xref: /linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c (revision fa84cf094ef9667e2b91c104b0a788fd1896f482)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 #include <net/udp_tunnel.h>
69 
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_ptp.h"
87 #include "cxgb4_cudbg.h"
88 
89 char cxgb4_driver_name[] = KBUILD_MODNAME;
90 
91 #ifdef DRV_VERSION
92 #undef DRV_VERSION
93 #endif
94 #define DRV_VERSION "2.0.0-ko"
95 const char cxgb4_driver_version[] = DRV_VERSION;
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97 
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101 
102 /* Macros needed to support the PCI Device ID Table ...
103  */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105 	static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107 
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109 
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111  * called for both.
112  */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114 
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117 
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119 		{ 0, } \
120 	}
121 
122 #include "t4_pci_id_tbl.h"
123 
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134 
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_VERSION(DRV_VERSION);
139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
140 MODULE_FIRMWARE(FW4_FNAME);
141 MODULE_FIRMWARE(FW5_FNAME);
142 MODULE_FIRMWARE(FW6_FNAME);
143 
144 /*
145  * The driver uses the best interrupt scheme available on a platform in the
146  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
147  * of these schemes the driver may consider as follows:
148  *
149  * msi = 2: choose from among all three options
150  * msi = 1: only consider MSI and INTx interrupts
151  * msi = 0: force INTx interrupts
152  */
153 static int msi = 2;
154 
155 module_param(msi, int, 0644);
156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
157 
158 /*
159  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
160  * offset by 2 bytes in order to have the IP headers line up on 4-byte
161  * boundaries.  This is a requirement for many architectures which will throw
162  * a machine check fault if an attempt is made to access one of the 4-byte IP
163  * header fields on a non-4-byte boundary.  And it's a major performance issue
164  * even on some architectures which allow it like some implementations of the
165  * x86 ISA.  However, some architectures don't mind this and for some very
166  * edge-case performance sensitive applications (like forwarding large volumes
167  * of small packets), setting this DMA offset to 0 will decrease the number of
168  * PCI-E Bus transfers enough to measurably affect performance.
169  */
170 static int rx_dma_offset = 2;
171 
172 /* TX Queue select used to determine what algorithm to use for selecting TX
173  * queue. Select between the kernel provided function (select_queue=0) or user
174  * cxgb_select_queue function (select_queue=1)
175  *
176  * Default: select_queue=0
177  */
178 static int select_queue;
179 module_param(select_queue, int, 0644);
180 MODULE_PARM_DESC(select_queue,
181 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
182 
183 static struct dentry *cxgb4_debugfs_root;
184 
185 LIST_HEAD(adapter_list);
186 DEFINE_MUTEX(uld_mutex);
187 
188 static void link_report(struct net_device *dev)
189 {
190 	if (!netif_carrier_ok(dev))
191 		netdev_info(dev, "link down\n");
192 	else {
193 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
194 
195 		const char *s;
196 		const struct port_info *p = netdev_priv(dev);
197 
198 		switch (p->link_cfg.speed) {
199 		case 100:
200 			s = "100Mbps";
201 			break;
202 		case 1000:
203 			s = "1Gbps";
204 			break;
205 		case 10000:
206 			s = "10Gbps";
207 			break;
208 		case 25000:
209 			s = "25Gbps";
210 			break;
211 		case 40000:
212 			s = "40Gbps";
213 			break;
214 		case 50000:
215 			s = "50Gbps";
216 			break;
217 		case 100000:
218 			s = "100Gbps";
219 			break;
220 		default:
221 			pr_info("%s: unsupported speed: %d\n",
222 				dev->name, p->link_cfg.speed);
223 			return;
224 		}
225 
226 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
227 			    fc[p->link_cfg.fc]);
228 	}
229 }
230 
231 #ifdef CONFIG_CHELSIO_T4_DCB
232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
234 {
235 	struct port_info *pi = netdev_priv(dev);
236 	struct adapter *adap = pi->adapter;
237 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
238 	int i;
239 
240 	/* We use a simple mapping of Port TX Queue Index to DCB
241 	 * Priority when we're enabling DCB.
242 	 */
243 	for (i = 0; i < pi->nqsets; i++, txq++) {
244 		u32 name, value;
245 		int err;
246 
247 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
248 			FW_PARAMS_PARAM_X_V(
249 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
250 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
251 		value = enable ? i : 0xffffffff;
252 
253 		/* Since we can be called while atomic (from "interrupt
254 		 * level") we need to issue the Set Parameters Commannd
255 		 * without sleeping (timeout < 0).
256 		 */
257 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
258 					    &name, &value,
259 					    -FW_CMD_MAX_TIMEOUT);
260 
261 		if (err)
262 			dev_err(adap->pdev_dev,
263 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
264 				enable ? "set" : "unset", pi->port_id, i, -err);
265 		else
266 			txq->dcb_prio = value;
267 	}
268 }
269 
270 static int cxgb4_dcb_enabled(const struct net_device *dev)
271 {
272 	struct port_info *pi = netdev_priv(dev);
273 
274 	if (!pi->dcb.enabled)
275 		return 0;
276 
277 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
278 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
279 }
280 #endif /* CONFIG_CHELSIO_T4_DCB */
281 
282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
283 {
284 	struct net_device *dev = adapter->port[port_id];
285 
286 	/* Skip changes from disabled ports. */
287 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
288 		if (link_stat)
289 			netif_carrier_on(dev);
290 		else {
291 #ifdef CONFIG_CHELSIO_T4_DCB
292 			if (cxgb4_dcb_enabled(dev)) {
293 				cxgb4_dcb_reset(dev);
294 				dcb_tx_queue_prio_enable(dev, false);
295 			}
296 #endif /* CONFIG_CHELSIO_T4_DCB */
297 			netif_carrier_off(dev);
298 		}
299 
300 		link_report(dev);
301 	}
302 }
303 
304 void t4_os_portmod_changed(struct adapter *adap, int port_id)
305 {
306 	static const char *mod_str[] = {
307 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
308 	};
309 
310 	struct net_device *dev = adap->port[port_id];
311 	struct port_info *pi = netdev_priv(dev);
312 
313 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
314 		netdev_info(dev, "port module unplugged\n");
315 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
316 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
317 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
318 		netdev_info(dev, "%s: unsupported port module inserted\n",
319 			    dev->name);
320 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
321 		netdev_info(dev, "%s: unknown port module inserted\n",
322 			    dev->name);
323 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
324 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
325 	else
326 		netdev_info(dev, "%s: unknown module type %d inserted\n",
327 			    dev->name, pi->mod_type);
328 
329 	/* If the interface is running, then we'll need any "sticky" Link
330 	 * Parameters redone with a new Transceiver Module.
331 	 */
332 	pi->link_cfg.redo_l1cfg = netif_running(dev);
333 }
334 
335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
336 module_param(dbfifo_int_thresh, int, 0644);
337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
338 
339 /*
340  * usecs to sleep while draining the dbfifo
341  */
342 static int dbfifo_drain_delay = 1000;
343 module_param(dbfifo_drain_delay, int, 0644);
344 MODULE_PARM_DESC(dbfifo_drain_delay,
345 		 "usecs to sleep while draining the dbfifo");
346 
347 static inline int cxgb4_set_addr_hash(struct port_info *pi)
348 {
349 	struct adapter *adap = pi->adapter;
350 	u64 vec = 0;
351 	bool ucast = false;
352 	struct hash_mac_addr *entry;
353 
354 	/* Calculate the hash vector for the updated list and program it */
355 	list_for_each_entry(entry, &adap->mac_hlist, list) {
356 		ucast |= is_unicast_ether_addr(entry->addr);
357 		vec |= (1ULL << hash_mac_addr(entry->addr));
358 	}
359 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
360 				vec, false);
361 }
362 
363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
364 {
365 	struct port_info *pi = netdev_priv(netdev);
366 	struct adapter *adap = pi->adapter;
367 	int ret;
368 	u64 mhash = 0;
369 	u64 uhash = 0;
370 	bool free = false;
371 	bool ucast = is_unicast_ether_addr(mac_addr);
372 	const u8 *maclist[1] = {mac_addr};
373 	struct hash_mac_addr *new_entry;
374 
375 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
376 				NULL, ucast ? &uhash : &mhash, false);
377 	if (ret < 0)
378 		goto out;
379 	/* if hash != 0, then add the addr to hash addr list
380 	 * so on the end we will calculate the hash for the
381 	 * list and program it
382 	 */
383 	if (uhash || mhash) {
384 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
385 		if (!new_entry)
386 			return -ENOMEM;
387 		ether_addr_copy(new_entry->addr, mac_addr);
388 		list_add_tail(&new_entry->list, &adap->mac_hlist);
389 		ret = cxgb4_set_addr_hash(pi);
390 	}
391 out:
392 	return ret < 0 ? ret : 0;
393 }
394 
395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
396 {
397 	struct port_info *pi = netdev_priv(netdev);
398 	struct adapter *adap = pi->adapter;
399 	int ret;
400 	const u8 *maclist[1] = {mac_addr};
401 	struct hash_mac_addr *entry, *tmp;
402 
403 	/* If the MAC address to be removed is in the hash addr
404 	 * list, delete it from the list and update hash vector
405 	 */
406 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
407 		if (ether_addr_equal(entry->addr, mac_addr)) {
408 			list_del(&entry->list);
409 			kfree(entry);
410 			return cxgb4_set_addr_hash(pi);
411 		}
412 	}
413 
414 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
415 	return ret < 0 ? -EINVAL : 0;
416 }
417 
418 /*
419  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
420  * If @mtu is -1 it is left unchanged.
421  */
422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
423 {
424 	struct port_info *pi = netdev_priv(dev);
425 	struct adapter *adapter = pi->adapter;
426 
427 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
428 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
429 
430 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
431 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
432 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
433 			     sleep_ok);
434 }
435 
436 /**
437  *	link_start - enable a port
438  *	@dev: the port to enable
439  *
440  *	Performs the MAC and PHY actions needed to enable a port.
441  */
442 static int link_start(struct net_device *dev)
443 {
444 	int ret;
445 	struct port_info *pi = netdev_priv(dev);
446 	unsigned int mb = pi->adapter->pf;
447 
448 	/*
449 	 * We do not set address filters and promiscuity here, the stack does
450 	 * that step explicitly.
451 	 */
452 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
453 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
454 	if (ret == 0) {
455 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
456 				    pi->xact_addr_filt, dev->dev_addr, true,
457 				    true);
458 		if (ret >= 0) {
459 			pi->xact_addr_filt = ret;
460 			ret = 0;
461 		}
462 	}
463 	if (ret == 0)
464 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
465 				    &pi->link_cfg);
466 	if (ret == 0) {
467 		local_bh_disable();
468 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
469 					  true, CXGB4_DCB_ENABLED);
470 		local_bh_enable();
471 	}
472 
473 	return ret;
474 }
475 
476 #ifdef CONFIG_CHELSIO_T4_DCB
477 /* Handle a Data Center Bridging update message from the firmware. */
478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
479 {
480 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
481 	struct net_device *dev = adap->port[adap->chan_map[port]];
482 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
483 	int new_dcb_enabled;
484 
485 	cxgb4_dcb_handle_fw_update(adap, pcmd);
486 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
487 
488 	/* If the DCB has become enabled or disabled on the port then we're
489 	 * going to need to set up/tear down DCB Priority parameters for the
490 	 * TX Queues associated with the port.
491 	 */
492 	if (new_dcb_enabled != old_dcb_enabled)
493 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
494 }
495 #endif /* CONFIG_CHELSIO_T4_DCB */
496 
497 /* Response queue handler for the FW event queue.
498  */
499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
500 			  const struct pkt_gl *gl)
501 {
502 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
503 
504 	rsp++;                                          /* skip RSS header */
505 
506 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
507 	 */
508 	if (unlikely(opcode == CPL_FW4_MSG &&
509 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
510 		rsp++;
511 		opcode = ((const struct rss_header *)rsp)->opcode;
512 		rsp++;
513 		if (opcode != CPL_SGE_EGR_UPDATE) {
514 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
515 				, opcode);
516 			goto out;
517 		}
518 	}
519 
520 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
521 		const struct cpl_sge_egr_update *p = (void *)rsp;
522 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
523 		struct sge_txq *txq;
524 
525 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
526 		txq->restarts++;
527 		if (txq->q_type == CXGB4_TXQ_ETH) {
528 			struct sge_eth_txq *eq;
529 
530 			eq = container_of(txq, struct sge_eth_txq, q);
531 			netif_tx_wake_queue(eq->txq);
532 		} else {
533 			struct sge_uld_txq *oq;
534 
535 			oq = container_of(txq, struct sge_uld_txq, q);
536 			tasklet_schedule(&oq->qresume_tsk);
537 		}
538 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
539 		const struct cpl_fw6_msg *p = (void *)rsp;
540 
541 #ifdef CONFIG_CHELSIO_T4_DCB
542 		const struct fw_port_cmd *pcmd = (const void *)p->data;
543 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
544 		unsigned int action =
545 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
546 
547 		if (cmd == FW_PORT_CMD &&
548 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
549 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
550 			int port = FW_PORT_CMD_PORTID_G(
551 					be32_to_cpu(pcmd->op_to_portid));
552 			struct net_device *dev;
553 			int dcbxdis, state_input;
554 
555 			dev = q->adap->port[q->adap->chan_map[port]];
556 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
557 				   ? !!(pcmd->u.info.dcbxdis_pkd &
558 					FW_PORT_CMD_DCBXDIS_F)
559 				   : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
560 					FW_PORT_CMD_DCBXDIS32_F));
561 			state_input = (dcbxdis
562 				       ? CXGB4_DCB_INPUT_FW_DISABLED
563 				       : CXGB4_DCB_INPUT_FW_ENABLED);
564 
565 			cxgb4_dcb_state_fsm(dev, state_input);
566 		}
567 
568 		if (cmd == FW_PORT_CMD &&
569 		    action == FW_PORT_ACTION_L2_DCB_CFG)
570 			dcb_rpl(q->adap, pcmd);
571 		else
572 #endif
573 			if (p->type == 0)
574 				t4_handle_fw_rpl(q->adap, p->data);
575 	} else if (opcode == CPL_L2T_WRITE_RPL) {
576 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
577 
578 		do_l2t_write_rpl(q->adap, p);
579 	} else if (opcode == CPL_SMT_WRITE_RPL) {
580 		const struct cpl_smt_write_rpl *p = (void *)rsp;
581 
582 		do_smt_write_rpl(q->adap, p);
583 	} else if (opcode == CPL_SET_TCB_RPL) {
584 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
585 
586 		filter_rpl(q->adap, p);
587 	} else if (opcode == CPL_ACT_OPEN_RPL) {
588 		const struct cpl_act_open_rpl *p = (void *)rsp;
589 
590 		hash_filter_rpl(q->adap, p);
591 	} else if (opcode == CPL_ABORT_RPL_RSS) {
592 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
593 
594 		hash_del_filter_rpl(q->adap, p);
595 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
596 		const struct cpl_srq_table_rpl *p = (void *)rsp;
597 
598 		do_srq_table_rpl(q->adap, p);
599 	} else
600 		dev_err(q->adap->pdev_dev,
601 			"unexpected CPL %#x on FW event queue\n", opcode);
602 out:
603 	return 0;
604 }
605 
606 static void disable_msi(struct adapter *adapter)
607 {
608 	if (adapter->flags & USING_MSIX) {
609 		pci_disable_msix(adapter->pdev);
610 		adapter->flags &= ~USING_MSIX;
611 	} else if (adapter->flags & USING_MSI) {
612 		pci_disable_msi(adapter->pdev);
613 		adapter->flags &= ~USING_MSI;
614 	}
615 }
616 
617 /*
618  * Interrupt handler for non-data events used with MSI-X.
619  */
620 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
621 {
622 	struct adapter *adap = cookie;
623 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
624 
625 	if (v & PFSW_F) {
626 		adap->swintr = 1;
627 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
628 	}
629 	if (adap->flags & MASTER_PF)
630 		t4_slow_intr_handler(adap);
631 	return IRQ_HANDLED;
632 }
633 
634 /*
635  * Name the MSI-X interrupts.
636  */
637 static void name_msix_vecs(struct adapter *adap)
638 {
639 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
640 
641 	/* non-data interrupts */
642 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
643 
644 	/* FW events */
645 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
646 		 adap->port[0]->name);
647 
648 	/* Ethernet queues */
649 	for_each_port(adap, j) {
650 		struct net_device *d = adap->port[j];
651 		const struct port_info *pi = netdev_priv(d);
652 
653 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
654 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
655 				 d->name, i);
656 	}
657 }
658 
659 static int request_msix_queue_irqs(struct adapter *adap)
660 {
661 	struct sge *s = &adap->sge;
662 	int err, ethqidx;
663 	int msi_index = 2;
664 
665 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
666 			  adap->msix_info[1].desc, &s->fw_evtq);
667 	if (err)
668 		return err;
669 
670 	for_each_ethrxq(s, ethqidx) {
671 		err = request_irq(adap->msix_info[msi_index].vec,
672 				  t4_sge_intr_msix, 0,
673 				  adap->msix_info[msi_index].desc,
674 				  &s->ethrxq[ethqidx].rspq);
675 		if (err)
676 			goto unwind;
677 		msi_index++;
678 	}
679 	return 0;
680 
681 unwind:
682 	while (--ethqidx >= 0)
683 		free_irq(adap->msix_info[--msi_index].vec,
684 			 &s->ethrxq[ethqidx].rspq);
685 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
686 	return err;
687 }
688 
689 static void free_msix_queue_irqs(struct adapter *adap)
690 {
691 	int i, msi_index = 2;
692 	struct sge *s = &adap->sge;
693 
694 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
695 	for_each_ethrxq(s, i)
696 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
697 }
698 
699 /**
700  *	cxgb4_write_rss - write the RSS table for a given port
701  *	@pi: the port
702  *	@queues: array of queue indices for RSS
703  *
704  *	Sets up the portion of the HW RSS table for the port's VI to distribute
705  *	packets to the Rx queues in @queues.
706  *	Should never be called before setting up sge eth rx queues
707  */
708 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
709 {
710 	u16 *rss;
711 	int i, err;
712 	struct adapter *adapter = pi->adapter;
713 	const struct sge_eth_rxq *rxq;
714 
715 	rxq = &adapter->sge.ethrxq[pi->first_qset];
716 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
717 	if (!rss)
718 		return -ENOMEM;
719 
720 	/* map the queue indices to queue ids */
721 	for (i = 0; i < pi->rss_size; i++, queues++)
722 		rss[i] = rxq[*queues].rspq.abs_id;
723 
724 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
725 				  pi->rss_size, rss, pi->rss_size);
726 	/* If Tunnel All Lookup isn't specified in the global RSS
727 	 * Configuration, then we need to specify a default Ingress
728 	 * Queue for any ingress packets which aren't hashed.  We'll
729 	 * use our first ingress queue ...
730 	 */
731 	if (!err)
732 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
733 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
734 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
735 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
736 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
737 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
738 				       rss[0]);
739 	kfree(rss);
740 	return err;
741 }
742 
743 /**
744  *	setup_rss - configure RSS
745  *	@adap: the adapter
746  *
747  *	Sets up RSS for each port.
748  */
749 static int setup_rss(struct adapter *adap)
750 {
751 	int i, j, err;
752 
753 	for_each_port(adap, i) {
754 		const struct port_info *pi = adap2pinfo(adap, i);
755 
756 		/* Fill default values with equal distribution */
757 		for (j = 0; j < pi->rss_size; j++)
758 			pi->rss[j] = j % pi->nqsets;
759 
760 		err = cxgb4_write_rss(pi, pi->rss);
761 		if (err)
762 			return err;
763 	}
764 	return 0;
765 }
766 
767 /*
768  * Return the channel of the ingress queue with the given qid.
769  */
770 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
771 {
772 	qid -= p->ingr_start;
773 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
774 }
775 
776 /*
777  * Wait until all NAPI handlers are descheduled.
778  */
779 static void quiesce_rx(struct adapter *adap)
780 {
781 	int i;
782 
783 	for (i = 0; i < adap->sge.ingr_sz; i++) {
784 		struct sge_rspq *q = adap->sge.ingr_map[i];
785 
786 		if (q && q->handler)
787 			napi_disable(&q->napi);
788 	}
789 }
790 
791 /* Disable interrupt and napi handler */
792 static void disable_interrupts(struct adapter *adap)
793 {
794 	if (adap->flags & FULL_INIT_DONE) {
795 		t4_intr_disable(adap);
796 		if (adap->flags & USING_MSIX) {
797 			free_msix_queue_irqs(adap);
798 			free_irq(adap->msix_info[0].vec, adap);
799 		} else {
800 			free_irq(adap->pdev->irq, adap);
801 		}
802 		quiesce_rx(adap);
803 	}
804 }
805 
806 /*
807  * Enable NAPI scheduling and interrupt generation for all Rx queues.
808  */
809 static void enable_rx(struct adapter *adap)
810 {
811 	int i;
812 
813 	for (i = 0; i < adap->sge.ingr_sz; i++) {
814 		struct sge_rspq *q = adap->sge.ingr_map[i];
815 
816 		if (!q)
817 			continue;
818 		if (q->handler)
819 			napi_enable(&q->napi);
820 
821 		/* 0-increment GTS to start the timer and enable interrupts */
822 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
823 			     SEINTARM_V(q->intr_params) |
824 			     INGRESSQID_V(q->cntxt_id));
825 	}
826 }
827 
828 
829 static int setup_fw_sge_queues(struct adapter *adap)
830 {
831 	struct sge *s = &adap->sge;
832 	int err = 0;
833 
834 	bitmap_zero(s->starving_fl, s->egr_sz);
835 	bitmap_zero(s->txq_maperr, s->egr_sz);
836 
837 	if (adap->flags & USING_MSIX)
838 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
839 	else {
840 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
841 				       NULL, NULL, NULL, -1);
842 		if (err)
843 			return err;
844 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
845 	}
846 
847 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
848 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
849 	return err;
850 }
851 
852 /**
853  *	setup_sge_queues - configure SGE Tx/Rx/response queues
854  *	@adap: the adapter
855  *
856  *	Determines how many sets of SGE queues to use and initializes them.
857  *	We support multiple queue sets per port if we have MSI-X, otherwise
858  *	just one queue set per port.
859  */
860 static int setup_sge_queues(struct adapter *adap)
861 {
862 	int err, i, j;
863 	struct sge *s = &adap->sge;
864 	struct sge_uld_rxq_info *rxq_info = NULL;
865 	unsigned int cmplqid = 0;
866 
867 	if (is_uld(adap))
868 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
869 
870 	for_each_port(adap, i) {
871 		struct net_device *dev = adap->port[i];
872 		struct port_info *pi = netdev_priv(dev);
873 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
874 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
875 
876 		for (j = 0; j < pi->nqsets; j++, q++) {
877 			if (adap->msi_idx > 0)
878 				adap->msi_idx++;
879 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
880 					       adap->msi_idx, &q->fl,
881 					       t4_ethrx_handler,
882 					       NULL,
883 					       t4_get_tp_ch_map(adap,
884 								pi->tx_chan));
885 			if (err)
886 				goto freeout;
887 			q->rspq.idx = j;
888 			memset(&q->stats, 0, sizeof(q->stats));
889 		}
890 		for (j = 0; j < pi->nqsets; j++, t++) {
891 			err = t4_sge_alloc_eth_txq(adap, t, dev,
892 					netdev_get_tx_queue(dev, j),
893 					s->fw_evtq.cntxt_id);
894 			if (err)
895 				goto freeout;
896 		}
897 	}
898 
899 	for_each_port(adap, i) {
900 		/* Note that cmplqid below is 0 if we don't
901 		 * have RDMA queues, and that's the right value.
