queue Index Unit worth of descriptors needs to
244  *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
245  *	and CIDX will match and the hardware will think the FL is empty.
246  */
247 static inline unsigned int fl_cap(const struct sge_fl *fl)
248 {
249 	return fl->size - FL_PER_EQ_UNIT;
250 }
251 
252 /**
253  *	fl_starving - return whether a Free List is starving.
254  *	@adapter: pointer to the adapter
255  *	@fl: the Free List
256  *
257  *	Tests specified Free List to see whether the number of buffers
258  *	available to the hardware has falled below our "starvation"
259  *	threshold.
260  */
261 static inline bool fl_starving(const struct adapter *adapter,
262 			       const struct sge_fl *fl)
263 {
264 	const struct sge *s = &adapter->sge;
265 
266 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
267 }
268 
269 /**
270  *	map_skb -  map an skb for DMA to the device
271  *	@dev: the egress net device
272  *	@skb: the packet to map
273  *	@addr: a pointer to the base of the DMA mapping array
274  *
275  *	Map an skb for DMA to the device and return an array of DMA addresses.
276  */
277 static int map_skb(struct device *dev, const struct sk_buff *skb,
278 		   dma_addr_t *addr)
279 {
280 	const skb_frag_t *fp, *end;
281 	const struct skb_shared_info *si;
282 
283 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
284 	if (dma_mapping_error(dev, *addr))
285 		goto out_err;
286 
287 	si = skb_shinfo(skb);
288 	end = &si->frags[si->nr_frags];
289 	for (fp = si->frags; fp < end; fp++) {
290 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
291 					   DMA_TO_DEVICE);
292 		if (dma_mapping_error(dev, *addr))
293 			goto unwind;
294 	}
295 	return 0;
296 
297 unwind:
298 	while (fp-- > si->frags)
299 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
300 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
301 
302 out_err:
303 	return -ENOMEM;
304 }
305 
306 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
307 		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
308 {
309 	const struct ulptx_sge_pair *p;
310 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
311 
312 	if (likely(skb_headlen(skb)))
313 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
314 				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
315 	else {
316 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
317 			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
318 		nfrags--;
319 	}
320 
321 	/*
322 	 * the complexity below is because of the possibility of a wrap-around
323 	 * in the middle of an SGL
324 	 */
325 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
326 		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
327 unmap:
328 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
329 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
330 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
331 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
332 			p++;
333 		} else if ((u8 *)p == (u8 *)tq->stat) {
334 			p = (const struct ulptx_sge_pair *)tq->desc;
335 			goto unmap;
336 		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
337 			const __be64 *addr = (const __be64 *)tq->desc;
338 
339 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
340 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
341 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
342 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
343 			p = (const struct ulptx_sge_pair *)&addr[2];
344 		} else {
345 			const __be64 *addr = (const __be64 *)tq->desc;
346 
347 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
348 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
350 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351 			p = (const struct ulptx_sge_pair *)&addr[1];
352 		}
353 	}
354 	if (nfrags) {
355 		__be64 addr;
356 
357 		if ((u8 *)p == (u8 *)tq->stat)
358 			p = (const struct ulptx_sge_pair *)tq->desc;
359 		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
360 			? p->addr[0]
361 			: *(const __be64 *)tq->desc);
362 		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
363 			       DMA_TO_DEVICE);
364 	}
365 }
366 
367 /**
368  *	free_tx_desc - reclaims TX descriptors and their buffers
369  *	@adapter: the adapter
370  *	@tq: the TX queue to reclaim descriptors from
371  *	@n: the number of descriptors to reclaim
372  *	@unmap: whether the buffers should be unmapped for DMA
373  *
374  *	Reclaims TX descriptors from an SGE TX queue and frees the associated
375  *	TX buffers.  Called with the TX queue lock held.
376  */
377 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
378 			 unsigned int n, bool unmap)
379 {
380 	struct tx_sw_desc *sdesc;
381 	unsigned int cidx = tq->cidx;
382 	struct device *dev = adapter->pdev_dev;
383 
384 	const int need_unmap = need_skb_unmap() && unmap;
385 
386 	sdesc = &tq->sdesc[cidx];
387 	while (n--) {
388 		/*
389 		 * If we kept a reference to the original TX skb, we need to
390 		 * unmap it from PCI DMA space (if required) and free it.
391 		 */
392 		if (sdesc->skb) {
393 			if (need_unmap)
394 				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
395 			dev_consume_skb_any(sdesc->skb);
396 			sdesc->skb = NULL;
397 		}
398 
399 		sdesc++;
400 		if (++cidx == tq->size) {
401 			cidx = 0;
402 			sdesc = tq->sdesc;
403 		}
404 	}
405 	tq->cidx = cidx;
406 }
407 
408 /*
409  * Return the number of reclaimable descriptors in a TX queue.
410  */
411 static inline int reclaimable(const struct sge_txq *tq)
412 {
413 	int hw_cidx = be16_to_cpu(tq->stat->cidx);
414 	int reclaimable = hw_cidx - tq->cidx;
415 	if (reclaimable < 0)
416 		reclaimable += tq->size;
417 	return reclaimable;
418 }
419 
420 /**
421  *	reclaim_completed_tx - reclaims completed TX descriptors
422  *	@adapter: the adapter
423  *	@tq: the TX queue to reclaim completed descriptors from
424  *	@unmap: whether the buffers should be unmapped for DMA
425  *
426  *	Reclaims TX descriptors that the SGE has indicated it has processed,
427  *	and frees the associated buffers if possible.  Called with the TX
428  *	queue locked.
429  */
430 static inline void reclaim_completed_tx(struct adapter *adapter,
431 					struct sge_txq *tq,
432 					bool unmap)
433 {
434 	int avail = reclaimable(tq);
435 
436 	if (avail) {
437 		/*
438 		 * Limit the amount of clean up work we do at a time to keep
439 		 * the TX lock hold time O(1).
440 		 */
441 		if (avail > MAX_TX_RECLAIM)
442 			avail = MAX_TX_RECLAIM;
443 
444 		free_tx_desc(adapter, tq, avail, unmap);
445 		tq->in_use -= avail;
446 	}
447 }
448 
449 /**
450  *	get_buf_size - return the size of an RX Free List buffer.
451  *	@adapter: pointer to the associated adapter
452  *	@sdesc: pointer to the software buffer descriptor
453  */
454 static inline int get_buf_size(const struct adapter *adapter,
455 			       const struct rx_sw_desc *sdesc)
456 {
457 	const struct sge *s = &adapter->sge;
458 
459 	return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
460 		? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
461 }
462 
463 /**
464  *	free_rx_bufs - free RX buffers on an SGE Free List
465  *	@adapter: the adapter
466  *	@fl: the SGE Free List to free buffers from
467  *	@n: how many buffers to free
468  *
469  *	Release the next @n buffers on an SGE Free List RX queue.   The
470  *	buffers must be made inaccessible to hardware before calling this
471  *	function.
472  */
473 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
474 {
475 	while (n--) {
476 		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
477 
478 		if (is_buf_mapped(sdesc))
479 			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
480 				       get_buf_size(adapter, sdesc),
481 				       PCI_DMA_FROMDEVICE);
482 		put_page(sdesc->page);
483 		sdesc->page = NULL;
484 		if (++fl->cidx == fl->size)
485 			fl->cidx = 0;
486 		fl->avail--;
487 	}
488 }
489 
490 /**
491  *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
492  *	@adapter: the adapter
493  *	@fl: the SGE Free List
494  *
495  *	Unmap the current buffer on an SGE Free List RX queue.   The
496  *	buffer must be made inaccessible to HW before calling this function.
497  *
498  *	This is similar to @free_rx_bufs above but does not free the buffer.
499  *	Do note that the FL still loses any further access to the buffer.
500  *	This is used predominantly to "transfer ownership" of an FL buffer
501  *	to another entity (typically an skb's fragment list).
502  */
503 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
504 {
505 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
506 
507 	if (is_buf_mapped(sdesc))
508 		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
509 			       get_buf_size(adapter, sdesc),
510 			       PCI_DMA_FROMDEVICE);
511 	sdesc->page = NULL;
512 	if (++fl->cidx == fl->size)
513 		fl->cidx = 0;
514 	fl->avail--;
515 }
516 
517 /**
518  *	ring_fl_db - righ doorbell on free list
519  *	@adapter: the adapter
520  *	@fl: the Free List whose doorbell should be rung ...
521  *
522  *	Tell the Scatter Gather Engine that there are new free list entries
523  *	available.
524  */
525 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
526 {
527 	u32 val;
528 
529 	/* The SGE keeps track of its Producer and Consumer Indices in terms
530 	 * of Egress Queue Units so we can only tell it about integral numbers
531 	 * of multiples of Free List Entries per Egress Queue Units ...
532 	 */
533 	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
534 		if (is_t4(adapter->params.chip))
535 			val = PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
536 		else
537 			val = PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT) |
538 			      DBTYPE_F;
539 		val |= DBPRIO_F;
540 
541 		/* Make sure all memory writes to the Free List queue are
542 		 * committed before we tell the hardware about them.
543 		 */
544 		wmb();
545 
546 		/* If we don't have access to the new User Doorbell (T5+), use
547 		 * the old doorbell mechanism; otherwise use the new BAR2
548 		 * mechanism.
549 		 */
550 		if (unlikely(fl->bar2_addr == NULL)) {
551 			t4_write_reg(adapter,
552 				     T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
553 				     QID_V(fl->cntxt_id) | val);
554 		} else {
555 			writel(val | QID_V(fl->bar2_qid),
556 			       fl->bar2_addr + SGE_UDB_KDOORBELL);
557 
558 			/* This Write memory Barrier will force the write to
559 			 * the User Doorbell area to be flushed.
560 			 */
561 			wmb();
562 		}
563 		fl->pend_cred %= FL_PER_EQ_UNIT;
564 	}
565 }
566 
567 /**
568  *	set_rx_sw_desc - initialize software RX buffer descriptor
569  *	@sdesc: pointer to the softwore RX buffer descriptor
570  *	@page: pointer to the page data structure backing the RX buffer
571  *	@dma_addr: PCI DMA address (possibly with low-bit flags)
572  */
573 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
574 				  dma_addr_t dma_addr)
575 {
576 	sdesc->page = page;
577 	sdesc->dma_addr = dma_addr;
578 }
579 
580 /*
581  * Support for poisoning RX buffers ...
