1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <net/addrconf.h>
63 #include <net/bonding.h>
64 #include <linux/uaccess.h>
65 #include <linux/crash_dump.h>
66 #include <net/udp_tunnel.h>
67 #include <net/xfrm.h>
68 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
69 #include <net/tls.h>
70 #endif
71
72 #include "cxgb4.h"
73 #include "cxgb4_filter.h"
74 #include "t4_regs.h"
75 #include "t4_values.h"
76 #include "t4_msg.h"
77 #include "t4fw_api.h"
78 #include "t4fw_version.h"
79 #include "cxgb4_dcb.h"
80 #include "srq.h"
81 #include "cxgb4_debugfs.h"
82 #include "clip_tbl.h"
83 #include "l2t.h"
84 #include "smt.h"
85 #include "sched.h"
86 #include "cxgb4_tc_u32.h"
87 #include "cxgb4_tc_flower.h"
88 #include "cxgb4_tc_mqprio.h"
89 #include "cxgb4_tc_matchall.h"
90 #include "cxgb4_ptp.h"
91 #include "cxgb4_cudbg.h"
92
93 char cxgb4_driver_name[] = KBUILD_MODNAME;
94
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100
101 /* Macros needed to support the PCI Device ID Table ...
102 */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110 * called for both.
111 */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 { 0, } \
119 }
120
121 #include "t4_pci_id_tbl.h"
122
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
138 MODULE_FIRMWARE(FW4_FNAME);
139 MODULE_FIRMWARE(FW5_FNAME);
140 MODULE_FIRMWARE(FW6_FNAME);
141
142 /*
143 * The driver uses the best interrupt scheme available on a platform in the
144 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
145 * of these schemes the driver may consider as follows:
146 *
147 * msi = 2: choose from among all three options
148 * msi = 1: only consider MSI and INTx interrupts
149 * msi = 0: force INTx interrupts
150 */
151 static int msi = 2;
152
153 module_param(msi, int, 0644);
154 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
155
156 /*
157 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
158 * offset by 2 bytes in order to have the IP headers line up on 4-byte
159 * boundaries. This is a requirement for many architectures which will throw
160 * a machine check fault if an attempt is made to access one of the 4-byte IP
161 * header fields on a non-4-byte boundary. And it's a major performance issue
162 * even on some architectures which allow it like some implementations of the
163 * x86 ISA. However, some architectures don't mind this and for some very
164 * edge-case performance sensitive applications (like forwarding large volumes
165 * of small packets), setting this DMA offset to 0 will decrease the number of
166 * PCI-E Bus transfers enough to measurably affect performance.
167 */
168 static int rx_dma_offset = 2;
169
170 /* TX Queue select used to determine what algorithm to use for selecting TX
171 * queue. Select between the kernel provided function (select_queue=0) or user
172 * cxgb_select_queue function (select_queue=1)
173 *
174 * Default: select_queue=0
175 */
176 static int select_queue;
177 module_param(select_queue, int, 0644);
178 MODULE_PARM_DESC(select_queue,
179 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
180
181 static struct dentry *cxgb4_debugfs_root;
182
183 LIST_HEAD(adapter_list);
184 DEFINE_MUTEX(uld_mutex);
185 LIST_HEAD(uld_list);
186
187 static int cfg_queues(struct adapter *adap);
188
link_report(struct net_device * dev)189 static void link_report(struct net_device *dev)
190 {
191 if (!netif_carrier_ok(dev))
192 netdev_info(dev, "link down\n");
193 else {
194 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
195
196 const char *s;
197 const struct port_info *p = netdev_priv(dev);
198
199 switch (p->link_cfg.speed) {
200 case 100:
201 s = "100Mbps";
202 break;
203 case 1000:
204 s = "1Gbps";
205 break;
206 case 10000:
207 s = "10Gbps";
208 break;
209 case 25000:
210 s = "25Gbps";
211 break;
212 case 40000:
213 s = "40Gbps";
214 break;
215 case 50000:
216 s = "50Gbps";
217 break;
218 case 100000:
219 s = "100Gbps";
220 break;
221 default:
222 pr_info("%s: unsupported speed: %d\n",
223 dev->name, p->link_cfg.speed);
224 return;
225 }
226
227 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
228 fc[p->link_cfg.fc]);
229 }
230 }
231
232 #ifdef CONFIG_CHELSIO_T4_DCB
233 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)234 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
235 {
236 struct port_info *pi = netdev_priv(dev);
237 struct adapter *adap = pi->adapter;
238 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
239 int i;
240
241 /* We use a simple mapping of Port TX Queue Index to DCB
242 * Priority when we're enabling DCB.
243 */
244 for (i = 0; i < pi->nqsets; i++, txq++) {
245 u32 name, value;
246 int err;
247
248 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
249 FW_PARAMS_PARAM_X_V(
250 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
251 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
252 value = enable ? i : 0xffffffff;
253
254 /* Since we can be called while atomic (from "interrupt
255 * level") we need to issue the Set Parameters Commannd
256 * without sleeping (timeout < 0).
257 */
258 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
259 &name, &value,
260 -FW_CMD_MAX_TIMEOUT);
261
262 if (err)
263 dev_err(adap->pdev_dev,
264 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
265 enable ? "set" : "unset", pi->port_id, i, -err);
266 else
267 txq->dcb_prio = enable ? value : 0;
268 }
269 }
270
cxgb4_dcb_enabled(const struct net_device * dev)271 int cxgb4_dcb_enabled(const struct net_device *dev)
272 {
273 struct port_info *pi = netdev_priv(dev);
274
275 if (!pi->dcb.enabled)
276 return 0;
277
278 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
279 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
280 }
281 #endif /* CONFIG_CHELSIO_T4_DCB */
282
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)283 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
284 {
285 struct net_device *dev = adapter->port[port_id];
286
287 /* Skip changes from disabled ports. */
288 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
289 if (link_stat)
290 netif_carrier_on(dev);
291 else {
292 #ifdef CONFIG_CHELSIO_T4_DCB
293 if (cxgb4_dcb_enabled(dev)) {
294 cxgb4_dcb_reset(dev);
295 dcb_tx_queue_prio_enable(dev, false);
296 }
297 #endif /* CONFIG_CHELSIO_T4_DCB */
298 netif_carrier_off(dev);
299 }
300
301 link_report(dev);
302 }
303 }
304
t4_os_portmod_changed(struct adapter * adap,int port_id)305 void t4_os_portmod_changed(struct adapter *adap, int port_id)
306 {
307 static const char *mod_str[] = {
308 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
309 };
310
311 struct net_device *dev = adap->port[port_id];
312 struct port_info *pi = netdev_priv(dev);
313
314 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
315 netdev_info(dev, "port module unplugged\n");
316 else if (pi->mod_type < ARRAY_SIZE(mod_str))
317 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
318 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
319 netdev_info(dev, "%s: unsupported port module inserted\n",
320 dev->name);
321 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
322 netdev_info(dev, "%s: unknown port module inserted\n",
323 dev->name);
324 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
325 netdev_info(dev, "%s: transceiver module error\n", dev->name);
326 else
327 netdev_info(dev, "%s: unknown module type %d inserted\n",
328 dev->name, pi->mod_type);
329
330 /* If the interface is running, then we'll need any "sticky" Link
331 * Parameters redone with a new Transceiver Module.
332 */
333 pi->link_cfg.redo_l1cfg = netif_running(dev);
334 }
335
336 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
337 module_param(dbfifo_int_thresh, int, 0644);
338 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
339
340 /*
341 * usecs to sleep while draining the dbfifo
342 */
343 static int dbfifo_drain_delay = 1000;
344 module_param(dbfifo_drain_delay, int, 0644);
345 MODULE_PARM_DESC(dbfifo_drain_delay,
346 "usecs to sleep while draining the dbfifo");
347
cxgb4_set_addr_hash(struct port_info * pi)348 static inline int cxgb4_set_addr_hash(struct port_info *pi)
349 {
350 struct adapter *adap = pi->adapter;
351 u64 vec = 0;
352 bool ucast = false;
353 struct hash_mac_addr *entry;
354
355 /* Calculate the hash vector for the updated list and program it */
356 list_for_each_entry(entry, &adap->mac_hlist, list) {
357 ucast |= is_unicast_ether_addr(entry->addr);
358 vec |= (1ULL << hash_mac_addr(entry->addr));
359 }
360 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
361 vec, false);
362 }
363
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)364 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
365 {
366 struct port_info *pi = netdev_priv(netdev);
367 struct adapter *adap = pi->adapter;
368 int ret;
369 u64 mhash = 0;
370 u64 uhash = 0;
371 /* idx stores the index of allocated filters,
372 * its size should be modified based on the number of
373 * MAC addresses that we allocate filters for
374 */
375
376 u16 idx[1] = {};
377 bool free = false;
378 bool ucast = is_unicast_ether_addr(mac_addr);
379 const u8 *maclist[1] = {mac_addr};
380 struct hash_mac_addr *new_entry;
381
382 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
383 idx, ucast ? &uhash : &mhash, false);
384 if (ret < 0)
385 goto out;
386 /* if hash != 0, then add the addr to hash addr list
387 * so on the end we will calculate the hash for the
388 * list and program it
389 */
390 if (uhash || mhash) {
391 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
392 if (!new_entry)
393 return -ENOMEM;
394 ether_addr_copy(new_entry->addr, mac_addr);
395 list_add_tail(&new_entry->list, &adap->mac_hlist);
396 ret = cxgb4_set_addr_hash(pi);
397 }
398 out:
399 return ret < 0 ? ret : 0;
400 }
401
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)402 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
403 {
404 struct port_info *pi = netdev_priv(netdev);
405 struct adapter *adap = pi->adapter;
406 int ret;
407 const u8 *maclist[1] = {mac_addr};
408 struct hash_mac_addr *entry, *tmp;
409
410 /* If the MAC address to be removed is in the hash addr
411 * list, delete it from the list and update hash vector
412 */
413 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
414 if (ether_addr_equal(entry->addr, mac_addr)) {
415 list_del(&entry->list);
416 kfree(entry);
417 return cxgb4_set_addr_hash(pi);
418 }
419 }
420
421 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
422 return ret < 0 ? -EINVAL : 0;
423 }
424
425 /*
426 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
427 * If @mtu is -1 it is left unchanged.
428 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)429 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
430 {
431 struct port_info *pi = netdev_priv(dev);
432 struct adapter *adapter = pi->adapter;
433
434 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436
437 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
438 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
439 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
440 sleep_ok);
441 }
442
443 /**
444 * cxgb4_change_mac - Update match filter for a MAC address.
445 * @pi: the port_info
446 * @viid: the VI id
447 * @tcam_idx: TCAM index of existing filter for old value of MAC address,
448 * or -1
449 * @addr: the new MAC address value
450 * @persist: whether a new MAC allocation should be persistent
451 * @smt_idx: the destination to store the new SMT index.
452 *
453 * Modifies an MPS filter and sets it to the new MAC address if
454 * @tcam_idx >= 0, or adds the MAC address to a new filter if
455 * @tcam_idx < 0. In the latter case the address is added persistently
456 * if @persist is %true.
457 * Addresses are programmed to hash region, if tcam runs out of entries.
458 *
459 */
cxgb4_change_mac(struct port_info * pi,unsigned int viid,int * tcam_idx,const u8 * addr,bool persist,u8 * smt_idx)460 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
461 int *tcam_idx, const u8 *addr, bool persist,
462 u8 *smt_idx)
463 {
464 struct adapter *adapter = pi->adapter;
465 struct hash_mac_addr *entry, *new_entry;
466 int ret;
467
468 ret = t4_change_mac(adapter, adapter->mbox, viid,
469 *tcam_idx, addr, persist, smt_idx);
470 /* We ran out of TCAM entries. try programming hash region. */
471 if (ret == -ENOMEM) {
472 /* If the MAC address to be updated is in the hash addr
473 * list, update it from the list
474 */
475 list_for_each_entry(entry, &adapter->mac_hlist, list) {
476 if (entry->iface_mac) {
477 ether_addr_copy(entry->addr, addr);
478 goto set_hash;
479 }
480 }
481 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
482 if (!new_entry)
483 return -ENOMEM;
484 ether_addr_copy(new_entry->addr, addr);
485 new_entry->iface_mac = true;
486 list_add_tail(&new_entry->list, &adapter->mac_hlist);
487 set_hash:
488 ret = cxgb4_set_addr_hash(pi);
489 } else if (ret >= 0) {
490 *tcam_idx = ret;
491 ret = 0;
492 }
493
494 return ret;
495 }
496
497 /*
498 * link_start - enable a port
499 * @dev: the port to enable
500 *
501 * Performs the MAC and PHY actions needed to enable a port.
502 */
link_start(struct net_device * dev)503 static int link_start(struct net_device *dev)
504 {
505 struct port_info *pi = netdev_priv(dev);
506 unsigned int mb = pi->adapter->mbox;
507 int ret;
508
509 /*
510 * We do not set address filters and promiscuity here, the stack does
511 * that step explicitly.
512 */
513 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
514 dev->mtu, -1, -1, -1,
515 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
516 if (ret == 0)
517 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
518 dev->dev_addr, true, &pi->smt_idx);
519 if (ret == 0)
520 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
521 &pi->link_cfg);
522 if (ret == 0) {
523 local_bh_disable();
524 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
525 true, CXGB4_DCB_ENABLED);
526 local_bh_enable();
527 }
528
529 return ret;
530 }
531
532 #ifdef CONFIG_CHELSIO_T4_DCB
533 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
535 {
536 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
537 struct net_device *dev = adap->port[adap->chan_map[port]];
538 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
539 int new_dcb_enabled;
540
541 cxgb4_dcb_handle_fw_update(adap, pcmd);
542 new_dcb_enabled = cxgb4_dcb_enabled(dev);
543
544 /* If the DCB has become enabled or disabled on the port then we're
545 * going to need to set up/tear down DCB Priority parameters for the
546 * TX Queues associated with the port.
547 */
548 if (new_dcb_enabled != old_dcb_enabled)
549 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
550 }
551 #endif /* CONFIG_CHELSIO_T4_DCB */
552
553 /* Response queue handler for the FW event queue.
554 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
556 const struct pkt_gl *gl)
557 {
558 u8 opcode = ((const struct rss_header *)rsp)->opcode;
559
560 rsp++; /* skip RSS header */
561
562 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
563 */
564 if (unlikely(opcode == CPL_FW4_MSG &&
565 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
566 rsp++;
567 opcode = ((const struct rss_header *)rsp)->opcode;
568 rsp++;
569 if (opcode != CPL_SGE_EGR_UPDATE) {
570 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
571 , opcode);
572 goto out;
573 }
574 }
575
576 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
577 const struct cpl_sge_egr_update *p = (void *)rsp;
578 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
579 struct sge_txq *txq;
580
581 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
582 txq->restarts++;
583 if (txq->q_type == CXGB4_TXQ_ETH) {
584 struct sge_eth_txq *eq;
585
586 eq = container_of(txq, struct sge_eth_txq, q);
587 t4_sge_eth_txq_egress_update(q->adap, eq, -1);
588 } else {
589 struct sge_uld_txq *oq;
590
591 oq = container_of(txq, struct sge_uld_txq, q);
592 tasklet_schedule(&oq->qresume_tsk);
593 }
594 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
595 const struct cpl_fw6_msg *p = (void *)rsp;
596
597 #ifdef CONFIG_CHELSIO_T4_DCB
598 const struct fw_port_cmd *pcmd = (const void *)p->data;
599 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
600 unsigned int action =
601 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
602
603 if (cmd == FW_PORT_CMD &&
604 (action == FW_PORT_ACTION_GET_PORT_INFO ||
605 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
606 int port = FW_PORT_CMD_PORTID_G(
607 be32_to_cpu(pcmd->op_to_portid));
608 struct net_device *dev;
609 int dcbxdis, state_input;
610
611 dev = q->adap->port[q->adap->chan_map[port]];
612 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
613 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
614 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
615 & FW_PORT_CMD_DCBXDIS32_F));
616 state_input = (dcbxdis
617 ? CXGB4_DCB_INPUT_FW_DISABLED
618 : CXGB4_DCB_INPUT_FW_ENABLED);
619
620 cxgb4_dcb_state_fsm(dev, state_input);
621 }
622
623 if (cmd == FW_PORT_CMD &&
624 action == FW_PORT_ACTION_L2_DCB_CFG)
625 dcb_rpl(q->adap, pcmd);
626 else
627 #endif
628 if (p->type == 0)
629 t4_handle_fw_rpl(q->adap, p->data);
630 } else if (opcode == CPL_L2T_WRITE_RPL) {
631 const struct cpl_l2t_write_rpl *p = (void *)rsp;
632
633 do_l2t_write_rpl(q->adap, p);
634 } else if (opcode == CPL_SMT_WRITE_RPL) {
635 const struct cpl_smt_write_rpl *p = (void *)rsp;
636
637 do_smt_write_rpl(q->adap, p);
638 } else if (opcode == CPL_SET_TCB_RPL) {
639 const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641 filter_rpl(q->adap, p);
642 } else if (opcode == CPL_ACT_OPEN_RPL) {
643 const struct cpl_act_open_rpl *p = (void *)rsp;
644
645 hash_filter_rpl(q->adap, p);
646 } else if (opcode == CPL_ABORT_RPL_RSS) {
647 const struct cpl_abort_rpl_rss *p = (void *)rsp;
648
649 hash_del_filter_rpl(q->adap, p);
650 } else if (opcode == CPL_SRQ_TABLE_RPL) {
651 const struct cpl_srq_table_rpl *p = (void *)rsp;
652
653 do_srq_table_rpl(q->adap, p);
654 } else
655 dev_err(q->adap->pdev_dev,
656 "unexpected CPL %#x on FW event queue\n", opcode);
657 out:
658 return 0;
659 }
660
disable_msi(struct adapter * adapter)661 static void disable_msi(struct adapter *adapter)
662 {
663 if (adapter->flags & CXGB4_USING_MSIX) {
664 pci_disable_msix(adapter->pdev);
665 adapter->flags &= ~CXGB4_USING_MSIX;
666 } else if (adapter->flags & CXGB4_USING_MSI) {
667 pci_disable_msi(adapter->pdev);
668 adapter->flags &= ~CXGB4_USING_MSI;
669 }
670 }
671
672 /*
673 * Interrupt handler for non-data events used with MSI-X.
674 */
t4_nondata_intr(int irq,void * cookie)675 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
676 {
677 struct adapter *adap = cookie;
678 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
679
680 if (v & PFSW_F) {
681 adap->swintr = 1;
682 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
683 }
684 if (adap->flags & CXGB4_MASTER_PF)
685 t4_slow_intr_handler(adap);
686 return IRQ_HANDLED;
687 }
688
cxgb4_set_msix_aff(struct adapter * adap,unsigned short vec,cpumask_var_t * aff_mask,int idx)689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
690 cpumask_var_t *aff_mask, int idx)
691 {
692 int rv;
693
694 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
695 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
696 return -ENOMEM;
697 }
698
699 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
700 *aff_mask);
701
702 rv = irq_set_affinity_hint(vec, *aff_mask);
703 if (rv)
704 dev_warn(adap->pdev_dev,
705 "irq_set_affinity_hint %u failed %d\n",
706 vec, rv);
707
708 return 0;
709 }
710
cxgb4_clear_msix_aff(unsigned short vec,cpumask_var_t aff_mask)711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
712 {
713 irq_set_affinity_hint(vec, NULL);
714 free_cpumask_var(aff_mask);
715 }
716
request_msix_queue_irqs(struct adapter * adap)717 static int request_msix_queue_irqs(struct adapter *adap)
718 {
719 struct sge *s = &adap->sge;
720 struct msix_info *minfo;
721 int err, ethqidx;
722
723 if (s->fwevtq_msix_idx < 0)
724 return -ENOMEM;
725
726 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
727 t4_sge_intr_msix, 0,
728 adap->msix_info[s->fwevtq_msix_idx].desc,
729 &s->fw_evtq);
730 if (err)
731 return err;
732
733 for_each_ethrxq(s, ethqidx) {
734 minfo = s->ethrxq[ethqidx].msix;
735 err = request_irq(minfo->vec,
736 t4_sge_intr_msix, 0,
737 minfo->desc,
738 &s->ethrxq[ethqidx].rspq);
739 if (err)
740 goto unwind;
741
742 cxgb4_set_msix_aff(adap, minfo->vec,
743 &minfo->aff_mask, ethqidx);
744 }
745 return 0;
746
747 unwind:
748 while (--ethqidx >= 0) {
749 minfo = s->ethrxq[ethqidx].msix;
750 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
751 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
752 }
753 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
754 return err;
755 }
756
free_msix_queue_irqs(struct adapter * adap)757 static void free_msix_queue_irqs(struct adapter *adap)
758 {
759 struct sge *s = &adap->sge;
760 struct msix_info *minfo;
761 int i;
762
763 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
764 for_each_ethrxq(s, i) {
765 minfo = s->ethrxq[i].msix;
766 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
767 free_irq(minfo->vec, &s->ethrxq[i].rspq);
768 }
769 }
770
setup_ppod_edram(struct adapter * adap)771 static int setup_ppod_edram(struct adapter *adap)
772 {
773 unsigned int param, val;
774 int ret;
775
776 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
777 * if firmware supports ppod edram feature or not. If firmware
778 * returns 1, then driver can enable this feature by sending
779 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
780 * enable ppod edram feature.
781 */
782 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
784
785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
786 if (ret < 0) {
787 dev_warn(adap->pdev_dev,
788 "querying PPOD_EDRAM support failed: %d\n",
789 ret);
790 return -1;
791 }
792
793 if (val != 1)
794 return -1;
795
796 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
797 if (ret < 0) {
798 dev_err(adap->pdev_dev,
799 "setting PPOD_EDRAM failed: %d\n", ret);
800 return -1;
801 }
802 return 0;
803 }
804
adap_config_hpfilter(struct adapter * adapter)805 static void adap_config_hpfilter(struct adapter *adapter)
806 {
807 u32 param, val = 0;
808 int ret;
809
810 /* Enable HP filter region. Older fw will fail this request and
811 * it is fine.
812 */
813 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
814 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
815 1, ¶m, &val);
816
817 /* An error means FW doesn't know about HP filter support,
818 * it's not a problem, don't return an error.
819 */
820 if (ret < 0)
821 dev_err(adapter->pdev_dev,
822 "HP filter region isn't supported by FW\n");
823 }
824
cxgb4_config_rss(const struct port_info * pi,u16 * rss,u16 rss_size,u16 viid)825 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
826 u16 rss_size, u16 viid)
827 {
828 struct adapter *adap = pi->adapter;
829 int ret;
830
831 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
832 rss_size);
833 if (ret)
834 return ret;
835
836 /* If Tunnel All Lookup isn't specified in the global RSS
837 * Configuration, then we need to specify a default Ingress
838 * Queue for any ingress packets which aren't hashed. We'll
839 * use our first ingress queue ...
840 */
841 return t4_config_vi_rss(adap, adap->mbox, viid,
842 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
843 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
844 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
845 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
846 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
847 rss[0]);
848 }
849
850 /**
851 * cxgb4_write_rss - write the RSS table for a given port
852 * @pi: the port
853 * @queues: array of queue indices for RSS
854 *
855 * Sets up the portion of the HW RSS table for the port's VI to distribute
856 * packets to the Rx queues in @queues.
857 * Should never be called before setting up sge eth rx queues
858 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)859 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
860 {
861 struct adapter *adapter = pi->adapter;
862 const struct sge_eth_rxq *rxq;
863 int i, err;
864 u16 *rss;
865
866 rxq = &adapter->sge.ethrxq[pi->first_qset];
867 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
868 if (!rss)
869 return -ENOMEM;
870
871 /* map the queue indices to queue ids */
872 for (i = 0; i < pi->rss_size; i++, queues++)
873 rss[i] = rxq[*queues].rspq.abs_id;
874
875 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
876 kfree(rss);
877 return err;
878 }
879
880 /**
881 * setup_rss - configure RSS
882 * @adap: the adapter
883 *
884 * Sets up RSS for each port.
885 */
setup_rss(struct adapter * adap)886 static int setup_rss(struct adapter *adap)
887 {
888 int i, j, err;
889
890 for_each_port(adap, i) {
891 const struct port_info *pi = adap2pinfo(adap, i);
892
893 /* Fill default values with equal distribution */
894 for (j = 0; j < pi->rss_size; j++)
895 pi->rss[j] = j % pi->nqsets;
896
897 err = cxgb4_write_rss(pi, pi->rss);
898 if (err)
899 return err;
900 }
901 return 0;
902 }
903
904 /*
905 * Return the channel of the ingress queue with the given qid.
906 */
rxq_to_chan(const struct sge * p,unsigned int qid)907 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
908 {
909 qid -= p->ingr_start;
910 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
911 }
912
cxgb4_quiesce_rx(struct sge_rspq * q)913 void cxgb4_quiesce_rx(struct sge_rspq *q)
914 {
915 if (q->handler)
916 napi_disable(&q->napi);
917 }
918
919 /*
920 * Wait until all NAPI handlers are descheduled.
921 */
quiesce_rx(struct adapter * adap)922 static void quiesce_rx(struct adapter *adap)
923 {
924 int i;
925
926 for (i = 0; i < adap->sge.ingr_sz; i++) {
927 struct sge_rspq *q = adap->sge.ingr_map[i];
928
929 if (!q)
930 continue;
931
932 cxgb4_quiesce_rx(q);
933 }
934 }
935
936 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)937 static void disable_interrupts(struct adapter *adap)
938 {
939 struct sge *s = &adap->sge;
940
941 if (adap->flags & CXGB4_FULL_INIT_DONE) {
942 t4_intr_disable(adap);
943 if (adap->flags & CXGB4_USING_MSIX) {
944 free_msix_queue_irqs(adap);
945 free_irq(adap->msix_info[s->nd_msix_idx].vec,
946 adap);
947 } else {
948 free_irq(adap->pdev->irq, adap);
949 }
950 quiesce_rx(adap);
951 }
952 }
953
cxgb4_enable_rx(struct adapter * adap,struct sge_rspq * q)954 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
955 {
956 if (q->handler)
957 napi_enable(&q->napi);
958
959 /* 0-increment GTS to start the timer and enable interrupts */
960 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
961 SEINTARM_V(q->intr_params) |
962 INGRESSQID_V(q->cntxt_id));
963 }
964
965 /*
966 * Enable NAPI scheduling and interrupt generation for all Rx queues.
967 */
enable_rx(struct adapter * adap)968 static void enable_rx(struct adapter *adap)
969 {
970 int i;
971
972 for (i = 0; i < adap->sge.ingr_sz; i++) {
973 struct sge_rspq *q = adap->sge.ingr_map[i];
974
975 if (!q)
976 continue;
977
978 cxgb4_enable_rx(adap, q);
979 }
980 }
981
setup_non_data_intr(struct adapter * adap)982 static int setup_non_data_intr(struct adapter *adap)
983 {
984 int msix;
985
986 adap->sge.nd_msix_idx = -1;
987 if (!(adap->flags & CXGB4_USING_MSIX))
988 return 0;
989
990 /* Request MSI-X vector for non-data interrupt */
991 msix = cxgb4_get_msix_idx_from_bmap(adap);
992 if (msix < 0)
993 return -ENOMEM;
994
995 snprintf(adap->msix_info[msix].desc,
996 sizeof(adap->msix_info[msix].desc),
997 "%s", adap->port[0]->name);
998
999 adap->sge.nd_msix_idx = msix;
1000 return 0;
1001 }
1002
setup_fw_sge_queues(struct adapter * adap)1003 static int setup_fw_sge_queues(struct adapter *adap)
1004 {
1005 struct sge *s = &adap->sge;
1006 int msix, err = 0;
1007
1008 bitmap_zero(s->starving_fl, s->egr_sz);
1009 bitmap_zero(s->txq_maperr, s->egr_sz);
1010
1011 if (adap->flags & CXGB4_USING_MSIX) {
1012 s->fwevtq_msix_idx = -1;
1013 msix = cxgb4_get_msix_idx_from_bmap(adap);
1014 if (msix < 0)
1015 return -ENOMEM;
1016
1017 snprintf(adap->msix_info[msix].desc,
1018 sizeof(adap->msix_info[msix].desc),
1019 "%s-FWeventq", adap->port[0]->name);
1020 } else {
1021 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1022 NULL, NULL, NULL, -1);
1023 if (err)
1024 return err;
1025 msix = -((int)s->intrq.abs_id + 1);
1026 }
1027
1028 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029 msix, NULL, fwevtq_handler, NULL, -1);
1030 if (err && msix >= 0)
1031 cxgb4_free_msix_idx_in_bmap(adap, msix);
1032
1033 s->fwevtq_msix_idx = msix;
1034 return err;
1035 }
1036
1037 /**
1038 * setup_sge_queues - configure SGE Tx/Rx/response queues
1039 * @adap: the adapter
1040 *
1041 * Determines how many sets of SGE queues to use and initializes them.
