1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 #include <net/udp_tunnel.h> 69 70 #include "cxgb4.h" 71 #include "cxgb4_filter.h" 72 #include "t4_regs.h" 73 #include "t4_values.h" 74 #include "t4_msg.h" 75 #include "t4fw_api.h" 76 #include "t4fw_version.h" 77 #include "cxgb4_dcb.h" 78 #include "srq.h" 79 #include "cxgb4_debugfs.h" 80 #include "clip_tbl.h" 81 #include "l2t.h" 82 #include "smt.h" 83 #include "sched.h" 84 #include "cxgb4_tc_u32.h" 85 #include "cxgb4_tc_flower.h" 86 #include "cxgb4_ptp.h" 87 #include "cxgb4_cudbg.h" 88 89 char cxgb4_driver_name[] = KBUILD_MODNAME; 90 91 #ifdef DRV_VERSION 92 #undef DRV_VERSION 93 #endif 94 #define DRV_VERSION "2.0.0-ko" 95 const char cxgb4_driver_version[] = DRV_VERSION; 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_VERSION(DRV_VERSION); 139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 140 MODULE_FIRMWARE(FW4_FNAME); 141 MODULE_FIRMWARE(FW5_FNAME); 142 MODULE_FIRMWARE(FW6_FNAME); 143 144 /* 145 * The driver uses the best interrupt scheme available on a platform in the 146 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 147 * of these schemes the driver may consider as follows: 148 * 149 * msi = 2: choose from among all three options 150 * msi = 1: only consider MSI and INTx interrupts 151 * msi = 0: force INTx interrupts 152 */ 153 static int msi = 2; 154 155 module_param(msi, int, 0644); 156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 157 158 /* 159 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 160 * offset by 2 bytes in order to have the IP headers line up on 4-byte 161 * boundaries. This is a requirement for many architectures which will throw 162 * a machine check fault if an attempt is made to access one of the 4-byte IP 163 * header fields on a non-4-byte boundary. And it's a major performance issue 164 * even on some architectures which allow it like some implementations of the 165 * x86 ISA. However, some architectures don't mind this and for some very 166 * edge-case performance sensitive applications (like forwarding large volumes 167 * of small packets), setting this DMA offset to 0 will decrease the number of 168 * PCI-E Bus transfers enough to measurably affect performance. 169 */ 170 static int rx_dma_offset = 2; 171 172 /* TX Queue select used to determine what algorithm to use for selecting TX 173 * queue. Select between the kernel provided function (select_queue=0) or user 174 * cxgb_select_queue function (select_queue=1) 175 * 176 * Default: select_queue=0 177 */ 178 static int select_queue; 179 module_param(select_queue, int, 0644); 180 MODULE_PARM_DESC(select_queue, 181 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 182 183 static struct dentry *cxgb4_debugfs_root; 184 185 LIST_HEAD(adapter_list); 186 DEFINE_MUTEX(uld_mutex); 187 188 static void link_report(struct net_device *dev) 189 { 190 if (!netif_carrier_ok(dev)) 191 netdev_info(dev, "link down\n"); 192 else { 193 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 194 195 const char *s; 196 const struct port_info *p = netdev_priv(dev); 197 198 switch (p->link_cfg.speed) { 199 case 100: 200 s = "100Mbps"; 201 break; 202 case 1000: 203 s = "1Gbps"; 204 break; 205 case 10000: 206 s = "10Gbps"; 207 break; 208 case 25000: 209 s = "25Gbps"; 210 break; 211 case 40000: 212 s = "40Gbps"; 213 break; 214 case 50000: 215 s = "50Gbps"; 216 break; 217 case 100000: 218 s = "100Gbps"; 219 break; 220 default: 221 pr_info("%s: unsupported speed: %d\n", 222 dev->name, p->link_cfg.speed); 223 return; 224 } 225 226 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 227 fc[p->link_cfg.fc]); 228 } 229 } 230 231 #ifdef CONFIG_CHELSIO_T4_DCB 232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 234 { 235 struct port_info *pi = netdev_priv(dev); 236 struct adapter *adap = pi->adapter; 237 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 238 int i; 239 240 /* We use a simple mapping of Port TX Queue Index to DCB 241 * Priority when we're enabling DCB. 242 */ 243 for (i = 0; i < pi->nqsets; i++, txq++) { 244 u32 name, value; 245 int err; 246 247 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 248 FW_PARAMS_PARAM_X_V( 249 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 250 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 251 value = enable ? i : 0xffffffff; 252 253 /* Since we can be called while atomic (from "interrupt 254 * level") we need to issue the Set Parameters Commannd 255 * without sleeping (timeout < 0). 256 */ 257 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 258 &name, &value, 259 -FW_CMD_MAX_TIMEOUT); 260 261 if (err) 262 dev_err(adap->pdev_dev, 263 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 264 enable ? "set" : "unset", pi->port_id, i, -err); 265 else 266 txq->dcb_prio = enable ? value : 0; 267 } 268 } 269 270 int cxgb4_dcb_enabled(const struct net_device *dev) 271 { 272 struct port_info *pi = netdev_priv(dev); 273 274 if (!pi->dcb.enabled) 275 return 0; 276 277 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 278 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 279 } 280 #endif /* CONFIG_CHELSIO_T4_DCB */ 281 282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 283 { 284 struct net_device *dev = adapter->port[port_id]; 285 286 /* Skip changes from disabled ports. */ 287 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 288 if (link_stat) 289 netif_carrier_on(dev); 290 else { 291 #ifdef CONFIG_CHELSIO_T4_DCB 292 if (cxgb4_dcb_enabled(dev)) { 293 cxgb4_dcb_reset(dev); 294 dcb_tx_queue_prio_enable(dev, false); 295 } 296 #endif /* CONFIG_CHELSIO_T4_DCB */ 297 netif_carrier_off(dev); 298 } 299 300 link_report(dev); 301 } 302 } 303 304 void t4_os_portmod_changed(struct adapter *adap, int port_id) 305 { 306 static const char *mod_str[] = { 307 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 308 }; 309 310 struct net_device *dev = adap->port[port_id]; 311 struct port_info *pi = netdev_priv(dev); 312 313 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 314 netdev_info(dev, "port module unplugged\n"); 315 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 316 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 317 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 318 netdev_info(dev, "%s: unsupported port module inserted\n", 319 dev->name); 320 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 321 netdev_info(dev, "%s: unknown port module inserted\n", 322 dev->name); 323 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 324 netdev_info(dev, "%s: transceiver module error\n", dev->name); 325 else 326 netdev_info(dev, "%s: unknown module type %d inserted\n", 327 dev->name, pi->mod_type); 328 329 /* If the interface is running, then we'll need any "sticky" Link 330 * Parameters redone with a new Transceiver Module. 331 */ 332 pi->link_cfg.redo_l1cfg = netif_running(dev); 333 } 334 335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 336 module_param(dbfifo_int_thresh, int, 0644); 337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 338 339 /* 340 * usecs to sleep while draining the dbfifo 341 */ 342 static int dbfifo_drain_delay = 1000; 343 module_param(dbfifo_drain_delay, int, 0644); 344 MODULE_PARM_DESC(dbfifo_drain_delay, 345 "usecs to sleep while draining the dbfifo"); 346 347 static inline int cxgb4_set_addr_hash(struct port_info *pi) 348 { 349 struct adapter *adap = pi->adapter; 350 u64 vec = 0; 351 bool ucast = false; 352 struct hash_mac_addr *entry; 353 354 /* Calculate the hash vector for the updated list and program it */ 355 list_for_each_entry(entry, &adap->mac_hlist, list) { 356 ucast |= is_unicast_ether_addr(entry->addr); 357 vec |= (1ULL << hash_mac_addr(entry->addr)); 358 } 359 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 360 vec, false); 361 } 362 363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 364 { 365 struct port_info *pi = netdev_priv(netdev); 366 struct adapter *adap = pi->adapter; 367 int ret; 368 u64 mhash = 0; 369 u64 uhash = 0; 370 bool free = false; 371 bool ucast = is_unicast_ether_addr(mac_addr); 372 const u8 *maclist[1] = {mac_addr}; 373 struct hash_mac_addr *new_entry; 374 375 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 376 NULL, ucast ? &uhash : &mhash, false); 377 if (ret < 0) 378 goto out; 379 /* if hash != 0, then add the addr to hash addr list 380 * so on the end we will calculate the hash for the 381 * list and program it 382 */ 383 if (uhash || mhash) { 384 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 385 if (!new_entry) 386 return -ENOMEM; 387 ether_addr_copy(new_entry->addr, mac_addr); 388 list_add_tail(&new_entry->list, &adap->mac_hlist); 389 ret = cxgb4_set_addr_hash(pi); 390 } 391 out: 392 return ret < 0 ? ret : 0; 393 } 394 395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 396 { 397 struct port_info *pi = netdev_priv(netdev); 398 struct adapter *adap = pi->adapter; 399 int ret; 400 const u8 *maclist[1] = {mac_addr}; 401 struct hash_mac_addr *entry, *tmp; 402 403 /* If the MAC address to be removed is in the hash addr 404 * list, delete it from the list and update hash vector 405 */ 406 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 407 if (ether_addr_equal(entry->addr, mac_addr)) { 408 list_del(&entry->list); 409 kfree(entry); 410 return cxgb4_set_addr_hash(pi); 411 } 412 } 413 414 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 415 return ret < 0 ? -EINVAL : 0; 416 } 417 418 /* 419 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 420 * If @mtu is -1 it is left unchanged. 421 */ 422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 423 { 424 struct port_info *pi = netdev_priv(dev); 425 struct adapter *adapter = pi->adapter; 426 427 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 429 430 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 431 (dev->flags & IFF_PROMISC) ? 1 : 0, 432 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 433 sleep_ok); 434 } 435 436 /** 437 * link_start - enable a port 438 * @dev: the port to enable 439 * 440 * Performs the MAC and PHY actions needed to enable a port. 441 */ 442 static int link_start(struct net_device *dev) 443 { 444 int ret; 445 struct port_info *pi = netdev_priv(dev); 446 unsigned int mb = pi->adapter->pf; 447 448 /* 449 * We do not set address filters and promiscuity here, the stack does 450 * that step explicitly. 451 */ 452 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 453 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 454 if (ret == 0) { 455 ret = t4_change_mac(pi->adapter, mb, pi->viid, 456 pi->xact_addr_filt, dev->dev_addr, true, 457 true); 458 if (ret >= 0) { 459 pi->xact_addr_filt = ret; 460 ret = 0; 461 } 462 } 463 if (ret == 0) 464 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 465 &pi->link_cfg); 466 if (ret == 0) { 467 local_bh_disable(); 468 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 469 true, CXGB4_DCB_ENABLED); 470 local_bh_enable(); 471 } 472 473 return ret; 474 } 475 476 #ifdef CONFIG_CHELSIO_T4_DCB 477 /* Handle a Data Center Bridging update message from the firmware. */ 478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 479 { 480 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 481 struct net_device *dev = adap->port[adap->chan_map[port]]; 482 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 483 int new_dcb_enabled; 484 485 cxgb4_dcb_handle_fw_update(adap, pcmd); 486 new_dcb_enabled = cxgb4_dcb_enabled(dev); 487 488 /* If the DCB has become enabled or disabled on the port then we're 489 * going to need to set up/tear down DCB Priority parameters for the 490 * TX Queues associated with the port. 491 */ 492 if (new_dcb_enabled != old_dcb_enabled) 493 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 494 } 495 #endif /* CONFIG_CHELSIO_T4_DCB */ 496 497 /* Response queue handler for the FW event queue. 498 */ 499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 500 const struct pkt_gl *gl) 501 { 502 u8 opcode = ((const struct rss_header *)rsp)->opcode; 503 504 rsp++; /* skip RSS header */ 505 506 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 507 */ 508 if (unlikely(opcode == CPL_FW4_MSG && 509 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 510 rsp++; 511 opcode = ((const struct rss_header *)rsp)->opcode; 512 rsp++; 513 if (opcode != CPL_SGE_EGR_UPDATE) { 514 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 515 , opcode); 516 goto out; 517 } 518 } 519 520 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 521 const struct cpl_sge_egr_update *p = (void *)rsp; 522 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 523 struct sge_txq *txq; 524 525 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 526 txq->restarts++; 527 if (txq->q_type == CXGB4_TXQ_ETH) { 528 struct sge_eth_txq *eq; 529 530 eq = container_of(txq, struct sge_eth_txq, q); 531 netif_tx_wake_queue(eq->txq); 532 } else { 533 struct sge_uld_txq *oq; 534 535 oq = container_of(txq, struct sge_uld_txq, q); 536 tasklet_schedule(&oq->qresume_tsk); 537 } 538 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 539 const struct cpl_fw6_msg *p = (void *)rsp; 540 541 #ifdef CONFIG_CHELSIO_T4_DCB 542 const struct fw_port_cmd *pcmd = (const void *)p->data; 543 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 544 unsigned int action = 545 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 546 547 if (cmd == FW_PORT_CMD && 548 (action == FW_PORT_ACTION_GET_PORT_INFO || 549 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 550 int port = FW_PORT_CMD_PORTID_G( 551 be32_to_cpu(pcmd->op_to_portid)); 552 struct net_device *dev; 553 int dcbxdis, state_input; 554 555 dev = q->adap->port[q->adap->chan_map[port]]; 556 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 557 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 558 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 559 & FW_PORT_CMD_DCBXDIS32_F)); 560 state_input = (dcbxdis 561 ? CXGB4_DCB_INPUT_FW_DISABLED 562 : CXGB4_DCB_INPUT_FW_ENABLED); 563 564 cxgb4_dcb_state_fsm(dev, state_input); 565 } 566 567 if (cmd == FW_PORT_CMD && 568 action == FW_PORT_ACTION_L2_DCB_CFG) 569 dcb_rpl(q->adap, pcmd); 570 else 571 #endif 572 if (p->type == 0) 573 t4_handle_fw_rpl(q->adap, p->data); 574 } else if (opcode == CPL_L2T_WRITE_RPL) { 575 const struct cpl_l2t_write_rpl *p = (void *)rsp; 576 577 do_l2t_write_rpl(q->adap, p); 578 } else if (opcode == CPL_SMT_WRITE_RPL) { 579 const struct cpl_smt_write_rpl *p = (void *)rsp; 580 581 do_smt_write_rpl(q->adap, p); 582 } else if (opcode == CPL_SET_TCB_RPL) { 583 const struct cpl_set_tcb_rpl *p = (void *)rsp; 584 585 filter_rpl(q->adap, p); 586 } else if (opcode == CPL_ACT_OPEN_RPL) { 587 const struct cpl_act_open_rpl *p = (void *)rsp; 588 589 hash_filter_rpl(q->adap, p); 590 } else if (opcode == CPL_ABORT_RPL_RSS) { 591 const struct cpl_abort_rpl_rss *p = (void *)rsp; 592 593 hash_del_filter_rpl(q->adap, p); 594 } else if (opcode == CPL_SRQ_TABLE_RPL) { 595 const struct cpl_srq_table_rpl *p = (void *)rsp; 596 597 do_srq_table_rpl(q->adap, p); 598 } else 599 dev_err(q->adap->pdev_dev, 600 "unexpected CPL %#x on FW event queue\n", opcode); 601 out: 602 return 0; 603 } 604 605 static void disable_msi(struct adapter *adapter) 606 { 607 if (adapter->flags & USING_MSIX) { 608 pci_disable_msix(adapter->pdev); 609 adapter->flags &= ~USING_MSIX; 610 } else if (adapter->flags & USING_MSI) { 611 pci_disable_msi(adapter->pdev); 612 adapter->flags &= ~USING_MSI; 613 } 614 } 615 616 /* 617 * Interrupt handler for non-data events used with MSI-X. 618 */ 619 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 620 { 621 struct adapter *adap = cookie; 622 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 623 624 if (v & PFSW_F) { 625 adap->swintr = 1; 626 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 627 } 628 if (adap->flags & MASTER_PF) 629 t4_slow_intr_handler(adap); 630 return IRQ_HANDLED; 631 } 632 633 /* 634 * Name the MSI-X interrupts. 635 */ 636 static void name_msix_vecs(struct adapter *adap) 637 { 638 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 639 640 /* non-data interrupts */ 641 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 642 643 /* FW events */ 644 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 645 adap->port[0]->name); 646 647 /* Ethernet queues */ 648 for_each_port(adap, j) { 649 struct net_device *d = adap->port[j]; 650 const struct port_info *pi = netdev_priv(d); 651 652 for (i = 0; i < pi->nqsets; i++, msi_idx++) 653 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 654 d->name, i); 655 } 656 } 657 658 static int request_msix_queue_irqs(struct adapter *adap) 659 { 660 struct sge *s = &adap->sge; 661 int err, ethqidx; 662 int msi_index = 2; 663 664 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 665 adap->msix_info[1].desc, &s->fw_evtq); 666 if (err) 667 return err; 668 669 for_each_ethrxq(s, ethqidx) { 670 err = request_irq(adap->msix_info[msi_index].vec, 671 t4_sge_intr_msix, 0, 672 adap->msix_info[msi_index].desc, 673 &s->ethrxq[ethqidx].rspq); 674 if (err) 675 goto unwind; 676 msi_index++; 677 } 678 return 0; 679 680 unwind: 681 while (--ethqidx >= 0) 682 free_irq(adap->msix_info[--msi_index].vec, 683 &s->ethrxq[ethqidx].rspq); 684 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 685 return err; 686 } 687 688 static void free_msix_queue_irqs(struct adapter *adap) 689 { 690 int i, msi_index = 2; 691 struct sge *s = &adap->sge; 692 693 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 694 for_each_ethrxq(s, i) 695 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 696 } 697 698 /** 699 * cxgb4_write_rss - write the RSS table for a given port 700 * @pi: the port 701 * @queues: array of queue indices for RSS 702 * 703 * Sets up the portion of the HW RSS table for the port's VI to distribute 704 * packets to the Rx queues in @queues. 705 * Should never be called before setting up sge eth rx queues 706 */ 707 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 708 { 709 u16 *rss; 710 int i, err; 711 struct adapter *adapter = pi->adapter; 712 const struct sge_eth_rxq *rxq; 713 714 rxq = &adapter->sge.ethrxq[pi->first_qset]; 715 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 716 if (!rss) 717 return -ENOMEM; 718 719 /* map the queue indices to queue ids */ 720 for (i = 0; i < pi->rss_size; i++, queues++) 721 rss[i] = rxq[*queues].rspq.abs_id; 722 723 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 724 pi->rss_size, rss, pi->rss_size); 725 /* If Tunnel All Lookup isn't specified in the global RSS 726 * Configuration, then we need to specify a default Ingress 727 * Queue for any ingress packets which aren't hashed. We'll 728 * use our first ingress queue ... 729 */ 730 if (!err) 731 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 732 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 733 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 734 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 735 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 736 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 737 rss[0]); 738 kfree(rss); 739 return err; 740 } 741 742 /** 743 * setup_rss - configure RSS 744 * @adap: the adapter 745 * 746 * Sets up RSS for each port. 747 */ 748 static int setup_rss(struct adapter *adap) 749 { 750 int i, j, err; 751 752 for_each_port(adap, i) { 753 const struct port_info *pi = adap2pinfo(adap, i); 754 755 /* Fill default values with equal distribution */ 756 for (j = 0; j < pi->rss_size; j++) 757 pi->rss[j] = j % pi->nqsets; 758 759 err = cxgb4_write_rss(pi, pi->rss); 760 if (err) 761 return err; 762 } 763 return 0; 764 } 765 766 /* 767 * Return the channel of the ingress queue with the given qid. 768 */ 769 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 770 { 771 qid -= p->ingr_start; 772 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 773 } 774 775 /* 776 * Wait until all NAPI handlers are descheduled. 777 */ 778 static void quiesce_rx(struct adapter *adap) 779 { 780 int i; 781 782 for (i = 0; i < adap->sge.ingr_sz; i++) { 783 struct sge_rspq *q = adap->sge.ingr_map[i]; 784 785 if (q && q->handler) 786 napi_disable(&q->napi); 787 } 788 } 789 790 /* Disable interrupt and napi handler */ 791 static void disable_interrupts(struct adapter *adap) 792 { 793 if (adap->flags & FULL_INIT_DONE) { 794 t4_intr_disable(adap); 795 if (adap->flags & USING_MSIX) { 796 free_msix_queue_irqs(adap); 797 free_irq(adap->msix_info[0].vec, adap); 798 } else { 799 free_irq(adap->pdev->irq, adap); 800 } 801 quiesce_rx(adap); 802 } 803 } 804 805 /* 806 * Enable NAPI scheduling and interrupt generation for all Rx queues. 807 */ 808 static void enable_rx(struct adapter *adap) 809 { 810 int i; 811 812 for (i = 0; i < adap->sge.ingr_sz; i++) { 813 struct sge_rspq *q = adap->sge.ingr_map[i]; 814 815 if (!q) 816 continue; 817 if (q->handler) 818 napi_enable(&q->napi); 819 820 /* 0-increment GTS to start the timer and enable interrupts */ 821 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 822 SEINTARM_V(q->intr_params) | 823 INGRESSQID_V(q->cntxt_id)); 824 } 825 } 826 827 828 static int setup_fw_sge_queues(struct adapter *adap) 829 { 830 struct sge *s = &adap->sge; 831 int err = 0; 832 833 bitmap_zero(s->starving_fl, s->egr_sz); 834 bitmap_zero(s->txq_maperr, s->egr_sz); 835 836 if (adap->flags & USING_MSIX) 837 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 838 else { 839 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 840 NULL, NULL, NULL, -1); 841 if (err) 842 return err; 843 adap->msi_idx = -((int)s->intrq.abs_id + 1); 844 } 845 846 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 847 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 848 return err; 849 } 850 851 /** 852 * setup_sge_queues - configure SGE Tx/Rx/response queues 853 * @adap: the adapter 854 * 855 * Determines how many sets of SGE queues to use and initializes them. 856 * We support multiple queue sets per port if we have MSI-X, otherwise 857 * just one queue set per port. 858 */ 859 static int setup_sge_queues(struct adapter *adap) 860 { 861 int err, i, j; 862 struct sge *s = &adap->sge; 863 struct sge_uld_rxq_info *rxq_info = NULL; 864 unsigned int cmplqid = 0; 865 866 if (is_uld(adap)) 867 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 868 869 for_each_port(adap, i) { 870 struct net_device *dev = adap->port[i]; 871 struct port_info *pi = netdev_priv(dev); 872 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 873 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 874 875 for (j = 0; j < pi->nqsets; j++, q++) { 876 if (adap->msi_idx > 0) 877 adap->msi_idx++; 878 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 879 adap->msi_idx, &q->fl, 880 t4_ethrx_handler, 881 NULL, 882 t4_get_tp_ch_map(adap, 883 pi->tx_chan)); 884 if (err) 885 goto freeout; 886 q->rspq.idx = j; 887 memset(&q->stats, 0, sizeof(q->stats)); 888 } 889 for (j = 0; j < pi->nqsets; j++, t++) { 890 err = t4_sge_alloc_eth_txq(adap, t, dev, 891 netdev_get_tx_queue(dev, j), 892 s->fw_evtq.cntxt_id); 893 if (err) 894 goto freeout; 895 } 896 } 897 898 for_each_port(adap, i) { 899 /* Note that cmplqid below is 0 if we don't 900 * have RDMA queues, and that's the right value. 