902 		 */
903 		if (rxq_info)
904 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
905 
906 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
907 					    s->fw_evtq.cntxt_id, cmplqid);
908 		if (err)
909 			goto freeout;
910 	}
911 
912 	if (!is_t4(adap->params.chip)) {
913 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
914 					   netdev_get_tx_queue(adap->port[0], 0)
915 					   , s->fw_evtq.cntxt_id);
916 		if (err)
917 			goto freeout;
918 	}
919 
920 	t4_write_reg(adap, is_t4(adap->params.chip) ?
921 				MPS_TRC_RSS_CONTROL_A :
922 				MPS_T5_TRC_RSS_CONTROL_A,
923 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
924 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
925 	return 0;
926 freeout:
927 	t4_free_sge_resources(adap);
928 	return err;
929 }
930 
931 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
932 			     void *accel_priv, select_queue_fallback_t fallback)
933 {
934 	int txq;
935 
936 #ifdef CONFIG_CHELSIO_T4_DCB
937 	/* If a Data Center Bridging has been successfully negotiated on this
938 	 * link then we'll use the skb's priority to map it to a TX Queue.
939 	 * The skb's priority is determined via the VLAN Tag Priority Code
940 	 * Point field.
941 	 */
942 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
943 		u16 vlan_tci;
944 		int err;
945 
946 		err = vlan_get_tag(skb, &vlan_tci);
947 		if (unlikely(err)) {
948 			if (net_ratelimit())
949 				netdev_warn(dev,
950 					    "TX Packet without VLAN Tag on DCB Link\n");
951 			txq = 0;
952 		} else {
953 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
954 #ifdef CONFIG_CHELSIO_T4_FCOE
955 			if (skb->protocol == htons(ETH_P_FCOE))
956 				txq = skb->priority & 0x7;
957 #endif /* CONFIG_CHELSIO_T4_FCOE */
958 		}
959 		return txq;
960 	}
961 #endif /* CONFIG_CHELSIO_T4_DCB */
962 
963 	if (select_queue) {
964 		txq = (skb_rx_queue_recorded(skb)
965 			? skb_get_rx_queue(skb)
966 			: smp_processor_id());
967 
968 		while (unlikely(txq >= dev->real_num_tx_queues))
969 			txq -= dev->real_num_tx_queues;
970 
971 		return txq;
972 	}
973 
974 	return fallback(dev, skb) % dev->real_num_tx_queues;
975 }
976 
977 static int closest_timer(const struct sge *s, int time)
978 {
979 	int i, delta, match = 0, min_delta = INT_MAX;
980 
981 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
982 		delta = time - s->timer_val[i];
983 		if (delta < 0)
984 			delta = -delta;
985 		if (delta < min_delta) {
986 			min_delta = delta;
987 			match = i;
988 		}
989 	}
990 	return match;
991 }
992 
993 static int closest_thres(const struct sge *s, int thres)
994 {
995 	int i, delta, match = 0, min_delta = INT_MAX;
996 
997 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
998 		delta = thres - s->counter_val[i];
999 		if (delta < 0)
1000 			delta = -delta;
1001 		if (delta < min_delta) {
1002 			min_delta = delta;
1003 			match = i;
1004 		}
1005 	}
1006 	return match;
1007 }
1008 
1009 /**
1010  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1011  *	@q: the Rx queue
1012  *	@us: the hold-off time in us, or 0 to disable timer
1013  *	@cnt: the hold-off packet count, or 0 to disable counter
1014  *
1015  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1016  *	one of the two needs to be enabled for the queue to generate interrupts.
1017  */
1018 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1019 			       unsigned int us, unsigned int cnt)
1020 {
1021 	struct adapter *adap = q->adap;
1022 
1023 	if ((us | cnt) == 0)
1024 		cnt = 1;
1025 
1026 	if (cnt) {
1027 		int err;
1028 		u32 v, new_idx;
1029 
1030 		new_idx = closest_thres(&adap->sge, cnt);
1031 		if (q->desc && q->pktcnt_idx != new_idx) {
1032 			/* the queue has already been created, update it */
1033 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1034 			    FW_PARAMS_PARAM_X_V(
1035 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1036 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1037 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1038 					    &v, &new_idx);
1039 			if (err)
1040 				return err;
1041 		}
1042 		q->pktcnt_idx = new_idx;
1043 	}
1044 
1045 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1046 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1047 	return 0;
1048 }
1049 
1050 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1051 {
1052 	const struct port_info *pi = netdev_priv(dev);
1053 	netdev_features_t changed = dev->features ^ features;
1054 	int err;
1055 
1056 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1057 		return 0;
1058 
1059 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1060 			    -1, -1, -1,
1061 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1062 	if (unlikely(err))
1063 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1064 	return err;
1065 }
1066 
1067 static int setup_debugfs(struct adapter *adap)
1068 {
1069 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1070 		return -1;
1071 
1072 #ifdef CONFIG_DEBUG_FS
1073 	t4_setup_debugfs(adap);
1074 #endif
1075 	return 0;
1076 }
1077 
1078 /*
1079  * upper-layer driver support
1080  */
1081 
1082 /*
1083  * Allocate an active-open TID and set it to the supplied value.
1084  */
1085 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1086 {
1087 	int atid = -1;
1088 
1089 	spin_lock_bh(&t->atid_lock);
1090 	if (t->afree) {
1091 		union aopen_entry *p = t->afree;
1092 
1093 		atid = (p - t->atid_tab) + t->atid_base;
1094 		t->afree = p->next;
1095 		p->data = data;
1096 		t->atids_in_use++;
1097 	}
1098 	spin_unlock_bh(&t->atid_lock);
1099 	return atid;
1100 }
1101 EXPORT_SYMBOL(cxgb4_alloc_atid);
1102 
1103 /*
1104  * Release an active-open TID.
1105  */
1106 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1107 {
1108 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1109 
1110 	spin_lock_bh(&t->atid_lock);
1111 	p->next = t->afree;
1112 	t->afree = p;
1113 	t->atids_in_use--;
1114 	spin_unlock_bh(&t->atid_lock);
1115 }
1116 EXPORT_SYMBOL(cxgb4_free_atid);
1117 
1118 /*
1119  * Allocate a server TID and set it to the supplied value.
1120  */
1121 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1122 {
1123 	int stid;
1124 
1125 	spin_lock_bh(&t->stid_lock);
1126 	if (family == PF_INET) {
1127 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1128 		if (stid < t->nstids)
1129 			__set_bit(stid, t->stid_bmap);
1130 		else
1131 			stid = -1;
1132 	} else {
1133 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1134 		if (stid < 0)
1135 			stid = -1;
1136 	}
1137 	if (stid >= 0) {
1138 		t->stid_tab[stid].data = data;
1139 		stid += t->stid_base;
1140 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1141 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1142 		 * needs 2 TIDs.
1143 		 */
1144 		if (family == PF_INET6) {
1145 			t->stids_in_use += 2;
1146 			t->v6_stids_in_use += 2;
1147 		} else {
1148 			t->stids_in_use++;
1149 		}
1150 	}
1151 	spin_unlock_bh(&t->stid_lock);
1152 	return stid;
1153 }
1154 EXPORT_SYMBOL(cxgb4_alloc_stid);
1155 
1156 /* Allocate a server filter TID and set it to the supplied value.
1157  */
1158 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1159 {
1160 	int stid;
1161 
1162 	spin_lock_bh(&t->stid_lock);
1163 	if (family == PF_INET) {
1164 		stid = find_next_zero_bit(t->stid_bmap,
1165 				t->nstids + t->nsftids, t->nstids);
1166 		if (stid < (t->nstids + t->nsftids))
1167 			__set_bit(stid, t->stid_bmap);
1168 		else
1169 			stid = -1;
1170 	} else {
1171 		stid = -1;
1172 	}
1173 	if (stid >= 0) {
1174 		t->stid_tab[stid].data = data;
1175 		stid -= t->nstids;
1176 		stid += t->sftid_base;
1177 		t->sftids_in_use++;
1178 	}
1179 	spin_unlock_bh(&t->stid_lock);
1180 	return stid;
1181 }
1182 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1183 
1184 /* Release a server TID.
1185  */
1186 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1187 {
1188 	/* Is it a server filter TID? */
1189 	if (t->nsftids && (stid >= t->sftid_base)) {
1190 		stid -= t->sftid_base;
1191 		stid += t->nstids;
1192 	} else {
1193 		stid -= t->stid_base;
1194 	}
1195 
1196 	spin_lock_bh(&t->stid_lock);
1197 	if (family == PF_INET)
1198 		__clear_bit(stid, t->stid_bmap);
1199 	else
1200 		bitmap_release_region(t->stid_bmap, stid, 1);
1201 	t->stid_tab[stid].data = NULL;
1202 	if (stid < t->nstids) {
1203 		if (family == PF_INET6) {
1204 			t->stids_in_use -= 2;
1205 			t->v6_stids_in_use -= 2;
1206 		} else {
1207 			t->stids_in_use--;
1208 		}
1209 	} else {
1210 		t->sftids_in_use--;
1211 	}
1212 
1213 	spin_unlock_bh(&t->stid_lock);
1214 }
1215 EXPORT_SYMBOL(cxgb4_free_stid);
1216 
1217 /*
1218  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1219  */
1220 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1221 			   unsigned int tid)
1222 {
1223 	struct cpl_tid_release *req;
1224 
1225 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1226 	req = __skb_put(skb, sizeof(*req));
1227 	INIT_TP_WR(req, tid);
1228 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1229 }
1230 
1231 /*
1232  * Queue a TID release request and if necessary schedule a work queue to
1233  * process it.
1234  */
1235 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1236 				    unsigned int tid)
1237 {
1238 	void **p = &t->tid_tab[tid];
1239 	struct adapter *adap = container_of(t, struct adapter, tids);
1240 
1241 	spin_lock_bh(&adap->tid_release_lock);
1242 	*p = adap->tid_release_head;
1243 	/* Low 2 bits encode the Tx channel number */
1244 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1245 	if (!adap->tid_release_task_busy) {
1246 		adap->tid_release_task_busy = true;
1247 		queue_work(adap->workq, &adap->tid_release_task);
1248 	}
1249 	spin_unlock_bh(&adap->tid_release_lock);
1250 }
1251 
1252 /*
1253  * Process the list of pending TID release requests.
1254  */
1255 static void process_tid_release_list(struct work_struct *work)
1256 {
1257 	struct sk_buff *skb;
1258 	struct adapter *adap;
1259 
1260 	adap = container_of(work, struct adapter, tid_release_task);
1261 
1262 	spin_lock_bh(&adap->tid_release_lock);
1263 	while (adap->tid_release_head) {
1264 		void **p = adap->tid_release_head;
1265 		unsigned int chan = (uintptr_t)p & 3;
1266 		p = (void *)p - chan;
1267 
1268 		adap->tid_release_head = *p;
1269 		*p = NULL;
1270 		spin_unlock_bh(&adap->tid_release_lock);
1271 
1272 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1273 					 GFP_KERNEL)))
1274 			schedule_timeout_uninterruptible(1);
1275 
1276 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1277 		t4_ofld_send(adap, skb);
1278 		spin_lock_bh(&adap->tid_release_lock);
1279 	}
1280 	adap->tid_release_task_busy = false;
1281 	spin_unlock_bh(&adap->tid_release_lock);
1282 }
1283 
1284 /*
1285  * Release a TID and inform HW.  If we are unable to allocate the release
1286  * message we defer to a work queue.
1287  */
1288 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1289 		      unsigned short family)
1290 {
1291 	struct sk_buff *skb;
1292 	struct adapter *adap = container_of(t, struct adapter, tids);
1293 
1294 	WARN_ON(tid >= t->ntids);
1295 
1296 	if (t->tid_tab[tid]) {
1297 		t->tid_tab[tid] = NULL;
1298 		atomic_dec(&t->conns_in_use);
1299 		if (t->hash_base && (tid >= t->hash_base)) {
1300 			if (family == AF_INET6)
1301 				atomic_sub(2, &t->hash_tids_in_use);
1302 			else
1303 				atomic_dec(&t->hash_tids_in_use);
1304 		} else {
1305 			if (family == AF_INET6)
1306 				atomic_sub(2, &t->tids_in_use);
1307 			else
1308 				atomic_dec(&t->tids_in_use);
1309 		}
1310 	}
1311 
1312 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1313 	if (likely(skb)) {
1314 		mk_tid_release(skb, chan, tid);
1315 		t4_ofld_send(adap, skb);
1316 	} else
1317 		cxgb4_queue_tid_release(t, chan, tid);
1318 }
1319 EXPORT_SYMBOL(cxgb4_remove_tid);
1320 
1321 /*
1322  * Allocate and initialize the TID tables.  Returns 0 on success.
1323  */
1324 static int tid_init(struct tid_info *t)
1325 {
1326 	struct adapter *adap = container_of(t, struct adapter, tids);
1327 	unsigned int max_ftids = t->nftids + t->nsftids;
1328 	unsigned int natids = t->natids;
1329 	unsigned int stid_bmap_size;
1330 	unsigned int ftid_bmap_size;
1331 	size_t size;
1332 
1333 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1334 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1335 	size = t->ntids * sizeof(*t->tid_tab) +
1336 	       natids * sizeof(*t->atid_tab) +
1337 	       t->nstids * sizeof(*t->stid_tab) +
1338 	       t->nsftids * sizeof(*t->stid_tab) +
1339 	       stid_bmap_size * sizeof(long) +
1340 	       max_ftids * sizeof(*t->ftid_tab) +
1341 	       ftid_bmap_size * sizeof(long);
1342 
1343 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1344 	if (!t->tid_tab)
1345 		return -ENOMEM;
1346 
1347 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1348 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1349 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1350 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1351 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1352 	spin_lock_init(&t->stid_lock);
1353 	spin_lock_init(&t->atid_lock);
1354 	spin_lock_init(&t->ftid_lock);
1355 
1356 	t->stids_in_use = 0;
1357 	t->v6_stids_in_use = 0;
1358 	t->sftids_in_use = 0;
1359 	t->afree = NULL;
1360 	t->atids_in_use = 0;
1361 	atomic_set(&t->tids_in_use, 0);
1362 	atomic_set(&t->conns_in_use, 0);
1363 	atomic_set(&t->hash_tids_in_use, 0);
1364 
1365 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1366 	if (natids) {
1367 		while (--natids)
1368 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1369 		t->afree = t->atid_tab;
1370 	}
1371 
1372 	if (is_offload(adap)) {
1373 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1374 		/* Reserve stid 0 for T4/T5 adapters */
1375 		if (!t->stid_base &&
1376 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1377 			__set_bit(0, t->stid_bmap);
1378 	}
1379 
1380 	bitmap_zero(t->ftid_bmap, t->nftids);
1381 	return 0;
1382 }
1383 
1384 /**
1385  *	cxgb4_create_server - create an IP server
1386  *	@dev: the device
1387  *	@stid: the server TID
1388  *	@sip: local IP address to bind server to
1389  *	@sport: the server's TCP port
1390  *	@queue: queue to direct messages from this server to
1391  *
1392  *	Create an IP server for the given port and address.
1393  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1394  */
1395 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1396 			__be32 sip, __be16 sport, __be16 vlan,
1397 			unsigned int queue)
1398 {
1399 	unsigned int chan;
1400 	struct sk_buff *skb;
1401 	struct adapter *adap;
1402 	struct cpl_pass_open_req *req;
1403 	int ret;
1404 
1405 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1406 	if (!skb)
1407 		return -ENOMEM;
1408 
1409 	adap = netdev2adap(dev);
1410 	req = __skb_put(skb, sizeof(*req));
1411 	INIT_TP_WR(req, 0);
1412 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1413 	req->local_port = sport;
1414 	req->peer_port = htons(0);
1415 	req->local_ip = sip;
1416 	req->peer_ip = htonl(0);
1417 	chan = rxq_to_chan(&adap->sge, queue);
1418 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1419 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1420 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1421 	ret = t4_mgmt_tx(adap, skb);
1422 	return net_xmit_eval(ret);
1423 }
1424 EXPORT_SYMBOL(cxgb4_create_server);
1425 
1426 /*	cxgb4_create_server6 - create an IPv6 server
1427  *	@dev: the device
1428  *	@stid: the server TID
1429  *	@sip: local IPv6 address to bind server to
1430  *	@sport: the server's TCP port
1431  *	@queue: queue to direct messages from this server to
1432  *
1433  *	Create an IPv6 server for the given port and address.
1434  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1435  */
1436 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1437 			 const struct in6_addr *sip, __be16 sport,
1438 			 unsigned int queue)
1439 {
1440 	unsigned int chan;
1441 	struct sk_buff *skb;
1442 	struct adapter *adap;
1443 	struct cpl_pass_open_req6 *req;
1444 	int ret;
1445 
1446 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1447 	if (!skb)
1448 		return -ENOMEM;
1449 
1450 	adap = netdev2adap(dev);
1451 	req = __skb_put(skb, sizeof(*req));
1452 	INIT_TP_WR(req, 0);
1453 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1454 	req->local_port = sport;
1455 	req->peer_port = htons(0);
1456 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1457 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1458 	req->peer_ip_hi = cpu_to_be64(0);
1459 	req->peer_ip_lo = cpu_to_be64(0);
1460 	chan = rxq_to_chan(&adap->sge, queue);
1461 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1462 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1463 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1464 	ret = t4_mgmt_tx(adap, skb);
1465 	return net_xmit_eval(ret);
1466 }
1467 EXPORT_SYMBOL(cxgb4_create_server6);
1468 
1469 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1470 			unsigned int queue, bool ipv6)
1471 {
1472 	struct sk_buff *skb;
1473 	struct adapter *adap;
1474 	struct cpl_close_listsvr_req *req;
1475 	int ret;
1476 
1477 	adap = netdev2adap(dev);
1478 
1479 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1480 	if (!skb)
1481 		return -ENOMEM;
1482 
1483 	req = __skb_put(skb, sizeof(*req));
1484 	INIT_TP_WR(req, 0);
1485 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1486 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1487 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1488 	ret = t4_mgmt_tx(adap, skb);
1489 	return net_xmit_eval(ret);
1490 }
1491 EXPORT_SYMBOL(cxgb4_remove_server);
1492 
1493 /**
1494  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1495  *	@mtus: the HW MTU table
1496  *	@mtu: the target MTU
1497  *	@idx: index of selected entry in the MTU table
1498  *
1499  *	Returns the index and the value in the HW MTU table that is closest to
1500  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1501  *	table, in which case that smallest available value is selected.
1502  */
1503 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1504 			    unsigned int *idx)
1505 {
1506 	unsigned int i = 0;
1507 
1508 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1509 		++i;
1510 	if (idx)
1511 		*idx = i;
1512 	return mtus[i];
1513 }
1514 EXPORT_SYMBOL(cxgb4_best_mtu);
1515 
1516 /**
1517  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1518  *     @mtus: the HW MTU table
1519  *     @header_size: Header Size
1520  *     @data_size_max: maximum Data Segment Size
1521  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1522  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1523  *
1524  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1525  *     MTU Table based solely on a Maximum MTU parameter, we break that
1526  *     parameter up into a Header Size and Maximum Data Segment Size, and
1527  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1528  *     the Hardware MTU Table which will result in a Data Segment Size with
1529  *     the requested alignment _and_ that MTU isn't "too far" from the
1530  *     closest MTU, then we'll return that rather than the closest MTU.
1531  */
1532 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1533 				    unsigned short header_size,
1534 				    unsigned short data_size_max,
1535 				    unsigned short data_size_align,
1536 				    unsigned int *mtu_idxp)
1537 {
1538 	unsigned short max_mtu = header_size + data_size_max;
1539 	unsigned short data_size_align_mask = data_size_align - 1;
1540 	int mtu_idx, aligned_mtu_idx;
1541 
1542 	/* Scan the MTU Table till we find an MTU which is larger than our
1543 	 * Maximum MTU or we reach the end of the table.  Along the way,
1544 	 * record the last MTU found, if any, which will result in a Data
1545 	 * Segment Length matching the requested alignment.
1546 	 */
1547 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1548 		unsigned short data_size = mtus[mtu_idx] - header_size;
1549 
1550 		/* If this MTU minus the Header Size would result in a
1551 		 * Data Segment Size of the desired alignment, remember it.
1552 		 */
1553 		if ((data_size & data_size_align_mask) == 0)
1554 			aligned_mtu_idx = mtu_idx;
1555 
1556 		/* If we're not at the end of the Hardware MTU Table and the
1557 		 * next element is larger than our Maximum MTU, drop out of
1558 		 * the loop.
1559 		 */
1560 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1561 			break;
1562 	}
1563 
1564 	/* If we fell out of the loop because we ran to the end of the table,
1565 	 * then we just have to use the last [largest] entry.
1566 	 */
1567 	if (mtu_idx == NMTUS)
1568 		mtu_idx--;
1569 
1570 	/* If we found an MTU which resulted in the requested Data Segment
1571 	 * Length alignment and that's "not far" from the largest MTU which is
1572 	 * less than or equal to the maximum MTU, then use that.
1573 	 */
1574 	if (aligned_mtu_idx >= 0 &&
1575 	    mtu_idx - aligned_mtu_idx <= 1)
1576 		mtu_idx = aligned_mtu_idx;
1577 
1578 	/* If the caller has passed in an MTU Index pointer, pass the
1579 	 * MTU Index back.  Return the MTU value.
1580 	 */
1581 	if (mtu_idxp)
1582 		*mtu_idxp = mtu_idx;
1583 	return mtus[mtu_idx];
1584 }
1585 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1586 
1587 /**
1588  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1589  *	@chip: chip type
1590  *	@viid: VI id of the given port
1591  *
1592  *	Return the SMT index for this VI.
1593  */
1594 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1595 {
1596 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1597 	 * 128 rows of 2 entries each.
1598 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1599 	 * TODO: The below code needs to be updated when we add support
1600 	 * for 256 VFs.
1601 	 */
1602 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1603 		return ((viid & 0x7f) << 1);
1604 	else
1605 		return (viid & 0x7f);
1606 }
1607 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1608 
1609 /**
1610  *	cxgb4_port_chan - get the HW channel of a port
1611  *	@dev: the net device for the port
1612  *
1613  *	Return the HW Tx channel of the given port.