582  */
583 #define POISON_BUF_VAL -1
584 
585 static inline void poison_buf(struct page *page, size_t sz)
586 {
587 #if POISON_BUF_VAL >= 0
588 	memset(page_address(page), POISON_BUF_VAL, sz);
589 #endif
590 }
591 
592 /**
593  *	refill_fl - refill an SGE RX buffer ring
594  *	@adapter: the adapter
595  *	@fl: the Free List ring to refill
596  *	@n: the number of new buffers to allocate
597  *	@gfp: the gfp flags for the allocations
598  *
599  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
600  *	allocated with the supplied gfp flags.  The caller must assure that
601  *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
602  *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
603  *	of buffers allocated.  If afterwards the queue is found critically low,
604  *	mark it as starving in the bitmap of starving FLs.
605  */
606 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
607 			      int n, gfp_t gfp)
608 {
609 	struct sge *s = &adapter->sge;
610 	struct page *page;
611 	dma_addr_t dma_addr;
612 	unsigned int cred = fl->avail;
613 	__be64 *d = &fl->desc[fl->pidx];
614 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
615 
616 	/*
617 	 * Sanity: ensure that the result of adding n Free List buffers
618 	 * won't result in wrapping the SGE's Producer Index around to
619 	 * it's Consumer Index thereby indicating an empty Free List ...
620 	 */
621 	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
622 
623 	gfp |= __GFP_NOWARN;
624 
625 	/*
626 	 * If we support large pages, prefer large buffers and fail over to
627 	 * small pages if we can't allocate large pages to satisfy the refill.
628 	 * If we don't support large pages, drop directly into the small page
629 	 * allocation code.
630 	 */
631 	if (s->fl_pg_order == 0)
632 		goto alloc_small_pages;
633 
634 	while (n) {
635 		page = __dev_alloc_pages(gfp, s->fl_pg_order);
636 		if (unlikely(!page)) {
637 			/*
638 			 * We've failed inour attempt to allocate a "large
639 			 * page".  Fail over to the "small page" allocation
640 			 * below.
641 			 */
642 			fl->large_alloc_failed++;
643 			break;
644 		}
645 		poison_buf(page, PAGE_SIZE << s->fl_pg_order);
646 
647 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
648 					PAGE_SIZE << s->fl_pg_order,
649 					PCI_DMA_FROMDEVICE);
650 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
651 			/*
652 			 * We've run out of DMA mapping space.  Free up the
653 			 * buffer and return with what we've managed to put
654 			 * into the free list.  We don't want to fail over to
655 			 * the small page allocation below in this case
656 			 * because DMA mapping resources are typically
657 			 * critical resources once they become scarse.
658 			 */
659 			__free_pages(page, s->fl_pg_order);
660 			goto out;
661 		}
662 		dma_addr |= RX_LARGE_BUF;
663 		*d++ = cpu_to_be64(dma_addr);
664 
665 		set_rx_sw_desc(sdesc, page, dma_addr);
666 		sdesc++;
667 
668 		fl->avail++;
669 		if (++fl->pidx == fl->size) {
670 			fl->pidx = 0;
671 			sdesc = fl->sdesc;
672 			d = fl->desc;
673 		}
674 		n--;
675 	}
676 
677 alloc_small_pages:
678 	while (n--) {
679 		page = __dev_alloc_page(gfp);
680 		if (unlikely(!page)) {
681 			fl->alloc_failed++;
682 			break;
683 		}
684 		poison_buf(page, PAGE_SIZE);
685 
686 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
687 				       PCI_DMA_FROMDEVICE);
688 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
689 			put_page(page);
690 			break;
691 		}
692 		*d++ = cpu_to_be64(dma_addr);
693 
694 		set_rx_sw_desc(sdesc, page, dma_addr);
695 		sdesc++;
696 
697 		fl->avail++;
698 		if (++fl->pidx == fl->size) {
699 			fl->pidx = 0;
700 			sdesc = fl->sdesc;
701 			d = fl->desc;
702 		}
703 	}
704 
705 out:
706 	/*
707 	 * Update our accounting state to incorporate the new Free List
708 	 * buffers, tell the hardware about them and return the number of
709 	 * buffers which we were able to allocate.
710 	 */
711 	cred = fl->avail - cred;
712 	fl->pend_cred += cred;
713 	ring_fl_db(adapter, fl);
714 
715 	if (unlikely(fl_starving(adapter, fl))) {
716 		smp_wmb();
717 		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
718 	}
719 
720 	return cred;
721 }
722 
723 /*
724  * Refill a Free List to its capacity or the Maximum Refill Increment,
725  * whichever is smaller ...
726  */
727 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
728 {
729 	refill_fl(adapter, fl,
730 		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
731 		  GFP_ATOMIC);
732 }
733 
734 /**
735  *	alloc_ring - allocate resources for an SGE descriptor ring
736  *	@dev: the PCI device's core device
737  *	@nelem: the number of descriptors
738  *	@hwsize: the size of each hardware descriptor
739  *	@swsize: the size of each software descriptor
740  *	@busaddrp: the physical PCI bus address of the allocated ring
741  *	@swringp: return address pointer for software ring
742  *	@stat_size: extra space in hardware ring for status information
743  *
744  *	Allocates resources for an SGE descriptor ring, such as TX queues,
745  *	free buffer lists, response queues, etc.  Each SGE ring requires
746  *	space for its hardware descriptors plus, optionally, space for software
747  *	state associated with each hardware entry (the metadata).  The function
748  *	returns three values: the virtual address for the hardware ring (the
749  *	return value of the function), the PCI bus address of the hardware
750  *	ring (in *busaddrp), and the address of the software ring (in swringp).
751  *	Both the hardware and software rings are returned zeroed out.
752  */
753 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
754 			size_t swsize, dma_addr_t *busaddrp, void *swringp,
755 			size_t stat_size)
756 {
757 	/*
758 	 * Allocate the hardware ring and PCI DMA bus address space for said.
759 	 */
760 	size_t hwlen = nelem * hwsize + stat_size;
761 	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
762 
763 	if (!hwring)
764 		return NULL;
765 
766 	/*
767 	 * If the caller wants a software ring, allocate it and return a
768 	 * pointer to it in *swringp.
769 	 */
770 	BUG_ON((swsize != 0) != (swringp != NULL));
771 	if (swsize) {
772 		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
773 
774 		if (!swring) {
775 			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
776 			return NULL;
777 		}
778 		*(void **)swringp = swring;
779 	}
780 
781 	/*
782 	 * Zero out the hardware ring and return its address as our function
783 	 * value.
784 	 */
785 	memset(hwring, 0, hwlen);
786 	return hwring;
787 }
788 
789 /**
790  *	sgl_len - calculates the size of an SGL of the given capacity
791  *	@n: the number of SGL entries
792  *
793  *	Calculates the number of flits (8-byte units) needed for a Direct
794  *	Scatter/Gather List that can hold the given number of entries.
795  */
796 static inline unsigned int sgl_len(unsigned int n)
797 {
798 	/*
799 	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
800 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
801 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
802 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
803 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
804 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
805 	 * Address[N+1] is omitted.
806 	 *
807 	 * The following calculation incorporates all of the above.  It's
808 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
809 	 * first two flits which include the DSGL header, Length0 and
810 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
811 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
812 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
813 	 * (n-1) is odd ...
814 	 */
815 	n--;
816 	return (3 * n) / 2 + (n & 1) + 2;
817 }
818 
819 /**
820  *	flits_to_desc - returns the num of TX descriptors for the given flits
821  *	@flits: the number of flits
822  *
823  *	Returns the number of TX descriptors needed for the supplied number
824  *	of flits.
825  */
826 static inline unsigned int flits_to_desc(unsigned int flits)
827 {
828 	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
829 	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
830 }
831 
832 /**
833  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
834  *	@skb: the packet
835  *
836  *	Returns whether an Ethernet packet is small enough to fit completely as
837  *	immediate data.
838  */
839 static inline int is_eth_imm(const struct sk_buff *skb)
840 {
841 	/*
842 	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
843 	 * which does not accommodate immediate data.  We could dike out all
844 	 * of the support code for immediate data but that would tie our hands
845 	 * too much if we ever want to enhace the firmware.  It would also
846 	 * create more differences between the PF and VF Drivers.
847 	 */
848 	return false;
849 }
850 
851 /**
852  *	calc_tx_flits - calculate the number of flits for a packet TX WR
853  *	@skb: the packet
854  *
855  *	Returns the number of flits needed for a TX Work Request for the
856  *	given Ethernet packet, including the needed WR and CPL headers.
857  */
858 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
859 {
860 	unsigned int flits;
861 
862 	/*
863 	 * If the skb is small enough, we can pump it out as a work request
864 	 * with only immediate data.  In that case we just have to have the
865 	 * TX Packet header plus the skb data in the Work Request.
866 	 */
867 	if (is_eth_imm(skb))
868 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
869 				    sizeof(__be64));
870 
871 	/*
872 	 * Otherwise, we're going to have to construct a Scatter gather list
873 	 * of the skb body and fragments.  We also include the flits necessary
874 	 * for the TX Packet Work Request and CPL.  We always have a firmware
875 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
876 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
877 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
878 	 * with an embeded TX Packet Write CPL message.
879 	 */
880 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
881 	if (skb_shinfo(skb)->gso_size)
882 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
883 			  sizeof(struct cpl_tx_pkt_lso_core) +
884 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
885 	else
886 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
887 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
888 	return flits;
889 }
890 
891 /**
892  *	write_sgl - populate a Scatter/Gather List for a packet
893  *	@skb: the packet
894  *	@tq: the TX queue we are writing into
895  *	@sgl: starting location for writing the SGL
896  *	@end: points right after the end of the SGL
897  *	@start: start offset into skb main-body data to include in the SGL
898  *	@addr: the list of DMA bus addresses for the SGL elements
899  *
900  *	Generates a Scatter/Gather List for the buffers that make up a packet.
901  *	The caller must provide adequate space for the SGL that will be written.
902  *	The SGL includes all of the packet's page fragments and the data in its
903  *	main body except for the first @start bytes.  @pos must be 16-byte
904  *	aligned and within a TX descriptor with available space.  @end points
905  *	write after the end of the SGL but does not account for any potential
906  *	wrap around, i.e., @end > @tq->stat.