1042 * We support multiple queue sets per port if we have MSI-X, otherwise
1043 * just one queue set per port.
1044 */
setup_sge_queues(struct adapter * adap)1045 static int setup_sge_queues(struct adapter *adap)
1046 {
1047 struct sge_uld_rxq_info *rxq_info = NULL;
1048 struct sge *s = &adap->sge;
1049 unsigned int cmplqid = 0;
1050 int err, i, j, msix = 0;
1051
1052 if (is_uld(adap))
1053 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1054
1055 if (!(adap->flags & CXGB4_USING_MSIX))
1056 msix = -((int)s->intrq.abs_id + 1);
1057
1058 for_each_port(adap, i) {
1059 struct net_device *dev = adap->port[i];
1060 struct port_info *pi = netdev_priv(dev);
1061 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1062 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1063
1064 for (j = 0; j < pi->nqsets; j++, q++) {
1065 if (msix >= 0) {
1066 msix = cxgb4_get_msix_idx_from_bmap(adap);
1067 if (msix < 0) {
1068 err = msix;
1069 goto freeout;
1070 }
1071
1072 snprintf(adap->msix_info[msix].desc,
1073 sizeof(adap->msix_info[msix].desc),
1074 "%s-Rx%d", dev->name, j);
1075 q->msix = &adap->msix_info[msix];
1076 }
1077
1078 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1079 msix, &q->fl,
1080 t4_ethrx_handler,
1081 NULL,
1082 t4_get_tp_ch_map(adap,
1083 pi->tx_chan));
1084 if (err)
1085 goto freeout;
1086 q->rspq.idx = j;
1087 memset(&q->stats, 0, sizeof(q->stats));
1088 }
1089
1090 q = &s->ethrxq[pi->first_qset];
1091 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1092 err = t4_sge_alloc_eth_txq(adap, t, dev,
1093 netdev_get_tx_queue(dev, j),
1094 q->rspq.cntxt_id,
1095 !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1096 if (err)
1097 goto freeout;
1098 }
1099 }
1100
1101 for_each_port(adap, i) {
1102 /* Note that cmplqid below is 0 if we don't
1103 * have RDMA queues, and that's the right value.
1104 */
1105 if (rxq_info)
1106 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1107
1108 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1109 s->fw_evtq.cntxt_id, cmplqid);
1110 if (err)
1111 goto freeout;
1112 }
1113
1114 if (!is_t4(adap->params.chip)) {
1115 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1116 netdev_get_tx_queue(adap->port[0], 0)
1117 , s->fw_evtq.cntxt_id, false);
1118 if (err)
1119 goto freeout;
1120 }
1121
1122 t4_write_reg(adap, is_t4(adap->params.chip) ?
1123 MPS_TRC_RSS_CONTROL_A :
1124 MPS_T5_TRC_RSS_CONTROL_A,
1125 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1126 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1127 return 0;
1128 freeout:
1129 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1130 t4_free_sge_resources(adap);
1131 return err;
1132 }
1133
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1134 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1135 struct net_device *sb_dev)
1136 {
1137 int txq;
1138
1139 #ifdef CONFIG_CHELSIO_T4_DCB
1140 /* If a Data Center Bridging has been successfully negotiated on this
1141 * link then we'll use the skb's priority to map it to a TX Queue.
1142 * The skb's priority is determined via the VLAN Tag Priority Code
1143 * Point field.
1144 */
1145 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1146 u16 vlan_tci;
1147 int err;
1148
1149 err = vlan_get_tag(skb, &vlan_tci);
1150 if (unlikely(err)) {
1151 if (net_ratelimit())
1152 netdev_warn(dev,
1153 "TX Packet without VLAN Tag on DCB Link\n");
1154 txq = 0;
1155 } else {
1156 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1157 #ifdef CONFIG_CHELSIO_T4_FCOE
1158 if (skb->protocol == htons(ETH_P_FCOE))
1159 txq = skb->priority & 0x7;
1160 #endif /* CONFIG_CHELSIO_T4_FCOE */
1161 }
1162 return txq;
1163 }
1164 #endif /* CONFIG_CHELSIO_T4_DCB */
1165
1166 if (dev->num_tc) {
1167 struct port_info *pi = netdev2pinfo(dev);
1168 u8 ver, proto;
1169
1170 ver = ip_hdr(skb)->version;
1171 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1172 ip_hdr(skb)->protocol;
1173
1174 /* Send unsupported traffic pattern to normal NIC queues. */
1175 txq = netdev_pick_tx(dev, skb, sb_dev);
1176 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1177 skb->encapsulation ||
1178 tls_is_skb_tx_device_offloaded(skb) ||
1179 (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180 txq = txq % pi->nqsets;
1181
1182 return txq;
1183 }
1184
1185 if (select_queue) {
1186 txq = (skb_rx_queue_recorded(skb)
1187 ? skb_get_rx_queue(skb)
1188 : smp_processor_id());
1189
1190 while (unlikely(txq >= dev->real_num_tx_queues))
1191 txq -= dev->real_num_tx_queues;
1192
1193 return txq;
1194 }
1195
1196 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197 }
1198
closest_timer(const struct sge * s,int time)1199 static int closest_timer(const struct sge *s, int time)
1200 {
1201 int i, delta, match = 0, min_delta = INT_MAX;
1202
1203 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204 delta = time - s->timer_val[i];
1205 if (delta < 0)
1206 delta = -delta;
1207 if (delta < min_delta) {
1208 min_delta = delta;
1209 match = i;
1210 }
1211 }
1212 return match;
1213 }
1214
closest_thres(const struct sge * s,int thres)1215 static int closest_thres(const struct sge *s, int thres)
1216 {
1217 int i, delta, match = 0, min_delta = INT_MAX;
1218
1219 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220 delta = thres - s->counter_val[i];
1221 if (delta < 0)
1222 delta = -delta;
1223 if (delta < min_delta) {
1224 min_delta = delta;
1225 match = i;
1226 }
1227 }
1228 return match;
1229 }
1230
1231 /**
1232 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233 * @q: the Rx queue
1234 * @us: the hold-off time in us, or 0 to disable timer
1235 * @cnt: the hold-off packet count, or 0 to disable counter
1236 *
1237 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1238 * one of the two needs to be enabled for the queue to generate interrupts.
1239 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241 unsigned int us, unsigned int cnt)
1242 {
1243 struct adapter *adap = q->adap;
1244
1245 if ((us | cnt) == 0)
1246 cnt = 1;
1247
1248 if (cnt) {
1249 int err;
1250 u32 v, new_idx;
1251
1252 new_idx = closest_thres(&adap->sge, cnt);
1253 if (q->desc && q->pktcnt_idx != new_idx) {
1254 /* the queue has already been created, update it */
1255 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256 FW_PARAMS_PARAM_X_V(
1257 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260 &v, &new_idx);
1261 if (err)
1262 return err;
1263 }
1264 q->pktcnt_idx = new_idx;
1265 }
1266
1267 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269 return 0;
1270 }
1271
cxgb_set_features(struct net_device * dev,netdev_features_t features)1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273 {
1274 netdev_features_t changed = dev->features ^ features;
1275 const struct port_info *pi = netdev_priv(dev);
1276 int err;
1277
1278 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279 return 0;
1280
1281 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282 pi->viid_mirror, -1, -1, -1, -1,
1283 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284 if (unlikely(err))
1285 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286 return err;
1287 }
1288
setup_debugfs(struct adapter * adap)1289 static int setup_debugfs(struct adapter *adap)
1290 {
1291 if (IS_ERR_OR_NULL(adap->debugfs_root))
1292 return -1;
1293
1294 #ifdef CONFIG_DEBUG_FS
1295 t4_setup_debugfs(adap);
1296 #endif
1297 return 0;
1298 }
1299
cxgb4_port_mirror_free_rxq(struct adapter * adap,struct sge_eth_rxq * mirror_rxq)1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301 struct sge_eth_rxq *mirror_rxq)
1302 {
1303 if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304 !(adap->flags & CXGB4_SHUTTING_DOWN))
1305 cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306
1307 if (adap->flags & CXGB4_USING_MSIX) {
1308 cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309 mirror_rxq->msix->aff_mask);
1310 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312 }
1313
1314 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315 }
1316
cxgb4_port_mirror_alloc_queues(struct net_device * dev)1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318 {
1319 struct port_info *pi = netdev2pinfo(dev);
1320 struct adapter *adap = netdev2adap(dev);
1321 struct sge_eth_rxq *mirror_rxq;
1322 struct sge *s = &adap->sge;
1323 int ret = 0, msix = 0;
1324 u16 i, rxqid;
1325 u16 *rss;
1326
1327 if (!pi->vi_mirror_count)
1328 return 0;
1329
1330 if (s->mirror_rxq[pi->port_id])
1331 return 0;
1332
1333 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334 if (!mirror_rxq)
1335 return -ENOMEM;
1336
1337 s->mirror_rxq[pi->port_id] = mirror_rxq;
1338
1339 if (!(adap->flags & CXGB4_USING_MSIX))
1340 msix = -((int)adap->sge.intrq.abs_id + 1);
1341
1342 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343 mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344
1345 /* Allocate Mirror Rxqs */
1346 if (msix >= 0) {
1347 msix = cxgb4_get_msix_idx_from_bmap(adap);
1348 if (msix < 0) {
1349 ret = msix;
1350 goto out_free_queues;
1351 }
1352
1353 mirror_rxq->msix = &adap->msix_info[msix];
1354 snprintf(mirror_rxq->msix->desc,
1355 sizeof(mirror_rxq->msix->desc),
1356 "%s-mirrorrxq%d", dev->name, i);
1357 }
1358
1359 init_rspq(adap, &mirror_rxq->rspq,
1360 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364
1365 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366
1367 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368 dev, msix, &mirror_rxq->fl,
1369 t4_ethrx_handler, NULL, 0);
1370 if (ret)
1371 goto out_free_msix_idx;
1372
1373 /* Setup MSI-X vectors for Mirror Rxqs */
1374 if (adap->flags & CXGB4_USING_MSIX) {
1375 ret = request_irq(mirror_rxq->msix->vec,
1376 t4_sge_intr_msix, 0,
1377 mirror_rxq->msix->desc,
1378 &mirror_rxq->rspq);
1379 if (ret)
1380 goto out_free_rxq;
1381
1382 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383 &mirror_rxq->msix->aff_mask, i);
1384 }
1385
1386 /* Start NAPI for Mirror Rxqs */
1387 cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388 }
1389
1390 /* Setup RSS for Mirror Rxqs */
1391 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392 if (!rss) {
1393 ret = -ENOMEM;
1394 goto out_free_queues;
1395 }
1396
1397 mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398 for (i = 0; i < pi->rss_size; i++)
1399 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400
1401 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402 kfree(rss);
1403 if (ret)
1404 goto out_free_queues;
1405
1406 return 0;
1407
1408 out_free_rxq:
1409 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410
1411 out_free_msix_idx:
1412 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413
1414 out_free_queues:
1415 while (rxqid-- > 0)
1416 cxgb4_port_mirror_free_rxq(adap,
1417 &s->mirror_rxq[pi->port_id][rxqid]);
1418
1419 kfree(s->mirror_rxq[pi->port_id]);
1420 s->mirror_rxq[pi->port_id] = NULL;
1421 return ret;
1422 }
1423
cxgb4_port_mirror_free_queues(struct net_device * dev)1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425 {
1426 struct port_info *pi = netdev2pinfo(dev);
1427 struct adapter *adap = netdev2adap(dev);
1428 struct sge *s = &adap->sge;
1429 u16 i;
1430
1431 if (!pi->vi_mirror_count)
1432 return;
1433
1434 if (!s->mirror_rxq[pi->port_id])
1435 return;
1436
1437 for (i = 0; i < pi->nmirrorqsets; i++)
1438 cxgb4_port_mirror_free_rxq(adap,
1439 &s->mirror_rxq[pi->port_id][i]);
1440
1441 kfree(s->mirror_rxq[pi->port_id]);
1442 s->mirror_rxq[pi->port_id] = NULL;
1443 }
1444
cxgb4_port_mirror_start(struct net_device * dev)1445 static int cxgb4_port_mirror_start(struct net_device *dev)
1446 {
1447 struct port_info *pi = netdev2pinfo(dev);
1448 struct adapter *adap = netdev2adap(dev);
1449 int ret, idx = -1;
1450
1451 if (!pi->vi_mirror_count)
1452 return 0;
1453
1454 /* Mirror VIs can be created dynamically after stack had
1455 * already setup Rx modes like MTU, promisc, allmulti, etc.
1456 * on main VI. So, parse what the stack had setup on the
1457 * main VI and update the same on the mirror VI.
1458 */
1459 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463 if (ret) {
1464 dev_err(adap->pdev_dev,
1465 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466 pi->viid_mirror, ret);
1467 return ret;
1468 }
1469
1470 /* Enable replication bit for the device's MAC address
1471 * in MPS TCAM, so that the packets for the main VI are
1472 * replicated to mirror VI.
1473 */
1474 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475 dev->dev_addr, true, NULL);
1476 if (ret) {
1477 dev_err(adap->pdev_dev,
1478 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479 pi->viid_mirror, ret);
1480 return ret;
1481 }
1482
1483 /* Enabling a Virtual Interface can result in an interrupt
1484 * during the processing of the VI Enable command and, in some
1485 * paths, result in an attempt to issue another command in the
1486 * interrupt context. Thus, we disable interrupts during the
1487 * course of the VI Enable command ...
1488 */
1489 local_bh_disable();
1490 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491 false);
1492 local_bh_enable();
1493 if (ret)
1494 dev_err(adap->pdev_dev,
1495 "Failed starting Mirror VI 0x%x, ret: %d\n",
1496 pi->viid_mirror, ret);
1497
1498 return ret;
1499 }
1500
cxgb4_port_mirror_stop(struct net_device * dev)1501 static void cxgb4_port_mirror_stop(struct net_device *dev)
1502 {
1503 struct port_info *pi = netdev2pinfo(dev);
1504 struct adapter *adap = netdev2adap(dev);
1505
1506 if (!pi->vi_mirror_count)
1507 return;
1508
1509 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510 false);
1511 }
1512
cxgb4_port_mirror_alloc(struct net_device * dev)1513 int cxgb4_port_mirror_alloc(struct net_device *dev)
1514 {
1515 struct port_info *pi = netdev2pinfo(dev);
1516 struct adapter *adap = netdev2adap(dev);
1517 int ret = 0;
1518
1519 if (!pi->nmirrorqsets)
1520 return -EOPNOTSUPP;
1521
1522 mutex_lock(&pi->vi_mirror_mutex);
1523 if (pi->viid_mirror) {
1524 pi->vi_mirror_count++;
1525 goto out_unlock;
1526 }
1527
1528 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529 &pi->viid_mirror);
1530 if (ret)
1531 goto out_unlock;
1532
1533 pi->vi_mirror_count = 1;
1534
1535 if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536 ret = cxgb4_port_mirror_alloc_queues(dev);
1537 if (ret)
1538 goto out_free_vi;
1539
1540 ret = cxgb4_port_mirror_start(dev);
1541 if (ret)
1542 goto out_free_queues;
1543 }
1544
1545 mutex_unlock(&pi->vi_mirror_mutex);
1546 return 0;
1547
1548 out_free_queues:
1549 cxgb4_port_mirror_free_queues(dev);
1550
1551 out_free_vi:
1552 pi->vi_mirror_count = 0;
1553 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554 pi->viid_mirror = 0;
1555
1556 out_unlock:
1557 mutex_unlock(&pi->vi_mirror_mutex);
1558 return ret;
1559 }
1560
cxgb4_port_mirror_free(struct net_device * dev)1561 void cxgb4_port_mirror_free(struct net_device *dev)
1562 {
1563 struct port_info *pi = netdev2pinfo(dev);
1564 struct adapter *adap = netdev2adap(dev);
1565
1566 mutex_lock(&pi->vi_mirror_mutex);
1567 if (!pi->viid_mirror)
1568 goto out_unlock;
1569
1570 if (pi->vi_mirror_count > 1) {
1571 pi->vi_mirror_count--;
1572 goto out_unlock;
1573 }
1574
1575 cxgb4_port_mirror_stop(dev);
1576 cxgb4_port_mirror_free_queues(dev);
1577
1578 pi->vi_mirror_count = 0;
1579 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580 pi->viid_mirror = 0;
1581
1582 out_unlock:
1583 mutex_unlock(&pi->vi_mirror_mutex);
1584 }
1585
1586 /*
1587 * upper-layer driver support
1588 */
1589
1590 /*
1591 * Allocate an active-open TID and set it to the supplied value.
1592 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1593 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594 {
1595 int atid = -1;
1596
1597 spin_lock_bh(&t->atid_lock);
1598 if (t->afree) {
1599 union aopen_entry *p = t->afree;
1600
1601 atid = (p - t->atid_tab) + t->atid_base;
1602 t->afree = p->next;
1603 p->data = data;
1604 t->atids_in_use++;
1605 }
1606 spin_unlock_bh(&t->atid_lock);
1607 return atid;
1608 }
1609 EXPORT_SYMBOL(cxgb4_alloc_atid);
1610
1611 /*
1612 * Release an active-open TID.
1613 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615 {
1616 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617
1618 spin_lock_bh(&t->atid_lock);
1619 p->next = t->afree;
1620 t->afree = p;
1621 t->atids_in_use--;
1622 spin_unlock_bh(&t->atid_lock);
1623 }
1624 EXPORT_SYMBOL(cxgb4_free_atid);
1625
1626 /*
1627 * Allocate a server TID and set it to the supplied value.
1628 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630 {
1631 int stid;
1632
1633 spin_lock_bh(&t->stid_lock);
1634 if (family == PF_INET) {
1635 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636 if (stid < t->nstids)
1637 __set_bit(stid, t->stid_bmap);
1638 else
1639 stid = -1;
1640 } else {
1641 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642 if (stid < 0)
1643 stid = -1;
1644 }
1645 if (stid >= 0) {
1646 t->stid_tab[stid].data = data;
1647 stid += t->stid_base;
1648 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1649 * This is equivalent to 4 TIDs. With CLIP enabled it
1650 * needs 2 TIDs.
1651 */
1652 if (family == PF_INET6) {
1653 t->stids_in_use += 2;
1654 t->v6_stids_in_use += 2;
1655 } else {
1656 t->stids_in_use++;
1657 }
1658 }
1659 spin_unlock_bh(&t->stid_lock);
1660 return stid;
1661 }
1662 EXPORT_SYMBOL(cxgb4_alloc_stid);
1663
1664 /* Allocate a server filter TID and set it to the supplied value.
1665 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667 {
1668 int stid;
1669
1670 spin_lock_bh(&t->stid_lock);
1671 if (family == PF_INET) {
1672 stid = find_next_zero_bit(t->stid_bmap,
1673 t->nstids + t->nsftids, t->nstids);
1674 if (stid < (t->nstids + t->nsftids))
1675 __set_bit(stid, t->stid_bmap);
1676 else
1677 stid = -1;
1678 } else {
1679 stid = -1;
1680 }
1681 if (stid >= 0) {
1682 t->stid_tab[stid].data = data;
1683 stid -= t->nstids;
1684 stid += t->sftid_base;
1685 t->sftids_in_use++;
1686 }
1687 spin_unlock_bh(&t->stid_lock);
1688 return stid;
1689 }
1690 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691
1692 /* Release a server TID.
1693 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695 {
1696 /* Is it a server filter TID? */
1697 if (t->nsftids && (stid >= t->sftid_base)) {
1698 stid -= t->sftid_base;
1699 stid += t->nstids;
1700 } else {
1701 stid -= t->stid_base;
1702 }
1703
1704 spin_lock_bh(&t->stid_lock);
1705 if (family == PF_INET)
1706 __clear_bit(stid, t->stid_bmap);
1707 else
1708 bitmap_release_region(t->stid_bmap, stid, 1);
1709 t->stid_tab[stid].data = NULL;
1710 if (stid < t->nstids) {
1711 if (family == PF_INET6) {
1712 t->stids_in_use -= 2;
1713 t->v6_stids_in_use -= 2;
1714 } else {
1715 t->stids_in_use--;
1716 }
1717 } else {
1718 t->sftids_in_use--;
1719 }
1720
1721 spin_unlock_bh(&t->stid_lock);
1722 }
1723 EXPORT_SYMBOL(cxgb4_free_stid);
1724
1725 /*
1726 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1727 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729 unsigned int tid)
1730 {
1731 struct cpl_tid_release *req;
1732
1733 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734 req = __skb_put(skb, sizeof(*req));
1735 INIT_TP_WR(req, tid);
1736 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737 }
1738
1739 /*
1740 * Queue a TID release request and if necessary schedule a work queue to
1741 * process it.
1742 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744 unsigned int tid)
1745 {
1746 struct adapter *adap = container_of(t, struct adapter, tids);
1747 void **p = &t->tid_tab[tid - t->tid_base];
1748
1749 spin_lock_bh(&adap->tid_release_lock);
1750 *p = adap->tid_release_head;
1751 /* Low 2 bits encode the Tx channel number */
1752 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753 if (!adap->tid_release_task_busy) {
1754 adap->tid_release_task_busy = true;
1755 queue_work(adap->workq, &adap->tid_release_task);
1756 }
1757 spin_unlock_bh(&adap->tid_release_lock);
1758 }
1759
1760 /*
1761 * Process the list of pending TID release requests.
1762 */
process_tid_release_list(struct work_struct * work)1763 static void process_tid_release_list(struct work_struct *work)
1764 {
1765 struct sk_buff *skb;
1766 struct adapter *adap;
1767
1768 adap = container_of(work, struct adapter, tid_release_task);
1769
1770 spin_lock_bh(&adap->tid_release_lock);
1771 while (adap->tid_release_head) {
1772 void **p = adap->tid_release_head;
1773 unsigned int chan = (uintptr_t)p & 3;
1774 p = (void *)p - chan;
1775
1776 adap->tid_release_head = *p;
1777 *p = NULL;
1778 spin_unlock_bh(&adap->tid_release_lock);
1779
1780 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781 GFP_KERNEL)))
1782 schedule_timeout_uninterruptible(1);
1783
1784 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785 t4_ofld_send(adap, skb);
1786 spin_lock_bh(&adap->tid_release_lock);
1787 }
1788 adap->tid_release_task_busy = false;
1789 spin_unlock_bh(&adap->tid_release_lock);
1790 }
1791
1792 /*
1793 * Release a TID and inform HW. If we are unable to allocate the release
1794 * message we defer to a work queue.
1795 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797 unsigned short family)
1798 {
1799 struct adapter *adap = container_of(t, struct adapter, tids);
1800 struct sk_buff *skb;
1801
1802 WARN_ON(tid_out_of_range(&adap->tids, tid));
1803
1804 if (t->tid_tab[tid - adap->tids.tid_base]) {
1805 t->tid_tab[tid - adap->tids.tid_base] = NULL;
1806 atomic_dec(&t->conns_in_use);
1807 if (t->hash_base && (tid >= t->hash_base)) {
1808 if (family == AF_INET6)
1809 atomic_sub(2, &t->hash_tids_in_use);
1810 else
1811 atomic_dec(&t->hash_tids_in_use);
1812 } else {
1813 if (family == AF_INET6)
1814 atomic_sub(2, &t->tids_in_use);
1815 else
1816 atomic_dec(&t->tids_in_use);
1817 }
1818 }
1819
1820 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1821 if (likely(skb)) {
1822 mk_tid_release(skb, chan, tid);
1823 t4_ofld_send(adap, skb);
1824 } else
1825 cxgb4_queue_tid_release(t, chan, tid);
1826 }
1827 EXPORT_SYMBOL(cxgb4_remove_tid);
1828
1829 /*
1830 * Allocate and initialize the TID tables. Returns 0 on success.
1831 */
tid_init(struct tid_info * t)1832 static int tid_init(struct tid_info *t)
1833 {
1834 struct adapter *adap = container_of(t, struct adapter, tids);
1835 unsigned int max_ftids = t->nftids + t->nsftids;
1836 unsigned int natids = t->natids;
1837 unsigned int hpftid_bmap_size;
1838 unsigned int eotid_bmap_size;
1839 unsigned int stid_bmap_size;
1840 unsigned int ftid_bmap_size;
1841 size_t size;
1842
1843 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1844 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1845 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1846 eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1847 size = t->ntids * sizeof(*t->tid_tab) +
1848 natids * sizeof(*t->atid_tab) +
1849 t->nstids * sizeof(*t->stid_tab) +
1850 t->nsftids * sizeof(*t->stid_tab) +
1851 stid_bmap_size * sizeof(long) +
1852 t->nhpftids * sizeof(*t->hpftid_tab) +
1853 hpftid_bmap_size * sizeof(long) +
1854 max_ftids * sizeof(*t->ftid_tab) +
1855 ftid_bmap_size * sizeof(long) +
1856 t->neotids * sizeof(*t->eotid_tab) +
1857 eotid_bmap_size * sizeof(long);
1858
1859 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1860 if (!t->tid_tab)
1861 return -ENOMEM;
1862
1863 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1864 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1865 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1866 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1867 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1868 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1869 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1870 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1871 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1872 spin_lock_init(&t->stid_lock);
1873 spin_lock_init(&t->atid_lock);
1874 spin_lock_init(&t->ftid_lock);
1875
1876 t->stids_in_use = 0;
1877 t->v6_stids_in_use = 0;
1878 t->sftids_in_use = 0;
1879 t->afree = NULL;
1880 t->atids_in_use = 0;
1881 atomic_set(&t->tids_in_use, 0);
1882 atomic_set(&t->conns_in_use, 0);
1883 atomic_set(&t->hash_tids_in_use, 0);
1884 atomic_set(&t->eotids_in_use, 0);
1885
1886 /* Setup the free list for atid_tab and clear the stid bitmap. */
1887 if (natids) {
1888 while (--natids)
1889 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1890 t->afree = t->atid_tab;
1891 }
1892
1893 if (is_offload(adap)) {
1894 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1895 /* Reserve stid 0 for T4/T5 adapters */
1896 if (!t->stid_base &&
1897 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1898 __set_bit(0, t->stid_bmap);
1899
1900 if (t->neotids)
1901 bitmap_zero(t->eotid_bmap, t->neotids);
1902 }
1903
1904 if (t->nhpftids)
1905 bitmap_zero(t->hpftid_bmap, t->nhpftids);
1906 bitmap_zero(t->ftid_bmap, t->nftids);
1907 return 0;
1908 }
1909
1910 /**
1911 * cxgb4_create_server - create an IP server
1912 * @dev: the device
1913 * @stid: the server TID
1914 * @sip: local IP address to bind server to
1915 * @sport: the server's TCP port
1916 * @vlan: the VLAN header information
1917 * @queue: queue to direct messages from this server to
1918 *
1919 * Create an IP server for the given port and address.