1614  */
1615 unsigned int cxgb4_port_chan(const struct net_device *dev)
1616 {
1617 	return netdev2pinfo(dev)->tx_chan;
1618 }
1619 EXPORT_SYMBOL(cxgb4_port_chan);
1620 
1621 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1622 {
1623 	struct adapter *adap = netdev2adap(dev);
1624 	u32 v1, v2, lp_count, hp_count;
1625 
1626 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1627 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1628 	if (is_t4(adap->params.chip)) {
1629 		lp_count = LP_COUNT_G(v1);
1630 		hp_count = HP_COUNT_G(v1);
1631 	} else {
1632 		lp_count = LP_COUNT_T5_G(v1);
1633 		hp_count = HP_COUNT_T5_G(v2);
1634 	}
1635 	return lpfifo ? lp_count : hp_count;
1636 }
1637 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1638 
1639 /**
1640  *	cxgb4_port_viid - get the VI id of a port
1641  *	@dev: the net device for the port
1642  *
1643  *	Return the VI id of the given port.
1644  */
1645 unsigned int cxgb4_port_viid(const struct net_device *dev)
1646 {
1647 	return netdev2pinfo(dev)->viid;
1648 }
1649 EXPORT_SYMBOL(cxgb4_port_viid);
1650 
1651 /**
1652  *	cxgb4_port_idx - get the index of a port
1653  *	@dev: the net device for the port
1654  *
1655  *	Return the index of the given port.
1656  */
1657 unsigned int cxgb4_port_idx(const struct net_device *dev)
1658 {
1659 	return netdev2pinfo(dev)->port_id;
1660 }
1661 EXPORT_SYMBOL(cxgb4_port_idx);
1662 
1663 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1664 			 struct tp_tcp_stats *v6)
1665 {
1666 	struct adapter *adap = pci_get_drvdata(pdev);
1667 
1668 	spin_lock(&adap->stats_lock);
1669 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1670 	spin_unlock(&adap->stats_lock);
1671 }
1672 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1673 
1674 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1675 		      const unsigned int *pgsz_order)
1676 {
1677 	struct adapter *adap = netdev2adap(dev);
1678 
1679 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1680 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1681 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1682 		     HPZ3_V(pgsz_order[3]));
1683 }
1684 EXPORT_SYMBOL(cxgb4_iscsi_init);
1685 
1686 int cxgb4_flush_eq_cache(struct net_device *dev)
1687 {
1688 	struct adapter *adap = netdev2adap(dev);
1689 
1690 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1691 }
1692 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1693 
1694 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1695 {
1696 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1697 	__be64 indices;
1698 	int ret;
1699 
1700 	spin_lock(&adap->win0_lock);
1701 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1702 			   sizeof(indices), (__be32 *)&indices,
1703 			   T4_MEMORY_READ);
1704 	spin_unlock(&adap->win0_lock);
1705 	if (!ret) {
1706 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1707 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1708 	}
1709 	return ret;
1710 }
1711 
1712 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1713 			u16 size)
1714 {
1715 	struct adapter *adap = netdev2adap(dev);
1716 	u16 hw_pidx, hw_cidx;
1717 	int ret;
1718 
1719 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1720 	if (ret)
1721 		goto out;
1722 
1723 	if (pidx != hw_pidx) {
1724 		u16 delta;
1725 		u32 val;
1726 
1727 		if (pidx >= hw_pidx)
1728 			delta = pidx - hw_pidx;
1729 		else
1730 			delta = size - hw_pidx + pidx;
1731 
1732 		if (is_t4(adap->params.chip))
1733 			val = PIDX_V(delta);
1734 		else
1735 			val = PIDX_T5_V(delta);
1736 		wmb();
1737 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1738 			     QID_V(qid) | val);
1739 	}
1740 out:
1741 	return ret;
1742 }
1743 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1744 
1745 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1746 {
1747 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1748 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1749 	u32 offset, memtype, memaddr;
1750 	struct adapter *adap;
1751 	u32 hma_size = 0;
1752 	int ret;
1753 
1754 	adap = netdev2adap(dev);
1755 
1756 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1757 
1758 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1759 	 * This code assumes that the memory is laid out starting at offset 0
1760 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1761 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1762 	 * MC0, and some have both MC0 and MC1.
1763 	 */
1764 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1765 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1766 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1767 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1768 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1769 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1770 
1771 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1772 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1773 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
1774 	}
1775 	edc0_end = edc0_size;
1776 	edc1_end = edc0_end + edc1_size;
1777 	mc0_end = edc1_end + mc0_size;
1778 
1779 	if (offset < edc0_end) {
1780 		memtype = MEM_EDC0;
1781 		memaddr = offset;
1782 	} else if (offset < edc1_end) {
1783 		memtype = MEM_EDC1;
1784 		memaddr = offset - edc0_end;
1785 	} else {
1786 		if (hma_size && (offset < (edc1_end + hma_size))) {
1787 			memtype = MEM_HMA;
1788 			memaddr = offset - edc1_end;
1789 		} else if (offset < mc0_end) {
1790 			memtype = MEM_MC0;
1791 			memaddr = offset - edc1_end;
1792 		} else if (is_t5(adap->params.chip)) {
1793 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1794 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1795 			mc1_end = mc0_end + mc1_size;
1796 			if (offset < mc1_end) {
1797 				memtype = MEM_MC1;
1798 				memaddr = offset - mc0_end;
1799 			} else {
1800 				/* offset beyond the end of any memory */
1801 				goto err;
1802 			}
1803 		} else {
1804 			/* T4/T6 only has a single memory channel */
1805 			goto err;
1806 		}
1807 	}
1808 
1809 	spin_lock(&adap->win0_lock);
1810 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1811 	spin_unlock(&adap->win0_lock);
1812 	return ret;
1813 
1814 err:
1815 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1816 		stag, offset);
1817 	return -EINVAL;
1818 }
1819 EXPORT_SYMBOL(cxgb4_read_tpte);
1820 
1821 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1822 {
1823 	u32 hi, lo;
1824 	struct adapter *adap;
1825 
1826 	adap = netdev2adap(dev);
1827 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1828 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1829 
1830 	return ((u64)hi << 32) | (u64)lo;
1831 }
1832 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1833 
1834 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1835 			 unsigned int qid,
1836 			 enum cxgb4_bar2_qtype qtype,
1837 			 int user,
1838 			 u64 *pbar2_qoffset,
1839 			 unsigned int *pbar2_qid)
1840 {
1841 	return t4_bar2_sge_qregs(netdev2adap(dev),
1842 				 qid,
1843 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1844 				  ? T4_BAR2_QTYPE_EGRESS
1845 				  : T4_BAR2_QTYPE_INGRESS),
1846 				 user,
1847 				 pbar2_qoffset,
1848 				 pbar2_qid);
1849 }
1850 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1851 
1852 static struct pci_driver cxgb4_driver;
1853 
1854 static void check_neigh_update(struct neighbour *neigh)
1855 {
1856 	const struct device *parent;
1857 	const struct net_device *netdev = neigh->dev;
1858 
1859 	if (is_vlan_dev(netdev))
1860 		netdev = vlan_dev_real_dev(netdev);
1861 	parent = netdev->dev.parent;
1862 	if (parent && parent->driver == &cxgb4_driver.driver)
1863 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1864 }
1865 
1866 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1867 		       void *data)
1868 {
1869 	switch (event) {
1870 	case NETEVENT_NEIGH_UPDATE:
1871 		check_neigh_update(data);
1872 		break;
1873 	case NETEVENT_REDIRECT:
1874 	default:
1875 		break;
1876 	}
1877 	return 0;
1878 }
1879 
1880 static bool netevent_registered;
1881 static struct notifier_block cxgb4_netevent_nb = {
1882 	.notifier_call = netevent_cb
1883 };
1884 
1885 static void drain_db_fifo(struct adapter *adap, int usecs)
1886 {
1887 	u32 v1, v2, lp_count, hp_count;
1888 
1889 	do {
1890 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1891 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1892 		if (is_t4(adap->params.chip)) {
1893 			lp_count = LP_COUNT_G(v1);
1894 			hp_count = HP_COUNT_G(v1);
1895 		} else {
1896 			lp_count = LP_COUNT_T5_G(v1);
1897 			hp_count = HP_COUNT_T5_G(v2);
1898 		}
1899 
1900 		if (lp_count == 0 && hp_count == 0)
1901 			break;
1902 		set_current_state(TASK_UNINTERRUPTIBLE);
1903 		schedule_timeout(usecs_to_jiffies(usecs));
1904 	} while (1);
1905 }
1906 
1907 static void disable_txq_db(struct sge_txq *q)
1908 {
1909 	unsigned long flags;
1910 
1911 	spin_lock_irqsave(&q->db_lock, flags);
1912 	q->db_disabled = 1;
1913 	spin_unlock_irqrestore(&q->db_lock, flags);
1914 }
1915 
1916 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1917 {
1918 	spin_lock_irq(&q->db_lock);
1919 	if (q->db_pidx_inc) {
1920 		/* Make sure that all writes to the TX descriptors
1921 		 * are committed before we tell HW about them.
1922 		 */
1923 		wmb();
1924 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1925 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1926 		q->db_pidx_inc = 0;
1927 	}
1928 	q->db_disabled = 0;
1929 	spin_unlock_irq(&q->db_lock);
1930 }
1931 
1932 static void disable_dbs(struct adapter *adap)
1933 {
1934 	int i;
1935 
1936 	for_each_ethrxq(&adap->sge, i)
1937 		disable_txq_db(&adap->sge.ethtxq[i].q);
1938 	if (is_offload(adap)) {
1939 		struct sge_uld_txq_info *txq_info =
1940 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1941 
1942 		if (txq_info) {
1943 			for_each_ofldtxq(&adap->sge, i) {
1944 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1945 
1946 				disable_txq_db(&txq->q);
1947 			}
1948 		}
1949 	}
1950 	for_each_port(adap, i)
1951 		disable_txq_db(&adap->sge.ctrlq[i].q);
1952 }
1953 
1954 static void enable_dbs(struct adapter *adap)
1955 {
1956 	int i;
1957 
1958 	for_each_ethrxq(&adap->sge, i)
1959 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1960 	if (is_offload(adap)) {
1961 		struct sge_uld_txq_info *txq_info =
1962 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1963 
1964 		if (txq_info) {
1965 			for_each_ofldtxq(&adap->sge, i) {
1966 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1967 
1968 				enable_txq_db(adap, &txq->q);
1969 			}
1970 		}
1971 	}
1972 	for_each_port(adap, i)
1973 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1974 }
1975 
1976 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1977 {
1978 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1979 
1980 	if (adap->uld && adap->uld[type].handle)
1981 		adap->uld[type].control(adap->uld[type].handle, cmd);
1982 }
1983 
1984 static void process_db_full(struct work_struct *work)
1985 {
1986 	struct adapter *adap;
1987 
1988 	adap = container_of(work, struct adapter, db_full_task);
1989 
1990 	drain_db_fifo(adap, dbfifo_drain_delay);
1991 	enable_dbs(adap);
1992 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1993 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1994 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1995 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1996 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1997 	else
1998 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1999 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2000 }
2001 
2002 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2003 {
2004 	u16 hw_pidx, hw_cidx;
2005 	int ret;
2006 
2007 	spin_lock_irq(&q->db_lock);
2008 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2009 	if (ret)
2010 		goto out;
2011 	if (q->db_pidx != hw_pidx) {
2012 		u16 delta;
2013 		u32 val;
2014 
2015 		if (q->db_pidx >= hw_pidx)
2016 			delta = q->db_pidx - hw_pidx;
2017 		else
2018 			delta = q->size - hw_pidx + q->db_pidx;
2019 
2020 		if (is_t4(adap->params.chip))
2021 			val = PIDX_V(delta);
2022 		else
2023 			val = PIDX_T5_V(delta);
2024 		wmb();
2025 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2026 			     QID_V(q->cntxt_id) | val);
2027 	}
2028 out:
2029 	q->db_disabled = 0;
2030 	q->db_pidx_inc = 0;
2031 	spin_unlock_irq(&q->db_lock);
2032 	if (ret)
2033 		CH_WARN(adap, "DB drop recovery failed.\n");
2034 }
2035 
2036 static void recover_all_queues(struct adapter *adap)
2037 {
2038 	int i;
2039 
2040 	for_each_ethrxq(&adap->sge, i)
2041 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2042 	if (is_offload(adap)) {
2043 		struct sge_uld_txq_info *txq_info =
2044 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2045 		if (txq_info) {
2046 			for_each_ofldtxq(&adap->sge, i) {
2047 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2048 
2049 				sync_txq_pidx(adap, &txq->q);
2050 			}
2051 		}
2052 	}
2053 	for_each_port(adap, i)
2054 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2055 }
2056 
2057 static void process_db_drop(struct work_struct *work)
2058 {
2059 	struct adapter *adap;
2060 
2061 	adap = container_of(work, struct adapter, db_drop_task);
2062 
2063 	if (is_t4(adap->params.chip)) {
2064 		drain_db_fifo(adap, dbfifo_drain_delay);
2065 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2066 		drain_db_fifo(adap, dbfifo_drain_delay);
2067 		recover_all_queues(adap);
2068 		drain_db_fifo(adap, dbfifo_drain_delay);
2069 		enable_dbs(adap);
2070 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2071 	} else if (is_t5(adap->params.chip)) {
2072 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2073 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2074 		u16 pidx_inc = dropped_db & 0x1fff;
2075 		u64 bar2_qoffset;
2076 		unsigned int bar2_qid;
2077 		int ret;
2078 
2079 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2080 					0, &bar2_qoffset, &bar2_qid);
2081 		if (ret)
2082 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2083 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2084 		else
2085 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2086 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2087 
2088 		/* Re-enable BAR2 WC */
2089 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2090 	}
2091 
2092 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2093 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2094 }
2095 
2096 void t4_db_full(struct adapter *adap)
2097 {
2098 	if (is_t4(adap->params.chip)) {
2099 		disable_dbs(adap);
2100 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2101 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2102 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2103 		queue_work(adap->workq, &adap->db_full_task);
2104 	}
2105 }
2106 
2107 void t4_db_dropped(struct adapter *adap)
2108 {
2109 	if (is_t4(adap->params.chip)) {
2110 		disable_dbs(adap);
2111 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2112 	}
2113 	queue_work(adap->workq, &adap->db_drop_task);
2114 }
2115 
2116 void t4_register_netevent_notifier(void)
2117 {
2118 	if (!netevent_registered) {
2119 		register_netevent_notifier(&cxgb4_netevent_nb);
2120 		netevent_registered = true;
2121 	}
2122 }
2123 
2124 static void detach_ulds(struct adapter *adap)
2125 {
2126 	unsigned int i;
2127 
2128 	mutex_lock(&uld_mutex);
2129 	list_del(&adap->list_node);
2130 
2131 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2132 		if (adap->uld && adap->uld[i].handle)
2133 			adap->uld[i].state_change(adap->uld[i].handle,
2134 					     CXGB4_STATE_DETACH);
2135 
2136 	if (netevent_registered && list_empty(&adapter_list)) {
2137 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2138 		netevent_registered = false;
2139 	}
2140 	mutex_unlock(&uld_mutex);
2141 }
2142 
2143 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2144 {
2145 	unsigned int i;
2146 
2147 	mutex_lock(&uld_mutex);
2148 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2149 		if (adap->uld && adap->uld[i].handle)
2150 			adap->uld[i].state_change(adap->uld[i].handle,
2151 						  new_state);
2152 	mutex_unlock(&uld_mutex);
2153 }
2154 
2155 #if IS_ENABLED(CONFIG_IPV6)
2156 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2157 				   unsigned long event, void *data)
2158 {
2159 	struct inet6_ifaddr *ifa = data;
2160 	struct net_device *event_dev = ifa->idev->dev;
2161 	const struct device *parent = NULL;
2162 #if IS_ENABLED(CONFIG_BONDING)
2163 	struct adapter *adap;
2164 #endif
2165 	if (is_vlan_dev(event_dev))
2166 		event_dev = vlan_dev_real_dev(event_dev);
2167 #if IS_ENABLED(CONFIG_BONDING)
2168 	if (event_dev->flags & IFF_MASTER) {
2169 		list_for_each_entry(adap, &adapter_list, list_node) {
2170 			switch (event) {
2171 			case NETDEV_UP:
2172 				cxgb4_clip_get(adap->port[0],
2173 					       (const u32 *)ifa, 1);
2174 				break;
2175 			case NETDEV_DOWN:
2176 				cxgb4_clip_release(adap->port[0],
2177 						   (const u32 *)ifa, 1);
2178 				break;
2179 			default:
2180 				break;
2181 			}
2182 		}
2183 		return NOTIFY_OK;
2184 	}
2185 #endif
2186 
2187 	if (event_dev)
2188 		parent = event_dev->dev.parent;
2189 
2190 	if (parent && parent->driver == &cxgb4_driver.driver) {
2191 		switch (event) {
2192 		case NETDEV_UP:
2193 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2194 			break;
2195 		case NETDEV_DOWN:
2196 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2197 			break;
2198 		default:
2199 			break;
2200 		}
2201 	}
2202 	return NOTIFY_OK;
2203 }
2204 
2205 static bool inet6addr_registered;
2206 static struct notifier_block cxgb4_inet6addr_notifier = {
2207 	.notifier_call = cxgb4_inet6addr_handler
2208 };
2209 
2210 static void update_clip(const struct adapter *adap)
2211 {
2212 	int i;
2213 	struct net_device *dev;
2214 	int ret;
2215 
2216 	rcu_read_lock();
2217 
2218 	for (i = 0; i < MAX_NPORTS; i++) {
2219 		dev = adap->port[i];
2220 		ret = 0;
2221 
2222 		if (dev)
2223 			ret = cxgb4_update_root_dev_clip(dev);
2224 
2225 		if (ret < 0)
2226 			break;
2227 	}
2228 	rcu_read_unlock();
2229 }
2230 #endif /* IS_ENABLED(CONFIG_IPV6) */
2231 
2232 /**
2233  *	cxgb_up - enable the adapter
2234  *	@adap: adapter being enabled
2235  *
2236  *	Called when the first port is enabled, this function performs the
2237  *	actions necessary to make an adapter operational, such as completing
2238  *	the initialization of HW modules, and enabling interrupts.
2239  *
2240  *	Must be called with the rtnl lock held.
2241  */
2242 static int cxgb_up(struct adapter *adap)
2243 {
2244 	int err;
2245 
2246 	mutex_lock(&uld_mutex);
2247 	err = setup_sge_queues(adap);
2248 	if (err)
2249 		goto rel_lock;
2250 	err = setup_rss(adap);
2251 	if (err)
2252 		goto freeq;
2253 
2254 	if (adap->flags & USING_MSIX) {
2255 		name_msix_vecs(adap);
2256 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2257 				  adap->msix_info[0].desc, adap);
2258 		if (err)
2259 			goto irq_err;
2260 		err = request_msix_queue_irqs(adap);
2261 		if (err) {
2262 			free_irq(adap->msix_info[0].vec, adap);
2263 			goto irq_err;
2264 		}
2265 	} else {
2266 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2267 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2268 				  adap->port[0]->name, adap);
2269 		if (err)
2270 			goto irq_err;
2271 	}
2272 
2273 	enable_rx(adap);
2274 	t4_sge_start(adap);
2275 	t4_intr_enable(adap);
2276 	adap->flags |= FULL_INIT_DONE;
2277 	mutex_unlock(&uld_mutex);
2278 
2279 	notify_ulds(adap, CXGB4_STATE_UP);
2280 #if IS_ENABLED(CONFIG_IPV6)
2281 	update_clip(adap);
2282 #endif
2283 	/* Initialize hash mac addr list*/
2284 	INIT_LIST_HEAD(&adap->mac_hlist);
2285 	return err;
2286 
2287  irq_err:
2288 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2289  freeq:
2290 	t4_free_sge_resources(adap);
2291  rel_lock:
2292 	mutex_unlock(&uld_mutex);
2293 	return err;
2294 }
2295 
2296 static void cxgb_down(struct adapter *adapter)
2297 {
2298 	cancel_work_sync(&adapter->tid_release_task);
2299 	cancel_work_sync(&adapter->db_full_task);
2300 	cancel_work_sync(&adapter->db_drop_task);
2301 	adapter->tid_release_task_busy = false;
2302 	adapter->tid_release_head = NULL;
2303 
2304 	t4_sge_stop(adapter);
2305 	t4_free_sge_resources(adapter);
2306 	adapter->flags &= ~FULL_INIT_DONE;
2307 }
2308 
2309 /*
2310  * net_device operations
2311  */
2312 static int cxgb_open(struct net_device *dev)
2313 {
2314 	int err;
2315 	struct port_info *pi = netdev_priv(dev);
2316 	struct adapter *adapter = pi->adapter;
2317 
2318 	netif_carrier_off(dev);
2319 
2320 	if (!(adapter->flags & FULL_INIT_DONE)) {
2321 		err = cxgb_up(adapter);
2322 		if (err < 0)
2323 			return err;
2324 	}
2325 
2326 	/* It's possible that the basic port information could have
2327 	 * changed since we first read it.
2328 	 */
2329 	err = t4_update_port_info(pi);
2330 	if (err < 0)
2331 		return err;
2332 
2333 	err = link_start(dev);
2334 	if (!err)
2335 		netif_tx_start_all_queues(dev);
2336 	return err;
2337 }
2338 
2339 static int cxgb_close(struct net_device *dev)
2340 {
2341 	struct port_info *pi = netdev_priv(dev);
2342 	struct adapter *adapter = pi->adapter;
2343 	int ret;
2344 
2345 	netif_tx_stop_all_queues(dev);
2346 	netif_carrier_off(dev);
2347 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2348 				  false, false, false);
2349 #ifdef CONFIG_CHELSIO_T4_DCB
2350 	cxgb4_dcb_reset(dev);
2351 	dcb_tx_queue_prio_enable(dev, false);
2352 #endif
2353 	return ret;
2354 }
2355 
2356 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2357 		__be32 sip, __be16 sport, __be16 vlan,
2358 		unsigned int queue, unsigned char port, unsigned char mask)
2359 {
2360 	int ret;
2361 	struct filter_entry *f;
2362 	struct adapter *adap;
2363 	int i;
2364 	u8 *val;
2365 
2366 	adap = netdev2adap(dev);
2367 
2368 	/* Adjust stid to correct filter index */
2369 	stid -= adap->tids.sftid_base;
2370 	stid += adap->tids.nftids;
2371 
2372 	/* Check to make sure the filter requested is writable ...
2373 	 */
2374 	f = &adap->tids.ftid_tab[stid];
2375 	ret = writable_filter(f);
2376 	if (ret)
2377 		return ret;
2378 
2379 	/* Clear out any old resources being used by the filter before
2380 	 * we start constructing the new filter.
2381 	 */
2382 	if (f->valid)
2383 		clear_filter(adap, f);
2384 
2385 	/* Clear out filter specifications */
2386 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2387 	f->fs.val.lport = cpu_to_be16(sport);
2388 	f->fs.mask.lport  = ~0;
2389 	val = (u8 *)&sip;
2390 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2391 		for (i = 0; i < 4; i++) {
2392 			f->fs.val.lip[i] = val[i];
2393 			f->fs.mask.lip[i] = ~0;
2394 		}
2395 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2396 			f->fs.val.iport = port;
2397 			f->fs.mask.iport = mask;
2398 		}
2399 	}
2400 
2401 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2402 		f->fs.val.proto = IPPROTO_TCP;
2403 		f->fs.mask.proto = ~0;
2404 	}
2405 
2406 	f->fs.dirsteer = 1;
2407 	f->fs.iq = queue;
2408 	/* Mark filter as locked */
2409 	f->locked = 1;
2410 	f->fs.rpttid = 1;
2411 
2412 	/* Save the actual tid. We need this to get the corresponding
2413 	 * filter entry structure in filter_rpl.