901 */ 902 if (rxq_info) 903 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 904 905 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 906 s->fw_evtq.cntxt_id, cmplqid); 907 if (err) 908 goto freeout; 909 } 910 911 if (!is_t4(adap->params.chip)) { 912 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 913 netdev_get_tx_queue(adap->port[0], 0) 914 , s->fw_evtq.cntxt_id); 915 if (err) 916 goto freeout; 917 } 918 919 t4_write_reg(adap, is_t4(adap->params.chip) ? 920 MPS_TRC_RSS_CONTROL_A : 921 MPS_T5_TRC_RSS_CONTROL_A, 922 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 923 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 924 return 0; 925 freeout: 926 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 927 t4_free_sge_resources(adap); 928 return err; 929 } 930 931 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 932 struct net_device *sb_dev, 933 select_queue_fallback_t fallback) 934 { 935 int txq; 936 937 #ifdef CONFIG_CHELSIO_T4_DCB 938 /* If a Data Center Bridging has been successfully negotiated on this 939 * link then we'll use the skb's priority to map it to a TX Queue. 940 * The skb's priority is determined via the VLAN Tag Priority Code 941 * Point field. 942 */ 943 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 944 u16 vlan_tci; 945 int err; 946 947 err = vlan_get_tag(skb, &vlan_tci); 948 if (unlikely(err)) { 949 if (net_ratelimit()) 950 netdev_warn(dev, 951 "TX Packet without VLAN Tag on DCB Link\n"); 952 txq = 0; 953 } else { 954 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 955 #ifdef CONFIG_CHELSIO_T4_FCOE 956 if (skb->protocol == htons(ETH_P_FCOE)) 957 txq = skb->priority & 0x7; 958 #endif /* CONFIG_CHELSIO_T4_FCOE */ 959 } 960 return txq; 961 } 962 #endif /* CONFIG_CHELSIO_T4_DCB */ 963 964 if (select_queue) { 965 txq = (skb_rx_queue_recorded(skb) 966 ? skb_get_rx_queue(skb) 967 : smp_processor_id()); 968 969 while (unlikely(txq >= dev->real_num_tx_queues)) 970 txq -= dev->real_num_tx_queues; 971 972 return txq; 973 } 974 975 return fallback(dev, skb, NULL) % dev->real_num_tx_queues; 976 } 977 978 static int closest_timer(const struct sge *s, int time) 979 { 980 int i, delta, match = 0, min_delta = INT_MAX; 981 982 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 983 delta = time - s->timer_val[i]; 984 if (delta < 0) 985 delta = -delta; 986 if (delta < min_delta) { 987 min_delta = delta; 988 match = i; 989 } 990 } 991 return match; 992 } 993 994 static int closest_thres(const struct sge *s, int thres) 995 { 996 int i, delta, match = 0, min_delta = INT_MAX; 997 998 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 999 delta = thres - s->counter_val[i]; 1000 if (delta < 0) 1001 delta = -delta; 1002 if (delta < min_delta) { 1003 min_delta = delta; 1004 match = i; 1005 } 1006 } 1007 return match; 1008 } 1009 1010 /** 1011 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1012 * @q: the Rx queue 1013 * @us: the hold-off time in us, or 0 to disable timer 1014 * @cnt: the hold-off packet count, or 0 to disable counter 1015 * 1016 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1017 * one of the two needs to be enabled for the queue to generate interrupts. 1018 */ 1019 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1020 unsigned int us, unsigned int cnt) 1021 { 1022 struct adapter *adap = q->adap; 1023 1024 if ((us | cnt) == 0) 1025 cnt = 1; 1026 1027 if (cnt) { 1028 int err; 1029 u32 v, new_idx; 1030 1031 new_idx = closest_thres(&adap->sge, cnt); 1032 if (q->desc && q->pktcnt_idx != new_idx) { 1033 /* the queue has already been created, update it */ 1034 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1035 FW_PARAMS_PARAM_X_V( 1036 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1037 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1038 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1039 &v, &new_idx); 1040 if (err) 1041 return err; 1042 } 1043 q->pktcnt_idx = new_idx; 1044 } 1045 1046 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1047 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1048 return 0; 1049 } 1050 1051 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1052 { 1053 const struct port_info *pi = netdev_priv(dev); 1054 netdev_features_t changed = dev->features ^ features; 1055 int err; 1056 1057 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1058 return 0; 1059 1060 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1061 -1, -1, -1, 1062 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1063 if (unlikely(err)) 1064 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1065 return err; 1066 } 1067 1068 static int setup_debugfs(struct adapter *adap) 1069 { 1070 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1071 return -1; 1072 1073 #ifdef CONFIG_DEBUG_FS 1074 t4_setup_debugfs(adap); 1075 #endif 1076 return 0; 1077 } 1078 1079 /* 1080 * upper-layer driver support 1081 */ 1082 1083 /* 1084 * Allocate an active-open TID and set it to the supplied value. 1085 */ 1086 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1087 { 1088 int atid = -1; 1089 1090 spin_lock_bh(&t->atid_lock); 1091 if (t->afree) { 1092 union aopen_entry *p = t->afree; 1093 1094 atid = (p - t->atid_tab) + t->atid_base; 1095 t->afree = p->next; 1096 p->data = data; 1097 t->atids_in_use++; 1098 } 1099 spin_unlock_bh(&t->atid_lock); 1100 return atid; 1101 } 1102 EXPORT_SYMBOL(cxgb4_alloc_atid); 1103 1104 /* 1105 * Release an active-open TID. 1106 */ 1107 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1108 { 1109 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1110 1111 spin_lock_bh(&t->atid_lock); 1112 p->next = t->afree; 1113 t->afree = p; 1114 t->atids_in_use--; 1115 spin_unlock_bh(&t->atid_lock); 1116 } 1117 EXPORT_SYMBOL(cxgb4_free_atid); 1118 1119 /* 1120 * Allocate a server TID and set it to the supplied value. 1121 */ 1122 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1123 { 1124 int stid; 1125 1126 spin_lock_bh(&t->stid_lock); 1127 if (family == PF_INET) { 1128 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1129 if (stid < t->nstids) 1130 __set_bit(stid, t->stid_bmap); 1131 else 1132 stid = -1; 1133 } else { 1134 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1135 if (stid < 0) 1136 stid = -1; 1137 } 1138 if (stid >= 0) { 1139 t->stid_tab[stid].data = data; 1140 stid += t->stid_base; 1141 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1142 * This is equivalent to 4 TIDs. With CLIP enabled it 1143 * needs 2 TIDs. 1144 */ 1145 if (family == PF_INET6) { 1146 t->stids_in_use += 2; 1147 t->v6_stids_in_use += 2; 1148 } else { 1149 t->stids_in_use++; 1150 } 1151 } 1152 spin_unlock_bh(&t->stid_lock); 1153 return stid; 1154 } 1155 EXPORT_SYMBOL(cxgb4_alloc_stid); 1156 1157 /* Allocate a server filter TID and set it to the supplied value. 1158 */ 1159 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1160 { 1161 int stid; 1162 1163 spin_lock_bh(&t->stid_lock); 1164 if (family == PF_INET) { 1165 stid = find_next_zero_bit(t->stid_bmap, 1166 t->nstids + t->nsftids, t->nstids); 1167 if (stid < (t->nstids + t->nsftids)) 1168 __set_bit(stid, t->stid_bmap); 1169 else 1170 stid = -1; 1171 } else { 1172 stid = -1; 1173 } 1174 if (stid >= 0) { 1175 t->stid_tab[stid].data = data; 1176 stid -= t->nstids; 1177 stid += t->sftid_base; 1178 t->sftids_in_use++; 1179 } 1180 spin_unlock_bh(&t->stid_lock); 1181 return stid; 1182 } 1183 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1184 1185 /* Release a server TID. 1186 */ 1187 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1188 { 1189 /* Is it a server filter TID? */ 1190 if (t->nsftids && (stid >= t->sftid_base)) { 1191 stid -= t->sftid_base; 1192 stid += t->nstids; 1193 } else { 1194 stid -= t->stid_base; 1195 } 1196 1197 spin_lock_bh(&t->stid_lock); 1198 if (family == PF_INET) 1199 __clear_bit(stid, t->stid_bmap); 1200 else 1201 bitmap_release_region(t->stid_bmap, stid, 1); 1202 t->stid_tab[stid].data = NULL; 1203 if (stid < t->nstids) { 1204 if (family == PF_INET6) { 1205 t->stids_in_use -= 2; 1206 t->v6_stids_in_use -= 2; 1207 } else { 1208 t->stids_in_use--; 1209 } 1210 } else { 1211 t->sftids_in_use--; 1212 } 1213 1214 spin_unlock_bh(&t->stid_lock); 1215 } 1216 EXPORT_SYMBOL(cxgb4_free_stid); 1217 1218 /* 1219 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1220 */ 1221 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1222 unsigned int tid) 1223 { 1224 struct cpl_tid_release *req; 1225 1226 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1227 req = __skb_put(skb, sizeof(*req)); 1228 INIT_TP_WR(req, tid); 1229 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1230 } 1231 1232 /* 1233 * Queue a TID release request and if necessary schedule a work queue to 1234 * process it. 1235 */ 1236 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1237 unsigned int tid) 1238 { 1239 void **p = &t->tid_tab[tid]; 1240 struct adapter *adap = container_of(t, struct adapter, tids); 1241 1242 spin_lock_bh(&adap->tid_release_lock); 1243 *p = adap->tid_release_head; 1244 /* Low 2 bits encode the Tx channel number */ 1245 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1246 if (!adap->tid_release_task_busy) { 1247 adap->tid_release_task_busy = true; 1248 queue_work(adap->workq, &adap->tid_release_task); 1249 } 1250 spin_unlock_bh(&adap->tid_release_lock); 1251 } 1252 1253 /* 1254 * Process the list of pending TID release requests. 1255 */ 1256 static void process_tid_release_list(struct work_struct *work) 1257 { 1258 struct sk_buff *skb; 1259 struct adapter *adap; 1260 1261 adap = container_of(work, struct adapter, tid_release_task); 1262 1263 spin_lock_bh(&adap->tid_release_lock); 1264 while (adap->tid_release_head) { 1265 void **p = adap->tid_release_head; 1266 unsigned int chan = (uintptr_t)p & 3; 1267 p = (void *)p - chan; 1268 1269 adap->tid_release_head = *p; 1270 *p = NULL; 1271 spin_unlock_bh(&adap->tid_release_lock); 1272 1273 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1274 GFP_KERNEL))) 1275 schedule_timeout_uninterruptible(1); 1276 1277 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1278 t4_ofld_send(adap, skb); 1279 spin_lock_bh(&adap->tid_release_lock); 1280 } 1281 adap->tid_release_task_busy = false; 1282 spin_unlock_bh(&adap->tid_release_lock); 1283 } 1284 1285 /* 1286 * Release a TID and inform HW. If we are unable to allocate the release 1287 * message we defer to a work queue. 1288 */ 1289 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1290 unsigned short family) 1291 { 1292 struct sk_buff *skb; 1293 struct adapter *adap = container_of(t, struct adapter, tids); 1294 1295 WARN_ON(tid >= t->ntids); 1296 1297 if (t->tid_tab[tid]) { 1298 t->tid_tab[tid] = NULL; 1299 atomic_dec(&t->conns_in_use); 1300 if (t->hash_base && (tid >= t->hash_base)) { 1301 if (family == AF_INET6) 1302 atomic_sub(2, &t->hash_tids_in_use); 1303 else 1304 atomic_dec(&t->hash_tids_in_use); 1305 } else { 1306 if (family == AF_INET6) 1307 atomic_sub(2, &t->tids_in_use); 1308 else 1309 atomic_dec(&t->tids_in_use); 1310 } 1311 } 1312 1313 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1314 if (likely(skb)) { 1315 mk_tid_release(skb, chan, tid); 1316 t4_ofld_send(adap, skb); 1317 } else 1318 cxgb4_queue_tid_release(t, chan, tid); 1319 } 1320 EXPORT_SYMBOL(cxgb4_remove_tid); 1321 1322 /* 1323 * Allocate and initialize the TID tables. Returns 0 on success. 1324 */ 1325 static int tid_init(struct tid_info *t) 1326 { 1327 struct adapter *adap = container_of(t, struct adapter, tids); 1328 unsigned int max_ftids = t->nftids + t->nsftids; 1329 unsigned int natids = t->natids; 1330 unsigned int stid_bmap_size; 1331 unsigned int ftid_bmap_size; 1332 size_t size; 1333 1334 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1335 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1336 size = t->ntids * sizeof(*t->tid_tab) + 1337 natids * sizeof(*t->atid_tab) + 1338 t->nstids * sizeof(*t->stid_tab) + 1339 t->nsftids * sizeof(*t->stid_tab) + 1340 stid_bmap_size * sizeof(long) + 1341 max_ftids * sizeof(*t->ftid_tab) + 1342 ftid_bmap_size * sizeof(long); 1343 1344 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1345 if (!t->tid_tab) 1346 return -ENOMEM; 1347 1348 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1349 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1350 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1351 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1352 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1353 spin_lock_init(&t->stid_lock); 1354 spin_lock_init(&t->atid_lock); 1355 spin_lock_init(&t->ftid_lock); 1356 1357 t->stids_in_use = 0; 1358 t->v6_stids_in_use = 0; 1359 t->sftids_in_use = 0; 1360 t->afree = NULL; 1361 t->atids_in_use = 0; 1362 atomic_set(&t->tids_in_use, 0); 1363 atomic_set(&t->conns_in_use, 0); 1364 atomic_set(&t->hash_tids_in_use, 0); 1365 1366 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1367 if (natids) { 1368 while (--natids) 1369 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1370 t->afree = t->atid_tab; 1371 } 1372 1373 if (is_offload(adap)) { 1374 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1375 /* Reserve stid 0 for T4/T5 adapters */ 1376 if (!t->stid_base && 1377 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1378 __set_bit(0, t->stid_bmap); 1379 } 1380 1381 bitmap_zero(t->ftid_bmap, t->nftids); 1382 return 0; 1383 } 1384 1385 /** 1386 * cxgb4_create_server - create an IP server 1387 * @dev: the device 1388 * @stid: the server TID 1389 * @sip: local IP address to bind server to 1390 * @sport: the server's TCP port 1391 * @queue: queue to direct messages from this server to 1392 * 1393 * Create an IP server for the given port and address. 1394 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1395 */ 1396 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1397 __be32 sip, __be16 sport, __be16 vlan, 1398 unsigned int queue) 1399 { 1400 unsigned int chan; 1401 struct sk_buff *skb; 1402 struct adapter *adap; 1403 struct cpl_pass_open_req *req; 1404 int ret; 1405 1406 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1407 if (!skb) 1408 return -ENOMEM; 1409 1410 adap = netdev2adap(dev); 1411 req = __skb_put(skb, sizeof(*req)); 1412 INIT_TP_WR(req, 0); 1413 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1414 req->local_port = sport; 1415 req->peer_port = htons(0); 1416 req->local_ip = sip; 1417 req->peer_ip = htonl(0); 1418 chan = rxq_to_chan(&adap->sge, queue); 1419 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1420 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1421 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1422 ret = t4_mgmt_tx(adap, skb); 1423 return net_xmit_eval(ret); 1424 } 1425 EXPORT_SYMBOL(cxgb4_create_server); 1426 1427 /* cxgb4_create_server6 - create an IPv6 server 1428 * @dev: the device 1429 * @stid: the server TID 1430 * @sip: local IPv6 address to bind server to 1431 * @sport: the server's TCP port 1432 * @queue: queue to direct messages from this server to 1433 * 1434 * Create an IPv6 server for the given port and address. 1435 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1436 */ 1437 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1438 const struct in6_addr *sip, __be16 sport, 1439 unsigned int queue) 1440 { 1441 unsigned int chan; 1442 struct sk_buff *skb; 1443 struct adapter *adap; 1444 struct cpl_pass_open_req6 *req; 1445 int ret; 1446 1447 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1448 if (!skb) 1449 return -ENOMEM; 1450 1451 adap = netdev2adap(dev); 1452 req = __skb_put(skb, sizeof(*req)); 1453 INIT_TP_WR(req, 0); 1454 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1455 req->local_port = sport; 1456 req->peer_port = htons(0); 1457 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1458 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1459 req->peer_ip_hi = cpu_to_be64(0); 1460 req->peer_ip_lo = cpu_to_be64(0); 1461 chan = rxq_to_chan(&adap->sge, queue); 1462 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1463 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1464 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1465 ret = t4_mgmt_tx(adap, skb); 1466 return net_xmit_eval(ret); 1467 } 1468 EXPORT_SYMBOL(cxgb4_create_server6); 1469 1470 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1471 unsigned int queue, bool ipv6) 1472 { 1473 struct sk_buff *skb; 1474 struct adapter *adap; 1475 struct cpl_close_listsvr_req *req; 1476 int ret; 1477 1478 adap = netdev2adap(dev); 1479 1480 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1481 if (!skb) 1482 return -ENOMEM; 1483 1484 req = __skb_put(skb, sizeof(*req)); 1485 INIT_TP_WR(req, 0); 1486 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1487 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1488 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1489 ret = t4_mgmt_tx(adap, skb); 1490 return net_xmit_eval(ret); 1491 } 1492 EXPORT_SYMBOL(cxgb4_remove_server); 1493 1494 /** 1495 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1496 * @mtus: the HW MTU table 1497 * @mtu: the target MTU 1498 * @idx: index of selected entry in the MTU table 1499 * 1500 * Returns the index and the value in the HW MTU table that is closest to 1501 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1502 * table, in which case that smallest available value is selected. 1503 */ 1504 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1505 unsigned int *idx) 1506 { 1507 unsigned int i = 0; 1508 1509 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1510 ++i; 1511 if (idx) 1512 *idx = i; 1513 return mtus[i]; 1514 } 1515 EXPORT_SYMBOL(cxgb4_best_mtu); 1516 1517 /** 1518 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1519 * @mtus: the HW MTU table 1520 * @header_size: Header Size 1521 * @data_size_max: maximum Data Segment Size 1522 * @data_size_align: desired Data Segment Size Alignment (2^N) 1523 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1524 * 1525 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1526 * MTU Table based solely on a Maximum MTU parameter, we break that 1527 * parameter up into a Header Size and Maximum Data Segment Size, and 1528 * provide a desired Data Segment Size Alignment. If we find an MTU in 1529 * the Hardware MTU Table which will result in a Data Segment Size with 1530 * the requested alignment _and_ that MTU isn't "too far" from the 1531 * closest MTU, then we'll return that rather than the closest MTU. 1532 */ 1533 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1534 unsigned short header_size, 1535 unsigned short data_size_max, 1536 unsigned short data_size_align, 1537 unsigned int *mtu_idxp) 1538 { 1539 unsigned short max_mtu = header_size + data_size_max; 1540 unsigned short data_size_align_mask = data_size_align - 1; 1541 int mtu_idx, aligned_mtu_idx; 1542 1543 /* Scan the MTU Table till we find an MTU which is larger than our 1544 * Maximum MTU or we reach the end of the table. Along the way, 1545 * record the last MTU found, if any, which will result in a Data 1546 * Segment Length matching the requested alignment. 1547 */ 1548 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1549 unsigned short data_size = mtus[mtu_idx] - header_size; 1550 1551 /* If this MTU minus the Header Size would result in a 1552 * Data Segment Size of the desired alignment, remember it. 1553 */ 1554 if ((data_size & data_size_align_mask) == 0) 1555 aligned_mtu_idx = mtu_idx; 1556 1557 /* If we're not at the end of the Hardware MTU Table and the 1558 * next element is larger than our Maximum MTU, drop out of 1559 * the loop. 1560 */ 1561 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1562 break; 1563 } 1564 1565 /* If we fell out of the loop because we ran to the end of the table, 1566 * then we just have to use the last [largest] entry. 1567 */ 1568 if (mtu_idx == NMTUS) 1569 mtu_idx--; 1570 1571 /* If we found an MTU which resulted in the requested Data Segment 1572 * Length alignment and that's "not far" from the largest MTU which is 1573 * less than or equal to the maximum MTU, then use that. 1574 */ 1575 if (aligned_mtu_idx >= 0 && 1576 mtu_idx - aligned_mtu_idx <= 1) 1577 mtu_idx = aligned_mtu_idx; 1578 1579 /* If the caller has passed in an MTU Index pointer, pass the 1580 * MTU Index back. Return the MTU value. 