xref: /linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69 #if defined(CONFIG_CHELSIO_TLS_DEVICE)
70 #include <net/tls.h>
71 #endif
72 
73 #include "cxgb4.h"
74 #include "cxgb4_filter.h"
75 #include "t4_regs.h"
76 #include "t4_values.h"
77 #include "t4_msg.h"
78 #include "t4fw_api.h"
79 #include "t4fw_version.h"
80 #include "cxgb4_dcb.h"
81 #include "srq.h"
82 #include "cxgb4_debugfs.h"
83 #include "clip_tbl.h"
84 #include "l2t.h"
85 #include "smt.h"
86 #include "sched.h"
87 #include "cxgb4_tc_u32.h"
88 #include "cxgb4_tc_flower.h"
89 #include "cxgb4_tc_mqprio.h"
90 #include "cxgb4_tc_matchall.h"
91 #include "cxgb4_ptp.h"
92 #include "cxgb4_cudbg.h"
93 
94 char cxgb4_driver_name[] = KBUILD_MODNAME;
95 
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97 
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101 
102 /* Macros needed to support the PCI Device ID Table ...
103  */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105 	static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107 
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109 
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111  * called for both.
112  */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114 
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117 
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119 		{ 0, } \
120 	}
121 
122 #include "t4_pci_id_tbl.h"
123 
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134 
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142 
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153 
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156 
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170 
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181 
182 static struct dentry *cxgb4_debugfs_root;
183 
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186 LIST_HEAD(uld_list);
187 
188 static int cfg_queues(struct adapter *adap);
189 
190 static void link_report(struct net_device *dev)
191 {
192 	if (!netif_carrier_ok(dev))
193 		netdev_info(dev, "link down\n");
194 	else {
195 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
196 
197 		const char *s;
198 		const struct port_info *p = netdev_priv(dev);
199 
200 		switch (p->link_cfg.speed) {
201 		case 100:
202 			s = "100Mbps";
203 			break;
204 		case 1000:
205 			s = "1Gbps";
206 			break;
207 		case 10000:
208 			s = "10Gbps";
209 			break;
210 		case 25000:
211 			s = "25Gbps";
212 			break;
213 		case 40000:
214 			s = "40Gbps";
215 			break;
216 		case 50000:
217 			s = "50Gbps";
218 			break;
219 		case 100000:
220 			s = "100Gbps";
221 			break;
222 		default:
223 			pr_info("%s: unsupported speed: %d\n",
224 				dev->name, p->link_cfg.speed);
225 			return;
226 		}
227 
228 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
229 			    fc[p->link_cfg.fc]);
230 	}
231 }
232 
233 #ifdef CONFIG_CHELSIO_T4_DCB
234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
236 {
237 	struct port_info *pi = netdev_priv(dev);
238 	struct adapter *adap = pi->adapter;
239 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
240 	int i;
241 
242 	/* We use a simple mapping of Port TX Queue Index to DCB
243 	 * Priority when we're enabling DCB.
244 	 */
245 	for (i = 0; i < pi->nqsets; i++, txq++) {
246 		u32 name, value;
247 		int err;
248 
249 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
250 			FW_PARAMS_PARAM_X_V(
251 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
252 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
253 		value = enable ? i : 0xffffffff;
254 
255 		/* Since we can be called while atomic (from "interrupt
256 		 * level") we need to issue the Set Parameters Commannd
257 		 * without sleeping (timeout < 0).
258 		 */
259 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
260 					    &name, &value,
261 					    -FW_CMD_MAX_TIMEOUT);
262 
263 		if (err)
264 			dev_err(adap->pdev_dev,
265 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
266 				enable ? "set" : "unset", pi->port_id, i, -err);
267 		else
268 			txq->dcb_prio = enable ? value : 0;
269 	}
270 }
271 
272 int cxgb4_dcb_enabled(const struct net_device *dev)
273 {
274 	struct port_info *pi = netdev_priv(dev);
275 
276 	if (!pi->dcb.enabled)
277 		return 0;
278 
279 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
280 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
281 }
282 #endif /* CONFIG_CHELSIO_T4_DCB */
283 
284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
285 {
286 	struct net_device *dev = adapter->port[port_id];
287 
288 	/* Skip changes from disabled ports. */
289 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
290 		if (link_stat)
291 			netif_carrier_on(dev);
292 		else {
293 #ifdef CONFIG_CHELSIO_T4_DCB
294 			if (cxgb4_dcb_enabled(dev)) {
295 				cxgb4_dcb_reset(dev);
296 				dcb_tx_queue_prio_enable(dev, false);
297 			}
298 #endif /* CONFIG_CHELSIO_T4_DCB */
299 			netif_carrier_off(dev);
300 		}
301 
302 		link_report(dev);
303 	}
304 }
305 
306 void t4_os_portmod_changed(struct adapter *adap, int port_id)
307 {
308 	static const char *mod_str[] = {
309 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310 	};
311 
312 	struct net_device *dev = adap->port[port_id];
313 	struct port_info *pi = netdev_priv(dev);
314 
315 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
316 		netdev_info(dev, "port module unplugged\n");
317 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
318 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
319 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
320 		netdev_info(dev, "%s: unsupported port module inserted\n",
321 			    dev->name);
322 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
323 		netdev_info(dev, "%s: unknown port module inserted\n",
324 			    dev->name);
325 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
326 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
327 	else
328 		netdev_info(dev, "%s: unknown module type %d inserted\n",
329 			    dev->name, pi->mod_type);
330 
331 	/* If the interface is running, then we'll need any "sticky" Link
332 	 * Parameters redone with a new Transceiver Module.
333 	 */
334 	pi->link_cfg.redo_l1cfg = netif_running(dev);
335 }
336 
337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
338 module_param(dbfifo_int_thresh, int, 0644);
339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
340 
341 /*
342  * usecs to sleep while draining the dbfifo
343  */
344 static int dbfifo_drain_delay = 1000;
345 module_param(dbfifo_drain_delay, int, 0644);
346 MODULE_PARM_DESC(dbfifo_drain_delay,
347 		 "usecs to sleep while draining the dbfifo");
348 
349 static inline int cxgb4_set_addr_hash(struct port_info *pi)
350 {
351 	struct adapter *adap = pi->adapter;
352 	u64 vec = 0;
353 	bool ucast = false;
354 	struct hash_mac_addr *entry;
355 
356 	/* Calculate the hash vector for the updated list and program it */
357 	list_for_each_entry(entry, &adap->mac_hlist, list) {
358 		ucast |= is_unicast_ether_addr(entry->addr);
359 		vec |= (1ULL << hash_mac_addr(entry->addr));
360 	}
361 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
362 				vec, false);
363 }
364 
365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
366 {
367 	struct port_info *pi = netdev_priv(netdev);
368 	struct adapter *adap = pi->adapter;
369 	int ret;
370 	u64 mhash = 0;
371 	u64 uhash = 0;
372 	/* idx stores the index of allocated filters,
373 	 * its size should be modified based on the number of
374 	 * MAC addresses that we allocate filters for
375 	 */
376 
377 	u16 idx[1] = {};
378 	bool free = false;
379 	bool ucast = is_unicast_ether_addr(mac_addr);
380 	const u8 *maclist[1] = {mac_addr};
381 	struct hash_mac_addr *new_entry;
382 
383 	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
384 				   idx, ucast ? &uhash : &mhash, false);
385 	if (ret < 0)
386 		goto out;
387 	/* if hash != 0, then add the addr to hash addr list
388 	 * so on the end we will calculate the hash for the
389 	 * list and program it
390 	 */
391 	if (uhash || mhash) {
392 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
393 		if (!new_entry)
394 			return -ENOMEM;
395 		ether_addr_copy(new_entry->addr, mac_addr);
396 		list_add_tail(&new_entry->list, &adap->mac_hlist);
397 		ret = cxgb4_set_addr_hash(pi);
398 	}
399 out:
400 	return ret < 0 ? ret : 0;
401 }
402 
403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
404 {
405 	struct port_info *pi = netdev_priv(netdev);
406 	struct adapter *adap = pi->adapter;
407 	int ret;
408 	const u8 *maclist[1] = {mac_addr};
409 	struct hash_mac_addr *entry, *tmp;
410 
411 	/* If the MAC address to be removed is in the hash addr
412 	 * list, delete it from the list and update hash vector
413 	 */
414 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
415 		if (ether_addr_equal(entry->addr, mac_addr)) {
416 			list_del(&entry->list);
417 			kfree(entry);
418 			return cxgb4_set_addr_hash(pi);
419 		}
420 	}
421 
422 	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
423 	return ret < 0 ? -EINVAL : 0;
424 }
425 
426 /*
427  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
428  * If @mtu is -1 it is left unchanged.
429  */
430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
431 {
432 	struct port_info *pi = netdev_priv(dev);
433 	struct adapter *adapter = pi->adapter;
434 
435 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
437 
438 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
439 			     mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
440 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
441 			     sleep_ok);
442 }
443 
444 /**
445  *	cxgb4_change_mac - Update match filter for a MAC address.
446  *	@pi: the port_info
447  *	@viid: the VI id
448  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
449  *		   or -1
450  *	@addr: the new MAC address value
451  *	@persist: whether a new MAC allocation should be persistent
452  *	@smt_idx: the destination to store the new SMT index.
453  *
454  *	Modifies an MPS filter and sets it to the new MAC address if
455  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
456  *	@tcam_idx < 0. In the latter case the address is added persistently
457  *	if @persist is %true.
458  *	Addresses are programmed to hash region, if tcam runs out of entries.
459  *
460  */
461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
462 		     int *tcam_idx, const u8 *addr, bool persist,
463 		     u8 *smt_idx)
464 {
465 	struct adapter *adapter = pi->adapter;
466 	struct hash_mac_addr *entry, *new_entry;
467 	int ret;
468 
469 	ret = t4_change_mac(adapter, adapter->mbox, viid,
470 			    *tcam_idx, addr, persist, smt_idx);
471 	/* We ran out of TCAM entries. try programming hash region. */
472 	if (ret == -ENOMEM) {
473 		/* If the MAC address to be updated is in the hash addr
474 		 * list, update it from the list
475 		 */
476 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
477 			if (entry->iface_mac) {
478 				ether_addr_copy(entry->addr, addr);
479 				goto set_hash;
480 			}
481 		}
482 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
483 		if (!new_entry)
484 			return -ENOMEM;
485 		ether_addr_copy(new_entry->addr, addr);
486 		new_entry->iface_mac = true;
487 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
488 set_hash:
489 		ret = cxgb4_set_addr_hash(pi);
490 	} else if (ret >= 0) {
491 		*tcam_idx = ret;
492 		ret = 0;
493 	}
494 
495 	return ret;
496 }
497 
498 /*
499  *	link_start - enable a port
500  *	@dev: the port to enable
501  *
502  *	Performs the MAC and PHY actions needed to enable a port.
503  */
504 static int link_start(struct net_device *dev)
505 {
506 	struct port_info *pi = netdev_priv(dev);
507 	unsigned int mb = pi->adapter->mbox;
508 	int ret;
509 
510 	/*
511 	 * We do not set address filters and promiscuity here, the stack does
512 	 * that step explicitly.
513 	 */
514 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
515 			    dev->mtu, -1, -1, -1,
516 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
517 	if (ret == 0)
518 		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
519 					    dev->dev_addr, true, &pi->smt_idx);
520 	if (ret == 0)
521 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
522 				    &pi->link_cfg);
523 	if (ret == 0) {
524 		local_bh_disable();
525 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
526 					  true, CXGB4_DCB_ENABLED);
527 		local_bh_enable();
528 	}
529 
530 	return ret;
531 }
532 
533 #ifdef CONFIG_CHELSIO_T4_DCB
534 /* Handle a Data Center Bridging update message from the firmware. */
535 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
536 {
537 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
538 	struct net_device *dev = adap->port[adap->chan_map[port]];
539 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
540 	int new_dcb_enabled;
541 
542 	cxgb4_dcb_handle_fw_update(adap, pcmd);
543 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
544 
545 	/* If the DCB has become enabled or disabled on the port then we're
546 	 * going to need to set up/tear down DCB Priority parameters for the
547 	 * TX Queues associated with the port.
548 	 */
549 	if (new_dcb_enabled != old_dcb_enabled)
550 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
551 }
552 #endif /* CONFIG_CHELSIO_T4_DCB */
553 
554 /* Response queue handler for the FW event queue.