1920 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1921 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1922 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1923 __be32 sip, __be16 sport, __be16 vlan,
1924 unsigned int queue)
1925 {
1926 unsigned int chan;
1927 struct sk_buff *skb;
1928 struct adapter *adap;
1929 struct cpl_pass_open_req *req;
1930 int ret;
1931
1932 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1933 if (!skb)
1934 return -ENOMEM;
1935
1936 adap = netdev2adap(dev);
1937 req = __skb_put(skb, sizeof(*req));
1938 INIT_TP_WR(req, 0);
1939 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1940 req->local_port = sport;
1941 req->peer_port = htons(0);
1942 req->local_ip = sip;
1943 req->peer_ip = htonl(0);
1944 chan = rxq_to_chan(&adap->sge, queue);
1945 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1946 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1947 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1948 ret = t4_mgmt_tx(adap, skb);
1949 return net_xmit_eval(ret);
1950 }
1951 EXPORT_SYMBOL(cxgb4_create_server);
1952
1953 /* cxgb4_create_server6 - create an IPv6 server
1954 * @dev: the device
1955 * @stid: the server TID
1956 * @sip: local IPv6 address to bind server to
1957 * @sport: the server's TCP port
1958 * @queue: queue to direct messages from this server to
1959 *
1960 * Create an IPv6 server for the given port and address.
1961 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1962 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1963 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1964 const struct in6_addr *sip, __be16 sport,
1965 unsigned int queue)
1966 {
1967 unsigned int chan;
1968 struct sk_buff *skb;
1969 struct adapter *adap;
1970 struct cpl_pass_open_req6 *req;
1971 int ret;
1972
1973 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1974 if (!skb)
1975 return -ENOMEM;
1976
1977 adap = netdev2adap(dev);
1978 req = __skb_put(skb, sizeof(*req));
1979 INIT_TP_WR(req, 0);
1980 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1981 req->local_port = sport;
1982 req->peer_port = htons(0);
1983 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1984 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1985 req->peer_ip_hi = cpu_to_be64(0);
1986 req->peer_ip_lo = cpu_to_be64(0);
1987 chan = rxq_to_chan(&adap->sge, queue);
1988 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1989 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1990 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1991 ret = t4_mgmt_tx(adap, skb);
1992 return net_xmit_eval(ret);
1993 }
1994 EXPORT_SYMBOL(cxgb4_create_server6);
1995
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1996 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1997 unsigned int queue, bool ipv6)
1998 {
1999 struct sk_buff *skb;
2000 struct adapter *adap;
2001 struct cpl_close_listsvr_req *req;
2002 int ret;
2003
2004 adap = netdev2adap(dev);
2005
2006 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2007 if (!skb)
2008 return -ENOMEM;
2009
2010 req = __skb_put(skb, sizeof(*req));
2011 INIT_TP_WR(req, 0);
2012 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2013 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2014 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2015 ret = t4_mgmt_tx(adap, skb);
2016 return net_xmit_eval(ret);
2017 }
2018 EXPORT_SYMBOL(cxgb4_remove_server);
2019
2020 /**
2021 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2022 * @mtus: the HW MTU table
2023 * @mtu: the target MTU
2024 * @idx: index of selected entry in the MTU table
2025 *
2026 * Returns the index and the value in the HW MTU table that is closest to
2027 * but does not exceed @mtu, unless @mtu is smaller than any value in the
2028 * table, in which case that smallest available value is selected.
2029 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)2030 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2031 unsigned int *idx)
2032 {
2033 unsigned int i = 0;
2034
2035 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2036 ++i;
2037 if (idx)
2038 *idx = i;
2039 return mtus[i];
2040 }
2041 EXPORT_SYMBOL(cxgb4_best_mtu);
2042
2043 /**
2044 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2045 * @mtus: the HW MTU table
2046 * @header_size: Header Size
2047 * @data_size_max: maximum Data Segment Size
2048 * @data_size_align: desired Data Segment Size Alignment (2^N)
2049 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2050 *
2051 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
2052 * MTU Table based solely on a Maximum MTU parameter, we break that
2053 * parameter up into a Header Size and Maximum Data Segment Size, and
2054 * provide a desired Data Segment Size Alignment. If we find an MTU in
2055 * the Hardware MTU Table which will result in a Data Segment Size with
2056 * the requested alignment _and_ that MTU isn't "too far" from the
2057 * closest MTU, then we'll return that rather than the closest MTU.
2058 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)2059 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2060 unsigned short header_size,
2061 unsigned short data_size_max,
2062 unsigned short data_size_align,
2063 unsigned int *mtu_idxp)
2064 {
2065 unsigned short max_mtu = header_size + data_size_max;
2066 unsigned short data_size_align_mask = data_size_align - 1;
2067 int mtu_idx, aligned_mtu_idx;
2068
2069 /* Scan the MTU Table till we find an MTU which is larger than our
2070 * Maximum MTU or we reach the end of the table. Along the way,
2071 * record the last MTU found, if any, which will result in a Data
2072 * Segment Length matching the requested alignment.
2073 */
2074 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2075 unsigned short data_size = mtus[mtu_idx] - header_size;
2076
2077 /* If this MTU minus the Header Size would result in a
2078 * Data Segment Size of the desired alignment, remember it.
2079 */
2080 if ((data_size & data_size_align_mask) == 0)
2081 aligned_mtu_idx = mtu_idx;
2082
2083 /* If we're not at the end of the Hardware MTU Table and the
2084 * next element is larger than our Maximum MTU, drop out of
2085 * the loop.
2086 */
2087 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2088 break;
2089 }
2090
2091 /* If we fell out of the loop because we ran to the end of the table,
2092 * then we just have to use the last [largest] entry.
2093 */
2094 if (mtu_idx == NMTUS)
2095 mtu_idx--;
2096
2097 /* If we found an MTU which resulted in the requested Data Segment
2098 * Length alignment and that's "not far" from the largest MTU which is
2099 * less than or equal to the maximum MTU, then use that.
2100 */
2101 if (aligned_mtu_idx >= 0 &&
2102 mtu_idx - aligned_mtu_idx <= 1)
2103 mtu_idx = aligned_mtu_idx;
2104
2105 /* If the caller has passed in an MTU Index pointer, pass the
2106 * MTU Index back. Return the MTU value.
2107 */
2108 if (mtu_idxp)
2109 *mtu_idxp = mtu_idx;
2110 return mtus[mtu_idx];
2111 }
2112 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2113
2114 /**
2115 * cxgb4_port_chan - get the HW channel of a port
2116 * @dev: the net device for the port
2117 *
2118 * Return the HW Tx channel of the given port.
2119 */
cxgb4_port_chan(const struct net_device * dev)2120 unsigned int cxgb4_port_chan(const struct net_device *dev)
2121 {
2122 return netdev2pinfo(dev)->tx_chan;
2123 }
2124 EXPORT_SYMBOL(cxgb4_port_chan);
2125
2126 /**
2127 * cxgb4_port_e2cchan - get the HW c-channel of a port
2128 * @dev: the net device for the port
2129 *
2130 * Return the HW RX c-channel of the given port.
2131 */
cxgb4_port_e2cchan(const struct net_device * dev)2132 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2133 {
2134 return netdev2pinfo(dev)->rx_cchan;
2135 }
2136 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2137
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)2138 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2139 {
2140 struct adapter *adap = netdev2adap(dev);
2141 u32 v1, v2, lp_count, hp_count;
2142
2143 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2144 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2145 if (is_t4(adap->params.chip)) {
2146 lp_count = LP_COUNT_G(v1);
2147 hp_count = HP_COUNT_G(v1);
2148 } else {
2149 lp_count = LP_COUNT_T5_G(v1);
2150 hp_count = HP_COUNT_T5_G(v2);
2151 }
2152 return lpfifo ? lp_count : hp_count;
2153 }
2154 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2155
2156 /**
2157 * cxgb4_port_viid - get the VI id of a port
2158 * @dev: the net device for the port
2159 *
2160 * Return the VI id of the given port.
2161 */
cxgb4_port_viid(const struct net_device * dev)2162 unsigned int cxgb4_port_viid(const struct net_device *dev)
2163 {
2164 return netdev2pinfo(dev)->viid;
2165 }
2166 EXPORT_SYMBOL(cxgb4_port_viid);
2167
2168 /**
2169 * cxgb4_port_idx - get the index of a port
2170 * @dev: the net device for the port
2171 *
2172 * Return the index of the given port.
2173 */
cxgb4_port_idx(const struct net_device * dev)2174 unsigned int cxgb4_port_idx(const struct net_device *dev)
2175 {
2176 return netdev2pinfo(dev)->port_id;
2177 }
2178 EXPORT_SYMBOL(cxgb4_port_idx);
2179
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)2180 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2181 struct tp_tcp_stats *v6)
2182 {
2183 struct adapter *adap = pci_get_drvdata(pdev);
2184
2185 spin_lock(&adap->stats_lock);
2186 t4_tp_get_tcp_stats(adap, v4, v6, false);
2187 spin_unlock(&adap->stats_lock);
2188 }
2189 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2190
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)2191 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2192 const unsigned int *pgsz_order)
2193 {
2194 struct adapter *adap = netdev2adap(dev);
2195
2196 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2197 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2198 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2199 HPZ3_V(pgsz_order[3]));
2200 }
2201 EXPORT_SYMBOL(cxgb4_iscsi_init);
2202
cxgb4_flush_eq_cache(struct net_device * dev)2203 int cxgb4_flush_eq_cache(struct net_device *dev)
2204 {
2205 struct adapter *adap = netdev2adap(dev);
2206
2207 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2208 }
2209 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2210
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)2211 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2212 {
2213 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2214 __be64 indices;
2215 int ret;
2216
2217 spin_lock(&adap->win0_lock);
2218 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2219 sizeof(indices), (__be32 *)&indices,
2220 T4_MEMORY_READ);
2221 spin_unlock(&adap->win0_lock);
2222 if (!ret) {
2223 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2224 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2225 }
2226 return ret;
2227 }
2228
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)2229 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2230 u16 size)
2231 {
2232 struct adapter *adap = netdev2adap(dev);
2233 u16 hw_pidx, hw_cidx;
2234 int ret;
2235
2236 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2237 if (ret)
2238 goto out;
2239
2240 if (pidx != hw_pidx) {
2241 u16 delta;
2242 u32 val;
2243
2244 if (pidx >= hw_pidx)
2245 delta = pidx - hw_pidx;
2246 else
2247 delta = size - hw_pidx + pidx;
2248
2249 if (is_t4(adap->params.chip))
2250 val = PIDX_V(delta);
2251 else
2252 val = PIDX_T5_V(delta);
2253 wmb();
2254 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2255 QID_V(qid) | val);
2256 }
2257 out:
2258 return ret;
2259 }
2260 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2261
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)2262 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2263 {
2264 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2265 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2266 u32 offset, memtype, memaddr;
2267 struct adapter *adap;
2268 u32 hma_size = 0;
2269 int ret;
2270
2271 adap = netdev2adap(dev);
2272
2273 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2274
2275 /* Figure out where the offset lands in the Memory Type/Address scheme.
2276 * This code assumes that the memory is laid out starting at offset 0
2277 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2278 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2279 * MC0, and some have both MC0 and MC1.
2280 */
2281 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2282 edc0_size = EDRAM0_SIZE_G(size) << 20;
2283 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2284 edc1_size = EDRAM1_SIZE_G(size) << 20;
2285 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2286 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2287
2288 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2289 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2290 hma_size = EXT_MEM1_SIZE_G(size) << 20;
2291 }
2292 edc0_end = edc0_size;
2293 edc1_end = edc0_end + edc1_size;
2294 mc0_end = edc1_end + mc0_size;
2295
2296 if (offset < edc0_end) {
2297 memtype = MEM_EDC0;
2298 memaddr = offset;
2299 } else if (offset < edc1_end) {
2300 memtype = MEM_EDC1;
2301 memaddr = offset - edc0_end;
2302 } else {
2303 if (hma_size && (offset < (edc1_end + hma_size))) {
2304 memtype = MEM_HMA;
2305 memaddr = offset - edc1_end;
2306 } else if (offset < mc0_end) {
2307 memtype = MEM_MC0;
2308 memaddr = offset - edc1_end;
2309 } else if (is_t5(adap->params.chip)) {
2310 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2311 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2312 mc1_end = mc0_end + mc1_size;
2313 if (offset < mc1_end) {
2314 memtype = MEM_MC1;
2315 memaddr = offset - mc0_end;
2316 } else {
2317 /* offset beyond the end of any memory */
2318 goto err;
2319 }
2320 } else {
2321 /* T4/T6 only has a single memory channel */
2322 goto err;
2323 }
2324 }
2325
2326 spin_lock(&adap->win0_lock);
2327 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2328 spin_unlock(&adap->win0_lock);
2329 return ret;
2330
2331 err:
2332 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2333 stag, offset);
2334 return -EINVAL;
2335 }
2336 EXPORT_SYMBOL(cxgb4_read_tpte);
2337
cxgb4_read_sge_timestamp(struct net_device * dev)2338 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2339 {
2340 u32 hi, lo;
2341 struct adapter *adap;
2342
2343 adap = netdev2adap(dev);
2344 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2345 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2346
2347 return ((u64)hi << 32) | (u64)lo;
2348 }
2349 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2350
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)2351 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2352 unsigned int qid,
2353 enum cxgb4_bar2_qtype qtype,
2354 int user,
2355 u64 *pbar2_qoffset,
2356 unsigned int *pbar2_qid)
2357 {
2358 return t4_bar2_sge_qregs(netdev2adap(dev),
2359 qid,
2360 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2361 ? T4_BAR2_QTYPE_EGRESS
2362 : T4_BAR2_QTYPE_INGRESS),
2363 user,
2364 pbar2_qoffset,
2365 pbar2_qid);
2366 }
2367 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2368
2369 static struct pci_driver cxgb4_driver;
2370
check_neigh_update(struct neighbour * neigh)2371 static void check_neigh_update(struct neighbour *neigh)
2372 {
2373 const struct device *parent;
2374 const struct net_device *netdev = neigh->dev;
2375
2376 if (is_vlan_dev(netdev))
2377 netdev = vlan_dev_real_dev(netdev);
2378 parent = netdev->dev.parent;
2379 if (parent && parent->driver == &cxgb4_driver.driver)
2380 t4_l2t_update(dev_get_drvdata(parent), neigh);
2381 }
2382
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)2383 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2384 void *data)
2385 {
2386 switch (event) {
2387 case NETEVENT_NEIGH_UPDATE:
2388 check_neigh_update(data);
2389 break;
2390 case NETEVENT_REDIRECT:
2391 default:
2392 break;
2393 }
2394 return 0;
2395 }
2396
2397 static bool netevent_registered;
2398 static struct notifier_block cxgb4_netevent_nb = {
2399 .notifier_call = netevent_cb
2400 };
2401
drain_db_fifo(struct adapter * adap,int usecs)2402 static void drain_db_fifo(struct adapter *adap, int usecs)
2403 {
2404 u32 v1, v2, lp_count, hp_count;
2405
2406 do {
2407 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2408 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2409 if (is_t4(adap->params.chip)) {
2410 lp_count = LP_COUNT_G(v1);
2411 hp_count = HP_COUNT_G(v1);
2412 } else {
2413 lp_count = LP_COUNT_T5_G(v1);
2414 hp_count = HP_COUNT_T5_G(v2);
2415 }
2416
2417 if (lp_count == 0 && hp_count == 0)
2418 break;
2419 set_current_state(TASK_UNINTERRUPTIBLE);
2420 schedule_timeout(usecs_to_jiffies(usecs));
2421 } while (1);
2422 }
2423
disable_txq_db(struct sge_txq * q)2424 static void disable_txq_db(struct sge_txq *q)
2425 {
2426 unsigned long flags;
2427
2428 spin_lock_irqsave(&q->db_lock, flags);
2429 q->db_disabled = 1;
2430 spin_unlock_irqrestore(&q->db_lock, flags);
2431 }
2432
enable_txq_db(struct adapter * adap,struct sge_txq * q)2433 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2434 {
2435 spin_lock_irq(&q->db_lock);
2436 if (q->db_pidx_inc) {
2437 /* Make sure that all writes to the TX descriptors
2438 * are committed before we tell HW about them.
2439 */
2440 wmb();
2441 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2442 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2443 q->db_pidx_inc = 0;
2444 }
2445 q->db_disabled = 0;
2446 spin_unlock_irq(&q->db_lock);
2447 }
2448
disable_dbs(struct adapter * adap)2449 static void disable_dbs(struct adapter *adap)
2450 {
2451 int i;
2452
2453 for_each_ethrxq(&adap->sge, i)
2454 disable_txq_db(&adap->sge.ethtxq[i].q);
2455 if (is_offload(adap)) {
2456 struct sge_uld_txq_info *txq_info =
2457 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2458
2459 if (txq_info) {
2460 for_each_ofldtxq(&adap->sge, i) {
2461 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2462
2463 disable_txq_db(&txq->q);
2464 }
2465 }
2466 }
2467 for_each_port(adap, i)
2468 disable_txq_db(&adap->sge.ctrlq[i].q);
2469 }
2470
enable_dbs(struct adapter * adap)2471 static void enable_dbs(struct adapter *adap)
2472 {
2473 int i;
2474
2475 for_each_ethrxq(&adap->sge, i)
2476 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2477 if (is_offload(adap)) {
2478 struct sge_uld_txq_info *txq_info =
2479 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2480
2481 if (txq_info) {
2482 for_each_ofldtxq(&adap->sge, i) {
2483 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2484
2485 enable_txq_db(adap, &txq->q);
2486 }
2487 }
2488 }
2489 for_each_port(adap, i)
2490 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2491 }
2492
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)2493 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2494 {
2495 enum cxgb4_uld type = CXGB4_ULD_RDMA;
2496
2497 if (adap->uld && adap->uld[type].handle)
2498 adap->uld[type].control(adap->uld[type].handle, cmd);
2499 }
2500
process_db_full(struct work_struct * work)2501 static void process_db_full(struct work_struct *work)
2502 {
2503 struct adapter *adap;
2504
2505 adap = container_of(work, struct adapter, db_full_task);
2506
2507 drain_db_fifo(adap, dbfifo_drain_delay);
2508 enable_dbs(adap);
2509 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2510 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2511 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2512 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2513 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2514 else
2515 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2516 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2517 }
2518
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2519 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2520 {
2521 u16 hw_pidx, hw_cidx;
2522 int ret;
2523
2524 spin_lock_irq(&q->db_lock);
2525 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2526 if (ret)
2527 goto out;
2528 if (q->db_pidx != hw_pidx) {
2529 u16 delta;
2530 u32 val;
2531
2532 if (q->db_pidx >= hw_pidx)
2533 delta = q->db_pidx - hw_pidx;
2534 else
2535 delta = q->size - hw_pidx + q->db_pidx;
2536
2537 if (is_t4(adap->params.chip))
2538 val = PIDX_V(delta);
2539 else
2540 val = PIDX_T5_V(delta);
2541 wmb();
2542 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2543 QID_V(q->cntxt_id) | val);
2544 }
2545 out:
2546 q->db_disabled = 0;
2547 q->db_pidx_inc = 0;
2548 spin_unlock_irq(&q->db_lock);
2549 if (ret)
2550 CH_WARN(adap, "DB drop recovery failed.\n");
2551 }
2552
recover_all_queues(struct adapter * adap)2553 static void recover_all_queues(struct adapter *adap)
2554 {
2555 int i;
2556
2557 for_each_ethrxq(&adap->sge, i)
2558 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2559 if (is_offload(adap)) {
2560 struct sge_uld_txq_info *txq_info =
2561 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2562 if (txq_info) {
2563 for_each_ofldtxq(&adap->sge, i) {
2564 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2565
2566 sync_txq_pidx(adap, &txq->q);
2567 }
2568 }
2569 }
2570 for_each_port(adap, i)
2571 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2572 }
2573
process_db_drop(struct work_struct * work)2574 static void process_db_drop(struct work_struct *work)
2575 {
2576 struct adapter *adap;
2577
2578 adap = container_of(work, struct adapter, db_drop_task);
2579
2580 if (is_t4(adap->params.chip)) {
2581 drain_db_fifo(adap, dbfifo_drain_delay);
2582 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2583 drain_db_fifo(adap, dbfifo_drain_delay);
2584 recover_all_queues(adap);
2585 drain_db_fifo(adap, dbfifo_drain_delay);
2586 enable_dbs(adap);
2587 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2588 } else if (is_t5(adap->params.chip)) {
2589 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2590 u16 qid = (dropped_db >> 15) & 0x1ffff;
2591 u16 pidx_inc = dropped_db & 0x1fff;
2592 u64 bar2_qoffset;
2593 unsigned int bar2_qid;
2594 int ret;
2595
2596 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2597 0, &bar2_qoffset, &bar2_qid);
2598 if (ret)
2599 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2600 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2601 else
2602 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2603 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2604
2605 /* Re-enable BAR2 WC */
2606 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2607 }
2608
2609 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2610 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2611 }
2612
t4_db_full(struct adapter * adap)2613 void t4_db_full(struct adapter *adap)
2614 {
2615 if (is_t4(adap->params.chip)) {
2616 disable_dbs(adap);
2617 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2618 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2619 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2620 queue_work(adap->workq, &adap->db_full_task);
2621 }
2622 }
2623
t4_db_dropped(struct adapter * adap)2624 void t4_db_dropped(struct adapter *adap)
2625 {
2626 if (is_t4(adap->params.chip)) {
2627 disable_dbs(adap);
2628 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2629 }
2630 queue_work(adap->workq, &adap->db_drop_task);
2631 }
2632
t4_register_netevent_notifier(void)2633 void t4_register_netevent_notifier(void)
2634 {
2635 if (!netevent_registered) {
2636 register_netevent_notifier(&cxgb4_netevent_nb);
2637 netevent_registered = true;
2638 }
2639 }
2640
detach_ulds(struct adapter * adap)2641 static void detach_ulds(struct adapter *adap)
2642 {
2643 unsigned int i;
2644
2645 if (!is_uld(adap))
2646 return;
2647
2648 mutex_lock(&uld_mutex);
2649 list_del(&adap->list_node);
2650
2651 for (i = 0; i < CXGB4_ULD_MAX; i++)
2652 if (adap->uld && adap->uld[i].handle)
2653 adap->uld[i].state_change(adap->uld[i].handle,
2654 CXGB4_STATE_DETACH);
2655
2656 if (netevent_registered && list_empty(&adapter_list)) {
2657 unregister_netevent_notifier(&cxgb4_netevent_nb);
2658 netevent_registered = false;
2659 }
2660 mutex_unlock(&uld_mutex);
2661 }
2662
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2663 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2664 {
2665 unsigned int i;
2666
2667 mutex_lock(&uld_mutex);
2668 for (i = 0; i < CXGB4_ULD_MAX; i++)
2669 if (adap->uld && adap->uld[i].handle)
2670 adap->uld[i].state_change(adap->uld[i].handle,
2671 new_state);
2672 mutex_unlock(&uld_mutex);
2673 }
2674
2675 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2676 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2677 unsigned long event, void *data)
2678 {
2679 struct inet6_ifaddr *ifa = data;
2680 struct net_device *event_dev = ifa->idev->dev;
2681 const struct device *parent = NULL;
2682 #if IS_ENABLED(CONFIG_BONDING)
2683 struct adapter *adap;
2684 #endif
2685 if (is_vlan_dev(event_dev))
2686 event_dev = vlan_dev_real_dev(event_dev);
2687 #if IS_ENABLED(CONFIG_BONDING)
2688 if (event_dev->flags & IFF_MASTER) {
2689 list_for_each_entry(adap, &adapter_list, list_node) {
2690 switch (event) {
2691 case NETDEV_UP:
2692 cxgb4_clip_get(adap->port[0],
2693 (const u32 *)ifa, 1);
2694 break;
2695 case NETDEV_DOWN:
2696 cxgb4_clip_release(adap->port[0],
2697 (const u32 *)ifa, 1);
2698 break;
2699 default:
2700 break;
2701 }
2702 }
2703 return NOTIFY_OK;
2704 }
2705 #endif
2706
2707 if (event_dev)
2708 parent = event_dev->dev.parent;
2709
2710 if (parent && parent->driver == &cxgb4_driver.driver) {
2711 switch (event) {
2712 case NETDEV_UP:
2713 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2714 break;
2715 case NETDEV_DOWN:
2716 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2717 break;
2718 default:
2719 break;
2720 }
2721 }
2722 return NOTIFY_OK;
2723 }
2724
2725 static bool inet6addr_registered;
2726 static struct notifier_block cxgb4_inet6addr_notifier = {
2727 .notifier_call = cxgb4_inet6addr_handler
2728 };
2729
update_clip(const struct adapter * adap)2730 static void update_clip(const struct adapter *adap)
2731 {
2732 int i;
2733 struct net_device *dev;
2734 int ret;
2735
2736 rcu_read_lock();
2737
2738 for (i = 0; i < MAX_NPORTS; i++) {
2739 dev = adap->port[i];
2740 ret = 0;
2741
2742 if (dev)
2743 ret = cxgb4_update_root_dev_clip(dev);
2744
2745 if (ret < 0)
2746 break;
2747 }
2748 rcu_read_unlock();
2749 }
2750 #endif /* IS_ENABLED(CONFIG_IPV6) */
2751
2752 /**
2753 * cxgb_up - enable the adapter
2754 * @adap: adapter being enabled
2755 *
2756 * Called when the first port is enabled, this function performs the
2757 * actions necessary to make an adapter operational, such as completing
2758 * the initialization of HW modules, and enabling interrupts.
2759 *
2760 * Must be called with the rtnl lock held.
2761 */
cxgb_up(struct adapter * adap)2762 static int cxgb_up(struct adapter *adap)
2763 {
2764 struct sge *s = &adap->sge;
2765 int err;
2766
2767 mutex_lock(&uld_mutex);
2768 err = setup_sge_queues(adap);
2769 if (err)
2770 goto rel_lock;
2771 err = setup_rss(adap);
2772 if (err)
2773 goto freeq;
2774
2775 if (adap->flags & CXGB4_USING_MSIX) {
2776 if (s->nd_msix_idx < 0) {
2777 err = -ENOMEM;
2778 goto irq_err;
2779 }
2780
2781 err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2782 t4_nondata_intr, 0,
2783 adap->msix_info[s->nd_msix_idx].desc, adap);
2784 if (err)
2785 goto irq_err;
2786
2787 err = request_msix_queue_irqs(adap);
2788 if (err)
2789 goto irq_err_free_nd_msix;
2790 } else {
2791 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2792 (adap->flags & CXGB4_USING_MSI) ? 0
2793 : IRQF_SHARED,
2794 adap->port[0]->name, adap);
2795 if (err)
2796 goto irq_err;
2797 }
2798
2799 enable_rx(adap);
2800 t4_sge_start(adap);
2801 t4_intr_enable(adap);
2802 adap->flags |= CXGB4_FULL_INIT_DONE;
2803 mutex_unlock(&uld_mutex);
2804
2805 notify_ulds(adap, CXGB4_STATE_UP);
2806 #if IS_ENABLED(CONFIG_IPV6)
2807 update_clip(adap);
2808 #endif
2809 return err;
2810
2811 irq_err_free_nd_msix:
2812 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2813 irq_err:
2814 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2815 freeq:
2816 t4_free_sge_resources(adap);
2817 rel_lock:
2818 mutex_unlock(&uld_mutex);
2819 return err;
2820 }
2821
cxgb_down(struct adapter * adapter)2822 static void cxgb_down(struct adapter *adapter)
2823 {
2824 cancel_work_sync(&adapter->tid_release_task);
2825 cancel_work_sync(&adapter->db_full_task);
2826 cancel_work_sync(&adapter->db_drop_task);
2827 adapter->tid_release_task_busy = false;
2828 adapter->tid_release_head = NULL;
2829
2830 t4_sge_stop(adapter);
2831 t4_free_sge_resources(adapter);
2832
2833 adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2834 }
2835
2836 /*
2837 * net_device operations
2838 */
cxgb_open(struct net_device * dev)2839 static int cxgb_open(struct net_device *dev)
2840 {
2841 struct port_info *pi = netdev_priv(dev);
2842 struct adapter *adapter = pi->adapter;
2843 int err;
2844
2845 netif_carrier_off(dev);
2846
2847 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2848 err = cxgb_up(adapter);
2849 if (err < 0)
2850 return err;
2851 }
2852
2853 /* It's possible that the basic port information could have
2854 * changed since we first read it.