907  */
908 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
909 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
910 		      const dma_addr_t *addr)
911 {
912 	unsigned int i, len;
913 	struct ulptx_sge_pair *to;
914 	const struct skb_shared_info *si = skb_shinfo(skb);
915 	unsigned int nfrags = si->nr_frags;
916 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
917 
918 	len = skb_headlen(skb) - start;
919 	if (likely(len)) {
920 		sgl->len0 = htonl(len);
921 		sgl->addr0 = cpu_to_be64(addr[0] + start);
922 		nfrags++;
923 	} else {
924 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
925 		sgl->addr0 = cpu_to_be64(addr[1]);
926 	}
927 
928 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
929 			      ULPTX_NSGE_V(nfrags));
930 	if (likely(--nfrags == 0))
931 		return;
932 	/*
933 	 * Most of the complexity below deals with the possibility we hit the
934 	 * end of the queue in the middle of writing the SGL.  For this case
935 	 * only we create the SGL in a temporary buffer and then copy it.
936 	 */
937 	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
938 
939 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
940 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
941 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
942 		to->addr[0] = cpu_to_be64(addr[i]);
943 		to->addr[1] = cpu_to_be64(addr[++i]);
944 	}
945 	if (nfrags) {
946 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
947 		to->len[1] = cpu_to_be32(0);
948 		to->addr[0] = cpu_to_be64(addr[i + 1]);
949 	}
950 	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
951 		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
952 
953 		if (likely(part0))
954 			memcpy(sgl->sge, buf, part0);
955 		part1 = (u8 *)end - (u8 *)tq->stat;
956 		memcpy(tq->desc, (u8 *)buf + part0, part1);
957 		end = (void *)tq->desc + part1;
958 	}
959 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
960 		*end = 0;
961 }
962 
963 /**
964  *	check_ring_tx_db - check and potentially ring a TX queue's doorbell
965  *	@adapter: the adapter
966  *	@tq: the TX queue
967  *	@n: number of new descriptors to give to HW
968  *
969  *	Ring the doorbel for a TX queue.
970  */
971 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
972 			      int n)
973 {
974 	/* Make sure that all writes to the TX Descriptors are committed
975 	 * before we tell the hardware about them.
976 	 */
977 	wmb();
978 
979 	/* If we don't have access to the new User Doorbell (T5+), use the old
980 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
981 	 */
982 	if (unlikely(tq->bar2_addr == NULL)) {
983 		u32 val = PIDX_V(n);
984 
985 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
986 			     QID_V(tq->cntxt_id) | val);
987 	} else {
988 		u32 val = PIDX_T5_V(n);
989 
990 		/* T4 and later chips share the same PIDX field offset within
991 		 * the doorbell, but T5 and later shrank the field in order to
992 		 * gain a bit for Doorbell Priority.  The field was absurdly
993 		 * large in the first place (14 bits) so we just use the T5
994 		 * and later limits and warn if a Queue ID is too large.
995 		 */
996 		WARN_ON(val & DBPRIO_F);
997 
998 		/* If we're only writing a single Egress Unit and the BAR2
999 		 * Queue ID is 0, we can use the Write Combining Doorbell
1000 		 * Gather Buffer; otherwise we use the simple doorbell.
1001 		 */
1002 		if (n == 1 && tq->bar2_qid == 0) {
1003 			unsigned int index = (tq->pidx
1004 					      ? (tq->pidx - 1)
1005 					      : (tq->size - 1));
1006 			__be64 *src = (__be64 *)&tq->desc[index];
1007 			__be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1008 							 SGE_UDB_WCDOORBELL);
1009 			unsigned int count = EQ_UNIT / sizeof(__be64);
1010 
1011 			/* Copy the TX Descriptor in a tight loop in order to
1012 			 * try to get it to the adapter in a single Write
1013 			 * Combined transfer on the PCI-E Bus.  If the Write
1014 			 * Combine fails (say because of an interrupt, etc.)
1015 			 * the hardware will simply take the last write as a
1016 			 * simple doorbell write with a PIDX Increment of 1
1017 			 * and will fetch the TX Descriptor from memory via
1018 			 * DMA.
1019 			 */
1020 			while (count) {
1021 				/* the (__force u64) is because the compiler
1022 				 * doesn't understand the endian swizzling
1023 				 * going on
1024 				 */
1025 				writeq((__force u64)*src, dst);
1026 				src++;
1027 				dst++;
1028 				count--;
1029 			}
1030 		} else
1031 			writel(val | QID_V(tq->bar2_qid),
1032 			       tq->bar2_addr + SGE_UDB_KDOORBELL);
1033 
1034 		/* This Write Memory Barrier will force the write to the User
1035 		 * Doorbell area to be flushed.  This is needed to prevent
1036 		 * writes on different CPUs for the same queue from hitting
1037 		 * the adapter out of order.  This is required when some Work
1038 		 * Requests take the Write Combine Gather Buffer path (user
1039 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1040 		 * take the traditional path where we simply increment the
1041 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1042 		 * hardware DMA read the actual Work Request.
1043 		 */
1044 		wmb();
1045 	}
1046 }
1047 
1048 /**
1049  *	inline_tx_skb - inline a packet's data into TX descriptors
1050  *	@skb: the packet
1051  *	@tq: the TX queue where the packet will be inlined
1052  *	@pos: starting position in the TX queue to inline the packet
1053  *
1054  *	Inline a packet's contents directly into TX descriptors, starting at
1055  *	the given position within the TX DMA ring.
1056  *	Most of the complexity of this operation is dealing with wrap arounds
1057  *	in the middle of the packet we want to inline.
1058  */
1059 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1060 			  void *pos)
1061 {
1062 	u64 *p;
1063 	int left = (void *)tq->stat - pos;
1064 
1065 	if (likely(skb->len <= left)) {
1066 		if (likely(!skb->data_len))
1067 			skb_copy_from_linear_data(skb, pos, skb->len);
1068 		else
1069 			skb_copy_bits(skb, 0, pos, skb->len);
1070 		pos += skb->len;
1071 	} else {
1072 		skb_copy_bits(skb, 0, pos, left);
1073 		skb_copy_bits(skb, left, tq->desc, skb->len - left);
1074 		pos = (void *)tq->desc + (skb->len - left);
1075 	}
1076 
1077 	/* 0-pad to multiple of 16 */
1078 	p = PTR_ALIGN(pos, 8);
1079 	if ((uintptr_t)p & 8)
1080 		*p = 0;
1081 }
1082 
1083 /*
1084  * Figure out what HW csum a packet wants and return the appropriate control
1085  * bits.
1086  */
1087 static u64 hwcsum(const struct sk_buff *skb)
1088 {
1089 	int csum_type;
1090 	const struct iphdr *iph = ip_hdr(skb);
1091 
1092 	if (iph->version == 4) {
1093 		if (iph->protocol == IPPROTO_TCP)
1094 			csum_type = TX_CSUM_TCPIP;
1095 		else if (iph->protocol == IPPROTO_UDP)
1096 			csum_type = TX_CSUM_UDPIP;
1097 		else {
1098 nocsum:
1099 			/*
1100 			 * unknown protocol, disable HW csum
1101 			 * and hope a bad packet is detected
1102 			 */
1103 			return TXPKT_L4CSUM_DIS;
1104 		}
1105 	} else {
1106 		/*
1107 		 * this doesn't work with extension headers
1108 		 */
1109 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1110 
1111 		if (ip6h->nexthdr == IPPROTO_TCP)
1112 			csum_type = TX_CSUM_TCPIP6;
1113 		else if (ip6h->nexthdr == IPPROTO_UDP)
1114 			csum_type = TX_CSUM_UDPIP6;
1115 		else
1116 			goto nocsum;
1117 	}
1118 
1119 	if (likely(csum_type >= TX_CSUM_TCPIP))
1120 		return TXPKT_CSUM_TYPE(csum_type) |
1121 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1122 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1123 	else {
1124 		int start = skb_transport_offset(skb);
1125 
1126 		return TXPKT_CSUM_TYPE(csum_type) |
1127 			TXPKT_CSUM_START(start) |
1128 			TXPKT_CSUM_LOC(start + skb->csum_offset);
1129 	}
1130 }
1131 
1132 /*
1133  * Stop an Ethernet TX queue and record that state change.
1134  */
1135 static void txq_stop(struct sge_eth_txq *txq)
1136 {
1137 	netif_tx_stop_queue(txq->txq);
1138 	txq->q.stops++;
1139 }
1140 
1141 /*
1142  * Advance our software state for a TX queue by adding n in use descriptors.
1143  */
1144 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1145 {
1146 	tq->in_use += n;
1147 	tq->pidx += n;
1148 	if (tq->pidx >= tq->size)
1149 		tq->pidx -= tq->size;
1150 }
1151 
1152 /**
1153  *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
1154  *	@skb: the packet
1155  *	@dev: the egress net device
1156  *
1157  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1158  */
1159 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1160 {
1161 	u32 wr_mid;
1162 	u64 cntrl, *end;
1163 	int qidx, credits;
1164 	unsigned int flits, ndesc;
1165 	struct adapter *adapter;
1166 	struct sge_eth_txq *txq;
1167 	const struct port_info *pi;
1168 	struct fw_eth_tx_pkt_vm_wr *wr;
1169 	struct cpl_tx_pkt_core *cpl;
1170 	const struct skb_shared_info *ssi;
1171 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1172 	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1173 					sizeof(wr->ethmacsrc) +
1174 					sizeof(wr->ethtype) +
1175 					sizeof(wr->vlantci));
1176 
1177 	/*
1178 	 * The chip minimum packet length is 10 octets but the firmware
1179 	 * command that we are using requires that we copy the Ethernet header
1180 	 * (including the VLAN tag) into the header so we reject anything
1181 	 * smaller than that ...
1182 	 */
1183 	if (unlikely(skb->len < fw_hdr_copy_len))
1184 		goto out_free;
1185 
1186 	/*
1187 	 * Figure out which TX Queue we're going to use.
1188 	 */
1189 	pi = netdev_priv(dev);
1190 	adapter = pi->adapter;
1191 	qidx = skb_get_queue_mapping(skb);
1192 	BUG_ON(qidx >= pi->nqsets);
1193 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1194 
1195 	/*
1196 	 * Take this opportunity to reclaim any TX Descriptors whose DMA
1197 	 * transfers have completed.
1198 	 */
1199 	reclaim_completed_tx(adapter, &txq->q, true);
1200 
1201 	/*
1202 	 * Calculate the number of flits and TX Descriptors we're going to
1203 	 * need along with how many TX Descriptors will be left over after
1204 	 * we inject our Work Request.