2414 	 */
2415 	f->tid = stid + adap->tids.ftid_base;
2416 	ret = set_filter_wr(adap, stid);
2417 	if (ret) {
2418 		clear_filter(adap, f);
2419 		return ret;
2420 	}
2421 
2422 	return 0;
2423 }
2424 EXPORT_SYMBOL(cxgb4_create_server_filter);
2425 
2426 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2427 		unsigned int queue, bool ipv6)
2428 {
2429 	struct filter_entry *f;
2430 	struct adapter *adap;
2431 
2432 	adap = netdev2adap(dev);
2433 
2434 	/* Adjust stid to correct filter index */
2435 	stid -= adap->tids.sftid_base;
2436 	stid += adap->tids.nftids;
2437 
2438 	f = &adap->tids.ftid_tab[stid];
2439 	/* Unlock the filter */
2440 	f->locked = 0;
2441 
2442 	return delete_filter(adap, stid);
2443 }
2444 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2445 
2446 static void cxgb_get_stats(struct net_device *dev,
2447 			   struct rtnl_link_stats64 *ns)
2448 {
2449 	struct port_stats stats;
2450 	struct port_info *p = netdev_priv(dev);
2451 	struct adapter *adapter = p->adapter;
2452 
2453 	/* Block retrieving statistics during EEH error
2454 	 * recovery. Otherwise, the recovery might fail
2455 	 * and the PCI device will be removed permanently
2456 	 */
2457 	spin_lock(&adapter->stats_lock);
2458 	if (!netif_device_present(dev)) {
2459 		spin_unlock(&adapter->stats_lock);
2460 		return;
2461 	}
2462 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2463 				 &p->stats_base);
2464 	spin_unlock(&adapter->stats_lock);
2465 
2466 	ns->tx_bytes   = stats.tx_octets;
2467 	ns->tx_packets = stats.tx_frames;
2468 	ns->rx_bytes   = stats.rx_octets;
2469 	ns->rx_packets = stats.rx_frames;
2470 	ns->multicast  = stats.rx_mcast_frames;
2471 
2472 	/* detailed rx_errors */
2473 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2474 			       stats.rx_runt;
2475 	ns->rx_over_errors   = 0;
2476 	ns->rx_crc_errors    = stats.rx_fcs_err;
2477 	ns->rx_frame_errors  = stats.rx_symbol_err;
2478 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2479 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2480 			       stats.rx_trunc0 + stats.rx_trunc1 +
2481 			       stats.rx_trunc2 + stats.rx_trunc3;
2482 	ns->rx_missed_errors = 0;
2483 
2484 	/* detailed tx_errors */
2485 	ns->tx_aborted_errors   = 0;
2486 	ns->tx_carrier_errors   = 0;
2487 	ns->tx_fifo_errors      = 0;
2488 	ns->tx_heartbeat_errors = 0;
2489 	ns->tx_window_errors    = 0;
2490 
2491 	ns->tx_errors = stats.tx_error_frames;
2492 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2493 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2494 }
2495 
2496 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2497 {
2498 	unsigned int mbox;
2499 	int ret = 0, prtad, devad;
2500 	struct port_info *pi = netdev_priv(dev);
2501 	struct adapter *adapter = pi->adapter;
2502 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2503 
2504 	switch (cmd) {
2505 	case SIOCGMIIPHY:
2506 		if (pi->mdio_addr < 0)
2507 			return -EOPNOTSUPP;
2508 		data->phy_id = pi->mdio_addr;
2509 		break;
2510 	case SIOCGMIIREG:
2511 	case SIOCSMIIREG:
2512 		if (mdio_phy_id_is_c45(data->phy_id)) {
2513 			prtad = mdio_phy_id_prtad(data->phy_id);
2514 			devad = mdio_phy_id_devad(data->phy_id);
2515 		} else if (data->phy_id < 32) {
2516 			prtad = data->phy_id;
2517 			devad = 0;
2518 			data->reg_num &= 0x1f;
2519 		} else
2520 			return -EINVAL;
2521 
2522 		mbox = pi->adapter->pf;
2523 		if (cmd == SIOCGMIIREG)
2524 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2525 					 data->reg_num, &data->val_out);
2526 		else
2527 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2528 					 data->reg_num, data->val_in);
2529 		break;
2530 	case SIOCGHWTSTAMP:
2531 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2532 				    sizeof(pi->tstamp_config)) ?
2533 			-EFAULT : 0;
2534 	case SIOCSHWTSTAMP:
2535 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2536 				   sizeof(pi->tstamp_config)))
2537 			return -EFAULT;
2538 
2539 		if (!is_t4(adapter->params.chip)) {
2540 			switch (pi->tstamp_config.tx_type) {
2541 			case HWTSTAMP_TX_OFF:
2542 			case HWTSTAMP_TX_ON:
2543 				break;
2544 			default:
2545 				return -ERANGE;
2546 			}
2547 
2548 			switch (pi->tstamp_config.rx_filter) {
2549 			case HWTSTAMP_FILTER_NONE:
2550 				pi->rxtstamp = false;
2551 				break;
2552 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2553 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2554 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2555 							 PTP_TS_L4);
2556 				break;
2557 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2558 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2559 							 PTP_TS_L2_L4);
2560 				break;
2561 			case HWTSTAMP_FILTER_ALL:
2562 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2563 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2564 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2565 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2566 				pi->rxtstamp = true;
2567 				break;
2568 			default:
2569 				pi->tstamp_config.rx_filter =
2570 					HWTSTAMP_FILTER_NONE;
2571 				return -ERANGE;
2572 			}
2573 
2574 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2575 			    (pi->tstamp_config.rx_filter ==
2576 				HWTSTAMP_FILTER_NONE)) {
2577 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2578 					pi->ptp_enable = false;
2579 			}
2580 
2581 			if (pi->tstamp_config.rx_filter !=
2582 				HWTSTAMP_FILTER_NONE) {
2583 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2584 								 pi) >= 0)
2585 					pi->ptp_enable = true;
2586 			}
2587 		} else {
2588 			/* For T4 Adapters */
2589 			switch (pi->tstamp_config.rx_filter) {
2590 			case HWTSTAMP_FILTER_NONE:
2591 			pi->rxtstamp = false;
2592 			break;
2593 			case HWTSTAMP_FILTER_ALL:
2594 			pi->rxtstamp = true;
2595 			break;
2596 			default:
2597 			pi->tstamp_config.rx_filter =
2598 			HWTSTAMP_FILTER_NONE;
2599 			return -ERANGE;
2600 			}
2601 		}
2602 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2603 				    sizeof(pi->tstamp_config)) ?
2604 			-EFAULT : 0;
2605 	default:
2606 		return -EOPNOTSUPP;
2607 	}
2608 	return ret;
2609 }
2610 
2611 static void cxgb_set_rxmode(struct net_device *dev)
2612 {
2613 	/* unfortunately we can't return errors to the stack */
2614 	set_rxmode(dev, -1, false);
2615 }
2616 
2617 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2618 {
2619 	int ret;
2620 	struct port_info *pi = netdev_priv(dev);
2621 
2622 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2623 			    -1, -1, -1, true);
2624 	if (!ret)
2625 		dev->mtu = new_mtu;
2626 	return ret;
2627 }
2628 
2629 #ifdef CONFIG_PCI_IOV
2630 static int cxgb4_mgmt_open(struct net_device *dev)
2631 {
2632 	/* Turn carrier off since we don't have to transmit anything on this
2633 	 * interface.
2634 	 */
2635 	netif_carrier_off(dev);
2636 	return 0;
2637 }
2638 
2639 /* Fill MAC address that will be assigned by the FW */
2640 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2641 {
2642 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2643 	unsigned int i, vf, nvfs;
2644 	u16 a, b;
2645 	int err;
2646 	u8 *na;
2647 
2648 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2649 							    PCI_CAP_ID_VPD);
2650 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2651 	if (err)
2652 		return;
2653 
2654 	na = adap->params.vpd.na;
2655 	for (i = 0; i < ETH_ALEN; i++)
2656 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2657 			      hex2val(na[2 * i + 1]));
2658 
2659 	a = (hw_addr[0] << 8) | hw_addr[1];
2660 	b = (hw_addr[1] << 8) | hw_addr[2];
2661 	a ^= b;
2662 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
2663 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2664 	macaddr[0] = a >> 8;
2665 	macaddr[1] = a & 0xff;
2666 
2667 	for (i = 2; i < 5; i++)
2668 		macaddr[i] = hw_addr[i + 1];
2669 
2670 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2671 		vf < nvfs; vf++) {
2672 		macaddr[5] = adap->pf * 16 + vf;
2673 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2674 	}
2675 }
2676 
2677 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2678 {
2679 	struct port_info *pi = netdev_priv(dev);
2680 	struct adapter *adap = pi->adapter;
2681 	int ret;
2682 
2683 	/* verify MAC addr is valid */
2684 	if (!is_valid_ether_addr(mac)) {
2685 		dev_err(pi->adapter->pdev_dev,
2686 			"Invalid Ethernet address %pM for VF %d\n",
2687 			mac, vf);
2688 		return -EINVAL;
2689 	}
2690 
2691 	dev_info(pi->adapter->pdev_dev,
2692 		 "Setting MAC %pM on VF %d\n", mac, vf);
2693 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2694 	if (!ret)
2695 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2696 	return ret;
2697 }
2698 
2699 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2700 				    int vf, struct ifla_vf_info *ivi)
2701 {
2702 	struct port_info *pi = netdev_priv(dev);
2703 	struct adapter *adap = pi->adapter;
2704 	struct vf_info *vfinfo;
2705 
2706 	if (vf >= adap->num_vfs)
2707 		return -EINVAL;
2708 	vfinfo = &adap->vfinfo[vf];
2709 
2710 	ivi->vf = vf;
2711 	ivi->max_tx_rate = vfinfo->tx_rate;
2712 	ivi->min_tx_rate = 0;
2713 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2714 	ivi->vlan = vfinfo->vlan;
2715 	return 0;
2716 }
2717 
2718 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2719 				       struct netdev_phys_item_id *ppid)
2720 {
2721 	struct port_info *pi = netdev_priv(dev);
2722 	unsigned int phy_port_id;
2723 
2724 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2725 	ppid->id_len = sizeof(phy_port_id);
2726 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2727 	return 0;
2728 }
2729 
2730 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2731 				  int min_tx_rate, int max_tx_rate)
2732 {
2733 	struct port_info *pi = netdev_priv(dev);
2734 	struct adapter *adap = pi->adapter;
2735 	unsigned int link_ok, speed, mtu;
2736 	u32 fw_pfvf, fw_class;
2737 	int class_id = vf;
2738 	int ret;
2739 	u16 pktsize;
2740 
2741 	if (vf >= adap->num_vfs)
2742 		return -EINVAL;
2743 
2744 	if (min_tx_rate) {
2745 		dev_err(adap->pdev_dev,
2746 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2747 			min_tx_rate, vf);
2748 		return -EINVAL;
2749 	}
2750 
2751 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2752 	if (ret != FW_SUCCESS) {
2753 		dev_err(adap->pdev_dev,
2754 			"Failed to get link information for VF %d\n", vf);
2755 		return -EINVAL;
2756 	}
2757 
2758 	if (!link_ok) {
2759 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2760 		return -EINVAL;
2761 	}
2762 
2763 	if (max_tx_rate > speed) {
2764 		dev_err(adap->pdev_dev,
2765 			"Max tx rate %d for VF %d can't be > link-speed %u",
2766 			max_tx_rate, vf, speed);
2767 		return -EINVAL;
2768 	}
2769 
2770 	pktsize = mtu;
2771 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2772 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2773 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2774 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2775 	/* configure Traffic Class for rate-limiting */
2776 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2777 			      SCHED_CLASS_LEVEL_CL_RL,
2778 			      SCHED_CLASS_MODE_CLASS,
2779 			      SCHED_CLASS_RATEUNIT_BITS,
2780 			      SCHED_CLASS_RATEMODE_ABS,
2781 			      pi->tx_chan, class_id, 0,
2782 			      max_tx_rate * 1000, 0, pktsize);
2783 	if (ret) {
2784 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2785 			ret);
2786 		return -EINVAL;
2787 	}
2788 	dev_info(adap->pdev_dev,
2789 		 "Class %d with MSS %u configured with rate %u\n",
2790 		 class_id, pktsize, max_tx_rate);
2791 
2792 	/* bind VF to configured Traffic Class */
2793 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2794 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2795 	fw_class = class_id;
2796 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2797 			    &fw_class);
2798 	if (ret) {
2799 		dev_err(adap->pdev_dev,
2800 			"Err %d in binding VF %d to Traffic Class %d\n",
2801 			ret, vf, class_id);
2802 		return -EINVAL;
2803 	}
2804 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2805 		 adap->pf, vf, class_id);
2806 	adap->vfinfo[vf].tx_rate = max_tx_rate;
2807 	return 0;
2808 }
2809 
2810 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2811 				  u16 vlan, u8 qos, __be16 vlan_proto)
2812 {
2813 	struct port_info *pi = netdev_priv(dev);
2814 	struct adapter *adap = pi->adapter;
2815 	int ret;
2816 
2817 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2818 		return -EINVAL;
2819 
2820 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2821 		return -EPROTONOSUPPORT;
2822 
2823 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2824 	if (!ret) {
2825 		adap->vfinfo[vf].vlan = vlan;
2826 		return 0;
2827 	}
2828 
2829 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2830 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2831 	return ret;
2832 }
2833 #endif /* CONFIG_PCI_IOV */
2834 
2835 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2836 {
2837 	int ret;
2838 	struct sockaddr *addr = p;
2839 	struct port_info *pi = netdev_priv(dev);
2840 
2841 	if (!is_valid_ether_addr(addr->sa_data))
2842 		return -EADDRNOTAVAIL;
2843 
2844 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2845 			    pi->xact_addr_filt, addr->sa_data, true, true);
2846 	if (ret < 0)
2847 		return ret;
2848 
2849 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2850 	pi->xact_addr_filt = ret;
2851 	return 0;
2852 }
2853 
2854 #ifdef CONFIG_NET_POLL_CONTROLLER
2855 static void cxgb_netpoll(struct net_device *dev)
2856 {
2857 	struct port_info *pi = netdev_priv(dev);
2858 	struct adapter *adap = pi->adapter;
2859 
2860 	if (adap->flags & USING_MSIX) {
2861 		int i;
2862 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2863 
2864 		for (i = pi->nqsets; i; i--, rx++)
2865 			t4_sge_intr_msix(0, &rx->rspq);
2866 	} else
2867 		t4_intr_handler(adap)(0, adap);
2868 }
2869 #endif
2870 
2871 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2872 {
2873 	struct port_info *pi = netdev_priv(dev);
2874 	struct adapter *adap = pi->adapter;
2875 	struct sched_class *e;
2876 	struct ch_sched_params p;
2877 	struct ch_sched_queue qe;
2878 	u32 req_rate;
2879 	int err = 0;
2880 
2881 	if (!can_sched(dev))
2882 		return -ENOTSUPP;
2883 
2884 	if (index < 0 || index > pi->nqsets - 1)
2885 		return -EINVAL;
2886 
2887 	if (!(adap->flags & FULL_INIT_DONE)) {
2888 		dev_err(adap->pdev_dev,
2889 			"Failed to rate limit on queue %d. Link Down?\n",
2890 			index);
2891 		return -EINVAL;
2892 	}
2893 
2894 	/* Convert from Mbps to Kbps */
2895 	req_rate = rate * 1000;
2896 
2897 	/* Max rate is 100 Gbps */
2898 	if (req_rate > SCHED_MAX_RATE_KBPS) {
2899 		dev_err(adap->pdev_dev,
2900 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
2901 			rate, SCHED_MAX_RATE_KBPS / 1000);
2902 		return -ERANGE;
2903 	}
2904 
2905 	/* First unbind the queue from any existing class */
2906 	memset(&qe, 0, sizeof(qe));
2907 	qe.queue = index;
2908 	qe.class = SCHED_CLS_NONE;
2909 
2910 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2911 	if (err) {
2912 		dev_err(adap->pdev_dev,
2913 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2914 			index, pi->port_id, err);
2915 		return err;
2916 	}
2917 
2918 	/* Queue already unbound */
2919 	if (!req_rate)
2920 		return 0;
2921 
2922 	/* Fetch any available unused or matching scheduling class */
2923 	memset(&p, 0, sizeof(p));
2924 	p.type = SCHED_CLASS_TYPE_PACKET;
2925 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2926 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2927 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2928 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2929 	p.u.params.channel  = pi->tx_chan;
2930 	p.u.params.class    = SCHED_CLS_NONE;
2931 	p.u.params.minrate  = 0;
2932 	p.u.params.maxrate  = req_rate;
2933 	p.u.params.weight   = 0;
2934 	p.u.params.pktsize  = dev->mtu;
2935 
2936 	e = cxgb4_sched_class_alloc(dev, &p);
2937 	if (!e)
2938 		return -ENOMEM;
2939 
2940 	/* Bind the queue to a scheduling class */
2941 	memset(&qe, 0, sizeof(qe));
2942 	qe.queue = index;
2943 	qe.class = e->idx;
2944 
2945 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2946 	if (err)
2947 		dev_err(adap->pdev_dev,
2948 			"Queue rate limiting failed. Err: %d\n", err);
2949 	return err;
2950 }
2951 
2952 static int cxgb_setup_tc_flower(struct net_device *dev,
2953 				struct tc_cls_flower_offload *cls_flower)
2954 {
2955 	switch (cls_flower->command) {
2956 	case TC_CLSFLOWER_REPLACE:
2957 		return cxgb4_tc_flower_replace(dev, cls_flower);
2958 	case TC_CLSFLOWER_DESTROY:
2959 		return cxgb4_tc_flower_destroy(dev, cls_flower);
2960 	case TC_CLSFLOWER_STATS:
2961 		return cxgb4_tc_flower_stats(dev, cls_flower);
2962 	default:
2963 		return -EOPNOTSUPP;
2964 	}
2965 }
2966 
2967 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2968 				 struct tc_cls_u32_offload *cls_u32)
2969 {
2970 	switch (cls_u32->command) {
2971 	case TC_CLSU32_NEW_KNODE:
2972 	case TC_CLSU32_REPLACE_KNODE:
2973 		return cxgb4_config_knode(dev, cls_u32);
2974 	case TC_CLSU32_DELETE_KNODE:
2975 		return cxgb4_delete_knode(dev, cls_u32);
2976 	default:
2977 		return -EOPNOTSUPP;
2978 	}
2979 }
2980 
2981 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2982 				  void *cb_priv)
2983 {
2984 	struct net_device *dev = cb_priv;
2985 	struct port_info *pi = netdev2pinfo(dev);
2986 	struct adapter *adap = netdev2adap(dev);
2987 
2988 	if (!(adap->flags & FULL_INIT_DONE)) {
2989 		dev_err(adap->pdev_dev,
2990 			"Failed to setup tc on port %d. Link Down?\n",
2991 			pi->port_id);
2992 		return -EINVAL;
2993 	}
2994 
2995 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
2996 		return -EOPNOTSUPP;
2997 
2998 	switch (type) {
2999 	case TC_SETUP_CLSU32:
3000 		return cxgb_setup_tc_cls_u32(dev, type_data);
3001 	case TC_SETUP_CLSFLOWER:
3002 		return cxgb_setup_tc_flower(dev, type_data);
3003 	default:
3004 		return -EOPNOTSUPP;
3005 	}
3006 }
3007 
3008 static int cxgb_setup_tc_block(struct net_device *dev,
3009 			       struct tc_block_offload *f)
3010 {
3011 	struct port_info *pi = netdev2pinfo(dev);
3012 
3013 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3014 		return -EOPNOTSUPP;
3015 
3016 	switch (f->command) {
3017 	case TC_BLOCK_BIND:
3018 		return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3019 					     pi, dev);
3020 	case TC_BLOCK_UNBIND:
3021 		tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3022 		return 0;
3023 	default:
3024 		return -EOPNOTSUPP;
3025 	}
3026 }
3027 
3028 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3029 			 void *type_data)
3030 {
3031 	switch (type) {
3032 	case TC_SETUP_BLOCK:
3033 		return cxgb_setup_tc_block(dev, type_data);
3034 	default:
3035 		return -EOPNOTSUPP;
3036 	}
3037 }
3038 
3039 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3040 				struct udp_tunnel_info *ti)
3041 {
3042 	struct port_info *pi = netdev_priv(netdev);
3043 	struct adapter *adapter = pi->adapter;
3044 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3045 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3046 	int ret = 0, i;
3047 
3048 	if (chip_ver < CHELSIO_T6)
3049 		return;
3050 
3051 	switch (ti->type) {
3052 	case UDP_TUNNEL_TYPE_VXLAN:
3053 		if (!adapter->vxlan_port_cnt ||
3054 		    adapter->vxlan_port != ti->port)
3055 			return; /* Invalid VxLAN destination port */
3056 
3057 		adapter->vxlan_port_cnt--;
3058 		if (adapter->vxlan_port_cnt)
3059 			return;
3060 
3061 		adapter->vxlan_port = 0;
3062 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3063 		break;
3064 	case UDP_TUNNEL_TYPE_GENEVE:
3065 		if (!adapter->geneve_port_cnt ||
3066 		    adapter->geneve_port != ti->port)
3067 			return; /* Invalid GENEVE destination port */
3068 
3069 		adapter->geneve_port_cnt--;
3070 		if (adapter->geneve_port_cnt)
3071 			return;
3072 
3073 		adapter->geneve_port = 0;
3074 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3075 	default:
3076 		return;
3077 	}
3078 
3079 	/* Matchall mac entries can be deleted only after all tunnel ports
3080 	 * are brought down or removed.
3081 	 */
3082 	if (!adapter->rawf_cnt)
3083 		return;
3084 	for_each_port(adapter, i) {
3085 		pi = adap2pinfo(adapter, i);
3086 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3087 					   match_all_mac, match_all_mac,
3088 					   adapter->rawf_start +
3089 					    pi->port_id,
3090 					   1, pi->port_id, false);
3091 		if (ret < 0) {
3092 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3093 				    i);
3094 			return;
3095 		}
3096 		atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3097 			   pi->port_id].refcnt);
3098 	}
3099 }
3100 
3101 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3102 				struct udp_tunnel_info *ti)
3103 {
3104 	struct port_info *pi = netdev_priv(netdev);
3105 	struct adapter *adapter = pi->adapter;
3106 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3107 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3108 	int i, ret;
3109 
3110 	if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3111 		return;
3112 
3113 	switch (ti->type) {
3114 	case UDP_TUNNEL_TYPE_VXLAN:
3115 		/* Callback for adding vxlan port can be called with the same
3116 		 * port for both IPv4 and IPv6. We should not disable the
3117 		 * offloading when the same port for both protocols is added
3118 		 * and later one of them is removed.