555  */
556 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
557 			  const struct pkt_gl *gl)
558 {
559 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
560 
561 	rsp++;                                          /* skip RSS header */
562 
563 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
564 	 */
565 	if (unlikely(opcode == CPL_FW4_MSG &&
566 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
567 		rsp++;
568 		opcode = ((const struct rss_header *)rsp)->opcode;
569 		rsp++;
570 		if (opcode != CPL_SGE_EGR_UPDATE) {
571 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
572 				, opcode);
573 			goto out;
574 		}
575 	}
576 
577 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
578 		const struct cpl_sge_egr_update *p = (void *)rsp;
579 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
580 		struct sge_txq *txq;
581 
582 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
583 		txq->restarts++;
584 		if (txq->q_type == CXGB4_TXQ_ETH) {
585 			struct sge_eth_txq *eq;
586 
587 			eq = container_of(txq, struct sge_eth_txq, q);
588 			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
589 		} else {
590 			struct sge_uld_txq *oq;
591 
592 			oq = container_of(txq, struct sge_uld_txq, q);
593 			tasklet_schedule(&oq->qresume_tsk);
594 		}
595 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
596 		const struct cpl_fw6_msg *p = (void *)rsp;
597 
598 #ifdef CONFIG_CHELSIO_T4_DCB
599 		const struct fw_port_cmd *pcmd = (const void *)p->data;
600 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
601 		unsigned int action =
602 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
603 
604 		if (cmd == FW_PORT_CMD &&
605 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
606 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
607 			int port = FW_PORT_CMD_PORTID_G(
608 					be32_to_cpu(pcmd->op_to_portid));
609 			struct net_device *dev;
610 			int dcbxdis, state_input;
611 
612 			dev = q->adap->port[q->adap->chan_map[port]];
613 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
614 			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
615 			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
616 			       & FW_PORT_CMD_DCBXDIS32_F));
617 			state_input = (dcbxdis
618 				       ? CXGB4_DCB_INPUT_FW_DISABLED
619 				       : CXGB4_DCB_INPUT_FW_ENABLED);
620 
621 			cxgb4_dcb_state_fsm(dev, state_input);
622 		}
623 
624 		if (cmd == FW_PORT_CMD &&
625 		    action == FW_PORT_ACTION_L2_DCB_CFG)
626 			dcb_rpl(q->adap, pcmd);
627 		else
628 #endif
629 			if (p->type == 0)
630 				t4_handle_fw_rpl(q->adap, p->data);
631 	} else if (opcode == CPL_L2T_WRITE_RPL) {
632 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
633 
634 		do_l2t_write_rpl(q->adap, p);
635 	} else if (opcode == CPL_SMT_WRITE_RPL) {
636 		const struct cpl_smt_write_rpl *p = (void *)rsp;
637 
638 		do_smt_write_rpl(q->adap, p);
639 	} else if (opcode == CPL_SET_TCB_RPL) {
640 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
641 
642 		filter_rpl(q->adap, p);
643 	} else if (opcode == CPL_ACT_OPEN_RPL) {
644 		const struct cpl_act_open_rpl *p = (void *)rsp;
645 
646 		hash_filter_rpl(q->adap, p);
647 	} else if (opcode == CPL_ABORT_RPL_RSS) {
648 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
649 
650 		hash_del_filter_rpl(q->adap, p);
651 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
652 		const struct cpl_srq_table_rpl *p = (void *)rsp;
653 
654 		do_srq_table_rpl(q->adap, p);
655 	} else
656 		dev_err(q->adap->pdev_dev,
657 			"unexpected CPL %#x on FW event queue\n", opcode);
658 out:
659 	return 0;
660 }
661 
662 static void disable_msi(struct adapter *adapter)
663 {
664 	if (adapter->flags & CXGB4_USING_MSIX) {
665 		pci_disable_msix(adapter->pdev);
666 		adapter->flags &= ~CXGB4_USING_MSIX;
667 	} else if (adapter->flags & CXGB4_USING_MSI) {
668 		pci_disable_msi(adapter->pdev);
669 		adapter->flags &= ~CXGB4_USING_MSI;
670 	}
671 }
672 
673 /*
674  * Interrupt handler for non-data events used with MSI-X.
675  */
676 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
677 {
678 	struct adapter *adap = cookie;
679 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
680 
681 	if (v & PFSW_F) {
682 		adap->swintr = 1;
683 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
684 	}
685 	if (adap->flags & CXGB4_MASTER_PF)
686 		t4_slow_intr_handler(adap);
687 	return IRQ_HANDLED;
688 }
689 
690 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
691 		       cpumask_var_t *aff_mask, int idx)
692 {
693 	int rv;
694 
695 	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
696 		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
697 		return -ENOMEM;
698 	}
699 
700 	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
701 			*aff_mask);
702 
703 	rv = irq_set_affinity_hint(vec, *aff_mask);
704 	if (rv)
705 		dev_warn(adap->pdev_dev,
706 			 "irq_set_affinity_hint %u failed %d\n",
707 			 vec, rv);
708 
709 	return 0;
710 }
711 
712 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
713 {
714 	irq_set_affinity_hint(vec, NULL);
715 	free_cpumask_var(aff_mask);
716 }
717 
718 static int request_msix_queue_irqs(struct adapter *adap)
719 {
720 	struct sge *s = &adap->sge;
721 	struct msix_info *minfo;
722 	int err, ethqidx;
723 
724 	if (s->fwevtq_msix_idx < 0)
725 		return -ENOMEM;
726 
727 	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
728 			  t4_sge_intr_msix, 0,
729 			  adap->msix_info[s->fwevtq_msix_idx].desc,
730 			  &s->fw_evtq);
731 	if (err)
732 		return err;
733 
734 	for_each_ethrxq(s, ethqidx) {
735 		minfo = s->ethrxq[ethqidx].msix;
736 		err = request_irq(minfo->vec,
737 				  t4_sge_intr_msix, 0,
738 				  minfo->desc,
739 				  &s->ethrxq[ethqidx].rspq);
740 		if (err)
741 			goto unwind;
742 
743 		cxgb4_set_msix_aff(adap, minfo->vec,
744 				   &minfo->aff_mask, ethqidx);
745 	}
746 	return 0;
747 
748 unwind:
749 	while (--ethqidx >= 0) {
750 		minfo = s->ethrxq[ethqidx].msix;
751 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
752 		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
753 	}
754 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
755 	return err;
756 }
757 
758 static void free_msix_queue_irqs(struct adapter *adap)
759 {
760 	struct sge *s = &adap->sge;
761 	struct msix_info *minfo;
762 	int i;
763 
764 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
765 	for_each_ethrxq(s, i) {
766 		minfo = s->ethrxq[i].msix;
767 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
768 		free_irq(minfo->vec, &s->ethrxq[i].rspq);
769 	}
770 }
771 
772 static int setup_ppod_edram(struct adapter *adap)
773 {
774 	unsigned int param, val;
775 	int ret;
776 
777 	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
778 	 * if firmware supports ppod edram feature or not. If firmware
779 	 * returns 1, then driver can enable this feature by sending
780 	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
781 	 * enable ppod edram feature.
782 	 */
783 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
784 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
785 
786 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
787 	if (ret < 0) {
788 		dev_warn(adap->pdev_dev,
789 			 "querying PPOD_EDRAM support failed: %d\n",
790 			 ret);
791 		return -1;
792 	}
793 
794 	if (val != 1)
795 		return -1;
796 
797 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
798 	if (ret < 0) {
799 		dev_err(adap->pdev_dev,
800 			"setting PPOD_EDRAM failed: %d\n", ret);
801 		return -1;
802 	}
803 	return 0;
804 }
805 
806 static void adap_config_hpfilter(struct adapter *adapter)
807 {
808 	u32 param, val = 0;
809 	int ret;
810 
811 	/* Enable HP filter region. Older fw will fail this request and
812 	 * it is fine.
813 	 */
814 	param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
815 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
816 			    1, &param, &val);
817 
818 	/* An error means FW doesn't know about HP filter support,
819 	 * it's not a problem, don't return an error.
820 	 */
821 	if (ret < 0)
822 		dev_err(adapter->pdev_dev,
823 			"HP filter region isn't supported by FW\n");
824 }
825 
826 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
827 			    u16 rss_size, u16 viid)
828 {
829 	struct adapter *adap = pi->adapter;
830 	int ret;
831 
832 	ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
833 				  rss_size);
834 	if (ret)
835 		return ret;
836 
837 	/* If Tunnel All Lookup isn't specified in the global RSS
838 	 * Configuration, then we need to specify a default Ingress
839 	 * Queue for any ingress packets which aren't hashed.  We'll
840 	 * use our first ingress queue ...
841 	 */
842 	return t4_config_vi_rss(adap, adap->mbox, viid,
843 				FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
844 				FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
845 				FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
846 				FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
847 				FW_RSS_VI_CONFIG_CMD_UDPEN_F,
848 				rss[0]);
849 }
850 
851 /**
852  *	cxgb4_write_rss - write the RSS table for a given port
853  *	@pi: the port
854  *	@queues: array of queue indices for RSS
855  *
856  *	Sets up the portion of the HW RSS table for the port's VI to distribute
857  *	packets to the Rx queues in @queues.
858  *	Should never be called before setting up sge eth rx queues
859  */
860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
861 {
862 	struct adapter *adapter = pi->adapter;
863 	const struct sge_eth_rxq *rxq;
864 	int i, err;
865 	u16 *rss;
866 
867 	rxq = &adapter->sge.ethrxq[pi->first_qset];
868 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
869 	if (!rss)
870 		return -ENOMEM;
871 
872 	/* map the queue indices to queue ids */
873 	for (i = 0; i < pi->rss_size; i++, queues++)
874 		rss[i] = rxq[*queues].rspq.abs_id;
875 
876 	err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
877 	kfree(rss);
878 	return err;
879 }
880 
881 /**
882  *	setup_rss - configure RSS
883  *	@adap: the adapter
884  *
885  *	Sets up RSS for each port.
886  */
887 static int setup_rss(struct adapter *adap)
888 {
889 	int i, j, err;
890 
891 	for_each_port(adap, i) {
892 		const struct port_info *pi = adap2pinfo(adap, i);
893 
894 		/* Fill default values with equal distribution */
895 		for (j = 0; j < pi->rss_size; j++)
896 			pi->rss[j] = j % pi->nqsets;
897 
898 		err = cxgb4_write_rss(pi, pi->rss);
899 		if (err)
900 			return err;
901 	}
902 	return 0;
903 }
904 
905 /*
906  * Return the channel of the ingress queue with the given qid.
907  */
908 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
909 {
910 	qid -= p->ingr_start;
911 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
912 }
913 
914 void cxgb4_quiesce_rx(struct sge_rspq *q)
915 {
916 	if (q->handler)
917 		napi_disable(&q->napi);
918 }
919 
920 /*
921  * Wait until all NAPI handlers are descheduled.
922  */
923 static void quiesce_rx(struct adapter *adap)
924 {
925 	int i;
926 
927 	for (i = 0; i < adap->sge.ingr_sz; i++) {
928 		struct sge_rspq *q = adap->sge.ingr_map[i];
929 
930 		if (!q)
931 			continue;
932 
933 		cxgb4_quiesce_rx(q);
934 	}
935 }
936 
937 /* Disable interrupt and napi handler */
938 static void disable_interrupts(struct adapter *adap)
939 {
940 	struct sge *s = &adap->sge;
941 
942 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
943 		t4_intr_disable(adap);
944 		if (adap->flags & CXGB4_USING_MSIX) {
945 			free_msix_queue_irqs(adap);
946 			free_irq(adap->msix_info[s->nd_msix_idx].vec,
947 				 adap);
948 		} else {
949 			free_irq(adap->pdev->irq, adap);
950 		}
951 		quiesce_rx(adap);
952 	}
953 }
954 
955 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
956 {
957 	if (q->handler)
958 		napi_enable(&q->napi);
959 
960 	/* 0-increment GTS to start the timer and enable interrupts */
961 	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
962 		     SEINTARM_V(q->intr_params) |
963 		     INGRESSQID_V(q->cntxt_id));
964 }
965 
966 /*
967  * Enable NAPI scheduling and interrupt generation for all Rx queues.
968  */
969 static void enable_rx(struct adapter *adap)
970 {
971 	int i;
972 
973 	for (i = 0; i < adap->sge.ingr_sz; i++) {
974 		struct sge_rspq *q = adap->sge.ingr_map[i];
975 
976 		if (!q)
977 			continue;
978 
979 		cxgb4_enable_rx(adap, q);
980 	}
981 }
982 
983 static int setup_non_data_intr(struct adapter *adap)
984 {
985 	int msix;
986 
987 	adap->sge.nd_msix_idx = -1;
988 	if (!(adap->flags & CXGB4_USING_MSIX))
989 		return 0;
990 
991 	/* Request MSI-X vector for non-data interrupt */
992 	msix = cxgb4_get_msix_idx_from_bmap(adap);
993 	if (msix < 0)
994 		return -ENOMEM;
995 
996 	snprintf(adap->msix_info[msix].desc,
997 		 sizeof(adap->msix_info[msix].desc),
998 		 "%s", adap->port[0]->name);
999 
1000 	adap->sge.nd_msix_idx = msix;
1001 	return 0;
1002 }
1003 
1004 static int setup_fw_sge_queues(struct adapter *adap)
1005 {
1006 	struct sge *s = &adap->sge;
1007 	int msix, err = 0;
1008 
1009 	bitmap_zero(s->starving_fl, s->egr_sz);
1010 	bitmap_zero(s->txq_maperr, s->egr_sz);
1011 
1012 	if (adap->flags & CXGB4_USING_MSIX) {
1013 		s->fwevtq_msix_idx = -1;
1014 		msix = cxgb4_get_msix_idx_from_bmap(adap);
1015 		if (msix < 0)
1016 			return -ENOMEM;
1017 
1018 		snprintf(adap->msix_info[msix].desc,
1019 			 sizeof(adap->msix_info[msix].desc),
1020 			 "%s-FWeventq", adap->port[0]->name);
1021 	} else {
1022 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1023 				       NULL, NULL, NULL, -1);
1024 		if (err)
1025 			return err;
1026 		msix = -((int)s->intrq.abs_id + 1);
1027 	}
1028 
1029 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030 			       msix, NULL, fwevtq_handler, NULL, -1);
1031 	if (err && msix >= 0)
1032 		cxgb4_free_msix_idx_in_bmap(adap, msix);
1033 
1034 	s->fwevtq_msix_idx = msix;
1035 	return err;
1036 }
1037 
1038 /**
1039  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1040  *	@adap: the adapter
1041  *
1042  *	Determines how many sets of SGE queues to use and initializes them.
1043  *	We support multiple queue sets per port if we have MSI-X, otherwise
1044  *	just one queue set per port.