1205 	 */
1206 	flits = calc_tx_flits(skb);
1207 	ndesc = flits_to_desc(flits);
1208 	credits = txq_avail(&txq->q) - ndesc;
1209 
1210 	if (unlikely(credits < 0)) {
1211 		/*
1212 		 * Not enough room for this packet's Work Request.  Stop the
1213 		 * TX Queue and return a "busy" condition.  The queue will get
1214 		 * started later on when the firmware informs us that space
1215 		 * has opened up.
1216 		 */
1217 		txq_stop(txq);
1218 		dev_err(adapter->pdev_dev,
1219 			"%s: TX ring %u full while queue awake!\n",
1220 			dev->name, qidx);
1221 		return NETDEV_TX_BUSY;
1222 	}
1223 
1224 	if (!is_eth_imm(skb) &&
1225 	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1226 		/*
1227 		 * We need to map the skb into PCI DMA space (because it can't
1228 		 * be in-lined directly into the Work Request) and the mapping
1229 		 * operation failed.  Record the error and drop the packet.
1230 		 */
1231 		txq->mapping_err++;
1232 		goto out_free;
1233 	}
1234 
1235 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1236 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1237 		/*
1238 		 * After we're done injecting the Work Request for this
1239 		 * packet, we'll be below our "stop threshold" so stop the TX
1240 		 * Queue now and schedule a request for an SGE Egress Queue
1241 		 * Update message.  The queue will get started later on when
1242 		 * the firmware processes this Work Request and sends us an
1243 		 * Egress Queue Status Update message indicating that space
1244 		 * has opened up.
1245 		 */
1246 		txq_stop(txq);
1247 		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1248 	}
1249 
1250 	/*
1251 	 * Start filling in our Work Request.  Note that we do _not_ handle
1252 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1253 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1254 	 * do something else here.
1255 	 */
1256 	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1257 	wr = (void *)&txq->q.desc[txq->q.pidx];
1258 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1259 	wr->r3[0] = cpu_to_be32(0);
1260 	wr->r3[1] = cpu_to_be32(0);
1261 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1262 	end = (u64 *)wr + flits;
1263 
1264 	/*
1265 	 * If this is a Large Send Offload packet we'll put in an LSO CPL
1266 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1267 	 * just use a TX Packet CPL message.
1268 	 */
1269 	ssi = skb_shinfo(skb);
1270 	if (ssi->gso_size) {
1271 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1272 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1273 		int l3hdr_len = skb_network_header_len(skb);
1274 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1275 
1276 		wr->op_immdlen =
1277 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1278 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1279 						    sizeof(*cpl)));
1280 		/*
1281 		 * Fill in the LSO CPL message.
1282 		 */
1283 		lso->lso_ctrl =
1284 			cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1285 				    LSO_FIRST_SLICE |
1286 				    LSO_LAST_SLICE |
1287 				    LSO_IPV6(v6) |
1288 				    LSO_ETHHDR_LEN(eth_xtra_len/4) |
1289 				    LSO_IPHDR_LEN(l3hdr_len/4) |
1290 				    LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1291 		lso->ipid_ofst = cpu_to_be16(0);
1292 		lso->mss = cpu_to_be16(ssi->gso_size);
1293 		lso->seqno_offset = cpu_to_be32(0);
1294 		if (is_t4(adapter->params.chip))
1295 			lso->len = cpu_to_be32(skb->len);
1296 		else
1297 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len));
1298 
1299 		/*
1300 		 * Set up TX Packet CPL pointer, control word and perform
1301 		 * accounting.
1302 		 */
1303 		cpl = (void *)(lso + 1);
1304 		cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1305 			 TXPKT_IPHDR_LEN(l3hdr_len) |
1306 			 TXPKT_ETHHDR_LEN(eth_xtra_len));
1307 		txq->tso++;
1308 		txq->tx_cso += ssi->gso_segs;
1309 	} else {
1310 		int len;
1311 
1312 		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1313 		wr->op_immdlen =
1314 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1315 				    FW_WR_IMMDLEN_V(len));
1316 
1317 		/*
1318 		 * Set up TX Packet CPL pointer, control word and perform
1319 		 * accounting.
1320 		 */
1321 		cpl = (void *)(wr + 1);
1322 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1323 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1324 			txq->tx_cso++;
1325 		} else
1326 			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1327 	}
1328 
1329 	/*
1330 	 * If there's a VLAN tag present, add that to the list of things to
1331 	 * do in this Work Request.
1332 	 */
1333 	if (skb_vlan_tag_present(skb)) {
1334 		txq->vlan_ins++;
1335 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
1336 	}
1337 
1338 	/*
1339 	 * Fill in the TX Packet CPL message header.
1340 	 */
1341 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1342 				 TXPKT_INTF(pi->port_id) |
1343 				 TXPKT_PF(0));
1344 	cpl->pack = cpu_to_be16(0);
1345 	cpl->len = cpu_to_be16(skb->len);
1346 	cpl->ctrl1 = cpu_to_be64(cntrl);
1347 
1348 #ifdef T4_TRACE
1349 	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1350 		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1351 		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1352 #endif
1353 
1354 	/*
1355 	 * Fill in the body of the TX Packet CPL message with either in-lined
1356 	 * data or a Scatter/Gather List.
1357 	 */
1358 	if (is_eth_imm(skb)) {
1359 		/*
1360 		 * In-line the packet's data and free the skb since we don't
1361 		 * need it any longer.
1362 		 */
1363 		inline_tx_skb(skb, &txq->q, cpl + 1);
1364 		dev_consume_skb_any(skb);
1365 	} else {
1366 		/*
1367 		 * Write the skb's Scatter/Gather list into the TX Packet CPL
1368 		 * message and retain a pointer to the skb so we can free it
1369 		 * later when its DMA completes.  (We store the skb pointer
1370 		 * in the Software Descriptor corresponding to the last TX
1371 		 * Descriptor used by the Work Request.)
1372 		 *
1373 		 * The retained skb will be freed when the corresponding TX
1374 		 * Descriptors are reclaimed after their DMAs complete.
1375 		 * However, this could take quite a while since, in general,
1376 		 * the hardware is set up to be lazy about sending DMA
1377 		 * completion notifications to us and we mostly perform TX
1378 		 * reclaims in the transmit routine.
1379 		 *
1380 		 * This is good for performamce but means that we rely on new
1381 		 * TX packets arriving to run the destructors of completed
1382 		 * packets, which open up space in their sockets' send queues.
1383 		 * Sometimes we do not get such new packets causing TX to
1384 		 * stall.  A single UDP transmitter is a good example of this
1385 		 * situation.  We have a clean up timer that periodically
1386 		 * reclaims completed packets but it doesn't run often enough
1387 		 * (nor do we want it to) to prevent lengthy stalls.  A
1388 		 * solution to this problem is to run the destructor early,
1389 		 * after the packet is queued but before it's DMAd.  A con is
1390 		 * that we lie to socket memory accounting, but the amount of
1391 		 * extra memory is reasonable (limited by the number of TX
1392 		 * descriptors), the packets do actually get freed quickly by
1393 		 * new packets almost always, and for protocols like TCP that
1394 		 * wait for acks to really free up the data the extra memory
1395 		 * is even less.  On the positive side we run the destructors
1396 		 * on the sending CPU rather than on a potentially different
1397 		 * completing CPU, usually a good thing.
1398 		 *
1399 		 * Run the destructor before telling the DMA engine about the
1400 		 * packet to make sure it doesn't complete and get freed
1401 		 * prematurely.
1402 		 */
1403 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1404 		struct sge_txq *tq = &txq->q;
1405 		int last_desc;
1406 
1407 		/*
1408 		 * If the Work Request header was an exact multiple of our TX
1409 		 * Descriptor length, then it's possible that the starting SGL
1410 		 * pointer lines up exactly with the end of our TX Descriptor
1411 		 * ring.  If that's the case, wrap around to the beginning
1412 		 * here ...
1413 		 */
1414 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1415 			sgl = (void *)tq->desc;
1416 			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1417 		}
1418 
1419 		write_sgl(skb, tq, sgl, end, 0, addr);
1420 		skb_orphan(skb);
1421 
1422 		last_desc = tq->pidx + ndesc - 1;
1423 		if (last_desc >= tq->size)
1424 			last_desc -= tq->size;
1425 		tq->sdesc[last_desc].skb = skb;
1426 		tq->sdesc[last_desc].sgl = sgl;
1427 	}
1428 
1429 	/*
1430 	 * Advance our internal TX Queue state, tell the hardware about
1431 	 * the new TX descriptors and return success.
1432 	 */
1433 	txq_advance(&txq->q, ndesc);
1434 	dev->trans_start = jiffies;
1435 	ring_tx_db(adapter, &txq->q, ndesc);
1436 	return NETDEV_TX_OK;
1437 
1438 out_free:
1439 	/*
1440 	 * An error of some sort happened.  Free the TX skb and tell the
1441 	 * OS that we've "dealt" with the packet ...
1442 	 */
1443 	dev_kfree_skb_any(skb);
1444 	return NETDEV_TX_OK;
1445 }
1446 
1447 /**
1448  *	copy_frags - copy fragments from gather list into skb_shared_info
1449  *	@skb: destination skb
1450  *	@gl: source internal packet gather list
1451  *	@offset: packet start offset in first page
1452  *
1453  *	Copy an internal packet gather list into a Linux skb_shared_info
1454  *	structure.
1455  */
1456 static inline void copy_frags(struct sk_buff *skb,
1457 			      const struct pkt_gl *gl,
1458 			      unsigned int offset)
1459 {
1460 	int i;
1461 
1462 	/* usually there's just one frag */
1463 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1464 			     gl->frags[0].offset + offset,
1465 			     gl->frags[0].size - offset);
1466 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1467 	for (i = 1; i < gl->nfrags; i++)
1468 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1469 				     gl->frags[i].offset,
1470 				     gl->frags[i].size);
1471 
1472 	/* get a reference to the last page, we don't own it */
1473 	get_page(gl->frags[gl->nfrags - 1].page);
1474 }
1475 
1476 /**
1477  *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1478  *	@gl: the gather list
1479  *	@skb_len: size of sk_buff main body if it carries fragments
1480  *	@pull_len: amount of data to move to the sk_buff's main body
1481  *
1482  *	Builds an sk_buff from the given packet gather list.  Returns the
1483  *	sk_buff or %NULL if sk_buff allocation failed.