2855 */
2856 err = t4_update_port_info(pi);
2857 if (err < 0)
2858 return err;
2859
2860 err = link_start(dev);
2861 if (err)
2862 return err;
2863
2864 if (pi->nmirrorqsets) {
2865 mutex_lock(&pi->vi_mirror_mutex);
2866 err = cxgb4_port_mirror_alloc_queues(dev);
2867 if (err)
2868 goto out_unlock;
2869
2870 err = cxgb4_port_mirror_start(dev);
2871 if (err)
2872 goto out_free_queues;
2873 mutex_unlock(&pi->vi_mirror_mutex);
2874 }
2875
2876 netif_tx_start_all_queues(dev);
2877 return 0;
2878
2879 out_free_queues:
2880 cxgb4_port_mirror_free_queues(dev);
2881
2882 out_unlock:
2883 mutex_unlock(&pi->vi_mirror_mutex);
2884 return err;
2885 }
2886
cxgb_close(struct net_device * dev)2887 static int cxgb_close(struct net_device *dev)
2888 {
2889 struct port_info *pi = netdev_priv(dev);
2890 struct adapter *adapter = pi->adapter;
2891 int ret;
2892
2893 netif_tx_stop_all_queues(dev);
2894 netif_carrier_off(dev);
2895 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2896 false, false, false);
2897 #ifdef CONFIG_CHELSIO_T4_DCB
2898 cxgb4_dcb_reset(dev);
2899 dcb_tx_queue_prio_enable(dev, false);
2900 #endif
2901 if (ret)
2902 return ret;
2903
2904 if (pi->nmirrorqsets) {
2905 mutex_lock(&pi->vi_mirror_mutex);
2906 cxgb4_port_mirror_stop(dev);
2907 cxgb4_port_mirror_free_queues(dev);
2908 mutex_unlock(&pi->vi_mirror_mutex);
2909 }
2910
2911 return 0;
2912 }
2913
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2914 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2915 __be32 sip, __be16 sport, __be16 vlan,
2916 unsigned int queue, unsigned char port, unsigned char mask)
2917 {
2918 int ret;
2919 struct filter_entry *f;
2920 struct adapter *adap;
2921 int i;
2922 u8 *val;
2923
2924 adap = netdev2adap(dev);
2925
2926 /* Adjust stid to correct filter index */
2927 stid -= adap->tids.sftid_base;
2928 stid += adap->tids.nftids;
2929
2930 /* Check to make sure the filter requested is writable ...
2931 */
2932 f = &adap->tids.ftid_tab[stid];
2933 ret = writable_filter(f);
2934 if (ret)
2935 return ret;
2936
2937 /* Clear out any old resources being used by the filter before
2938 * we start constructing the new filter.
2939 */
2940 if (f->valid)
2941 clear_filter(adap, f);
2942
2943 /* Clear out filter specifications */
2944 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2945 f->fs.val.lport = be16_to_cpu(sport);
2946 f->fs.mask.lport = ~0;
2947 val = (u8 *)&sip;
2948 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2949 for (i = 0; i < 4; i++) {
2950 f->fs.val.lip[i] = val[i];
2951 f->fs.mask.lip[i] = ~0;
2952 }
2953 if (adap->params.tp.vlan_pri_map & PORT_F) {
2954 f->fs.val.iport = port;
2955 f->fs.mask.iport = mask;
2956 }
2957 }
2958
2959 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2960 f->fs.val.proto = IPPROTO_TCP;
2961 f->fs.mask.proto = ~0;
2962 }
2963
2964 f->fs.dirsteer = 1;
2965 f->fs.iq = queue;
2966 /* Mark filter as locked */
2967 f->locked = 1;
2968 f->fs.rpttid = 1;
2969
2970 /* Save the actual tid. We need this to get the corresponding
2971 * filter entry structure in filter_rpl.
2972 */
2973 f->tid = stid + adap->tids.ftid_base;
2974 ret = set_filter_wr(adap, stid);
2975 if (ret) {
2976 clear_filter(adap, f);
2977 return ret;
2978 }
2979
2980 return 0;
2981 }
2982 EXPORT_SYMBOL(cxgb4_create_server_filter);
2983
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2984 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2985 unsigned int queue, bool ipv6)
2986 {
2987 struct filter_entry *f;
2988 struct adapter *adap;
2989
2990 adap = netdev2adap(dev);
2991
2992 /* Adjust stid to correct filter index */
2993 stid -= adap->tids.sftid_base;
2994 stid += adap->tids.nftids;
2995
2996 f = &adap->tids.ftid_tab[stid];
2997 /* Unlock the filter */
2998 f->locked = 0;
2999
3000 return delete_filter(adap, stid);
3001 }
3002 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3003
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)3004 static void cxgb_get_stats(struct net_device *dev,
3005 struct rtnl_link_stats64 *ns)
3006 {
3007 struct port_stats stats;
3008 struct port_info *p = netdev_priv(dev);
3009 struct adapter *adapter = p->adapter;
3010
3011 /* Block retrieving statistics during EEH error
3012 * recovery. Otherwise, the recovery might fail
3013 * and the PCI device will be removed permanently
3014 */
3015 spin_lock(&adapter->stats_lock);
3016 if (!netif_device_present(dev)) {
3017 spin_unlock(&adapter->stats_lock);
3018 return;
3019 }
3020 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3021 &p->stats_base);
3022 spin_unlock(&adapter->stats_lock);
3023
3024 ns->tx_bytes = stats.tx_octets;
3025 ns->tx_packets = stats.tx_frames;
3026 ns->rx_bytes = stats.rx_octets;
3027 ns->rx_packets = stats.rx_frames;
3028 ns->multicast = stats.rx_mcast_frames;
3029
3030 /* detailed rx_errors */
3031 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3032 stats.rx_runt;
3033 ns->rx_over_errors = 0;
3034 ns->rx_crc_errors = stats.rx_fcs_err;
3035 ns->rx_frame_errors = stats.rx_symbol_err;
3036 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
3037 stats.rx_ovflow2 + stats.rx_ovflow3 +
3038 stats.rx_trunc0 + stats.rx_trunc1 +
3039 stats.rx_trunc2 + stats.rx_trunc3;
3040 ns->rx_missed_errors = 0;
3041
3042 /* detailed tx_errors */
3043 ns->tx_aborted_errors = 0;
3044 ns->tx_carrier_errors = 0;
3045 ns->tx_fifo_errors = 0;
3046 ns->tx_heartbeat_errors = 0;
3047 ns->tx_window_errors = 0;
3048
3049 ns->tx_errors = stats.tx_error_frames;
3050 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3051 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3052 }
3053
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)3054 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3055 {
3056 unsigned int mbox;
3057 int ret = 0, prtad, devad;
3058 struct port_info *pi = netdev_priv(dev);
3059 struct adapter *adapter = pi->adapter;
3060 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3061
3062 switch (cmd) {
3063 case SIOCGMIIPHY:
3064 if (pi->mdio_addr < 0)
3065 return -EOPNOTSUPP;
3066 data->phy_id = pi->mdio_addr;
3067 break;
3068 case SIOCGMIIREG:
3069 case SIOCSMIIREG:
3070 if (mdio_phy_id_is_c45(data->phy_id)) {
3071 prtad = mdio_phy_id_prtad(data->phy_id);
3072 devad = mdio_phy_id_devad(data->phy_id);
3073 } else if (data->phy_id < 32) {
3074 prtad = data->phy_id;
3075 devad = 0;
3076 data->reg_num &= 0x1f;
3077 } else
3078 return -EINVAL;
3079
3080 mbox = pi->adapter->pf;
3081 if (cmd == SIOCGMIIREG)
3082 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3083 data->reg_num, &data->val_out);
3084 else
3085 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3086 data->reg_num, data->val_in);
3087 break;
3088 case SIOCGHWTSTAMP:
3089 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3090 sizeof(pi->tstamp_config)) ?
3091 -EFAULT : 0;
3092 case SIOCSHWTSTAMP:
3093 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3094 sizeof(pi->tstamp_config)))
3095 return -EFAULT;
3096
3097 if (!is_t4(adapter->params.chip)) {
3098 switch (pi->tstamp_config.tx_type) {
3099 case HWTSTAMP_TX_OFF:
3100 case HWTSTAMP_TX_ON:
3101 break;
3102 default:
3103 return -ERANGE;
3104 }
3105
3106 switch (pi->tstamp_config.rx_filter) {
3107 case HWTSTAMP_FILTER_NONE:
3108 pi->rxtstamp = false;
3109 break;
3110 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3111 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3112 cxgb4_ptprx_timestamping(pi, pi->port_id,
3113 PTP_TS_L4);
3114 break;
3115 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3116 cxgb4_ptprx_timestamping(pi, pi->port_id,
3117 PTP_TS_L2_L4);
3118 break;
3119 case HWTSTAMP_FILTER_ALL:
3120 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3121 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3122 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3123 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3124 pi->rxtstamp = true;
3125 break;
3126 default:
3127 pi->tstamp_config.rx_filter =
3128 HWTSTAMP_FILTER_NONE;
3129 return -ERANGE;
3130 }
3131
3132 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3133 (pi->tstamp_config.rx_filter ==
3134 HWTSTAMP_FILTER_NONE)) {
3135 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3136 pi->ptp_enable = false;
3137 }
3138
3139 if (pi->tstamp_config.rx_filter !=
3140 HWTSTAMP_FILTER_NONE) {
3141 if (cxgb4_ptp_redirect_rx_packet(adapter,
3142 pi) >= 0)
3143 pi->ptp_enable = true;
3144 }
3145 } else {
3146 /* For T4 Adapters */
3147 switch (pi->tstamp_config.rx_filter) {
3148 case HWTSTAMP_FILTER_NONE:
3149 pi->rxtstamp = false;
3150 break;
3151 case HWTSTAMP_FILTER_ALL:
3152 pi->rxtstamp = true;
3153 break;
3154 default:
3155 pi->tstamp_config.rx_filter =
3156 HWTSTAMP_FILTER_NONE;
3157 return -ERANGE;
3158 }
3159 }
3160 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3161 sizeof(pi->tstamp_config)) ?
3162 -EFAULT : 0;
3163 default:
3164 return -EOPNOTSUPP;
3165 }
3166 return ret;
3167 }
3168
cxgb_set_rxmode(struct net_device * dev)3169 static void cxgb_set_rxmode(struct net_device *dev)
3170 {
3171 /* unfortunately we can't return errors to the stack */
3172 set_rxmode(dev, -1, false);
3173 }
3174
cxgb_change_mtu(struct net_device * dev,int new_mtu)3175 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3176 {
3177 struct port_info *pi = netdev_priv(dev);
3178 int ret;
3179
3180 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3181 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3182 if (!ret)
3183 WRITE_ONCE(dev->mtu, new_mtu);
3184 return ret;
3185 }
3186
3187 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)3188 static int cxgb4_mgmt_open(struct net_device *dev)
3189 {
3190 /* Turn carrier off since we don't have to transmit anything on this
3191 * interface.
3192 */
3193 netif_carrier_off(dev);
3194 return 0;
3195 }
3196
3197 /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)3198 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3199 {
3200 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3201 unsigned int i, vf, nvfs;
3202 u16 a, b;
3203 int err;
3204 u8 *na;
3205
3206 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3207 if (err)
3208 return;
3209
3210 na = adap->params.vpd.na;
3211 for (i = 0; i < ETH_ALEN; i++)
3212 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3213 hex2val(na[2 * i + 1]));
3214
3215 a = (hw_addr[0] << 8) | hw_addr[1];
3216 b = (hw_addr[1] << 8) | hw_addr[2];
3217 a ^= b;
3218 a |= 0x0200; /* locally assigned Ethernet MAC address */
3219 a &= ~0x0100; /* not a multicast Ethernet MAC address */
3220 macaddr[0] = a >> 8;
3221 macaddr[1] = a & 0xff;
3222
3223 for (i = 2; i < 5; i++)
3224 macaddr[i] = hw_addr[i + 1];
3225
3226 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3227 vf < nvfs; vf++) {
3228 macaddr[5] = adap->pf * nvfs + vf;
3229 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3230 }
3231 }
3232
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)3233 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3234 {
3235 struct port_info *pi = netdev_priv(dev);
3236 struct adapter *adap = pi->adapter;
3237 int ret;
3238
3239 /* verify MAC addr is valid */
3240 if (!is_valid_ether_addr(mac)) {
3241 dev_err(pi->adapter->pdev_dev,
3242 "Invalid Ethernet address %pM for VF %d\n",
3243 mac, vf);
3244 return -EINVAL;
3245 }
3246
3247 dev_info(pi->adapter->pdev_dev,
3248 "Setting MAC %pM on VF %d\n", mac, vf);
3249 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3250 if (!ret)
3251 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3252 return ret;
3253 }
3254
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)3255 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3256 int vf, struct ifla_vf_info *ivi)
3257 {
3258 struct port_info *pi = netdev_priv(dev);
3259 struct adapter *adap = pi->adapter;
3260 struct vf_info *vfinfo;
3261
3262 if (vf >= adap->num_vfs)
3263 return -EINVAL;
3264 vfinfo = &adap->vfinfo[vf];
3265
3266 ivi->vf = vf;
3267 ivi->max_tx_rate = vfinfo->tx_rate;
3268 ivi->min_tx_rate = 0;
3269 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3270 ivi->vlan = vfinfo->vlan;
3271 ivi->linkstate = vfinfo->link_state;
3272 return 0;
3273 }
3274
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)3275 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3276 struct netdev_phys_item_id *ppid)
3277 {
3278 struct port_info *pi = netdev_priv(dev);
3279 unsigned int phy_port_id;
3280
3281 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3282 ppid->id_len = sizeof(phy_port_id);
3283 memcpy(ppid->id, &phy_port_id, ppid->id_len);
3284 return 0;
3285 }
3286
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)3287 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3288 int min_tx_rate, int max_tx_rate)
3289 {
3290 struct port_info *pi = netdev_priv(dev);
3291 struct adapter *adap = pi->adapter;
3292 unsigned int link_ok, speed, mtu;
3293 u32 fw_pfvf, fw_class;
3294 int class_id = vf;
3295 int ret;
3296 u16 pktsize;
3297
3298 if (vf >= adap->num_vfs)
3299 return -EINVAL;
3300
3301 if (min_tx_rate) {
3302 dev_err(adap->pdev_dev,
3303 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3304 min_tx_rate, vf);
3305 return -EINVAL;
3306 }
3307
3308 if (max_tx_rate == 0) {
3309 /* unbind VF to to any Traffic Class */
3310 fw_pfvf =
3311 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3312 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3313 fw_class = 0xffffffff;
3314 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3315 &fw_pfvf, &fw_class);
3316 if (ret) {
3317 dev_err(adap->pdev_dev,
3318 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3319 ret, adap->pf, vf);
3320 return -EINVAL;
3321 }
3322 dev_info(adap->pdev_dev,
3323 "PF %d VF %d is unbound from TX Rate Limiting\n",
3324 adap->pf, vf);
3325 adap->vfinfo[vf].tx_rate = 0;
3326 return 0;
3327 }
3328
3329 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3330 if (ret != FW_SUCCESS) {
3331 dev_err(adap->pdev_dev,
3332 "Failed to get link information for VF %d\n", vf);
3333 return -EINVAL;
3334 }
3335
3336 if (!link_ok) {
3337 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3338 return -EINVAL;
3339 }
3340
3341 if (max_tx_rate > speed) {
3342 dev_err(adap->pdev_dev,
3343 "Max tx rate %d for VF %d can't be > link-speed %u",
3344 max_tx_rate, vf, speed);
3345 return -EINVAL;
3346 }
3347
3348 pktsize = mtu;
3349 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3350 pktsize = pktsize - sizeof(struct ethhdr) - 4;
3351 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3352 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3353 /* configure Traffic Class for rate-limiting */
3354 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3355 SCHED_CLASS_LEVEL_CL_RL,
3356 SCHED_CLASS_MODE_CLASS,
3357 SCHED_CLASS_RATEUNIT_BITS,
3358 SCHED_CLASS_RATEMODE_ABS,
3359 pi->tx_chan, class_id, 0,
3360 max_tx_rate * 1000, 0, pktsize, 0);
3361 if (ret) {
3362 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3363 ret);
3364 return -EINVAL;
3365 }
3366 dev_info(adap->pdev_dev,
3367 "Class %d with MSS %u configured with rate %u\n",
3368 class_id, pktsize, max_tx_rate);
3369
3370 /* bind VF to configured Traffic Class */
3371 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3372 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3373 fw_class = class_id;
3374 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3375 &fw_class);
3376 if (ret) {
3377 dev_err(adap->pdev_dev,
3378 "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3379 ret, adap->pf, vf, class_id);
3380 return -EINVAL;
3381 }
3382 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3383 adap->pf, vf, class_id);
3384 adap->vfinfo[vf].tx_rate = max_tx_rate;
3385 return 0;
3386 }
3387
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)3388 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3389 u16 vlan, u8 qos, __be16 vlan_proto)
3390 {
3391 struct port_info *pi = netdev_priv(dev);
3392 struct adapter *adap = pi->adapter;
3393 int ret;
3394
3395 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3396 return -EINVAL;
3397
3398 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3399 return -EPROTONOSUPPORT;
3400
3401 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3402 if (!ret) {
3403 adap->vfinfo[vf].vlan = vlan;
3404 return 0;
3405 }
3406
3407 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3408 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3409 return ret;
3410 }
3411
cxgb4_mgmt_set_vf_link_state(struct net_device * dev,int vf,int link)3412 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3413 int link)
3414 {
3415 struct port_info *pi = netdev_priv(dev);
3416 struct adapter *adap = pi->adapter;
3417 u32 param, val;
3418 int ret = 0;
3419
3420 if (vf >= adap->num_vfs)
3421 return -EINVAL;
3422
3423 switch (link) {
3424 case IFLA_VF_LINK_STATE_AUTO:
3425 val = FW_VF_LINK_STATE_AUTO;
3426 break;
3427
3428 case IFLA_VF_LINK_STATE_ENABLE:
3429 val = FW_VF_LINK_STATE_ENABLE;
3430 break;
3431
3432 case IFLA_VF_LINK_STATE_DISABLE:
3433 val = FW_VF_LINK_STATE_DISABLE;
3434 break;
3435
3436 default:
3437 return -EINVAL;
3438 }
3439
3440 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3441 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3442 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3443 ¶m, &val);
3444 if (ret) {
3445 dev_err(adap->pdev_dev,
3446 "Error %d in setting PF %d VF %d link state\n",
3447 ret, adap->pf, vf);
3448 return -EINVAL;
3449 }
3450
3451 adap->vfinfo[vf].link_state = link;
3452 return ret;
3453 }
3454 #endif /* CONFIG_PCI_IOV */
3455
cxgb_set_mac_addr(struct net_device * dev,void * p)3456 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3457 {
3458 int ret;
3459 struct sockaddr *addr = p;
3460 struct port_info *pi = netdev_priv(dev);
3461
3462 if (!is_valid_ether_addr(addr->sa_data))
3463 return -EADDRNOTAVAIL;
3464
3465 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3466 addr->sa_data, true, &pi->smt_idx);
3467 if (ret < 0)
3468 return ret;
3469
3470 eth_hw_addr_set(dev, addr->sa_data);
3471 return 0;
3472 }
3473
3474 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)3475 static void cxgb_netpoll(struct net_device *dev)
3476 {
3477 struct port_info *pi = netdev_priv(dev);
3478 struct adapter *adap = pi->adapter;
3479
3480 if (adap->flags & CXGB4_USING_MSIX) {
3481 int i;
3482 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3483
3484 for (i = pi->nqsets; i; i--, rx++)
3485 t4_sge_intr_msix(0, &rx->rspq);
3486 } else
3487 t4_intr_handler(adap)(0, adap);
3488 }
3489 #endif
3490
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)3491 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3492 {
3493 struct port_info *pi = netdev_priv(dev);
3494 struct adapter *adap = pi->adapter;
3495 struct ch_sched_queue qe = { 0 };
3496 struct ch_sched_params p = { 0 };
3497 struct sched_class *e;
3498 u32 req_rate;
3499 int err = 0;
3500
3501 if (!can_sched(dev))
3502 return -ENOTSUPP;
3503
3504 if (index < 0 || index > pi->nqsets - 1)
3505 return -EINVAL;
3506
3507 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3508 dev_err(adap->pdev_dev,
3509 "Failed to rate limit on queue %d. Link Down?\n",
3510 index);
3511 return -EINVAL;
3512 }
3513
3514 qe.queue = index;
3515 e = cxgb4_sched_queue_lookup(dev, &qe);
3516 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3517 dev_err(adap->pdev_dev,
3518 "Queue %u already bound to class %u of type: %u\n",
3519 index, e->idx, e->info.u.params.level);
3520 return -EBUSY;
3521 }
3522
3523 /* Convert from Mbps to Kbps */
3524 req_rate = rate * 1000;
3525
3526 /* Max rate is 100 Gbps */
3527 if (req_rate > SCHED_MAX_RATE_KBPS) {
3528 dev_err(adap->pdev_dev,
3529 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3530 rate, SCHED_MAX_RATE_KBPS / 1000);
3531 return -ERANGE;
3532 }
3533
3534 /* First unbind the queue from any existing class */
3535 memset(&qe, 0, sizeof(qe));
3536 qe.queue = index;
3537 qe.class = SCHED_CLS_NONE;
3538
3539 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3540 if (err) {
3541 dev_err(adap->pdev_dev,
3542 "Unbinding Queue %d on port %d fail. Err: %d\n",
3543 index, pi->port_id, err);
3544 return err;
3545 }
3546
3547 /* Queue already unbound */
3548 if (!req_rate)
3549 return 0;
3550
3551 /* Fetch any available unused or matching scheduling class */
3552 p.type = SCHED_CLASS_TYPE_PACKET;
3553 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
3554 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
3555 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3556 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3557 p.u.params.channel = pi->tx_chan;
3558 p.u.params.class = SCHED_CLS_NONE;
3559 p.u.params.minrate = 0;
3560 p.u.params.maxrate = req_rate;
3561 p.u.params.weight = 0;
3562 p.u.params.pktsize = dev->mtu;
3563
3564 e = cxgb4_sched_class_alloc(dev, &p);
3565 if (!e)
3566 return -ENOMEM;
3567
3568 /* Bind the queue to a scheduling class */
3569 memset(&qe, 0, sizeof(qe));
3570 qe.queue = index;
3571 qe.class = e->idx;
3572
3573 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3574 if (err)
3575 dev_err(adap->pdev_dev,
3576 "Queue rate limiting failed. Err: %d\n", err);
3577 return err;
3578 }
3579
cxgb_setup_tc_flower(struct net_device * dev,struct flow_cls_offload * cls_flower)3580 static int cxgb_setup_tc_flower(struct net_device *dev,
3581 struct flow_cls_offload *cls_flower)
3582 {
3583 switch (cls_flower->command) {
3584 case FLOW_CLS_REPLACE:
3585 return cxgb4_tc_flower_replace(dev, cls_flower);
3586 case FLOW_CLS_DESTROY:
3587 return cxgb4_tc_flower_destroy(dev, cls_flower);
3588 case FLOW_CLS_STATS:
3589 return cxgb4_tc_flower_stats(dev, cls_flower);
3590 default:
3591 return -EOPNOTSUPP;
3592 }
3593 }
3594
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)3595 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3596 struct tc_cls_u32_offload *cls_u32)
3597 {
3598 switch (cls_u32->command) {
3599 case TC_CLSU32_NEW_KNODE:
3600 case TC_CLSU32_REPLACE_KNODE:
3601 return cxgb4_config_knode(dev, cls_u32);
3602 case TC_CLSU32_DELETE_KNODE:
3603 return cxgb4_delete_knode(dev, cls_u32);
3604 default:
3605 return -EOPNOTSUPP;
3606 }
3607 }
3608
cxgb_setup_tc_matchall(struct net_device * dev,struct tc_cls_matchall_offload * cls_matchall,bool ingress)3609 static int cxgb_setup_tc_matchall(struct net_device *dev,
3610 struct tc_cls_matchall_offload *cls_matchall,
3611 bool ingress)
3612 {
3613 struct adapter *adap = netdev2adap(dev);
3614
3615 if (!adap->tc_matchall)
3616 return -ENOMEM;
3617
3618 switch (cls_matchall->command) {
3619 case TC_CLSMATCHALL_REPLACE:
3620 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3621 case TC_CLSMATCHALL_DESTROY:
3622 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3623 case TC_CLSMATCHALL_STATS:
3624 if (ingress)
3625 return cxgb4_tc_matchall_stats(dev, cls_matchall);
3626 break;
3627 default:
3628 break;
3629 }
3630
3631 return -EOPNOTSUPP;
3632 }
3633
cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3634 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3635 void *type_data, void *cb_priv)
3636 {
3637 struct net_device *dev = cb_priv;
3638 struct port_info *pi = netdev2pinfo(dev);
3639 struct adapter *adap = netdev2adap(dev);
3640
3641 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3642 dev_err(adap->pdev_dev,
3643 "Failed to setup tc on port %d. Link Down?\n",
3644 pi->port_id);
3645 return -EINVAL;
3646 }
3647
3648 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3649 return -EOPNOTSUPP;
3650
3651 switch (type) {
3652 case TC_SETUP_CLSU32:
3653 return cxgb_setup_tc_cls_u32(dev, type_data);
3654 case TC_SETUP_CLSFLOWER:
3655 return cxgb_setup_tc_flower(dev, type_data);
3656 case TC_SETUP_CLSMATCHALL:
3657 return cxgb_setup_tc_matchall(dev, type_data, true);
3658 default:
3659 return -EOPNOTSUPP;
3660 }
3661 }
3662
cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3663 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3664 void *type_data, void *cb_priv)
3665 {
3666 struct net_device *dev = cb_priv;
3667 struct port_info *pi = netdev2pinfo(dev);
3668 struct adapter *adap = netdev2adap(dev);
3669
3670 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3671 dev_err(adap->pdev_dev,
3672 "Failed to setup tc on port %d. Link Down?\n",
3673 pi->port_id);
3674 return -EINVAL;
3675 }
3676
3677 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3678 return -EOPNOTSUPP;
3679
3680 switch (type) {
3681 case TC_SETUP_CLSMATCHALL:
3682 return cxgb_setup_tc_matchall(dev, type_data, false);
3683 default:
3684 break;
3685 }
3686
3687 return -EOPNOTSUPP;
3688 }
3689
cxgb_setup_tc_mqprio(struct net_device * dev,struct tc_mqprio_qopt_offload * mqprio)3690 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3691 struct tc_mqprio_qopt_offload *mqprio)
3692 {
3693 struct adapter *adap = netdev2adap(dev);
3694
3695 if (!is_ethofld(adap) || !adap->tc_mqprio)
3696 return -ENOMEM;
3697
3698 return cxgb4_setup_tc_mqprio(dev, mqprio);
3699 }
3700
3701 static LIST_HEAD(cxgb_block_cb_list);
3702
cxgb_setup_tc_block(struct net_device * dev,struct flow_block_offload * f)3703 static int cxgb_setup_tc_block(struct net_device *dev,
3704 struct flow_block_offload *f)
3705 {
3706 struct port_info *pi = netdev_priv(dev);
3707 flow_setup_cb_t *cb;
3708 bool ingress_only;
3709
3710 pi->tc_block_shared = f->block_shared;
3711 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3712 cb = cxgb_setup_tc_block_egress_cb;
3713 ingress_only = false;
3714 } else {
3715 cb = cxgb_setup_tc_block_ingress_cb;
3716 ingress_only = true;
3717 }
3718
3719 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3720 cb, pi, dev, ingress_only);
3721 }
3722
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3723 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3724 void *type_data)
3725 {
3726 switch (type) {
3727 case TC_SETUP_QDISC_MQPRIO:
3728 return cxgb_setup_tc_mqprio(dev, type_data);
3729 case TC_SETUP_BLOCK:
3730 return cxgb_setup_tc_block(dev, type_data);
3731 default:
3732 return -EOPNOTSUPP;
3733 }
3734 }
3735
cxgb_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3736 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3737 unsigned int table, unsigned int entry,
3738 struct udp_tunnel_info *ti)
3739 {
3740 struct port_info *pi = netdev_priv(netdev);
3741 struct adapter *adapter = pi->adapter;
3742 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3743 int ret = 0, i;
3744
3745 switch (ti->type) {
3746 case UDP_TUNNEL_TYPE_VXLAN:
3747 adapter->vxlan_port = 0;
3748 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3749 break;
3750 case UDP_TUNNEL_TYPE_GENEVE:
3751 adapter->geneve_port = 0;
3752 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3753 break;
3754 default:
3755 return -EINVAL;
3756 }
3757
3758 /* Matchall mac entries can be deleted only after all tunnel ports
3759 * are brought down or removed.