1045  */
1046 static int setup_sge_queues(struct adapter *adap)
1047 {
1048 	struct sge_uld_rxq_info *rxq_info = NULL;
1049 	struct sge *s = &adap->sge;
1050 	unsigned int cmplqid = 0;
1051 	int err, i, j, msix = 0;
1052 
1053 	if (is_uld(adap))
1054 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1055 
1056 	if (!(adap->flags & CXGB4_USING_MSIX))
1057 		msix = -((int)s->intrq.abs_id + 1);
1058 
1059 	for_each_port(adap, i) {
1060 		struct net_device *dev = adap->port[i];
1061 		struct port_info *pi = netdev_priv(dev);
1062 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1063 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1064 
1065 		for (j = 0; j < pi->nqsets; j++, q++) {
1066 			if (msix >= 0) {
1067 				msix = cxgb4_get_msix_idx_from_bmap(adap);
1068 				if (msix < 0) {
1069 					err = msix;
1070 					goto freeout;
1071 				}
1072 
1073 				snprintf(adap->msix_info[msix].desc,
1074 					 sizeof(adap->msix_info[msix].desc),
1075 					 "%s-Rx%d", dev->name, j);
1076 				q->msix = &adap->msix_info[msix];
1077 			}
1078 
1079 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1080 					       msix, &q->fl,
1081 					       t4_ethrx_handler,
1082 					       NULL,
1083 					       t4_get_tp_ch_map(adap,
1084 								pi->tx_chan));
1085 			if (err)
1086 				goto freeout;
1087 			q->rspq.idx = j;
1088 			memset(&q->stats, 0, sizeof(q->stats));
1089 		}
1090 
1091 		q = &s->ethrxq[pi->first_qset];
1092 		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1093 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1094 					netdev_get_tx_queue(dev, j),
1095 					q->rspq.cntxt_id,
1096 					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1097 			if (err)
1098 				goto freeout;
1099 		}
1100 	}
1101 
1102 	for_each_port(adap, i) {
1103 		/* Note that cmplqid below is 0 if we don't
1104 		 * have RDMA queues, and that's the right value.
1105 		 */
1106 		if (rxq_info)
1107 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1108 
1109 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1110 					    s->fw_evtq.cntxt_id, cmplqid);
1111 		if (err)
1112 			goto freeout;
1113 	}
1114 
1115 	if (!is_t4(adap->params.chip)) {
1116 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1117 					   netdev_get_tx_queue(adap->port[0], 0)
1118 					   , s->fw_evtq.cntxt_id, false);
1119 		if (err)
1120 			goto freeout;
1121 	}
1122 
1123 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1124 				MPS_TRC_RSS_CONTROL_A :
1125 				MPS_T5_TRC_RSS_CONTROL_A,
1126 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1127 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1128 	return 0;
1129 freeout:
1130 	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1131 	t4_free_sge_resources(adap);
1132 	return err;
1133 }
1134 
1135 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1136 			     struct net_device *sb_dev)
1137 {
1138 	int txq;
1139 
1140 #ifdef CONFIG_CHELSIO_T4_DCB
1141 	/* If a Data Center Bridging has been successfully negotiated on this
1142 	 * link then we'll use the skb's priority to map it to a TX Queue.
1143 	 * The skb's priority is determined via the VLAN Tag Priority Code
1144 	 * Point field.
1145 	 */
1146 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1147 		u16 vlan_tci;
1148 		int err;
1149 
1150 		err = vlan_get_tag(skb, &vlan_tci);
1151 		if (unlikely(err)) {
1152 			if (net_ratelimit())
1153 				netdev_warn(dev,
1154 					    "TX Packet without VLAN Tag on DCB Link\n");
1155 			txq = 0;
1156 		} else {
1157 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1158 #ifdef CONFIG_CHELSIO_T4_FCOE
1159 			if (skb->protocol == htons(ETH_P_FCOE))
1160 				txq = skb->priority & 0x7;
1161 #endif /* CONFIG_CHELSIO_T4_FCOE */
1162 		}
1163 		return txq;
1164 	}
1165 #endif /* CONFIG_CHELSIO_T4_DCB */
1166 
1167 	if (dev->num_tc) {
1168 		struct port_info *pi = netdev2pinfo(dev);
1169 		u8 ver, proto;
1170 
1171 		ver = ip_hdr(skb)->version;
1172 		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1173 				     ip_hdr(skb)->protocol;
1174 
1175 		/* Send unsupported traffic pattern to normal NIC queues. */
1176 		txq = netdev_pick_tx(dev, skb, sb_dev);
1177 		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1178 		    skb->encapsulation ||
1179 		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180 			txq = txq % pi->nqsets;
1181 
1182 		return txq;
1183 	}
1184 
1185 	if (select_queue) {
1186 		txq = (skb_rx_queue_recorded(skb)
1187 			? skb_get_rx_queue(skb)
1188 			: smp_processor_id());
1189 
1190 		while (unlikely(txq >= dev->real_num_tx_queues))
1191 			txq -= dev->real_num_tx_queues;
1192 
1193 		return txq;
1194 	}
1195 
1196 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197 }
1198 
1199 static int closest_timer(const struct sge *s, int time)
1200 {
1201 	int i, delta, match = 0, min_delta = INT_MAX;
1202 
1203 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204 		delta = time - s->timer_val[i];
1205 		if (delta < 0)
1206 			delta = -delta;
1207 		if (delta < min_delta) {
1208 			min_delta = delta;
1209 			match = i;
1210 		}
1211 	}
1212 	return match;
1213 }
1214 
1215 static int closest_thres(const struct sge *s, int thres)
1216 {
1217 	int i, delta, match = 0, min_delta = INT_MAX;
1218 
1219 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220 		delta = thres - s->counter_val[i];
1221 		if (delta < 0)
1222 			delta = -delta;
1223 		if (delta < min_delta) {
1224 			min_delta = delta;
1225 			match = i;
1226 		}
1227 	}
1228 	return match;
1229 }
1230 
1231 /**
1232  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233  *	@q: the Rx queue
1234  *	@us: the hold-off time in us, or 0 to disable timer
1235  *	@cnt: the hold-off packet count, or 0 to disable counter
1236  *
1237  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1238  *	one of the two needs to be enabled for the queue to generate interrupts.
1239  */
1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241 			       unsigned int us, unsigned int cnt)
1242 {
1243 	struct adapter *adap = q->adap;
1244 
1245 	if ((us | cnt) == 0)
1246 		cnt = 1;
1247 
1248 	if (cnt) {
1249 		int err;
1250 		u32 v, new_idx;
1251 
1252 		new_idx = closest_thres(&adap->sge, cnt);
1253 		if (q->desc && q->pktcnt_idx != new_idx) {
1254 			/* the queue has already been created, update it */
1255 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256 			    FW_PARAMS_PARAM_X_V(
1257 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260 					    &v, &new_idx);
1261 			if (err)
1262 				return err;
1263 		}
1264 		q->pktcnt_idx = new_idx;
1265 	}
1266 
1267 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269 	return 0;
1270 }
1271 
1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273 {
1274 	netdev_features_t changed = dev->features ^ features;
1275 	const struct port_info *pi = netdev_priv(dev);
1276 	int err;
1277 
1278 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279 		return 0;
1280 
1281 	err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282 			    pi->viid_mirror, -1, -1, -1, -1,
1283 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284 	if (unlikely(err))
1285 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286 	return err;
1287 }
1288 
1289 static int setup_debugfs(struct adapter *adap)
1290 {
1291 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1292 		return -1;
1293 
1294 #ifdef CONFIG_DEBUG_FS
1295 	t4_setup_debugfs(adap);
1296 #endif
1297 	return 0;
1298 }
1299 
1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301 				       struct sge_eth_rxq *mirror_rxq)
1302 {
1303 	if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304 	    !(adap->flags & CXGB4_SHUTTING_DOWN))
1305 		cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306 
1307 	if (adap->flags & CXGB4_USING_MSIX) {
1308 		cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309 				     mirror_rxq->msix->aff_mask);
1310 		free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311 		cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312 	}
1313 
1314 	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315 }
1316 
1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318 {
1319 	struct port_info *pi = netdev2pinfo(dev);
1320 	struct adapter *adap = netdev2adap(dev);
1321 	struct sge_eth_rxq *mirror_rxq;
1322 	struct sge *s = &adap->sge;
1323 	int ret = 0, msix = 0;
1324 	u16 i, rxqid;
1325 	u16 *rss;
1326 
1327 	if (!pi->vi_mirror_count)
1328 		return 0;
1329 
1330 	if (s->mirror_rxq[pi->port_id])
1331 		return 0;
1332 
1333 	mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334 	if (!mirror_rxq)
1335 		return -ENOMEM;
1336 
1337 	s->mirror_rxq[pi->port_id] = mirror_rxq;
1338 
1339 	if (!(adap->flags & CXGB4_USING_MSIX))
1340 		msix = -((int)adap->sge.intrq.abs_id + 1);
1341 
1342 	for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343 		mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344 
1345 		/* Allocate Mirror Rxqs */
1346 		if (msix >= 0) {
1347 			msix = cxgb4_get_msix_idx_from_bmap(adap);
1348 			if (msix < 0) {
1349 				ret = msix;
1350 				goto out_free_queues;
1351 			}
1352 
1353 			mirror_rxq->msix = &adap->msix_info[msix];
1354 			snprintf(mirror_rxq->msix->desc,
1355 				 sizeof(mirror_rxq->msix->desc),
1356 				 "%s-mirrorrxq%d", dev->name, i);
1357 		}
1358 
1359 		init_rspq(adap, &mirror_rxq->rspq,
1360 			  CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361 			  CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362 			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363 			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364 
1365 		mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366 
1367 		ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368 				       dev, msix, &mirror_rxq->fl,
1369 				       t4_ethrx_handler, NULL, 0);
1370 		if (ret)
1371 			goto out_free_msix_idx;
1372 
1373 		/* Setup MSI-X vectors for Mirror Rxqs */
1374 		if (adap->flags & CXGB4_USING_MSIX) {
1375 			ret = request_irq(mirror_rxq->msix->vec,
1376 					  t4_sge_intr_msix, 0,
1377 					  mirror_rxq->msix->desc,
1378 					  &mirror_rxq->rspq);
1379 			if (ret)
1380 				goto out_free_rxq;
1381 
1382 			cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383 					   &mirror_rxq->msix->aff_mask, i);
1384 		}
1385 
1386 		/* Start NAPI for Mirror Rxqs */
1387 		cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388 	}
1389 
1390 	/* Setup RSS for Mirror Rxqs */
1391 	rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392 	if (!rss) {
1393 		ret = -ENOMEM;
1394 		goto out_free_queues;
1395 	}
1396 
1397 	mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398 	for (i = 0; i < pi->rss_size; i++)
1399 		rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400 
1401 	ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402 	kfree(rss);
1403 	if (ret)
1404 		goto out_free_queues;
1405 
1406 	return 0;
1407 
1408 out_free_rxq:
1409 	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410 
1411 out_free_msix_idx:
1412 	cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413 
1414 out_free_queues:
1415 	while (rxqid-- > 0)
1416 		cxgb4_port_mirror_free_rxq(adap,
1417 					   &s->mirror_rxq[pi->port_id][rxqid]);
1418 
1419 	kfree(s->mirror_rxq[pi->port_id]);
1420 	s->mirror_rxq[pi->port_id] = NULL;
1421 	return ret;
1422 }
1423 
1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425 {
1426 	struct port_info *pi = netdev2pinfo(dev);
1427 	struct adapter *adap = netdev2adap(dev);
1428 	struct sge *s = &adap->sge;
1429 	u16 i;
1430 
1431 	if (!pi->vi_mirror_count)
1432 		return;
1433 
1434 	if (!s->mirror_rxq[pi->port_id])
1435 		return;
1436 
1437 	for (i = 0; i < pi->nmirrorqsets; i++)
1438 		cxgb4_port_mirror_free_rxq(adap,
1439 					   &s->mirror_rxq[pi->port_id][i]);
1440 
1441 	kfree(s->mirror_rxq[pi->port_id]);
1442 	s->mirror_rxq[pi->port_id] = NULL;
1443 }
1444 
1445 static int cxgb4_port_mirror_start(struct net_device *dev)
1446 {
1447 	struct port_info *pi = netdev2pinfo(dev);
1448 	struct adapter *adap = netdev2adap(dev);
1449 	int ret, idx = -1;
1450 
1451 	if (!pi->vi_mirror_count)
1452 		return 0;
1453 
1454 	/* Mirror VIs can be created dynamically after stack had
1455 	 * already setup Rx modes like MTU, promisc, allmulti, etc.
1456 	 * on main VI. So, parse what the stack had setup on the
1457 	 * main VI and update the same on the mirror VI.
1458 	 */
1459 	ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460 			    dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461 			    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463 	if (ret) {
1464 		dev_err(adap->pdev_dev,
1465 			"Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466 			pi->viid_mirror, ret);
1467 		return ret;
1468 	}
1469 
1470 	/* Enable replication bit for the device's MAC address
1471 	 * in MPS TCAM, so that the packets for the main VI are
1472 	 * replicated to mirror VI.
1473 	 */
1474 	ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475 				    dev->dev_addr, true, NULL);
1476 	if (ret) {
1477 		dev_err(adap->pdev_dev,
1478 			"Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479 			pi->viid_mirror, ret);
1480 		return ret;
1481 	}
1482 
1483 	/* Enabling a Virtual Interface can result in an interrupt
1484 	 * during the processing of the VI Enable command and, in some
1485 	 * paths, result in an attempt to issue another command in the
1486 	 * interrupt context. Thus, we disable interrupts during the
1487 	 * course of the VI Enable command ...