1581 */ 1582 if (mtu_idxp) 1583 *mtu_idxp = mtu_idx; 1584 return mtus[mtu_idx]; 1585 } 1586 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1587 1588 /** 1589 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1590 * @chip: chip type 1591 * @viid: VI id of the given port 1592 * 1593 * Return the SMT index for this VI. 1594 */ 1595 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1596 { 1597 /* In T4/T5, SMT contains 256 SMAC entries organized in 1598 * 128 rows of 2 entries each. 1599 * In T6, SMT contains 256 SMAC entries in 256 rows. 1600 * TODO: The below code needs to be updated when we add support 1601 * for 256 VFs. 1602 */ 1603 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1604 return ((viid & 0x7f) << 1); 1605 else 1606 return (viid & 0x7f); 1607 } 1608 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1609 1610 /** 1611 * cxgb4_port_chan - get the HW channel of a port 1612 * @dev: the net device for the port 1613 * 1614 * Return the HW Tx channel of the given port. 1615 */ 1616 unsigned int cxgb4_port_chan(const struct net_device *dev) 1617 { 1618 return netdev2pinfo(dev)->tx_chan; 1619 } 1620 EXPORT_SYMBOL(cxgb4_port_chan); 1621 1622 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1623 { 1624 struct adapter *adap = netdev2adap(dev); 1625 u32 v1, v2, lp_count, hp_count; 1626 1627 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1628 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1629 if (is_t4(adap->params.chip)) { 1630 lp_count = LP_COUNT_G(v1); 1631 hp_count = HP_COUNT_G(v1); 1632 } else { 1633 lp_count = LP_COUNT_T5_G(v1); 1634 hp_count = HP_COUNT_T5_G(v2); 1635 } 1636 return lpfifo ? lp_count : hp_count; 1637 } 1638 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1639 1640 /** 1641 * cxgb4_port_viid - get the VI id of a port 1642 * @dev: the net device for the port 1643 * 1644 * Return the VI id of the given port. 1645 */ 1646 unsigned int cxgb4_port_viid(const struct net_device *dev) 1647 { 1648 return netdev2pinfo(dev)->viid; 1649 } 1650 EXPORT_SYMBOL(cxgb4_port_viid); 1651 1652 /** 1653 * cxgb4_port_idx - get the index of a port 1654 * @dev: the net device for the port 1655 * 1656 * Return the index of the given port. 1657 */ 1658 unsigned int cxgb4_port_idx(const struct net_device *dev) 1659 { 1660 return netdev2pinfo(dev)->port_id; 1661 } 1662 EXPORT_SYMBOL(cxgb4_port_idx); 1663 1664 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1665 struct tp_tcp_stats *v6) 1666 { 1667 struct adapter *adap = pci_get_drvdata(pdev); 1668 1669 spin_lock(&adap->stats_lock); 1670 t4_tp_get_tcp_stats(adap, v4, v6, false); 1671 spin_unlock(&adap->stats_lock); 1672 } 1673 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1674 1675 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1676 const unsigned int *pgsz_order) 1677 { 1678 struct adapter *adap = netdev2adap(dev); 1679 1680 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1681 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1682 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1683 HPZ3_V(pgsz_order[3])); 1684 } 1685 EXPORT_SYMBOL(cxgb4_iscsi_init); 1686 1687 int cxgb4_flush_eq_cache(struct net_device *dev) 1688 { 1689 struct adapter *adap = netdev2adap(dev); 1690 1691 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1692 } 1693 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1694 1695 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1696 { 1697 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1698 __be64 indices; 1699 int ret; 1700 1701 spin_lock(&adap->win0_lock); 1702 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1703 sizeof(indices), (__be32 *)&indices, 1704 T4_MEMORY_READ); 1705 spin_unlock(&adap->win0_lock); 1706 if (!ret) { 1707 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1708 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1709 } 1710 return ret; 1711 } 1712 1713 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1714 u16 size) 1715 { 1716 struct adapter *adap = netdev2adap(dev); 1717 u16 hw_pidx, hw_cidx; 1718 int ret; 1719 1720 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1721 if (ret) 1722 goto out; 1723 1724 if (pidx != hw_pidx) { 1725 u16 delta; 1726 u32 val; 1727 1728 if (pidx >= hw_pidx) 1729 delta = pidx - hw_pidx; 1730 else 1731 delta = size - hw_pidx + pidx; 1732 1733 if (is_t4(adap->params.chip)) 1734 val = PIDX_V(delta); 1735 else 1736 val = PIDX_T5_V(delta); 1737 wmb(); 1738 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1739 QID_V(qid) | val); 1740 } 1741 out: 1742 return ret; 1743 } 1744 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1745 1746 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1747 { 1748 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1749 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1750 u32 offset, memtype, memaddr; 1751 struct adapter *adap; 1752 u32 hma_size = 0; 1753 int ret; 1754 1755 adap = netdev2adap(dev); 1756 1757 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1758 1759 /* Figure out where the offset lands in the Memory Type/Address scheme. 1760 * This code assumes that the memory is laid out starting at offset 0 1761 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1762 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1763 * MC0, and some have both MC0 and MC1. 1764 */ 1765 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1766 edc0_size = EDRAM0_SIZE_G(size) << 20; 1767 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1768 edc1_size = EDRAM1_SIZE_G(size) << 20; 1769 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1770 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1771 1772 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1773 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1774 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1775 } 1776 edc0_end = edc0_size; 1777 edc1_end = edc0_end + edc1_size; 1778 mc0_end = edc1_end + mc0_size; 1779 1780 if (offset < edc0_end) { 1781 memtype = MEM_EDC0; 1782 memaddr = offset; 1783 } else if (offset < edc1_end) { 1784 memtype = MEM_EDC1; 1785 memaddr = offset - edc0_end; 1786 } else { 1787 if (hma_size && (offset < (edc1_end + hma_size))) { 1788 memtype = MEM_HMA; 1789 memaddr = offset - edc1_end; 1790 } else if (offset < mc0_end) { 1791 memtype = MEM_MC0; 1792 memaddr = offset - edc1_end; 1793 } else if (is_t5(adap->params.chip)) { 1794 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1795 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1796 mc1_end = mc0_end + mc1_size; 1797 if (offset < mc1_end) { 1798 memtype = MEM_MC1; 1799 memaddr = offset - mc0_end; 1800 } else { 1801 /* offset beyond the end of any memory */ 1802 goto err; 1803 } 1804 } else { 1805 /* T4/T6 only has a single memory channel */ 1806 goto err; 1807 } 1808 } 1809 1810 spin_lock(&adap->win0_lock); 1811 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1812 spin_unlock(&adap->win0_lock); 1813 return ret; 1814 1815 err: 1816 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1817 stag, offset); 1818 return -EINVAL; 1819 } 1820 EXPORT_SYMBOL(cxgb4_read_tpte); 1821 1822 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1823 { 1824 u32 hi, lo; 1825 struct adapter *adap; 1826 1827 adap = netdev2adap(dev); 1828 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1829 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1830 1831 return ((u64)hi << 32) | (u64)lo; 1832 } 1833 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1834 1835 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1836 unsigned int qid, 1837 enum cxgb4_bar2_qtype qtype, 1838 int user, 1839 u64 *pbar2_qoffset, 1840 unsigned int *pbar2_qid) 1841 { 1842 return t4_bar2_sge_qregs(netdev2adap(dev), 1843 qid, 1844 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1845 ? T4_BAR2_QTYPE_EGRESS 1846 : T4_BAR2_QTYPE_INGRESS), 1847 user, 1848 pbar2_qoffset, 1849 pbar2_qid); 1850 } 1851 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1852 1853 static struct pci_driver cxgb4_driver; 1854 1855 static void check_neigh_update(struct neighbour *neigh) 1856 { 1857 const struct device *parent; 1858 const struct net_device *netdev = neigh->dev; 1859 1860 if (is_vlan_dev(netdev)) 1861 netdev = vlan_dev_real_dev(netdev); 1862 parent = netdev->dev.parent; 1863 if (parent && parent->driver == &cxgb4_driver.driver) 1864 t4_l2t_update(dev_get_drvdata(parent), neigh); 1865 } 1866 1867 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1868 void *data) 1869 { 1870 switch (event) { 1871 case NETEVENT_NEIGH_UPDATE: 1872 check_neigh_update(data); 1873 break; 1874 case NETEVENT_REDIRECT: 1875 default: 1876 break; 1877 } 1878 return 0; 1879 } 1880 1881 static bool netevent_registered; 1882 static struct notifier_block cxgb4_netevent_nb = { 1883 .notifier_call = netevent_cb 1884 }; 1885 1886 static void drain_db_fifo(struct adapter *adap, int usecs) 1887 { 1888 u32 v1, v2, lp_count, hp_count; 1889 1890 do { 1891 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1892 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1893 if (is_t4(adap->params.chip)) { 1894 lp_count = LP_COUNT_G(v1); 1895 hp_count = HP_COUNT_G(v1); 1896 } else { 1897 lp_count = LP_COUNT_T5_G(v1); 1898 hp_count = HP_COUNT_T5_G(v2); 1899 } 1900 1901 if (lp_count == 0 && hp_count == 0) 1902 break; 1903 set_current_state(TASK_UNINTERRUPTIBLE); 1904 schedule_timeout(usecs_to_jiffies(usecs)); 1905 } while (1); 1906 } 1907 1908 static void disable_txq_db(struct sge_txq *q) 1909 { 1910 unsigned long flags; 1911 1912 spin_lock_irqsave(&q->db_lock, flags); 1913 q->db_disabled = 1; 1914 spin_unlock_irqrestore(&q->db_lock, flags); 1915 } 1916 1917 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1918 { 1919 spin_lock_irq(&q->db_lock); 1920 if (q->db_pidx_inc) { 1921 /* Make sure that all writes to the TX descriptors 1922 * are committed before we tell HW about them. 1923 */ 1924 wmb(); 1925 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1926 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1927 q->db_pidx_inc = 0; 1928 } 1929 q->db_disabled = 0; 1930 spin_unlock_irq(&q->db_lock); 1931 } 1932 1933 static void disable_dbs(struct adapter *adap) 1934 { 1935 int i; 1936 1937 for_each_ethrxq(&adap->sge, i) 1938 disable_txq_db(&adap->sge.ethtxq[i].q); 1939 if (is_offload(adap)) { 1940 struct sge_uld_txq_info *txq_info = 1941 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1942 1943 if (txq_info) { 1944 for_each_ofldtxq(&adap->sge, i) { 1945 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1946 1947 disable_txq_db(&txq->q); 1948 } 1949 } 1950 } 1951 for_each_port(adap, i) 1952 disable_txq_db(&adap->sge.ctrlq[i].q); 1953 } 1954 1955 static void enable_dbs(struct adapter *adap) 1956 { 1957 int i; 1958 1959 for_each_ethrxq(&adap->sge, i) 1960 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1961 if (is_offload(adap)) { 1962 struct sge_uld_txq_info *txq_info = 1963 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1964 1965 if (txq_info) { 1966 for_each_ofldtxq(&adap->sge, i) { 1967 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1968 1969 enable_txq_db(adap, &txq->q); 1970 } 1971 } 1972 } 1973 for_each_port(adap, i) 1974 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1975 } 1976 1977 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1978 { 1979 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1980 1981 if (adap->uld && adap->uld[type].handle) 1982 adap->uld[type].control(adap->uld[type].handle, cmd); 1983 } 1984 1985 static void process_db_full(struct work_struct *work) 1986 { 1987 struct adapter *adap; 1988 1989 adap = container_of(work, struct adapter, db_full_task); 1990 1991 drain_db_fifo(adap, dbfifo_drain_delay); 1992 enable_dbs(adap); 1993 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1994 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1995 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1996 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1997 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1998 else 1999 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2000 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2001 } 2002 2003 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2004 { 2005 u16 hw_pidx, hw_cidx; 2006 int ret; 2007 2008 spin_lock_irq(&q->db_lock); 2009 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2010 if (ret) 2011 goto out; 2012 if (q->db_pidx != hw_pidx) { 2013 u16 delta; 2014 u32 val; 2015 2016 if (q->db_pidx >= hw_pidx) 2017 delta = q->db_pidx - hw_pidx; 2018 else 2019 delta = q->size - hw_pidx + q->db_pidx; 2020 2021 if (is_t4(adap->params.chip)) 2022 val = PIDX_V(delta); 2023 else 2024 val = PIDX_T5_V(delta); 2025 wmb(); 2026 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2027 QID_V(q->cntxt_id) | val); 2028 } 2029 out: 2030 q->db_disabled = 0; 2031 q->db_pidx_inc = 0; 2032 spin_unlock_irq(&q->db_lock); 2033 if (ret) 2034 CH_WARN(adap, "DB drop recovery failed.\n"); 2035 } 2036 2037 static void recover_all_queues(struct adapter *adap) 2038 { 2039 int i; 2040 2041 for_each_ethrxq(&adap->sge, i) 2042 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2043 if (is_offload(adap)) { 2044 struct sge_uld_txq_info *txq_info = 2045 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2046 if (txq_info) { 2047 for_each_ofldtxq(&adap->sge, i) { 2048 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2049 2050 sync_txq_pidx(adap, &txq->q); 2051 } 2052 } 2053 } 2054 for_each_port(adap, i) 2055 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2056 } 2057 2058 static void process_db_drop(struct work_struct *work) 2059 { 2060 struct adapter *adap; 2061 2062 adap = container_of(work, struct adapter, db_drop_task); 2063 2064 if (is_t4(adap->params.chip)) { 2065 drain_db_fifo(adap, dbfifo_drain_delay); 2066 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2067 drain_db_fifo(adap, dbfifo_drain_delay); 2068 recover_all_queues(adap); 2069 drain_db_fifo(adap, dbfifo_drain_delay); 2070 enable_dbs(adap); 2071 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2072 } else if (is_t5(adap->params.chip)) { 2073 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2074 u16 qid = (dropped_db >> 15) & 0x1ffff; 2075 u16 pidx_inc = dropped_db & 0x1fff; 2076 u64 bar2_qoffset; 2077 unsigned int bar2_qid; 2078 int ret; 2079 2080 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2081 0, &bar2_qoffset, &bar2_qid); 2082 if (ret) 2083 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2084 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2085 else 2086 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2087 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2088 2089 /* Re-enable BAR2 WC */ 2090 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2091 } 2092 2093 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2094 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2095 } 2096 2097 void t4_db_full(struct adapter *adap) 2098 { 2099 if (is_t4(adap->params.chip)) { 2100 disable_dbs(adap); 2101 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2102 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2103 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2104 queue_work(adap->workq, &adap->db_full_task); 2105 } 2106 } 2107 2108 void t4_db_dropped(struct adapter *adap) 2109 { 2110 if (is_t4(adap->params.chip)) { 2111 disable_dbs(adap); 2112 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2113 } 2114 queue_work(adap->workq, &adap->db_drop_task); 2115 } 2116 2117 void t4_register_netevent_notifier(void) 2118 { 2119 if (!netevent_registered) { 2120 register_netevent_notifier(&cxgb4_netevent_nb); 2121 netevent_registered = true; 2122 } 2123 } 2124 2125 static void detach_ulds(struct adapter *adap) 2126 { 2127 unsigned int i; 2128 2129 mutex_lock(&uld_mutex); 2130 list_del(&adap->list_node); 2131 2132 for (i = 0; i < CXGB4_ULD_MAX; i++) 2133 if (adap->uld && adap->uld[i].handle) 2134 adap->uld[i].state_change(adap->uld[i].handle, 2135 CXGB4_STATE_DETACH); 2136 2137 if (netevent_registered && list_empty(&adapter_list)) { 2138 unregister_netevent_notifier(&cxgb4_netevent_nb); 2139 netevent_registered = false; 2140 } 2141 mutex_unlock(&uld_mutex); 2142 } 2143 2144 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2145 { 2146 unsigned int i; 2147 2148 mutex_lock(&uld_mutex); 2149 for (i = 0; i < CXGB4_ULD_MAX; i++) 2150 if (adap->uld && adap->uld[i].handle) 2151 adap->uld[i].state_change(adap->uld[i].handle, 2152 new_state); 2153 mutex_unlock(&uld_mutex); 2154 } 2155 2156 #if IS_ENABLED(CONFIG_IPV6) 2157 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2158 unsigned long event, void *data) 2159 { 2160 struct inet6_ifaddr *ifa = data; 2161 struct net_device *event_dev = ifa->idev->dev; 2162 const struct device *parent = NULL; 2163 #if IS_ENABLED(CONFIG_BONDING) 2164 struct adapter *adap; 2165 #endif 2166 if (is_vlan_dev(event_dev)) 2167 event_dev = vlan_dev_real_dev(event_dev); 2168 #if IS_ENABLED(CONFIG_BONDING) 2169 if (event_dev->flags & IFF_MASTER) { 2170 list_for_each_entry(adap, &adapter_list, list_node) { 2171 switch (event) { 2172 case NETDEV_UP: 2173 cxgb4_clip_get(adap->port[0], 2174 (const u32 *)ifa, 1); 2175 break; 2176 case NETDEV_DOWN: 2177 cxgb4_clip_release(adap->port[0], 2178 (const u32 *)ifa, 1); 2179 break; 2180 default: 2181 break; 2182 } 2183 } 2184 return NOTIFY_OK; 2185 } 2186 #endif 2187 2188 if (event_dev) 2189 parent = event_dev->dev.parent; 2190 2191 if (parent && parent->driver == &cxgb4_driver.driver) { 2192 switch (event) { 2193 case NETDEV_UP: 2194 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2195 break; 2196 case NETDEV_DOWN: 2197 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2198 break; 2199 default: 2200 break; 2201 } 2202 } 2203 return NOTIFY_OK; 2204 } 2205 2206 static bool inet6addr_registered; 2207 static struct notifier_block cxgb4_inet6addr_notifier = { 2208 .notifier_call = cxgb4_inet6addr_handler 2209 }; 2210 2211 static void update_clip(const struct adapter *adap) 2212 { 2213 int i; 2214 struct net_device *dev; 2215 int ret; 2216 2217 rcu_read_lock(); 2218 2219 for (i = 0; i < MAX_NPORTS; i++) { 2220 dev = adap->port[i]; 2221 ret = 0; 2222 2223 if (dev) 2224 ret = cxgb4_update_root_dev_clip(dev); 2225 2226 if (ret < 0) 2227 break; 2228 } 2229 rcu_read_unlock(); 2230 } 2231 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2232 2233 /** 2234 * cxgb_up - enable the adapter 2235 * @adap: adapter being enabled 2236 * 2237 * Called when the first port is enabled, this function performs the 2238 * actions necessary to make an adapter operational, such as completing 2239 * the initialization of HW modules, and enabling interrupts. 2240 * 2241 * Must be called with the rtnl lock held. 2242 */ 2243 static int cxgb_up(struct adapter *adap) 2244 { 2245 int err; 2246 2247 mutex_lock(&uld_mutex); 2248 err = setup_sge_queues(adap); 2249 if (err) 2250 goto rel_lock; 2251 err = setup_rss(adap); 2252 if (err) 2253 goto freeq; 2254 2255 if (adap->flags & USING_MSIX) { 2256 name_msix_vecs(adap); 2257 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2258 adap->msix_info[0].desc, adap); 2259 if (err) 2260 goto irq_err; 2261 err = request_msix_queue_irqs(adap); 2262 if (err) { 2263 free_irq(adap->msix_info[0].vec, adap); 2264 goto irq_err; 2265 } 2266 } else { 2267 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2268 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2269 adap->port[0]->name, adap); 2270 if (err) 2271 goto irq_err; 2272 } 2273 2274 enable_rx(adap); 2275 t4_sge_start(adap); 2276 t4_intr_enable(adap); 2277 adap->flags |= FULL_INIT_DONE; 2278 mutex_unlock(&uld_mutex); 2279 2280 notify_ulds(adap, CXGB4_STATE_UP); 2281 #if IS_ENABLED(CONFIG_IPV6) 2282 update_clip(adap); 2283 #endif 2284 /* Initialize hash mac addr list*/ 2285 INIT_LIST_HEAD(&adap->mac_hlist); 2286 return err; 2287 2288 irq_err: 2289 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2290 freeq: 2291 t4_free_sge_resources(adap); 2292 rel_lock: 2293 mutex_unlock(&uld_mutex); 2294 return err; 2295 } 2296 2297 static void cxgb_down(struct adapter *adapter) 2298 { 2299 cancel_work_sync(&adapter->tid_release_task); 2300 cancel_work_sync(&adapter->db_full_task); 2301 cancel_work_sync(&adapter->db_drop_task); 2302 adapter->tid_release_task_busy = false; 2303 adapter->tid_release_head = NULL; 2304 2305 t4_sge_stop(adapter); 2306 t4_free_sge_resources(adapter); 2307 adapter->flags &= ~FULL_INIT_DONE; 2308 } 2309 2310 /* 2311 * net_device operations 2312 */ 2313 static int cxgb_open(struct net_device *dev) 2314 { 2315 int err; 2316 struct port_info *pi = netdev_priv(dev); 2317 struct adapter *adapter = pi->adapter; 2318 2319 netif_carrier_off(dev); 2320 2321 if (!(adapter->flags & FULL_INIT_DONE)) { 2322 err = cxgb_up(adapter); 2323 if (err < 0) 2324 return err; 2325 } 2326 2327 /* It's possible that the basic port information could have 2328 * changed since we first read it. 2329 */ 2330 err = t4_update_port_info(pi); 2331 if (err < 0) 2332 return err; 2333 2334 err = link_start(dev); 2335 if (!err) 2336 netif_tx_start_all_queues(dev); 2337 return err; 2338 } 2339 2340 static int cxgb_close(struct net_device *dev) 2341 { 2342 struct port_info *pi = netdev_priv(dev); 2343 struct adapter *adapter = pi->adapter; 2344 int ret; 2345 2346 netif_tx_stop_all_queues(dev); 2347 netif_carrier_off(dev); 2348 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2349 false, false, false); 2350 #ifdef CONFIG_CHELSIO_T4_DCB 2351 cxgb4_dcb_reset(dev); 2352 dcb_tx_queue_prio_enable(dev, false); 2353 #endif 2354 return ret; 2355 } 2356 2357 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2358 __be32 sip, __be16 sport, __be16 vlan, 2359 unsigned int queue, unsigned char port, unsigned char mask) 2360 { 2361 int ret; 2362 struct filter_entry *f; 2363 struct adapter *adap; 2364 int i; 2365 u8 *val; 2366 2367 adap = netdev2adap(dev); 2368 2369 /* Adjust stid to correct filter index */ 2370 stid -= adap->tids.sftid_base; 2371 stid += adap->tids.nftids; 2372 2373 /* Check to make sure the filter requested is writable ... 2374 */ 2375 f = &adap->tids.ftid_tab[stid]; 2376 ret = writable_filter(f); 2377 if (ret) 2378 return ret; 2379 2380 /* Clear out any old resources being used by the filter before 2381 * we start constructing the new filter. 