3119 		 */
3120 		if (adapter->vxlan_port_cnt &&
3121 		    adapter->vxlan_port == ti->port) {
3122 			adapter->vxlan_port_cnt++;
3123 			return;
3124 		}
3125 
3126 		/* We will support only one VxLAN port */
3127 		if (adapter->vxlan_port_cnt) {
3128 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3129 				    be16_to_cpu(adapter->vxlan_port),
3130 				    be16_to_cpu(ti->port));
3131 			return;
3132 		}
3133 
3134 		adapter->vxlan_port = ti->port;
3135 		adapter->vxlan_port_cnt = 1;
3136 
3137 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3138 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3139 		break;
3140 	case UDP_TUNNEL_TYPE_GENEVE:
3141 		if (adapter->geneve_port_cnt &&
3142 		    adapter->geneve_port == ti->port) {
3143 			adapter->geneve_port_cnt++;
3144 			return;
3145 		}
3146 
3147 		/* We will support only one GENEVE port */
3148 		if (adapter->geneve_port_cnt) {
3149 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3150 				    be16_to_cpu(adapter->geneve_port),
3151 				    be16_to_cpu(ti->port));
3152 			return;
3153 		}
3154 
3155 		adapter->geneve_port = ti->port;
3156 		adapter->geneve_port_cnt = 1;
3157 
3158 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3159 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3160 	default:
3161 		return;
3162 	}
3163 
3164 	/* Create a 'match all' mac filter entry for inner mac,
3165 	 * if raw mac interface is supported. Once the linux kernel provides
3166 	 * driver entry points for adding/deleting the inner mac addresses,
3167 	 * we will remove this 'match all' entry and fallback to adding
3168 	 * exact match filters.
3169 	 */
3170 	for_each_port(adapter, i) {
3171 		pi = adap2pinfo(adapter, i);
3172 
3173 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3174 					    match_all_mac,
3175 					    match_all_mac,
3176 					    adapter->rawf_start +
3177 					    pi->port_id,
3178 					    1, pi->port_id, false);
3179 		if (ret < 0) {
3180 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3181 				    be16_to_cpu(ti->port));
3182 			cxgb_del_udp_tunnel(netdev, ti);
3183 			return;
3184 		}
3185 		atomic_inc(&adapter->mps_encap[ret].refcnt);
3186 	}
3187 }
3188 
3189 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3190 					     struct net_device *dev,
3191 					     netdev_features_t features)
3192 {
3193 	struct port_info *pi = netdev_priv(dev);
3194 	struct adapter *adapter = pi->adapter;
3195 
3196 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3197 		return features;
3198 
3199 	/* Check if hw supports offload for this packet */
3200 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3201 		return features;
3202 
3203 	/* Offload is not supported for this encapsulated packet */
3204 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3205 }
3206 
3207 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3208 					   netdev_features_t features)
3209 {
3210 	/* Disable GRO, if RX_CSUM is disabled */
3211 	if (!(features & NETIF_F_RXCSUM))
3212 		features &= ~NETIF_F_GRO;
3213 
3214 	return features;
3215 }
3216 
3217 static const struct net_device_ops cxgb4_netdev_ops = {
3218 	.ndo_open             = cxgb_open,
3219 	.ndo_stop             = cxgb_close,
3220 	.ndo_start_xmit       = t4_eth_xmit,
3221 	.ndo_select_queue     =	cxgb_select_queue,
3222 	.ndo_get_stats64      = cxgb_get_stats,
3223 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3224 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3225 	.ndo_set_features     = cxgb_set_features,
3226 	.ndo_validate_addr    = eth_validate_addr,
3227 	.ndo_do_ioctl         = cxgb_ioctl,
3228 	.ndo_change_mtu       = cxgb_change_mtu,
3229 #ifdef CONFIG_NET_POLL_CONTROLLER
3230 	.ndo_poll_controller  = cxgb_netpoll,
3231 #endif
3232 #ifdef CONFIG_CHELSIO_T4_FCOE
3233 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3234 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3235 #endif /* CONFIG_CHELSIO_T4_FCOE */
3236 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3237 	.ndo_setup_tc         = cxgb_setup_tc,
3238 	.ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3239 	.ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3240 	.ndo_features_check   = cxgb_features_check,
3241 	.ndo_fix_features     = cxgb_fix_features,
3242 };
3243 
3244 #ifdef CONFIG_PCI_IOV
3245 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3246 	.ndo_open             = cxgb4_mgmt_open,
3247 	.ndo_set_vf_mac       = cxgb4_mgmt_set_vf_mac,
3248 	.ndo_get_vf_config    = cxgb4_mgmt_get_vf_config,
3249 	.ndo_set_vf_rate      = cxgb4_mgmt_set_vf_rate,
3250 	.ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3251 	.ndo_set_vf_vlan      = cxgb4_mgmt_set_vf_vlan,
3252 };
3253 #endif
3254 
3255 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3256 				   struct ethtool_drvinfo *info)
3257 {
3258 	struct adapter *adapter = netdev2adap(dev);
3259 
3260 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3261 	strlcpy(info->version, cxgb4_driver_version,
3262 		sizeof(info->version));
3263 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3264 		sizeof(info->bus_info));
3265 }
3266 
3267 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3268 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3269 };
3270 
3271 static void notify_fatal_err(struct work_struct *work)
3272 {
3273 	struct adapter *adap;
3274 
3275 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3276 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3277 }
3278 
3279 void t4_fatal_err(struct adapter *adap)
3280 {
3281 	int port;
3282 
3283 	if (pci_channel_offline(adap->pdev))
3284 		return;
3285 
3286 	/* Disable the SGE since ULDs are going to free resources that
3287 	 * could be exposed to the adapter.  RDMA MWs for example...
3288 	 */
3289 	t4_shutdown_adapter(adap);
3290 	for_each_port(adap, port) {
3291 		struct net_device *dev = adap->port[port];
3292 
3293 		/* If we get here in very early initialization the network
3294 		 * devices may not have been set up yet.
3295 		 */
3296 		if (!dev)
3297 			continue;
3298 
3299 		netif_tx_stop_all_queues(dev);
3300 		netif_carrier_off(dev);
3301 	}
3302 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3303 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3304 }
3305 
3306 static void setup_memwin(struct adapter *adap)
3307 {
3308 	u32 nic_win_base = t4_get_util_window(adap);
3309 
3310 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3311 }
3312 
3313 static void setup_memwin_rdma(struct adapter *adap)
3314 {
3315 	if (adap->vres.ocq.size) {
3316 		u32 start;
3317 		unsigned int sz_kb;
3318 
3319 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3320 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3321 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3322 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3323 		t4_write_reg(adap,
3324 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3325 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3326 		t4_write_reg(adap,
3327 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3328 			     adap->vres.ocq.start);
3329 		t4_read_reg(adap,
3330 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3331 	}
3332 }
3333 
3334 /* HMA Definitions */
3335 
3336 /* The maximum number of address that can be send in a single FW cmd */
3337 #define HMA_MAX_ADDR_IN_CMD	5
3338 
3339 #define HMA_PAGE_SIZE		PAGE_SIZE
3340 
3341 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3342 
3343 #define HMA_PAGE_ORDER					\
3344 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3345 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3346 
3347 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3348  * configuration(in units of MB).
3349  */
3350 #define HMA_MIN_TOTAL_SIZE	1
3351 #define HMA_MAX_TOTAL_SIZE				\
3352 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3353 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3354 
3355 static void adap_free_hma_mem(struct adapter *adapter)
3356 {
3357 	struct scatterlist *iter;
3358 	struct page *page;
3359 	int i;
3360 
3361 	if (!adapter->hma.sgt)
3362 		return;
3363 
3364 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3365 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3366 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3367 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3368 	}
3369 
3370 	for_each_sg(adapter->hma.sgt->sgl, iter,
3371 		    adapter->hma.sgt->orig_nents, i) {
3372 		page = sg_page(iter);
3373 		if (page)
3374 			__free_pages(page, HMA_PAGE_ORDER);
3375 	}
3376 
3377 	kfree(adapter->hma.phy_addr);
3378 	sg_free_table(adapter->hma.sgt);
3379 	kfree(adapter->hma.sgt);
3380 	adapter->hma.sgt = NULL;
3381 }
3382 
3383 static int adap_config_hma(struct adapter *adapter)
3384 {
3385 	struct scatterlist *sgl, *iter;
3386 	struct sg_table *sgt;
3387 	struct page *newpage;
3388 	unsigned int i, j, k;
3389 	u32 param, hma_size;
3390 	unsigned int ncmds;
3391 	size_t page_size;
3392 	u32 page_order;
3393 	int node, ret;
3394 
3395 	/* HMA is supported only for T6+ cards.
3396 	 * Avoid initializing HMA in kdump kernels.
3397 	 */
3398 	if (is_kdump_kernel() ||
3399 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3400 		return 0;
3401 
3402 	/* Get the HMA region size required by fw */
3403 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3404 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3405 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3406 			      1, &param, &hma_size);
3407 	/* An error means card has its own memory or HMA is not supported by
3408 	 * the firmware. Return without any errors.
3409 	 */
3410 	if (ret || !hma_size)
3411 		return 0;
3412 
3413 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
3414 	    hma_size > HMA_MAX_TOTAL_SIZE) {
3415 		dev_err(adapter->pdev_dev,
3416 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
3417 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3418 		return -EINVAL;
3419 	}
3420 
3421 	page_size = HMA_PAGE_SIZE;
3422 	page_order = HMA_PAGE_ORDER;
3423 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3424 	if (unlikely(!adapter->hma.sgt)) {
3425 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3426 		return -ENOMEM;
3427 	}
3428 	sgt = adapter->hma.sgt;
3429 	/* FW returned value will be in MB's
3430 	 */
3431 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3432 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3433 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3434 		kfree(adapter->hma.sgt);
3435 		adapter->hma.sgt = NULL;
3436 		return -ENOMEM;
3437 	}
3438 
3439 	sgl = adapter->hma.sgt->sgl;
3440 	node = dev_to_node(adapter->pdev_dev);
3441 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
3442 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3443 					   __GFP_ZERO, page_order);
3444 		if (!newpage) {
3445 			dev_err(adapter->pdev_dev,
3446 				"Not enough memory for HMA page allocation\n");
3447 			ret = -ENOMEM;
3448 			goto free_hma;
3449 		}
3450 		sg_set_page(iter, newpage, page_size << page_order, 0);
3451 	}
3452 
3453 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3454 				DMA_BIDIRECTIONAL);
3455 	if (!sgt->nents) {
3456 		dev_err(adapter->pdev_dev,
3457 			"Not enough memory for HMA DMA mapping");
3458 		ret = -ENOMEM;
3459 		goto free_hma;
3460 	}
3461 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3462 
3463 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3464 					GFP_KERNEL);
3465 	if (unlikely(!adapter->hma.phy_addr))
3466 		goto free_hma;
3467 
3468 	for_each_sg(sgl, iter, sgt->nents, i) {
3469 		newpage = sg_page(iter);
3470 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
3471 	}
3472 
3473 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3474 	/* Pass on the addresses to firmware */
3475 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3476 		struct fw_hma_cmd hma_cmd;
3477 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
3478 		u8 soc = 0, eoc = 0;
3479 		u8 hma_mode = 1; /* Presently we support only Page table mode */
3480 
3481 		soc = (i == 0) ? 1 : 0;
3482 		eoc = (i == ncmds - 1) ? 1 : 0;
3483 
3484 		/* For last cmd, set naddr corresponding to remaining
3485 		 * addresses
3486 		 */
3487 		if (i == ncmds - 1) {
3488 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3489 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3490 		}
3491 		memset(&hma_cmd, 0, sizeof(hma_cmd));
3492 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3493 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3494 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3495 
3496 		hma_cmd.mode_to_pcie_params =
3497 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3498 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3499 
3500 		/* HMA cmd size specified in MB's */
3501 		hma_cmd.naddr_size =
3502 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3503 			      FW_HMA_CMD_NADDR_V(naddr));
3504 
3505 		/* Total Page size specified in units of 4K */
3506 		hma_cmd.addr_size_pkd =
3507 			htonl(FW_HMA_CMD_ADDR_SIZE_V
3508 				((page_size << page_order) >> 12));
3509 
3510 		/* Fill the 5 addresses */
3511 		for (j = 0; j < naddr; j++) {
3512 			hma_cmd.phy_address[j] =
3513 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
3514 		}
3515 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3516 				 sizeof(hma_cmd), &hma_cmd);
3517 		if (ret) {
3518 			dev_err(adapter->pdev_dev,
3519 				"HMA FW command failed with err %d\n", ret);
3520 			goto free_hma;
3521 		}
3522 	}
3523 
3524 	if (!ret)
3525 		dev_info(adapter->pdev_dev,
3526 			 "Reserved %uMB host memory for HMA\n", hma_size);
3527 	return ret;
3528 
3529 free_hma:
3530 	adap_free_hma_mem(adapter);
3531 	return ret;
3532 }
3533 
3534 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3535 {
3536 	u32 v;
3537 	int ret;
3538 
3539 	/* get device capabilities */
3540 	memset(c, 0, sizeof(*c));
3541 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3542 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3543 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3544 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3545 	if (ret < 0)
3546 		return ret;
3547 
3548 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3549 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3550 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3551 	if (ret < 0)
3552 		return ret;
3553 
3554 	ret = t4_config_glbl_rss(adap, adap->pf,
3555 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3556 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3557 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3558 	if (ret < 0)
3559 		return ret;
3560 
3561 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3562 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3563 			  FW_CMD_CAP_PF);
3564 	if (ret < 0)
3565 		return ret;
3566 
3567 	t4_sge_init(adap);
3568 
3569 	/* tweak some settings */
3570 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3571 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3572 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3573 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3574 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3575 
3576 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3577 	adap->params.tp.tx_modq_map = 0xE4;
3578 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3579 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3580 
3581 	/* associate each Tx modulation queue with consecutive Tx channels */
3582 	v = 0x84218421;
3583 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3584 			  &v, 1, TP_TX_SCHED_HDR_A);
3585 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3586 			  &v, 1, TP_TX_SCHED_FIFO_A);
3587 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3588 			  &v, 1, TP_TX_SCHED_PCMD_A);
3589 
3590 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3591 	if (is_offload(adap)) {
3592 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3593 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3594 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3595 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3596 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3597 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3598 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3599 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3600 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3601 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3602 	}
3603 
3604 	/* get basic stuff going */
3605 	return t4_early_init(adap, adap->pf);
3606 }
3607 
3608 /*
3609  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3610  */
3611 #define MAX_ATIDS 8192U
3612 
3613 /*
3614  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3615  *
3616  * If the firmware we're dealing with has Configuration File support, then
3617  * we use that to perform all configuration
3618  */
3619 
3620 /*
3621  * Tweak configuration based on module parameters, etc.  Most of these have
3622  * defaults assigned to them by Firmware Configuration Files (if we're using
3623  * them) but need to be explicitly set if we're using hard-coded
3624  * initialization.  But even in the case of using Firmware Configuration
3625  * Files, we'd like to expose the ability to change these via module
3626  * parameters so these are essentially common tweaks/settings for
3627  * Configuration Files and hard-coded initialization ...
3628  */
3629 static int adap_init0_tweaks(struct adapter *adapter)
3630 {
3631 	/*
3632 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3633 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3634 	 * 64B Cache Line Size ...
3635 	 */
3636 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3637 
3638 	/*
3639 	 * Process module parameters which affect early initialization.
3640 	 */
3641 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3642 		dev_err(&adapter->pdev->dev,
3643 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3644 			rx_dma_offset);
3645 		rx_dma_offset = 2;
3646 	}
3647 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3648 			 PKTSHIFT_V(PKTSHIFT_M),
3649 			 PKTSHIFT_V(rx_dma_offset));
3650 
3651 	/*
3652 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3653 	 * adds the pseudo header itself.
3654 	 */
3655 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3656 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3657 
3658 	return 0;
3659 }
3660 
3661 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3662  * unto themselves and they contain their own firmware to perform their
3663  * tasks ...
3664  */
3665 static int phy_aq1202_version(const u8 *phy_fw_data,
3666 			      size_t phy_fw_size)
3667 {
3668 	int offset;
3669 
3670 	/* At offset 0x8 you're looking for the primary image's
3671 	 * starting offset which is 3 Bytes wide
3672 	 *
3673 	 * At offset 0xa of the primary image, you look for the offset
3674 	 * of the DRAM segment which is 3 Bytes wide.
3675 	 *
3676 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3677 	 * wide
3678 	 */
3679 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3680 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3681 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3682 
3683 	offset = le24(phy_fw_data + 0x8) << 12;
3684 	offset = le24(phy_fw_data + offset + 0xa);
3685 	return be16(phy_fw_data + offset + 0x27e);
3686 
3687 	#undef be16
3688 	#undef le16
3689 	#undef le24
3690 }
3691 
3692 static struct info_10gbt_phy_fw {
3693 	unsigned int phy_fw_id;		/* PCI Device ID */
3694 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3695 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3696 	int phy_flash;			/* Has FLASH for PHY Firmware */
3697 } phy_info_array[] = {
3698 	{
3699 		PHY_AQ1202_DEVICEID,
3700 		PHY_AQ1202_FIRMWARE,
3701 		phy_aq1202_version,
3702 		1,
3703 	},
3704 	{
3705 		PHY_BCM84834_DEVICEID,
3706 		PHY_BCM84834_FIRMWARE,
3707 		NULL,
3708 		0,
3709 	},
3710 	{ 0, NULL, NULL },
3711 };
3712 
3713 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3714 {
3715 	int i;
3716 
3717 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3718 		if (phy_info_array[i].phy_fw_id == devid)
3719 			return &phy_info_array[i];
3720 	}
3721 	return NULL;
3722 }
3723 
3724 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3725  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3726  * we return a negative error number.  If we transfer new firmware we return 1
3727  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3728  */
3729 static int adap_init0_phy(struct adapter *adap)
3730 {
3731 	const struct firmware *phyf;
3732 	int ret;
3733 	struct info_10gbt_phy_fw *phy_info;
3734 
3735 	/* Use the device ID to determine which PHY file to flash.
3736 	 */
3737 	phy_info = find_phy_info(adap->pdev->device);
3738 	if (!phy_info) {
3739 		dev_warn(adap->pdev_dev,
3740 			 "No PHY Firmware file found for this PHY\n");
3741 		return -EOPNOTSUPP;
3742 	}
3743 
3744 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3745 	 * use that. The adapter firmware provides us with a memory buffer
3746 	 * where we can load a PHY firmware file from the host if we want to
3747 	 * override the PHY firmware File in flash.
3748 	 */
3749 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3750 				      adap->pdev_dev);
3751 	if (ret < 0) {
3752 		/* For adapters without FLASH attached to PHY for their
3753 		 * firmware, it's obviously a fatal error if we can't get the
3754 		 * firmware to the adapter.  For adapters with PHY firmware
3755 		 * FLASH storage, it's worth a warning if we can't find the
3756 		 * PHY Firmware but we'll neuter the error ...
3757 		 */
3758 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3759 			"/lib/firmware/%s, error %d\n",
3760 			phy_info->phy_fw_file, -ret);
3761 		if (phy_info->phy_flash) {
3762 			int cur_phy_fw_ver = 0;
3763 
3764 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3765 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3766 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3767 			ret = 0;
3768 		}
3769 
3770 		return ret;
3771 	}
3772 
3773 	/* Load PHY Firmware onto adapter.
3774 	 */
3775 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3776 			     phy_info->phy_fw_version,
3777 			     (u8 *)phyf->data, phyf->size);
3778 	if (ret < 0)
3779 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3780 			-ret);
3781 	else if (ret > 0) {
3782 		int new_phy_fw_ver = 0;
3783 
3784 		if (phy_info->phy_fw_version)
3785 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3786 								  phyf->size);
3787 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3788 			 "Firmware /lib/firmware/%s, version %#x\n",
3789 			 phy_info->phy_fw_file, new_phy_fw_ver);
3790 	}
3791 
3792 	release_firmware(phyf);
3793 
3794 	return ret;
3795 }
3796 
3797 /*
3798  * Attempt to initialize the adapter via a Firmware Configuration File.
3799  */
3800 static int adap_init0_config(struct adapter *adapter, int reset)
3801 {
3802 	struct fw_caps_config_cmd caps_cmd;
3803 	const struct firmware *cf;
3804 	unsigned long mtype = 0, maddr = 0;
3805 	u32 finiver, finicsum, cfcsum;
3806 	int ret;
3807 	int config_issued = 0;
3808 	char *fw_config_file, fw_config_file_path[256];
3809 	char *config_name = NULL;
3810 
3811 	/*
3812 	 * Reset device if necessary.
3813 	 */
3814 	if (reset) {
3815 		ret = t4_fw_reset(adapter, adapter->mbox,
3816 				  PIORSTMODE_F | PIORST_F);
3817 		if (ret < 0)
3818 			goto bye;
3819 	}
3820 
3821 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3822 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3823 	 * to be performed after any global adapter RESET above since some
3824 	 * PHYs only have local RAM copies of the PHY firmware.
3825 	 */
3826 	if (is_10gbt_device(adapter->pdev->device)) {
3827 		ret = adap_init0_phy(adapter);
3828 		if (ret < 0)
3829 			goto bye;
3830 	}
3831 	/*
3832 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3833 	 * then use that.  Otherwise, use the configuration file stored
3834 	 * in the adapter flash ...
3835 	 */
3836 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3837 	case CHELSIO_T4:
3838 		fw_config_file = FW4_CFNAME;
3839 		break;
3840 	case CHELSIO_T5:
3841 		fw_config_file = FW5_CFNAME;
3842 		break;
3843 	case CHELSIO_T6:
3844 		fw_config_file = FW6_CFNAME;
3845 		break;
3846 	default:
3847 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3848 		       adapter->pdev->device);
3849 		ret = -EINVAL;
3850 		goto bye;
3851 	}
3852 
3853 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3854 	if (ret < 0) {
3855 		config_name = "On FLASH";
3856 		mtype = FW_MEMTYPE_CF_FLASH;
3857 		maddr = t4_flash_cfg_addr(adapter);
3858 	} else {
3859 		u32 params[7], val[7];
3860 
3861 		sprintf(fw_config_file_path,
3862 			"/lib/firmware/%s", fw_config_file);
3863 		config_name = fw_config_file_path;
3864 
3865 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3866 			ret = -ENOMEM;
3867 		else {
3868 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3869 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3870 			ret = t4_query_params(adapter, adapter->mbox,
3871 					      adapter->pf, 0, 1, params, val);
3872 			if (ret == 0) {
3873 				/*
3874 				 * For t4_memory_rw() below addresses and
3875 				 * sizes have to be in terms of multiples of 4
3876 				 * bytes.  So, if the Configuration File isn't
3877 				 * a multiple of 4 bytes in length we'll have
3878 				 * to write that out separately since we can't
3879 				 * guarantee that the bytes following the
3880 				 * residual byte in the buffer returned by
3881 				 * request_firmware() are zeroed out ...