1488 	 */
1489 	local_bh_disable();
1490 	ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491 				  false);
1492 	local_bh_enable();
1493 	if (ret)
1494 		dev_err(adap->pdev_dev,
1495 			"Failed starting Mirror VI 0x%x, ret: %d\n",
1496 			pi->viid_mirror, ret);
1497 
1498 	return ret;
1499 }
1500 
1501 static void cxgb4_port_mirror_stop(struct net_device *dev)
1502 {
1503 	struct port_info *pi = netdev2pinfo(dev);
1504 	struct adapter *adap = netdev2adap(dev);
1505 
1506 	if (!pi->vi_mirror_count)
1507 		return;
1508 
1509 	t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510 			    false);
1511 }
1512 
1513 int cxgb4_port_mirror_alloc(struct net_device *dev)
1514 {
1515 	struct port_info *pi = netdev2pinfo(dev);
1516 	struct adapter *adap = netdev2adap(dev);
1517 	int ret = 0;
1518 
1519 	if (!pi->nmirrorqsets)
1520 		return -EOPNOTSUPP;
1521 
1522 	mutex_lock(&pi->vi_mirror_mutex);
1523 	if (pi->viid_mirror) {
1524 		pi->vi_mirror_count++;
1525 		goto out_unlock;
1526 	}
1527 
1528 	ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529 				  &pi->viid_mirror);
1530 	if (ret)
1531 		goto out_unlock;
1532 
1533 	pi->vi_mirror_count = 1;
1534 
1535 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536 		ret = cxgb4_port_mirror_alloc_queues(dev);
1537 		if (ret)
1538 			goto out_free_vi;
1539 
1540 		ret = cxgb4_port_mirror_start(dev);
1541 		if (ret)
1542 			goto out_free_queues;
1543 	}
1544 
1545 	mutex_unlock(&pi->vi_mirror_mutex);
1546 	return 0;
1547 
1548 out_free_queues:
1549 	cxgb4_port_mirror_free_queues(dev);
1550 
1551 out_free_vi:
1552 	pi->vi_mirror_count = 0;
1553 	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554 	pi->viid_mirror = 0;
1555 
1556 out_unlock:
1557 	mutex_unlock(&pi->vi_mirror_mutex);
1558 	return ret;
1559 }
1560 
1561 void cxgb4_port_mirror_free(struct net_device *dev)
1562 {
1563 	struct port_info *pi = netdev2pinfo(dev);
1564 	struct adapter *adap = netdev2adap(dev);
1565 
1566 	mutex_lock(&pi->vi_mirror_mutex);
1567 	if (!pi->viid_mirror)
1568 		goto out_unlock;
1569 
1570 	if (pi->vi_mirror_count > 1) {
1571 		pi->vi_mirror_count--;
1572 		goto out_unlock;
1573 	}
1574 
1575 	cxgb4_port_mirror_stop(dev);
1576 	cxgb4_port_mirror_free_queues(dev);
1577 
1578 	pi->vi_mirror_count = 0;
1579 	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580 	pi->viid_mirror = 0;
1581 
1582 out_unlock:
1583 	mutex_unlock(&pi->vi_mirror_mutex);
1584 }
1585 
1586 /*
1587  * upper-layer driver support
1588  */
1589 
1590 /*
1591  * Allocate an active-open TID and set it to the supplied value.
1592  */
1593 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594 {
1595 	int atid = -1;
1596 
1597 	spin_lock_bh(&t->atid_lock);
1598 	if (t->afree) {
1599 		union aopen_entry *p = t->afree;
1600 
1601 		atid = (p - t->atid_tab) + t->atid_base;
1602 		t->afree = p->next;
1603 		p->data = data;
1604 		t->atids_in_use++;
1605 	}
1606 	spin_unlock_bh(&t->atid_lock);
1607 	return atid;
1608 }
1609 EXPORT_SYMBOL(cxgb4_alloc_atid);
1610 
1611 /*
1612  * Release an active-open TID.
1613  */
1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615 {
1616 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617 
1618 	spin_lock_bh(&t->atid_lock);
1619 	p->next = t->afree;
1620 	t->afree = p;
1621 	t->atids_in_use--;
1622 	spin_unlock_bh(&t->atid_lock);
1623 }
1624 EXPORT_SYMBOL(cxgb4_free_atid);
1625 
1626 /*
1627  * Allocate a server TID and set it to the supplied value.
1628  */
1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630 {
1631 	int stid;
1632 
1633 	spin_lock_bh(&t->stid_lock);
1634 	if (family == PF_INET) {
1635 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636 		if (stid < t->nstids)
1637 			__set_bit(stid, t->stid_bmap);
1638 		else
1639 			stid = -1;
1640 	} else {
1641 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642 		if (stid < 0)
1643 			stid = -1;
1644 	}
1645 	if (stid >= 0) {
1646 		t->stid_tab[stid].data = data;
1647 		stid += t->stid_base;
1648 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1649 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1650 		 * needs 2 TIDs.
1651 		 */
1652 		if (family == PF_INET6) {
1653 			t->stids_in_use += 2;
1654 			t->v6_stids_in_use += 2;
1655 		} else {
1656 			t->stids_in_use++;
1657 		}
1658 	}
1659 	spin_unlock_bh(&t->stid_lock);
1660 	return stid;
1661 }
1662 EXPORT_SYMBOL(cxgb4_alloc_stid);
1663 
1664 /* Allocate a server filter TID and set it to the supplied value.
1665  */
1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667 {
1668 	int stid;
1669 
1670 	spin_lock_bh(&t->stid_lock);
1671 	if (family == PF_INET) {
1672 		stid = find_next_zero_bit(t->stid_bmap,
1673 				t->nstids + t->nsftids, t->nstids);
1674 		if (stid < (t->nstids + t->nsftids))
1675 			__set_bit(stid, t->stid_bmap);
1676 		else
1677 			stid = -1;
1678 	} else {
1679 		stid = -1;
1680 	}
1681 	if (stid >= 0) {
1682 		t->stid_tab[stid].data = data;
1683 		stid -= t->nstids;
1684 		stid += t->sftid_base;
1685 		t->sftids_in_use++;
1686 	}
1687 	spin_unlock_bh(&t->stid_lock);
1688 	return stid;
1689 }
1690 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691 
1692 /* Release a server TID.
1693  */
1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695 {
1696 	/* Is it a server filter TID? */
1697 	if (t->nsftids && (stid >= t->sftid_base)) {
1698 		stid -= t->sftid_base;
1699 		stid += t->nstids;
1700 	} else {
1701 		stid -= t->stid_base;
1702 	}
1703 
1704 	spin_lock_bh(&t->stid_lock);
1705 	if (family == PF_INET)
1706 		__clear_bit(stid, t->stid_bmap);
1707 	else
1708 		bitmap_release_region(t->stid_bmap, stid, 1);
1709 	t->stid_tab[stid].data = NULL;
1710 	if (stid < t->nstids) {
1711 		if (family == PF_INET6) {
1712 			t->stids_in_use -= 2;
1713 			t->v6_stids_in_use -= 2;
1714 		} else {
1715 			t->stids_in_use--;
1716 		}
1717 	} else {
1718 		t->sftids_in_use--;
1719 	}
1720 
1721 	spin_unlock_bh(&t->stid_lock);
1722 }
1723 EXPORT_SYMBOL(cxgb4_free_stid);
1724 
1725 /*
1726  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1727  */
1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729 			   unsigned int tid)
1730 {
1731 	struct cpl_tid_release *req;
1732 
1733 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734 	req = __skb_put(skb, sizeof(*req));
1735 	INIT_TP_WR(req, tid);
1736 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737 }
1738 
1739 /*
1740  * Queue a TID release request and if necessary schedule a work queue to
1741  * process it.
1742  */
1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744 				    unsigned int tid)
1745 {
1746 	struct adapter *adap = container_of(t, struct adapter, tids);
1747 	void **p = &t->tid_tab[tid - t->tid_base];
1748 
1749 	spin_lock_bh(&adap->tid_release_lock);
1750 	*p = adap->tid_release_head;
1751 	/* Low 2 bits encode the Tx channel number */
1752 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753 	if (!adap->tid_release_task_busy) {
1754 		adap->tid_release_task_busy = true;
1755 		queue_work(adap->workq, &adap->tid_release_task);
1756 	}
1757 	spin_unlock_bh(&adap->tid_release_lock);
1758 }
1759 
1760 /*
1761  * Process the list of pending TID release requests.
1762  */
1763 static void process_tid_release_list(struct work_struct *work)
1764 {
1765 	struct sk_buff *skb;
1766 	struct adapter *adap;
1767 
1768 	adap = container_of(work, struct adapter, tid_release_task);
1769 
1770 	spin_lock_bh(&adap->tid_release_lock);
1771 	while (adap->tid_release_head) {
1772 		void **p = adap->tid_release_head;
1773 		unsigned int chan = (uintptr_t)p & 3;
1774 		p = (void *)p - chan;
1775 
1776 		adap->tid_release_head = *p;
1777 		*p = NULL;
1778 		spin_unlock_bh(&adap->tid_release_lock);
1779 
1780 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781 					 GFP_KERNEL)))
1782 			schedule_timeout_uninterruptible(1);
1783 
1784 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785 		t4_ofld_send(adap, skb);
1786 		spin_lock_bh(&adap->tid_release_lock);
1787 	}
1788 	adap->tid_release_task_busy = false;
1789 	spin_unlock_bh(&adap->tid_release_lock);
1790 }
1791 
1792 /*
1793  * Release a TID and inform HW.  If we are unable to allocate the release
1794  * message we defer to a work queue.
1795  */
1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797 		      unsigned short family)
1798 {
1799 	struct adapter *adap = container_of(t, struct adapter, tids);
1800 	struct sk_buff *skb;
1801 
1802 	WARN_ON(tid_out_of_range(&adap->tids, tid));
1803 
1804 	if (t->tid_tab[tid - adap->tids.tid_base]) {
1805 		t->tid_tab[tid - adap->tids.tid_base] = NULL;
1806 		atomic_dec(&t->conns_in_use);
1807 		if (t->hash_base && (tid >= t->hash_base)) {
1808 			if (family == AF_INET6)
1809 				atomic_sub(2, &t->hash_tids_in_use);
1810 			else
1811 				atomic_dec(&t->hash_tids_in_use);
1812 		} else {
1813 			if (family == AF_INET6)
1814 				atomic_sub(2, &t->tids_in_use);
1815 			else
1816 				atomic_dec(&t->tids_in_use);
1817 		}
1818 	}
1819 
1820 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1821 	if (likely(skb)) {
1822 		mk_tid_release(skb, chan, tid);
1823 		t4_ofld_send(adap, skb);
1824 	} else
1825 		cxgb4_queue_tid_release(t, chan, tid);
1826 }
1827 EXPORT_SYMBOL(cxgb4_remove_tid);
1828 
1829 /*
1830  * Allocate and initialize the TID tables.  Returns 0 on success.
1831  */
1832 static int tid_init(struct tid_info *t)
1833 {
1834 	struct adapter *adap = container_of(t, struct adapter, tids);
1835 	unsigned int max_ftids = t->nftids + t->nsftids;
1836 	unsigned int natids = t->natids;
1837 	unsigned int hpftid_bmap_size;
1838 	unsigned int eotid_bmap_size;
1839 	unsigned int stid_bmap_size;
1840 	unsigned int ftid_bmap_size;
1841 	size_t size;
1842 
1843 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1844 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1845 	hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1846 	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1847 	size = t->ntids * sizeof(*t->tid_tab) +
1848 	       natids * sizeof(*t->atid_tab) +
1849 	       t->nstids * sizeof(*t->stid_tab) +
1850 	       t->nsftids * sizeof(*t->stid_tab) +
1851 	       stid_bmap_size * sizeof(long) +
1852 	       t->nhpftids * sizeof(*t->hpftid_tab) +
1853 	       hpftid_bmap_size * sizeof(long) +
1854 	       max_ftids * sizeof(*t->ftid_tab) +
1855 	       ftid_bmap_size * sizeof(long) +
1856 	       t->neotids * sizeof(*t->eotid_tab) +
1857 	       eotid_bmap_size * sizeof(long);
1858 
1859 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1860 	if (!t->tid_tab)
1861 		return -ENOMEM;
1862 
1863 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1864 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1865 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1866 	t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1867 	t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1868 	t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1869 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1870 	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1871 	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1872 	spin_lock_init(&t->stid_lock);
1873 	spin_lock_init(&t->atid_lock);
1874 	spin_lock_init(&t->ftid_lock);
1875 
1876 	t->stids_in_use = 0;
1877 	t->v6_stids_in_use = 0;
1878 	t->sftids_in_use = 0;
1879 	t->afree = NULL;
1880 	t->atids_in_use = 0;
1881 	atomic_set(&t->tids_in_use, 0);
1882 	atomic_set(&t->conns_in_use, 0);
1883 	atomic_set(&t->hash_tids_in_use, 0);
1884 	atomic_set(&t->eotids_in_use, 0);
1885 
1886 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1887 	if (natids) {
1888 		while (--natids)
1889 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1890 		t->afree = t->atid_tab;
1891 	}
1892 
1893 	if (is_offload(adap)) {
1894 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1895 		/* Reserve stid 0 for T4/T5 adapters */
1896 		if (!t->stid_base &&
1897 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1898 			__set_bit(0, t->stid_bmap);
1899 
1900 		if (t->neotids)
1901 			bitmap_zero(t->eotid_bmap, t->neotids);
1902 	}
1903 
1904 	if (t->nhpftids)
1905 		bitmap_zero(t->hpftid_bmap, t->nhpftids);
1906 	bitmap_zero(t->ftid_bmap, t->nftids);
1907 	return 0;
1908 }
1909 
1910 /**
1911  *	cxgb4_create_server - create an IP server
1912  *	@dev: the device
1913  *	@stid: the server TID
1914  *	@sip: local IP address to bind server to
1915  *	@sport: the server's TCP port
1916  *	@vlan: the VLAN header information
1917  *	@queue: queue to direct messages from this server to
1918  *
1919  *	Create an IP server for the given port and address.