1484  */
1485 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1486 					 unsigned int skb_len,
1487 					 unsigned int pull_len)
1488 {
1489 	struct sk_buff *skb;
1490 
1491 	/*
1492 	 * If the ingress packet is small enough, allocate an skb large enough
1493 	 * for all of the data and copy it inline.  Otherwise, allocate an skb
1494 	 * with enough room to pull in the header and reference the rest of
1495 	 * the data via the skb fragment list.
1496 	 *
1497 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1498 	 * buff!  size, which is expected since buffers are at least
1499 	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1500 	 * fragment.
1501 	 */
1502 	if (gl->tot_len <= RX_COPY_THRES) {
1503 		/* small packets have only one fragment */
1504 		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1505 		if (unlikely(!skb))
1506 			goto out;
1507 		__skb_put(skb, gl->tot_len);
1508 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1509 	} else {
1510 		skb = alloc_skb(skb_len, GFP_ATOMIC);
1511 		if (unlikely(!skb))
1512 			goto out;
1513 		__skb_put(skb, pull_len);
1514 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1515 
1516 		copy_frags(skb, gl, pull_len);
1517 		skb->len = gl->tot_len;
1518 		skb->data_len = skb->len - pull_len;
1519 		skb->truesize += skb->data_len;
1520 	}
1521 
1522 out:
1523 	return skb;
1524 }
1525 
1526 /**
1527  *	t4vf_pktgl_free - free a packet gather list
1528  *	@gl: the gather list
1529  *
1530  *	Releases the pages of a packet gather list.  We do not own the last
1531  *	page on the list and do not free it.
1532  */
1533 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1534 {
1535 	int frag;
1536 
1537 	frag = gl->nfrags - 1;
1538 	while (frag--)
1539 		put_page(gl->frags[frag].page);
1540 }
1541 
1542 /**
1543  *	do_gro - perform Generic Receive Offload ingress packet processing
1544  *	@rxq: ingress RX Ethernet Queue
1545  *	@gl: gather list for ingress packet
1546  *	@pkt: CPL header for last packet fragment
1547  *
1548  *	Perform Generic Receive Offload (GRO) ingress packet processing.
1549  *	We use the standard Linux GRO interfaces for this.
1550  */
1551 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1552 		   const struct cpl_rx_pkt *pkt)
1553 {
1554 	struct adapter *adapter = rxq->rspq.adapter;
1555 	struct sge *s = &adapter->sge;
1556 	int ret;
1557 	struct sk_buff *skb;
1558 
1559 	skb = napi_get_frags(&rxq->rspq.napi);
1560 	if (unlikely(!skb)) {
1561 		t4vf_pktgl_free(gl);
1562 		rxq->stats.rx_drops++;
1563 		return;
1564 	}
1565 
1566 	copy_frags(skb, gl, s->pktshift);
1567 	skb->len = gl->tot_len - s->pktshift;
1568 	skb->data_len = skb->len;
1569 	skb->truesize += skb->data_len;
1570 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1571 	skb_record_rx_queue(skb, rxq->rspq.idx);
1572 
1573 	if (pkt->vlan_ex) {
1574 		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1575 					be16_to_cpu(pkt->vlan));
1576 		rxq->stats.vlan_ex++;
1577 	}
1578 	ret = napi_gro_frags(&rxq->rspq.napi);
1579 
1580 	if (ret == GRO_HELD)
1581 		rxq->stats.lro_pkts++;
1582 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1583 		rxq->stats.lro_merged++;
1584 	rxq->stats.pkts++;
1585 	rxq->stats.rx_cso++;
1586 }
1587 
1588 /**
1589  *	t4vf_ethrx_handler - process an ingress ethernet packet
1590  *	@rspq: the response queue that received the packet
1591  *	@rsp: the response queue descriptor holding the RX_PKT message
1592  *	@gl: the gather list of packet fragments
1593  *
1594  *	Process an ingress ethernet packet and deliver it to the stack.
1595  */
1596 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1597 		       const struct pkt_gl *gl)
1598 {
1599 	struct sk_buff *skb;
1600 	const struct cpl_rx_pkt *pkt = (void *)rsp;
1601 	bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1602 		       (rspq->netdev->features & NETIF_F_RXCSUM);
1603 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1604 	struct adapter *adapter = rspq->adapter;
1605 	struct sge *s = &adapter->sge;
1606 
1607 	/*
1608 	 * If this is a good TCP packet and we have Generic Receive Offload
1609 	 * enabled, handle the packet in the GRO path.
1610 	 */
1611 	if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1612 	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1613 	    !pkt->ip_frag) {
1614 		do_gro(rxq, gl, pkt);
1615 		return 0;
1616 	}
1617 
1618 	/*
1619 	 * Convert the Packet Gather List into an skb.
1620 	 */
1621 	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1622 	if (unlikely(!skb)) {
1623 		t4vf_pktgl_free(gl);
1624 		rxq->stats.rx_drops++;
1625 		return 0;
1626 	}
1627 	__skb_pull(skb, s->pktshift);
1628 	skb->protocol = eth_type_trans(skb, rspq->netdev);
1629 	skb_record_rx_queue(skb, rspq->idx);
1630 	rxq->stats.pkts++;
1631 
1632 	if (csum_ok && !pkt->err_vec &&
1633 	    (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1634 		if (!pkt->ip_frag)
1635 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1636 		else {
1637 			__sum16 c = (__force __sum16)pkt->csum;
1638 			skb->csum = csum_unfold(c);
1639 			skb->ip_summed = CHECKSUM_COMPLETE;
1640 		}
1641 		rxq->stats.rx_cso++;
1642 	} else
1643 		skb_checksum_none_assert(skb);
1644 
1645 	if (pkt->vlan_ex) {
1646 		rxq->stats.vlan_ex++;
1647 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
1648 	}
1649 
1650 	netif_receive_skb(skb);
1651 
1652 	return 0;
1653 }
1654 
1655 /**
1656  *	is_new_response - check if a response is newly written
1657  *	@rc: the response control descriptor
1658  *	@rspq: the response queue
1659  *
1660  *	Returns true if a response descriptor contains a yet unprocessed
1661  *	response.
1662  */
1663 static inline bool is_new_response(const struct rsp_ctrl *rc,
1664 				   const struct sge_rspq *rspq)
1665 {
1666 	return RSPD_GEN(rc->type_gen) == rspq->gen;
1667 }
1668 
1669 /**
1670  *	restore_rx_bufs - put back a packet's RX buffers
1671  *	@gl: the packet gather list
1672  *	@fl: the SGE Free List
1673  *	@nfrags: how many fragments in @si
1674  *
1675  *	Called when we find out that the current packet, @si, can't be
1676  *	processed right away for some reason.  This is a very rare event and
1677  *	there's no effort to make this suspension/resumption process
1678  *	particularly efficient.
1679  *
1680  *	We implement the suspension by putting all of the RX buffers associated
1681  *	with the current packet back on the original Free List.  The buffers
1682  *	have already been unmapped and are left unmapped, we mark them as
1683  *	unmapped in order to prevent further unmapping attempts.  (Effectively
1684  *	this function undoes the series of @unmap_rx_buf calls which were done
1685  *	to create the current packet's gather list.)  This leaves us ready to
1686  *	restart processing of the packet the next time we start processing the
1687  *	RX Queue ...
1688  */
1689 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1690 			    int frags)
1691 {
1692 	struct rx_sw_desc *sdesc;
1693 
1694 	while (frags--) {
1695 		if (fl->cidx == 0)
1696 			fl->cidx = fl->size - 1;
1697 		else
1698 			fl->cidx--;
1699 		sdesc = &fl->sdesc[fl->cidx];
1700 		sdesc->page = gl->frags[frags].page;
1701 		sdesc->dma_addr |= RX_UNMAPPED_BUF;
1702 		fl->avail++;
1703 	}
1704 }
1705 
1706 /**
1707  *	rspq_next - advance to the next entry in a response queue
1708  *	@rspq: the queue
1709  *
1710  *	Updates the state of a response queue to advance it to the next entry.
1711  */
1712 static inline void rspq_next(struct sge_rspq *rspq)
1713 {
1714 	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1715 	if (unlikely(++rspq->cidx == rspq->size)) {
1716 		rspq->cidx = 0;
1717 		rspq->gen ^= 1;
1718 		rspq->cur_desc = rspq->desc;
1719 	}
1720 }
1721 
1722 /**
1723  *	process_responses - process responses from an SGE response queue
1724  *	@rspq: the ingress response queue to process
1725  *	@budget: how many responses can be processed in this round
1726  *
1727  *	Process responses from a Scatter Gather Engine response queue up to
1728  *	the supplied budget.  Responses include received packets as well as
1729  *	control messages from firmware or hardware.
1730  *
1731  *	Additionally choose the interrupt holdoff time for the next interrupt
1732  *	on this queue.  If the system is under memory shortage use a fairly
1733  *	long delay to help recovery.
1734  */
1735 static int process_responses(struct sge_rspq *rspq, int budget)
1736 {
1737 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1738 	struct adapter *adapter = rspq->adapter;
1739 	struct sge *s = &adapter->sge;
1740 	int budget_left = budget;
1741 
1742 	while (likely(budget_left)) {
1743 		int ret, rsp_type;
1744 		const struct rsp_ctrl *rc;
1745 
1746 		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1747 		if (!is_new_response(rc, rspq))
1748 			break;
1749 
1750 		/*
1751 		 * Figure out what kind of response we've received from the
1752 		 * SGE.
1753 		 */
1754 		rmb();
1755 		rsp_type = RSPD_TYPE(rc->type_gen);
1756 		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1757 			struct page_frag *fp;
1758 			struct pkt_gl gl;
1759 			const struct rx_sw_desc *sdesc;
1760 			u32 bufsz, frag;
1761 			u32 len = be32_to_cpu(rc->pldbuflen_qid);
1762 
1763 			/*
1764 			 * If we get a "new buffer" message from the SGE we
1765 			 * need to move on to the next Free List buffer.
1766 			 */
1767 			if (len & RSPD_NEWBUF) {
1768 				/*
1769 				 * We get one "new buffer" message when we
1770 				 * first start up a queue so we need to ignore
1771 				 * it when our offset into the buffer is 0.
1772 				 */
1773 				if (likely(rspq->offset > 0)) {
1774 					free_rx_bufs(rspq->adapter, &rxq->fl,
1775 						     1);
1776 					rspq->offset = 0;
1777 				}
1778 				len = RSPD_LEN(len);
1779 			}
1780 			gl.tot_len = len;
1781 
1782 			/*
1783 			 * Gather packet fragments.