2382 */ 2383 if (f->valid) 2384 clear_filter(adap, f); 2385 2386 /* Clear out filter specifications */ 2387 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2388 f->fs.val.lport = cpu_to_be16(sport); 2389 f->fs.mask.lport = ~0; 2390 val = (u8 *)&sip; 2391 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2392 for (i = 0; i < 4; i++) { 2393 f->fs.val.lip[i] = val[i]; 2394 f->fs.mask.lip[i] = ~0; 2395 } 2396 if (adap->params.tp.vlan_pri_map & PORT_F) { 2397 f->fs.val.iport = port; 2398 f->fs.mask.iport = mask; 2399 } 2400 } 2401 2402 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2403 f->fs.val.proto = IPPROTO_TCP; 2404 f->fs.mask.proto = ~0; 2405 } 2406 2407 f->fs.dirsteer = 1; 2408 f->fs.iq = queue; 2409 /* Mark filter as locked */ 2410 f->locked = 1; 2411 f->fs.rpttid = 1; 2412 2413 /* Save the actual tid. We need this to get the corresponding 2414 * filter entry structure in filter_rpl. 2415 */ 2416 f->tid = stid + adap->tids.ftid_base; 2417 ret = set_filter_wr(adap, stid); 2418 if (ret) { 2419 clear_filter(adap, f); 2420 return ret; 2421 } 2422 2423 return 0; 2424 } 2425 EXPORT_SYMBOL(cxgb4_create_server_filter); 2426 2427 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2428 unsigned int queue, bool ipv6) 2429 { 2430 struct filter_entry *f; 2431 struct adapter *adap; 2432 2433 adap = netdev2adap(dev); 2434 2435 /* Adjust stid to correct filter index */ 2436 stid -= adap->tids.sftid_base; 2437 stid += adap->tids.nftids; 2438 2439 f = &adap->tids.ftid_tab[stid]; 2440 /* Unlock the filter */ 2441 f->locked = 0; 2442 2443 return delete_filter(adap, stid); 2444 } 2445 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2446 2447 static void cxgb_get_stats(struct net_device *dev, 2448 struct rtnl_link_stats64 *ns) 2449 { 2450 struct port_stats stats; 2451 struct port_info *p = netdev_priv(dev); 2452 struct adapter *adapter = p->adapter; 2453 2454 /* Block retrieving statistics during EEH error 2455 * recovery. Otherwise, the recovery might fail 2456 * and the PCI device will be removed permanently 2457 */ 2458 spin_lock(&adapter->stats_lock); 2459 if (!netif_device_present(dev)) { 2460 spin_unlock(&adapter->stats_lock); 2461 return; 2462 } 2463 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2464 &p->stats_base); 2465 spin_unlock(&adapter->stats_lock); 2466 2467 ns->tx_bytes = stats.tx_octets; 2468 ns->tx_packets = stats.tx_frames; 2469 ns->rx_bytes = stats.rx_octets; 2470 ns->rx_packets = stats.rx_frames; 2471 ns->multicast = stats.rx_mcast_frames; 2472 2473 /* detailed rx_errors */ 2474 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2475 stats.rx_runt; 2476 ns->rx_over_errors = 0; 2477 ns->rx_crc_errors = stats.rx_fcs_err; 2478 ns->rx_frame_errors = stats.rx_symbol_err; 2479 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2480 stats.rx_ovflow2 + stats.rx_ovflow3 + 2481 stats.rx_trunc0 + stats.rx_trunc1 + 2482 stats.rx_trunc2 + stats.rx_trunc3; 2483 ns->rx_missed_errors = 0; 2484 2485 /* detailed tx_errors */ 2486 ns->tx_aborted_errors = 0; 2487 ns->tx_carrier_errors = 0; 2488 ns->tx_fifo_errors = 0; 2489 ns->tx_heartbeat_errors = 0; 2490 ns->tx_window_errors = 0; 2491 2492 ns->tx_errors = stats.tx_error_frames; 2493 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2494 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2495 } 2496 2497 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2498 { 2499 unsigned int mbox; 2500 int ret = 0, prtad, devad; 2501 struct port_info *pi = netdev_priv(dev); 2502 struct adapter *adapter = pi->adapter; 2503 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2504 2505 switch (cmd) { 2506 case SIOCGMIIPHY: 2507 if (pi->mdio_addr < 0) 2508 return -EOPNOTSUPP; 2509 data->phy_id = pi->mdio_addr; 2510 break; 2511 case SIOCGMIIREG: 2512 case SIOCSMIIREG: 2513 if (mdio_phy_id_is_c45(data->phy_id)) { 2514 prtad = mdio_phy_id_prtad(data->phy_id); 2515 devad = mdio_phy_id_devad(data->phy_id); 2516 } else if (data->phy_id < 32) { 2517 prtad = data->phy_id; 2518 devad = 0; 2519 data->reg_num &= 0x1f; 2520 } else 2521 return -EINVAL; 2522 2523 mbox = pi->adapter->pf; 2524 if (cmd == SIOCGMIIREG) 2525 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2526 data->reg_num, &data->val_out); 2527 else 2528 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2529 data->reg_num, data->val_in); 2530 break; 2531 case SIOCGHWTSTAMP: 2532 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2533 sizeof(pi->tstamp_config)) ? 2534 -EFAULT : 0; 2535 case SIOCSHWTSTAMP: 2536 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2537 sizeof(pi->tstamp_config))) 2538 return -EFAULT; 2539 2540 if (!is_t4(adapter->params.chip)) { 2541 switch (pi->tstamp_config.tx_type) { 2542 case HWTSTAMP_TX_OFF: 2543 case HWTSTAMP_TX_ON: 2544 break; 2545 default: 2546 return -ERANGE; 2547 } 2548 2549 switch (pi->tstamp_config.rx_filter) { 2550 case HWTSTAMP_FILTER_NONE: 2551 pi->rxtstamp = false; 2552 break; 2553 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2554 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2555 cxgb4_ptprx_timestamping(pi, pi->port_id, 2556 PTP_TS_L4); 2557 break; 2558 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2559 cxgb4_ptprx_timestamping(pi, pi->port_id, 2560 PTP_TS_L2_L4); 2561 break; 2562 case HWTSTAMP_FILTER_ALL: 2563 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2564 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2565 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2566 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2567 pi->rxtstamp = true; 2568 break; 2569 default: 2570 pi->tstamp_config.rx_filter = 2571 HWTSTAMP_FILTER_NONE; 2572 return -ERANGE; 2573 } 2574 2575 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2576 (pi->tstamp_config.rx_filter == 2577 HWTSTAMP_FILTER_NONE)) { 2578 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2579 pi->ptp_enable = false; 2580 } 2581 2582 if (pi->tstamp_config.rx_filter != 2583 HWTSTAMP_FILTER_NONE) { 2584 if (cxgb4_ptp_redirect_rx_packet(adapter, 2585 pi) >= 0) 2586 pi->ptp_enable = true; 2587 } 2588 } else { 2589 /* For T4 Adapters */ 2590 switch (pi->tstamp_config.rx_filter) { 2591 case HWTSTAMP_FILTER_NONE: 2592 pi->rxtstamp = false; 2593 break; 2594 case HWTSTAMP_FILTER_ALL: 2595 pi->rxtstamp = true; 2596 break; 2597 default: 2598 pi->tstamp_config.rx_filter = 2599 HWTSTAMP_FILTER_NONE; 2600 return -ERANGE; 2601 } 2602 } 2603 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2604 sizeof(pi->tstamp_config)) ? 2605 -EFAULT : 0; 2606 default: 2607 return -EOPNOTSUPP; 2608 } 2609 return ret; 2610 } 2611 2612 static void cxgb_set_rxmode(struct net_device *dev) 2613 { 2614 /* unfortunately we can't return errors to the stack */ 2615 set_rxmode(dev, -1, false); 2616 } 2617 2618 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2619 { 2620 int ret; 2621 struct port_info *pi = netdev_priv(dev); 2622 2623 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2624 -1, -1, -1, true); 2625 if (!ret) 2626 dev->mtu = new_mtu; 2627 return ret; 2628 } 2629 2630 #ifdef CONFIG_PCI_IOV 2631 static int cxgb4_mgmt_open(struct net_device *dev) 2632 { 2633 /* Turn carrier off since we don't have to transmit anything on this 2634 * interface. 2635 */ 2636 netif_carrier_off(dev); 2637 return 0; 2638 } 2639 2640 /* Fill MAC address that will be assigned by the FW */ 2641 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2642 { 2643 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2644 unsigned int i, vf, nvfs; 2645 u16 a, b; 2646 int err; 2647 u8 *na; 2648 2649 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2650 PCI_CAP_ID_VPD); 2651 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2652 if (err) 2653 return; 2654 2655 na = adap->params.vpd.na; 2656 for (i = 0; i < ETH_ALEN; i++) 2657 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2658 hex2val(na[2 * i + 1])); 2659 2660 a = (hw_addr[0] << 8) | hw_addr[1]; 2661 b = (hw_addr[1] << 8) | hw_addr[2]; 2662 a ^= b; 2663 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2664 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2665 macaddr[0] = a >> 8; 2666 macaddr[1] = a & 0xff; 2667 2668 for (i = 2; i < 5; i++) 2669 macaddr[i] = hw_addr[i + 1]; 2670 2671 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2672 vf < nvfs; vf++) { 2673 macaddr[5] = adap->pf * 16 + vf; 2674 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2675 } 2676 } 2677 2678 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2679 { 2680 struct port_info *pi = netdev_priv(dev); 2681 struct adapter *adap = pi->adapter; 2682 int ret; 2683 2684 /* verify MAC addr is valid */ 2685 if (!is_valid_ether_addr(mac)) { 2686 dev_err(pi->adapter->pdev_dev, 2687 "Invalid Ethernet address %pM for VF %d\n", 2688 mac, vf); 2689 return -EINVAL; 2690 } 2691 2692 dev_info(pi->adapter->pdev_dev, 2693 "Setting MAC %pM on VF %d\n", mac, vf); 2694 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2695 if (!ret) 2696 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2697 return ret; 2698 } 2699 2700 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2701 int vf, struct ifla_vf_info *ivi) 2702 { 2703 struct port_info *pi = netdev_priv(dev); 2704 struct adapter *adap = pi->adapter; 2705 struct vf_info *vfinfo; 2706 2707 if (vf >= adap->num_vfs) 2708 return -EINVAL; 2709 vfinfo = &adap->vfinfo[vf]; 2710 2711 ivi->vf = vf; 2712 ivi->max_tx_rate = vfinfo->tx_rate; 2713 ivi->min_tx_rate = 0; 2714 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2715 ivi->vlan = vfinfo->vlan; 2716 return 0; 2717 } 2718 2719 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2720 struct netdev_phys_item_id *ppid) 2721 { 2722 struct port_info *pi = netdev_priv(dev); 2723 unsigned int phy_port_id; 2724 2725 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2726 ppid->id_len = sizeof(phy_port_id); 2727 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2728 return 0; 2729 } 2730 2731 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2732 int min_tx_rate, int max_tx_rate) 2733 { 2734 struct port_info *pi = netdev_priv(dev); 2735 struct adapter *adap = pi->adapter; 2736 unsigned int link_ok, speed, mtu; 2737 u32 fw_pfvf, fw_class; 2738 int class_id = vf; 2739 int ret; 2740 u16 pktsize; 2741 2742 if (vf >= adap->num_vfs) 2743 return -EINVAL; 2744 2745 if (min_tx_rate) { 2746 dev_err(adap->pdev_dev, 2747 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2748 min_tx_rate, vf); 2749 return -EINVAL; 2750 } 2751 2752 if (max_tx_rate == 0) { 2753 /* unbind VF to to any Traffic Class */ 2754 fw_pfvf = 2755 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2756 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2757 fw_class = 0xffffffff; 2758 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2759 &fw_pfvf, &fw_class); 2760 if (ret) { 2761 dev_err(adap->pdev_dev, 2762 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2763 ret, adap->pf, vf); 2764 return -EINVAL; 2765 } 2766 dev_info(adap->pdev_dev, 2767 "PF %d VF %d is unbound from TX Rate Limiting\n", 2768 adap->pf, vf); 2769 adap->vfinfo[vf].tx_rate = 0; 2770 return 0; 2771 } 2772 2773 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2774 if (ret != FW_SUCCESS) { 2775 dev_err(adap->pdev_dev, 2776 "Failed to get link information for VF %d\n", vf); 2777 return -EINVAL; 2778 } 2779 2780 if (!link_ok) { 2781 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2782 return -EINVAL; 2783 } 2784 2785 if (max_tx_rate > speed) { 2786 dev_err(adap->pdev_dev, 2787 "Max tx rate %d for VF %d can't be > link-speed %u", 2788 max_tx_rate, vf, speed); 2789 return -EINVAL; 2790 } 2791 2792 pktsize = mtu; 2793 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2794 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2795 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2796 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2797 /* configure Traffic Class for rate-limiting */ 2798 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2799 SCHED_CLASS_LEVEL_CL_RL, 2800 SCHED_CLASS_MODE_CLASS, 2801 SCHED_CLASS_RATEUNIT_BITS, 2802 SCHED_CLASS_RATEMODE_ABS, 2803 pi->tx_chan, class_id, 0, 2804 max_tx_rate * 1000, 0, pktsize); 2805 if (ret) { 2806 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2807 ret); 2808 return -EINVAL; 2809 } 2810 dev_info(adap->pdev_dev, 2811 "Class %d with MSS %u configured with rate %u\n", 2812 class_id, pktsize, max_tx_rate); 2813 2814 /* bind VF to configured Traffic Class */ 2815 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2816 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2817 fw_class = class_id; 2818 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2819 &fw_class); 2820 if (ret) { 2821 dev_err(adap->pdev_dev, 2822 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 2823 ret, adap->pf, vf, class_id); 2824 return -EINVAL; 2825 } 2826 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2827 adap->pf, vf, class_id); 2828 adap->vfinfo[vf].tx_rate = max_tx_rate; 2829 return 0; 2830 } 2831 2832 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2833 u16 vlan, u8 qos, __be16 vlan_proto) 2834 { 2835 struct port_info *pi = netdev_priv(dev); 2836 struct adapter *adap = pi->adapter; 2837 int ret; 2838 2839 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2840 return -EINVAL; 2841 2842 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2843 return -EPROTONOSUPPORT; 2844 2845 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2846 if (!ret) { 2847 adap->vfinfo[vf].vlan = vlan; 2848 return 0; 2849 } 2850 2851 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2852 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2853 return ret; 2854 } 2855 #endif /* CONFIG_PCI_IOV */ 2856 2857 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2858 { 2859 int ret; 2860 struct sockaddr *addr = p; 2861 struct port_info *pi = netdev_priv(dev); 2862 2863 if (!is_valid_ether_addr(addr->sa_data)) 2864 return -EADDRNOTAVAIL; 2865 2866 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2867 pi->xact_addr_filt, addr->sa_data, true, true); 2868 if (ret < 0) 2869 return ret; 2870 2871 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2872 pi->xact_addr_filt = ret; 2873 return 0; 2874 } 2875 2876 #ifdef CONFIG_NET_POLL_CONTROLLER 2877 static void cxgb_netpoll(struct net_device *dev) 2878 { 2879 struct port_info *pi = netdev_priv(dev); 2880 struct adapter *adap = pi->adapter; 2881 2882 if (adap->flags & USING_MSIX) { 2883 int i; 2884 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2885 2886 for (i = pi->nqsets; i; i--, rx++) 2887 t4_sge_intr_msix(0, &rx->rspq); 2888 } else 2889 t4_intr_handler(adap)(0, adap); 2890 } 2891 #endif 2892 2893 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2894 { 2895 struct port_info *pi = netdev_priv(dev); 2896 struct adapter *adap = pi->adapter; 2897 struct sched_class *e; 2898 struct ch_sched_params p; 2899 struct ch_sched_queue qe; 2900 u32 req_rate; 2901 int err = 0; 2902 2903 if (!can_sched(dev)) 2904 return -ENOTSUPP; 2905 2906 if (index < 0 || index > pi->nqsets - 1) 2907 return -EINVAL; 2908 2909 if (!(adap->flags & FULL_INIT_DONE)) { 2910 dev_err(adap->pdev_dev, 2911 "Failed to rate limit on queue %d. Link Down?\n", 2912 index); 2913 return -EINVAL; 2914 } 2915 2916 /* Convert from Mbps to Kbps */ 2917 req_rate = rate * 1000; 2918 2919 /* Max rate is 100 Gbps */ 2920 if (req_rate > SCHED_MAX_RATE_KBPS) { 2921 dev_err(adap->pdev_dev, 2922 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2923 rate, SCHED_MAX_RATE_KBPS / 1000); 2924 return -ERANGE; 2925 } 2926 2927 /* First unbind the queue from any existing class */ 2928 memset(&qe, 0, sizeof(qe)); 2929 qe.queue = index; 2930 qe.class = SCHED_CLS_NONE; 2931 2932 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2933 if (err) { 2934 dev_err(adap->pdev_dev, 2935 "Unbinding Queue %d on port %d fail. Err: %d\n", 2936 index, pi->port_id, err); 2937 return err; 2938 } 2939 2940 /* Queue already unbound */ 2941 if (!req_rate) 2942 return 0; 2943 2944 /* Fetch any available unused or matching scheduling class */ 2945 memset(&p, 0, sizeof(p)); 2946 p.type = SCHED_CLASS_TYPE_PACKET; 2947 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2948 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2949 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2950 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2951 p.u.params.channel = pi->tx_chan; 2952 p.u.params.class = SCHED_CLS_NONE; 2953 p.u.params.minrate = 0; 2954 p.u.params.maxrate = req_rate; 2955 p.u.params.weight = 0; 2956 p.u.params.pktsize = dev->mtu; 2957 2958 e = cxgb4_sched_class_alloc(dev, &p); 2959 if (!e) 2960 return -ENOMEM; 2961 2962 /* Bind the queue to a scheduling class */ 2963 memset(&qe, 0, sizeof(qe)); 2964 qe.queue = index; 2965 qe.class = e->idx; 2966 2967 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2968 if (err) 2969 dev_err(adap->pdev_dev, 2970 "Queue rate limiting failed. Err: %d\n", err); 2971 return err; 2972 } 2973 2974 static int cxgb_setup_tc_flower(struct net_device *dev, 2975 struct tc_cls_flower_offload *cls_flower) 2976 { 2977 switch (cls_flower->command) { 2978 case TC_CLSFLOWER_REPLACE: 2979 return cxgb4_tc_flower_replace(dev, cls_flower); 2980 case TC_CLSFLOWER_DESTROY: 2981 return cxgb4_tc_flower_destroy(dev, cls_flower); 2982 case TC_CLSFLOWER_STATS: 2983 return cxgb4_tc_flower_stats(dev, cls_flower); 2984 default: 2985 return -EOPNOTSUPP; 2986 } 2987 } 2988 2989 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 2990 struct tc_cls_u32_offload *cls_u32) 2991 { 2992 switch (cls_u32->command) { 2993 case TC_CLSU32_NEW_KNODE: 2994 case TC_CLSU32_REPLACE_KNODE: 2995 return cxgb4_config_knode(dev, cls_u32); 2996 case TC_CLSU32_DELETE_KNODE: 2997 return cxgb4_delete_knode(dev, cls_u32); 2998 default: 2999 return -EOPNOTSUPP; 3000 } 3001 } 3002 3003 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3004 void *cb_priv) 3005 { 3006 struct net_device *dev = cb_priv; 3007 struct port_info *pi = netdev2pinfo(dev); 3008 struct adapter *adap = netdev2adap(dev); 3009 3010 if (!(adap->flags & FULL_INIT_DONE)) { 3011 dev_err(adap->pdev_dev, 3012 "Failed to setup tc on port %d. Link Down?\n", 3013 pi->port_id); 3014 return -EINVAL; 3015 } 3016 3017 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3018 return -EOPNOTSUPP; 3019 3020 switch (type) { 3021 case TC_SETUP_CLSU32: 3022 return cxgb_setup_tc_cls_u32(dev, type_data); 3023 case TC_SETUP_CLSFLOWER: 3024 return cxgb_setup_tc_flower(dev, type_data); 3025 default: 3026 return -EOPNOTSUPP; 3027 } 3028 } 3029 3030 static int cxgb_setup_tc_block(struct net_device *dev, 3031 struct tc_block_offload *f) 3032 { 3033 struct port_info *pi = netdev2pinfo(dev); 3034 3035 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3036 return -EOPNOTSUPP; 3037 3038 switch (f->command) { 3039 case TC_BLOCK_BIND: 3040 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3041 pi, dev, f->extack); 3042 case TC_BLOCK_UNBIND: 3043 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3044 return 0; 3045 default: 3046 return -EOPNOTSUPP; 3047 } 3048 } 3049 3050 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3051 void *type_data) 3052 { 3053 switch (type) { 3054 case TC_SETUP_BLOCK: 3055 return cxgb_setup_tc_block(dev, type_data); 3056 default: 3057 return -EOPNOTSUPP; 3058 } 3059 } 3060 3061 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3062 struct udp_tunnel_info *ti) 3063 { 3064 struct port_info *pi = netdev_priv(netdev); 3065 struct adapter *adapter = pi->adapter; 3066 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3067 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3068 int ret = 0, i; 3069 3070 if (chip_ver < CHELSIO_T6) 3071 return; 3072 3073 switch (ti->type) { 3074 case UDP_TUNNEL_TYPE_VXLAN: 3075 if (!adapter->vxlan_port_cnt || 3076 adapter->vxlan_port != ti->port) 3077 return; /* Invalid VxLAN destination port */ 3078 3079 adapter->vxlan_port_cnt--; 3080 if (adapter->vxlan_port_cnt) 3081 return; 3082 3083 adapter->vxlan_port = 0; 3084 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3085 break; 3086 case UDP_TUNNEL_TYPE_GENEVE: 3087 if (!adapter->geneve_port_cnt || 3088 adapter->geneve_port != ti->port) 3089 return; /* Invalid GENEVE destination port */ 3090 3091 adapter->geneve_port_cnt--; 3092 if (adapter->geneve_port_cnt) 3093 return; 3094 3095 adapter->geneve_port = 0; 3096 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3097 break; 3098 default: 3099 return; 3100 } 3101 3102 /* Matchall mac entries can be deleted only after all tunnel ports 3103 * are brought down or removed. 3104 */ 3105 if (!adapter->rawf_cnt) 3106 return; 3107 for_each_port(adapter, i) { 3108 pi = adap2pinfo(adapter, i); 3109 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3110 match_all_mac, match_all_mac, 3111 adapter->rawf_start + 3112 pi->port_id, 3113 1, pi->port_id, false); 3114 if (ret < 0) { 3115 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3116 i); 3117 return; 3118 } 3119 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3120 pi->port_id].refcnt); 3121 } 3122 } 3123 3124 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3125 struct udp_tunnel_info *ti) 3126 { 3127 struct port_info *pi = netdev_priv(netdev); 3128 struct adapter *adapter = pi->adapter; 3129 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3130 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3131 int i, ret; 3132 3133 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3134 return; 3135 3136 switch (ti->type) { 3137 case UDP_TUNNEL_TYPE_VXLAN: 3138 /* Callback for adding vxlan port can be called with the same 3139 * port for both IPv4 and IPv6. We should not disable the 3140 * offloading when the same port for both protocols is added 3141 * and later one of them is removed. 3142 */ 3143 if (adapter->vxlan_port_cnt && 3144 adapter->vxlan_port == ti->port) { 3145 adapter->vxlan_port_cnt++; 3146 return; 3147 } 3148 3149 /* We will support only one VxLAN port */ 3150 if (adapter->vxlan_port_cnt) { 3151 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3152 be16_to_cpu(adapter->vxlan_port), 3153 be16_to_cpu(ti->port)); 3154 return; 3155 } 3156 3157 adapter->vxlan_port = ti->port; 3158 adapter->vxlan_port_cnt = 1; 3159 3160 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3161 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3162 break; 3163 case UDP_TUNNEL_TYPE_GENEVE: 3164 if (adapter->geneve_port_cnt && 3165 adapter->geneve_port == ti->port) { 3166 adapter->geneve_port_cnt++; 3167 return; 3168 } 3169 3170 /* We will support only one GENEVE port */ 3171 if (adapter->geneve_port_cnt) { 3172 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3173 be16_to_cpu(adapter->geneve_port), 3174 be16_to_cpu(ti->port)); 3175 return; 3176 } 3177 3178 adapter->geneve_port = ti->port; 3179 adapter->geneve_port_cnt = 1; 3180 3181 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3182 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3183 break; 3184 default: 3185 return; 3186 } 3187 3188 /* Create a 'match all' mac filter entry for inner mac, 3189 * if raw mac interface is supported. Once the linux kernel provides 3190 * driver entry points for adding/deleting the inner mac addresses, 3191 * we will remove this 'match all' entry and fallback to adding 3192 * exact match filters. 