3760 */
3761 if (!adapter->rawf_cnt)
3762 return 0;
3763 for_each_port(adapter, i) {
3764 pi = adap2pinfo(adapter, i);
3765 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3766 match_all_mac, match_all_mac,
3767 adapter->rawf_start + pi->port_id,
3768 1, pi->port_id, false);
3769 if (ret < 0) {
3770 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3771 i);
3772 return ret;
3773 }
3774 }
3775
3776 return 0;
3777 }
3778
cxgb_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3779 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3780 unsigned int table, unsigned int entry,
3781 struct udp_tunnel_info *ti)
3782 {
3783 struct port_info *pi = netdev_priv(netdev);
3784 struct adapter *adapter = pi->adapter;
3785 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3786 int i, ret;
3787
3788 switch (ti->type) {
3789 case UDP_TUNNEL_TYPE_VXLAN:
3790 adapter->vxlan_port = ti->port;
3791 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3792 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3793 break;
3794 case UDP_TUNNEL_TYPE_GENEVE:
3795 adapter->geneve_port = ti->port;
3796 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3797 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3798 break;
3799 default:
3800 return -EINVAL;
3801 }
3802
3803 /* Create a 'match all' mac filter entry for inner mac,
3804 * if raw mac interface is supported. Once the linux kernel provides
3805 * driver entry points for adding/deleting the inner mac addresses,
3806 * we will remove this 'match all' entry and fallback to adding
3807 * exact match filters.
3808 */
3809 for_each_port(adapter, i) {
3810 pi = adap2pinfo(adapter, i);
3811
3812 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3813 match_all_mac,
3814 match_all_mac,
3815 adapter->rawf_start + pi->port_id,
3816 1, pi->port_id, false);
3817 if (ret < 0) {
3818 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3819 be16_to_cpu(ti->port));
3820 return ret;
3821 }
3822 }
3823
3824 return 0;
3825 }
3826
3827 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3828 .set_port = cxgb_udp_tunnel_set_port,
3829 .unset_port = cxgb_udp_tunnel_unset_port,
3830 .tables = {
3831 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
3832 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3833 },
3834 };
3835
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3836 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3837 struct net_device *dev,
3838 netdev_features_t features)
3839 {
3840 struct port_info *pi = netdev_priv(dev);
3841 struct adapter *adapter = pi->adapter;
3842
3843 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3844 return features;
3845
3846 /* Check if hw supports offload for this packet */
3847 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3848 return features;
3849
3850 /* Offload is not supported for this encapsulated packet */
3851 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3852 }
3853
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3854 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3855 netdev_features_t features)
3856 {
3857 /* Disable GRO, if RX_CSUM is disabled */
3858 if (!(features & NETIF_F_RXCSUM))
3859 features &= ~NETIF_F_GRO;
3860
3861 return features;
3862 }
3863
3864 static const struct net_device_ops cxgb4_netdev_ops = {
3865 .ndo_open = cxgb_open,
3866 .ndo_stop = cxgb_close,
3867 .ndo_start_xmit = t4_start_xmit,
3868 .ndo_select_queue = cxgb_select_queue,
3869 .ndo_get_stats64 = cxgb_get_stats,
3870 .ndo_set_rx_mode = cxgb_set_rxmode,
3871 .ndo_set_mac_address = cxgb_set_mac_addr,
3872 .ndo_set_features = cxgb_set_features,
3873 .ndo_validate_addr = eth_validate_addr,
3874 .ndo_eth_ioctl = cxgb_ioctl,
3875 .ndo_change_mtu = cxgb_change_mtu,
3876 #ifdef CONFIG_NET_POLL_CONTROLLER
3877 .ndo_poll_controller = cxgb_netpoll,
3878 #endif
3879 #ifdef CONFIG_CHELSIO_T4_FCOE
3880 .ndo_fcoe_enable = cxgb_fcoe_enable,
3881 .ndo_fcoe_disable = cxgb_fcoe_disable,
3882 #endif /* CONFIG_CHELSIO_T4_FCOE */
3883 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3884 .ndo_setup_tc = cxgb_setup_tc,
3885 .ndo_features_check = cxgb_features_check,
3886 .ndo_fix_features = cxgb_fix_features,
3887 };
3888
3889 #ifdef CONFIG_PCI_IOV
3890 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3891 .ndo_open = cxgb4_mgmt_open,
3892 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3893 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3894 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3895 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3896 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3897 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state,
3898 };
3899
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3900 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3901 struct ethtool_drvinfo *info)
3902 {
3903 struct adapter *adapter = netdev2adap(dev);
3904
3905 strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3906 strscpy(info->bus_info, pci_name(adapter->pdev),
3907 sizeof(info->bus_info));
3908 }
3909
3910 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3911 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3912 };
3913 #endif
3914
notify_fatal_err(struct work_struct * work)3915 static void notify_fatal_err(struct work_struct *work)
3916 {
3917 struct adapter *adap;
3918
3919 adap = container_of(work, struct adapter, fatal_err_notify_task);
3920 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3921 }
3922
t4_fatal_err(struct adapter * adap)3923 void t4_fatal_err(struct adapter *adap)
3924 {
3925 int port;
3926
3927 if (pci_channel_offline(adap->pdev))
3928 return;
3929
3930 /* Disable the SGE since ULDs are going to free resources that
3931 * could be exposed to the adapter. RDMA MWs for example...
3932 */
3933 t4_shutdown_adapter(adap);
3934 for_each_port(adap, port) {
3935 struct net_device *dev = adap->port[port];
3936
3937 /* If we get here in very early initialization the network
3938 * devices may not have been set up yet.
3939 */
3940 if (!dev)
3941 continue;
3942
3943 netif_tx_stop_all_queues(dev);
3944 netif_carrier_off(dev);
3945 }
3946 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3947 queue_work(adap->workq, &adap->fatal_err_notify_task);
3948 }
3949
setup_memwin(struct adapter * adap)3950 static void setup_memwin(struct adapter *adap)
3951 {
3952 u32 nic_win_base = t4_get_util_window(adap);
3953
3954 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3955 }
3956
setup_memwin_rdma(struct adapter * adap)3957 static void setup_memwin_rdma(struct adapter *adap)
3958 {
3959 if (adap->vres.ocq.size) {
3960 u32 start;
3961 unsigned int sz_kb;
3962
3963 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3964 start &= PCI_BASE_ADDRESS_MEM_MASK;
3965 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3966 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3967 t4_write_reg(adap,
3968 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3969 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3970 t4_write_reg(adap,
3971 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3972 adap->vres.ocq.start);
3973 t4_read_reg(adap,
3974 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3975 }
3976 }
3977
3978 /* HMA Definitions */
3979
3980 /* The maximum number of address that can be send in a single FW cmd */
3981 #define HMA_MAX_ADDR_IN_CMD 5
3982
3983 #define HMA_PAGE_SIZE PAGE_SIZE
3984
3985 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3986
3987 #define HMA_PAGE_ORDER \
3988 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3989 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3990
3991 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3992 * configuration(in units of MB).
3993 */
3994 #define HMA_MIN_TOTAL_SIZE 1
3995 #define HMA_MAX_TOTAL_SIZE \
3996 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
3997 HMA_MAX_NO_FW_ADDRESS) >> 20)
3998
adap_free_hma_mem(struct adapter * adapter)3999 static void adap_free_hma_mem(struct adapter *adapter)
4000 {
4001 struct scatterlist *iter;
4002 struct page *page;
4003 int i;
4004
4005 if (!adapter->hma.sgt)
4006 return;
4007
4008 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4009 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4010 adapter->hma.sgt->nents, DMA_BIDIRECTIONAL);
4011 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4012 }
4013
4014 for_each_sg(adapter->hma.sgt->sgl, iter,
4015 adapter->hma.sgt->orig_nents, i) {
4016 page = sg_page(iter);
4017 if (page)
4018 __free_pages(page, HMA_PAGE_ORDER);
4019 }
4020
4021 kfree(adapter->hma.phy_addr);
4022 sg_free_table(adapter->hma.sgt);
4023 kfree(adapter->hma.sgt);
4024 adapter->hma.sgt = NULL;
4025 }
4026
adap_config_hma(struct adapter * adapter)4027 static int adap_config_hma(struct adapter *adapter)
4028 {
4029 struct scatterlist *sgl, *iter;
4030 struct sg_table *sgt;
4031 struct page *newpage;
4032 unsigned int i, j, k;
4033 u32 param, hma_size;
4034 unsigned int ncmds;
4035 size_t page_size;
4036 u32 page_order;
4037 int node, ret;
4038
4039 /* HMA is supported only for T6+ cards.
4040 * Avoid initializing HMA in kdump kernels.
4041 */
4042 if (is_kdump_kernel() ||
4043 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4044 return 0;
4045
4046 /* Get the HMA region size required by fw */
4047 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4048 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4049 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4050 1, ¶m, &hma_size);
4051 /* An error means card has its own memory or HMA is not supported by
4052 * the firmware. Return without any errors.
4053 */
4054 if (ret || !hma_size)
4055 return 0;
4056
4057 if (hma_size < HMA_MIN_TOTAL_SIZE ||
4058 hma_size > HMA_MAX_TOTAL_SIZE) {
4059 dev_err(adapter->pdev_dev,
4060 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
4061 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4062 return -EINVAL;
4063 }
4064
4065 page_size = HMA_PAGE_SIZE;
4066 page_order = HMA_PAGE_ORDER;
4067 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4068 if (unlikely(!adapter->hma.sgt)) {
4069 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4070 return -ENOMEM;
4071 }
4072 sgt = adapter->hma.sgt;
4073 /* FW returned value will be in MB's
4074 */
4075 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4076 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4077 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4078 kfree(adapter->hma.sgt);
4079 adapter->hma.sgt = NULL;
4080 return -ENOMEM;
4081 }
4082
4083 sgl = adapter->hma.sgt->sgl;
4084 node = dev_to_node(adapter->pdev_dev);
4085 for_each_sg(sgl, iter, sgt->orig_nents, i) {
4086 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4087 __GFP_ZERO, page_order);
4088 if (!newpage) {
4089 dev_err(adapter->pdev_dev,
4090 "Not enough memory for HMA page allocation\n");
4091 ret = -ENOMEM;
4092 goto free_hma;
4093 }
4094 sg_set_page(iter, newpage, page_size << page_order, 0);
4095 }
4096
4097 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4098 DMA_BIDIRECTIONAL);
4099 if (!sgt->nents) {
4100 dev_err(adapter->pdev_dev,
4101 "Not enough memory for HMA DMA mapping");
4102 ret = -ENOMEM;
4103 goto free_hma;
4104 }
4105 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4106
4107 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4108 GFP_KERNEL);
4109 if (unlikely(!adapter->hma.phy_addr))
4110 goto free_hma;
4111
4112 for_each_sg(sgl, iter, sgt->nents, i) {
4113 newpage = sg_page(iter);
4114 adapter->hma.phy_addr[i] = sg_dma_address(iter);
4115 }
4116
4117 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4118 /* Pass on the addresses to firmware */
4119 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4120 struct fw_hma_cmd hma_cmd;
4121 u8 naddr = HMA_MAX_ADDR_IN_CMD;
4122 u8 soc = 0, eoc = 0;
4123 u8 hma_mode = 1; /* Presently we support only Page table mode */
4124
4125 soc = (i == 0) ? 1 : 0;
4126 eoc = (i == ncmds - 1) ? 1 : 0;
4127
4128 /* For last cmd, set naddr corresponding to remaining
4129 * addresses
4130 */
4131 if (i == ncmds - 1) {
4132 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4133 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4134 }
4135 memset(&hma_cmd, 0, sizeof(hma_cmd));
4136 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4137 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4138 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4139
4140 hma_cmd.mode_to_pcie_params =
4141 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4142 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4143
4144 /* HMA cmd size specified in MB's */
4145 hma_cmd.naddr_size =
4146 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4147 FW_HMA_CMD_NADDR_V(naddr));
4148
4149 /* Total Page size specified in units of 4K */
4150 hma_cmd.addr_size_pkd =
4151 htonl(FW_HMA_CMD_ADDR_SIZE_V
4152 ((page_size << page_order) >> 12));
4153
4154 /* Fill the 5 addresses */
4155 for (j = 0; j < naddr; j++) {
4156 hma_cmd.phy_address[j] =
4157 cpu_to_be64(adapter->hma.phy_addr[j + k]);
4158 }
4159 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4160 sizeof(hma_cmd), &hma_cmd);
4161 if (ret) {
4162 dev_err(adapter->pdev_dev,
4163 "HMA FW command failed with err %d\n", ret);
4164 goto free_hma;
4165 }
4166 }
4167
4168 if (!ret)
4169 dev_info(adapter->pdev_dev,
4170 "Reserved %uMB host memory for HMA\n", hma_size);
4171 return ret;
4172
4173 free_hma:
4174 adap_free_hma_mem(adapter);
4175 return ret;
4176 }
4177
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)4178 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4179 {
4180 u32 v;
4181 int ret;
4182
4183 /* Now that we've successfully configured and initialized the adapter
4184 * can ask the Firmware what resources it has provisioned for us.
4185 */
4186 ret = t4_get_pfres(adap);
4187 if (ret) {
4188 dev_err(adap->pdev_dev,
4189 "Unable to retrieve resource provisioning information\n");
4190 return ret;
4191 }
4192
4193 /* get device capabilities */
4194 memset(c, 0, sizeof(*c));
4195 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4196 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4197 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4198 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4199 if (ret < 0)
4200 return ret;
4201
4202 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4203 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4204 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4205 if (ret < 0)
4206 return ret;
4207
4208 ret = t4_config_glbl_rss(adap, adap->pf,
4209 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4210 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4211 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4212 if (ret < 0)
4213 return ret;
4214
4215 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4216 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4217 FW_CMD_CAP_PF);
4218 if (ret < 0)
4219 return ret;
4220
4221 t4_sge_init(adap);
4222
4223 /* tweak some settings */
4224 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4225 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4226 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4227 v = t4_read_reg(adap, TP_PIO_DATA_A);
4228 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4229
4230 /* first 4 Tx modulation queues point to consecutive Tx channels */
4231 adap->params.tp.tx_modq_map = 0xE4;
4232 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4233 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4234
4235 /* associate each Tx modulation queue with consecutive Tx channels */
4236 v = 0x84218421;
4237 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4238 &v, 1, TP_TX_SCHED_HDR_A);
4239 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4240 &v, 1, TP_TX_SCHED_FIFO_A);
4241 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4242 &v, 1, TP_TX_SCHED_PCMD_A);
4243
4244 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4245 if (is_offload(adap)) {
4246 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4247 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4248 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4249 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4250 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4251 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4252 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4253 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4254 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4256 }
4257
4258 /* get basic stuff going */
4259 return t4_early_init(adap, adap->pf);
4260 }
4261
4262 /*
4263 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4264 */
4265 #define MAX_ATIDS 8192U
4266
4267 /*
4268 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4269 *
4270 * If the firmware we're dealing with has Configuration File support, then
4271 * we use that to perform all configuration
4272 */
4273
4274 /*
4275 * Tweak configuration based on module parameters, etc. Most of these have
4276 * defaults assigned to them by Firmware Configuration Files (if we're using
4277 * them) but need to be explicitly set if we're using hard-coded
4278 * initialization. But even in the case of using Firmware Configuration
4279 * Files, we'd like to expose the ability to change these via module
4280 * parameters so these are essentially common tweaks/settings for
4281 * Configuration Files and hard-coded initialization ...
4282 */
adap_init0_tweaks(struct adapter * adapter)4283 static int adap_init0_tweaks(struct adapter *adapter)
4284 {
4285 /*
4286 * Fix up various Host-Dependent Parameters like Page Size, Cache
4287 * Line Size, etc. The firmware default is for a 4KB Page Size and
4288 * 64B Cache Line Size ...
4289 */
4290 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4291
4292 /*
4293 * Process module parameters which affect early initialization.
4294 */
4295 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4296 dev_err(&adapter->pdev->dev,
4297 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4298 rx_dma_offset);
4299 rx_dma_offset = 2;
4300 }
4301 t4_set_reg_field(adapter, SGE_CONTROL_A,
4302 PKTSHIFT_V(PKTSHIFT_M),
4303 PKTSHIFT_V(rx_dma_offset));
4304
4305 /*
4306 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4307 * adds the pseudo header itself.
4308 */
4309 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4310 CSUM_HAS_PSEUDO_HDR_F, 0);
4311
4312 return 0;
4313 }
4314
4315 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4316 * unto themselves and they contain their own firmware to perform their
4317 * tasks ...
4318 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)4319 static int phy_aq1202_version(const u8 *phy_fw_data,
4320 size_t phy_fw_size)
4321 {
4322 int offset;
4323
4324 /* At offset 0x8 you're looking for the primary image's
4325 * starting offset which is 3 Bytes wide
4326 *
4327 * At offset 0xa of the primary image, you look for the offset
4328 * of the DRAM segment which is 3 Bytes wide.
4329 *
4330 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4331 * wide
4332 */
4333 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4334 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4335 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4336
4337 offset = le24(phy_fw_data + 0x8) << 12;
4338 offset = le24(phy_fw_data + offset + 0xa);
4339 return be16(phy_fw_data + offset + 0x27e);
4340
4341 #undef be16
4342 #undef le16
4343 #undef le24
4344 }
4345
4346 static struct info_10gbt_phy_fw {
4347 unsigned int phy_fw_id; /* PCI Device ID */
4348 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
4349 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4350 int phy_flash; /* Has FLASH for PHY Firmware */
4351 } phy_info_array[] = {
4352 {
4353 PHY_AQ1202_DEVICEID,
4354 PHY_AQ1202_FIRMWARE,
4355 phy_aq1202_version,
4356 1,
4357 },
4358 {
4359 PHY_BCM84834_DEVICEID,
4360 PHY_BCM84834_FIRMWARE,
4361 NULL,
4362 0,
4363 },
4364 { 0, NULL, NULL },
4365 };
4366
find_phy_info(int devid)4367 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4368 {
4369 int i;
4370
4371 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4372 if (phy_info_array[i].phy_fw_id == devid)
4373 return &phy_info_array[i];
4374 }
4375 return NULL;
4376 }
4377
4378 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
4379 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
4380 * we return a negative error number. If we transfer new firmware we return 1
4381 * (from t4_load_phy_fw()). If we don't do anything we return 0.
4382 */
adap_init0_phy(struct adapter * adap)4383 static int adap_init0_phy(struct adapter *adap)
4384 {
4385 const struct firmware *phyf;
4386 int ret;
4387 struct info_10gbt_phy_fw *phy_info;
4388
4389 /* Use the device ID to determine which PHY file to flash.
4390 */
4391 phy_info = find_phy_info(adap->pdev->device);
4392 if (!phy_info) {
4393 dev_warn(adap->pdev_dev,
4394 "No PHY Firmware file found for this PHY\n");
4395 return -EOPNOTSUPP;
4396 }
4397
4398 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4399 * use that. The adapter firmware provides us with a memory buffer
4400 * where we can load a PHY firmware file from the host if we want to
4401 * override the PHY firmware File in flash.
4402 */
4403 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4404 adap->pdev_dev);
4405 if (ret < 0) {
4406 /* For adapters without FLASH attached to PHY for their
4407 * firmware, it's obviously a fatal error if we can't get the
4408 * firmware to the adapter. For adapters with PHY firmware
4409 * FLASH storage, it's worth a warning if we can't find the
4410 * PHY Firmware but we'll neuter the error ...
4411 */
4412 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4413 "/lib/firmware/%s, error %d\n",
4414 phy_info->phy_fw_file, -ret);
4415 if (phy_info->phy_flash) {
4416 int cur_phy_fw_ver = 0;
4417
4418 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4419 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4420 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4421 ret = 0;
4422 }
4423
4424 return ret;
4425 }
4426
4427 /* Load PHY Firmware onto adapter.
4428 */
4429 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4430 (u8 *)phyf->data, phyf->size);
4431 if (ret < 0)
4432 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4433 -ret);
4434 else if (ret > 0) {
4435 int new_phy_fw_ver = 0;
4436
4437 if (phy_info->phy_fw_version)
4438 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4439 phyf->size);
4440 dev_info(adap->pdev_dev, "Successfully transferred PHY "
4441 "Firmware /lib/firmware/%s, version %#x\n",
4442 phy_info->phy_fw_file, new_phy_fw_ver);
4443 }
4444
4445 release_firmware(phyf);
4446
4447 return ret;
4448 }
4449
4450 /*
4451 * Attempt to initialize the adapter via a Firmware Configuration File.
4452 */
adap_init0_config(struct adapter * adapter,int reset)4453 static int adap_init0_config(struct adapter *adapter, int reset)
4454 {
4455 char *fw_config_file, fw_config_file_path[256];
4456 u32 finiver, finicsum, cfcsum, param, val;
4457 struct fw_caps_config_cmd caps_cmd;
4458 unsigned long mtype = 0, maddr = 0;
4459 const struct firmware *cf;
4460 char *config_name = NULL;
4461 int config_issued = 0;
4462 int ret;
4463
4464 /*
4465 * Reset device if necessary.
4466 */
4467 if (reset) {
4468 ret = t4_fw_reset(adapter, adapter->mbox,
4469 PIORSTMODE_F | PIORST_F);
4470 if (ret < 0)
4471 goto bye;
4472 }
4473
4474 /* If this is a 10Gb/s-BT adapter make sure the chip-external
4475 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
4476 * to be performed after any global adapter RESET above since some
4477 * PHYs only have local RAM copies of the PHY firmware.
4478 */
4479 if (is_10gbt_device(adapter->pdev->device)) {
4480 ret = adap_init0_phy(adapter);
4481 if (ret < 0)
4482 goto bye;
4483 }
4484 /*
4485 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4486 * then use that. Otherwise, use the configuration file stored
4487 * in the adapter flash ...
4488 */
4489 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4490 case CHELSIO_T4:
4491 fw_config_file = FW4_CFNAME;
4492 break;
4493 case CHELSIO_T5:
4494 fw_config_file = FW5_CFNAME;
4495 break;
4496 case CHELSIO_T6:
4497 fw_config_file = FW6_CFNAME;
4498 break;
4499 default:
4500 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4501 adapter->pdev->device);
4502 ret = -EINVAL;
4503 goto bye;
4504 }
4505
4506 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4507 if (ret < 0) {
4508 config_name = "On FLASH";
4509 mtype = FW_MEMTYPE_CF_FLASH;
4510 maddr = t4_flash_cfg_addr(adapter);
4511 } else {
4512 u32 params[7], val[7];
4513
4514 sprintf(fw_config_file_path,
4515 "/lib/firmware/%s", fw_config_file);
4516 config_name = fw_config_file_path;
4517
4518 if (cf->size >= FLASH_CFG_MAX_SIZE)
4519 ret = -ENOMEM;
4520 else {
4521 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4522 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4523 ret = t4_query_params(adapter, adapter->mbox,
4524 adapter->pf, 0, 1, params, val);
4525 if (ret == 0) {
4526 /*
4527 * For t4_memory_rw() below addresses and
4528 * sizes have to be in terms of multiples of 4
4529 * bytes. So, if the Configuration File isn't
4530 * a multiple of 4 bytes in length we'll have
4531 * to write that out separately since we can't
4532 * guarantee that the bytes following the
4533 * residual byte in the buffer returned by
4534 * request_firmware() are zeroed out ...
4535 */
4536 size_t resid = cf->size & 0x3;
4537 size_t size = cf->size & ~0x3;
4538 __be32 *data = (__be32 *)cf->data;
4539
4540 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4541 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4542
4543 spin_lock(&adapter->win0_lock);
4544 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4545 size, data, T4_MEMORY_WRITE);
4546 if (ret == 0 && resid != 0) {
4547 union {
4548 __be32 word;
4549 char buf[4];
4550 } last;
4551 int i;
4552
4553 last.word = data[size >> 2];
4554 for (i = resid; i < 4; i++)
4555 last.buf[i] = 0;
4556 ret = t4_memory_rw(adapter, 0, mtype,
4557 maddr + size,
4558 4, &last.word,
4559 T4_MEMORY_WRITE);
4560 }
4561 spin_unlock(&adapter->win0_lock);
4562 }
4563 }
4564
4565 release_firmware(cf);
4566 if (ret)
4567 goto bye;
4568 }
4569
4570 val = 0;
4571
4572 /* Ofld + Hash filter is supported. Older fw will fail this request and
4573 * it is fine.
4574 */
4575 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4576 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4577 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4578 1, ¶m, &val);
4579
4580 /* FW doesn't know about Hash filter + ofld support,
4581 * it's not a problem, don't return an error.
4582 */
4583 if (ret < 0) {
4584 dev_warn(adapter->pdev_dev,
4585 "Hash filter with ofld is not supported by FW\n");
4586 }
4587
4588 /*
4589 * Issue a Capability Configuration command to the firmware to get it
4590 * to parse the Configuration File. We don't use t4_fw_config_file()
4591 * because we want the ability to modify various features after we've
4592 * processed the configuration file ...
4593 */
4594 memset(&caps_cmd, 0, sizeof(caps_cmd));
4595 caps_cmd.op_to_write =
4596 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4597 FW_CMD_REQUEST_F |
4598 FW_CMD_READ_F);
4599 caps_cmd.cfvalid_to_len16 =
4600 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4601 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4602 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4603 FW_LEN16(caps_cmd));
4604 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4605 &caps_cmd);
4606
4607 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4608 * Configuration File in FLASH), our last gasp effort is to use the
4609 * Firmware Configuration File which is embedded in the firmware. A
4610 * very few early versions of the firmware didn't have one embedded
4611 * but we can ignore those.
4612 */
4613 if (ret == -ENOENT) {
4614 memset(&caps_cmd, 0, sizeof(caps_cmd));
4615 caps_cmd.op_to_write =
4616 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4617 FW_CMD_REQUEST_F |
4618 FW_CMD_READ_F);
4619 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4620 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4621 sizeof(caps_cmd), &caps_cmd);
4622 config_name = "Firmware Default";
4623 }
4624
4625 config_issued = 1;
4626 if (ret < 0)
4627 goto bye;
4628
4629 finiver = ntohl(caps_cmd.finiver);
4630 finicsum = ntohl(caps_cmd.finicsum);
4631 cfcsum = ntohl(caps_cmd.cfcsum);
4632 if (finicsum != cfcsum)
4633 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4634 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4635 finicsum, cfcsum);
4636
4637 /*
4638 * And now tell the firmware to use the configuration we just loaded.
4639 */
4640 caps_cmd.op_to_write =
4641 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4642 FW_CMD_REQUEST_F |
4643 FW_CMD_WRITE_F);
4644 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4645 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4646 NULL);
4647 if (ret < 0)
4648 goto bye;
4649
4650 /*
4651 * Tweak configuration based on system architecture, module
4652 * parameters, etc.
4653 */
4654 ret = adap_init0_tweaks(adapter);
4655 if (ret < 0)
4656 goto bye;
4657
4658 /* We will proceed even if HMA init fails. */
4659 ret = adap_config_hma(adapter);
4660 if (ret)
4661 dev_err(adapter->pdev_dev,
4662 "HMA configuration failed with error %d\n", ret);
4663
4664 if (is_t6(adapter->params.chip)) {
4665 adap_config_hpfilter(adapter);
4666 ret = setup_ppod_edram(adapter);
4667 if (!ret)
4668 dev_info(adapter->pdev_dev, "Successfully enabled "
4669 "ppod edram feature\n");
4670 }
4671
4672 /*
4673 * And finally tell the firmware to initialize itself using the
4674 * parameters from the Configuration File.