3882 				 */
3883 				size_t resid = cf->size & 0x3;
3884 				size_t size = cf->size & ~0x3;
3885 				__be32 *data = (__be32 *)cf->data;
3886 
3887 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3888 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3889 
3890 				spin_lock(&adapter->win0_lock);
3891 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3892 						   size, data, T4_MEMORY_WRITE);
3893 				if (ret == 0 && resid != 0) {
3894 					union {
3895 						__be32 word;
3896 						char buf[4];
3897 					} last;
3898 					int i;
3899 
3900 					last.word = data[size >> 2];
3901 					for (i = resid; i < 4; i++)
3902 						last.buf[i] = 0;
3903 					ret = t4_memory_rw(adapter, 0, mtype,
3904 							   maddr + size,
3905 							   4, &last.word,
3906 							   T4_MEMORY_WRITE);
3907 				}
3908 				spin_unlock(&adapter->win0_lock);
3909 			}
3910 		}
3911 
3912 		release_firmware(cf);
3913 		if (ret)
3914 			goto bye;
3915 	}
3916 
3917 	/*
3918 	 * Issue a Capability Configuration command to the firmware to get it
3919 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3920 	 * because we want the ability to modify various features after we've
3921 	 * processed the configuration file ...
3922 	 */
3923 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3924 	caps_cmd.op_to_write =
3925 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3926 		      FW_CMD_REQUEST_F |
3927 		      FW_CMD_READ_F);
3928 	caps_cmd.cfvalid_to_len16 =
3929 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3930 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3931 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3932 		      FW_LEN16(caps_cmd));
3933 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3934 			 &caps_cmd);
3935 
3936 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3937 	 * Configuration File in FLASH), our last gasp effort is to use the
3938 	 * Firmware Configuration File which is embedded in the firmware.  A
3939 	 * very few early versions of the firmware didn't have one embedded
3940 	 * but we can ignore those.
3941 	 */
3942 	if (ret == -ENOENT) {
3943 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3944 		caps_cmd.op_to_write =
3945 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3946 					FW_CMD_REQUEST_F |
3947 					FW_CMD_READ_F);
3948 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3949 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3950 				sizeof(caps_cmd), &caps_cmd);
3951 		config_name = "Firmware Default";
3952 	}
3953 
3954 	config_issued = 1;
3955 	if (ret < 0)
3956 		goto bye;
3957 
3958 	finiver = ntohl(caps_cmd.finiver);
3959 	finicsum = ntohl(caps_cmd.finicsum);
3960 	cfcsum = ntohl(caps_cmd.cfcsum);
3961 	if (finicsum != cfcsum)
3962 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3963 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3964 			 finicsum, cfcsum);
3965 
3966 	/*
3967 	 * And now tell the firmware to use the configuration we just loaded.
3968 	 */
3969 	caps_cmd.op_to_write =
3970 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3971 		      FW_CMD_REQUEST_F |
3972 		      FW_CMD_WRITE_F);
3973 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3974 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3975 			 NULL);
3976 	if (ret < 0)
3977 		goto bye;
3978 
3979 	/*
3980 	 * Tweak configuration based on system architecture, module
3981 	 * parameters, etc.
3982 	 */
3983 	ret = adap_init0_tweaks(adapter);
3984 	if (ret < 0)
3985 		goto bye;
3986 
3987 	/* We will proceed even if HMA init fails. */
3988 	ret = adap_config_hma(adapter);
3989 	if (ret)
3990 		dev_err(adapter->pdev_dev,
3991 			"HMA configuration failed with error %d\n", ret);
3992 
3993 	/*
3994 	 * And finally tell the firmware to initialize itself using the
3995 	 * parameters from the Configuration File.
3996 	 */
3997 	ret = t4_fw_initialize(adapter, adapter->mbox);
3998 	if (ret < 0)
3999 		goto bye;
4000 
4001 	/* Emit Firmware Configuration File information and return
4002 	 * successfully.
4003 	 */
4004 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4005 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4006 		 config_name, finiver, cfcsum);
4007 	return 0;
4008 
4009 	/*
4010 	 * Something bad happened.  Return the error ...  (If the "error"
4011 	 * is that there's no Configuration File on the adapter we don't
4012 	 * want to issue a warning since this is fairly common.)
4013 	 */
4014 bye:
4015 	if (config_issued && ret != -ENOENT)
4016 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4017 			 config_name, -ret);
4018 	return ret;
4019 }
4020 
4021 static struct fw_info fw_info_array[] = {
4022 	{
4023 		.chip = CHELSIO_T4,
4024 		.fs_name = FW4_CFNAME,
4025 		.fw_mod_name = FW4_FNAME,
4026 		.fw_hdr = {
4027 			.chip = FW_HDR_CHIP_T4,
4028 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4029 			.intfver_nic = FW_INTFVER(T4, NIC),
4030 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4031 			.intfver_ri = FW_INTFVER(T4, RI),
4032 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4033 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4034 		},
4035 	}, {
4036 		.chip = CHELSIO_T5,
4037 		.fs_name = FW5_CFNAME,
4038 		.fw_mod_name = FW5_FNAME,
4039 		.fw_hdr = {
4040 			.chip = FW_HDR_CHIP_T5,
4041 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4042 			.intfver_nic = FW_INTFVER(T5, NIC),
4043 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4044 			.intfver_ri = FW_INTFVER(T5, RI),
4045 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4046 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4047 		},
4048 	}, {
4049 		.chip = CHELSIO_T6,
4050 		.fs_name = FW6_CFNAME,
4051 		.fw_mod_name = FW6_FNAME,
4052 		.fw_hdr = {
4053 			.chip = FW_HDR_CHIP_T6,
4054 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4055 			.intfver_nic = FW_INTFVER(T6, NIC),
4056 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4057 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4058 			.intfver_ri = FW_INTFVER(T6, RI),
4059 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4060 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4061 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4062 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4063 		},
4064 	}
4065 
4066 };
4067 
4068 static struct fw_info *find_fw_info(int chip)
4069 {
4070 	int i;
4071 
4072 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4073 		if (fw_info_array[i].chip == chip)
4074 			return &fw_info_array[i];
4075 	}
4076 	return NULL;
4077 }
4078 
4079 /*
4080  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4081  */
4082 static int adap_init0(struct adapter *adap)
4083 {
4084 	int ret;
4085 	u32 v, port_vec;
4086 	enum dev_state state;
4087 	u32 params[7], val[7];
4088 	struct fw_caps_config_cmd caps_cmd;
4089 	int reset = 1;
4090 
4091 	/* Grab Firmware Device Log parameters as early as possible so we have
4092 	 * access to it for debugging, etc.
4093 	 */
4094 	ret = t4_init_devlog_params(adap);
4095 	if (ret < 0)
4096 		return ret;
4097 
4098 	/* Contact FW, advertising Master capability */
4099 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4100 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4101 	if (ret < 0) {
4102 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4103 			ret);
4104 		return ret;
4105 	}
4106 	if (ret == adap->mbox)
4107 		adap->flags |= MASTER_PF;
4108 
4109 	/*
4110 	 * If we're the Master PF Driver and the device is uninitialized,
4111 	 * then let's consider upgrading the firmware ...  (We always want
4112 	 * to check the firmware version number in order to A. get it for
4113 	 * later reporting and B. to warn if the currently loaded firmware
4114 	 * is excessively mismatched relative to the driver.)
4115 	 */
4116 
4117 	t4_get_version_info(adap);
4118 	ret = t4_check_fw_version(adap);
4119 	/* If firmware is too old (not supported by driver) force an update. */
4120 	if (ret)
4121 		state = DEV_STATE_UNINIT;
4122 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4123 		struct fw_info *fw_info;
4124 		struct fw_hdr *card_fw;
4125 		const struct firmware *fw;
4126 		const u8 *fw_data = NULL;
4127 		unsigned int fw_size = 0;
4128 
4129 		/* This is the firmware whose headers the driver was compiled
4130 		 * against
4131 		 */
4132 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4133 		if (fw_info == NULL) {
4134 			dev_err(adap->pdev_dev,
4135 				"unable to get firmware info for chip %d.\n",
4136 				CHELSIO_CHIP_VERSION(adap->params.chip));
4137 			return -EINVAL;
4138 		}
4139 
4140 		/* allocate memory to read the header of the firmware on the
4141 		 * card
4142 		 */
4143 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4144 		if (!card_fw) {
4145 			ret = -ENOMEM;
4146 			goto bye;
4147 		}
4148 
4149 		/* Get FW from from /lib/firmware/ */
4150 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4151 				       adap->pdev_dev);
4152 		if (ret < 0) {
4153 			dev_err(adap->pdev_dev,
4154 				"unable to load firmware image %s, error %d\n",
4155 				fw_info->fw_mod_name, ret);
4156 		} else {
4157 			fw_data = fw->data;
4158 			fw_size = fw->size;
4159 		}
4160 
4161 		/* upgrade FW logic */
4162 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4163 				 state, &reset);
4164 
4165 		/* Cleaning up */
4166 		release_firmware(fw);
4167 		kvfree(card_fw);
4168 
4169 		if (ret < 0)
4170 			goto bye;
4171 	}
4172 
4173 	/*
4174 	 * Grab VPD parameters.  This should be done after we establish a
4175 	 * connection to the firmware since some of the VPD parameters
4176 	 * (notably the Core Clock frequency) are retrieved via requests to
4177 	 * the firmware.  On the other hand, we need these fairly early on
4178 	 * so we do this right after getting ahold of the firmware.
4179 	 */
4180 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
4181 	if (ret < 0)
4182 		goto bye;
4183 
4184 	/*
4185 	 * Find out what ports are available to us.  Note that we need to do
4186 	 * this before calling adap_init0_no_config() since it needs nports
4187 	 * and portvec ...
4188 	 */
4189 	v =
4190 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4191 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4192 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4193 	if (ret < 0)
4194 		goto bye;
4195 
4196 	adap->params.nports = hweight32(port_vec);
4197 	adap->params.portvec = port_vec;
4198 
4199 	/* If the firmware is initialized already, emit a simply note to that
4200 	 * effect. Otherwise, it's time to try initializing the adapter.
4201 	 */
4202 	if (state == DEV_STATE_INIT) {
4203 		ret = adap_config_hma(adap);
4204 		if (ret)
4205 			dev_err(adap->pdev_dev,
4206 				"HMA configuration failed with error %d\n",
4207 				ret);
4208 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4209 			 "Adapter already initialized\n",
4210 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4211 	} else {
4212 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4213 			 "Initializing adapter\n");
4214 
4215 		/* Find out whether we're dealing with a version of the
4216 		 * firmware which has configuration file support.
4217 		 */
4218 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4219 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4220 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4221 				      params, val);
4222 
4223 		/* If the firmware doesn't support Configuration Files,
4224 		 * return an error.
4225 		 */
4226 		if (ret < 0) {
4227 			dev_err(adap->pdev_dev, "firmware doesn't support "
4228 				"Firmware Configuration Files\n");
4229 			goto bye;
4230 		}
4231 
4232 		/* The firmware provides us with a memory buffer where we can
4233 		 * load a Configuration File from the host if we want to
4234 		 * override the Configuration File in flash.
4235 		 */
4236 		ret = adap_init0_config(adap, reset);
4237 		if (ret == -ENOENT) {
4238 			dev_err(adap->pdev_dev, "no Configuration File "
4239 				"present on adapter.\n");
4240 			goto bye;
4241 		}
4242 		if (ret < 0) {
4243 			dev_err(adap->pdev_dev, "could not initialize "
4244 				"adapter, error %d\n", -ret);
4245 			goto bye;
4246 		}
4247 	}
4248 
4249 	/* Give the SGE code a chance to pull in anything that it needs ...
4250 	 * Note that this must be called after we retrieve our VPD parameters
4251 	 * in order to know how to convert core ticks to seconds, etc.
4252 	 */
4253 	ret = t4_sge_init(adap);
4254 	if (ret < 0)
4255 		goto bye;
4256 
4257 	if (is_bypass_device(adap->pdev->device))
4258 		adap->params.bypass = 1;
4259 
4260 	/*
4261 	 * Grab some of our basic fundamental operating parameters.
4262 	 */
4263 #define FW_PARAM_DEV(param) \
4264 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4265 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4266 
4267 #define FW_PARAM_PFVF(param) \
4268 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4269 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4270 	FW_PARAMS_PARAM_Y_V(0) | \
4271 	FW_PARAMS_PARAM_Z_V(0)
4272 
4273 	params[0] = FW_PARAM_PFVF(EQ_START);
4274 	params[1] = FW_PARAM_PFVF(L2T_START);
4275 	params[2] = FW_PARAM_PFVF(L2T_END);
4276 	params[3] = FW_PARAM_PFVF(FILTER_START);
4277 	params[4] = FW_PARAM_PFVF(FILTER_END);
4278 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4279 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4280 	if (ret < 0)
4281 		goto bye;
4282 	adap->sge.egr_start = val[0];
4283 	adap->l2t_start = val[1];
4284 	adap->l2t_end = val[2];
4285 	adap->tids.ftid_base = val[3];
4286 	adap->tids.nftids = val[4] - val[3] + 1;
4287 	adap->sge.ingr_start = val[5];
4288 
4289 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4290 		/* Read the raw mps entries. In T6, the last 2 tcam entries
4291 		 * are reserved for raw mac addresses (rawf = 2, one per port).
4292 		 */
4293 		params[0] = FW_PARAM_PFVF(RAWF_START);
4294 		params[1] = FW_PARAM_PFVF(RAWF_END);
4295 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4296 				      params, val);
4297 		if (ret == 0) {
4298 			adap->rawf_start = val[0];
4299 			adap->rawf_cnt = val[1] - val[0] + 1;
4300 		}
4301 	}
4302 
4303 	/* qids (ingress/egress) returned from firmware can be anywhere
4304 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4305 	 * Hence driver needs to allocate memory for this range to
4306 	 * store the queue info. Get the highest IQFLINT/EQ index returned
4307 	 * in FW_EQ_*_CMD.alloc command.
4308 	 */
4309 	params[0] = FW_PARAM_PFVF(EQ_END);
4310 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
4311 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4312 	if (ret < 0)
4313 		goto bye;
4314 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4315 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4316 
4317 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4318 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4319 	if (!adap->sge.egr_map) {
4320 		ret = -ENOMEM;
4321 		goto bye;
4322 	}
4323 
4324 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4325 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4326 	if (!adap->sge.ingr_map) {
4327 		ret = -ENOMEM;
4328 		goto bye;
4329 	}
4330 
4331 	/* Allocate the memory for the vaious egress queue bitmaps
4332 	 * ie starving_fl, txq_maperr and blocked_fl.
4333 	 */
4334 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4335 					sizeof(long), GFP_KERNEL);
4336 	if (!adap->sge.starving_fl) {
4337 		ret = -ENOMEM;
4338 		goto bye;
4339 	}
4340 
4341 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4342 				       sizeof(long), GFP_KERNEL);
4343 	if (!adap->sge.txq_maperr) {
4344 		ret = -ENOMEM;
4345 		goto bye;
4346 	}
4347 
4348 #ifdef CONFIG_DEBUG_FS
4349 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4350 				       sizeof(long), GFP_KERNEL);
4351 	if (!adap->sge.blocked_fl) {
4352 		ret = -ENOMEM;
4353 		goto bye;
4354 	}
4355 #endif
4356 
4357 	params[0] = FW_PARAM_PFVF(CLIP_START);
4358 	params[1] = FW_PARAM_PFVF(CLIP_END);
4359 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4360 	if (ret < 0)
4361 		goto bye;
4362 	adap->clipt_start = val[0];
4363 	adap->clipt_end = val[1];
4364 
4365 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
4366 	 * Classes supported by the hardware/firmware so we hard code it here
4367 	 * for now.
4368 	 */
4369 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4370 
4371 	/* query params related to active filter region */
4372 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4373 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4374 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4375 	/* If Active filter size is set we enable establishing
4376 	 * offload connection through firmware work request
4377 	 */
4378 	if ((val[0] != val[1]) && (ret >= 0)) {
4379 		adap->flags |= FW_OFLD_CONN;
4380 		adap->tids.aftid_base = val[0];
4381 		adap->tids.aftid_end = val[1];
4382 	}
4383 
4384 	/* If we're running on newer firmware, let it know that we're
4385 	 * prepared to deal with encapsulated CPL messages.  Older
4386 	 * firmware won't understand this and we'll just get
4387 	 * unencapsulated messages ...
4388 	 */
4389 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4390 	val[0] = 1;
4391 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4392 
4393 	/*
4394 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4395 	 * capability.  Earlier versions of the firmware didn't have the
4396 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4397 	 * permission to use ULPTX MEMWRITE DSGL.
4398 	 */
4399 	if (is_t4(adap->params.chip)) {
4400 		adap->params.ulptx_memwrite_dsgl = false;
4401 	} else {
4402 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4403 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4404 				      1, params, val);
4405 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4406 	}
4407 
4408 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4409 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4410 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4411 			      1, params, val);
4412 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4413 
4414 	/* See if FW supports FW_FILTER2 work request */
4415 	if (is_t4(adap->params.chip)) {
4416 		adap->params.filter2_wr_support = 0;
4417 	} else {
4418 		params[0] = FW_PARAM_DEV(FILTER2_WR);
4419 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4420 				      1, params, val);
4421 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4422 	}
4423 
4424 	/*
4425 	 * Get device capabilities so we can determine what resources we need
4426 	 * to manage.
4427 	 */
4428 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4429 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4430 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4431 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4432 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4433 			 &caps_cmd);
4434 	if (ret < 0)
4435 		goto bye;
4436 
4437 	if (caps_cmd.ofldcaps ||
4438 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4439 		/* query offload-related parameters */
4440 		params[0] = FW_PARAM_DEV(NTID);
4441 		params[1] = FW_PARAM_PFVF(SERVER_START);
4442 		params[2] = FW_PARAM_PFVF(SERVER_END);
4443 		params[3] = FW_PARAM_PFVF(TDDP_START);
4444 		params[4] = FW_PARAM_PFVF(TDDP_END);
4445 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4446 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4447 				      params, val);
4448 		if (ret < 0)
4449 			goto bye;
4450 		adap->tids.ntids = val[0];
4451 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4452 		adap->tids.stid_base = val[1];
4453 		adap->tids.nstids = val[2] - val[1] + 1;
4454 		/*
4455 		 * Setup server filter region. Divide the available filter
4456 		 * region into two parts. Regular filters get 1/3rd and server
4457 		 * filters get 2/3rd part. This is only enabled if workarond
4458 		 * path is enabled.
4459 		 * 1. For regular filters.
4460 		 * 2. Server filter: This are special filters which are used
4461 		 * to redirect SYN packets to offload queue.
4462 		 */
4463 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4464 			adap->tids.sftid_base = adap->tids.ftid_base +
4465 					DIV_ROUND_UP(adap->tids.nftids, 3);
4466 			adap->tids.nsftids = adap->tids.nftids -
4467 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4468 			adap->tids.nftids = adap->tids.sftid_base -
4469 						adap->tids.ftid_base;
4470 		}
4471 		adap->vres.ddp.start = val[3];
4472 		adap->vres.ddp.size = val[4] - val[3] + 1;
4473 		adap->params.ofldq_wr_cred = val[5];
4474 
4475 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4476 			ret = init_hash_filter(adap);
4477 			if (ret < 0)
4478 				goto bye;
4479 		} else {
4480 			adap->params.offload = 1;
4481 			adap->num_ofld_uld += 1;
4482 		}
4483 	}
4484 	if (caps_cmd.rdmacaps) {
4485 		params[0] = FW_PARAM_PFVF(STAG_START);
4486 		params[1] = FW_PARAM_PFVF(STAG_END);
4487 		params[2] = FW_PARAM_PFVF(RQ_START);
4488 		params[3] = FW_PARAM_PFVF(RQ_END);
4489 		params[4] = FW_PARAM_PFVF(PBL_START);
4490 		params[5] = FW_PARAM_PFVF(PBL_END);
4491 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4492 				      params, val);
4493 		if (ret < 0)
4494 			goto bye;
4495 		adap->vres.stag.start = val[0];
4496 		adap->vres.stag.size = val[1] - val[0] + 1;
4497 		adap->vres.rq.start = val[2];
4498 		adap->vres.rq.size = val[3] - val[2] + 1;
4499 		adap->vres.pbl.start = val[4];
4500 		adap->vres.pbl.size = val[5] - val[4] + 1;
4501 
4502 		params[0] = FW_PARAM_PFVF(SRQ_START);
4503 		params[1] = FW_PARAM_PFVF(SRQ_END);
4504 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4505 				      params, val);
4506 		if (!ret) {
4507 			adap->vres.srq.start = val[0];
4508 			adap->vres.srq.size = val[1] - val[0] + 1;
4509 		}
4510 		if (adap->vres.srq.size) {
4511 			adap->srq = t4_init_srq(adap->vres.srq.size);
4512 			if (!adap->srq)
4513 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4514 		}
4515 
4516 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4517 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4518 		params[2] = FW_PARAM_PFVF(CQ_START);
4519 		params[3] = FW_PARAM_PFVF(CQ_END);
4520 		params[4] = FW_PARAM_PFVF(OCQ_START);
4521 		params[5] = FW_PARAM_PFVF(OCQ_END);
4522 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4523 				      val);
4524 		if (ret < 0)
4525 			goto bye;
4526 		adap->vres.qp.start = val[0];
4527 		adap->vres.qp.size = val[1] - val[0] + 1;
4528 		adap->vres.cq.start = val[2];
4529 		adap->vres.cq.size = val[3] - val[2] + 1;
4530 		adap->vres.ocq.start = val[4];
4531 		adap->vres.ocq.size = val[5] - val[4] + 1;
4532 
4533 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4534 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4535 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4536 				      val);
4537 		if (ret < 0) {
4538 			adap->params.max_ordird_qp = 8;
4539 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4540 			ret = 0;
4541 		} else {
4542 			adap->params.max_ordird_qp = val[0];
4543 			adap->params.max_ird_adapter = val[1];
4544 		}
4545 		dev_info(adap->pdev_dev,
4546 			 "max_ordird_qp %d max_ird_adapter %d\n",
4547 			 adap->params.max_ordird_qp,
4548 			 adap->params.max_ird_adapter);
4549 
4550 		/* Enable write_with_immediate if FW supports it */
4551 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4552 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4553 				      val);
4554 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4555 
4556 		/* Enable write_cmpl if FW supports it */
4557 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4558 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4559 				      val);
4560 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4561 		adap->num_ofld_uld += 2;
4562 	}
4563 	if (caps_cmd.iscsicaps) {
4564 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4565 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4566 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4567 				      params, val);
4568 		if (ret < 0)
4569 			goto bye;
4570 		adap->vres.iscsi.start = val[0];
4571 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4572 		/* LIO target and cxgb4i initiaitor */
4573 		adap->num_ofld_uld += 2;
4574 	}
4575 	if (caps_cmd.cryptocaps) {
4576 		if (ntohs(caps_cmd.cryptocaps) &
4577 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4578 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4579 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4580 					      2, params, val);
4581 			if (ret < 0) {
4582 				if (ret != -EINVAL)
4583 					goto bye;
4584 			} else {
4585 				adap->vres.ncrypto_fc = val[0];
4586 			}
4587 			adap->num_ofld_uld += 1;
4588 		}
4589 		if (ntohs(caps_cmd.cryptocaps) &
4590 		    FW_CAPS_CONFIG_TLS_INLINE) {
4591 			params[0] = FW_PARAM_PFVF(TLS_START);
4592 			params[1] = FW_PARAM_PFVF(TLS_END);
4593 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4594 					      2, params, val);
4595 			if (ret < 0)
4596 				goto bye;
4597 			adap->vres.key.start = val[0];
4598 			adap->vres.key.size = val[1] - val[0] + 1;
4599 			adap->num_uld += 1;
4600 		}
4601 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4602 	}
4603 #undef FW_PARAM_PFVF
4604 #undef FW_PARAM_DEV
4605 
4606 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4607 	 * we're initializing the adapter, then we'll make any modifications
4608 	 * we want to the MTU/MSS Table and also initialize the congestion
4609 	 * parameters.