3193 */ 3194 for_each_port(adapter, i) { 3195 pi = adap2pinfo(adapter, i); 3196 3197 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3198 match_all_mac, 3199 match_all_mac, 3200 adapter->rawf_start + 3201 pi->port_id, 3202 1, pi->port_id, false); 3203 if (ret < 0) { 3204 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3205 be16_to_cpu(ti->port)); 3206 cxgb_del_udp_tunnel(netdev, ti); 3207 return; 3208 } 3209 atomic_inc(&adapter->mps_encap[ret].refcnt); 3210 } 3211 } 3212 3213 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3214 struct net_device *dev, 3215 netdev_features_t features) 3216 { 3217 struct port_info *pi = netdev_priv(dev); 3218 struct adapter *adapter = pi->adapter; 3219 3220 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3221 return features; 3222 3223 /* Check if hw supports offload for this packet */ 3224 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3225 return features; 3226 3227 /* Offload is not supported for this encapsulated packet */ 3228 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3229 } 3230 3231 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3232 netdev_features_t features) 3233 { 3234 /* Disable GRO, if RX_CSUM is disabled */ 3235 if (!(features & NETIF_F_RXCSUM)) 3236 features &= ~NETIF_F_GRO; 3237 3238 return features; 3239 } 3240 3241 static const struct net_device_ops cxgb4_netdev_ops = { 3242 .ndo_open = cxgb_open, 3243 .ndo_stop = cxgb_close, 3244 .ndo_start_xmit = t4_start_xmit, 3245 .ndo_select_queue = cxgb_select_queue, 3246 .ndo_get_stats64 = cxgb_get_stats, 3247 .ndo_set_rx_mode = cxgb_set_rxmode, 3248 .ndo_set_mac_address = cxgb_set_mac_addr, 3249 .ndo_set_features = cxgb_set_features, 3250 .ndo_validate_addr = eth_validate_addr, 3251 .ndo_do_ioctl = cxgb_ioctl, 3252 .ndo_change_mtu = cxgb_change_mtu, 3253 #ifdef CONFIG_NET_POLL_CONTROLLER 3254 .ndo_poll_controller = cxgb_netpoll, 3255 #endif 3256 #ifdef CONFIG_CHELSIO_T4_FCOE 3257 .ndo_fcoe_enable = cxgb_fcoe_enable, 3258 .ndo_fcoe_disable = cxgb_fcoe_disable, 3259 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3260 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3261 .ndo_setup_tc = cxgb_setup_tc, 3262 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3263 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3264 .ndo_features_check = cxgb_features_check, 3265 .ndo_fix_features = cxgb_fix_features, 3266 }; 3267 3268 #ifdef CONFIG_PCI_IOV 3269 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3270 .ndo_open = cxgb4_mgmt_open, 3271 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3272 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3273 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3274 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3275 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3276 }; 3277 #endif 3278 3279 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3280 struct ethtool_drvinfo *info) 3281 { 3282 struct adapter *adapter = netdev2adap(dev); 3283 3284 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3285 strlcpy(info->version, cxgb4_driver_version, 3286 sizeof(info->version)); 3287 strlcpy(info->bus_info, pci_name(adapter->pdev), 3288 sizeof(info->bus_info)); 3289 } 3290 3291 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3292 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3293 }; 3294 3295 static void notify_fatal_err(struct work_struct *work) 3296 { 3297 struct adapter *adap; 3298 3299 adap = container_of(work, struct adapter, fatal_err_notify_task); 3300 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3301 } 3302 3303 void t4_fatal_err(struct adapter *adap) 3304 { 3305 int port; 3306 3307 if (pci_channel_offline(adap->pdev)) 3308 return; 3309 3310 /* Disable the SGE since ULDs are going to free resources that 3311 * could be exposed to the adapter. RDMA MWs for example... 3312 */ 3313 t4_shutdown_adapter(adap); 3314 for_each_port(adap, port) { 3315 struct net_device *dev = adap->port[port]; 3316 3317 /* If we get here in very early initialization the network 3318 * devices may not have been set up yet. 3319 */ 3320 if (!dev) 3321 continue; 3322 3323 netif_tx_stop_all_queues(dev); 3324 netif_carrier_off(dev); 3325 } 3326 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3327 queue_work(adap->workq, &adap->fatal_err_notify_task); 3328 } 3329 3330 static void setup_memwin(struct adapter *adap) 3331 { 3332 u32 nic_win_base = t4_get_util_window(adap); 3333 3334 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3335 } 3336 3337 static void setup_memwin_rdma(struct adapter *adap) 3338 { 3339 if (adap->vres.ocq.size) { 3340 u32 start; 3341 unsigned int sz_kb; 3342 3343 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3344 start &= PCI_BASE_ADDRESS_MEM_MASK; 3345 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3346 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3347 t4_write_reg(adap, 3348 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3349 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3350 t4_write_reg(adap, 3351 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3352 adap->vres.ocq.start); 3353 t4_read_reg(adap, 3354 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3355 } 3356 } 3357 3358 /* HMA Definitions */ 3359 3360 /* The maximum number of address that can be send in a single FW cmd */ 3361 #define HMA_MAX_ADDR_IN_CMD 5 3362 3363 #define HMA_PAGE_SIZE PAGE_SIZE 3364 3365 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3366 3367 #define HMA_PAGE_ORDER \ 3368 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3369 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3370 3371 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3372 * configuration(in units of MB). 3373 */ 3374 #define HMA_MIN_TOTAL_SIZE 1 3375 #define HMA_MAX_TOTAL_SIZE \ 3376 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3377 HMA_MAX_NO_FW_ADDRESS) >> 20) 3378 3379 static void adap_free_hma_mem(struct adapter *adapter) 3380 { 3381 struct scatterlist *iter; 3382 struct page *page; 3383 int i; 3384 3385 if (!adapter->hma.sgt) 3386 return; 3387 3388 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3389 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3390 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3391 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3392 } 3393 3394 for_each_sg(adapter->hma.sgt->sgl, iter, 3395 adapter->hma.sgt->orig_nents, i) { 3396 page = sg_page(iter); 3397 if (page) 3398 __free_pages(page, HMA_PAGE_ORDER); 3399 } 3400 3401 kfree(adapter->hma.phy_addr); 3402 sg_free_table(adapter->hma.sgt); 3403 kfree(adapter->hma.sgt); 3404 adapter->hma.sgt = NULL; 3405 } 3406 3407 static int adap_config_hma(struct adapter *adapter) 3408 { 3409 struct scatterlist *sgl, *iter; 3410 struct sg_table *sgt; 3411 struct page *newpage; 3412 unsigned int i, j, k; 3413 u32 param, hma_size; 3414 unsigned int ncmds; 3415 size_t page_size; 3416 u32 page_order; 3417 int node, ret; 3418 3419 /* HMA is supported only for T6+ cards. 3420 * Avoid initializing HMA in kdump kernels. 3421 */ 3422 if (is_kdump_kernel() || 3423 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3424 return 0; 3425 3426 /* Get the HMA region size required by fw */ 3427 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3428 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3429 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3430 1, ¶m, &hma_size); 3431 /* An error means card has its own memory or HMA is not supported by 3432 * the firmware. Return without any errors. 3433 */ 3434 if (ret || !hma_size) 3435 return 0; 3436 3437 if (hma_size < HMA_MIN_TOTAL_SIZE || 3438 hma_size > HMA_MAX_TOTAL_SIZE) { 3439 dev_err(adapter->pdev_dev, 3440 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3441 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3442 return -EINVAL; 3443 } 3444 3445 page_size = HMA_PAGE_SIZE; 3446 page_order = HMA_PAGE_ORDER; 3447 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3448 if (unlikely(!adapter->hma.sgt)) { 3449 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3450 return -ENOMEM; 3451 } 3452 sgt = adapter->hma.sgt; 3453 /* FW returned value will be in MB's 3454 */ 3455 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3456 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3457 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3458 kfree(adapter->hma.sgt); 3459 adapter->hma.sgt = NULL; 3460 return -ENOMEM; 3461 } 3462 3463 sgl = adapter->hma.sgt->sgl; 3464 node = dev_to_node(adapter->pdev_dev); 3465 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3466 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3467 __GFP_ZERO, page_order); 3468 if (!newpage) { 3469 dev_err(adapter->pdev_dev, 3470 "Not enough memory for HMA page allocation\n"); 3471 ret = -ENOMEM; 3472 goto free_hma; 3473 } 3474 sg_set_page(iter, newpage, page_size << page_order, 0); 3475 } 3476 3477 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3478 DMA_BIDIRECTIONAL); 3479 if (!sgt->nents) { 3480 dev_err(adapter->pdev_dev, 3481 "Not enough memory for HMA DMA mapping"); 3482 ret = -ENOMEM; 3483 goto free_hma; 3484 } 3485 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3486 3487 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3488 GFP_KERNEL); 3489 if (unlikely(!adapter->hma.phy_addr)) 3490 goto free_hma; 3491 3492 for_each_sg(sgl, iter, sgt->nents, i) { 3493 newpage = sg_page(iter); 3494 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3495 } 3496 3497 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3498 /* Pass on the addresses to firmware */ 3499 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3500 struct fw_hma_cmd hma_cmd; 3501 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3502 u8 soc = 0, eoc = 0; 3503 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3504 3505 soc = (i == 0) ? 1 : 0; 3506 eoc = (i == ncmds - 1) ? 1 : 0; 3507 3508 /* For last cmd, set naddr corresponding to remaining 3509 * addresses 3510 */ 3511 if (i == ncmds - 1) { 3512 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3513 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3514 } 3515 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3516 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3517 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3518 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3519 3520 hma_cmd.mode_to_pcie_params = 3521 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3522 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3523 3524 /* HMA cmd size specified in MB's */ 3525 hma_cmd.naddr_size = 3526 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3527 FW_HMA_CMD_NADDR_V(naddr)); 3528 3529 /* Total Page size specified in units of 4K */ 3530 hma_cmd.addr_size_pkd = 3531 htonl(FW_HMA_CMD_ADDR_SIZE_V 3532 ((page_size << page_order) >> 12)); 3533 3534 /* Fill the 5 addresses */ 3535 for (j = 0; j < naddr; j++) { 3536 hma_cmd.phy_address[j] = 3537 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3538 } 3539 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3540 sizeof(hma_cmd), &hma_cmd); 3541 if (ret) { 3542 dev_err(adapter->pdev_dev, 3543 "HMA FW command failed with err %d\n", ret); 3544 goto free_hma; 3545 } 3546 } 3547 3548 if (!ret) 3549 dev_info(adapter->pdev_dev, 3550 "Reserved %uMB host memory for HMA\n", hma_size); 3551 return ret; 3552 3553 free_hma: 3554 adap_free_hma_mem(adapter); 3555 return ret; 3556 } 3557 3558 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3559 { 3560 u32 v; 3561 int ret; 3562 3563 /* Now that we've successfully configured and initialized the adapter 3564 * can ask the Firmware what resources it has provisioned for us. 3565 */ 3566 ret = t4_get_pfres(adap); 3567 if (ret) { 3568 dev_err(adap->pdev_dev, 3569 "Unable to retrieve resource provisioning information\n"); 3570 return ret; 3571 } 3572 3573 /* get device capabilities */ 3574 memset(c, 0, sizeof(*c)); 3575 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3576 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3577 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3578 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3579 if (ret < 0) 3580 return ret; 3581 3582 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3583 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3584 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3585 if (ret < 0) 3586 return ret; 3587 3588 ret = t4_config_glbl_rss(adap, adap->pf, 3589 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3590 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3591 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3592 if (ret < 0) 3593 return ret; 3594 3595 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3596 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3597 FW_CMD_CAP_PF); 3598 if (ret < 0) 3599 return ret; 3600 3601 t4_sge_init(adap); 3602 3603 /* tweak some settings */ 3604 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3605 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3606 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3607 v = t4_read_reg(adap, TP_PIO_DATA_A); 3608 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3609 3610 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3611 adap->params.tp.tx_modq_map = 0xE4; 3612 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3613 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3614 3615 /* associate each Tx modulation queue with consecutive Tx channels */ 3616 v = 0x84218421; 3617 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3618 &v, 1, TP_TX_SCHED_HDR_A); 3619 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3620 &v, 1, TP_TX_SCHED_FIFO_A); 3621 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3622 &v, 1, TP_TX_SCHED_PCMD_A); 3623 3624 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3625 if (is_offload(adap)) { 3626 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3627 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3628 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3629 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3630 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3631 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3632 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3633 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3634 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3635 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3636 } 3637 3638 /* get basic stuff going */ 3639 return t4_early_init(adap, adap->pf); 3640 } 3641 3642 /* 3643 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3644 */ 3645 #define MAX_ATIDS 8192U 3646 3647 /* 3648 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3649 * 3650 * If the firmware we're dealing with has Configuration File support, then 3651 * we use that to perform all configuration 3652 */ 3653 3654 /* 3655 * Tweak configuration based on module parameters, etc. Most of these have 3656 * defaults assigned to them by Firmware Configuration Files (if we're using 3657 * them) but need to be explicitly set if we're using hard-coded 3658 * initialization. But even in the case of using Firmware Configuration 3659 * Files, we'd like to expose the ability to change these via module 3660 * parameters so these are essentially common tweaks/settings for 3661 * Configuration Files and hard-coded initialization ... 3662 */ 3663 static int adap_init0_tweaks(struct adapter *adapter) 3664 { 3665 /* 3666 * Fix up various Host-Dependent Parameters like Page Size, Cache 3667 * Line Size, etc. The firmware default is for a 4KB Page Size and 3668 * 64B Cache Line Size ... 3669 */ 3670 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3671 3672 /* 3673 * Process module parameters which affect early initialization. 3674 */ 3675 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3676 dev_err(&adapter->pdev->dev, 3677 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3678 rx_dma_offset); 3679 rx_dma_offset = 2; 3680 } 3681 t4_set_reg_field(adapter, SGE_CONTROL_A, 3682 PKTSHIFT_V(PKTSHIFT_M), 3683 PKTSHIFT_V(rx_dma_offset)); 3684 3685 /* 3686 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3687 * adds the pseudo header itself. 3688 */ 3689 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3690 CSUM_HAS_PSEUDO_HDR_F, 0); 3691 3692 return 0; 3693 } 3694 3695 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3696 * unto themselves and they contain their own firmware to perform their 3697 * tasks ... 3698 */ 3699 static int phy_aq1202_version(const u8 *phy_fw_data, 3700 size_t phy_fw_size) 3701 { 3702 int offset; 3703 3704 /* At offset 0x8 you're looking for the primary image's 3705 * starting offset which is 3 Bytes wide 3706 * 3707 * At offset 0xa of the primary image, you look for the offset 3708 * of the DRAM segment which is 3 Bytes wide. 3709 * 3710 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3711 * wide 3712 */ 3713 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3714 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3715 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3716 3717 offset = le24(phy_fw_data + 0x8) << 12; 3718 offset = le24(phy_fw_data + offset + 0xa); 3719 return be16(phy_fw_data + offset + 0x27e); 3720 3721 #undef be16 3722 #undef le16 3723 #undef le24 3724 } 3725 3726 static struct info_10gbt_phy_fw { 3727 unsigned int phy_fw_id; /* PCI Device ID */ 3728 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3729 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3730 int phy_flash; /* Has FLASH for PHY Firmware */ 3731 } phy_info_array[] = { 3732 { 3733 PHY_AQ1202_DEVICEID, 3734 PHY_AQ1202_FIRMWARE, 3735 phy_aq1202_version, 3736 1, 3737 }, 3738 { 3739 PHY_BCM84834_DEVICEID, 3740 PHY_BCM84834_FIRMWARE, 3741 NULL, 3742 0, 3743 }, 3744 { 0, NULL, NULL }, 3745 }; 3746 3747 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3748 { 3749 int i; 3750 3751 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3752 if (phy_info_array[i].phy_fw_id == devid) 3753 return &phy_info_array[i]; 3754 } 3755 return NULL; 3756 } 3757 3758 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3759 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3760 * we return a negative error number. If we transfer new firmware we return 1 3761 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3762 */ 3763 static int adap_init0_phy(struct adapter *adap) 3764 { 3765 const struct firmware *phyf; 3766 int ret; 3767 struct info_10gbt_phy_fw *phy_info; 3768 3769 /* Use the device ID to determine which PHY file to flash. 3770 */ 3771 phy_info = find_phy_info(adap->pdev->device); 3772 if (!phy_info) { 3773 dev_warn(adap->pdev_dev, 3774 "No PHY Firmware file found for this PHY\n"); 3775 return -EOPNOTSUPP; 3776 } 3777 3778 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3779 * use that. The adapter firmware provides us with a memory buffer 3780 * where we can load a PHY firmware file from the host if we want to 3781 * override the PHY firmware File in flash. 3782 */ 3783 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3784 adap->pdev_dev); 3785 if (ret < 0) { 3786 /* For adapters without FLASH attached to PHY for their 3787 * firmware, it's obviously a fatal error if we can't get the 3788 * firmware to the adapter. For adapters with PHY firmware 3789 * FLASH storage, it's worth a warning if we can't find the 3790 * PHY Firmware but we'll neuter the error ... 3791 */ 3792 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3793 "/lib/firmware/%s, error %d\n", 3794 phy_info->phy_fw_file, -ret); 3795 if (phy_info->phy_flash) { 3796 int cur_phy_fw_ver = 0; 3797 3798 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3799 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3800 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3801 ret = 0; 3802 } 3803 3804 return ret; 3805 } 3806 3807 /* Load PHY Firmware onto adapter. 3808 */ 3809 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3810 phy_info->phy_fw_version, 3811 (u8 *)phyf->data, phyf->size); 3812 if (ret < 0) 3813 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3814 -ret); 3815 else if (ret > 0) { 3816 int new_phy_fw_ver = 0; 3817 3818 if (phy_info->phy_fw_version) 3819 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3820 phyf->size); 3821 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3822 "Firmware /lib/firmware/%s, version %#x\n", 3823 phy_info->phy_fw_file, new_phy_fw_ver); 3824 } 3825 3826 release_firmware(phyf); 3827 3828 return ret; 3829 } 3830 3831 /* 3832 * Attempt to initialize the adapter via a Firmware Configuration File. 3833 */ 3834 static int adap_init0_config(struct adapter *adapter, int reset) 3835 { 3836 struct fw_caps_config_cmd caps_cmd; 3837 const struct firmware *cf; 3838 unsigned long mtype = 0, maddr = 0; 3839 u32 finiver, finicsum, cfcsum; 3840 int ret; 3841 int config_issued = 0; 3842 char *fw_config_file, fw_config_file_path[256]; 3843 char *config_name = NULL; 3844 3845 /* 3846 * Reset device if necessary. 3847 */ 3848 if (reset) { 3849 ret = t4_fw_reset(adapter, adapter->mbox, 3850 PIORSTMODE_F | PIORST_F); 3851 if (ret < 0) 3852 goto bye; 3853 } 3854 3855 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3856 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3857 * to be performed after any global adapter RESET above since some 3858 * PHYs only have local RAM copies of the PHY firmware. 3859 */ 3860 if (is_10gbt_device(adapter->pdev->device)) { 3861 ret = adap_init0_phy(adapter); 3862 if (ret < 0) 3863 goto bye; 3864 } 3865 /* 3866 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3867 * then use that. Otherwise, use the configuration file stored 3868 * in the adapter flash ... 3869 */ 3870 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3871 case CHELSIO_T4: 3872 fw_config_file = FW4_CFNAME; 3873 break; 3874 case CHELSIO_T5: 3875 fw_config_file = FW5_CFNAME; 3876 break; 3877 case CHELSIO_T6: 3878 fw_config_file = FW6_CFNAME; 3879 break; 3880 default: 3881 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3882 adapter->pdev->device); 3883 ret = -EINVAL; 3884 goto bye; 3885 } 3886 3887 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3888 if (ret < 0) { 3889 config_name = "On FLASH"; 3890 mtype = FW_MEMTYPE_CF_FLASH; 3891 maddr = t4_flash_cfg_addr(adapter); 3892 } else { 3893 u32 params[7], val[7]; 3894 3895 sprintf(fw_config_file_path, 3896 "/lib/firmware/%s", fw_config_file); 3897 config_name = fw_config_file_path; 3898 3899 if (cf->size >= FLASH_CFG_MAX_SIZE) 3900 ret = -ENOMEM; 3901 else { 3902 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3903 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3904 ret = t4_query_params(adapter, adapter->mbox, 3905 adapter->pf, 0, 1, params, val); 3906 if (ret == 0) { 3907 /* 3908 * For t4_memory_rw() below addresses and 3909 * sizes have to be in terms of multiples of 4 3910 * bytes. So, if the Configuration File isn't 3911 * a multiple of 4 bytes in length we'll have 3912 * to write that out separately since we can't 3913 * guarantee that the bytes following the 3914 * residual byte in the buffer returned by 3915 * request_firmware() are zeroed out ... 