4675 */
4676 ret = t4_fw_initialize(adapter, adapter->mbox);
4677 if (ret < 0)
4678 goto bye;
4679
4680 /* Emit Firmware Configuration File information and return
4681 * successfully.
4682 */
4683 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4684 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4685 config_name, finiver, cfcsum);
4686 return 0;
4687
4688 /*
4689 * Something bad happened. Return the error ... (If the "error"
4690 * is that there's no Configuration File on the adapter we don't
4691 * want to issue a warning since this is fairly common.)
4692 */
4693 bye:
4694 if (config_issued && ret != -ENOENT)
4695 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4696 config_name, -ret);
4697 return ret;
4698 }
4699
4700 static struct fw_info fw_info_array[] = {
4701 {
4702 .chip = CHELSIO_T4,
4703 .fs_name = FW4_CFNAME,
4704 .fw_mod_name = FW4_FNAME,
4705 .fw_hdr = {
4706 .chip = FW_HDR_CHIP_T4,
4707 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4708 .intfver_nic = FW_INTFVER(T4, NIC),
4709 .intfver_vnic = FW_INTFVER(T4, VNIC),
4710 .intfver_ri = FW_INTFVER(T4, RI),
4711 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4712 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4713 },
4714 }, {
4715 .chip = CHELSIO_T5,
4716 .fs_name = FW5_CFNAME,
4717 .fw_mod_name = FW5_FNAME,
4718 .fw_hdr = {
4719 .chip = FW_HDR_CHIP_T5,
4720 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4721 .intfver_nic = FW_INTFVER(T5, NIC),
4722 .intfver_vnic = FW_INTFVER(T5, VNIC),
4723 .intfver_ri = FW_INTFVER(T5, RI),
4724 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4725 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4726 },
4727 }, {
4728 .chip = CHELSIO_T6,
4729 .fs_name = FW6_CFNAME,
4730 .fw_mod_name = FW6_FNAME,
4731 .fw_hdr = {
4732 .chip = FW_HDR_CHIP_T6,
4733 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4734 .intfver_nic = FW_INTFVER(T6, NIC),
4735 .intfver_vnic = FW_INTFVER(T6, VNIC),
4736 .intfver_ofld = FW_INTFVER(T6, OFLD),
4737 .intfver_ri = FW_INTFVER(T6, RI),
4738 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4739 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4740 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4741 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4742 },
4743 }
4744
4745 };
4746
find_fw_info(int chip)4747 static struct fw_info *find_fw_info(int chip)
4748 {
4749 int i;
4750
4751 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4752 if (fw_info_array[i].chip == chip)
4753 return &fw_info_array[i];
4754 }
4755 return NULL;
4756 }
4757
4758 /*
4759 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4760 */
adap_init0(struct adapter * adap,int vpd_skip)4761 static int adap_init0(struct adapter *adap, int vpd_skip)
4762 {
4763 struct fw_caps_config_cmd caps_cmd;
4764 u32 params[7], val[7];
4765 enum dev_state state;
4766 u32 v, port_vec;
4767 int reset = 1;
4768 int ret;
4769
4770 /* Grab Firmware Device Log parameters as early as possible so we have
4771 * access to it for debugging, etc.
4772 */
4773 ret = t4_init_devlog_params(adap);
4774 if (ret < 0)
4775 return ret;
4776
4777 /* Contact FW, advertising Master capability */
4778 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4779 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4780 if (ret < 0) {
4781 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4782 ret);
4783 return ret;
4784 }
4785 if (ret == adap->mbox)
4786 adap->flags |= CXGB4_MASTER_PF;
4787
4788 /*
4789 * If we're the Master PF Driver and the device is uninitialized,
4790 * then let's consider upgrading the firmware ... (We always want
4791 * to check the firmware version number in order to A. get it for
4792 * later reporting and B. to warn if the currently loaded firmware
4793 * is excessively mismatched relative to the driver.)
4794 */
4795
4796 t4_get_version_info(adap);
4797 ret = t4_check_fw_version(adap);
4798 /* If firmware is too old (not supported by driver) force an update. */
4799 if (ret)
4800 state = DEV_STATE_UNINIT;
4801 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4802 struct fw_info *fw_info;
4803 struct fw_hdr *card_fw;
4804 const struct firmware *fw;
4805 const u8 *fw_data = NULL;
4806 unsigned int fw_size = 0;
4807
4808 /* This is the firmware whose headers the driver was compiled
4809 * against
4810 */
4811 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4812 if (fw_info == NULL) {
4813 dev_err(adap->pdev_dev,
4814 "unable to get firmware info for chip %d.\n",
4815 CHELSIO_CHIP_VERSION(adap->params.chip));
4816 return -EINVAL;
4817 }
4818
4819 /* allocate memory to read the header of the firmware on the
4820 * card
4821 */
4822 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4823 if (!card_fw) {
4824 ret = -ENOMEM;
4825 goto bye;
4826 }
4827
4828 /* Get FW from from /lib/firmware/ */
4829 ret = request_firmware(&fw, fw_info->fw_mod_name,
4830 adap->pdev_dev);
4831 if (ret < 0) {
4832 dev_err(adap->pdev_dev,
4833 "unable to load firmware image %s, error %d\n",
4834 fw_info->fw_mod_name, ret);
4835 } else {
4836 fw_data = fw->data;
4837 fw_size = fw->size;
4838 }
4839
4840 /* upgrade FW logic */
4841 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4842 state, &reset);
4843
4844 /* Cleaning up */
4845 release_firmware(fw);
4846 kvfree(card_fw);
4847
4848 if (ret < 0)
4849 goto bye;
4850 }
4851
4852 /* If the firmware is initialized already, emit a simply note to that
4853 * effect. Otherwise, it's time to try initializing the adapter.
4854 */
4855 if (state == DEV_STATE_INIT) {
4856 ret = adap_config_hma(adap);
4857 if (ret)
4858 dev_err(adap->pdev_dev,
4859 "HMA configuration failed with error %d\n",
4860 ret);
4861 dev_info(adap->pdev_dev, "Coming up as %s: "\
4862 "Adapter already initialized\n",
4863 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4864 } else {
4865 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4866 "Initializing adapter\n");
4867
4868 /* Find out whether we're dealing with a version of the
4869 * firmware which has configuration file support.
4870 */
4871 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4872 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4873 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4874 params, val);
4875
4876 /* If the firmware doesn't support Configuration Files,
4877 * return an error.
4878 */
4879 if (ret < 0) {
4880 dev_err(adap->pdev_dev, "firmware doesn't support "
4881 "Firmware Configuration Files\n");
4882 goto bye;
4883 }
4884
4885 /* The firmware provides us with a memory buffer where we can
4886 * load a Configuration File from the host if we want to
4887 * override the Configuration File in flash.
4888 */
4889 ret = adap_init0_config(adap, reset);
4890 if (ret == -ENOENT) {
4891 dev_err(adap->pdev_dev, "no Configuration File "
4892 "present on adapter.\n");
4893 goto bye;
4894 }
4895 if (ret < 0) {
4896 dev_err(adap->pdev_dev, "could not initialize "
4897 "adapter, error %d\n", -ret);
4898 goto bye;
4899 }
4900 }
4901
4902 /* Now that we've successfully configured and initialized the adapter
4903 * (or found it already initialized), we can ask the Firmware what
4904 * resources it has provisioned for us.
4905 */
4906 ret = t4_get_pfres(adap);
4907 if (ret) {
4908 dev_err(adap->pdev_dev,
4909 "Unable to retrieve resource provisioning information\n");
4910 goto bye;
4911 }
4912
4913 /* Grab VPD parameters. This should be done after we establish a
4914 * connection to the firmware since some of the VPD parameters
4915 * (notably the Core Clock frequency) are retrieved via requests to
4916 * the firmware. On the other hand, we need these fairly early on
4917 * so we do this right after getting ahold of the firmware.
4918 *
4919 * We need to do this after initializing the adapter because someone
4920 * could have FLASHed a new VPD which won't be read by the firmware
4921 * until we do the RESET ...
4922 */
4923 if (!vpd_skip) {
4924 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4925 if (ret < 0)
4926 goto bye;
4927 }
4928
4929 /* Find out what ports are available to us. Note that we need to do
4930 * this before calling adap_init0_no_config() since it needs nports
4931 * and portvec ...
4932 */
4933 v =
4934 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4935 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4936 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4937 if (ret < 0)
4938 goto bye;
4939
4940 adap->params.nports = hweight32(port_vec);
4941 adap->params.portvec = port_vec;
4942
4943 /* Give the SGE code a chance to pull in anything that it needs ...
4944 * Note that this must be called after we retrieve our VPD parameters
4945 * in order to know how to convert core ticks to seconds, etc.
4946 */
4947 ret = t4_sge_init(adap);
4948 if (ret < 0)
4949 goto bye;
4950
4951 /* Grab the SGE Doorbell Queue Timer values. If successful, that
4952 * indicates that the Firmware and Hardware support this.
4953 */
4954 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4955 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4956 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4957 1, params, val);
4958
4959 if (!ret) {
4960 adap->sge.dbqtimer_tick = val[0];
4961 ret = t4_read_sge_dbqtimers(adap,
4962 ARRAY_SIZE(adap->sge.dbqtimer_val),
4963 adap->sge.dbqtimer_val);
4964 }
4965
4966 if (!ret)
4967 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4968
4969 if (is_bypass_device(adap->pdev->device))
4970 adap->params.bypass = 1;
4971
4972 /*
4973 * Grab some of our basic fundamental operating parameters.
4974 */
4975 params[0] = FW_PARAM_PFVF(EQ_START);
4976 params[1] = FW_PARAM_PFVF(L2T_START);
4977 params[2] = FW_PARAM_PFVF(L2T_END);
4978 params[3] = FW_PARAM_PFVF(FILTER_START);
4979 params[4] = FW_PARAM_PFVF(FILTER_END);
4980 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4981 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4982 if (ret < 0)
4983 goto bye;
4984 adap->sge.egr_start = val[0];
4985 adap->l2t_start = val[1];
4986 adap->l2t_end = val[2];
4987 adap->tids.ftid_base = val[3];
4988 adap->tids.nftids = val[4] - val[3] + 1;
4989 adap->sge.ingr_start = val[5];
4990
4991 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4992 params[0] = FW_PARAM_PFVF(HPFILTER_START);
4993 params[1] = FW_PARAM_PFVF(HPFILTER_END);
4994 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4995 params, val);
4996 if (ret < 0)
4997 goto bye;
4998
4999 adap->tids.hpftid_base = val[0];
5000 adap->tids.nhpftids = val[1] - val[0] + 1;
5001
5002 /* Read the raw mps entries. In T6, the last 2 tcam entries
5003 * are reserved for raw mac addresses (rawf = 2, one per port).
5004 */
5005 params[0] = FW_PARAM_PFVF(RAWF_START);
5006 params[1] = FW_PARAM_PFVF(RAWF_END);
5007 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5008 params, val);
5009 if (ret == 0) {
5010 adap->rawf_start = val[0];
5011 adap->rawf_cnt = val[1] - val[0] + 1;
5012 }
5013
5014 adap->tids.tid_base =
5015 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5016 }
5017
5018 /* qids (ingress/egress) returned from firmware can be anywhere
5019 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5020 * Hence driver needs to allocate memory for this range to
5021 * store the queue info. Get the highest IQFLINT/EQ index returned
5022 * in FW_EQ_*_CMD.alloc command.
5023 */
5024 params[0] = FW_PARAM_PFVF(EQ_END);
5025 params[1] = FW_PARAM_PFVF(IQFLINT_END);
5026 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5027 if (ret < 0)
5028 goto bye;
5029 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5030 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5031
5032 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5033 sizeof(*adap->sge.egr_map), GFP_KERNEL);
5034 if (!adap->sge.egr_map) {
5035 ret = -ENOMEM;
5036 goto bye;
5037 }
5038
5039 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5040 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5041 if (!adap->sge.ingr_map) {
5042 ret = -ENOMEM;
5043 goto bye;
5044 }
5045
5046 /* Allocate the memory for the vaious egress queue bitmaps
5047 * ie starving_fl, txq_maperr and blocked_fl.
5048 */
5049 adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5050 if (!adap->sge.starving_fl) {
5051 ret = -ENOMEM;
5052 goto bye;
5053 }
5054
5055 adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5056 if (!adap->sge.txq_maperr) {
5057 ret = -ENOMEM;
5058 goto bye;
5059 }
5060
5061 #ifdef CONFIG_DEBUG_FS
5062 adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5063 if (!adap->sge.blocked_fl) {
5064 ret = -ENOMEM;
5065 goto bye;
5066 }
5067 #endif
5068
5069 params[0] = FW_PARAM_PFVF(CLIP_START);
5070 params[1] = FW_PARAM_PFVF(CLIP_END);
5071 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5072 if (ret < 0)
5073 goto bye;
5074 adap->clipt_start = val[0];
5075 adap->clipt_end = val[1];
5076
5077 /* Get the supported number of traffic classes */
5078 params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5079 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5080 if (ret < 0) {
5081 /* We couldn't retrieve the number of Traffic Classes
5082 * supported by the hardware/firmware. So we hard
5083 * code it here.
5084 */
5085 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5086 } else {
5087 adap->params.nsched_cls = val[0];
5088 }
5089
5090 /* query params related to active filter region */
5091 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5092 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5093 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5094 /* If Active filter size is set we enable establishing
5095 * offload connection through firmware work request
5096 */
5097 if ((val[0] != val[1]) && (ret >= 0)) {
5098 adap->flags |= CXGB4_FW_OFLD_CONN;
5099 adap->tids.aftid_base = val[0];
5100 adap->tids.aftid_end = val[1];
5101 }
5102
5103 /* If we're running on newer firmware, let it know that we're
5104 * prepared to deal with encapsulated CPL messages. Older
5105 * firmware won't understand this and we'll just get
5106 * unencapsulated messages ...
5107 */
5108 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5109 val[0] = 1;
5110 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5111
5112 /*
5113 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5114 * capability. Earlier versions of the firmware didn't have the
5115 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5116 * permission to use ULPTX MEMWRITE DSGL.
5117 */
5118 if (is_t4(adap->params.chip)) {
5119 adap->params.ulptx_memwrite_dsgl = false;
5120 } else {
5121 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5122 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5123 1, params, val);
5124 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5125 }
5126
5127 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5128 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5129 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5130 1, params, val);
5131 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5132
5133 /* See if FW supports FW_FILTER2 work request */
5134 if (is_t4(adap->params.chip)) {
5135 adap->params.filter2_wr_support = false;
5136 } else {
5137 params[0] = FW_PARAM_DEV(FILTER2_WR);
5138 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5139 1, params, val);
5140 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5141 }
5142
5143 /* Check if FW supports returning vin and smt index.
5144 * If this is not supported, driver will interpret
5145 * these values from viid.
5146 */
5147 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5148 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5149 1, params, val);
5150 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5151
5152 /*
5153 * Get device capabilities so we can determine what resources we need
5154 * to manage.
5155 */
5156 memset(&caps_cmd, 0, sizeof(caps_cmd));
5157 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5158 FW_CMD_REQUEST_F | FW_CMD_READ_F);
5159 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5160 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5161 &caps_cmd);
5162 if (ret < 0)
5163 goto bye;
5164
5165 /* hash filter has some mandatory register settings to be tested and for
5166 * that it needs to test whether offload is enabled or not, hence
5167 * checking and setting it here.
5168 */
5169 if (caps_cmd.ofldcaps)
5170 adap->params.offload = 1;
5171
5172 if (caps_cmd.ofldcaps ||
5173 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5174 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5175 /* query offload-related parameters */
5176 params[0] = FW_PARAM_DEV(NTID);
5177 params[1] = FW_PARAM_PFVF(SERVER_START);
5178 params[2] = FW_PARAM_PFVF(SERVER_END);
5179 params[3] = FW_PARAM_PFVF(TDDP_START);
5180 params[4] = FW_PARAM_PFVF(TDDP_END);
5181 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5182 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5183 params, val);
5184 if (ret < 0)
5185 goto bye;
5186 adap->tids.ntids = val[0];
5187 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5188 adap->tids.stid_base = val[1];
5189 adap->tids.nstids = val[2] - val[1] + 1;
5190 /*
5191 * Setup server filter region. Divide the available filter
5192 * region into two parts. Regular filters get 1/3rd and server
5193 * filters get 2/3rd part. This is only enabled if workarond
5194 * path is enabled.
5195 * 1. For regular filters.
5196 * 2. Server filter: This are special filters which are used
5197 * to redirect SYN packets to offload queue.
5198 */
5199 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5200 adap->tids.sftid_base = adap->tids.ftid_base +
5201 DIV_ROUND_UP(adap->tids.nftids, 3);
5202 adap->tids.nsftids = adap->tids.nftids -
5203 DIV_ROUND_UP(adap->tids.nftids, 3);
5204 adap->tids.nftids = adap->tids.sftid_base -
5205 adap->tids.ftid_base;
5206 }
5207 adap->vres.ddp.start = val[3];
5208 adap->vres.ddp.size = val[4] - val[3] + 1;
5209 adap->params.ofldq_wr_cred = val[5];
5210
5211 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5212 init_hash_filter(adap);
5213 } else {
5214 adap->num_ofld_uld += 1;
5215 }
5216
5217 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5218 params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5219 params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5220 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5221 params, val);
5222 if (!ret) {
5223 adap->tids.eotid_base = val[0];
5224 adap->tids.neotids = min_t(u32, MAX_ATIDS,
5225 val[1] - val[0] + 1);
5226 adap->params.ethofld = 1;
5227 }
5228 }
5229 }
5230 if (caps_cmd.rdmacaps) {
5231 params[0] = FW_PARAM_PFVF(STAG_START);
5232 params[1] = FW_PARAM_PFVF(STAG_END);
5233 params[2] = FW_PARAM_PFVF(RQ_START);
5234 params[3] = FW_PARAM_PFVF(RQ_END);
5235 params[4] = FW_PARAM_PFVF(PBL_START);
5236 params[5] = FW_PARAM_PFVF(PBL_END);
5237 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5238 params, val);
5239 if (ret < 0)
5240 goto bye;
5241 adap->vres.stag.start = val[0];
5242 adap->vres.stag.size = val[1] - val[0] + 1;
5243 adap->vres.rq.start = val[2];
5244 adap->vres.rq.size = val[3] - val[2] + 1;
5245 adap->vres.pbl.start = val[4];
5246 adap->vres.pbl.size = val[5] - val[4] + 1;
5247
5248 params[0] = FW_PARAM_PFVF(SRQ_START);
5249 params[1] = FW_PARAM_PFVF(SRQ_END);
5250 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5251 params, val);
5252 if (!ret) {
5253 adap->vres.srq.start = val[0];
5254 adap->vres.srq.size = val[1] - val[0] + 1;
5255 }
5256 if (adap->vres.srq.size) {
5257 adap->srq = t4_init_srq(adap->vres.srq.size);
5258 if (!adap->srq)
5259 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5260 }
5261
5262 params[0] = FW_PARAM_PFVF(SQRQ_START);
5263 params[1] = FW_PARAM_PFVF(SQRQ_END);
5264 params[2] = FW_PARAM_PFVF(CQ_START);
5265 params[3] = FW_PARAM_PFVF(CQ_END);
5266 params[4] = FW_PARAM_PFVF(OCQ_START);
5267 params[5] = FW_PARAM_PFVF(OCQ_END);
5268 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5269 val);
5270 if (ret < 0)
5271 goto bye;
5272 adap->vres.qp.start = val[0];
5273 adap->vres.qp.size = val[1] - val[0] + 1;
5274 adap->vres.cq.start = val[2];
5275 adap->vres.cq.size = val[3] - val[2] + 1;
5276 adap->vres.ocq.start = val[4];
5277 adap->vres.ocq.size = val[5] - val[4] + 1;
5278
5279 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5280 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5281 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5282 val);
5283 if (ret < 0) {
5284 adap->params.max_ordird_qp = 8;
5285 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5286 ret = 0;
5287 } else {
5288 adap->params.max_ordird_qp = val[0];
5289 adap->params.max_ird_adapter = val[1];
5290 }
5291 dev_info(adap->pdev_dev,
5292 "max_ordird_qp %d max_ird_adapter %d\n",
5293 adap->params.max_ordird_qp,
5294 adap->params.max_ird_adapter);
5295
5296 /* Enable write_with_immediate if FW supports it */
5297 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5298 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5299 val);
5300 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5301
5302 /* Enable write_cmpl if FW supports it */
5303 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5304 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5305 val);
5306 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5307 adap->num_ofld_uld += 2;
5308 }
5309 if (caps_cmd.iscsicaps) {
5310 params[0] = FW_PARAM_PFVF(ISCSI_START);
5311 params[1] = FW_PARAM_PFVF(ISCSI_END);
5312 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5313 params, val);
5314 if (ret < 0)
5315 goto bye;
5316 adap->vres.iscsi.start = val[0];
5317 adap->vres.iscsi.size = val[1] - val[0] + 1;
5318 if (is_t6(adap->params.chip)) {
5319 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5320 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5321 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5322 params, val);
5323 if (!ret) {
5324 adap->vres.ppod_edram.start = val[0];
5325 adap->vres.ppod_edram.size =
5326 val[1] - val[0] + 1;
5327
5328 dev_info(adap->pdev_dev,
5329 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5330 val[0], val[1],
5331 adap->vres.ppod_edram.size);
5332 }
5333 }
5334 /* LIO target and cxgb4i initiaitor */
5335 adap->num_ofld_uld += 2;
5336 }
5337 if (caps_cmd.cryptocaps) {
5338 if (ntohs(caps_cmd.cryptocaps) &
5339 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5340 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5341 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5342 2, params, val);
5343 if (ret < 0) {
5344 if (ret != -EINVAL)
5345 goto bye;
5346 } else {
5347 adap->vres.ncrypto_fc = val[0];
5348 }
5349 adap->num_ofld_uld += 1;
5350 }
5351 if (ntohs(caps_cmd.cryptocaps) &
5352 FW_CAPS_CONFIG_TLS_INLINE) {
5353 params[0] = FW_PARAM_PFVF(TLS_START);
5354 params[1] = FW_PARAM_PFVF(TLS_END);
5355 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5356 2, params, val);
5357 if (ret < 0)
5358 goto bye;
5359 adap->vres.key.start = val[0];
5360 adap->vres.key.size = val[1] - val[0] + 1;
5361 adap->num_uld += 1;
5362 }
5363 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5364 }
5365
5366 /* The MTU/MSS Table is initialized by now, so load their values. If
5367 * we're initializing the adapter, then we'll make any modifications
5368 * we want to the MTU/MSS Table and also initialize the congestion
5369 * parameters.
5370 */
5371 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5372 if (state != DEV_STATE_INIT) {
5373 int i;
5374
5375 /* The default MTU Table contains values 1492 and 1500.
5376 * However, for TCP, it's better to have two values which are
5377 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5378 * This allows us to have a TCP Data Payload which is a
5379 * multiple of 8 regardless of what combination of TCP Options
5380 * are in use (always a multiple of 4 bytes) which is
5381 * important for performance reasons. For instance, if no
5382 * options are in use, then we have a 20-byte IP header and a
5383 * 20-byte TCP header. In this case, a 1500-byte MSS would
5384 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5385 * which is not a multiple of 8. So using an MSS of 1488 in
5386 * this case results in a TCP Data Payload of 1448 bytes which
5387 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5388 * Stamps have been negotiated, then an MTU of 1500 bytes
5389 * results in a TCP Data Payload of 1448 bytes which, as
5390 * above, is a multiple of 8 bytes ...
5391 */
5392 for (i = 0; i < NMTUS; i++)
5393 if (adap->params.mtus[i] == 1492) {
5394 adap->params.mtus[i] = 1488;
5395 break;
5396 }
5397
5398 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5399 adap->params.b_wnd);
5400 }
5401 t4_init_sge_params(adap);
5402 adap->flags |= CXGB4_FW_OK;
5403 t4_init_tp_params(adap, true);
5404 return 0;
5405
5406 /*
5407 * Something bad happened. If a command timed out or failed with EIO
5408 * FW does not operate within its spec or something catastrophic
5409 * happened to HW/FW, stop issuing commands.
5410 */
5411 bye:
5412 adap_free_hma_mem(adap);
5413 kfree(adap->sge.egr_map);
5414 kfree(adap->sge.ingr_map);
5415 bitmap_free(adap->sge.starving_fl);
5416 bitmap_free(adap->sge.txq_maperr);
5417 #ifdef CONFIG_DEBUG_FS
5418 bitmap_free(adap->sge.blocked_fl);
5419 #endif
5420 if (ret != -ETIMEDOUT && ret != -EIO)
5421 t4_fw_bye(adap, adap->mbox);
5422 return ret;
5423 }
5424
5425 /* EEH callbacks */
5426
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)5427 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5428 pci_channel_state_t state)
5429 {
5430 int i;
5431 struct adapter *adap = pci_get_drvdata(pdev);
5432
5433 if (!adap)
5434 goto out;
5435
5436 rtnl_lock();
5437 adap->flags &= ~CXGB4_FW_OK;
5438 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5439 spin_lock(&adap->stats_lock);
5440 for_each_port(adap, i) {
5441 struct net_device *dev = adap->port[i];
5442 if (dev) {
5443 netif_device_detach(dev);
5444 netif_carrier_off(dev);
5445 }
5446 }
5447 spin_unlock(&adap->stats_lock);
5448 disable_interrupts(adap);
5449 if (adap->flags & CXGB4_FULL_INIT_DONE)
5450 cxgb_down(adap);
5451 rtnl_unlock();
5452 if ((adap->flags & CXGB4_DEV_ENABLED)) {
5453 pci_disable_device(pdev);
5454 adap->flags &= ~CXGB4_DEV_ENABLED;
5455 }
5456 out: return state == pci_channel_io_perm_failure ?
5457 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5458 }
5459
eeh_slot_reset(struct pci_dev * pdev)5460 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5461 {
5462 int i, ret;
5463 struct fw_caps_config_cmd c;
5464 struct adapter *adap = pci_get_drvdata(pdev);
5465
5466 if (!adap) {
5467 pci_restore_state(pdev);
5468 pci_save_state(pdev);
5469 return PCI_ERS_RESULT_RECOVERED;
5470 }
5471
5472 if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5473 if (pci_enable_device(pdev)) {
5474 dev_err(&pdev->dev, "Cannot reenable PCI "
5475 "device after reset\n");
5476 return PCI_ERS_RESULT_DISCONNECT;
5477 }
5478 adap->flags |= CXGB4_DEV_ENABLED;
5479 }
5480
5481 pci_set_master(pdev);
5482 pci_restore_state(pdev);
5483 pci_save_state(pdev);
5484
5485 if (t4_wait_dev_ready(adap->regs) < 0)
5486 return PCI_ERS_RESULT_DISCONNECT;
5487 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5488 return PCI_ERS_RESULT_DISCONNECT;
5489 adap->flags |= CXGB4_FW_OK;
5490 if (adap_init1(adap, &c))
5491 return PCI_ERS_RESULT_DISCONNECT;
5492
5493 for_each_port(adap, i) {
5494 struct port_info *pi = adap2pinfo(adap, i);
5495 u8 vivld = 0, vin = 0;
5496
5497 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5498 NULL, NULL, &vivld, &vin);
5499 if (ret < 0)
5500 return PCI_ERS_RESULT_DISCONNECT;
5501 pi->viid = ret;
5502 pi->xact_addr_filt = -1;
5503 /* If fw supports returning the VIN as part of FW_VI_CMD,
5504 * save the returned values.