1784 			 */
1785 			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1786 				BUG_ON(frag >= MAX_SKB_FRAGS);
1787 				BUG_ON(rxq->fl.avail == 0);
1788 				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1789 				bufsz = get_buf_size(adapter, sdesc);
1790 				fp->page = sdesc->page;
1791 				fp->offset = rspq->offset;
1792 				fp->size = min(bufsz, len);
1793 				len -= fp->size;
1794 				if (!len)
1795 					break;
1796 				unmap_rx_buf(rspq->adapter, &rxq->fl);
1797 			}
1798 			gl.nfrags = frag+1;
1799 
1800 			/*
1801 			 * Last buffer remains mapped so explicitly make it
1802 			 * coherent for CPU access and start preloading first
1803 			 * cache line ...
1804 			 */
1805 			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1806 						get_buf_addr(sdesc),
1807 						fp->size, DMA_FROM_DEVICE);
1808 			gl.va = (page_address(gl.frags[0].page) +
1809 				 gl.frags[0].offset);
1810 			prefetch(gl.va);
1811 
1812 			/*
1813 			 * Hand the new ingress packet to the handler for
1814 			 * this Response Queue.
1815 			 */
1816 			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1817 			if (likely(ret == 0))
1818 				rspq->offset += ALIGN(fp->size, s->fl_align);
1819 			else
1820 				restore_rx_bufs(&gl, &rxq->fl, frag);
1821 		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
1822 			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1823 		} else {
1824 			WARN_ON(rsp_type > RSP_TYPE_CPL);
1825 			ret = 0;
1826 		}
1827 
1828 		if (unlikely(ret)) {
1829 			/*
1830 			 * Couldn't process descriptor, back off for recovery.
1831 			 * We use the SGE's last timer which has the longest
1832 			 * interrupt coalescing value ...
1833 			 */
1834 			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1835 			rspq->next_intr_params =
1836 				QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1837 			break;
1838 		}
1839 
1840 		rspq_next(rspq);
1841 		budget_left--;
1842 	}
1843 
1844 	/*
1845 	 * If this is a Response Queue with an associated Free List and
1846 	 * at least two Egress Queue units available in the Free List
1847 	 * for new buffer pointers, refill the Free List.
1848 	 */
1849 	if (rspq->offset >= 0 &&
1850 	    rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1851 		__refill_fl(rspq->adapter, &rxq->fl);
1852 	return budget - budget_left;
1853 }
1854 
1855 /**
1856  *	napi_rx_handler - the NAPI handler for RX processing
1857  *	@napi: the napi instance
1858  *	@budget: how many packets we can process in this round
1859  *
1860  *	Handler for new data events when using NAPI.  This does not need any
1861  *	locking or protection from interrupts as data interrupts are off at
1862  *	this point and other adapter interrupts do not interfere (the latter
1863  *	in not a concern at all with MSI-X as non-data interrupts then have
1864  *	a separate handler).
1865  */
1866 static int napi_rx_handler(struct napi_struct *napi, int budget)
1867 {
1868 	unsigned int intr_params;
1869 	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1870 	int work_done = process_responses(rspq, budget);
1871 	u32 val;
1872 
1873 	if (likely(work_done < budget)) {
1874 		napi_complete(napi);
1875 		intr_params = rspq->next_intr_params;
1876 		rspq->next_intr_params = rspq->intr_params;
1877 	} else
1878 		intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1879 
1880 	if (unlikely(work_done == 0))
1881 		rspq->unhandled_irqs++;
1882 
1883 	val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1884 	if (is_t4(rspq->adapter->params.chip)) {
1885 		t4_write_reg(rspq->adapter,
1886 			     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1887 			     val | INGRESSQID_V((u32)rspq->cntxt_id));
1888 	} else {
1889 		writel(val | INGRESSQID_V(rspq->bar2_qid),
1890 		       rspq->bar2_addr + SGE_UDB_GTS);
1891 		wmb();
1892 	}
1893 	return work_done;
1894 }
1895 
1896 /*
1897  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1898  * (i.e., response queue serviced by NAPI polling).
1899  */
1900 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1901 {
1902 	struct sge_rspq *rspq = cookie;
1903 
1904 	napi_schedule(&rspq->napi);
1905 	return IRQ_HANDLED;
1906 }
1907 
1908 /*
1909  * Process the indirect interrupt entries in the interrupt queue and kick off
1910  * NAPI for each queue that has generated an entry.
1911  */
1912 static unsigned int process_intrq(struct adapter *adapter)
1913 {
1914 	struct sge *s = &adapter->sge;
1915 	struct sge_rspq *intrq = &s->intrq;
1916 	unsigned int work_done;
1917 	u32 val;
1918 
1919 	spin_lock(&adapter->sge.intrq_lock);
1920 	for (work_done = 0; ; work_done++) {
1921 		const struct rsp_ctrl *rc;
1922 		unsigned int qid, iq_idx;
1923 		struct sge_rspq *rspq;
1924 
1925 		/*
1926 		 * Grab the next response from the interrupt queue and bail
1927 		 * out if it's not a new response.
1928 		 */
1929 		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1930 		if (!is_new_response(rc, intrq))
1931 			break;
1932 
1933 		/*
1934 		 * If the response isn't a forwarded interrupt message issue a
1935 		 * error and go on to the next response message.  This should
1936 		 * never happen ...
1937 		 */
1938 		rmb();
1939 		if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1940 			dev_err(adapter->pdev_dev,
1941 				"Unexpected INTRQ response type %d\n",
1942 				RSPD_TYPE(rc->type_gen));
1943 			continue;
1944 		}
1945 
1946 		/*
1947 		 * Extract the Queue ID from the interrupt message and perform
1948 		 * sanity checking to make sure it really refers to one of our
1949 		 * Ingress Queues which is active and matches the queue's ID.
1950 		 * None of these error conditions should ever happen so we may
1951 		 * want to either make them fatal and/or conditionalized under
1952 		 * DEBUG.
1953 		 */
1954 		qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1955 		iq_idx = IQ_IDX(s, qid);
1956 		if (unlikely(iq_idx >= MAX_INGQ)) {
1957 			dev_err(adapter->pdev_dev,
1958 				"Ingress QID %d out of range\n", qid);
1959 			continue;
1960 		}
1961 		rspq = s->ingr_map[iq_idx];
1962 		if (unlikely(rspq == NULL)) {
1963 			dev_err(adapter->pdev_dev,
1964 				"Ingress QID %d RSPQ=NULL\n", qid);
1965 			continue;
1966 		}
1967 		if (unlikely(rspq->abs_id != qid)) {
1968 			dev_err(adapter->pdev_dev,
1969 				"Ingress QID %d refers to RSPQ %d\n",
1970 				qid, rspq->abs_id);
1971 			continue;
1972 		}
1973 
1974 		/*
1975 		 * Schedule NAPI processing on the indicated Response Queue
1976 		 * and move on to the next entry in the Forwarded Interrupt
1977 		 * Queue.
1978 		 */
1979 		napi_schedule(&rspq->napi);
1980 		rspq_next(intrq);
1981 	}
1982 
1983 	val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
1984 	if (is_t4(adapter->params.chip))
1985 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1986 			     val | INGRESSQID_V(intrq->cntxt_id));
1987 	else {
1988 		writel(val | INGRESSQID_V(intrq->bar2_qid),
1989 		       intrq->bar2_addr + SGE_UDB_GTS);
1990 		wmb();
1991 	}
1992 
1993 	spin_unlock(&adapter->sge.intrq_lock);
1994 
1995 	return work_done;
1996 }
1997 
1998 /*
1999  * The MSI interrupt handler handles data events from SGE response queues as
2000  * well as error and other async events as they all use the same MSI vector.
2001  */
2002 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2003 {
2004 	struct adapter *adapter = cookie;
2005 
2006 	process_intrq(adapter);
2007 	return IRQ_HANDLED;
2008 }
2009 
2010 /**
2011  *	t4vf_intr_handler - select the top-level interrupt handler
2012  *	@adapter: the adapter
2013  *
2014  *	Selects the top-level interrupt handler based on the type of interrupts
2015  *	(MSI-X or MSI).
2016  */
2017 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2018 {
2019 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2020 	if (adapter->flags & USING_MSIX)
2021 		return t4vf_sge_intr_msix;
2022 	else
2023 		return t4vf_intr_msi;
2024 }
2025 
2026 /**
2027  *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2028  *	@data: the adapter
2029  *
2030  *	Runs periodically from a timer to perform maintenance of SGE RX queues.
2031  *
2032  *	a) Replenishes RX queues that have run out due to memory shortage.
2033  *	Normally new RX buffers are added when existing ones are consumed but
2034  *	when out of memory a queue can become empty.  We schedule NAPI to do
2035  *	the actual refill.
2036  */
2037 static void sge_rx_timer_cb(unsigned long data)
2038 {
2039 	struct adapter *adapter = (struct adapter *)data;
2040 	struct sge *s = &adapter->sge;
2041 	unsigned int i;
2042 
2043 	/*
2044 	 * Scan the "Starving Free Lists" flag array looking for any Free
2045 	 * Lists in need of more free buffers.  If we find one and it's not
2046 	 * being actively polled, then bump its "starving" counter and attempt
2047 	 * to refill it.  If we're successful in adding enough buffers to push
2048 	 * the Free List over the starving threshold, then we can clear its
2049 	 * "starving" status.
2050 	 */
2051 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2052 		unsigned long m;
2053 
2054 		for (m = s->starving_fl[i]; m; m &= m - 1) {
2055 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2056 			struct sge_fl *fl = s->egr_map[id];
2057 
2058 			clear_bit(id, s->starving_fl);
2059 			smp_mb__after_atomic();
2060 
2061 			/*
2062 			 * Since we are accessing fl without a lock there's a
2063 			 * small probability of a false positive where we
2064 			 * schedule napi but the FL is no longer starving.
2065 			 * No biggie.
2066 			 */
2067 			if (fl_starving(adapter, fl)) {
2068 				struct sge_eth_rxq *rxq;
2069 
2070 				rxq = container_of(fl, struct sge_eth_rxq, fl);
2071 				if (napi_reschedule(&rxq->rspq.napi))
2072 					fl->starving++;
2073 				else
2074 					set_bit(id, s->starving_fl);
2075 			}
2076 		}
2077 	}
2078 
2079 	/*
2080 	 * Reschedule the next scan for starving Free Lists ...