1920  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1921  */
1922 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1923 			__be32 sip, __be16 sport, __be16 vlan,
1924 			unsigned int queue)
1925 {
1926 	unsigned int chan;
1927 	struct sk_buff *skb;
1928 	struct adapter *adap;
1929 	struct cpl_pass_open_req *req;
1930 	int ret;
1931 
1932 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1933 	if (!skb)
1934 		return -ENOMEM;
1935 
1936 	adap = netdev2adap(dev);
1937 	req = __skb_put(skb, sizeof(*req));
1938 	INIT_TP_WR(req, 0);
1939 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1940 	req->local_port = sport;
1941 	req->peer_port = htons(0);
1942 	req->local_ip = sip;
1943 	req->peer_ip = htonl(0);
1944 	chan = rxq_to_chan(&adap->sge, queue);
1945 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1946 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1947 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1948 	ret = t4_mgmt_tx(adap, skb);
1949 	return net_xmit_eval(ret);
1950 }
1951 EXPORT_SYMBOL(cxgb4_create_server);
1952 
1953 /*	cxgb4_create_server6 - create an IPv6 server
1954  *	@dev: the device
1955  *	@stid: the server TID
1956  *	@sip: local IPv6 address to bind server to
1957  *	@sport: the server's TCP port
1958  *	@queue: queue to direct messages from this server to
1959  *
1960  *	Create an IPv6 server for the given port and address.
1961  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1962  */
1963 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1964 			 const struct in6_addr *sip, __be16 sport,
1965 			 unsigned int queue)
1966 {
1967 	unsigned int chan;
1968 	struct sk_buff *skb;
1969 	struct adapter *adap;
1970 	struct cpl_pass_open_req6 *req;
1971 	int ret;
1972 
1973 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1974 	if (!skb)
1975 		return -ENOMEM;
1976 
1977 	adap = netdev2adap(dev);
1978 	req = __skb_put(skb, sizeof(*req));
1979 	INIT_TP_WR(req, 0);
1980 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1981 	req->local_port = sport;
1982 	req->peer_port = htons(0);
1983 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1984 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1985 	req->peer_ip_hi = cpu_to_be64(0);
1986 	req->peer_ip_lo = cpu_to_be64(0);
1987 	chan = rxq_to_chan(&adap->sge, queue);
1988 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1989 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1990 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1991 	ret = t4_mgmt_tx(adap, skb);
1992 	return net_xmit_eval(ret);
1993 }
1994 EXPORT_SYMBOL(cxgb4_create_server6);
1995 
1996 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1997 			unsigned int queue, bool ipv6)
1998 {
1999 	struct sk_buff *skb;
2000 	struct adapter *adap;
2001 	struct cpl_close_listsvr_req *req;
2002 	int ret;
2003 
2004 	adap = netdev2adap(dev);
2005 
2006 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2007 	if (!skb)
2008 		return -ENOMEM;
2009 
2010 	req = __skb_put(skb, sizeof(*req));
2011 	INIT_TP_WR(req, 0);
2012 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2013 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2014 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2015 	ret = t4_mgmt_tx(adap, skb);
2016 	return net_xmit_eval(ret);
2017 }
2018 EXPORT_SYMBOL(cxgb4_remove_server);
2019 
2020 /**
2021  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2022  *	@mtus: the HW MTU table
2023  *	@mtu: the target MTU
2024  *	@idx: index of selected entry in the MTU table
2025  *
2026  *	Returns the index and the value in the HW MTU table that is closest to
2027  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
2028  *	table, in which case that smallest available value is selected.
2029  */
2030 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2031 			    unsigned int *idx)
2032 {
2033 	unsigned int i = 0;
2034 
2035 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2036 		++i;
2037 	if (idx)
2038 		*idx = i;
2039 	return mtus[i];
2040 }
2041 EXPORT_SYMBOL(cxgb4_best_mtu);
2042 
2043 /**
2044  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2045  *     @mtus: the HW MTU table
2046  *     @header_size: Header Size
2047  *     @data_size_max: maximum Data Segment Size
2048  *     @data_size_align: desired Data Segment Size Alignment (2^N)
2049  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2050  *
2051  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
2052  *     MTU Table based solely on a Maximum MTU parameter, we break that
2053  *     parameter up into a Header Size and Maximum Data Segment Size, and
2054  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
2055  *     the Hardware MTU Table which will result in a Data Segment Size with
2056  *     the requested alignment _and_ that MTU isn't "too far" from the
2057  *     closest MTU, then we'll return that rather than the closest MTU.
2058  */
2059 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2060 				    unsigned short header_size,
2061 				    unsigned short data_size_max,
2062 				    unsigned short data_size_align,
2063 				    unsigned int *mtu_idxp)
2064 {
2065 	unsigned short max_mtu = header_size + data_size_max;
2066 	unsigned short data_size_align_mask = data_size_align - 1;
2067 	int mtu_idx, aligned_mtu_idx;
2068 
2069 	/* Scan the MTU Table till we find an MTU which is larger than our
2070 	 * Maximum MTU or we reach the end of the table.  Along the way,
2071 	 * record the last MTU found, if any, which will result in a Data
2072 	 * Segment Length matching the requested alignment.
2073 	 */
2074 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2075 		unsigned short data_size = mtus[mtu_idx] - header_size;
2076 
2077 		/* If this MTU minus the Header Size would result in a
2078 		 * Data Segment Size of the desired alignment, remember it.
2079 		 */
2080 		if ((data_size & data_size_align_mask) == 0)
2081 			aligned_mtu_idx = mtu_idx;
2082 
2083 		/* If we're not at the end of the Hardware MTU Table and the
2084 		 * next element is larger than our Maximum MTU, drop out of
2085 		 * the loop.
2086 		 */
2087 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2088 			break;
2089 	}
2090 
2091 	/* If we fell out of the loop because we ran to the end of the table,
2092 	 * then we just have to use the last [largest] entry.
2093 	 */
2094 	if (mtu_idx == NMTUS)
2095 		mtu_idx--;
2096 
2097 	/* If we found an MTU which resulted in the requested Data Segment
2098 	 * Length alignment and that's "not far" from the largest MTU which is
2099 	 * less than or equal to the maximum MTU, then use that.
2100 	 */
2101 	if (aligned_mtu_idx >= 0 &&
2102 	    mtu_idx - aligned_mtu_idx <= 1)
2103 		mtu_idx = aligned_mtu_idx;
2104 
2105 	/* If the caller has passed in an MTU Index pointer, pass the
2106 	 * MTU Index back.  Return the MTU value.
2107 	 */
2108 	if (mtu_idxp)
2109 		*mtu_idxp = mtu_idx;
2110 	return mtus[mtu_idx];
2111 }
2112 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2113 
2114 /**
2115  *	cxgb4_port_chan - get the HW channel of a port
2116  *	@dev: the net device for the port
2117  *
2118  *	Return the HW Tx channel of the given port.
2119  */
2120 unsigned int cxgb4_port_chan(const struct net_device *dev)
2121 {
2122 	return netdev2pinfo(dev)->tx_chan;
2123 }
2124 EXPORT_SYMBOL(cxgb4_port_chan);
2125 
2126 /**
2127  *      cxgb4_port_e2cchan - get the HW c-channel of a port
2128  *      @dev: the net device for the port
2129  *
2130  *      Return the HW RX c-channel of the given port.
2131  */
2132 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2133 {
2134 	return netdev2pinfo(dev)->rx_cchan;
2135 }
2136 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2137 
2138 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2139 {
2140 	struct adapter *adap = netdev2adap(dev);
2141 	u32 v1, v2, lp_count, hp_count;
2142 
2143 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2144 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2145 	if (is_t4(adap->params.chip)) {
2146 		lp_count = LP_COUNT_G(v1);
2147 		hp_count = HP_COUNT_G(v1);
2148 	} else {
2149 		lp_count = LP_COUNT_T5_G(v1);
2150 		hp_count = HP_COUNT_T5_G(v2);
2151 	}
2152 	return lpfifo ? lp_count : hp_count;
2153 }
2154 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2155 
2156 /**
2157  *	cxgb4_port_viid - get the VI id of a port
2158  *	@dev: the net device for the port
2159  *
2160  *	Return the VI id of the given port.
2161  */
2162 unsigned int cxgb4_port_viid(const struct net_device *dev)
2163 {
2164 	return netdev2pinfo(dev)->viid;
2165 }
2166 EXPORT_SYMBOL(cxgb4_port_viid);
2167 
2168 /**
2169  *	cxgb4_port_idx - get the index of a port
2170  *	@dev: the net device for the port
2171  *
2172  *	Return the index of the given port.
2173  */
2174 unsigned int cxgb4_port_idx(const struct net_device *dev)
2175 {
2176 	return netdev2pinfo(dev)->port_id;
2177 }
2178 EXPORT_SYMBOL(cxgb4_port_idx);
2179 
2180 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2181 			 struct tp_tcp_stats *v6)
2182 {
2183 	struct adapter *adap = pci_get_drvdata(pdev);
2184 
2185 	spin_lock(&adap->stats_lock);
2186 	t4_tp_get_tcp_stats(adap, v4, v6, false);
2187 	spin_unlock(&adap->stats_lock);
2188 }
2189 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2190 
2191 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2192 		      const unsigned int *pgsz_order)
2193 {
2194 	struct adapter *adap = netdev2adap(dev);
2195 
2196 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2197 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2198 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2199 		     HPZ3_V(pgsz_order[3]));
2200 }
2201 EXPORT_SYMBOL(cxgb4_iscsi_init);
2202 
2203 int cxgb4_flush_eq_cache(struct net_device *dev)
2204 {
2205 	struct adapter *adap = netdev2adap(dev);
2206 
2207 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2208 }
2209 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2210 
2211 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2212 {
2213 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2214 	__be64 indices;
2215 	int ret;
2216 
2217 	spin_lock(&adap->win0_lock);
2218 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2219 			   sizeof(indices), (__be32 *)&indices,
2220 			   T4_MEMORY_READ);
2221 	spin_unlock(&adap->win0_lock);
2222 	if (!ret) {
2223 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2224 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2225 	}
2226 	return ret;
2227 }
2228 
2229 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2230 			u16 size)
2231 {
2232 	struct adapter *adap = netdev2adap(dev);
2233 	u16 hw_pidx, hw_cidx;
2234 	int ret;
2235 
2236 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2237 	if (ret)
2238 		goto out;
2239 
2240 	if (pidx != hw_pidx) {
2241 		u16 delta;
2242 		u32 val;
2243 
2244 		if (pidx >= hw_pidx)
2245 			delta = pidx - hw_pidx;
2246 		else
2247 			delta = size - hw_pidx + pidx;
2248 
2249 		if (is_t4(adap->params.chip))
2250 			val = PIDX_V(delta);
2251 		else
2252 			val = PIDX_T5_V(delta);
2253 		wmb();
2254 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2255 			     QID_V(qid) | val);
2256 	}
2257 out:
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2261 
2262 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2263 {
2264 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2265 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2266 	u32 offset, memtype, memaddr;
2267 	struct adapter *adap;
2268 	u32 hma_size = 0;
2269 	int ret;
2270 
2271 	adap = netdev2adap(dev);
2272 
2273 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2274 
2275 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2276 	 * This code assumes that the memory is laid out starting at offset 0
2277 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2278 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2279 	 * MC0, and some have both MC0 and MC1.
2280 	 */
2281 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2282 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2283 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2284 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2285 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2286 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2287 
2288 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2289 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2290 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
2291 	}
2292 	edc0_end = edc0_size;
2293 	edc1_end = edc0_end + edc1_size;
2294 	mc0_end = edc1_end + mc0_size;
2295 
2296 	if (offset < edc0_end) {
2297 		memtype = MEM_EDC0;
2298 		memaddr = offset;
2299 	} else if (offset < edc1_end) {
2300 		memtype = MEM_EDC1;
2301 		memaddr = offset - edc0_end;
2302 	} else {
2303 		if (hma_size && (offset < (edc1_end + hma_size))) {
2304 			memtype = MEM_HMA;
2305 			memaddr = offset - edc1_end;
2306 		} else if (offset < mc0_end) {
2307 			memtype = MEM_MC0;
2308 			memaddr = offset - edc1_end;
2309 		} else if (is_t5(adap->params.chip)) {
2310 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2311 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2312 			mc1_end = mc0_end + mc1_size;
2313 			if (offset < mc1_end) {
2314 				memtype = MEM_MC1;
2315 				memaddr = offset - mc0_end;
2316 			} else {
2317 				/* offset beyond the end of any memory */
2318 				goto err;
2319 			}
2320 		} else {
2321 			/* T4/T6 only has a single memory channel */
2322 			goto err;
2323 		}
2324 	}
2325 
2326 	spin_lock(&adap->win0_lock);
2327 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2328 	spin_unlock(&adap->win0_lock);
2329 	return ret;
2330 
2331 err:
2332 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2333 		stag, offset);
2334 	return -EINVAL;
2335 }
2336 EXPORT_SYMBOL(cxgb4_read_tpte);
2337 
2338 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2339 {
2340 	u32 hi, lo;
2341 	struct adapter *adap;
2342 
2343 	adap = netdev2adap(dev);
2344 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2345 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2346 
2347 	return ((u64)hi << 32) | (u64)lo;
2348 }
2349 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2350 
2351 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2352 			 unsigned int qid,
2353 			 enum cxgb4_bar2_qtype qtype,
2354 			 int user,
2355 			 u64 *pbar2_qoffset,
2356 			 unsigned int *pbar2_qid)
2357 {
2358 	return t4_bar2_sge_qregs(netdev2adap(dev),
2359 				 qid,
2360 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2361 				  ? T4_BAR2_QTYPE_EGRESS
2362 				  : T4_BAR2_QTYPE_INGRESS),
2363 				 user,
2364 				 pbar2_qoffset,
2365 				 pbar2_qid);
2366 }
2367 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2368 
2369 static struct pci_driver cxgb4_driver;
2370 
2371 static void check_neigh_update(struct neighbour *neigh)
2372 {
2373 	const struct device *parent;
2374 	const struct net_device *netdev = neigh->dev;
2375 
2376 	if (is_vlan_dev(netdev))
2377 		netdev = vlan_dev_real_dev(netdev);
2378 	parent = netdev->dev.parent;
2379 	if (parent && parent->driver == &cxgb4_driver.driver)
2380 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2381 }
2382 
2383 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2384 		       void *data)
2385 {
2386 	switch (event) {
2387 	case NETEVENT_NEIGH_UPDATE:
2388 		check_neigh_update(data);
2389 		break;
2390 	case NETEVENT_REDIRECT:
2391 	default:
2392 		break;
2393 	}
2394 	return 0;
2395 }
2396 
2397 static bool netevent_registered;
2398 static struct notifier_block cxgb4_netevent_nb = {
2399 	.notifier_call = netevent_cb
2400 };
2401 
2402 static void drain_db_fifo(struct adapter *adap, int usecs)
2403 {
2404 	u32 v1, v2, lp_count, hp_count;
2405 
2406 	do {
2407 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2408 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2409 		if (is_t4(adap->params.chip)) {
2410 			lp_count = LP_COUNT_G(v1);
2411 			hp_count = HP_COUNT_G(v1);
2412 		} else {
2413 			lp_count = LP_COUNT_T5_G(v1);
2414 			hp_count = HP_COUNT_T5_G(v2);
2415 		}
2416 
2417 		if (lp_count == 0 && hp_count == 0)
2418 			break;
2419 		set_current_state(TASK_UNINTERRUPTIBLE);
2420 		schedule_timeout(usecs_to_jiffies(usecs));
2421 	} while (1);
2422 }
2423 
2424 static void disable_txq_db(struct sge_txq *q)
2425 {
2426 	unsigned long flags;
2427 
2428 	spin_lock_irqsave(&q->db_lock, flags);
2429 	q->db_disabled = 1;
2430 	spin_unlock_irqrestore(&q->db_lock, flags);
2431 }
2432 
2433 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2434 {
2435 	spin_lock_irq(&q->db_lock);
2436 	if (q->db_pidx_inc) {
2437 		/* Make sure that all writes to the TX descriptors
2438 		 * are committed before we tell HW about them.