5505 */
5506 if (adap->params.viid_smt_extn_support) {
5507 pi->vivld = vivld;
5508 pi->vin = vin;
5509 } else {
5510 /* Retrieve the values from VIID */
5511 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5512 pi->vin = FW_VIID_VIN_G(pi->viid);
5513 }
5514 }
5515
5516 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5517 adap->params.b_wnd);
5518 setup_memwin(adap);
5519 if (cxgb_up(adap))
5520 return PCI_ERS_RESULT_DISCONNECT;
5521 return PCI_ERS_RESULT_RECOVERED;
5522 }
5523
eeh_resume(struct pci_dev * pdev)5524 static void eeh_resume(struct pci_dev *pdev)
5525 {
5526 int i;
5527 struct adapter *adap = pci_get_drvdata(pdev);
5528
5529 if (!adap)
5530 return;
5531
5532 rtnl_lock();
5533 for_each_port(adap, i) {
5534 struct net_device *dev = adap->port[i];
5535 if (dev) {
5536 if (netif_running(dev)) {
5537 link_start(dev);
5538 cxgb_set_rxmode(dev);
5539 }
5540 netif_device_attach(dev);
5541 }
5542 }
5543 rtnl_unlock();
5544 }
5545
eeh_reset_prepare(struct pci_dev * pdev)5546 static void eeh_reset_prepare(struct pci_dev *pdev)
5547 {
5548 struct adapter *adapter = pci_get_drvdata(pdev);
5549 int i;
5550
5551 if (adapter->pf != 4)
5552 return;
5553
5554 adapter->flags &= ~CXGB4_FW_OK;
5555
5556 notify_ulds(adapter, CXGB4_STATE_DOWN);
5557
5558 for_each_port(adapter, i)
5559 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5560 cxgb_close(adapter->port[i]);
5561
5562 disable_interrupts(adapter);
5563 cxgb4_free_mps_ref_entries(adapter);
5564
5565 adap_free_hma_mem(adapter);
5566
5567 if (adapter->flags & CXGB4_FULL_INIT_DONE)
5568 cxgb_down(adapter);
5569 }
5570
eeh_reset_done(struct pci_dev * pdev)5571 static void eeh_reset_done(struct pci_dev *pdev)
5572 {
5573 struct adapter *adapter = pci_get_drvdata(pdev);
5574 int err, i;
5575
5576 if (adapter->pf != 4)
5577 return;
5578
5579 err = t4_wait_dev_ready(adapter->regs);
5580 if (err < 0) {
5581 dev_err(adapter->pdev_dev,
5582 "Device not ready, err %d", err);
5583 return;
5584 }
5585
5586 setup_memwin(adapter);
5587
5588 err = adap_init0(adapter, 1);
5589 if (err) {
5590 dev_err(adapter->pdev_dev,
5591 "Adapter init failed, err %d", err);
5592 return;
5593 }
5594
5595 setup_memwin_rdma(adapter);
5596
5597 if (adapter->flags & CXGB4_FW_OK) {
5598 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5599 if (err) {
5600 dev_err(adapter->pdev_dev,
5601 "Port init failed, err %d", err);
5602 return;
5603 }
5604 }
5605
5606 err = cfg_queues(adapter);
5607 if (err) {
5608 dev_err(adapter->pdev_dev,
5609 "Config queues failed, err %d", err);
5610 return;
5611 }
5612
5613 cxgb4_init_mps_ref_entries(adapter);
5614
5615 err = setup_fw_sge_queues(adapter);
5616 if (err) {
5617 dev_err(adapter->pdev_dev,
5618 "FW sge queue allocation failed, err %d", err);
5619 return;
5620 }
5621
5622 for_each_port(adapter, i)
5623 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5624 cxgb_open(adapter->port[i]);
5625 }
5626
5627 static const struct pci_error_handlers cxgb4_eeh = {
5628 .error_detected = eeh_err_detected,
5629 .slot_reset = eeh_slot_reset,
5630 .resume = eeh_resume,
5631 .reset_prepare = eeh_reset_prepare,
5632 .reset_done = eeh_reset_done,
5633 };
5634
5635 /* Return true if the Link Configuration supports "High Speeds" (those greater
5636 * than 1Gb/s).
5637 */
is_x_10g_port(const struct link_config * lc)5638 static inline bool is_x_10g_port(const struct link_config *lc)
5639 {
5640 unsigned int speeds, high_speeds;
5641
5642 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5643 high_speeds = speeds &
5644 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5645
5646 return high_speeds != 0;
5647 }
5648
5649 /* Perform default configuration of DMA queues depending on the number and type
5650 * of ports we found and the number of available CPUs. Most settings can be
5651 * modified by the admin prior to actual use.
5652 */
cfg_queues(struct adapter * adap)5653 static int cfg_queues(struct adapter *adap)
5654 {
5655 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5656 u32 ncpus = num_online_cpus();
5657 u32 niqflint, neq, num_ulds;
5658 struct sge *s = &adap->sge;
5659 u32 i, n10g = 0, qidx = 0;
5660 u32 q10g = 0, q1g;
5661
5662 /* Reduce memory usage in kdump environment, disable all offload. */
5663 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5664 adap->params.offload = 0;
5665 adap->params.crypto = 0;
5666 adap->params.ethofld = 0;
5667 }
5668
5669 /* Calculate the number of Ethernet Queue Sets available based on
5670 * resources provisioned for us. We always have an Asynchronous
5671 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
5672 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5673 * Ingress Queue. Meanwhile, we need two Egress Queues for each
5674 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5675 *
5676 * Note that we should also take into account all of the various
5677 * Offload Queues. But, in any situation where we're operating in
5678 * a Resource Constrained Provisioning environment, doing any Offload
5679 * at all is problematic ...
5680 */
5681 niqflint = adap->params.pfres.niqflint - 1;
5682 if (!(adap->flags & CXGB4_USING_MSIX))
5683 niqflint--;
5684 neq = adap->params.pfres.neq / 2;
5685 avail_qsets = min(niqflint, neq);
5686
5687 if (avail_qsets < adap->params.nports) {
5688 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5689 avail_qsets, adap->params.nports);
5690 return -ENOMEM;
5691 }
5692
5693 /* Count the number of 10Gb/s or better ports */
5694 for_each_port(adap, i)
5695 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5696
5697 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5698
5699 /* We default to 1 queue per non-10G port and up to # of cores queues
5700 * per 10G port.
5701 */
5702 if (n10g)
5703 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5704
5705 #ifdef CONFIG_CHELSIO_T4_DCB
5706 /* For Data Center Bridging support we need to be able to support up
5707 * to 8 Traffic Priorities; each of which will be assigned to its
5708 * own TX Queue in order to prevent Head-Of-Line Blocking.
5709 */
5710 q1g = 8;
5711 if (adap->params.nports * 8 > avail_eth_qsets) {
5712 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5713 avail_eth_qsets, adap->params.nports * 8);
5714 return -ENOMEM;
5715 }
5716
5717 if (adap->params.nports * ncpus < avail_eth_qsets)
5718 q10g = max(8U, ncpus);
5719 else
5720 q10g = max(8U, q10g);
5721
5722 while ((q10g * n10g) >
5723 (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5724 q10g--;
5725
5726 #else /* !CONFIG_CHELSIO_T4_DCB */
5727 q1g = 1;
5728 q10g = min(q10g, ncpus);
5729 #endif /* !CONFIG_CHELSIO_T4_DCB */
5730 if (is_kdump_kernel()) {
5731 q10g = 1;
5732 q1g = 1;
5733 }
5734
5735 for_each_port(adap, i) {
5736 struct port_info *pi = adap2pinfo(adap, i);
5737
5738 pi->first_qset = qidx;
5739 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5740 qidx += pi->nqsets;
5741 }
5742
5743 s->ethqsets = qidx;
5744 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5745 avail_qsets -= qidx;
5746
5747 if (is_uld(adap)) {
5748 /* For offload we use 1 queue/channel if all ports are up to 1G,
5749 * otherwise we divide all available queues amongst the channels
5750 * capped by the number of available cores.
5751 */
5752 num_ulds = adap->num_uld + adap->num_ofld_uld;
5753 i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5754 avail_uld_qsets = roundup(i, adap->params.nports);
5755 if (avail_qsets < num_ulds * adap->params.nports) {
5756 adap->params.offload = 0;
5757 adap->params.crypto = 0;
5758 s->ofldqsets = 0;
5759 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5760 s->ofldqsets = adap->params.nports;
5761 } else {
5762 s->ofldqsets = avail_uld_qsets;
5763 }
5764
5765 avail_qsets -= num_ulds * s->ofldqsets;
5766 }
5767
5768 /* ETHOFLD Queues used for QoS offload should follow same
5769 * allocation scheme as normal Ethernet Queues.
5770 */
5771 if (is_ethofld(adap)) {
5772 if (avail_qsets < s->max_ethqsets) {
5773 adap->params.ethofld = 0;
5774 s->eoqsets = 0;
5775 } else {
5776 s->eoqsets = s->max_ethqsets;
5777 }
5778 avail_qsets -= s->eoqsets;
5779 }
5780
5781 /* Mirror queues must follow same scheme as normal Ethernet
5782 * Queues, when there are enough queues available. Otherwise,
5783 * allocate at least 1 queue per port. If even 1 queue is not
5784 * available, then disable mirror queues support.
5785 */
5786 if (avail_qsets >= s->max_ethqsets)
5787 s->mirrorqsets = s->max_ethqsets;
5788 else if (avail_qsets >= adap->params.nports)
5789 s->mirrorqsets = adap->params.nports;
5790 else
5791 s->mirrorqsets = 0;
5792 avail_qsets -= s->mirrorqsets;
5793
5794 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5795 struct sge_eth_rxq *r = &s->ethrxq[i];
5796
5797 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5798 r->fl.size = 72;
5799 }
5800
5801 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5802 s->ethtxq[i].q.size = 1024;
5803
5804 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5805 s->ctrlq[i].q.size = 512;
5806
5807 if (!is_t4(adap->params.chip))
5808 s->ptptxq.q.size = 8;
5809
5810 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5811 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5812
5813 return 0;
5814 }
5815
5816 /*
5817 * Reduce the number of Ethernet queues across all ports to at most n.
5818 * n provides at least one queue per port.
5819 */
reduce_ethqs(struct adapter * adap,int n)5820 static void reduce_ethqs(struct adapter *adap, int n)
5821 {
5822 int i;
5823 struct port_info *pi;
5824
5825 while (n < adap->sge.ethqsets)
5826 for_each_port(adap, i) {
5827 pi = adap2pinfo(adap, i);
5828 if (pi->nqsets > 1) {
5829 pi->nqsets--;
5830 adap->sge.ethqsets--;
5831 if (adap->sge.ethqsets <= n)
5832 break;
5833 }
5834 }
5835
5836 n = 0;
5837 for_each_port(adap, i) {
5838 pi = adap2pinfo(adap, i);
5839 pi->first_qset = n;
5840 n += pi->nqsets;
5841 }
5842 }
5843
alloc_msix_info(struct adapter * adap,u32 num_vec)5844 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5845 {
5846 struct msix_info *msix_info;
5847
5848 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5849 if (!msix_info)
5850 return -ENOMEM;
5851
5852 adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL);
5853 if (!adap->msix_bmap.msix_bmap) {
5854 kfree(msix_info);
5855 return -ENOMEM;
5856 }
5857
5858 spin_lock_init(&adap->msix_bmap.lock);
5859 adap->msix_bmap.mapsize = num_vec;
5860
5861 adap->msix_info = msix_info;
5862 return 0;
5863 }
5864
free_msix_info(struct adapter * adap)5865 static void free_msix_info(struct adapter *adap)
5866 {
5867 bitmap_free(adap->msix_bmap.msix_bmap);
5868 kfree(adap->msix_info);
5869 }
5870
cxgb4_get_msix_idx_from_bmap(struct adapter * adap)5871 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5872 {
5873 struct msix_bmap *bmap = &adap->msix_bmap;
5874 unsigned int msix_idx;
5875 unsigned long flags;
5876
5877 spin_lock_irqsave(&bmap->lock, flags);
5878 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5879 if (msix_idx < bmap->mapsize) {
5880 __set_bit(msix_idx, bmap->msix_bmap);
5881 } else {
5882 spin_unlock_irqrestore(&bmap->lock, flags);
5883 return -ENOSPC;
5884 }
5885
5886 spin_unlock_irqrestore(&bmap->lock, flags);
5887 return msix_idx;
5888 }
5889
cxgb4_free_msix_idx_in_bmap(struct adapter * adap,unsigned int msix_idx)5890 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5891 unsigned int msix_idx)
5892 {
5893 struct msix_bmap *bmap = &adap->msix_bmap;
5894 unsigned long flags;
5895
5896 spin_lock_irqsave(&bmap->lock, flags);
5897 __clear_bit(msix_idx, bmap->msix_bmap);
5898 spin_unlock_irqrestore(&bmap->lock, flags);
5899 }
5900
5901 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5902 #define EXTRA_VECS 2
5903
enable_msix(struct adapter * adap)5904 static int enable_msix(struct adapter *adap)
5905 {
5906 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5907 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5908 u8 num_uld = 0, nchan = adap->params.nports;
5909 u32 i, want, need, num_vec;
5910 struct sge *s = &adap->sge;
5911 struct msix_entry *entries;
5912 struct port_info *pi;
5913 int allocated, ret;
5914
5915 want = s->max_ethqsets;
5916 #ifdef CONFIG_CHELSIO_T4_DCB
5917 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5918 * each port.
5919 */
5920 need = 8 * nchan;
5921 #else
5922 need = nchan;
5923 #endif
5924 eth_need = need;
5925 if (is_uld(adap)) {
5926 num_uld = adap->num_ofld_uld + adap->num_uld;
5927 want += num_uld * s->ofldqsets;
5928 uld_need = num_uld * nchan;
5929 need += uld_need;
5930 }
5931
5932 if (is_ethofld(adap)) {
5933 want += s->eoqsets;
5934 ethofld_need = eth_need;
5935 need += ethofld_need;
5936 }
5937
5938 if (s->mirrorqsets) {
5939 want += s->mirrorqsets;
5940 mirror_need = nchan;
5941 need += mirror_need;
5942 }
5943
5944 want += EXTRA_VECS;
5945 need += EXTRA_VECS;
5946
5947 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5948 if (!entries)
5949 return -ENOMEM;
5950
5951 for (i = 0; i < want; i++)
5952 entries[i].entry = i;
5953
5954 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5955 if (allocated < 0) {
5956 /* Disable offload and attempt to get vectors for NIC
5957 * only mode.
5958 */
5959 want = s->max_ethqsets + EXTRA_VECS;
5960 need = eth_need + EXTRA_VECS;
5961 allocated = pci_enable_msix_range(adap->pdev, entries,
5962 need, want);
5963 if (allocated < 0) {
5964 dev_info(adap->pdev_dev,
5965 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5966 ret = allocated;
5967 goto out_free;
5968 }
5969
5970 dev_info(adap->pdev_dev,
5971 "Disabling offload due to insufficient MSI-X vectors\n");
5972 adap->params.offload = 0;
5973 adap->params.crypto = 0;
5974 adap->params.ethofld = 0;
5975 s->ofldqsets = 0;
5976 s->eoqsets = 0;
5977 s->mirrorqsets = 0;
5978 uld_need = 0;
5979 ethofld_need = 0;
5980 mirror_need = 0;
5981 }
5982
5983 num_vec = allocated;
5984 if (num_vec < want) {
5985 /* Distribute available vectors to the various queue groups.
5986 * Every group gets its minimum requirement and NIC gets top
5987 * priority for leftovers.
5988 */
5989 ethqsets = eth_need;
5990 if (is_uld(adap))
5991 ofldqsets = nchan;
5992 if (is_ethofld(adap))
5993 eoqsets = ethofld_need;
5994 if (s->mirrorqsets)
5995 mirrorqsets = mirror_need;
5996
5997 num_vec -= need;
5998 while (num_vec) {
5999 if (num_vec < eth_need + ethofld_need ||
6000 ethqsets > s->max_ethqsets)
6001 break;
6002
6003 for_each_port(adap, i) {
6004 pi = adap2pinfo(adap, i);
6005 if (pi->nqsets < 2)
6006 continue;
6007
6008 ethqsets++;
6009 num_vec--;
6010 if (ethofld_need) {
6011 eoqsets++;
6012 num_vec--;
6013 }
6014 }
6015 }
6016
6017 if (is_uld(adap)) {
6018 while (num_vec) {
6019 if (num_vec < uld_need ||
6020 ofldqsets > s->ofldqsets)
6021 break;
6022
6023 ofldqsets++;
6024 num_vec -= uld_need;
6025 }
6026 }
6027
6028 if (s->mirrorqsets) {
6029 while (num_vec) {
6030 if (num_vec < mirror_need ||
6031 mirrorqsets > s->mirrorqsets)
6032 break;
6033
6034 mirrorqsets++;
6035 num_vec -= mirror_need;
6036 }
6037 }
6038 } else {
6039 ethqsets = s->max_ethqsets;
6040 if (is_uld(adap))
6041 ofldqsets = s->ofldqsets;
6042 if (is_ethofld(adap))
6043 eoqsets = s->eoqsets;
6044 if (s->mirrorqsets)
6045 mirrorqsets = s->mirrorqsets;
6046 }
6047
6048 if (ethqsets < s->max_ethqsets) {
6049 s->max_ethqsets = ethqsets;
6050 reduce_ethqs(adap, ethqsets);
6051 }
6052
6053 if (is_uld(adap)) {
6054 s->ofldqsets = ofldqsets;
6055 s->nqs_per_uld = s->ofldqsets;
6056 }
6057
6058 if (is_ethofld(adap))
6059 s->eoqsets = eoqsets;
6060
6061 if (s->mirrorqsets) {
6062 s->mirrorqsets = mirrorqsets;
6063 for_each_port(adap, i) {
6064 pi = adap2pinfo(adap, i);
6065 pi->nmirrorqsets = s->mirrorqsets / nchan;
6066 mutex_init(&pi->vi_mirror_mutex);
6067 }
6068 }
6069
6070 /* map for msix */
6071 ret = alloc_msix_info(adap, allocated);
6072 if (ret)
6073 goto out_disable_msix;
6074
6075 for (i = 0; i < allocated; i++) {
6076 adap->msix_info[i].vec = entries[i].vector;
6077 adap->msix_info[i].idx = i;
6078 }
6079
6080 dev_info(adap->pdev_dev,
6081 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6082 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6083 s->mirrorqsets);
6084
6085 kfree(entries);
6086 return 0;
6087
6088 out_disable_msix:
6089 pci_disable_msix(adap->pdev);
6090
6091 out_free:
6092 kfree(entries);
6093 return ret;
6094 }
6095
6096 #undef EXTRA_VECS
6097
init_rss(struct adapter * adap)6098 static int init_rss(struct adapter *adap)
6099 {
6100 unsigned int i;
6101 int err;
6102
6103 err = t4_init_rss_mode(adap, adap->mbox);
6104 if (err)
6105 return err;
6106
6107 for_each_port(adap, i) {
6108 struct port_info *pi = adap2pinfo(adap, i);
6109
6110 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6111 if (!pi->rss)
6112 return -ENOMEM;
6113 }
6114 return 0;
6115 }
6116
6117 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)6118 static void print_adapter_info(struct adapter *adapter)
6119 {
6120 /* Hardware/Firmware/etc. Version/Revision IDs */
6121 t4_dump_version_info(adapter);
6122
6123 /* Software/Hardware configuration */
6124 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6125 is_offload(adapter) ? "R" : "",
6126 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6127 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6128 is_offload(adapter) ? "Offload" : "non-Offload");
6129 }
6130
print_port_info(const struct net_device * dev)6131 static void print_port_info(const struct net_device *dev)
6132 {
6133 char buf[80];
6134 char *bufp = buf;
6135 const struct port_info *pi = netdev_priv(dev);
6136 const struct adapter *adap = pi->adapter;
6137
6138 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6139 bufp += sprintf(bufp, "100M/");
6140 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6141 bufp += sprintf(bufp, "1G/");
6142 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6143 bufp += sprintf(bufp, "10G/");
6144 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6145 bufp += sprintf(bufp, "25G/");
6146 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6147 bufp += sprintf(bufp, "40G/");
6148 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6149 bufp += sprintf(bufp, "50G/");
6150 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6151 bufp += sprintf(bufp, "100G/");
6152 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6153 bufp += sprintf(bufp, "200G/");
6154 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6155 bufp += sprintf(bufp, "400G/");
6156 if (bufp != buf)
6157 --bufp;
6158 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6159
6160 netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf);
6161 }
6162
6163 /*
6164 * Free the following resources:
6165 * - memory used for tables
6166 * - MSI/MSI-X
6167 * - net devices
6168 * - resources FW is holding for us
6169 */
free_some_resources(struct adapter * adapter)6170 static void free_some_resources(struct adapter *adapter)
6171 {
6172 unsigned int i;
6173
6174 kvfree(adapter->smt);
6175 kvfree(adapter->l2t);
6176 kvfree(adapter->srq);
6177 t4_cleanup_sched(adapter);
6178 kvfree(adapter->tids.tid_tab);
6179 cxgb4_cleanup_tc_matchall(adapter);
6180 cxgb4_cleanup_tc_mqprio(adapter);
6181 cxgb4_cleanup_tc_flower(adapter);
6182 cxgb4_cleanup_tc_u32(adapter);
6183 cxgb4_cleanup_ethtool_filters(adapter);
6184 kfree(adapter->sge.egr_map);
6185 kfree(adapter->sge.ingr_map);
6186 bitmap_free(adapter->sge.starving_fl);
6187 bitmap_free(adapter->sge.txq_maperr);
6188 #ifdef CONFIG_DEBUG_FS
6189 bitmap_free(adapter->sge.blocked_fl);
6190 #endif
6191 disable_msi(adapter);
6192
6193 for_each_port(adapter, i)
6194 if (adapter->port[i]) {
6195 struct port_info *pi = adap2pinfo(adapter, i);
6196
6197 if (pi->viid != 0)
6198 t4_free_vi(adapter, adapter->mbox, adapter->pf,
6199 0, pi->viid);
6200 kfree(adap2pinfo(adapter, i)->rss);
6201 free_netdev(adapter->port[i]);
6202 }
6203 if (adapter->flags & CXGB4_FW_OK)
6204 t4_fw_bye(adapter, adapter->pf);
6205 }
6206
6207 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6208 NETIF_F_GSO_UDP_L4)
6209 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6210 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6211 #define SEGMENT_SIZE 128
6212
t4_get_chip_type(struct adapter * adap,int ver)6213 static int t4_get_chip_type(struct adapter *adap, int ver)
6214 {
6215 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6216
6217 switch (ver) {
6218 case CHELSIO_T4:
6219 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6220 case CHELSIO_T5:
6221 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6222 case CHELSIO_T6:
6223 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6224 default:
6225 break;
6226 }
6227 return -EINVAL;
6228 }
6229
6230 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)6231 static void cxgb4_mgmt_setup(struct net_device *dev)
6232 {
6233 dev->type = ARPHRD_NONE;
6234 dev->mtu = 0;
6235 dev->hard_header_len = 0;
6236 dev->addr_len = 0;
6237 dev->tx_queue_len = 0;
6238 dev->flags |= IFF_NOARP;
6239 dev->priv_flags |= IFF_NO_QUEUE;
6240
6241 /* Initialize the device structure. */
6242 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6243 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6244 }
6245
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)6246 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6247 {
6248 struct adapter *adap = pci_get_drvdata(pdev);
6249 int err = 0;
6250 int current_vfs = pci_num_vf(pdev);
6251 u32 pcie_fw;
6252
6253 pcie_fw = readl(adap->regs + PCIE_FW_A);
6254 /* Check if fw is initialized */
6255 if (!(pcie_fw & PCIE_FW_INIT_F)) {
6256 dev_warn(&pdev->dev, "Device not initialized\n");
6257 return -EOPNOTSUPP;
6258 }
6259
6260 /* If any of the VF's is already assigned to Guest OS, then
6261 * SRIOV for the same cannot be modified
6262 */
6263 if (current_vfs && pci_vfs_assigned(pdev)) {
6264 dev_err(&pdev->dev,
6265 "Cannot modify SR-IOV while VFs are assigned\n");
6266 return current_vfs;
6267 }
6268 /* Note that the upper-level code ensures that we're never called with
6269 * a non-zero "num_vfs" when we already have VFs instantiated. But
6270 * it never hurts to code defensively.
6271 */
6272 if (num_vfs != 0 && current_vfs != 0)
6273 return -EBUSY;
6274
6275 /* Nothing to do for no change. */
6276 if (num_vfs == current_vfs)
6277 return num_vfs;
6278
6279 /* Disable SRIOV when zero is passed. */
6280 if (!num_vfs) {
6281 pci_disable_sriov(pdev);
6282 /* free VF Management Interface */
6283 unregister_netdev(adap->port[0]);
6284 free_netdev(adap->port[0]);
6285 adap->port[0] = NULL;
6286
6287 /* free VF resources */
6288 adap->num_vfs = 0;
6289 kfree(adap->vfinfo);
6290 adap->vfinfo = NULL;
6291 return 0;
6292 }
6293
6294 if (!current_vfs) {
6295 struct fw_pfvf_cmd port_cmd, port_rpl;
6296 struct net_device *netdev;
6297 unsigned int pmask, port;
6298 struct pci_dev *pbridge;
6299 struct port_info *pi;
6300 char name[IFNAMSIZ];
6301 u32 devcap2;
6302 u16 flags;
6303
6304 /* If we want to instantiate Virtual Functions, then our
6305 * parent bridge's PCI-E needs to support Alternative Routing
6306 * ID (ARI) because our VFs will show up at function offset 8
6307 * and above.
6308 */
6309 pbridge = pdev->bus->self;
6310 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6311 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6312
6313 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6314 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6315 /* Our parent bridge does not support ARI so issue a
6316 * warning and skip instantiating the VFs. They
6317 * won't be reachable.