3916 */ 3917 size_t resid = cf->size & 0x3; 3918 size_t size = cf->size & ~0x3; 3919 __be32 *data = (__be32 *)cf->data; 3920 3921 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3922 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3923 3924 spin_lock(&adapter->win0_lock); 3925 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3926 size, data, T4_MEMORY_WRITE); 3927 if (ret == 0 && resid != 0) { 3928 union { 3929 __be32 word; 3930 char buf[4]; 3931 } last; 3932 int i; 3933 3934 last.word = data[size >> 2]; 3935 for (i = resid; i < 4; i++) 3936 last.buf[i] = 0; 3937 ret = t4_memory_rw(adapter, 0, mtype, 3938 maddr + size, 3939 4, &last.word, 3940 T4_MEMORY_WRITE); 3941 } 3942 spin_unlock(&adapter->win0_lock); 3943 } 3944 } 3945 3946 release_firmware(cf); 3947 if (ret) 3948 goto bye; 3949 } 3950 3951 /* 3952 * Issue a Capability Configuration command to the firmware to get it 3953 * to parse the Configuration File. We don't use t4_fw_config_file() 3954 * because we want the ability to modify various features after we've 3955 * processed the configuration file ... 3956 */ 3957 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3958 caps_cmd.op_to_write = 3959 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3960 FW_CMD_REQUEST_F | 3961 FW_CMD_READ_F); 3962 caps_cmd.cfvalid_to_len16 = 3963 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3964 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3965 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3966 FW_LEN16(caps_cmd)); 3967 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3968 &caps_cmd); 3969 3970 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3971 * Configuration File in FLASH), our last gasp effort is to use the 3972 * Firmware Configuration File which is embedded in the firmware. A 3973 * very few early versions of the firmware didn't have one embedded 3974 * but we can ignore those. 3975 */ 3976 if (ret == -ENOENT) { 3977 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3978 caps_cmd.op_to_write = 3979 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3980 FW_CMD_REQUEST_F | 3981 FW_CMD_READ_F); 3982 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3983 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3984 sizeof(caps_cmd), &caps_cmd); 3985 config_name = "Firmware Default"; 3986 } 3987 3988 config_issued = 1; 3989 if (ret < 0) 3990 goto bye; 3991 3992 finiver = ntohl(caps_cmd.finiver); 3993 finicsum = ntohl(caps_cmd.finicsum); 3994 cfcsum = ntohl(caps_cmd.cfcsum); 3995 if (finicsum != cfcsum) 3996 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3997 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3998 finicsum, cfcsum); 3999 4000 /* 4001 * And now tell the firmware to use the configuration we just loaded. 4002 */ 4003 caps_cmd.op_to_write = 4004 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4005 FW_CMD_REQUEST_F | 4006 FW_CMD_WRITE_F); 4007 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4008 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4009 NULL); 4010 if (ret < 0) 4011 goto bye; 4012 4013 /* 4014 * Tweak configuration based on system architecture, module 4015 * parameters, etc. 4016 */ 4017 ret = adap_init0_tweaks(adapter); 4018 if (ret < 0) 4019 goto bye; 4020 4021 /* We will proceed even if HMA init fails. */ 4022 ret = adap_config_hma(adapter); 4023 if (ret) 4024 dev_err(adapter->pdev_dev, 4025 "HMA configuration failed with error %d\n", ret); 4026 4027 /* 4028 * And finally tell the firmware to initialize itself using the 4029 * parameters from the Configuration File. 4030 */ 4031 ret = t4_fw_initialize(adapter, adapter->mbox); 4032 if (ret < 0) 4033 goto bye; 4034 4035 /* Emit Firmware Configuration File information and return 4036 * successfully. 4037 */ 4038 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4039 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4040 config_name, finiver, cfcsum); 4041 return 0; 4042 4043 /* 4044 * Something bad happened. Return the error ... (If the "error" 4045 * is that there's no Configuration File on the adapter we don't 4046 * want to issue a warning since this is fairly common.) 4047 */ 4048 bye: 4049 if (config_issued && ret != -ENOENT) 4050 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4051 config_name, -ret); 4052 return ret; 4053 } 4054 4055 static struct fw_info fw_info_array[] = { 4056 { 4057 .chip = CHELSIO_T4, 4058 .fs_name = FW4_CFNAME, 4059 .fw_mod_name = FW4_FNAME, 4060 .fw_hdr = { 4061 .chip = FW_HDR_CHIP_T4, 4062 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4063 .intfver_nic = FW_INTFVER(T4, NIC), 4064 .intfver_vnic = FW_INTFVER(T4, VNIC), 4065 .intfver_ri = FW_INTFVER(T4, RI), 4066 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4067 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4068 }, 4069 }, { 4070 .chip = CHELSIO_T5, 4071 .fs_name = FW5_CFNAME, 4072 .fw_mod_name = FW5_FNAME, 4073 .fw_hdr = { 4074 .chip = FW_HDR_CHIP_T5, 4075 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4076 .intfver_nic = FW_INTFVER(T5, NIC), 4077 .intfver_vnic = FW_INTFVER(T5, VNIC), 4078 .intfver_ri = FW_INTFVER(T5, RI), 4079 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4080 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4081 }, 4082 }, { 4083 .chip = CHELSIO_T6, 4084 .fs_name = FW6_CFNAME, 4085 .fw_mod_name = FW6_FNAME, 4086 .fw_hdr = { 4087 .chip = FW_HDR_CHIP_T6, 4088 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4089 .intfver_nic = FW_INTFVER(T6, NIC), 4090 .intfver_vnic = FW_INTFVER(T6, VNIC), 4091 .intfver_ofld = FW_INTFVER(T6, OFLD), 4092 .intfver_ri = FW_INTFVER(T6, RI), 4093 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4094 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4095 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4096 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4097 }, 4098 } 4099 4100 }; 4101 4102 static struct fw_info *find_fw_info(int chip) 4103 { 4104 int i; 4105 4106 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4107 if (fw_info_array[i].chip == chip) 4108 return &fw_info_array[i]; 4109 } 4110 return NULL; 4111 } 4112 4113 /* 4114 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4115 */ 4116 static int adap_init0(struct adapter *adap) 4117 { 4118 int ret; 4119 u32 v, port_vec; 4120 enum dev_state state; 4121 u32 params[7], val[7]; 4122 struct fw_caps_config_cmd caps_cmd; 4123 int reset = 1; 4124 4125 /* Grab Firmware Device Log parameters as early as possible so we have 4126 * access to it for debugging, etc. 4127 */ 4128 ret = t4_init_devlog_params(adap); 4129 if (ret < 0) 4130 return ret; 4131 4132 /* Contact FW, advertising Master capability */ 4133 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4134 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4135 if (ret < 0) { 4136 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4137 ret); 4138 return ret; 4139 } 4140 if (ret == adap->mbox) 4141 adap->flags |= MASTER_PF; 4142 4143 /* 4144 * If we're the Master PF Driver and the device is uninitialized, 4145 * then let's consider upgrading the firmware ... (We always want 4146 * to check the firmware version number in order to A. get it for 4147 * later reporting and B. to warn if the currently loaded firmware 4148 * is excessively mismatched relative to the driver.) 4149 */ 4150 4151 t4_get_version_info(adap); 4152 ret = t4_check_fw_version(adap); 4153 /* If firmware is too old (not supported by driver) force an update. */ 4154 if (ret) 4155 state = DEV_STATE_UNINIT; 4156 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4157 struct fw_info *fw_info; 4158 struct fw_hdr *card_fw; 4159 const struct firmware *fw; 4160 const u8 *fw_data = NULL; 4161 unsigned int fw_size = 0; 4162 4163 /* This is the firmware whose headers the driver was compiled 4164 * against 4165 */ 4166 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4167 if (fw_info == NULL) { 4168 dev_err(adap->pdev_dev, 4169 "unable to get firmware info for chip %d.\n", 4170 CHELSIO_CHIP_VERSION(adap->params.chip)); 4171 return -EINVAL; 4172 } 4173 4174 /* allocate memory to read the header of the firmware on the 4175 * card 4176 */ 4177 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4178 if (!card_fw) { 4179 ret = -ENOMEM; 4180 goto bye; 4181 } 4182 4183 /* Get FW from from /lib/firmware/ */ 4184 ret = request_firmware(&fw, fw_info->fw_mod_name, 4185 adap->pdev_dev); 4186 if (ret < 0) { 4187 dev_err(adap->pdev_dev, 4188 "unable to load firmware image %s, error %d\n", 4189 fw_info->fw_mod_name, ret); 4190 } else { 4191 fw_data = fw->data; 4192 fw_size = fw->size; 4193 } 4194 4195 /* upgrade FW logic */ 4196 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4197 state, &reset); 4198 4199 /* Cleaning up */ 4200 release_firmware(fw); 4201 kvfree(card_fw); 4202 4203 if (ret < 0) 4204 goto bye; 4205 } 4206 4207 /* If the firmware is initialized already, emit a simply note to that 4208 * effect. Otherwise, it's time to try initializing the adapter. 4209 */ 4210 if (state == DEV_STATE_INIT) { 4211 ret = adap_config_hma(adap); 4212 if (ret) 4213 dev_err(adap->pdev_dev, 4214 "HMA configuration failed with error %d\n", 4215 ret); 4216 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4217 "Adapter already initialized\n", 4218 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4219 } else { 4220 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4221 "Initializing adapter\n"); 4222 4223 /* Find out whether we're dealing with a version of the 4224 * firmware which has configuration file support. 4225 */ 4226 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4227 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4228 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4229 params, val); 4230 4231 /* If the firmware doesn't support Configuration Files, 4232 * return an error. 4233 */ 4234 if (ret < 0) { 4235 dev_err(adap->pdev_dev, "firmware doesn't support " 4236 "Firmware Configuration Files\n"); 4237 goto bye; 4238 } 4239 4240 /* The firmware provides us with a memory buffer where we can 4241 * load a Configuration File from the host if we want to 4242 * override the Configuration File in flash. 4243 */ 4244 ret = adap_init0_config(adap, reset); 4245 if (ret == -ENOENT) { 4246 dev_err(adap->pdev_dev, "no Configuration File " 4247 "present on adapter.\n"); 4248 goto bye; 4249 } 4250 if (ret < 0) { 4251 dev_err(adap->pdev_dev, "could not initialize " 4252 "adapter, error %d\n", -ret); 4253 goto bye; 4254 } 4255 } 4256 4257 /* Now that we've successfully configured and initialized the adapter 4258 * (or found it already initialized), we can ask the Firmware what 4259 * resources it has provisioned for us. 4260 */ 4261 ret = t4_get_pfres(adap); 4262 if (ret) { 4263 dev_err(adap->pdev_dev, 4264 "Unable to retrieve resource provisioning information\n"); 4265 goto bye; 4266 } 4267 4268 /* Grab VPD parameters. This should be done after we establish a 4269 * connection to the firmware since some of the VPD parameters 4270 * (notably the Core Clock frequency) are retrieved via requests to 4271 * the firmware. On the other hand, we need these fairly early on 4272 * so we do this right after getting ahold of the firmware. 4273 * 4274 * We need to do this after initializing the adapter because someone 4275 * could have FLASHed a new VPD which won't be read by the firmware 4276 * until we do the RESET ... 4277 */ 4278 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4279 if (ret < 0) 4280 goto bye; 4281 4282 /* Find out what ports are available to us. Note that we need to do 4283 * this before calling adap_init0_no_config() since it needs nports 4284 * and portvec ... 4285 */ 4286 v = 4287 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4288 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4289 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4290 if (ret < 0) 4291 goto bye; 4292 4293 adap->params.nports = hweight32(port_vec); 4294 adap->params.portvec = port_vec; 4295 4296 /* Give the SGE code a chance to pull in anything that it needs ... 4297 * Note that this must be called after we retrieve our VPD parameters 4298 * in order to know how to convert core ticks to seconds, etc. 4299 */ 4300 ret = t4_sge_init(adap); 4301 if (ret < 0) 4302 goto bye; 4303 4304 if (is_bypass_device(adap->pdev->device)) 4305 adap->params.bypass = 1; 4306 4307 /* 4308 * Grab some of our basic fundamental operating parameters. 4309 */ 4310 #define FW_PARAM_DEV(param) \ 4311 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4312 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4313 4314 #define FW_PARAM_PFVF(param) \ 4315 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4316 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4317 FW_PARAMS_PARAM_Y_V(0) | \ 4318 FW_PARAMS_PARAM_Z_V(0) 4319 4320 params[0] = FW_PARAM_PFVF(EQ_START); 4321 params[1] = FW_PARAM_PFVF(L2T_START); 4322 params[2] = FW_PARAM_PFVF(L2T_END); 4323 params[3] = FW_PARAM_PFVF(FILTER_START); 4324 params[4] = FW_PARAM_PFVF(FILTER_END); 4325 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4326 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4327 if (ret < 0) 4328 goto bye; 4329 adap->sge.egr_start = val[0]; 4330 adap->l2t_start = val[1]; 4331 adap->l2t_end = val[2]; 4332 adap->tids.ftid_base = val[3]; 4333 adap->tids.nftids = val[4] - val[3] + 1; 4334 adap->sge.ingr_start = val[5]; 4335 4336 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4337 /* Read the raw mps entries. In T6, the last 2 tcam entries 4338 * are reserved for raw mac addresses (rawf = 2, one per port). 4339 */ 4340 params[0] = FW_PARAM_PFVF(RAWF_START); 4341 params[1] = FW_PARAM_PFVF(RAWF_END); 4342 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4343 params, val); 4344 if (ret == 0) { 4345 adap->rawf_start = val[0]; 4346 adap->rawf_cnt = val[1] - val[0] + 1; 4347 } 4348 } 4349 4350 /* qids (ingress/egress) returned from firmware can be anywhere 4351 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4352 * Hence driver needs to allocate memory for this range to 4353 * store the queue info. Get the highest IQFLINT/EQ index returned 4354 * in FW_EQ_*_CMD.alloc command. 4355 */ 4356 params[0] = FW_PARAM_PFVF(EQ_END); 4357 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4358 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4359 if (ret < 0) 4360 goto bye; 4361 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4362 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4363 4364 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4365 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4366 if (!adap->sge.egr_map) { 4367 ret = -ENOMEM; 4368 goto bye; 4369 } 4370 4371 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4372 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4373 if (!adap->sge.ingr_map) { 4374 ret = -ENOMEM; 4375 goto bye; 4376 } 4377 4378 /* Allocate the memory for the vaious egress queue bitmaps 4379 * ie starving_fl, txq_maperr and blocked_fl. 4380 */ 4381 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4382 sizeof(long), GFP_KERNEL); 4383 if (!adap->sge.starving_fl) { 4384 ret = -ENOMEM; 4385 goto bye; 4386 } 4387 4388 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4389 sizeof(long), GFP_KERNEL); 4390 if (!adap->sge.txq_maperr) { 4391 ret = -ENOMEM; 4392 goto bye; 4393 } 4394 4395 #ifdef CONFIG_DEBUG_FS 4396 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4397 sizeof(long), GFP_KERNEL); 4398 if (!adap->sge.blocked_fl) { 4399 ret = -ENOMEM; 4400 goto bye; 4401 } 4402 #endif 4403 4404 params[0] = FW_PARAM_PFVF(CLIP_START); 4405 params[1] = FW_PARAM_PFVF(CLIP_END); 4406 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4407 if (ret < 0) 4408 goto bye; 4409 adap->clipt_start = val[0]; 4410 adap->clipt_end = val[1]; 4411 4412 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4413 * Classes supported by the hardware/firmware so we hard code it here 4414 * for now. 4415 */ 4416 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4417 4418 /* query params related to active filter region */ 4419 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4420 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4421 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4422 /* If Active filter size is set we enable establishing 4423 * offload connection through firmware work request 4424 */ 4425 if ((val[0] != val[1]) && (ret >= 0)) { 4426 adap->flags |= FW_OFLD_CONN; 4427 adap->tids.aftid_base = val[0]; 4428 adap->tids.aftid_end = val[1]; 4429 } 4430 4431 /* If we're running on newer firmware, let it know that we're 4432 * prepared to deal with encapsulated CPL messages. Older 4433 * firmware won't understand this and we'll just get 4434 * unencapsulated messages ... 4435 */ 4436 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4437 val[0] = 1; 4438 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4439 4440 /* 4441 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4442 * capability. Earlier versions of the firmware didn't have the 4443 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4444 * permission to use ULPTX MEMWRITE DSGL. 4445 */ 4446 if (is_t4(adap->params.chip)) { 4447 adap->params.ulptx_memwrite_dsgl = false; 4448 } else { 4449 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4450 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4451 1, params, val); 4452 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4453 } 4454 4455 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4456 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4457 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4458 1, params, val); 4459 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4460 4461 /* See if FW supports FW_FILTER2 work request */ 4462 if (is_t4(adap->params.chip)) { 4463 adap->params.filter2_wr_support = 0; 4464 } else { 4465 params[0] = FW_PARAM_DEV(FILTER2_WR); 4466 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4467 1, params, val); 4468 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4469 } 4470 4471 /* 4472 * Get device capabilities so we can determine what resources we need 4473 * to manage. 4474 */ 4475 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4476 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4477 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4478 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4479 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4480 &caps_cmd); 4481 if (ret < 0) 4482 goto bye; 4483 4484 if (caps_cmd.ofldcaps || 4485 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4486 /* query offload-related parameters */ 4487 params[0] = FW_PARAM_DEV(NTID); 4488 params[1] = FW_PARAM_PFVF(SERVER_START); 4489 params[2] = FW_PARAM_PFVF(SERVER_END); 4490 params[3] = FW_PARAM_PFVF(TDDP_START); 4491 params[4] = FW_PARAM_PFVF(TDDP_END); 4492 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4493 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4494 params, val); 4495 if (ret < 0) 4496 goto bye; 4497 adap->tids.ntids = val[0]; 4498 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4499 adap->tids.stid_base = val[1]; 4500 adap->tids.nstids = val[2] - val[1] + 1; 4501 /* 4502 * Setup server filter region. Divide the available filter 4503 * region into two parts. Regular filters get 1/3rd and server 4504 * filters get 2/3rd part. This is only enabled if workarond 4505 * path is enabled. 4506 * 1. For regular filters. 4507 * 2. Server filter: This are special filters which are used 4508 * to redirect SYN packets to offload queue. 