2081 	 */
2082 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2083 }
2084 
2085 /**
2086  *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2087  *	@data: the adapter
2088  *
2089  *	Runs periodically from a timer to perform maintenance of SGE TX queues.
2090  *
2091  *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
2092  *	packets are cleaned up by new Tx packets, this timer cleans up packets
2093  *	when no new packets are being submitted.  This is essential for pktgen,
2094  *	at least.
2095  */
2096 static void sge_tx_timer_cb(unsigned long data)
2097 {
2098 	struct adapter *adapter = (struct adapter *)data;
2099 	struct sge *s = &adapter->sge;
2100 	unsigned int i, budget;
2101 
2102 	budget = MAX_TIMER_TX_RECLAIM;
2103 	i = s->ethtxq_rover;
2104 	do {
2105 		struct sge_eth_txq *txq = &s->ethtxq[i];
2106 
2107 		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2108 			int avail = reclaimable(&txq->q);
2109 
2110 			if (avail > budget)
2111 				avail = budget;
2112 
2113 			free_tx_desc(adapter, &txq->q, avail, true);
2114 			txq->q.in_use -= avail;
2115 			__netif_tx_unlock(txq->txq);
2116 
2117 			budget -= avail;
2118 			if (!budget)
2119 				break;
2120 		}
2121 
2122 		i++;
2123 		if (i >= s->ethqsets)
2124 			i = 0;
2125 	} while (i != s->ethtxq_rover);
2126 	s->ethtxq_rover = i;
2127 
2128 	/*
2129 	 * If we found too many reclaimable packets schedule a timer in the
2130 	 * near future to continue where we left off.  Otherwise the next timer
2131 	 * will be at its normal interval.
2132 	 */
2133 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2134 }
2135 
2136 /**
2137  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
2138  *	@adapter: the adapter
2139  *	@qid: the SGE Queue ID
2140  *	@qtype: the SGE Queue Type (Egress or Ingress)
2141  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2142  *
2143  *	Returns the BAR2 address for the SGE Queue Registers associated with
2144  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2145  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2146  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2147  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
2148  */
2149 static void __iomem *bar2_address(struct adapter *adapter,
2150 				  unsigned int qid,
2151 				  enum t4_bar2_qtype qtype,
2152 				  unsigned int *pbar2_qid)
2153 {
2154 	u64 bar2_qoffset;
2155 	int ret;
2156 
2157 	ret = t4_bar2_sge_qregs(adapter, qid, qtype,
2158 				&bar2_qoffset, pbar2_qid);
2159 	if (ret)
2160 		return NULL;
2161 
2162 	return adapter->bar2 + bar2_qoffset;
2163 }
2164 
2165 /**
2166  *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2167  *	@adapter: the adapter
2168  *	@rspq: pointer to to the new rxq's Response Queue to be filled in
2169  *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2170  *	@dev: the network device associated with the new rspq
2171  *	@intr_dest: MSI-X vector index (overriden in MSI mode)
2172  *	@fl: pointer to the new rxq's Free List to be filled in
2173  *	@hnd: the interrupt handler to invoke for the rspq
2174  */
2175 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2176 		       bool iqasynch, struct net_device *dev,
2177 		       int intr_dest,
2178 		       struct sge_fl *fl, rspq_handler_t hnd)
2179 {
2180 	struct sge *s = &adapter->sge;
2181 	struct port_info *pi = netdev_priv(dev);
2182 	struct fw_iq_cmd cmd, rpl;
2183 	int ret, iqandst, flsz = 0;
2184 
2185 	/*
2186 	 * If we're using MSI interrupts and we're not initializing the
2187 	 * Forwarded Interrupt Queue itself, then set up this queue for
2188 	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2189 	 * the Forwarded Interrupt Queue must be set up before any other
2190 	 * ingress queue ...
2191 	 */
2192 	if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2193 		iqandst = SGE_INTRDST_IQ;
2194 		intr_dest = adapter->sge.intrq.abs_id;
2195 	} else
2196 		iqandst = SGE_INTRDST_PCI;
2197 
2198 	/*
2199 	 * Allocate the hardware ring for the Response Queue.  The size needs
2200 	 * to be a multiple of 16 which includes the mandatory status entry
2201 	 * (regardless of whether the Status Page capabilities are enabled or
2202 	 * not).
2203 	 */
2204 	rspq->size = roundup(rspq->size, 16);
2205 	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2206 				0, &rspq->phys_addr, NULL, 0);
2207 	if (!rspq->desc)
2208 		return -ENOMEM;
2209 
2210 	/*
2211 	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
2212 	 * be in t4vf_hw.c but there are so many parameters and dependencies
2213 	 * on our Linux SGE state that we would end up having to pass tons of
2214 	 * parameters.  We'll have to think about how this might be migrated
2215 	 * into OS-independent common code ...
2216 	 */
2217 	memset(&cmd, 0, sizeof(cmd));
2218 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2219 				    FW_CMD_REQUEST_F |
2220 				    FW_CMD_WRITE_F |
2221 				    FW_CMD_EXEC_F);
2222 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2223 					 FW_IQ_CMD_IQSTART_F |
2224 					 FW_LEN16(cmd));
2225 	cmd.type_to_iqandstindex =
2226 		cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2227 			    FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2228 			    FW_IQ_CMD_VIID_V(pi->viid) |
2229 			    FW_IQ_CMD_IQANDST_V(iqandst) |
2230 			    FW_IQ_CMD_IQANUS_V(1) |
2231 			    FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2232 			    FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2233 	cmd.iqdroprss_to_iqesize =
2234 		cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2235 			    FW_IQ_CMD_IQGTSMODE_F |
2236 			    FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2237 			    FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2238 	cmd.iqsize = cpu_to_be16(rspq->size);
2239 	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2240 
2241 	if (fl) {
2242 		/*
2243 		 * Allocate the ring for the hardware free list (with space
2244 		 * for its status page) along with the associated software
2245 		 * descriptor ring.  The free list size needs to be a multiple
2246 		 * of the Egress Queue Unit.
2247 		 */
2248 		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2249 		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2250 				      sizeof(__be64), sizeof(struct rx_sw_desc),
2251 				      &fl->addr, &fl->sdesc, s->stat_len);
2252 		if (!fl->desc) {
2253 			ret = -ENOMEM;
2254 			goto err;
2255 		}
2256 
2257 		/*
2258 		 * Calculate the size of the hardware free list ring plus
2259 		 * Status Page (which the SGE will place after the end of the
2260 		 * free list ring) in Egress Queue Units.
2261 		 */
2262 		flsz = (fl->size / FL_PER_EQ_UNIT +
2263 			s->stat_len / EQ_UNIT);
2264 
2265 		/*
2266 		 * Fill in all the relevant firmware Ingress Queue Command
2267 		 * fields for the free list.
2268 		 */
2269 		cmd.iqns_to_fl0congen =
2270 			cpu_to_be32(
2271 				FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2272 				FW_IQ_CMD_FL0PACKEN_F |
2273 				FW_IQ_CMD_FL0PADEN_F);
2274 		cmd.fl0dcaen_to_fl0cidxfthresh =
2275 			cpu_to_be16(
2276 				FW_IQ_CMD_FL0FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2277 				FW_IQ_CMD_FL0FBMAX_V(SGE_FETCHBURSTMAX_512B));
2278 		cmd.fl0size = cpu_to_be16(flsz);
2279 		cmd.fl0addr = cpu_to_be64(fl->addr);
2280 	}
2281 
2282 	/*
2283 	 * Issue the firmware Ingress Queue Command and extract the results if
2284 	 * it completes successfully.
2285 	 */
2286 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2287 	if (ret)
2288 		goto err;
2289 
2290 	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2291 	rspq->cur_desc = rspq->desc;
2292 	rspq->cidx = 0;
2293 	rspq->gen = 1;
2294 	rspq->next_intr_params = rspq->intr_params;
2295 	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2296 	rspq->bar2_addr = bar2_address(adapter,
2297 				       rspq->cntxt_id,
2298 				       T4_BAR2_QTYPE_INGRESS,
2299 				       &rspq->bar2_qid);
2300 	rspq->abs_id = be16_to_cpu(rpl.physiqid);
2301 	rspq->size--;			/* subtract status entry */
2302 	rspq->adapter = adapter;
2303 	rspq->netdev = dev;
2304 	rspq->handler = hnd;
2305 
2306 	/* set offset to -1 to distinguish ingress queues without FL */
2307 	rspq->offset = fl ? 0 : -1;
2308 
2309 	if (fl) {
2310 		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2311 		fl->avail = 0;
2312 		fl->pend_cred = 0;
2313 		fl->pidx = 0;
2314 		fl->cidx = 0;
2315 		fl->alloc_failed = 0;
2316 		fl->large_alloc_failed = 0;
2317 		fl->starving = 0;
2318 
2319 		/* Note, we must initialize the BAR2 Free List User Doorbell
2320 		 * information before refilling the Free List!
2321 		 */
2322 		fl->bar2_addr = bar2_address(adapter,
2323 					     fl->cntxt_id,
2324 					     T4_BAR2_QTYPE_EGRESS,
2325 					     &fl->bar2_qid);
2326 
2327 		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2328 	}
2329 
2330 	return 0;
2331 
2332 err:
2333 	/*
2334 	 * An error occurred.  Clean up our partial allocation state and
2335 	 * return the error.
2336 	 */
2337 	if (rspq->desc) {
2338 		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2339 				  rspq->desc, rspq->phys_addr);
2340 		rspq->desc = NULL;
2341 	}
2342 	if (fl && fl->desc) {
2343 		kfree(fl->sdesc);
2344 		fl->sdesc = NULL;
2345 		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2346 				  fl->desc, fl->addr);
2347 		fl->desc = NULL;
2348 	}
2349 	return ret;
2350 }
2351 
2352 /**
2353  *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2354  *	@adapter: the adapter
2355  *	@txq: pointer to the new txq to be filled in
2356  *	@devq: the network TX queue associated with the new txq
2357  *	@iqid: the relative ingress queue ID to which events relating to
2358  *		the new txq should be directed
2359  */
2360 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2361 			   struct net_device *dev, struct netdev_queue *devq,
2362 			   unsigned int iqid)
2363 {
2364 	struct sge *s = &adapter->sge;
2365 	int ret, nentries;
2366 	struct fw_eq_eth_cmd cmd, rpl;
2367 	struct port_info *pi = netdev_priv(dev);
2368 
2369 	/*
2370 	 * Calculate the size of the hardware TX Queue (including the Status
2371 	 * Page on the end of the TX Queue) in units of TX Descriptors.