4610 	 */
4611 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4612 	if (state != DEV_STATE_INIT) {
4613 		int i;
4614 
4615 		/* The default MTU Table contains values 1492 and 1500.
4616 		 * However, for TCP, it's better to have two values which are
4617 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4618 		 * This allows us to have a TCP Data Payload which is a
4619 		 * multiple of 8 regardless of what combination of TCP Options
4620 		 * are in use (always a multiple of 4 bytes) which is
4621 		 * important for performance reasons.  For instance, if no
4622 		 * options are in use, then we have a 20-byte IP header and a
4623 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4624 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4625 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4626 		 * this case results in a TCP Data Payload of 1448 bytes which
4627 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4628 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4629 		 * results in a TCP Data Payload of 1448 bytes which, as
4630 		 * above, is a multiple of 8 bytes ...
4631 		 */
4632 		for (i = 0; i < NMTUS; i++)
4633 			if (adap->params.mtus[i] == 1492) {
4634 				adap->params.mtus[i] = 1488;
4635 				break;
4636 			}
4637 
4638 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4639 			     adap->params.b_wnd);
4640 	}
4641 	t4_init_sge_params(adap);
4642 	adap->flags |= FW_OK;
4643 	t4_init_tp_params(adap, true);
4644 	return 0;
4645 
4646 	/*
4647 	 * Something bad happened.  If a command timed out or failed with EIO
4648 	 * FW does not operate within its spec or something catastrophic
4649 	 * happened to HW/FW, stop issuing commands.
4650 	 */
4651 bye:
4652 	adap_free_hma_mem(adap);
4653 	kfree(adap->sge.egr_map);
4654 	kfree(adap->sge.ingr_map);
4655 	kfree(adap->sge.starving_fl);
4656 	kfree(adap->sge.txq_maperr);
4657 #ifdef CONFIG_DEBUG_FS
4658 	kfree(adap->sge.blocked_fl);
4659 #endif
4660 	if (ret != -ETIMEDOUT && ret != -EIO)
4661 		t4_fw_bye(adap, adap->mbox);
4662 	return ret;
4663 }
4664 
4665 /* EEH callbacks */
4666 
4667 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4668 					 pci_channel_state_t state)
4669 {
4670 	int i;
4671 	struct adapter *adap = pci_get_drvdata(pdev);
4672 
4673 	if (!adap)
4674 		goto out;
4675 
4676 	rtnl_lock();
4677 	adap->flags &= ~FW_OK;
4678 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4679 	spin_lock(&adap->stats_lock);
4680 	for_each_port(adap, i) {
4681 		struct net_device *dev = adap->port[i];
4682 		if (dev) {
4683 			netif_device_detach(dev);
4684 			netif_carrier_off(dev);
4685 		}
4686 	}
4687 	spin_unlock(&adap->stats_lock);
4688 	disable_interrupts(adap);
4689 	if (adap->flags & FULL_INIT_DONE)
4690 		cxgb_down(adap);
4691 	rtnl_unlock();
4692 	if ((adap->flags & DEV_ENABLED)) {
4693 		pci_disable_device(pdev);
4694 		adap->flags &= ~DEV_ENABLED;
4695 	}
4696 out:	return state == pci_channel_io_perm_failure ?
4697 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4698 }
4699 
4700 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4701 {
4702 	int i, ret;
4703 	struct fw_caps_config_cmd c;
4704 	struct adapter *adap = pci_get_drvdata(pdev);
4705 
4706 	if (!adap) {
4707 		pci_restore_state(pdev);
4708 		pci_save_state(pdev);
4709 		return PCI_ERS_RESULT_RECOVERED;
4710 	}
4711 
4712 	if (!(adap->flags & DEV_ENABLED)) {
4713 		if (pci_enable_device(pdev)) {
4714 			dev_err(&pdev->dev, "Cannot reenable PCI "
4715 					    "device after reset\n");
4716 			return PCI_ERS_RESULT_DISCONNECT;
4717 		}
4718 		adap->flags |= DEV_ENABLED;
4719 	}
4720 
4721 	pci_set_master(pdev);
4722 	pci_restore_state(pdev);
4723 	pci_save_state(pdev);
4724 	pci_cleanup_aer_uncorrect_error_status(pdev);
4725 
4726 	if (t4_wait_dev_ready(adap->regs) < 0)
4727 		return PCI_ERS_RESULT_DISCONNECT;
4728 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4729 		return PCI_ERS_RESULT_DISCONNECT;
4730 	adap->flags |= FW_OK;
4731 	if (adap_init1(adap, &c))
4732 		return PCI_ERS_RESULT_DISCONNECT;
4733 
4734 	for_each_port(adap, i) {
4735 		struct port_info *p = adap2pinfo(adap, i);
4736 
4737 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4738 				  NULL, NULL);
4739 		if (ret < 0)
4740 			return PCI_ERS_RESULT_DISCONNECT;
4741 		p->viid = ret;
4742 		p->xact_addr_filt = -1;
4743 	}
4744 
4745 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4746 		     adap->params.b_wnd);
4747 	setup_memwin(adap);
4748 	if (cxgb_up(adap))
4749 		return PCI_ERS_RESULT_DISCONNECT;
4750 	return PCI_ERS_RESULT_RECOVERED;
4751 }
4752 
4753 static void eeh_resume(struct pci_dev *pdev)
4754 {
4755 	int i;
4756 	struct adapter *adap = pci_get_drvdata(pdev);
4757 
4758 	if (!adap)
4759 		return;
4760 
4761 	rtnl_lock();
4762 	for_each_port(adap, i) {
4763 		struct net_device *dev = adap->port[i];
4764 		if (dev) {
4765 			if (netif_running(dev)) {
4766 				link_start(dev);
4767 				cxgb_set_rxmode(dev);
4768 			}
4769 			netif_device_attach(dev);
4770 		}
4771 	}
4772 	rtnl_unlock();
4773 }
4774 
4775 static const struct pci_error_handlers cxgb4_eeh = {
4776 	.error_detected = eeh_err_detected,
4777 	.slot_reset     = eeh_slot_reset,
4778 	.resume         = eeh_resume,
4779 };
4780 
4781 /* Return true if the Link Configuration supports "High Speeds" (those greater
4782  * than 1Gb/s).
4783  */
4784 static inline bool is_x_10g_port(const struct link_config *lc)
4785 {
4786 	unsigned int speeds, high_speeds;
4787 
4788 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4789 	high_speeds = speeds &
4790 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4791 
4792 	return high_speeds != 0;
4793 }
4794 
4795 /*
4796  * Perform default configuration of DMA queues depending on the number and type
4797  * of ports we found and the number of available CPUs.  Most settings can be
4798  * modified by the admin prior to actual use.
4799  */
4800 static void cfg_queues(struct adapter *adap)
4801 {
4802 	struct sge *s = &adap->sge;
4803 	int i = 0, n10g = 0, qidx = 0;
4804 #ifndef CONFIG_CHELSIO_T4_DCB
4805 	int q10g = 0;
4806 #endif
4807 
4808 	/* Reduce memory usage in kdump environment, disable all offload.
4809 	 */
4810 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4811 		adap->params.offload = 0;
4812 		adap->params.crypto = 0;
4813 	}
4814 
4815 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4816 #ifdef CONFIG_CHELSIO_T4_DCB
4817 	/* For Data Center Bridging support we need to be able to support up
4818 	 * to 8 Traffic Priorities; each of which will be assigned to its
4819 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4820 	 */
4821 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4822 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4823 			MAX_ETH_QSETS, adap->params.nports * 8);
4824 		BUG_ON(1);
4825 	}
4826 
4827 	for_each_port(adap, i) {
4828 		struct port_info *pi = adap2pinfo(adap, i);
4829 
4830 		pi->first_qset = qidx;
4831 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4832 		qidx += pi->nqsets;
4833 	}
4834 #else /* !CONFIG_CHELSIO_T4_DCB */
4835 	/*
4836 	 * We default to 1 queue per non-10G port and up to # of cores queues
4837 	 * per 10G port.
4838 	 */
4839 	if (n10g)
4840 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4841 	if (q10g > netif_get_num_default_rss_queues())
4842 		q10g = netif_get_num_default_rss_queues();
4843 
4844 	if (is_kdump_kernel())
4845 		q10g = 1;
4846 
4847 	for_each_port(adap, i) {
4848 		struct port_info *pi = adap2pinfo(adap, i);
4849 
4850 		pi->first_qset = qidx;
4851 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4852 		qidx += pi->nqsets;
4853 	}
4854 #endif /* !CONFIG_CHELSIO_T4_DCB */
4855 
4856 	s->ethqsets = qidx;
4857 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4858 
4859 	if (is_uld(adap)) {
4860 		/*
4861 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4862 		 * otherwise we divide all available queues amongst the channels
4863 		 * capped by the number of available cores.
4864 		 */
4865 		if (n10g) {
4866 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4867 			s->ofldqsets = roundup(i, adap->params.nports);
4868 		} else {
4869 			s->ofldqsets = adap->params.nports;
4870 		}
4871 	}
4872 
4873 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4874 		struct sge_eth_rxq *r = &s->ethrxq[i];
4875 
4876 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4877 		r->fl.size = 72;
4878 	}
4879 
4880 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4881 		s->ethtxq[i].q.size = 1024;
4882 
4883 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4884 		s->ctrlq[i].q.size = 512;
4885 
4886 	if (!is_t4(adap->params.chip))
4887 		s->ptptxq.q.size = 8;
4888 
4889 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4890 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4891 }
4892 
4893 /*
4894  * Reduce the number of Ethernet queues across all ports to at most n.
4895  * n provides at least one queue per port.
4896  */
4897 static void reduce_ethqs(struct adapter *adap, int n)
4898 {
4899 	int i;
4900 	struct port_info *pi;
4901 
4902 	while (n < adap->sge.ethqsets)
4903 		for_each_port(adap, i) {
4904 			pi = adap2pinfo(adap, i);
4905 			if (pi->nqsets > 1) {
4906 				pi->nqsets--;
4907 				adap->sge.ethqsets--;
4908 				if (adap->sge.ethqsets <= n)
4909 					break;
4910 			}
4911 		}
4912 
4913 	n = 0;
4914 	for_each_port(adap, i) {
4915 		pi = adap2pinfo(adap, i);
4916 		pi->first_qset = n;
4917 		n += pi->nqsets;
4918 	}
4919 }
4920 
4921 static int get_msix_info(struct adapter *adap)
4922 {
4923 	struct uld_msix_info *msix_info;
4924 	unsigned int max_ingq = 0;
4925 
4926 	if (is_offload(adap))
4927 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4928 	if (is_pci_uld(adap))
4929 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4930 
4931 	if (!max_ingq)
4932 		goto out;
4933 
4934 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4935 	if (!msix_info)
4936 		return -ENOMEM;
4937 
4938 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4939 						 sizeof(long), GFP_KERNEL);
4940 	if (!adap->msix_bmap_ulds.msix_bmap) {
4941 		kfree(msix_info);
4942 		return -ENOMEM;
4943 	}
4944 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4945 	adap->msix_info_ulds = msix_info;
4946 out:
4947 	return 0;
4948 }
4949 
4950 static void free_msix_info(struct adapter *adap)
4951 {
4952 	if (!(adap->num_uld && adap->num_ofld_uld))
4953 		return;
4954 
4955 	kfree(adap->msix_info_ulds);
4956 	kfree(adap->msix_bmap_ulds.msix_bmap);
4957 }
4958 
4959 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4960 #define EXTRA_VECS 2
4961 
4962 static int enable_msix(struct adapter *adap)
4963 {
4964 	int ofld_need = 0, uld_need = 0;
4965 	int i, j, want, need, allocated;
4966 	struct sge *s = &adap->sge;
4967 	unsigned int nchan = adap->params.nports;
4968 	struct msix_entry *entries;
4969 	int max_ingq = MAX_INGQ;
4970 
4971 	if (is_pci_uld(adap))
4972 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4973 	if (is_offload(adap))
4974 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4975 	entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
4976 				GFP_KERNEL);
4977 	if (!entries)
4978 		return -ENOMEM;
4979 
4980 	/* map for msix */
4981 	if (get_msix_info(adap)) {
4982 		adap->params.offload = 0;
4983 		adap->params.crypto = 0;
4984 	}
4985 
4986 	for (i = 0; i < max_ingq + 1; ++i)
4987 		entries[i].entry = i;
4988 
4989 	want = s->max_ethqsets + EXTRA_VECS;
4990 	if (is_offload(adap)) {
4991 		want += adap->num_ofld_uld * s->ofldqsets;
4992 		ofld_need = adap->num_ofld_uld * nchan;
4993 	}
4994 	if (is_pci_uld(adap)) {
4995 		want += adap->num_uld * s->ofldqsets;
4996 		uld_need = adap->num_uld * nchan;
4997 	}
4998 #ifdef CONFIG_CHELSIO_T4_DCB
4999 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5000 	 * each port.
5001 	 */
5002 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5003 #else
5004 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5005 #endif
5006 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5007 	if (allocated < 0) {
5008 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5009 			 " not using MSI-X\n");
5010 		kfree(entries);
5011 		return allocated;
5012 	}
5013 
5014 	/* Distribute available vectors to the various queue groups.
5015 	 * Every group gets its minimum requirement and NIC gets top
5016 	 * priority for leftovers.
5017 	 */
5018 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
5019 	if (i < s->max_ethqsets) {
5020 		s->max_ethqsets = i;
5021 		if (i < s->ethqsets)
5022 			reduce_ethqs(adap, i);
5023 	}
5024 	if (is_uld(adap)) {
5025 		if (allocated < want)
5026 			s->nqs_per_uld = nchan;
5027 		else
5028 			s->nqs_per_uld = s->ofldqsets;
5029 	}
5030 
5031 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5032 		adap->msix_info[i].vec = entries[i].vector;
5033 	if (is_uld(adap)) {
5034 		for (j = 0 ; i < allocated; ++i, j++) {
5035 			adap->msix_info_ulds[j].vec = entries[i].vector;
5036 			adap->msix_info_ulds[j].idx = i;
5037 		}
5038 		adap->msix_bmap_ulds.mapsize = j;
5039 	}
5040 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5041 		 "nic %d per uld %d\n",
5042 		 allocated, s->max_ethqsets, s->nqs_per_uld);
5043 
5044 	kfree(entries);
5045 	return 0;
5046 }
5047 
5048 #undef EXTRA_VECS
5049 
5050 static int init_rss(struct adapter *adap)
5051 {
5052 	unsigned int i;
5053 	int err;
5054 
5055 	err = t4_init_rss_mode(adap, adap->mbox);
5056 	if (err)
5057 		return err;
5058 
5059 	for_each_port(adap, i) {
5060 		struct port_info *pi = adap2pinfo(adap, i);
5061 
5062 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5063 		if (!pi->rss)
5064 			return -ENOMEM;
5065 	}
5066 	return 0;
5067 }
5068 
5069 /* Dump basic information about the adapter */
5070 static void print_adapter_info(struct adapter *adapter)
5071 {
5072 	/* Hardware/Firmware/etc. Version/Revision IDs */
5073 	t4_dump_version_info(adapter);
5074 
5075 	/* Software/Hardware configuration */
5076 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5077 		 is_offload(adapter) ? "R" : "",
5078 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
5079 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
5080 		 is_offload(adapter) ? "Offload" : "non-Offload");
5081 }
5082 
5083 static void print_port_info(const struct net_device *dev)
5084 {
5085 	char buf[80];
5086 	char *bufp = buf;
5087 	const char *spd = "";
5088 	const struct port_info *pi = netdev_priv(dev);
5089 	const struct adapter *adap = pi->adapter;
5090 
5091 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5092 		spd = " 2.5 GT/s";
5093 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5094 		spd = " 5 GT/s";
5095 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
5096 		spd = " 8 GT/s";
5097 
5098 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5099 		bufp += sprintf(bufp, "100M/");
5100 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5101 		bufp += sprintf(bufp, "1G/");
5102 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5103 		bufp += sprintf(bufp, "10G/");
5104 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5105 		bufp += sprintf(bufp, "25G/");
5106 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5107 		bufp += sprintf(bufp, "40G/");
5108 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5109 		bufp += sprintf(bufp, "50G/");
5110 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5111 		bufp += sprintf(bufp, "100G/");
5112 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5113 		bufp += sprintf(bufp, "200G/");
5114 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5115 		bufp += sprintf(bufp, "400G/");
5116 	if (bufp != buf)
5117 		--bufp;
5118 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5119 
5120 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5121 		    dev->name, adap->params.vpd.id, adap->name, buf);
5122 }
5123 
5124 /*
5125  * Free the following resources:
5126  * - memory used for tables
5127  * - MSI/MSI-X
5128  * - net devices
5129  * - resources FW is holding for us
5130  */
5131 static void free_some_resources(struct adapter *adapter)
5132 {
5133 	unsigned int i;
5134 
5135 	kvfree(adapter->mps_encap);
5136 	kvfree(adapter->smt);
5137 	kvfree(adapter->l2t);
5138 	kvfree(adapter->srq);
5139 	t4_cleanup_sched(adapter);
5140 	kvfree(adapter->tids.tid_tab);
5141 	cxgb4_cleanup_tc_flower(adapter);
5142 	cxgb4_cleanup_tc_u32(adapter);
5143 	kfree(adapter->sge.egr_map);
5144 	kfree(adapter->sge.ingr_map);
5145 	kfree(adapter->sge.starving_fl);
5146 	kfree(adapter->sge.txq_maperr);
5147 #ifdef CONFIG_DEBUG_FS
5148 	kfree(adapter->sge.blocked_fl);
5149 #endif
5150 	disable_msi(adapter);
5151 
5152 	for_each_port(adapter, i)
5153 		if (adapter->port[i]) {
5154 			struct port_info *pi = adap2pinfo(adapter, i);
5155 
5156 			if (pi->viid != 0)
5157 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
5158 					   0, pi->viid);
5159 			kfree(adap2pinfo(adapter, i)->rss);
5160 			free_netdev(adapter->port[i]);
5161 		}
5162 	if (adapter->flags & FW_OK)
5163 		t4_fw_bye(adapter, adapter->pf);
5164 }
5165 
5166 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5167 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5168 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5169 #define SEGMENT_SIZE 128
5170 
5171 static int t4_get_chip_type(struct adapter *adap, int ver)
5172 {
5173 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5174 
5175 	switch (ver) {
5176 	case CHELSIO_T4:
5177 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5178 	case CHELSIO_T5:
5179 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5180 	case CHELSIO_T6:
5181 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5182 	default:
5183 		break;
5184 	}
5185 	return -EINVAL;
5186 }
5187 
5188 #ifdef CONFIG_PCI_IOV
5189 static void cxgb4_mgmt_setup(struct net_device *dev)
5190 {
5191 	dev->type = ARPHRD_NONE;
5192 	dev->mtu = 0;
5193 	dev->hard_header_len = 0;
5194 	dev->addr_len = 0;
5195 	dev->tx_queue_len = 0;
5196 	dev->flags |= IFF_NOARP;
5197 	dev->priv_flags |= IFF_NO_QUEUE;
5198 
5199 	/* Initialize the device structure. */
5200 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5201 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5202 }
5203 
5204 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5205 {
5206 	struct adapter *adap = pci_get_drvdata(pdev);
5207 	int err = 0;
5208 	int current_vfs = pci_num_vf(pdev);
5209 	u32 pcie_fw;
5210 
5211 	pcie_fw = readl(adap->regs + PCIE_FW_A);
5212 	/* Check if fw is initialized */
5213 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
5214 		dev_warn(&pdev->dev, "Device not initialized\n");
5215 		return -EOPNOTSUPP;
5216 	}
5217 
5218 	/* If any of the VF's is already assigned to Guest OS, then
5219 	 * SRIOV for the same cannot be modified
5220 	 */
5221 	if (current_vfs && pci_vfs_assigned(pdev)) {
5222 		dev_err(&pdev->dev,
5223 			"Cannot modify SR-IOV while VFs are assigned\n");
5224 		return current_vfs;
5225 	}
5226 	/* Note that the upper-level code ensures that we're never called with
5227 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
5228 	 * it never hurts to code defensively.
5229 	 */
5230 	if (num_vfs != 0 && current_vfs != 0)
5231 		return -EBUSY;
5232 
5233 	/* Nothing to do for no change. */
5234 	if (num_vfs == current_vfs)
5235 		return num_vfs;
5236 
5237 	/* Disable SRIOV when zero is passed. */
5238 	if (!num_vfs) {
5239 		pci_disable_sriov(pdev);
5240 		/* free VF Management Interface */
5241 		unregister_netdev(adap->port[0]);
5242 		free_netdev(adap->port[0]);
5243 		adap->port[0] = NULL;
5244 
5245 		/* free VF resources */
5246 		adap->num_vfs = 0;
5247 		kfree(adap->vfinfo);
5248 		adap->vfinfo = NULL;
5249 		return 0;
5250 	}
5251 
5252 	if (!current_vfs) {
5253 		struct fw_pfvf_cmd port_cmd, port_rpl;
5254 		struct net_device *netdev;
5255 		unsigned int pmask, port;
5256 		struct pci_dev *pbridge;
5257 		struct port_info *pi;
5258 		char name[IFNAMSIZ];
5259 		u32 devcap2;
5260 		u16 flags;
5261 		int pos;
5262 
5263 		/* If we want to instantiate Virtual Functions, then our
5264 		 * parent bridge's PCI-E needs to support Alternative Routing
5265 		 * ID (ARI) because our VFs will show up at function offset 8
5266 		 * and above.
5267 		 */
5268 		pbridge = pdev->bus->self;
5269 		pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5270 		pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5271 		pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5272 
5273 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5274 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5275 			/* Our parent bridge does not support ARI so issue a
5276 			 * warning and skip instantiating the VFs.  They
5277 			 * won't be reachable.