4509 */ 4510 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4511 adap->tids.sftid_base = adap->tids.ftid_base + 4512 DIV_ROUND_UP(adap->tids.nftids, 3); 4513 adap->tids.nsftids = adap->tids.nftids - 4514 DIV_ROUND_UP(adap->tids.nftids, 3); 4515 adap->tids.nftids = adap->tids.sftid_base - 4516 adap->tids.ftid_base; 4517 } 4518 adap->vres.ddp.start = val[3]; 4519 adap->vres.ddp.size = val[4] - val[3] + 1; 4520 adap->params.ofldq_wr_cred = val[5]; 4521 4522 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4523 ret = init_hash_filter(adap); 4524 if (ret < 0) 4525 goto bye; 4526 } else { 4527 adap->params.offload = 1; 4528 adap->num_ofld_uld += 1; 4529 } 4530 } 4531 if (caps_cmd.rdmacaps) { 4532 params[0] = FW_PARAM_PFVF(STAG_START); 4533 params[1] = FW_PARAM_PFVF(STAG_END); 4534 params[2] = FW_PARAM_PFVF(RQ_START); 4535 params[3] = FW_PARAM_PFVF(RQ_END); 4536 params[4] = FW_PARAM_PFVF(PBL_START); 4537 params[5] = FW_PARAM_PFVF(PBL_END); 4538 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4539 params, val); 4540 if (ret < 0) 4541 goto bye; 4542 adap->vres.stag.start = val[0]; 4543 adap->vres.stag.size = val[1] - val[0] + 1; 4544 adap->vres.rq.start = val[2]; 4545 adap->vres.rq.size = val[3] - val[2] + 1; 4546 adap->vres.pbl.start = val[4]; 4547 adap->vres.pbl.size = val[5] - val[4] + 1; 4548 4549 params[0] = FW_PARAM_PFVF(SRQ_START); 4550 params[1] = FW_PARAM_PFVF(SRQ_END); 4551 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4552 params, val); 4553 if (!ret) { 4554 adap->vres.srq.start = val[0]; 4555 adap->vres.srq.size = val[1] - val[0] + 1; 4556 } 4557 if (adap->vres.srq.size) { 4558 adap->srq = t4_init_srq(adap->vres.srq.size); 4559 if (!adap->srq) 4560 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4561 } 4562 4563 params[0] = FW_PARAM_PFVF(SQRQ_START); 4564 params[1] = FW_PARAM_PFVF(SQRQ_END); 4565 params[2] = FW_PARAM_PFVF(CQ_START); 4566 params[3] = FW_PARAM_PFVF(CQ_END); 4567 params[4] = FW_PARAM_PFVF(OCQ_START); 4568 params[5] = FW_PARAM_PFVF(OCQ_END); 4569 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4570 val); 4571 if (ret < 0) 4572 goto bye; 4573 adap->vres.qp.start = val[0]; 4574 adap->vres.qp.size = val[1] - val[0] + 1; 4575 adap->vres.cq.start = val[2]; 4576 adap->vres.cq.size = val[3] - val[2] + 1; 4577 adap->vres.ocq.start = val[4]; 4578 adap->vres.ocq.size = val[5] - val[4] + 1; 4579 4580 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4581 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4582 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4583 val); 4584 if (ret < 0) { 4585 adap->params.max_ordird_qp = 8; 4586 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4587 ret = 0; 4588 } else { 4589 adap->params.max_ordird_qp = val[0]; 4590 adap->params.max_ird_adapter = val[1]; 4591 } 4592 dev_info(adap->pdev_dev, 4593 "max_ordird_qp %d max_ird_adapter %d\n", 4594 adap->params.max_ordird_qp, 4595 adap->params.max_ird_adapter); 4596 4597 /* Enable write_with_immediate if FW supports it */ 4598 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4599 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4600 val); 4601 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4602 4603 /* Enable write_cmpl if FW supports it */ 4604 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4605 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4606 val); 4607 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4608 adap->num_ofld_uld += 2; 4609 } 4610 if (caps_cmd.iscsicaps) { 4611 params[0] = FW_PARAM_PFVF(ISCSI_START); 4612 params[1] = FW_PARAM_PFVF(ISCSI_END); 4613 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4614 params, val); 4615 if (ret < 0) 4616 goto bye; 4617 adap->vres.iscsi.start = val[0]; 4618 adap->vres.iscsi.size = val[1] - val[0] + 1; 4619 /* LIO target and cxgb4i initiaitor */ 4620 adap->num_ofld_uld += 2; 4621 } 4622 if (caps_cmd.cryptocaps) { 4623 if (ntohs(caps_cmd.cryptocaps) & 4624 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4625 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4626 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4627 2, params, val); 4628 if (ret < 0) { 4629 if (ret != -EINVAL) 4630 goto bye; 4631 } else { 4632 adap->vres.ncrypto_fc = val[0]; 4633 } 4634 adap->num_ofld_uld += 1; 4635 } 4636 if (ntohs(caps_cmd.cryptocaps) & 4637 FW_CAPS_CONFIG_TLS_INLINE) { 4638 params[0] = FW_PARAM_PFVF(TLS_START); 4639 params[1] = FW_PARAM_PFVF(TLS_END); 4640 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4641 2, params, val); 4642 if (ret < 0) 4643 goto bye; 4644 adap->vres.key.start = val[0]; 4645 adap->vres.key.size = val[1] - val[0] + 1; 4646 adap->num_uld += 1; 4647 } 4648 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4649 } 4650 #undef FW_PARAM_PFVF 4651 #undef FW_PARAM_DEV 4652 4653 /* The MTU/MSS Table is initialized by now, so load their values. If 4654 * we're initializing the adapter, then we'll make any modifications 4655 * we want to the MTU/MSS Table and also initialize the congestion 4656 * parameters. 4657 */ 4658 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4659 if (state != DEV_STATE_INIT) { 4660 int i; 4661 4662 /* The default MTU Table contains values 1492 and 1500. 4663 * However, for TCP, it's better to have two values which are 4664 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4665 * This allows us to have a TCP Data Payload which is a 4666 * multiple of 8 regardless of what combination of TCP Options 4667 * are in use (always a multiple of 4 bytes) which is 4668 * important for performance reasons. For instance, if no 4669 * options are in use, then we have a 20-byte IP header and a 4670 * 20-byte TCP header. In this case, a 1500-byte MSS would 4671 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4672 * which is not a multiple of 8. So using an MSS of 1488 in 4673 * this case results in a TCP Data Payload of 1448 bytes which 4674 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4675 * Stamps have been negotiated, then an MTU of 1500 bytes 4676 * results in a TCP Data Payload of 1448 bytes which, as 4677 * above, is a multiple of 8 bytes ... 4678 */ 4679 for (i = 0; i < NMTUS; i++) 4680 if (adap->params.mtus[i] == 1492) { 4681 adap->params.mtus[i] = 1488; 4682 break; 4683 } 4684 4685 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4686 adap->params.b_wnd); 4687 } 4688 t4_init_sge_params(adap); 4689 adap->flags |= FW_OK; 4690 t4_init_tp_params(adap, true); 4691 return 0; 4692 4693 /* 4694 * Something bad happened. If a command timed out or failed with EIO 4695 * FW does not operate within its spec or something catastrophic 4696 * happened to HW/FW, stop issuing commands. 4697 */ 4698 bye: 4699 adap_free_hma_mem(adap); 4700 kfree(adap->sge.egr_map); 4701 kfree(adap->sge.ingr_map); 4702 kfree(adap->sge.starving_fl); 4703 kfree(adap->sge.txq_maperr); 4704 #ifdef CONFIG_DEBUG_FS 4705 kfree(adap->sge.blocked_fl); 4706 #endif 4707 if (ret != -ETIMEDOUT && ret != -EIO) 4708 t4_fw_bye(adap, adap->mbox); 4709 return ret; 4710 } 4711 4712 /* EEH callbacks */ 4713 4714 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4715 pci_channel_state_t state) 4716 { 4717 int i; 4718 struct adapter *adap = pci_get_drvdata(pdev); 4719 4720 if (!adap) 4721 goto out; 4722 4723 rtnl_lock(); 4724 adap->flags &= ~FW_OK; 4725 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4726 spin_lock(&adap->stats_lock); 4727 for_each_port(adap, i) { 4728 struct net_device *dev = adap->port[i]; 4729 if (dev) { 4730 netif_device_detach(dev); 4731 netif_carrier_off(dev); 4732 } 4733 } 4734 spin_unlock(&adap->stats_lock); 4735 disable_interrupts(adap); 4736 if (adap->flags & FULL_INIT_DONE) 4737 cxgb_down(adap); 4738 rtnl_unlock(); 4739 if ((adap->flags & DEV_ENABLED)) { 4740 pci_disable_device(pdev); 4741 adap->flags &= ~DEV_ENABLED; 4742 } 4743 out: return state == pci_channel_io_perm_failure ? 4744 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4745 } 4746 4747 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4748 { 4749 int i, ret; 4750 struct fw_caps_config_cmd c; 4751 struct adapter *adap = pci_get_drvdata(pdev); 4752 4753 if (!adap) { 4754 pci_restore_state(pdev); 4755 pci_save_state(pdev); 4756 return PCI_ERS_RESULT_RECOVERED; 4757 } 4758 4759 if (!(adap->flags & DEV_ENABLED)) { 4760 if (pci_enable_device(pdev)) { 4761 dev_err(&pdev->dev, "Cannot reenable PCI " 4762 "device after reset\n"); 4763 return PCI_ERS_RESULT_DISCONNECT; 4764 } 4765 adap->flags |= DEV_ENABLED; 4766 } 4767 4768 pci_set_master(pdev); 4769 pci_restore_state(pdev); 4770 pci_save_state(pdev); 4771 pci_cleanup_aer_uncorrect_error_status(pdev); 4772 4773 if (t4_wait_dev_ready(adap->regs) < 0) 4774 return PCI_ERS_RESULT_DISCONNECT; 4775 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4776 return PCI_ERS_RESULT_DISCONNECT; 4777 adap->flags |= FW_OK; 4778 if (adap_init1(adap, &c)) 4779 return PCI_ERS_RESULT_DISCONNECT; 4780 4781 for_each_port(adap, i) { 4782 struct port_info *p = adap2pinfo(adap, i); 4783 4784 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4785 NULL, NULL); 4786 if (ret < 0) 4787 return PCI_ERS_RESULT_DISCONNECT; 4788 p->viid = ret; 4789 p->xact_addr_filt = -1; 4790 } 4791 4792 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4793 adap->params.b_wnd); 4794 setup_memwin(adap); 4795 if (cxgb_up(adap)) 4796 return PCI_ERS_RESULT_DISCONNECT; 4797 return PCI_ERS_RESULT_RECOVERED; 4798 } 4799 4800 static void eeh_resume(struct pci_dev *pdev) 4801 { 4802 int i; 4803 struct adapter *adap = pci_get_drvdata(pdev); 4804 4805 if (!adap) 4806 return; 4807 4808 rtnl_lock(); 4809 for_each_port(adap, i) { 4810 struct net_device *dev = adap->port[i]; 4811 if (dev) { 4812 if (netif_running(dev)) { 4813 link_start(dev); 4814 cxgb_set_rxmode(dev); 4815 } 4816 netif_device_attach(dev); 4817 } 4818 } 4819 rtnl_unlock(); 4820 } 4821 4822 static const struct pci_error_handlers cxgb4_eeh = { 4823 .error_detected = eeh_err_detected, 4824 .slot_reset = eeh_slot_reset, 4825 .resume = eeh_resume, 4826 }; 4827 4828 /* Return true if the Link Configuration supports "High Speeds" (those greater 4829 * than 1Gb/s). 4830 */ 4831 static inline bool is_x_10g_port(const struct link_config *lc) 4832 { 4833 unsigned int speeds, high_speeds; 4834 4835 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4836 high_speeds = speeds & 4837 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4838 4839 return high_speeds != 0; 4840 } 4841 4842 /* 4843 * Perform default configuration of DMA queues depending on the number and type 4844 * of ports we found and the number of available CPUs. Most settings can be 4845 * modified by the admin prior to actual use. 4846 */ 4847 static int cfg_queues(struct adapter *adap) 4848 { 4849 struct sge *s = &adap->sge; 4850 int i, n10g = 0, qidx = 0; 4851 int niqflint, neq, avail_eth_qsets; 4852 int max_eth_qsets = 32; 4853 #ifndef CONFIG_CHELSIO_T4_DCB 4854 int q10g = 0; 4855 #endif 4856 4857 /* Reduce memory usage in kdump environment, disable all offload. 4858 */ 4859 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4860 adap->params.offload = 0; 4861 adap->params.crypto = 0; 4862 } 4863 4864 /* Calculate the number of Ethernet Queue Sets available based on 4865 * resources provisioned for us. We always have an Asynchronous 4866 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 4867 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 4868 * Ingress Queue. Meanwhile, we need two Egress Queues for each 4869 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 4870 * 4871 * Note that we should also take into account all of the various 4872 * Offload Queues. But, in any situation where we're operating in 4873 * a Resource Constrained Provisioning environment, doing any Offload 4874 * at all is problematic ... 4875 */ 4876 niqflint = adap->params.pfres.niqflint - 1; 4877 if (!(adap->flags & USING_MSIX)) 4878 niqflint--; 4879 neq = adap->params.pfres.neq / 2; 4880 avail_eth_qsets = min(niqflint, neq); 4881 4882 if (avail_eth_qsets > max_eth_qsets) 4883 avail_eth_qsets = max_eth_qsets; 4884 4885 if (avail_eth_qsets < adap->params.nports) { 4886 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 4887 avail_eth_qsets, adap->params.nports); 4888 return -ENOMEM; 4889 } 4890 4891 /* Count the number of 10Gb/s or better ports */ 4892 for_each_port(adap, i) 4893 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4894 4895 #ifdef CONFIG_CHELSIO_T4_DCB 4896 /* For Data Center Bridging support we need to be able to support up 4897 * to 8 Traffic Priorities; each of which will be assigned to its 4898 * own TX Queue in order to prevent Head-Of-Line Blocking. 4899 */ 4900 if (adap->params.nports * 8 > avail_eth_qsets) { 4901 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 4902 avail_eth_qsets, adap->params.nports * 8); 4903 return -ENOMEM; 4904 } 4905 4906 for_each_port(adap, i) { 4907 struct port_info *pi = adap2pinfo(adap, i); 4908 4909 pi->first_qset = qidx; 4910 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4911 qidx += pi->nqsets; 4912 } 4913 #else /* !CONFIG_CHELSIO_T4_DCB */ 4914 /* 4915 * We default to 1 queue per non-10G port and up to # of cores queues 4916 * per 10G port. 4917 */ 4918 if (n10g) 4919 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 4920 if (q10g > netif_get_num_default_rss_queues()) 4921 q10g = netif_get_num_default_rss_queues(); 4922 4923 if (is_kdump_kernel()) 4924 q10g = 1; 4925 4926 for_each_port(adap, i) { 4927 struct port_info *pi = adap2pinfo(adap, i); 4928 4929 pi->first_qset = qidx; 4930 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4931 qidx += pi->nqsets; 4932 } 4933 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4934 4935 s->ethqsets = qidx; 4936 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4937 4938 if (is_uld(adap)) { 4939 /* 4940 * For offload we use 1 queue/channel if all ports are up to 1G, 4941 * otherwise we divide all available queues amongst the channels 4942 * capped by the number of available cores. 4943 */ 4944 if (n10g) { 4945 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4946 s->ofldqsets = roundup(i, adap->params.nports); 4947 } else { 4948 s->ofldqsets = adap->params.nports; 4949 } 4950 } 4951 4952 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4953 struct sge_eth_rxq *r = &s->ethrxq[i]; 4954 4955 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4956 r->fl.size = 72; 4957 } 4958 4959 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4960 s->ethtxq[i].q.size = 1024; 4961 4962 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4963 s->ctrlq[i].q.size = 512; 4964 4965 if (!is_t4(adap->params.chip)) 4966 s->ptptxq.q.size = 8; 4967 4968 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4969 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4970 4971 return 0; 4972 } 4973 4974 /* 4975 * Reduce the number of Ethernet queues across all ports to at most n. 4976 * n provides at least one queue per port. 4977 */ 4978 static void reduce_ethqs(struct adapter *adap, int n) 4979 { 4980 int i; 4981 struct port_info *pi; 4982 4983 while (n < adap->sge.ethqsets) 4984 for_each_port(adap, i) { 4985 pi = adap2pinfo(adap, i); 4986 if (pi->nqsets > 1) { 4987 pi->nqsets--; 4988 adap->sge.ethqsets--; 4989 if (adap->sge.ethqsets <= n) 4990 break; 4991 } 4992 } 4993 4994 n = 0; 4995 for_each_port(adap, i) { 4996 pi = adap2pinfo(adap, i); 4997 pi->first_qset = n; 4998 n += pi->nqsets; 4999 } 5000 } 5001 5002 static int get_msix_info(struct adapter *adap) 5003 { 5004 struct uld_msix_info *msix_info; 5005 unsigned int max_ingq = 0; 5006 5007 if (is_offload(adap)) 5008 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 5009 if (is_pci_uld(adap)) 5010 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 5011 5012 if (!max_ingq) 5013 goto out; 5014 5015 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 5016 if (!msix_info) 5017 return -ENOMEM; 5018 5019 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 5020 sizeof(long), GFP_KERNEL); 5021 if (!adap->msix_bmap_ulds.msix_bmap) { 5022 kfree(msix_info); 5023 return -ENOMEM; 5024 } 5025 spin_lock_init(&adap->msix_bmap_ulds.lock); 5026 adap->msix_info_ulds = msix_info; 5027 out: 5028 return 0; 5029 } 5030 5031 static void free_msix_info(struct adapter *adap) 5032 { 5033 if (!(adap->num_uld && adap->num_ofld_uld)) 5034 return; 5035 5036 kfree(adap->msix_info_ulds); 5037 kfree(adap->msix_bmap_ulds.msix_bmap); 5038 } 5039 5040 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5041 #define EXTRA_VECS 2 5042 5043 static int enable_msix(struct adapter *adap) 5044 { 5045 int ofld_need = 0, uld_need = 0; 5046 int i, j, want, need, allocated; 5047 struct sge *s = &adap->sge; 5048 unsigned int nchan = adap->params.nports; 5049 struct msix_entry *entries; 5050 int max_ingq = MAX_INGQ; 5051 5052 if (is_pci_uld(adap)) 5053 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5054 if (is_offload(adap)) 5055 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5056 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5057 GFP_KERNEL); 5058 if (!entries) 5059 return -ENOMEM; 5060 5061 /* map for msix */ 5062 if (get_msix_info(adap)) { 5063 adap->params.offload = 0; 5064 adap->params.crypto = 0; 5065 } 5066 5067 for (i = 0; i < max_ingq + 1; ++i) 5068 entries[i].entry = i; 5069 5070 want = s->max_ethqsets + EXTRA_VECS; 5071 if (is_offload(adap)) { 5072 want += adap->num_ofld_uld * s->ofldqsets; 5073 ofld_need = adap->num_ofld_uld * nchan; 5074 } 5075 if (is_pci_uld(adap)) { 5076 want += adap->num_uld * s->ofldqsets; 5077 uld_need = adap->num_uld * nchan; 5078 } 5079 #ifdef CONFIG_CHELSIO_T4_DCB 5080 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5081 * each port. 5082 */ 5083 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5084 #else 5085 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5086 #endif 5087 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5088 if (allocated < 0) { 5089 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5090 " not using MSI-X\n"); 5091 kfree(entries); 5092 return allocated; 5093 } 5094 5095 /* Distribute available vectors to the various queue groups. 5096 * Every group gets its minimum requirement and NIC gets top 5097 * priority for leftovers. 5098 */ 5099 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5100 if (i < s->max_ethqsets) { 5101 s->max_ethqsets = i; 5102 if (i < s->ethqsets) 5103 reduce_ethqs(adap, i); 5104 } 5105 if (is_uld(adap)) { 5106 if (allocated < want) 5107 s->nqs_per_uld = nchan; 5108 else 5109 s->nqs_per_uld = s->ofldqsets; 5110 } 5111 5112 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5113 adap->msix_info[i].vec = entries[i].vector; 5114 if (is_uld(adap)) { 5115 for (j = 0 ; i < allocated; ++i, j++) { 5116 adap->msix_info_ulds[j].vec = entries[i].vector; 5117 adap->msix_info_ulds[j].idx = i; 5118 } 5119 adap->msix_bmap_ulds.mapsize = j; 5120 } 5121 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5122 "nic %d per uld %d\n", 5123 allocated, s->max_ethqsets, s->nqs_per_uld); 5124 5125 kfree(entries); 5126 return 0; 5127 } 5128 5129 #undef EXTRA_VECS 5130 5131 static int init_rss(struct adapter *adap) 5132 { 5133 unsigned int i; 5134 int err; 5135 5136 err = t4_init_rss_mode(adap, adap->mbox); 5137 if (err) 5138 return err; 5139 5140 for_each_port(adap, i) { 5141 struct port_info *pi = adap2pinfo(adap, i); 5142 5143 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5144 if (!pi->rss) 5145 return -ENOMEM; 5146 } 5147 return 0; 5148 } 5149 5150 /* Dump basic information about the adapter */ 5151 static void print_adapter_info(struct adapter *adapter) 5152 { 5153 /* Hardware/Firmware/etc. Version/Revision IDs */ 5154 t4_dump_version_info(adapter); 5155 5156 /* Software/Hardware configuration */ 5157 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5158 is_offload(adapter) ? "R" : "", 5159 ((adapter->flags & USING_MSIX) ? "MSI-X" : 5160 (adapter->flags & USING_MSI) ? "MSI" : ""), 5161 is_offload(adapter) ? "Offload" : "non-Offload"); 5162 } 5163 5164 static void print_port_info(const struct net_device *dev) 5165 { 5166 char buf[80]; 5167 char *bufp = buf; 5168 const struct port_info *pi = netdev_priv(dev); 5169 const struct adapter *adap = pi->adapter; 5170 5171 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5172 bufp += sprintf(bufp, "100M/"); 5173 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5174 bufp += sprintf(bufp, "1G/"); 5175 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5176 bufp += sprintf(bufp, "10G/"); 5177 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5178 bufp += sprintf(bufp, "25G/"); 5179 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5180 bufp += sprintf(bufp, "40G/"); 5181 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5182 bufp += sprintf(bufp, "50G/"); 5183 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5184 bufp += sprintf(bufp, "100G/"); 5185 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5186 bufp += sprintf(bufp, "200G/"); 5187 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5188 bufp += sprintf(bufp, "400G/"); 5189 if (bufp != buf) 5190 --bufp; 5191 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5192 5193 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5194 dev->name, adap->params.vpd.id, adap->name, buf); 5195 } 5196 5197 /* 5198 * Free the following resources: 5199 * - memory used for tables 5200 * - MSI/MSI-X 5201 * - net devices 5202 * - resources FW is holding for us 5203 */ 5204 static void free_some_resources(struct adapter *adapter) 5205 { 5206 unsigned int i; 5207 5208 kvfree(adapter->mps_encap); 5209 kvfree(adapter->smt); 5210 kvfree(adapter->l2t); 5211 kvfree(adapter->srq); 5212 t4_cleanup_sched(adapter); 5213 kvfree(adapter->tids.tid_tab); 5214 cxgb4_cleanup_tc_flower(adapter); 5215 cxgb4_cleanup_tc_u32(adapter); 5216 kfree(adapter->sge.egr_map); 5217 kfree(adapter->sge.ingr_map); 5218 kfree(adapter->sge.starving_fl); 5219 kfree(adapter->sge.txq_maperr); 5220 #ifdef CONFIG_DEBUG_FS 5221 kfree(adapter->sge.blocked_fl); 5222 #endif 5223 disable_msi(adapter); 5224 5225 for_each_port(adapter, i) 5226 if (adapter->port[i]) { 5227 struct port_info *pi = adap2pinfo(adapter, i); 5228 5229 if (pi->viid != 0) 5230 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5231 0, pi->viid); 5232 kfree(adap2pinfo(adapter, i)->rss); 5233 free_netdev(adapter->port[i]); 5234 } 5235 if (adapter->flags & FW_OK) 5236 t4_fw_bye(adapter, adapter->pf); 5237 } 5238 5239 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5240 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5241 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5242 #define SEGMENT_SIZE 128 5243 5244 static int t4_get_chip_type(struct adapter *adap, int ver) 5245 { 5246 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5247 5248 switch (ver) { 5249 case CHELSIO_T4: 5250 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5251 case CHELSIO_T5: 5252 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5253 case CHELSIO_T6: 5254 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5255 default: 5256 break; 5257 } 5258 return -EINVAL; 5259 } 5260 5261 #ifdef CONFIG_PCI_IOV 5262 static void cxgb4_mgmt_setup(struct net_device *dev) 5263 { 5264 dev->type = ARPHRD_NONE; 5265 dev->mtu = 0; 5266 dev->hard_header_len = 0; 5267 dev->addr_len = 0; 5268 dev->tx_queue_len = 0; 5269 dev->flags |= IFF_NOARP; 5270 dev->priv_flags |= IFF_NO_QUEUE; 5271 5272 /* Initialize the device structure. */ 5273 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5274 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5275 } 5276 5277 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5278 { 5279 struct adapter *adap = pci_get_drvdata(pdev); 5280 int err = 0; 5281 int current_vfs = pci_num_vf(pdev); 5282 u32 pcie_fw; 5283 5284 pcie_fw = readl(adap->regs + PCIE_FW_A); 5285 /* Check if fw is initialized */ 5286 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5287 dev_warn(&pdev->dev, "Device not initialized\n"); 5288 return -EOPNOTSUPP; 5289 } 5290 5291 /* If any of the VF's is already assigned to Guest OS, then 5292 * SRIOV for the same cannot be modified 5293 */ 5294 if (current_vfs && pci_vfs_assigned(pdev)) { 5295 dev_err(&pdev->dev, 5296 "Cannot modify SR-IOV while VFs are assigned\n"); 5297 return current_vfs; 5298 } 5299 /* Note that the upper-level code ensures that we're never called with 5300 * a non-zero "num_vfs" when we already have VFs instantiated. But 5301 * it never hurts to code defensively. 