2372 	 */
2373 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2374 
2375 	/*
2376 	 * Allocate the hardware ring for the TX ring (with space for its
2377 	 * status page) along with the associated software descriptor ring.
2378 	 */
2379 	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2380 				 sizeof(struct tx_desc),
2381 				 sizeof(struct tx_sw_desc),
2382 				 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2383 	if (!txq->q.desc)
2384 		return -ENOMEM;
2385 
2386 	/*
2387 	 * Fill in the Egress Queue Command.  Note: As with the direct use of
2388 	 * the firmware Ingress Queue COmmand above in our RXQ allocation
2389 	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2390 	 * have to see if there's some reasonable way to parameterize it
2391 	 * into the common code ...
2392 	 */
2393 	memset(&cmd, 0, sizeof(cmd));
2394 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2395 				    FW_CMD_REQUEST_F |
2396 				    FW_CMD_WRITE_F |
2397 				    FW_CMD_EXEC_F);
2398 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2399 					 FW_EQ_ETH_CMD_EQSTART_F |
2400 					 FW_LEN16(cmd));
2401 	cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2402 				   FW_EQ_ETH_CMD_VIID_V(pi->viid));
2403 	cmd.fetchszm_to_iqid =
2404 		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2405 			    FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2406 			    FW_EQ_ETH_CMD_IQID_V(iqid));
2407 	cmd.dcaen_to_eqsize =
2408 		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2409 			    FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) |
2410 			    FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2411 						SGE_CIDXFLUSHTHRESH_32) |
2412 			    FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2413 	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2414 
2415 	/*
2416 	 * Issue the firmware Egress Queue Command and extract the results if
2417 	 * it completes successfully.
2418 	 */
2419 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2420 	if (ret) {
2421 		/*
2422 		 * The girmware Ingress Queue Command failed for some reason.
2423 		 * Free up our partial allocation state and return the error.
2424 		 */
2425 		kfree(txq->q.sdesc);
2426 		txq->q.sdesc = NULL;
2427 		dma_free_coherent(adapter->pdev_dev,
2428 				  nentries * sizeof(struct tx_desc),
2429 				  txq->q.desc, txq->q.phys_addr);
2430 		txq->q.desc = NULL;
2431 		return ret;
2432 	}
2433 
2434 	txq->q.in_use = 0;
2435 	txq->q.cidx = 0;
2436 	txq->q.pidx = 0;
2437 	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2438 	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2439 	txq->q.bar2_addr = bar2_address(adapter,
2440 					txq->q.cntxt_id,
2441 					T4_BAR2_QTYPE_EGRESS,
2442 					&txq->q.bar2_qid);
2443 	txq->q.abs_id =
2444 		FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2445 	txq->txq = devq;
2446 	txq->tso = 0;
2447 	txq->tx_cso = 0;
2448 	txq->vlan_ins = 0;
2449 	txq->q.stops = 0;
2450 	txq->q.restarts = 0;
2451 	txq->mapping_err = 0;
2452 	return 0;
2453 }
2454 
2455 /*
2456  * Free the DMA map resources associated with a TX queue.
2457  */
2458 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2459 {
2460 	struct sge *s = &adapter->sge;
2461 
2462 	dma_free_coherent(adapter->pdev_dev,
2463 			  tq->size * sizeof(*tq->desc) + s->stat_len,
2464 			  tq->desc, tq->phys_addr);
2465 	tq->cntxt_id = 0;
2466 	tq->sdesc = NULL;
2467 	tq->desc = NULL;
2468 }
2469 
2470 /*
2471  * Free the resources associated with a response queue (possibly including a
2472  * free list).
2473  */
2474 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2475 			 struct sge_fl *fl)
2476 {
2477 	struct sge *s = &adapter->sge;
2478 	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2479 
2480 	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2481 		     rspq->cntxt_id, flid, 0xffff);
2482 	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2483 			  rspq->desc, rspq->phys_addr);
2484 	netif_napi_del(&rspq->napi);
2485 	rspq->netdev = NULL;
2486 	rspq->cntxt_id = 0;
2487 	rspq->abs_id = 0;
2488 	rspq->desc = NULL;
2489 
2490 	if (fl) {
2491 		free_rx_bufs(adapter, fl, fl->avail);
2492 		dma_free_coherent(adapter->pdev_dev,
2493 				  fl->size * sizeof(*fl->desc) + s->stat_len,
2494 				  fl->desc, fl->addr);
2495 		kfree(fl->sdesc);
2496 		fl->sdesc = NULL;
2497 		fl->cntxt_id = 0;
2498 		fl->desc = NULL;
2499 	}
2500 }
2501 
2502 /**
2503  *	t4vf_free_sge_resources - free SGE resources
2504  *	@adapter: the adapter
2505  *
2506  *	Frees resources used by the SGE queue sets.
2507  */
2508 void t4vf_free_sge_resources(struct adapter *adapter)
2509 {
2510 	struct sge *s = &adapter->sge;
2511 	struct sge_eth_rxq *rxq = s->ethrxq;
2512 	struct sge_eth_txq *txq = s->ethtxq;
2513 	struct sge_rspq *evtq = &s->fw_evtq;
2514 	struct sge_rspq *intrq = &s->intrq;
2515 	int qs;
2516 
2517 	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2518 		if (rxq->rspq.desc)
2519 			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2520 		if (txq->q.desc) {
2521 			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2522 			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2523 			kfree(txq->q.sdesc);
2524 			free_txq(adapter, &txq->q);
2525 		}
2526 	}
2527 	if (evtq->desc)
2528 		free_rspq_fl(adapter, evtq, NULL);
2529 	if (intrq->desc)
2530 		free_rspq_fl(adapter, intrq, NULL);
2531 }
2532 
2533 /**
2534  *	t4vf_sge_start - enable SGE operation
2535  *	@adapter: the adapter
2536  *
2537  *	Start tasklets and timers associated with the DMA engine.
2538  */
2539 void t4vf_sge_start(struct adapter *adapter)
2540 {
2541 	adapter->sge.ethtxq_rover = 0;
2542 	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2543 	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2544 }
2545 
2546 /**
2547  *	t4vf_sge_stop - disable SGE operation
2548  *	@adapter: the adapter
2549  *
2550  *	Stop tasklets and timers associated with the DMA engine.  Note that
2551  *	this is effective only if measures have been taken to disable any HW
2552  *	events that may restart them.
2553  */
2554 void t4vf_sge_stop(struct adapter *adapter)
2555 {
2556 	struct sge *s = &adapter->sge;
2557 
2558 	if (s->rx_timer.function)
2559 		del_timer_sync(&s->rx_timer);
2560 	if (s->tx_timer.function)
2561 		del_timer_sync(&s->tx_timer);
2562 }
2563 
2564 /**
2565  *	t4vf_sge_init - initialize SGE
2566  *	@adapter: the adapter
2567  *
2568  *	Performs SGE initialization needed every time after a chip reset.
2569  *	We do not initialize any of the queue sets here, instead the driver
2570  *	top-level must request those individually.  We also do not enable DMA
2571  *	here, that should be done after the queues have been set up.
2572  */
2573 int t4vf_sge_init(struct adapter *adapter)
2574 {
2575 	struct sge_params *sge_params = &adapter->params.sge;
2576 	u32 fl0 = sge_params->sge_fl_buffer_size[0];
2577 	u32 fl1 = sge_params->sge_fl_buffer_size[1];
2578 	struct sge *s = &adapter->sge;
2579 	unsigned int ingpadboundary, ingpackboundary;
2580 
2581 	/*
2582 	 * Start by vetting the basic SGE parameters which have been set up by
2583 	 * the Physical Function Driver.  Ideally we should be able to deal
2584 	 * with _any_ configuration.  Practice is different ...
2585 	 */
2586 	if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2587 		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2588 			fl0, fl1);
2589 		return -EINVAL;
2590 	}
2591 	if ((sge_params->sge_control & RXPKTCPLMODE_F) == 0) {
2592 		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2593 		return -EINVAL;
2594 	}
2595 
2596 	/*
2597 	 * Now translate the adapter parameters into our internal forms.
2598 	 */
2599 	if (fl1)
2600 		s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
2601 	s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2602 			? 128 : 64);
2603 	s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2604 
2605 	/* T4 uses a single control field to specify both the PCIe Padding and
2606 	 * Packing Boundary.  T5 introduced the ability to specify these
2607 	 * separately.  The actual Ingress Packet Data alignment boundary
2608 	 * within Packed Buffer Mode is the maximum of these two
2609 	 * specifications.  (Note that it makes no real practical sense to
2610 	 * have the Pading Boudary be larger than the Packing Boundary but you
2611 	 * could set the chip up that way and, in fact, legacy T4 code would
2612 	 * end doing this because it would initialize the Padding Boundary and
2613 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
2614 	 */
2615 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_params->sge_control) +
2616 			       INGPADBOUNDARY_SHIFT_X);
2617 	if (is_t4(adapter->params.chip)) {
2618 		s->fl_align = ingpadboundary;
2619 	} else {
2620 		/* T5 has a different interpretation of one of the PCIe Packing
2621 		 * Boundary values.
2622 		 */
2623 		ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2);
2624 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2625 			ingpackboundary = 16;
2626 		else
2627 			ingpackboundary = 1 << (ingpackboundary +
2628 						INGPACKBOUNDARY_SHIFT_X);
2629 
2630 		s->fl_align = max(ingpadboundary, ingpackboundary);
2631 	}
2632 
2633 	/* A FL with <= fl_starve_thres buffers is starving and a periodic
2634 	 * timer will attempt to refill it.  This needs to be larger than the
2635 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2636 	 * stuck waiting for new packets while the SGE is waiting for us to
2637 	 * give it more Free List entries.  (Note that the SGE's Egress
2638 	 * Congestion Threshold is in units of 2 Free List pointers.)
2639 	 */
2640 	s->fl_starve_thres
2641 		= EGRTHRESHOLD_G(sge_params->sge_congestion_control)*2 + 1;
2642 
2643 	/*
2644 	 * Set up tasklet timers.
2645 	 */
2646 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2647 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2648 
2649 	/*
2650 	 * Initialize Forwarded Interrupt Queue lock.
2651 	 */
2652 	spin_lock_init(&s->intrq_lock);
2653 
2654 	return 0;
2655 }
2656