6318 */
6319 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6320 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6321 PCI_FUNC(pbridge->devfn));
6322 return -ENOTSUPP;
6323 }
6324 memset(&port_cmd, 0, sizeof(port_cmd));
6325 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6326 FW_CMD_REQUEST_F |
6327 FW_CMD_READ_F |
6328 FW_PFVF_CMD_PFN_V(adap->pf) |
6329 FW_PFVF_CMD_VFN_V(0));
6330 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6331 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6332 &port_rpl);
6333 if (err)
6334 return err;
6335 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6336 port = ffs(pmask) - 1;
6337 /* Allocate VF Management Interface. */
6338 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6339 adap->pf);
6340 netdev = alloc_netdev(sizeof(struct port_info),
6341 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6342 if (!netdev)
6343 return -ENOMEM;
6344
6345 pi = netdev_priv(netdev);
6346 pi->adapter = adap;
6347 pi->lport = port;
6348 pi->tx_chan = port;
6349 SET_NETDEV_DEV(netdev, &pdev->dev);
6350
6351 adap->port[0] = netdev;
6352 pi->port_id = 0;
6353
6354 err = register_netdev(adap->port[0]);
6355 if (err) {
6356 pr_info("Unable to register VF mgmt netdev %s\n", name);
6357 free_netdev(adap->port[0]);
6358 adap->port[0] = NULL;
6359 return err;
6360 }
6361 /* Allocate and set up VF Information. */
6362 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6363 sizeof(struct vf_info), GFP_KERNEL);
6364 if (!adap->vfinfo) {
6365 unregister_netdev(adap->port[0]);
6366 free_netdev(adap->port[0]);
6367 adap->port[0] = NULL;
6368 return -ENOMEM;
6369 }
6370 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6371 }
6372 /* Instantiate the requested number of VFs. */
6373 err = pci_enable_sriov(pdev, num_vfs);
6374 if (err) {
6375 pr_info("Unable to instantiate %d VFs\n", num_vfs);
6376 if (!current_vfs) {
6377 unregister_netdev(adap->port[0]);
6378 free_netdev(adap->port[0]);
6379 adap->port[0] = NULL;
6380 kfree(adap->vfinfo);
6381 adap->vfinfo = NULL;
6382 }
6383 return err;
6384 }
6385
6386 adap->num_vfs = num_vfs;
6387 return num_vfs;
6388 }
6389 #endif /* CONFIG_PCI_IOV */
6390
6391 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6392
chcr_offload_state(struct adapter * adap,enum cxgb4_netdev_tls_ops op_val)6393 static int chcr_offload_state(struct adapter *adap,
6394 enum cxgb4_netdev_tls_ops op_val)
6395 {
6396 switch (op_val) {
6397 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6398 case CXGB4_TLSDEV_OPS:
6399 if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6400 dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6401 return -EOPNOTSUPP;
6402 }
6403 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6404 dev_dbg(adap->pdev_dev,
6405 "ch_ktls driver has no registered tlsdev_ops\n");
6406 return -EOPNOTSUPP;
6407 }
6408 break;
6409 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6410 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6411 case CXGB4_XFRMDEV_OPS:
6412 if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6413 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6414 return -EOPNOTSUPP;
6415 }
6416 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6417 dev_dbg(adap->pdev_dev,
6418 "chipsec driver has no registered xfrmdev_ops\n");
6419 return -EOPNOTSUPP;
6420 }
6421 break;
6422 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6423 default:
6424 dev_dbg(adap->pdev_dev,
6425 "driver has no support for offload %d\n", op_val);
6426 return -EOPNOTSUPP;
6427 }
6428
6429 return 0;
6430 }
6431
6432 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6433
6434 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6435
cxgb4_ktls_dev_add(struct net_device * netdev,struct sock * sk,enum tls_offload_ctx_dir direction,struct tls_crypto_info * crypto_info,u32 tcp_sn)6436 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6437 enum tls_offload_ctx_dir direction,
6438 struct tls_crypto_info *crypto_info,
6439 u32 tcp_sn)
6440 {
6441 struct adapter *adap = netdev2adap(netdev);
6442 int ret;
6443
6444 mutex_lock(&uld_mutex);
6445 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6446 if (ret)
6447 goto out_unlock;
6448
6449 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6450 if (ret)
6451 goto out_unlock;
6452
6453 ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6454 direction,
6455 crypto_info,
6456 tcp_sn);
6457 /* if there is a failure, clear the refcount */
6458 if (ret)
6459 cxgb4_set_ktls_feature(adap,
6460 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6461 out_unlock:
6462 mutex_unlock(&uld_mutex);
6463 return ret;
6464 }
6465
cxgb4_ktls_dev_del(struct net_device * netdev,struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)6466 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6467 struct tls_context *tls_ctx,
6468 enum tls_offload_ctx_dir direction)
6469 {
6470 struct adapter *adap = netdev2adap(netdev);
6471
6472 mutex_lock(&uld_mutex);
6473 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6474 goto out_unlock;
6475
6476 adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6477 direction);
6478
6479 out_unlock:
6480 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6481 mutex_unlock(&uld_mutex);
6482 }
6483
6484 static const struct tlsdev_ops cxgb4_ktls_ops = {
6485 .tls_dev_add = cxgb4_ktls_dev_add,
6486 .tls_dev_del = cxgb4_ktls_dev_del,
6487 };
6488 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6489
6490 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6491
cxgb4_xfrm_add_state(struct xfrm_state * x,struct netlink_ext_ack * extack)6492 static int cxgb4_xfrm_add_state(struct xfrm_state *x,
6493 struct netlink_ext_ack *extack)
6494 {
6495 struct adapter *adap = netdev2adap(x->xso.dev);
6496 int ret;
6497
6498 if (!mutex_trylock(&uld_mutex)) {
6499 NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use");
6500 return -EBUSY;
6501 }
6502 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6503 if (ret)
6504 goto out_unlock;
6505
6506 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack);
6507
6508 out_unlock:
6509 mutex_unlock(&uld_mutex);
6510
6511 return ret;
6512 }
6513
cxgb4_xfrm_del_state(struct xfrm_state * x)6514 static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6515 {
6516 struct adapter *adap = netdev2adap(x->xso.dev);
6517
6518 if (!mutex_trylock(&uld_mutex)) {
6519 dev_dbg(adap->pdev_dev,
6520 "crypto uld critical resource is under use\n");
6521 return;
6522 }
6523 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6524 goto out_unlock;
6525
6526 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6527
6528 out_unlock:
6529 mutex_unlock(&uld_mutex);
6530 }
6531
cxgb4_xfrm_free_state(struct xfrm_state * x)6532 static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6533 {
6534 struct adapter *adap = netdev2adap(x->xso.dev);
6535
6536 if (!mutex_trylock(&uld_mutex)) {
6537 dev_dbg(adap->pdev_dev,
6538 "crypto uld critical resource is under use\n");
6539 return;
6540 }
6541 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6542 goto out_unlock;
6543
6544 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6545
6546 out_unlock:
6547 mutex_unlock(&uld_mutex);
6548 }
6549
cxgb4_ipsec_offload_ok(struct sk_buff * skb,struct xfrm_state * x)6550 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6551 {
6552 struct adapter *adap = netdev2adap(x->xso.dev);
6553 bool ret = false;
6554
6555 if (!mutex_trylock(&uld_mutex)) {
6556 dev_dbg(adap->pdev_dev,
6557 "crypto uld critical resource is under use\n");
6558 return ret;
6559 }
6560 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6561 goto out_unlock;
6562
6563 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6564
6565 out_unlock:
6566 mutex_unlock(&uld_mutex);
6567 return ret;
6568 }
6569
cxgb4_advance_esn_state(struct xfrm_state * x)6570 static void cxgb4_advance_esn_state(struct xfrm_state *x)
6571 {
6572 struct adapter *adap = netdev2adap(x->xso.dev);
6573
6574 if (!mutex_trylock(&uld_mutex)) {
6575 dev_dbg(adap->pdev_dev,
6576 "crypto uld critical resource is under use\n");
6577 return;
6578 }
6579 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6580 goto out_unlock;
6581
6582 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6583
6584 out_unlock:
6585 mutex_unlock(&uld_mutex);
6586 }
6587
6588 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6589 .xdo_dev_state_add = cxgb4_xfrm_add_state,
6590 .xdo_dev_state_delete = cxgb4_xfrm_del_state,
6591 .xdo_dev_state_free = cxgb4_xfrm_free_state,
6592 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok,
6593 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6594 };
6595
6596 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6597
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)6598 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6599 {
6600 struct net_device *netdev;
6601 struct adapter *adapter;
6602 static int adap_idx = 1;
6603 int s_qpp, qpp, num_seg;
6604 struct port_info *pi;
6605 enum chip_type chip;
6606 void __iomem *regs;
6607 int func, chip_ver;
6608 u16 device_id;
6609 int i, err;
6610 u32 whoami;
6611
6612 err = pci_request_regions(pdev, KBUILD_MODNAME);
6613 if (err) {
6614 /* Just info, some other driver may have claimed the device. */
6615 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6616 return err;
6617 }
6618
6619 err = pci_enable_device(pdev);
6620 if (err) {
6621 dev_err(&pdev->dev, "cannot enable PCI device\n");
6622 goto out_release_regions;
6623 }
6624
6625 regs = pci_ioremap_bar(pdev, 0);
6626 if (!regs) {
6627 dev_err(&pdev->dev, "cannot map device registers\n");
6628 err = -ENOMEM;
6629 goto out_disable_device;
6630 }
6631
6632 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6633 if (!adapter) {
6634 err = -ENOMEM;
6635 goto out_unmap_bar0;
6636 }
6637
6638 adapter->regs = regs;
6639 err = t4_wait_dev_ready(regs);
6640 if (err < 0)
6641 goto out_free_adapter;
6642
6643 /* We control everything through one PF */
6644 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6645 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6646 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6647 if ((int)chip < 0) {
6648 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6649 err = chip;
6650 goto out_free_adapter;
6651 }
6652 chip_ver = CHELSIO_CHIP_VERSION(chip);
6653 func = chip_ver <= CHELSIO_T5 ?
6654 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6655
6656 adapter->pdev = pdev;
6657 adapter->pdev_dev = &pdev->dev;
6658 adapter->name = pci_name(pdev);
6659 adapter->mbox = func;
6660 adapter->pf = func;
6661 adapter->params.chip = chip;
6662 adapter->adap_idx = adap_idx;
6663 adapter->msg_enable = DFLT_MSG_ENABLE;
6664 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6665 (sizeof(struct mbox_cmd) *
6666 T4_OS_LOG_MBOX_CMDS),
6667 GFP_KERNEL);
6668 if (!adapter->mbox_log) {
6669 err = -ENOMEM;
6670 goto out_free_adapter;
6671 }
6672 spin_lock_init(&adapter->mbox_lock);
6673 INIT_LIST_HEAD(&adapter->mlist.list);
6674 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6675 pci_set_drvdata(pdev, adapter);
6676
6677 if (func != ent->driver_data) {
6678 pci_disable_device(pdev);
6679 pci_save_state(pdev); /* to restore SR-IOV later */
6680 return 0;
6681 }
6682
6683 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6684 if (err) {
6685 dev_err(&pdev->dev, "no usable DMA configuration\n");
6686 goto out_free_adapter;
6687 }
6688
6689 pci_set_master(pdev);
6690 pci_save_state(pdev);
6691 adap_idx++;
6692 adapter->workq = create_singlethread_workqueue("cxgb4");
6693 if (!adapter->workq) {
6694 err = -ENOMEM;
6695 goto out_free_adapter;
6696 }
6697
6698 /* PCI device has been enabled */
6699 adapter->flags |= CXGB4_DEV_ENABLED;
6700 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6701
6702 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6703 * Ingress Packet Data to Free List Buffers in order to allow for
6704 * chipset performance optimizations between the Root Complex and
6705 * Memory Controllers. (Messages to the associated Ingress Queue
6706 * notifying new Packet Placement in the Free Lists Buffers will be
6707 * send without the Relaxed Ordering Attribute thus guaranteeing that
6708 * all preceding PCIe Transaction Layer Packets will be processed
6709 * first.) But some Root Complexes have various issues with Upstream
6710 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6711 * The PCIe devices which under the Root Complexes will be cleared the
6712 * Relaxed Ordering bit in the configuration space, So we check our
6713 * PCIe configuration space to see if it's flagged with advice against
6714 * using Relaxed Ordering.
6715 */
6716 if (!pcie_relaxed_ordering_enabled(pdev))
6717 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6718
6719 spin_lock_init(&adapter->stats_lock);
6720 spin_lock_init(&adapter->tid_release_lock);
6721 spin_lock_init(&adapter->win0_lock);
6722
6723 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6724 INIT_WORK(&adapter->db_full_task, process_db_full);
6725 INIT_WORK(&adapter->db_drop_task, process_db_drop);
6726 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6727
6728 err = t4_prep_adapter(adapter);
6729 if (err)
6730 goto out_free_adapter;
6731
6732 if (is_kdump_kernel()) {
6733 /* Collect hardware state and append to /proc/vmcore */
6734 err = cxgb4_cudbg_vmcore_add_dump(adapter);
6735 if (err) {
6736 dev_warn(adapter->pdev_dev,
6737 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6738 err);
6739 err = 0;
6740 }
6741 }
6742
6743 if (!is_t4(adapter->params.chip)) {
6744 s_qpp = (QUEUESPERPAGEPF0_S +
6745 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6746 adapter->pf);
6747 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6748 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6749 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6750
6751 /* Each segment size is 128B. Write coalescing is enabled only
6752 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6753 * queue is less no of segments that can be accommodated in
6754 * a page size.
6755 */
6756 if (qpp > num_seg) {
6757 dev_err(&pdev->dev,
6758 "Incorrect number of egress queues per page\n");
6759 err = -EINVAL;
6760 goto out_free_adapter;
6761 }
6762 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6763 pci_resource_len(pdev, 2));
6764 if (!adapter->bar2) {
6765 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6766 err = -ENOMEM;
6767 goto out_free_adapter;
6768 }
6769 }
6770
6771 setup_memwin(adapter);
6772 err = adap_init0(adapter, 0);
6773 if (err)
6774 goto out_unmap_bar;
6775
6776 setup_memwin_rdma(adapter);
6777
6778 /* configure SGE_STAT_CFG_A to read WC stats */
6779 if (!is_t4(adapter->params.chip))
6780 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6781 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6782 T6_STATMODE_V(0)));
6783
6784 /* Initialize hash mac addr list */
6785 INIT_LIST_HEAD(&adapter->mac_hlist);
6786
6787 for_each_port(adapter, i) {
6788 /* For supporting MQPRIO Offload, need some extra
6789 * queues for each ETHOFLD TIDs. Keep it equal to
6790 * MAX_ATIDs for now. Once we connect to firmware
6791 * later and query the EOTID params, we'll come to
6792 * know the actual # of EOTIDs supported.
6793 */
6794 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6795 MAX_ETH_QSETS + MAX_ATIDS);
6796 if (!netdev) {
6797 err = -ENOMEM;
6798 goto out_free_dev;
6799 }
6800
6801 SET_NETDEV_DEV(netdev, &pdev->dev);
6802
6803 adapter->port[i] = netdev;
6804 pi = netdev_priv(netdev);
6805 pi->adapter = adapter;
6806 pi->xact_addr_filt = -1;
6807 pi->port_id = i;
6808 netdev->irq = pdev->irq;
6809
6810 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6811 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6812 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6813 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6814 NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA;
6815
6816 if (chip_ver > CHELSIO_T5) {
6817 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6818 NETIF_F_IPV6_CSUM |
6819 NETIF_F_RXCSUM |
6820 NETIF_F_GSO_UDP_TUNNEL |
6821 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6822 NETIF_F_TSO | NETIF_F_TSO6;
6823
6824 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6825 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6826 NETIF_F_HW_TLS_RECORD;
6827
6828 if (adapter->rawf_cnt)
6829 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6830 }
6831
6832 netdev->features |= netdev->hw_features;
6833 netdev->vlan_features = netdev->features & VLAN_FEAT;
6834 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6835 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6836 netdev->hw_features |= NETIF_F_HW_TLS_TX;
6837 netdev->tlsdev_ops = &cxgb4_ktls_ops;
6838 /* initialize the refcount */
6839 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6840 }
6841 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6842 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6843 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6844 netdev->hw_enc_features |= NETIF_F_HW_ESP;
6845 netdev->features |= NETIF_F_HW_ESP;
6846 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6847 }
6848 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6849
6850 netdev->priv_flags |= IFF_UNICAST_FLT;
6851
6852 /* MTU range: 81 - 9600 */
6853 netdev->min_mtu = 81; /* accommodate SACK */
6854 netdev->max_mtu = MAX_MTU;
6855
6856 netdev->netdev_ops = &cxgb4_netdev_ops;
6857 #ifdef CONFIG_CHELSIO_T4_DCB
6858 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6859 cxgb4_dcb_state_init(netdev);
6860 cxgb4_dcb_version_init(netdev);
6861 #endif
6862 cxgb4_set_ethtool_ops(netdev);
6863 }
6864
6865 cxgb4_init_ethtool_dump(adapter);
6866
6867 pci_set_drvdata(pdev, adapter);
6868
6869 if (adapter->flags & CXGB4_FW_OK) {
6870 err = t4_port_init(adapter, func, func, 0);
6871 if (err)
6872 goto out_free_dev;
6873 } else if (adapter->params.nports == 1) {
6874 /* If we don't have a connection to the firmware -- possibly
6875 * because of an error -- grab the raw VPD parameters so we
6876 * can set the proper MAC Address on the debug network
6877 * interface that we've created.
6878 */
6879 u8 hw_addr[ETH_ALEN];
6880 u8 *na = adapter->params.vpd.na;
6881
6882 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6883 if (!err) {
6884 for (i = 0; i < ETH_ALEN; i++)
6885 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6886 hex2val(na[2 * i + 1]));
6887 t4_set_hw_addr(adapter, 0, hw_addr);
6888 }
6889 }
6890
6891 if (!(adapter->flags & CXGB4_FW_OK))
6892 goto fw_attach_fail;
6893
6894 /* Configure queues and allocate tables now, they can be needed as
6895 * soon as the first register_netdev completes.
6896 */
6897 err = cfg_queues(adapter);
6898 if (err)
6899 goto out_free_dev;
6900
6901 adapter->smt = t4_init_smt();
6902 if (!adapter->smt) {
6903 /* We tolerate a lack of SMT, giving up some functionality */
6904 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6905 }
6906
6907 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6908 if (!adapter->l2t) {
6909 /* We tolerate a lack of L2T, giving up some functionality */
6910 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6911 adapter->params.offload = 0;
6912 }
6913
6914 #if IS_ENABLED(CONFIG_IPV6)
6915 if (chip_ver <= CHELSIO_T5 &&
6916 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6917 /* CLIP functionality is not present in hardware,
6918 * hence disable all offload features
6919 */
6920 dev_warn(&pdev->dev,
6921 "CLIP not enabled in hardware, continuing\n");
6922 adapter->params.offload = 0;
6923 } else {
6924 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6925 adapter->clipt_end);
6926 if (!adapter->clipt) {
6927 /* We tolerate a lack of clip_table, giving up
6928 * some functionality
6929 */
6930 dev_warn(&pdev->dev,
6931 "could not allocate Clip table, continuing\n");
6932 adapter->params.offload = 0;
6933 }
6934 }
6935 #endif
6936
6937 for_each_port(adapter, i) {
6938 pi = adap2pinfo(adapter, i);
6939 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6940 if (!pi->sched_tbl)
6941 dev_warn(&pdev->dev,
6942 "could not activate scheduling on port %d\n",
6943 i);
6944 }
6945
6946 if (is_offload(adapter) || is_hashfilter(adapter)) {
6947 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6948 u32 v;
6949
6950 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6951 if (chip_ver <= CHELSIO_T5) {
6952 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6953 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6954 adapter->tids.hash_base = v / 4;
6955 } else {
6956 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6957 v = t4_read_reg(adapter,
6958 T6_LE_DB_HASH_TID_BASE_A);
6959 adapter->tids.hash_base = v;
6960 }
6961 }
6962 }
6963
6964 if (tid_init(&adapter->tids) < 0) {
6965 dev_warn(&pdev->dev, "could not allocate TID table, "
6966 "continuing\n");
6967 adapter->params.offload = 0;
6968 } else {
6969 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6970 if (!adapter->tc_u32)
6971 dev_warn(&pdev->dev,
6972 "could not offload tc u32, continuing\n");
6973
6974 if (cxgb4_init_tc_flower(adapter))
6975 dev_warn(&pdev->dev,
6976 "could not offload tc flower, continuing\n");
6977
6978 if (cxgb4_init_tc_mqprio(adapter))
6979 dev_warn(&pdev->dev,
6980 "could not offload tc mqprio, continuing\n");
6981
6982 if (cxgb4_init_tc_matchall(adapter))
6983 dev_warn(&pdev->dev,
6984 "could not offload tc matchall, continuing\n");
6985 if (cxgb4_init_ethtool_filters(adapter))
6986 dev_warn(&pdev->dev,
6987 "could not initialize ethtool filters, continuing\n");
6988 }
6989
6990 /* See what interrupts we'll be using */
6991 if (msi > 1 && enable_msix(adapter) == 0)
6992 adapter->flags |= CXGB4_USING_MSIX;
6993 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6994 adapter->flags |= CXGB4_USING_MSI;
6995 if (msi > 1)
6996 free_msix_info(adapter);
6997 }
6998
6999 /* check for PCI Express bandwidth capabiltites */
7000 pcie_print_link_status(pdev);
7001
7002 cxgb4_init_mps_ref_entries(adapter);
7003
7004 err = init_rss(adapter);
7005 if (err)
7006 goto out_free_dev;
7007
7008 err = setup_non_data_intr(adapter);
7009 if (err) {
7010 dev_err(adapter->pdev_dev,
7011 "Non Data interrupt allocation failed, err: %d\n", err);
7012 goto out_free_dev;
7013 }
7014
7015 err = setup_fw_sge_queues(adapter);
7016 if (err) {
7017 dev_err(adapter->pdev_dev,
7018 "FW sge queue allocation failed, err %d", err);
7019 goto out_free_dev;
7020 }
7021
7022 fw_attach_fail:
7023 /*
7024 * The card is now ready to go. If any errors occur during device
7025 * registration we do not fail the whole card but rather proceed only
7026 * with the ports we manage to register successfully. However we must
7027 * register at least one net device.
7028 */
7029 for_each_port(adapter, i) {
7030 pi = adap2pinfo(adapter, i);
7031 adapter->port[i]->dev_port = pi->lport;
7032 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7033 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7034
7035 netif_carrier_off(adapter->port[i]);
7036
7037 err = register_netdev(adapter->port[i]);
7038 if (err)
7039 break;
7040 adapter->chan_map[pi->tx_chan] = i;
7041 print_port_info(adapter->port[i]);
7042 }
7043 if (i == 0) {
7044 dev_err(&pdev->dev, "could not register any net devices\n");
7045 goto out_free_dev;
7046 }
7047 if (err) {
7048 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7049 err = 0;
7050 }
7051
7052 if (cxgb4_debugfs_root) {
7053 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7054 cxgb4_debugfs_root);
7055 setup_debugfs(adapter);
7056 }
7057
7058 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7059 pdev->needs_freset = 1;
7060
7061 if (is_uld(adapter))
7062 cxgb4_uld_enable(adapter);
7063
7064 if (!is_t4(adapter->params.chip))
7065 cxgb4_ptp_init(adapter);
7066
7067 if (IS_REACHABLE(CONFIG_THERMAL) &&
7068 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7069 cxgb4_thermal_init(adapter);
7070
7071 print_adapter_info(adapter);
7072 return 0;
7073
7074 out_free_dev:
7075 t4_free_sge_resources(adapter);
7076 free_some_resources(adapter);
7077 if (adapter->flags & CXGB4_USING_MSIX)
7078 free_msix_info(adapter);
7079 if (adapter->num_uld || adapter->num_ofld_uld)
7080 t4_uld_mem_free(adapter);
7081 out_unmap_bar:
7082 if (!is_t4(adapter->params.chip))
7083 iounmap(adapter->bar2);
7084 out_free_adapter:
7085 if (adapter->workq)
7086 destroy_workqueue(adapter->workq);
7087
7088 kfree(adapter->mbox_log);
7089 kfree(adapter);
7090 out_unmap_bar0:
7091 iounmap(regs);
7092 out_disable_device:
7093 pci_disable_device(pdev);
7094 out_release_regions:
7095 pci_release_regions(pdev);
7096 return err;
7097 }
7098
remove_one(struct pci_dev * pdev)7099 static void remove_one(struct pci_dev *pdev)
7100 {
7101 struct adapter *adapter = pci_get_drvdata(pdev);
7102 struct hash_mac_addr *entry, *tmp;
7103
7104 if (!adapter) {
7105 pci_release_regions(pdev);
7106 return;
7107 }
7108
7109 /* If we allocated filters, free up state associated with any
7110 * valid filters ...
7111 */
7112 clear_all_filters(adapter);
7113
7114 adapter->flags |= CXGB4_SHUTTING_DOWN;
7115
7116 if (adapter->pf == 4) {
7117 int i;
7118
7119 /* Tear down per-adapter Work Queue first since it can contain
7120 * references to our adapter data structure.
7121 */
7122 destroy_workqueue(adapter->workq);
7123
7124 detach_ulds(adapter);
7125
7126 for_each_port(adapter, i)
7127 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7128 unregister_netdev(adapter->port[i]);
7129
7130 t4_uld_clean_up(adapter);
7131
7132 adap_free_hma_mem(adapter);
7133
7134 disable_interrupts(adapter);
7135
7136 cxgb4_free_mps_ref_entries(adapter);
7137
7138 debugfs_remove_recursive(adapter->debugfs_root);
7139
7140 if (!is_t4(adapter->params.chip))
7141 cxgb4_ptp_stop(adapter);
7142 if (IS_REACHABLE(CONFIG_THERMAL))
7143 cxgb4_thermal_remove(adapter);
7144
7145 if (adapter->flags & CXGB4_FULL_INIT_DONE)
7146 cxgb_down(adapter);
7147
7148 if (adapter->flags & CXGB4_USING_MSIX)
7149 free_msix_info(adapter);
7150 if (adapter->num_uld || adapter->num_ofld_uld)
7151 t4_uld_mem_free(adapter);
7152 free_some_resources(adapter);
7153 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7154 list) {
7155 list_del(&entry->list);
7156 kfree(entry);
7157 }
7158
7159 #if IS_ENABLED(CONFIG_IPV6)
7160 t4_cleanup_clip_tbl(adapter);
7161 #endif
7162 if (!is_t4(adapter->params.chip))
7163 iounmap(adapter->bar2);
7164 }
7165 #ifdef CONFIG_PCI_IOV
7166 else {
7167 cxgb4_iov_configure(adapter->pdev, 0);
7168 }
7169 #endif
7170 iounmap(adapter->regs);
7171 if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7172 pci_disable_device(pdev);
7173 adapter->flags &= ~CXGB4_DEV_ENABLED;
7174 }
7175 pci_release_regions(pdev);
7176 kfree(adapter->mbox_log);
7177 synchronize_rcu();
7178 kfree(adapter);
7179 }
7180
7181 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7182 * delivery. This is essentially a stripped down version of the PCI remove()
7183 * function where we do the minimal amount of work necessary to shutdown any
7184 * further activity.
7185 */
shutdown_one(struct pci_dev * pdev)7186 static void shutdown_one(struct pci_dev *pdev)
7187 {
7188 struct adapter *adapter = pci_get_drvdata(pdev);
7189
7190 /* As with remove_one() above (see extended comment), we only want do
7191 * do cleanup on PCI Devices which went all the way through init_one()
7192 * ...
7193 */
7194 if (!adapter) {
7195 pci_release_regions(pdev);
7196 return;
7197 }
7198
7199 adapter->flags |= CXGB4_SHUTTING_DOWN;
7200
7201 if (adapter->pf == 4) {
7202 int i;
7203
7204 for_each_port(adapter, i)
7205 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7206 cxgb_close(adapter->port[i]);
7207
7208 rtnl_lock();
7209 cxgb4_mqprio_stop_offload(adapter);
7210 rtnl_unlock();
7211
7212 if (is_uld(adapter)) {
7213 detach_ulds(adapter);
7214 t4_uld_clean_up(adapter);
7215 }
7216
7217 disable_interrupts(adapter);
7218 disable_msi(adapter);
7219
7220 t4_sge_stop(adapter);
7221 if (adapter->flags & CXGB4_FW_OK)
7222 t4_fw_bye(adapter, adapter->mbox);
7223 }
7224 }
7225
7226 static struct pci_driver cxgb4_driver = {
7227 .name = KBUILD_MODNAME,
7228 .id_table = cxgb4_pci_tbl,
7229 .probe = init_one,
7230 .remove = remove_one,
7231 .shutdown = shutdown_one,
7232 #ifdef CONFIG_PCI_IOV
7233 .sriov_configure = cxgb4_iov_configure,
7234 #endif
7235 .err_handler = &cxgb4_eeh,
7236 };
7237
cxgb4_init_module(void)7238 static int __init cxgb4_init_module(void)
7239 {
7240 int ret;
7241
7242 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7243
7244 ret = pci_register_driver(&cxgb4_driver);
7245 if (ret < 0)
7246 goto err_pci;
7247
7248 #if IS_ENABLED(CONFIG_IPV6)
7249 if (!inet6addr_registered) {
7250 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7251 if (ret)
7252 pci_unregister_driver(&cxgb4_driver);
7253 else
7254 inet6addr_registered = true;
7255 }
7256 #endif
7257
7258 if (ret == 0)
7259 return ret;
7260
7261 err_pci:
7262 debugfs_remove(cxgb4_debugfs_root);
7263
7264 return ret;
7265 }
7266
cxgb4_cleanup_module(void)7267 static void __exit cxgb4_cleanup_module(void)
7268 {
7269 #if IS_ENABLED(CONFIG_IPV6)
7270 if (inet6addr_registered) {
7271 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7272 inet6addr_registered = false;
7273 }
7274 #endif
7275 pci_unregister_driver(&cxgb4_driver);
7276 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
7277 }
7278
7279 module_init(cxgb4_init_module);
7280 module_exit(cxgb4_cleanup_module);
7281