2439 		 */
2440 		wmb();
2441 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2442 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2443 		q->db_pidx_inc = 0;
2444 	}
2445 	q->db_disabled = 0;
2446 	spin_unlock_irq(&q->db_lock);
2447 }
2448 
2449 static void disable_dbs(struct adapter *adap)
2450 {
2451 	int i;
2452 
2453 	for_each_ethrxq(&adap->sge, i)
2454 		disable_txq_db(&adap->sge.ethtxq[i].q);
2455 	if (is_offload(adap)) {
2456 		struct sge_uld_txq_info *txq_info =
2457 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2458 
2459 		if (txq_info) {
2460 			for_each_ofldtxq(&adap->sge, i) {
2461 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2462 
2463 				disable_txq_db(&txq->q);
2464 			}
2465 		}
2466 	}
2467 	for_each_port(adap, i)
2468 		disable_txq_db(&adap->sge.ctrlq[i].q);
2469 }
2470 
2471 static void enable_dbs(struct adapter *adap)
2472 {
2473 	int i;
2474 
2475 	for_each_ethrxq(&adap->sge, i)
2476 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2477 	if (is_offload(adap)) {
2478 		struct sge_uld_txq_info *txq_info =
2479 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2480 
2481 		if (txq_info) {
2482 			for_each_ofldtxq(&adap->sge, i) {
2483 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2484 
2485 				enable_txq_db(adap, &txq->q);
2486 			}
2487 		}
2488 	}
2489 	for_each_port(adap, i)
2490 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2491 }
2492 
2493 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2494 {
2495 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2496 
2497 	if (adap->uld && adap->uld[type].handle)
2498 		adap->uld[type].control(adap->uld[type].handle, cmd);
2499 }
2500 
2501 static void process_db_full(struct work_struct *work)
2502 {
2503 	struct adapter *adap;
2504 
2505 	adap = container_of(work, struct adapter, db_full_task);
2506 
2507 	drain_db_fifo(adap, dbfifo_drain_delay);
2508 	enable_dbs(adap);
2509 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2510 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2511 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2512 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2513 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2514 	else
2515 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2516 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2517 }
2518 
2519 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2520 {
2521 	u16 hw_pidx, hw_cidx;
2522 	int ret;
2523 
2524 	spin_lock_irq(&q->db_lock);
2525 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2526 	if (ret)
2527 		goto out;
2528 	if (q->db_pidx != hw_pidx) {
2529 		u16 delta;
2530 		u32 val;
2531 
2532 		if (q->db_pidx >= hw_pidx)
2533 			delta = q->db_pidx - hw_pidx;
2534 		else
2535 			delta = q->size - hw_pidx + q->db_pidx;
2536 
2537 		if (is_t4(adap->params.chip))
2538 			val = PIDX_V(delta);
2539 		else
2540 			val = PIDX_T5_V(delta);
2541 		wmb();
2542 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2543 			     QID_V(q->cntxt_id) | val);
2544 	}
2545 out:
2546 	q->db_disabled = 0;
2547 	q->db_pidx_inc = 0;
2548 	spin_unlock_irq(&q->db_lock);
2549 	if (ret)
2550 		CH_WARN(adap, "DB drop recovery failed.\n");
2551 }
2552 
2553 static void recover_all_queues(struct adapter *adap)
2554 {
2555 	int i;
2556 
2557 	for_each_ethrxq(&adap->sge, i)
2558 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2559 	if (is_offload(adap)) {
2560 		struct sge_uld_txq_info *txq_info =
2561 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2562 		if (txq_info) {
2563 			for_each_ofldtxq(&adap->sge, i) {
2564 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2565 
2566 				sync_txq_pidx(adap, &txq->q);
2567 			}
2568 		}
2569 	}
2570 	for_each_port(adap, i)
2571 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2572 }
2573 
2574 static void process_db_drop(struct work_struct *work)
2575 {
2576 	struct adapter *adap;
2577 
2578 	adap = container_of(work, struct adapter, db_drop_task);
2579 
2580 	if (is_t4(adap->params.chip)) {
2581 		drain_db_fifo(adap, dbfifo_drain_delay);
2582 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2583 		drain_db_fifo(adap, dbfifo_drain_delay);
2584 		recover_all_queues(adap);
2585 		drain_db_fifo(adap, dbfifo_drain_delay);
2586 		enable_dbs(adap);
2587 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2588 	} else if (is_t5(adap->params.chip)) {
2589 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2590 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2591 		u16 pidx_inc = dropped_db & 0x1fff;
2592 		u64 bar2_qoffset;
2593 		unsigned int bar2_qid;
2594 		int ret;
2595 
2596 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2597 					0, &bar2_qoffset, &bar2_qid);
2598 		if (ret)
2599 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2600 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2601 		else
2602 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2603 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2604 
2605 		/* Re-enable BAR2 WC */
2606 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2607 	}
2608 
2609 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2610 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2611 }
2612 
2613 void t4_db_full(struct adapter *adap)
2614 {
2615 	if (is_t4(adap->params.chip)) {
2616 		disable_dbs(adap);
2617 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2618 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2619 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2620 		queue_work(adap->workq, &adap->db_full_task);
2621 	}
2622 }
2623 
2624 void t4_db_dropped(struct adapter *adap)
2625 {
2626 	if (is_t4(adap->params.chip)) {
2627 		disable_dbs(adap);
2628 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2629 	}
2630 	queue_work(adap->workq, &adap->db_drop_task);
2631 }
2632 
2633 void t4_register_netevent_notifier(void)
2634 {
2635 	if (!netevent_registered) {
2636 		register_netevent_notifier(&cxgb4_netevent_nb);
2637 		netevent_registered = true;
2638 	}
2639 }
2640 
2641 static void detach_ulds(struct adapter *adap)
2642 {
2643 	unsigned int i;
2644 
2645 	mutex_lock(&uld_mutex);
2646 	list_del(&adap->list_node);
2647 
2648 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2649 		if (adap->uld && adap->uld[i].handle)
2650 			adap->uld[i].state_change(adap->uld[i].handle,
2651 					     CXGB4_STATE_DETACH);
2652 
2653 	if (netevent_registered && list_empty(&adapter_list)) {
2654 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2655 		netevent_registered = false;
2656 	}
2657 	mutex_unlock(&uld_mutex);
2658 }
2659 
2660 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2661 {
2662 	unsigned int i;
2663 
2664 	mutex_lock(&uld_mutex);
2665 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2666 		if (adap->uld && adap->uld[i].handle)
2667 			adap->uld[i].state_change(adap->uld[i].handle,
2668 						  new_state);
2669 	mutex_unlock(&uld_mutex);
2670 }
2671 
2672 #if IS_ENABLED(CONFIG_IPV6)
2673 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2674 				   unsigned long event, void *data)
2675 {
2676 	struct inet6_ifaddr *ifa = data;
2677 	struct net_device *event_dev = ifa->idev->dev;
2678 	const struct device *parent = NULL;
2679 #if IS_ENABLED(CONFIG_BONDING)
2680 	struct adapter *adap;
2681 #endif
2682 	if (is_vlan_dev(event_dev))
2683 		event_dev = vlan_dev_real_dev(event_dev);
2684 #if IS_ENABLED(CONFIG_BONDING)
2685 	if (event_dev->flags & IFF_MASTER) {
2686 		list_for_each_entry(adap, &adapter_list, list_node) {
2687 			switch (event) {
2688 			case NETDEV_UP:
2689 				cxgb4_clip_get(adap->port[0],
2690 					       (const u32 *)ifa, 1);
2691 				break;
2692 			case NETDEV_DOWN:
2693 				cxgb4_clip_release(adap->port[0],
2694 						   (const u32 *)ifa, 1);
2695 				break;
2696 			default:
2697 				break;
2698 			}
2699 		}
2700 		return NOTIFY_OK;
2701 	}
2702 #endif
2703 
2704 	if (event_dev)
2705 		parent = event_dev->dev.parent;
2706 
2707 	if (parent && parent->driver == &cxgb4_driver.driver) {
2708 		switch (event) {
2709 		case NETDEV_UP:
2710 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2711 			break;
2712 		case NETDEV_DOWN:
2713 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2714 			break;
2715 		default:
2716 			break;
2717 		}
2718 	}
2719 	return NOTIFY_OK;
2720 }
2721 
2722 static bool inet6addr_registered;
2723 static struct notifier_block cxgb4_inet6addr_notifier = {
2724 	.notifier_call = cxgb4_inet6addr_handler
2725 };
2726 
2727 static void update_clip(const struct adapter *adap)
2728 {
2729 	int i;
2730 	struct net_device *dev;
2731 	int ret;
2732 
2733 	rcu_read_lock();
2734 
2735 	for (i = 0; i < MAX_NPORTS; i++) {
2736 		dev = adap->port[i];
2737 		ret = 0;
2738 
2739 		if (dev)
2740 			ret = cxgb4_update_root_dev_clip(dev);
2741 
2742 		if (ret < 0)
2743 			break;
2744 	}
2745 	rcu_read_unlock();
2746 }
2747 #endif /* IS_ENABLED(CONFIG_IPV6) */
2748 
2749 /**
2750  *	cxgb_up - enable the adapter
2751  *	@adap: adapter being enabled
2752  *
2753  *	Called when the first port is enabled, this function performs the
2754  *	actions necessary to make an adapter operational, such as completing
2755  *	the initialization of HW modules, and enabling interrupts.
2756  *
2757  *	Must be called with the rtnl lock held.
2758  */
2759 static int cxgb_up(struct adapter *adap)
2760 {
2761 	struct sge *s = &adap->sge;
2762 	int err;
2763 
2764 	mutex_lock(&uld_mutex);
2765 	err = setup_sge_queues(adap);
2766 	if (err)
2767 		goto rel_lock;
2768 	err = setup_rss(adap);
2769 	if (err)
2770 		goto freeq;
2771 
2772 	if (adap->flags & CXGB4_USING_MSIX) {
2773 		if (s->nd_msix_idx < 0) {
2774 			err = -ENOMEM;
2775 			goto irq_err;
2776 		}
2777 
2778 		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2779 				  t4_nondata_intr, 0,
2780 				  adap->msix_info[s->nd_msix_idx].desc, adap);
2781 		if (err)
2782 			goto irq_err;
2783 
2784 		err = request_msix_queue_irqs(adap);
2785 		if (err)
2786 			goto irq_err_free_nd_msix;
2787 	} else {
2788 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2789 				  (adap->flags & CXGB4_USING_MSI) ? 0
2790 								  : IRQF_SHARED,
2791 				  adap->port[0]->name, adap);
2792 		if (err)
2793 			goto irq_err;
2794 	}
2795 
2796 	enable_rx(adap);
2797 	t4_sge_start(adap);
2798 	t4_intr_enable(adap);
2799 	adap->flags |= CXGB4_FULL_INIT_DONE;
2800 	mutex_unlock(&uld_mutex);
2801 
2802 	notify_ulds(adap, CXGB4_STATE_UP);
2803 #if IS_ENABLED(CONFIG_IPV6)
2804 	update_clip(adap);
2805 #endif
2806 	return err;
2807 
2808 irq_err_free_nd_msix:
2809 	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2810 irq_err:
2811 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2812 freeq:
2813 	t4_free_sge_resources(adap);
2814 rel_lock:
2815 	mutex_unlock(&uld_mutex);
2816 	return err;
2817 }
2818 
2819 static void cxgb_down(struct adapter *adapter)
2820 {
2821 	cancel_work_sync(&adapter->tid_release_task);
2822 	cancel_work_sync(&adapter->db_full_task);
2823 	cancel_work_sync(&adapter->db_drop_task);
2824 	adapter->tid_release_task_busy = false;
2825 	adapter->tid_release_head = NULL;
2826 
2827 	t4_sge_stop(adapter);
2828 	t4_free_sge_resources(adapter);
2829 
2830 	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2831 }
2832 
2833 /*
2834  * net_device operations
2835  */
2836 int cxgb_open(struct net_device *dev)
2837 {
2838 	struct port_info *pi = netdev_priv(dev);
2839 	struct adapter *adapter = pi->adapter;
2840 	int err;
2841 
2842 	netif_carrier_off(dev);
2843 
2844 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2845 		err = cxgb_up(adapter);
2846 		if (err < 0)
2847 			return err;
2848 	}
2849 
2850 	/* It's possible that the basic port information could have
2851 	 * changed since we first read it.