5302 */ 5303 if (num_vfs != 0 && current_vfs != 0) 5304 return -EBUSY; 5305 5306 /* Nothing to do for no change. */ 5307 if (num_vfs == current_vfs) 5308 return num_vfs; 5309 5310 /* Disable SRIOV when zero is passed. */ 5311 if (!num_vfs) { 5312 pci_disable_sriov(pdev); 5313 /* free VF Management Interface */ 5314 unregister_netdev(adap->port[0]); 5315 free_netdev(adap->port[0]); 5316 adap->port[0] = NULL; 5317 5318 /* free VF resources */ 5319 adap->num_vfs = 0; 5320 kfree(adap->vfinfo); 5321 adap->vfinfo = NULL; 5322 return 0; 5323 } 5324 5325 if (!current_vfs) { 5326 struct fw_pfvf_cmd port_cmd, port_rpl; 5327 struct net_device *netdev; 5328 unsigned int pmask, port; 5329 struct pci_dev *pbridge; 5330 struct port_info *pi; 5331 char name[IFNAMSIZ]; 5332 u32 devcap2; 5333 u16 flags; 5334 int pos; 5335 5336 /* If we want to instantiate Virtual Functions, then our 5337 * parent bridge's PCI-E needs to support Alternative Routing 5338 * ID (ARI) because our VFs will show up at function offset 8 5339 * and above. 5340 */ 5341 pbridge = pdev->bus->self; 5342 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5343 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5344 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5345 5346 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5347 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5348 /* Our parent bridge does not support ARI so issue a 5349 * warning and skip instantiating the VFs. They 5350 * won't be reachable. 5351 */ 5352 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5353 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5354 PCI_FUNC(pbridge->devfn)); 5355 return -ENOTSUPP; 5356 } 5357 memset(&port_cmd, 0, sizeof(port_cmd)); 5358 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5359 FW_CMD_REQUEST_F | 5360 FW_CMD_READ_F | 5361 FW_PFVF_CMD_PFN_V(adap->pf) | 5362 FW_PFVF_CMD_VFN_V(0)); 5363 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5364 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5365 &port_rpl); 5366 if (err) 5367 return err; 5368 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5369 port = ffs(pmask) - 1; 5370 /* Allocate VF Management Interface. */ 5371 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5372 adap->pf); 5373 netdev = alloc_netdev(sizeof(struct port_info), 5374 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5375 if (!netdev) 5376 return -ENOMEM; 5377 5378 pi = netdev_priv(netdev); 5379 pi->adapter = adap; 5380 pi->lport = port; 5381 pi->tx_chan = port; 5382 SET_NETDEV_DEV(netdev, &pdev->dev); 5383 5384 adap->port[0] = netdev; 5385 pi->port_id = 0; 5386 5387 err = register_netdev(adap->port[0]); 5388 if (err) { 5389 pr_info("Unable to register VF mgmt netdev %s\n", name); 5390 free_netdev(adap->port[0]); 5391 adap->port[0] = NULL; 5392 return err; 5393 } 5394 /* Allocate and set up VF Information. */ 5395 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5396 sizeof(struct vf_info), GFP_KERNEL); 5397 if (!adap->vfinfo) { 5398 unregister_netdev(adap->port[0]); 5399 free_netdev(adap->port[0]); 5400 adap->port[0] = NULL; 5401 return -ENOMEM; 5402 } 5403 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5404 } 5405 /* Instantiate the requested number of VFs. */ 5406 err = pci_enable_sriov(pdev, num_vfs); 5407 if (err) { 5408 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5409 if (!current_vfs) { 5410 unregister_netdev(adap->port[0]); 5411 free_netdev(adap->port[0]); 5412 adap->port[0] = NULL; 5413 kfree(adap->vfinfo); 5414 adap->vfinfo = NULL; 5415 } 5416 return err; 5417 } 5418 5419 adap->num_vfs = num_vfs; 5420 return num_vfs; 5421 } 5422 #endif /* CONFIG_PCI_IOV */ 5423 5424 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5425 { 5426 struct net_device *netdev; 5427 struct adapter *adapter; 5428 static int adap_idx = 1; 5429 int s_qpp, qpp, num_seg; 5430 struct port_info *pi; 5431 bool highdma = false; 5432 enum chip_type chip; 5433 void __iomem *regs; 5434 int func, chip_ver; 5435 u16 device_id; 5436 int i, err; 5437 u32 whoami; 5438 5439 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5440 5441 err = pci_request_regions(pdev, KBUILD_MODNAME); 5442 if (err) { 5443 /* Just info, some other driver may have claimed the device. */ 5444 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5445 return err; 5446 } 5447 5448 err = pci_enable_device(pdev); 5449 if (err) { 5450 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5451 goto out_release_regions; 5452 } 5453 5454 regs = pci_ioremap_bar(pdev, 0); 5455 if (!regs) { 5456 dev_err(&pdev->dev, "cannot map device registers\n"); 5457 err = -ENOMEM; 5458 goto out_disable_device; 5459 } 5460 5461 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5462 if (!adapter) { 5463 err = -ENOMEM; 5464 goto out_unmap_bar0; 5465 } 5466 5467 adapter->regs = regs; 5468 err = t4_wait_dev_ready(regs); 5469 if (err < 0) 5470 goto out_free_adapter; 5471 5472 /* We control everything through one PF */ 5473 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5474 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5475 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5476 if (chip < 0) { 5477 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5478 err = chip; 5479 goto out_free_adapter; 5480 } 5481 chip_ver = CHELSIO_CHIP_VERSION(chip); 5482 func = chip_ver <= CHELSIO_T5 ? 5483 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5484 5485 adapter->pdev = pdev; 5486 adapter->pdev_dev = &pdev->dev; 5487 adapter->name = pci_name(pdev); 5488 adapter->mbox = func; 5489 adapter->pf = func; 5490 adapter->params.chip = chip; 5491 adapter->adap_idx = adap_idx; 5492 adapter->msg_enable = DFLT_MSG_ENABLE; 5493 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5494 (sizeof(struct mbox_cmd) * 5495 T4_OS_LOG_MBOX_CMDS), 5496 GFP_KERNEL); 5497 if (!adapter->mbox_log) { 5498 err = -ENOMEM; 5499 goto out_free_adapter; 5500 } 5501 spin_lock_init(&adapter->mbox_lock); 5502 INIT_LIST_HEAD(&adapter->mlist.list); 5503 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5504 pci_set_drvdata(pdev, adapter); 5505 5506 if (func != ent->driver_data) { 5507 pci_disable_device(pdev); 5508 pci_save_state(pdev); /* to restore SR-IOV later */ 5509 return 0; 5510 } 5511 5512 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5513 highdma = true; 5514 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5515 if (err) { 5516 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5517 "coherent allocations\n"); 5518 goto out_free_adapter; 5519 } 5520 } else { 5521 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5522 if (err) { 5523 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5524 goto out_free_adapter; 5525 } 5526 } 5527 5528 pci_enable_pcie_error_reporting(pdev); 5529 pci_set_master(pdev); 5530 pci_save_state(pdev); 5531 adap_idx++; 5532 adapter->workq = create_singlethread_workqueue("cxgb4"); 5533 if (!adapter->workq) { 5534 err = -ENOMEM; 5535 goto out_free_adapter; 5536 } 5537 5538 /* PCI device has been enabled */ 5539 adapter->flags |= DEV_ENABLED; 5540 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5541 5542 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5543 * Ingress Packet Data to Free List Buffers in order to allow for 5544 * chipset performance optimizations between the Root Complex and 5545 * Memory Controllers. (Messages to the associated Ingress Queue 5546 * notifying new Packet Placement in the Free Lists Buffers will be 5547 * send without the Relaxed Ordering Attribute thus guaranteeing that 5548 * all preceding PCIe Transaction Layer Packets will be processed 5549 * first.) But some Root Complexes have various issues with Upstream 5550 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5551 * The PCIe devices which under the Root Complexes will be cleared the 5552 * Relaxed Ordering bit in the configuration space, So we check our 5553 * PCIe configuration space to see if it's flagged with advice against 5554 * using Relaxed Ordering. 5555 */ 5556 if (!pcie_relaxed_ordering_enabled(pdev)) 5557 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5558 5559 spin_lock_init(&adapter->stats_lock); 5560 spin_lock_init(&adapter->tid_release_lock); 5561 spin_lock_init(&adapter->win0_lock); 5562 5563 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5564 INIT_WORK(&adapter->db_full_task, process_db_full); 5565 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5566 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5567 5568 err = t4_prep_adapter(adapter); 5569 if (err) 5570 goto out_free_adapter; 5571 5572 if (is_kdump_kernel()) { 5573 /* Collect hardware state and append to /proc/vmcore */ 5574 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5575 if (err) { 5576 dev_warn(adapter->pdev_dev, 5577 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5578 err); 5579 err = 0; 5580 } 5581 } 5582 5583 if (!is_t4(adapter->params.chip)) { 5584 s_qpp = (QUEUESPERPAGEPF0_S + 5585 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5586 adapter->pf); 5587 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5588 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5589 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5590 5591 /* Each segment size is 128B. Write coalescing is enabled only 5592 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5593 * queue is less no of segments that can be accommodated in 5594 * a page size. 5595 */ 5596 if (qpp > num_seg) { 5597 dev_err(&pdev->dev, 5598 "Incorrect number of egress queues per page\n"); 5599 err = -EINVAL; 5600 goto out_free_adapter; 5601 } 5602 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5603 pci_resource_len(pdev, 2)); 5604 if (!adapter->bar2) { 5605 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5606 err = -ENOMEM; 5607 goto out_free_adapter; 5608 } 5609 } 5610 5611 setup_memwin(adapter); 5612 err = adap_init0(adapter); 5613 #ifdef CONFIG_DEBUG_FS 5614 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5615 #endif 5616 setup_memwin_rdma(adapter); 5617 if (err) 5618 goto out_unmap_bar; 5619 5620 /* configure SGE_STAT_CFG_A to read WC stats */ 5621 if (!is_t4(adapter->params.chip)) 5622 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5623 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5624 T6_STATMODE_V(0))); 5625 5626 for_each_port(adapter, i) { 5627 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5628 MAX_ETH_QSETS); 5629 if (!netdev) { 5630 err = -ENOMEM; 5631 goto out_free_dev; 5632 } 5633 5634 SET_NETDEV_DEV(netdev, &pdev->dev); 5635 5636 adapter->port[i] = netdev; 5637 pi = netdev_priv(netdev); 5638 pi->adapter = adapter; 5639 pi->xact_addr_filt = -1; 5640 pi->port_id = i; 5641 netdev->irq = pdev->irq; 5642 5643 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5644 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5645 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5646 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5647 NETIF_F_HW_TC; 5648 5649 if (chip_ver > CHELSIO_T5) { 5650 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5651 NETIF_F_IPV6_CSUM | 5652 NETIF_F_RXCSUM | 5653 NETIF_F_GSO_UDP_TUNNEL | 5654 NETIF_F_TSO | NETIF_F_TSO6; 5655 5656 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 5657 } 5658 5659 if (highdma) 5660 netdev->hw_features |= NETIF_F_HIGHDMA; 5661 netdev->features |= netdev->hw_features; 5662 netdev->vlan_features = netdev->features & VLAN_FEAT; 5663 5664 netdev->priv_flags |= IFF_UNICAST_FLT; 5665 5666 /* MTU range: 81 - 9600 */ 5667 netdev->min_mtu = 81; /* accommodate SACK */ 5668 netdev->max_mtu = MAX_MTU; 5669 5670 netdev->netdev_ops = &cxgb4_netdev_ops; 5671 #ifdef CONFIG_CHELSIO_T4_DCB 5672 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5673 cxgb4_dcb_state_init(netdev); 5674 cxgb4_dcb_version_init(netdev); 5675 #endif 5676 cxgb4_set_ethtool_ops(netdev); 5677 } 5678 5679 cxgb4_init_ethtool_dump(adapter); 5680 5681 pci_set_drvdata(pdev, adapter); 5682 5683 if (adapter->flags & FW_OK) { 5684 err = t4_port_init(adapter, func, func, 0); 5685 if (err) 5686 goto out_free_dev; 5687 } else if (adapter->params.nports == 1) { 5688 /* If we don't have a connection to the firmware -- possibly 5689 * because of an error -- grab the raw VPD parameters so we 5690 * can set the proper MAC Address on the debug network 5691 * interface that we've created. 5692 */ 5693 u8 hw_addr[ETH_ALEN]; 5694 u8 *na = adapter->params.vpd.na; 5695 5696 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5697 if (!err) { 5698 for (i = 0; i < ETH_ALEN; i++) 5699 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5700 hex2val(na[2 * i + 1])); 5701 t4_set_hw_addr(adapter, 0, hw_addr); 5702 } 5703 } 5704 5705 if (!(adapter->flags & FW_OK)) 5706 goto fw_attach_fail; 5707 5708 /* Configure queues and allocate tables now, they can be needed as 5709 * soon as the first register_netdev completes. 5710 */ 5711 err = cfg_queues(adapter); 5712 if (err) 5713 goto out_free_dev; 5714 5715 adapter->smt = t4_init_smt(); 5716 if (!adapter->smt) { 5717 /* We tolerate a lack of SMT, giving up some functionality */ 5718 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5719 } 5720 5721 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5722 if (!adapter->l2t) { 5723 /* We tolerate a lack of L2T, giving up some functionality */ 5724 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5725 adapter->params.offload = 0; 5726 } 5727 5728 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5729 sizeof(struct mps_encap_entry), 5730 GFP_KERNEL); 5731 if (!adapter->mps_encap) 5732 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5733 5734 #if IS_ENABLED(CONFIG_IPV6) 5735 if (chip_ver <= CHELSIO_T5 && 5736 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5737 /* CLIP functionality is not present in hardware, 5738 * hence disable all offload features 5739 */ 5740 dev_warn(&pdev->dev, 5741 "CLIP not enabled in hardware, continuing\n"); 5742 adapter->params.offload = 0; 5743 } else { 5744 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5745 adapter->clipt_end); 5746 if (!adapter->clipt) { 5747 /* We tolerate a lack of clip_table, giving up 5748 * some functionality 5749 */ 5750 dev_warn(&pdev->dev, 5751 "could not allocate Clip table, continuing\n"); 5752 adapter->params.offload = 0; 5753 } 5754 } 5755 #endif 5756 5757 for_each_port(adapter, i) { 5758 pi = adap2pinfo(adapter, i); 5759 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5760 if (!pi->sched_tbl) 5761 dev_warn(&pdev->dev, 5762 "could not activate scheduling on port %d\n", 5763 i); 5764 } 5765 5766 if (tid_init(&adapter->tids) < 0) { 5767 dev_warn(&pdev->dev, "could not allocate TID table, " 5768 "continuing\n"); 5769 adapter->params.offload = 0; 5770 } else { 5771 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5772 if (!adapter->tc_u32) 5773 dev_warn(&pdev->dev, 5774 "could not offload tc u32, continuing\n"); 5775 5776 if (cxgb4_init_tc_flower(adapter)) 5777 dev_warn(&pdev->dev, 5778 "could not offload tc flower, continuing\n"); 5779 } 5780 5781 if (is_offload(adapter) || is_hashfilter(adapter)) { 5782 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5783 u32 hash_base, hash_reg; 5784 5785 if (chip_ver <= CHELSIO_T5) { 5786 hash_reg = LE_DB_TID_HASHBASE_A; 5787 hash_base = t4_read_reg(adapter, hash_reg); 5788 adapter->tids.hash_base = hash_base / 4; 5789 } else { 5790 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5791 hash_base = t4_read_reg(adapter, hash_reg); 5792 adapter->tids.hash_base = hash_base; 5793 } 5794 } 5795 } 5796 5797 /* See what interrupts we'll be using */ 5798 if (msi > 1 && enable_msix(adapter) == 0) 5799 adapter->flags |= USING_MSIX; 5800 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5801 adapter->flags |= USING_MSI; 5802 if (msi > 1) 5803 free_msix_info(adapter); 5804 } 5805 5806 /* check for PCI Express bandwidth capabiltites */ 5807 pcie_print_link_status(pdev); 5808 5809 err = init_rss(adapter); 5810 if (err) 5811 goto out_free_dev; 5812 5813 err = setup_fw_sge_queues(adapter); 5814 if (err) { 5815 dev_err(adapter->pdev_dev, 5816 "FW sge queue allocation failed, err %d", err); 5817 goto out_free_dev; 5818 } 5819 5820 fw_attach_fail: 5821 /* 5822 * The card is now ready to go. If any errors occur during device 5823 * registration we do not fail the whole card but rather proceed only 5824 * with the ports we manage to register successfully. However we must 5825 * register at least one net device. 5826 */ 5827 for_each_port(adapter, i) { 5828 pi = adap2pinfo(adapter, i); 5829 adapter->port[i]->dev_port = pi->lport; 5830 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5831 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5832 5833 netif_carrier_off(adapter->port[i]); 5834 5835 err = register_netdev(adapter->port[i]); 5836 if (err) 5837 break; 5838 adapter->chan_map[pi->tx_chan] = i; 5839 print_port_info(adapter->port[i]); 5840 } 5841 if (i == 0) { 5842 dev_err(&pdev->dev, "could not register any net devices\n"); 5843 goto out_free_dev; 5844 } 5845 if (err) { 5846 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5847 err = 0; 5848 } 5849 5850 if (cxgb4_debugfs_root) { 5851 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5852 cxgb4_debugfs_root); 5853 setup_debugfs(adapter); 5854 } 5855 5856 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5857 pdev->needs_freset = 1; 5858 5859 if (is_uld(adapter)) { 5860 mutex_lock(&uld_mutex); 5861 list_add_tail(&adapter->list_node, &adapter_list); 5862 mutex_unlock(&uld_mutex); 5863 } 5864 5865 if (!is_t4(adapter->params.chip)) 5866 cxgb4_ptp_init(adapter); 5867 5868 print_adapter_info(adapter); 5869 return 0; 5870 5871 out_free_dev: 5872 t4_free_sge_resources(adapter); 5873 free_some_resources(adapter); 5874 if (adapter->flags & USING_MSIX) 5875 free_msix_info(adapter); 5876 if (adapter->num_uld || adapter->num_ofld_uld) 5877 t4_uld_mem_free(adapter); 5878 out_unmap_bar: 5879 if (!is_t4(adapter->params.chip)) 5880 iounmap(adapter->bar2); 5881 out_free_adapter: 5882 if (adapter->workq) 5883 destroy_workqueue(adapter->workq); 5884 5885 kfree(adapter->mbox_log); 5886 kfree(adapter); 5887 out_unmap_bar0: 5888 iounmap(regs); 5889 out_disable_device: 5890 pci_disable_pcie_error_reporting(pdev); 5891 pci_disable_device(pdev); 5892 out_release_regions: 5893 pci_release_regions(pdev); 5894 return err; 5895 } 5896 5897 static void remove_one(struct pci_dev *pdev) 5898 { 5899 struct adapter *adapter = pci_get_drvdata(pdev); 5900 5901 if (!adapter) { 5902 pci_release_regions(pdev); 5903 return; 5904 } 5905 5906 adapter->flags |= SHUTTING_DOWN; 5907 5908 if (adapter->pf == 4) { 5909 int i; 5910 5911 /* Tear down per-adapter Work Queue first since it can contain 5912 * references to our adapter data structure. 5913 */ 5914 destroy_workqueue(adapter->workq); 5915 5916 if (is_uld(adapter)) { 5917 detach_ulds(adapter); 5918 t4_uld_clean_up(adapter); 5919 } 5920 5921 adap_free_hma_mem(adapter); 5922 5923 disable_interrupts(adapter); 5924 5925 for_each_port(adapter, i) 5926 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5927 unregister_netdev(adapter->port[i]); 5928 5929 debugfs_remove_recursive(adapter->debugfs_root); 5930 5931 if (!is_t4(adapter->params.chip)) 5932 cxgb4_ptp_stop(adapter); 5933 5934 /* If we allocated filters, free up state associated with any 5935 * valid filters ... 5936 */ 5937 clear_all_filters(adapter); 5938 5939 if (adapter->flags & FULL_INIT_DONE) 5940 cxgb_down(adapter); 5941 5942 if (adapter->flags & USING_MSIX) 5943 free_msix_info(adapter); 5944 if (adapter->num_uld || adapter->num_ofld_uld) 5945 t4_uld_mem_free(adapter); 5946 free_some_resources(adapter); 5947 #if IS_ENABLED(CONFIG_IPV6) 5948 t4_cleanup_clip_tbl(adapter); 5949 #endif 5950 if (!is_t4(adapter->params.chip)) 5951 iounmap(adapter->bar2); 5952 } 5953 #ifdef CONFIG_PCI_IOV 5954 else { 5955 cxgb4_iov_configure(adapter->pdev, 0); 5956 } 5957 #endif 5958 iounmap(adapter->regs); 5959 pci_disable_pcie_error_reporting(pdev); 5960 if ((adapter->flags & DEV_ENABLED)) { 5961 pci_disable_device(pdev); 5962 adapter->flags &= ~DEV_ENABLED; 5963 } 5964 pci_release_regions(pdev); 5965 kfree(adapter->mbox_log); 5966 synchronize_rcu(); 5967 kfree(adapter); 5968 } 5969 5970 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5971 * delivery. This is essentially a stripped down version of the PCI remove() 5972 * function where we do the minimal amount of work necessary to shutdown any 5973 * further activity. 5974 */ 5975 static void shutdown_one(struct pci_dev *pdev) 5976 { 5977 struct adapter *adapter = pci_get_drvdata(pdev); 5978 5979 /* As with remove_one() above (see extended comment), we only want do 5980 * do cleanup on PCI Devices which went all the way through init_one() 5981 * ... 5982 */ 5983 if (!adapter) { 5984 pci_release_regions(pdev); 5985 return; 5986 } 5987 5988 adapter->flags |= SHUTTING_DOWN; 5989 5990 if (adapter->pf == 4) { 5991 int i; 5992 5993 for_each_port(adapter, i) 5994 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5995 cxgb_close(adapter->port[i]); 5996 5997 if (is_uld(adapter)) { 5998 detach_ulds(adapter); 5999 t4_uld_clean_up(adapter); 6000 } 6001 6002 disable_interrupts(adapter); 6003 disable_msi(adapter); 6004 6005 t4_sge_stop(adapter); 6006 if (adapter->flags & FW_OK) 6007 t4_fw_bye(adapter, adapter->mbox); 6008 } 6009 } 6010 6011 static struct pci_driver cxgb4_driver = { 6012 .name = KBUILD_MODNAME, 6013 .id_table = cxgb4_pci_tbl, 6014 .probe = init_one, 6015 .remove = remove_one, 6016 .shutdown = shutdown_one, 6017 #ifdef CONFIG_PCI_IOV 6018 .sriov_configure = cxgb4_iov_configure, 6019 #endif 6020 .err_handler = &cxgb4_eeh, 6021 }; 6022 6023 static int __init cxgb4_init_module(void) 6024 { 6025 int ret; 6026 6027 /* Debugfs support is optional, just warn if this fails */ 6028 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6029 if (!cxgb4_debugfs_root) 6030 pr_warn("could not create debugfs entry, continuing\n"); 6031 6032 ret = pci_register_driver(&cxgb4_driver); 6033 if (ret < 0) 6034 debugfs_remove(cxgb4_debugfs_root); 6035 6036 #if IS_ENABLED(CONFIG_IPV6) 6037 if (!inet6addr_registered) { 6038 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6039 inet6addr_registered = true; 6040 } 6041 #endif 6042 6043 return ret; 6044 } 6045 6046 static void __exit cxgb4_cleanup_module(void) 6047 { 6048 #if IS_ENABLED(CONFIG_IPV6) 6049 if (inet6addr_registered) { 6050 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6051 inet6addr_registered = false; 6052 } 6053 #endif 6054 pci_unregister_driver(&cxgb4_driver); 6055 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6056 } 6057 6058 module_init(cxgb4_init_module); 6059 module_exit(cxgb4_cleanup_module); 6060