5278 			 */
5279 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5280 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5281 				 PCI_FUNC(pbridge->devfn));
5282 			return -ENOTSUPP;
5283 		}
5284 		memset(&port_cmd, 0, sizeof(port_cmd));
5285 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5286 						 FW_CMD_REQUEST_F |
5287 						 FW_CMD_READ_F |
5288 						 FW_PFVF_CMD_PFN_V(adap->pf) |
5289 						 FW_PFVF_CMD_VFN_V(0));
5290 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5291 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5292 				 &port_rpl);
5293 		if (err)
5294 			return err;
5295 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5296 		port = ffs(pmask) - 1;
5297 		/* Allocate VF Management Interface. */
5298 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5299 			 adap->pf);
5300 		netdev = alloc_netdev(sizeof(struct port_info),
5301 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5302 		if (!netdev)
5303 			return -ENOMEM;
5304 
5305 		pi = netdev_priv(netdev);
5306 		pi->adapter = adap;
5307 		pi->lport = port;
5308 		pi->tx_chan = port;
5309 		SET_NETDEV_DEV(netdev, &pdev->dev);
5310 
5311 		adap->port[0] = netdev;
5312 		pi->port_id = 0;
5313 
5314 		err = register_netdev(adap->port[0]);
5315 		if (err) {
5316 			pr_info("Unable to register VF mgmt netdev %s\n", name);
5317 			free_netdev(adap->port[0]);
5318 			adap->port[0] = NULL;
5319 			return err;
5320 		}
5321 		/* Allocate and set up VF Information. */
5322 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5323 				       sizeof(struct vf_info), GFP_KERNEL);
5324 		if (!adap->vfinfo) {
5325 			unregister_netdev(adap->port[0]);
5326 			free_netdev(adap->port[0]);
5327 			adap->port[0] = NULL;
5328 			return -ENOMEM;
5329 		}
5330 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5331 	}
5332 	/* Instantiate the requested number of VFs. */
5333 	err = pci_enable_sriov(pdev, num_vfs);
5334 	if (err) {
5335 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
5336 		if (!current_vfs) {
5337 			unregister_netdev(adap->port[0]);
5338 			free_netdev(adap->port[0]);
5339 			adap->port[0] = NULL;
5340 			kfree(adap->vfinfo);
5341 			adap->vfinfo = NULL;
5342 		}
5343 		return err;
5344 	}
5345 
5346 	adap->num_vfs = num_vfs;
5347 	return num_vfs;
5348 }
5349 #endif /* CONFIG_PCI_IOV */
5350 
5351 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5352 {
5353 	struct net_device *netdev;
5354 	struct adapter *adapter;
5355 	static int adap_idx = 1;
5356 	int s_qpp, qpp, num_seg;
5357 	struct port_info *pi;
5358 	bool highdma = false;
5359 	enum chip_type chip;
5360 	void __iomem *regs;
5361 	int func, chip_ver;
5362 	u16 device_id;
5363 	int i, err;
5364 	u32 whoami;
5365 
5366 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5367 
5368 	err = pci_request_regions(pdev, KBUILD_MODNAME);
5369 	if (err) {
5370 		/* Just info, some other driver may have claimed the device. */
5371 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5372 		return err;
5373 	}
5374 
5375 	err = pci_enable_device(pdev);
5376 	if (err) {
5377 		dev_err(&pdev->dev, "cannot enable PCI device\n");
5378 		goto out_release_regions;
5379 	}
5380 
5381 	regs = pci_ioremap_bar(pdev, 0);
5382 	if (!regs) {
5383 		dev_err(&pdev->dev, "cannot map device registers\n");
5384 		err = -ENOMEM;
5385 		goto out_disable_device;
5386 	}
5387 
5388 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5389 	if (!adapter) {
5390 		err = -ENOMEM;
5391 		goto out_unmap_bar0;
5392 	}
5393 
5394 	adapter->regs = regs;
5395 	err = t4_wait_dev_ready(regs);
5396 	if (err < 0)
5397 		goto out_free_adapter;
5398 
5399 	/* We control everything through one PF */
5400 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5401 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5402 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5403 	if (chip < 0) {
5404 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5405 		err = chip;
5406 		goto out_free_adapter;
5407 	}
5408 	chip_ver = CHELSIO_CHIP_VERSION(chip);
5409 	func = chip_ver <= CHELSIO_T5 ?
5410 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5411 
5412 	adapter->pdev = pdev;
5413 	adapter->pdev_dev = &pdev->dev;
5414 	adapter->name = pci_name(pdev);
5415 	adapter->mbox = func;
5416 	adapter->pf = func;
5417 	adapter->params.chip = chip;
5418 	adapter->adap_idx = adap_idx;
5419 	adapter->msg_enable = DFLT_MSG_ENABLE;
5420 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5421 				    (sizeof(struct mbox_cmd) *
5422 				     T4_OS_LOG_MBOX_CMDS),
5423 				    GFP_KERNEL);
5424 	if (!adapter->mbox_log) {
5425 		err = -ENOMEM;
5426 		goto out_free_adapter;
5427 	}
5428 	spin_lock_init(&adapter->mbox_lock);
5429 	INIT_LIST_HEAD(&adapter->mlist.list);
5430 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5431 	pci_set_drvdata(pdev, adapter);
5432 
5433 	if (func != ent->driver_data) {
5434 		pci_disable_device(pdev);
5435 		pci_save_state(pdev);        /* to restore SR-IOV later */
5436 		return 0;
5437 	}
5438 
5439 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5440 		highdma = true;
5441 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5442 		if (err) {
5443 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5444 				"coherent allocations\n");
5445 			goto out_free_adapter;
5446 		}
5447 	} else {
5448 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5449 		if (err) {
5450 			dev_err(&pdev->dev, "no usable DMA configuration\n");
5451 			goto out_free_adapter;
5452 		}
5453 	}
5454 
5455 	pci_enable_pcie_error_reporting(pdev);
5456 	pci_set_master(pdev);
5457 	pci_save_state(pdev);
5458 	adap_idx++;
5459 	adapter->workq = create_singlethread_workqueue("cxgb4");
5460 	if (!adapter->workq) {
5461 		err = -ENOMEM;
5462 		goto out_free_adapter;
5463 	}
5464 
5465 	/* PCI device has been enabled */
5466 	adapter->flags |= DEV_ENABLED;
5467 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5468 
5469 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5470 	 * Ingress Packet Data to Free List Buffers in order to allow for
5471 	 * chipset performance optimizations between the Root Complex and
5472 	 * Memory Controllers.  (Messages to the associated Ingress Queue
5473 	 * notifying new Packet Placement in the Free Lists Buffers will be
5474 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
5475 	 * all preceding PCIe Transaction Layer Packets will be processed
5476 	 * first.)  But some Root Complexes have various issues with Upstream
5477 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5478 	 * The PCIe devices which under the Root Complexes will be cleared the
5479 	 * Relaxed Ordering bit in the configuration space, So we check our
5480 	 * PCIe configuration space to see if it's flagged with advice against
5481 	 * using Relaxed Ordering.
5482 	 */
5483 	if (!pcie_relaxed_ordering_enabled(pdev))
5484 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5485 
5486 	spin_lock_init(&adapter->stats_lock);
5487 	spin_lock_init(&adapter->tid_release_lock);
5488 	spin_lock_init(&adapter->win0_lock);
5489 
5490 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5491 	INIT_WORK(&adapter->db_full_task, process_db_full);
5492 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5493 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5494 
5495 	err = t4_prep_adapter(adapter);
5496 	if (err)
5497 		goto out_free_adapter;
5498 
5499 	if (is_kdump_kernel()) {
5500 		/* Collect hardware state and append to /proc/vmcore */
5501 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
5502 		if (err) {
5503 			dev_warn(adapter->pdev_dev,
5504 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
5505 				 err);
5506 			err = 0;
5507 		}
5508 	}
5509 
5510 	if (!is_t4(adapter->params.chip)) {
5511 		s_qpp = (QUEUESPERPAGEPF0_S +
5512 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5513 			adapter->pf);
5514 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5515 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5516 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
5517 
5518 		/* Each segment size is 128B. Write coalescing is enabled only
5519 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5520 		 * queue is less no of segments that can be accommodated in
5521 		 * a page size.
5522 		 */
5523 		if (qpp > num_seg) {
5524 			dev_err(&pdev->dev,
5525 				"Incorrect number of egress queues per page\n");
5526 			err = -EINVAL;
5527 			goto out_free_adapter;
5528 		}
5529 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5530 		pci_resource_len(pdev, 2));
5531 		if (!adapter->bar2) {
5532 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
5533 			err = -ENOMEM;
5534 			goto out_free_adapter;
5535 		}
5536 	}
5537 
5538 	setup_memwin(adapter);
5539 	err = adap_init0(adapter);
5540 #ifdef CONFIG_DEBUG_FS
5541 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5542 #endif
5543 	setup_memwin_rdma(adapter);
5544 	if (err)
5545 		goto out_unmap_bar;
5546 
5547 	/* configure SGE_STAT_CFG_A to read WC stats */
5548 	if (!is_t4(adapter->params.chip))
5549 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5550 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5551 			      T6_STATMODE_V(0)));
5552 
5553 	for_each_port(adapter, i) {
5554 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5555 					   MAX_ETH_QSETS);
5556 		if (!netdev) {
5557 			err = -ENOMEM;
5558 			goto out_free_dev;
5559 		}
5560 
5561 		SET_NETDEV_DEV(netdev, &pdev->dev);
5562 
5563 		adapter->port[i] = netdev;
5564 		pi = netdev_priv(netdev);
5565 		pi->adapter = adapter;
5566 		pi->xact_addr_filt = -1;
5567 		pi->port_id = i;
5568 		netdev->irq = pdev->irq;
5569 
5570 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5571 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5572 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5573 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5574 			NETIF_F_HW_TC;
5575 
5576 		if (chip_ver > CHELSIO_T5) {
5577 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5578 						   NETIF_F_IPV6_CSUM |
5579 						   NETIF_F_RXCSUM |
5580 						   NETIF_F_GSO_UDP_TUNNEL |
5581 						   NETIF_F_TSO | NETIF_F_TSO6;
5582 
5583 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5584 		}
5585 
5586 		if (highdma)
5587 			netdev->hw_features |= NETIF_F_HIGHDMA;
5588 		netdev->features |= netdev->hw_features;
5589 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5590 
5591 		netdev->priv_flags |= IFF_UNICAST_FLT;
5592 
5593 		/* MTU range: 81 - 9600 */
5594 		netdev->min_mtu = 81;              /* accommodate SACK */
5595 		netdev->max_mtu = MAX_MTU;
5596 
5597 		netdev->netdev_ops = &cxgb4_netdev_ops;
5598 #ifdef CONFIG_CHELSIO_T4_DCB
5599 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5600 		cxgb4_dcb_state_init(netdev);
5601 #endif
5602 		cxgb4_set_ethtool_ops(netdev);
5603 	}
5604 
5605 	cxgb4_init_ethtool_dump(adapter);
5606 
5607 	pci_set_drvdata(pdev, adapter);
5608 
5609 	if (adapter->flags & FW_OK) {
5610 		err = t4_port_init(adapter, func, func, 0);
5611 		if (err)
5612 			goto out_free_dev;
5613 	} else if (adapter->params.nports == 1) {
5614 		/* If we don't have a connection to the firmware -- possibly
5615 		 * because of an error -- grab the raw VPD parameters so we
5616 		 * can set the proper MAC Address on the debug network
5617 		 * interface that we've created.
5618 		 */
5619 		u8 hw_addr[ETH_ALEN];
5620 		u8 *na = adapter->params.vpd.na;
5621 
5622 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5623 		if (!err) {
5624 			for (i = 0; i < ETH_ALEN; i++)
5625 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5626 					      hex2val(na[2 * i + 1]));
5627 			t4_set_hw_addr(adapter, 0, hw_addr);
5628 		}
5629 	}
5630 
5631 	/* Configure queues and allocate tables now, they can be needed as
5632 	 * soon as the first register_netdev completes.
5633 	 */
5634 	cfg_queues(adapter);
5635 
5636 	adapter->smt = t4_init_smt();
5637 	if (!adapter->smt) {
5638 		/* We tolerate a lack of SMT, giving up some functionality */
5639 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5640 	}
5641 
5642 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5643 	if (!adapter->l2t) {
5644 		/* We tolerate a lack of L2T, giving up some functionality */
5645 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5646 		adapter->params.offload = 0;
5647 	}
5648 
5649 	adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size,
5650 				      sizeof(struct mps_encap_entry),
5651 				      GFP_KERNEL);
5652 	if (!adapter->mps_encap)
5653 		dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n");
5654 
5655 #if IS_ENABLED(CONFIG_IPV6)
5656 	if (chip_ver <= CHELSIO_T5 &&
5657 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5658 		/* CLIP functionality is not present in hardware,
5659 		 * hence disable all offload features
5660 		 */
5661 		dev_warn(&pdev->dev,
5662 			 "CLIP not enabled in hardware, continuing\n");
5663 		adapter->params.offload = 0;
5664 	} else {
5665 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5666 						  adapter->clipt_end);
5667 		if (!adapter->clipt) {
5668 			/* We tolerate a lack of clip_table, giving up
5669 			 * some functionality
5670 			 */
5671 			dev_warn(&pdev->dev,
5672 				 "could not allocate Clip table, continuing\n");
5673 			adapter->params.offload = 0;
5674 		}
5675 	}
5676 #endif
5677 
5678 	for_each_port(adapter, i) {
5679 		pi = adap2pinfo(adapter, i);
5680 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5681 		if (!pi->sched_tbl)
5682 			dev_warn(&pdev->dev,
5683 				 "could not activate scheduling on port %d\n",
5684 				 i);
5685 	}
5686 
5687 	if (tid_init(&adapter->tids) < 0) {
5688 		dev_warn(&pdev->dev, "could not allocate TID table, "
5689 			 "continuing\n");
5690 		adapter->params.offload = 0;
5691 	} else {
5692 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5693 		if (!adapter->tc_u32)
5694 			dev_warn(&pdev->dev,
5695 				 "could not offload tc u32, continuing\n");
5696 
5697 		if (cxgb4_init_tc_flower(adapter))
5698 			dev_warn(&pdev->dev,
5699 				 "could not offload tc flower, continuing\n");
5700 	}
5701 
5702 	if (is_offload(adapter) || is_hashfilter(adapter)) {
5703 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5704 			u32 hash_base, hash_reg;
5705 
5706 			if (chip <= CHELSIO_T5) {
5707 				hash_reg = LE_DB_TID_HASHBASE_A;
5708 				hash_base = t4_read_reg(adapter, hash_reg);
5709 				adapter->tids.hash_base = hash_base / 4;
5710 			} else {
5711 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5712 				hash_base = t4_read_reg(adapter, hash_reg);
5713 				adapter->tids.hash_base = hash_base;
5714 			}
5715 		}
5716 	}
5717 
5718 	/* See what interrupts we'll be using */
5719 	if (msi > 1 && enable_msix(adapter) == 0)
5720 		adapter->flags |= USING_MSIX;
5721 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5722 		adapter->flags |= USING_MSI;
5723 		if (msi > 1)
5724 			free_msix_info(adapter);
5725 	}
5726 
5727 	/* check for PCI Express bandwidth capabiltites */
5728 	pcie_print_link_status(pdev);
5729 
5730 	err = init_rss(adapter);
5731 	if (err)
5732 		goto out_free_dev;
5733 
5734 	err = setup_fw_sge_queues(adapter);
5735 	if (err) {
5736 		dev_err(adapter->pdev_dev,
5737 			"FW sge queue allocation failed, err %d", err);
5738 		goto out_free_dev;
5739 	}
5740 
5741 	/*
5742 	 * The card is now ready to go.  If any errors occur during device
5743 	 * registration we do not fail the whole card but rather proceed only
5744 	 * with the ports we manage to register successfully.  However we must
5745 	 * register at least one net device.
5746 	 */
5747 	for_each_port(adapter, i) {
5748 		pi = adap2pinfo(adapter, i);
5749 		adapter->port[i]->dev_port = pi->lport;
5750 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5751 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5752 
5753 		netif_carrier_off(adapter->port[i]);
5754 
5755 		err = register_netdev(adapter->port[i]);
5756 		if (err)
5757 			break;
5758 		adapter->chan_map[pi->tx_chan] = i;
5759 		print_port_info(adapter->port[i]);
5760 	}
5761 	if (i == 0) {
5762 		dev_err(&pdev->dev, "could not register any net devices\n");
5763 		goto out_free_dev;
5764 	}
5765 	if (err) {
5766 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5767 		err = 0;
5768 	}
5769 
5770 	if (cxgb4_debugfs_root) {
5771 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5772 							   cxgb4_debugfs_root);
5773 		setup_debugfs(adapter);
5774 	}
5775 
5776 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5777 	pdev->needs_freset = 1;
5778 
5779 	if (is_uld(adapter)) {
5780 		mutex_lock(&uld_mutex);
5781 		list_add_tail(&adapter->list_node, &adapter_list);
5782 		mutex_unlock(&uld_mutex);
5783 	}
5784 
5785 	if (!is_t4(adapter->params.chip))
5786 		cxgb4_ptp_init(adapter);
5787 
5788 	print_adapter_info(adapter);
5789 	return 0;
5790 
5791  out_free_dev:
5792 	t4_free_sge_resources(adapter);
5793 	free_some_resources(adapter);
5794 	if (adapter->flags & USING_MSIX)
5795 		free_msix_info(adapter);
5796 	if (adapter->num_uld || adapter->num_ofld_uld)
5797 		t4_uld_mem_free(adapter);
5798  out_unmap_bar:
5799 	if (!is_t4(adapter->params.chip))
5800 		iounmap(adapter->bar2);
5801  out_free_adapter:
5802 	if (adapter->workq)
5803 		destroy_workqueue(adapter->workq);
5804 
5805 	kfree(adapter->mbox_log);
5806 	kfree(adapter);
5807  out_unmap_bar0:
5808 	iounmap(regs);
5809  out_disable_device:
5810 	pci_disable_pcie_error_reporting(pdev);
5811 	pci_disable_device(pdev);
5812  out_release_regions:
5813 	pci_release_regions(pdev);
5814 	return err;
5815 }
5816 
5817 static void remove_one(struct pci_dev *pdev)
5818 {
5819 	struct adapter *adapter = pci_get_drvdata(pdev);
5820 
5821 	if (!adapter) {
5822 		pci_release_regions(pdev);
5823 		return;
5824 	}
5825 
5826 	adapter->flags |= SHUTTING_DOWN;
5827 
5828 	if (adapter->pf == 4) {
5829 		int i;
5830 
5831 		/* Tear down per-adapter Work Queue first since it can contain
5832 		 * references to our adapter data structure.
5833 		 */
5834 		destroy_workqueue(adapter->workq);
5835 
5836 		if (is_uld(adapter)) {
5837 			detach_ulds(adapter);
5838 			t4_uld_clean_up(adapter);
5839 		}
5840 
5841 		adap_free_hma_mem(adapter);
5842 
5843 		disable_interrupts(adapter);
5844 
5845 		for_each_port(adapter, i)
5846 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5847 				unregister_netdev(adapter->port[i]);
5848 
5849 		debugfs_remove_recursive(adapter->debugfs_root);
5850 
5851 		if (!is_t4(adapter->params.chip))
5852 			cxgb4_ptp_stop(adapter);
5853 
5854 		/* If we allocated filters, free up state associated with any
5855 		 * valid filters ...
5856 		 */
5857 		clear_all_filters(adapter);
5858 
5859 		if (adapter->flags & FULL_INIT_DONE)
5860 			cxgb_down(adapter);
5861 
5862 		if (adapter->flags & USING_MSIX)
5863 			free_msix_info(adapter);
5864 		if (adapter->num_uld || adapter->num_ofld_uld)
5865 			t4_uld_mem_free(adapter);
5866 		free_some_resources(adapter);
5867 #if IS_ENABLED(CONFIG_IPV6)
5868 		t4_cleanup_clip_tbl(adapter);
5869 #endif
5870 		if (!is_t4(adapter->params.chip))
5871 			iounmap(adapter->bar2);
5872 	}
5873 #ifdef CONFIG_PCI_IOV
5874 	else {
5875 		cxgb4_iov_configure(adapter->pdev, 0);
5876 	}
5877 #endif
5878 	iounmap(adapter->regs);
5879 	pci_disable_pcie_error_reporting(pdev);
5880 	if ((adapter->flags & DEV_ENABLED)) {
5881 		pci_disable_device(pdev);
5882 		adapter->flags &= ~DEV_ENABLED;
5883 	}
5884 	pci_release_regions(pdev);
5885 	kfree(adapter->mbox_log);
5886 	synchronize_rcu();
5887 	kfree(adapter);
5888 }
5889 
5890 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5891  * delivery.  This is essentially a stripped down version of the PCI remove()
5892  * function where we do the minimal amount of work necessary to shutdown any
5893  * further activity.
5894  */
5895 static void shutdown_one(struct pci_dev *pdev)
5896 {
5897 	struct adapter *adapter = pci_get_drvdata(pdev);
5898 
5899 	/* As with remove_one() above (see extended comment), we only want do
5900 	 * do cleanup on PCI Devices which went all the way through init_one()
5901 	 * ...
5902 	 */
5903 	if (!adapter) {
5904 		pci_release_regions(pdev);
5905 		return;
5906 	}
5907 
5908 	adapter->flags |= SHUTTING_DOWN;
5909 
5910 	if (adapter->pf == 4) {
5911 		int i;
5912 
5913 		for_each_port(adapter, i)
5914 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5915 				cxgb_close(adapter->port[i]);
5916 
5917 		if (is_uld(adapter)) {
5918 			detach_ulds(adapter);
5919 			t4_uld_clean_up(adapter);
5920 		}
5921 
5922 		disable_interrupts(adapter);
5923 		disable_msi(adapter);
5924 
5925 		t4_sge_stop(adapter);
5926 		if (adapter->flags & FW_OK)
5927 			t4_fw_bye(adapter, adapter->mbox);
5928 	}
5929 }
5930 
5931 static struct pci_driver cxgb4_driver = {
5932 	.name     = KBUILD_MODNAME,
5933 	.id_table = cxgb4_pci_tbl,
5934 	.probe    = init_one,
5935 	.remove   = remove_one,
5936 	.shutdown = shutdown_one,
5937 #ifdef CONFIG_PCI_IOV
5938 	.sriov_configure = cxgb4_iov_configure,
5939 #endif
5940 	.err_handler = &cxgb4_eeh,
5941 };
5942 
5943 static int __init cxgb4_init_module(void)
5944 {
5945 	int ret;
5946 
5947 	/* Debugfs support is optional, just warn if this fails */
5948 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5949 	if (!cxgb4_debugfs_root)
5950 		pr_warn("could not create debugfs entry, continuing\n");
5951 
5952 	ret = pci_register_driver(&cxgb4_driver);
5953 	if (ret < 0)
5954 		debugfs_remove(cxgb4_debugfs_root);
5955 
5956 #if IS_ENABLED(CONFIG_IPV6)
5957 	if (!inet6addr_registered) {
5958 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5959 		inet6addr_registered = true;
5960 	}
5961 #endif
5962 
5963 	return ret;
5964 }
5965 
5966 static void __exit cxgb4_cleanup_module(void)
5967 {
5968 #if IS_ENABLED(CONFIG_IPV6)
5969 	if (inet6addr_registered) {
5970 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5971 		inet6addr_registered = false;
5972 	}
5973 #endif
5974 	pci_unregister_driver(&cxgb4_driver);
5975 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5976 }
5977 
5978 module_init(cxgb4_init_module);
5979 module_exit(cxgb4_cleanup_module);
5980