2852 	 */
2853 	err = t4_update_port_info(pi);
2854 	if (err < 0)
2855 		return err;
2856 
2857 	err = link_start(dev);
2858 	if (err)
2859 		return err;
2860 
2861 	if (pi->nmirrorqsets) {
2862 		mutex_lock(&pi->vi_mirror_mutex);
2863 		err = cxgb4_port_mirror_alloc_queues(dev);
2864 		if (err)
2865 			goto out_unlock;
2866 
2867 		err = cxgb4_port_mirror_start(dev);
2868 		if (err)
2869 			goto out_free_queues;
2870 		mutex_unlock(&pi->vi_mirror_mutex);
2871 	}
2872 
2873 	netif_tx_start_all_queues(dev);
2874 	return 0;
2875 
2876 out_free_queues:
2877 	cxgb4_port_mirror_free_queues(dev);
2878 
2879 out_unlock:
2880 	mutex_unlock(&pi->vi_mirror_mutex);
2881 	return err;
2882 }
2883 
2884 int cxgb_close(struct net_device *dev)
2885 {
2886 	struct port_info *pi = netdev_priv(dev);
2887 	struct adapter *adapter = pi->adapter;
2888 	int ret;
2889 
2890 	netif_tx_stop_all_queues(dev);
2891 	netif_carrier_off(dev);
2892 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2893 				  false, false, false);
2894 #ifdef CONFIG_CHELSIO_T4_DCB
2895 	cxgb4_dcb_reset(dev);
2896 	dcb_tx_queue_prio_enable(dev, false);
2897 #endif
2898 	if (ret)
2899 		return ret;
2900 
2901 	if (pi->nmirrorqsets) {
2902 		mutex_lock(&pi->vi_mirror_mutex);
2903 		cxgb4_port_mirror_stop(dev);
2904 		cxgb4_port_mirror_free_queues(dev);
2905 		mutex_unlock(&pi->vi_mirror_mutex);
2906 	}
2907 
2908 	return 0;
2909 }
2910 
2911 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2912 		__be32 sip, __be16 sport, __be16 vlan,
2913 		unsigned int queue, unsigned char port, unsigned char mask)
2914 {
2915 	int ret;
2916 	struct filter_entry *f;
2917 	struct adapter *adap;
2918 	int i;
2919 	u8 *val;
2920 
2921 	adap = netdev2adap(dev);
2922 
2923 	/* Adjust stid to correct filter index */
2924 	stid -= adap->tids.sftid_base;
2925 	stid += adap->tids.nftids;
2926 
2927 	/* Check to make sure the filter requested is writable ...
2928 	 */
2929 	f = &adap->tids.ftid_tab[stid];
2930 	ret = writable_filter(f);
2931 	if (ret)
2932 		return ret;
2933 
2934 	/* Clear out any old resources being used by the filter before
2935 	 * we start constructing the new filter.
2936 	 */
2937 	if (f->valid)
2938 		clear_filter(adap, f);
2939 
2940 	/* Clear out filter specifications */
2941 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2942 	f->fs.val.lport = be16_to_cpu(sport);
2943 	f->fs.mask.lport  = ~0;
2944 	val = (u8 *)&sip;
2945 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2946 		for (i = 0; i < 4; i++) {
2947 			f->fs.val.lip[i] = val[i];
2948 			f->fs.mask.lip[i] = ~0;
2949 		}
2950 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2951 			f->fs.val.iport = port;
2952 			f->fs.mask.iport = mask;
2953 		}
2954 	}
2955 
2956 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2957 		f->fs.val.proto = IPPROTO_TCP;
2958 		f->fs.mask.proto = ~0;
2959 	}
2960 
2961 	f->fs.dirsteer = 1;
2962 	f->fs.iq = queue;
2963 	/* Mark filter as locked */
2964 	f->locked = 1;
2965 	f->fs.rpttid = 1;
2966 
2967 	/* Save the actual tid. We need this to get the corresponding
2968 	 * filter entry structure in filter_rpl.
2969 	 */
2970 	f->tid = stid + adap->tids.ftid_base;
2971 	ret = set_filter_wr(adap, stid);
2972 	if (ret) {
2973 		clear_filter(adap, f);
2974 		return ret;
2975 	}
2976 
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL(cxgb4_create_server_filter);
2980 
2981 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2982 		unsigned int queue, bool ipv6)
2983 {
2984 	struct filter_entry *f;
2985 	struct adapter *adap;
2986 
2987 	adap = netdev2adap(dev);
2988 
2989 	/* Adjust stid to correct filter index */
2990 	stid -= adap->tids.sftid_base;
2991 	stid += adap->tids.nftids;
2992 
2993 	f = &adap->tids.ftid_tab[stid];
2994 	/* Unlock the filter */
2995 	f->locked = 0;
2996 
2997 	return delete_filter(adap, stid);
2998 }
2999 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3000 
3001 static void cxgb_get_stats(struct net_device *dev,
3002 			   struct rtnl_link_stats64 *ns)
3003 {
3004 	struct port_stats stats;
3005 	struct port_info *p = netdev_priv(dev);
3006 	struct adapter *adapter = p->adapter;
3007 
3008 	/* Block retrieving statistics during EEH error
3009 	 * recovery. Otherwise, the recovery might fail
3010 	 * and the PCI device will be removed permanently
3011 	 */
3012 	spin_lock(&adapter->stats_lock);
3013 	if (!netif_device_present(dev)) {
3014 		spin_unlock(&adapter->stats_lock);
3015 		return;
3016 	}
3017 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3018 				 &p->stats_base);
3019 	spin_unlock(&adapter->stats_lock);
3020 
3021 	ns->tx_bytes   = stats.tx_octets;
3022 	ns->tx_packets = stats.tx_frames;
3023 	ns->rx_bytes   = stats.rx_octets;
3024 	ns->rx_packets = stats.rx_frames;
3025 	ns->multicast  = stats.rx_mcast_frames;
3026 
3027 	/* detailed rx_errors */
3028 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3029 			       stats.rx_runt;
3030 	ns->rx_over_errors   = 0;
3031 	ns->rx_crc_errors    = stats.rx_fcs_err;
3032 	ns->rx_frame_errors  = stats.rx_symbol_err;
3033 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
3034 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
3035 			       stats.rx_trunc0 + stats.rx_trunc1 +
3036 			       stats.rx_trunc2 + stats.rx_trunc3;
3037 	ns->rx_missed_errors = 0;
3038 
3039 	/* detailed tx_errors */
3040 	ns->tx_aborted_errors   = 0;
3041 	ns->tx_carrier_errors   = 0;
3042 	ns->tx_fifo_errors      = 0;
3043 	ns->tx_heartbeat_errors = 0;
3044 	ns->tx_window_errors    = 0;
3045 
3046 	ns->tx_errors = stats.tx_error_frames;
3047 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3048 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3049 }
3050 
3051 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3052 {
3053 	unsigned int mbox;
3054 	int ret = 0, prtad, devad;
3055 	struct port_info *pi = netdev_priv(dev);
3056 	struct adapter *adapter = pi->adapter;
3057 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3058 
3059 	switch (cmd) {
3060 	case SIOCGMIIPHY:
3061 		if (pi->mdio_addr < 0)
3062 			return -EOPNOTSUPP;
3063 		data->phy_id = pi->mdio_addr;
3064 		break;
3065 	case SIOCGMIIREG:
3066 	case SIOCSMIIREG:
3067 		if (mdio_phy_id_is_c45(data->phy_id)) {
3068 			prtad = mdio_phy_id_prtad(data->phy_id);
3069 			devad = mdio_phy_id_devad(data->phy_id);
3070 		} else if (data->phy_id < 32) {
3071 			prtad = data->phy_id;
3072 			devad = 0;
3073 			data->reg_num &= 0x1f;
3074 		} else
3075 			return -EINVAL;
3076 
3077 		mbox = pi->adapter->pf;
3078 		if (cmd == SIOCGMIIREG)
3079 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3080 					 data->reg_num, &data->val_out);
3081 		else
3082 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3083 					 data->reg_num, data->val_in);
3084 		break;
3085 	case SIOCGHWTSTAMP:
3086 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3087 				    sizeof(pi->tstamp_config)) ?
3088 			-EFAULT : 0;
3089 	case SIOCSHWTSTAMP:
3090 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3091 				   sizeof(pi->tstamp_config)))
3092 			return -EFAULT;
3093 
3094 		if (!is_t4(adapter->params.chip)) {
3095 			switch (pi->tstamp_config.tx_type) {
3096 			case HWTSTAMP_TX_OFF:
3097 			case HWTSTAMP_TX_ON:
3098 				break;
3099 			default:
3100 				return -ERANGE;
3101 			}
3102 
3103 			switch (pi->tstamp_config.rx_filter) {
3104 			case HWTSTAMP_FILTER_NONE:
3105 				pi->rxtstamp = false;
3106 				break;
3107 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3108 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3109 				cxgb4_ptprx_timestamping(pi, pi->port_id,
3110 							 PTP_TS_L4);
3111 				break;
3112 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
3113 				cxgb4_ptprx_timestamping(pi, pi->port_id,
3114 							 PTP_TS_L2_L4);
3115 				break;
3116 			case HWTSTAMP_FILTER_ALL:
3117 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3118 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3119 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3120 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3121 				pi->rxtstamp = true;
3122 				break;
3123 			default:
3124 				pi->tstamp_config.rx_filter =
3125 					HWTSTAMP_FILTER_NONE;
3126 				return -ERANGE;
3127 			}
3128 
3129 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3130 			    (pi->tstamp_config.rx_filter ==
3131 				HWTSTAMP_FILTER_NONE)) {
3132 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3133 					pi->ptp_enable = false;
3134 			}
3135 
3136 			if (pi->tstamp_config.rx_filter !=
3137 				HWTSTAMP_FILTER_NONE) {
3138 				if (cxgb4_ptp_redirect_rx_packet(adapter,
3139 								 pi) >= 0)
3140 					pi->ptp_enable = true;
3141 			}
3142 		} else {
3143 			/* For T4 Adapters */
3144 			switch (pi->tstamp_config.rx_filter) {
3145 			case HWTSTAMP_FILTER_NONE:
3146 			pi->rxtstamp = false;
3147 			break;
3148 			case HWTSTAMP_FILTER_ALL:
3149 			pi->rxtstamp = true;
3150 			break;
3151 			default:
3152 			pi->tstamp_config.rx_filter =
3153 			HWTSTAMP_FILTER_NONE;
3154 			return -ERANGE;
3155 			}
3156 		}
3157 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3158 				    sizeof(pi->tstamp_config)) ?
3159 			-EFAULT : 0;
3160 	default:
3161 		return -EOPNOTSUPP;
3162 	}
3163 	return ret;
3164 }
3165 
3166 static void cxgb_set_rxmode(struct net_device *dev)
3167 {
3168 	/* unfortunately we can't return errors to the stack */
3169 	set_rxmode(dev, -1, false);
3170 }
3171 
3172 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3173 {
3174 	struct port_info *pi = netdev_priv(dev);
3175 	int ret;
3176 
3177 	ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3178 			    pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3179 	if (!ret)
3180 		dev->mtu = new_mtu;
3181 	return ret;
3182 }
3183 
3184 #ifdef CONFIG_PCI_IOV
3185 static int cxgb4_mgmt_open(struct net_device *dev)
3186 {
3187 	/* Turn carrier off since we don't have to transmit anything on this
3188 	 * interface.
3189 	 */
3190 	netif_carrier_off(dev);
3191 	return 0;
3192 }
3193 
3194 /* Fill MAC address that will be assigned by the FW */
3195 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3196 {
3197 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3198 	unsigned int i, vf, nvfs;
3199 	u16 a, b;
3200 	int err;
3201 	u8 *na;
3202 
3203 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
3204 							    PCI_CAP_ID_VPD);
3205 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3206 	if (err)
3207 		return;
3208 
3209 	na = adap->params.vpd.na;
3210 	for (i = 0; i < ETH_ALEN; i++)
3211 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3212 			      hex2val(na[2 * i + 1]));
3213 
3214 	a = (hw_addr[0] << 8) | hw_addr[1];
3215 	b = (hw_addr[1] << 8) | hw_addr[2];
3216 	a ^= b;
3217 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
3218 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3219 	macaddr[0] = a >> 8;
3220 	macaddr[1] = a & 0xff;
3221 
3222 	for (i = 2; i < 5; i++)
3223 		macaddr[i] = hw_addr[i + 1];
3224 
3225 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3226 		vf < nvfs; vf++) {
3227 		macaddr[5] = adap->pf * nvfs + vf;
3228 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3229 	}
3230 }
3231 
3232 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3233 {
3234 	struct port_info *pi = netdev_priv(dev);
3235 	struct adapter *adap = pi->adapter;
3236 	int ret;
3237 
3238 	/* verify MAC addr is valid */
3239 	if (!is_valid_ether_addr(mac)) {
3240 		dev_err(pi->adapter->pdev_dev,
3241 			"Invalid Ethernet address %pM for VF %d\n",
3242 			mac, vf);
3243 		return -EINVAL;
3244 	}
3245 
3246 	dev_info(pi->adapter->pdev_dev,
3247 		 "Setting MAC %pM on VF %d\n", mac, vf);
3248 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3249 	if (!ret)
3250 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3251 	return ret;
3252 }
3253 
3254 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3255 				    int vf, struct ifla_vf_info *ivi)
3256 {
3257 	struct port_info *pi = netdev_priv(dev);
3258 	struct adapter *adap = pi->adapter;
3259 	struct vf_info *vfinfo;
3260 
3261 	if (vf >= adap->num_vfs)
3262 		return -EINVAL;
3263 	vfinfo = &adap->vfinfo[vf];
3264 
3265 	ivi->vf = vf;
3266 	ivi->max_tx_rate = vfinfo->tx_rate;
3267 	ivi->min_tx_rate = 0;
3268 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3269 	ivi->vlan = vfinfo->vlan;
3270 	ivi->linkstate = vfinfo->link_state;
3271 	return 0;
3272 }
3273 
3274 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3275 				       struct netdev_phys_item_id *ppid)
3276 {
3277 	struct port_info *pi = netdev_priv(dev);
3278 	unsigned int phy_port_id;
3279 
3280 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3281 	ppid->id_len = sizeof(phy_port_id);
3282 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
3283 	return 0;
3284 }
3285 
3286 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3287 				  int min_tx_rate, int max_tx_rate)
3288 {
3289 	struct port_info *pi = netdev_priv(dev);
3290 	struct adapter *adap = pi->adapter;
3291 	unsigned int link_ok, speed, mtu;
3292 	u32 fw_pfvf, fw_class;
3293 	int class_id = vf;
3294 	int ret;
3295 	u16 pktsize;
3296 
3297 	if (vf >= adap->num_vfs)
3298 		return -EINVAL;
3299 
3300 	if (min_tx_rate) {
3301 		dev_err(adap->pdev_dev,
3302 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3303 			min_tx_rate, vf);
3304 		return -EINVAL;
3305 	}
3306 
3307 	if (max_tx_rate == 0) {
3308 		/* unbind VF to to any Traffic Class */
3309 		fw_pfvf =
3310 		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3311 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3312 		fw_class = 0xffffffff;
3313 		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3314 				    &fw_pfvf, &fw_class);
3315 		if (ret) {
3316 			dev_err(adap->pdev_dev,
3317 				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3318 				ret, adap->pf, vf);
3319 			return -EINVAL;
3320 		}
3321 		dev_info(adap->pdev_dev,
3322 			 "PF %d VF %d is unbound from TX Rate Limiting\n",
3323 			 adap->pf, vf);
3324 		adap->vfinfo[vf].tx_rate = 0;
3325 		return 0;
3326 	}
3327 
3328 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3329 	if (ret != FW_SUCCESS) {
3330 		dev_err(adap->pdev_dev,
3331 			"Failed to get link information for VF %d\n", vf);
3332 		return -EINVAL;
3333 	}
3334 
3335 	if (!link_ok) {
3336 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3337 		return -EINVAL;
3338 	}
3339 
3340 	if (max_tx_rate > speed) {
3341 		dev_err(adap->pdev_dev,
3342 			"Max tx rate %d for VF %d can't be > link-speed %u",
3343 			max_tx_rate, vf, speed);
3344 		return -EINVAL;
3345 	}
3346 
3347 	pktsize = mtu;
3348 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3349 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
3350 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3351 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3352 	/* configure Traffic Class for rate-limiting */
3353 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3354 			      SCHED_CLASS_LEVEL_CL_RL,
3355 			      SCHED_CLASS_MODE_CLASS,
3356 			      SCHED_CLASS_RATEUNIT_BITS,
3357 			      SCHED_CLASS_RATEMODE_ABS,
3358 			      pi->tx_chan, class_id, 0,
3359 			      max_tx_rate * 1000, 0, pktsize, 0);
3360 	if (ret) {
3361 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3362 			ret);
3363 		return -EINVAL;
3364 	}
3365 	dev_info(adap->pdev_dev,
3366 		 "Class %d with MSS %u configured with rate %u\n",
3367 		 class_id, pktsize, max_tx_rate);
3368 
3369 	/* bind VF to configured Traffic Class */
3370 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3371 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3372 	fw_class = class_id;
3373 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3374 			    &fw_class);
3375 	if (ret) {
3376 		dev_err(adap->pdev_dev,
3377 			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
3378 			ret, adap->pf, vf, class_id);
3379 		return -EINVAL;
3380 	}
3381 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3382 		 adap->pf, vf, class_id);
3383 	adap->vfinfo[vf].tx_rate = max_tx_rate;
3384 	return 0;
3385 }
3386 
3387 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3388 				  u16 vlan, u8 qos, __be16 vlan_proto)
3389 {
3390 	struct port_info *pi = netdev_priv(dev);
3391 	struct adapter *adap = pi->adapter;
3392 	int ret;
3393 
3394 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3395 		return -EINVAL;
3396 
3397 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3398 		return -EPROTONOSUPPORT;
3399 
3400 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3401 	if (!ret) {
3402 		adap->vfinfo[vf].vlan = vlan;
3403 		return 0;
3404 	}
3405 
3406 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3407 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3408 	return ret;
3409 }
3410 
3411 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3412 					int link)
3413 {
3414 	struct port_info *pi = netdev_priv(dev);
3415 	struct adapter *adap = pi->adapter;
3416 	u32 param, val;
3417 	int ret = 0;
3418 
3419 	if (vf >= adap->num_vfs)
3420 		return -EINVAL;
3421 
3422 	switch (link) {
3423 	case IFLA_VF_LINK_STATE_AUTO:
3424 		val = FW_VF_LINK_STATE_AUTO;
3425 		break;
3426 
3427 	case IFLA_VF_LINK_STATE_ENABLE:
3428 		val = FW_VF_LINK_STATE_ENABLE;
3429 		break;
3430 
3431 	case IFLA_VF_LINK_STATE_DISABLE:
3432 		val = FW_VF_LINK_STATE_DISABLE;
3433 		break;
3434 
3435 	default:
3436 		return -EINVAL;
3437 	}
3438 
3439 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3440 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3441 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3442 			    &param, &val);
3443 	if (ret) {
3444 		dev_err(adap->pdev_dev,
3445 			"Error %d in setting PF %d VF %d link state\n",
3446 			ret, adap->pf, vf);
3447 		return -EINVAL;
3448 	}
3449 
3450 	adap->vfinfo[vf].link_state = link;
3451 	return ret;
3452 }
3453 #endif /* CONFIG_PCI_IOV */
3454 
3455 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3456 {
3457 	int ret;
3458 	struct sockaddr *addr = p;
3459 	struct port_info *pi = netdev_priv(dev);
3460 
3461 	if (!is_valid_ether_addr(addr->sa_data))
3462 		return -EADDRNOTAVAIL;
3463 
3464 	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3465 				    addr->sa_data, true, &pi->smt_idx);
3466 	if (ret < 0)
3467 		return ret;
3468 
3469 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3470 	return 0;
3471 }
3472 
3473 #ifdef CONFIG_NET_POLL_CONTROLLER
3474 static void cxgb_netpoll(struct net_device *dev)
3475 {
3476 	struct port_info *pi = netdev_priv(dev);
3477 	struct adapter *adap = pi->adapter;
3478 
3479 	if (adap->flags & CXGB4_USING_MSIX) {
3480 		int i;
3481 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3482 
3483 		for (i = pi->nqsets; i; i--, rx++)
3484 			t4_sge_intr_msix(0, &rx->rspq);
3485 	} else
3486 		t4_intr_handler(adap)(0, adap);
3487 }
3488 #endif
3489 
3490 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3491 {
3492 	struct port_info *pi = netdev_priv(dev);
3493 	struct adapter *adap = pi->adapter;
3494 	struct ch_sched_queue qe = { 0 };
3495 	struct ch_sched_params p = { 0 };
3496 	struct sched_class *e;
3497 	u32 req_rate;
3498 	int err = 0;
3499 
3500 	if (!can_sched(dev))
3501 		return -ENOTSUPP;
3502 
3503 	if (index < 0 || index > pi->nqsets - 1)
3504 		return -EINVAL;
3505 
3506 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3507 		dev_err(adap->pdev_dev,
3508 			"Failed to rate limit on queue %d. Link Down?\n",
3509 			index);
3510 		return -EINVAL;
3511 	}
3512 
3513 	qe.queue = index;
3514 	e = cxgb4_sched_queue_lookup(dev, &qe);
3515 	if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3516 		dev_err(adap->pdev_dev,
3517 			"Queue %u already bound to class %u of type: %u\n",
3518 			index, e->idx, e->info.u.params.level);
3519 		return -EBUSY;
3520 	}
3521 
3522 	/* Convert from Mbps to Kbps */
3523 	req_rate = rate * 1000;
3524 
3525 	/* Max rate is 100 Gbps */
3526 	if (req_rate > SCHED_MAX_RATE_KBPS) {
3527 		dev_err(adap->pdev_dev,
3528 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3529 			rate, SCHED_MAX_RATE_KBPS / 1000);
3530 		return -ERANGE;
3531 	}
3532 
3533 	/* First unbind the queue from any existing class */
3534 	memset(&qe, 0, sizeof(qe));
3535 	qe.queue = index;
3536 	qe.class = SCHED_CLS_NONE;
3537 
3538 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3539 	if (err) {
3540 		dev_err(adap->pdev_dev,
3541 			"Unbinding Queue %d on port %d fail. Err: %d\n",
3542 			index, pi->port_id, err);
3543 		return err;
3544 	}
3545 
3546 	/* Queue already unbound */
3547 	if (!req_rate)
3548 		return 0;
3549 
3550 	/* Fetch any available unused or matching scheduling class */
3551 	p.type = SCHED_CLASS_TYPE_PACKET;
3552 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3553 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3554 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3555 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3556 	p.u.params.channel  = pi->tx_chan;
3557 	p.u.params.class    = SCHED_CLS_NONE;
3558 	p.u.params.minrate  = 0;
3559 	p.u.params.maxrate  = req_rate;
3560 	p.u.params.weight   = 0;
3561 	p.u.params.pktsize  = dev->mtu;
3562 
3563 	e = cxgb4_sched_class_alloc(dev, &p);
3564 	if (!e)
3565 		return -ENOMEM;
3566 
3567 	/* Bind the queue to a scheduling class */
3568 	memset(&qe, 0, sizeof(qe));
3569 	qe.queue = index;
3570 	qe.class = e->idx;
3571 
3572 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3573 	if (err)
3574 		dev_err(adap->pdev_dev,
3575 			"Queue rate limiting failed. Err: %d\n", err);
3576 	return err;
3577 }
3578 
3579 static int cxgb_setup_tc_flower(struct net_device *dev,
3580 				struct flow_cls_offload *cls_flower)
3581 {
3582 	switch (cls_flower->command) {
3583 	case FLOW_CLS_REPLACE:
3584 		return cxgb4_tc_flower_replace(dev, cls_flower);
3585 	case FLOW_CLS_DESTROY:
3586 		return cxgb4_tc_flower_destroy(dev, cls_flower);
3587 	case FLOW_CLS_STATS:
3588 		return cxgb4_tc_flower_stats(dev, cls_flower);
3589 	default:
3590 		return -EOPNOTSUPP;
3591 	}
3592 }
3593 
3594 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3595 				 struct tc_cls_u32_offload *cls_u32)
3596 {
3597 	switch (cls_u32->command) {
3598 	case TC_CLSU32_NEW_KNODE:
3599 	case TC_CLSU32_REPLACE_KNODE:
3600 		return cxgb4_config_knode(dev, cls_u32);
3601 	case TC_CLSU32_DELETE_KNODE:
3602 		return cxgb4_delete_knode(dev, cls_u32);
3603 	default:
3604 		return -EOPNOTSUPP;
3605 	}
3606 }
3607 
3608 static int cxgb_setup_tc_matchall(struct net_device *dev,
3609 				  struct tc_cls_matchall_offload *cls_matchall,
3610 				  bool ingress)
3611 {
3612 	struct adapter *adap = netdev2adap(dev);
3613 
3614 	if (!adap->tc_matchall)
3615 		return -ENOMEM;
3616 
3617 	switch (cls_matchall->command) {
3618 	case TC_CLSMATCHALL_REPLACE:
3619 		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3620 	case TC_CLSMATCHALL_DESTROY:
3621 		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3622 	case TC_CLSMATCHALL_STATS:
3623 		if (ingress)
3624 			return cxgb4_tc_matchall_stats(dev, cls_matchall);
3625 		break;
3626 	default:
3627 		break;
3628 	}
3629 
3630 	return -EOPNOTSUPP;
3631 }
3632 
3633 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3634 					  void *type_data, void *cb_priv)
3635 {
3636 	struct net_device *dev = cb_priv;
3637 	struct port_info *pi = netdev2pinfo(dev);
3638 	struct adapter *adap = netdev2adap(dev);
3639 
3640 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3641 		dev_err(adap->pdev_dev,
3642 			"Failed to setup tc on port %d. Link Down?\n",
3643 			pi->port_id);
3644 		return -EINVAL;
3645 	}
3646 
3647 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3648 		return -EOPNOTSUPP;
3649 
3650 	switch (type) {
3651 	case TC_SETUP_CLSU32:
3652 		return cxgb_setup_tc_cls_u32(dev, type_data);
3653 	case TC_SETUP_CLSFLOWER:
3654 		return cxgb_setup_tc_flower(dev, type_data);
3655 	case TC_SETUP_CLSMATCHALL:
3656 		return cxgb_setup_tc_matchall(dev, type_data, true);
3657 	default:
3658 		return -EOPNOTSUPP;
3659 	}
3660 }
3661 
3662 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3663 					 void *type_data, void *cb_priv)
3664 {
3665 	struct net_device *dev = cb_priv;
3666 	struct port_info *pi = netdev2pinfo(dev);
3667 	struct adapter *adap = netdev2adap(dev);
3668 
3669 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3670 		dev_err(adap->pdev_dev,
3671 			"Failed to setup tc on port %d. Link Down?\n",
3672 			pi->port_id);
3673 		return -EINVAL;
3674 	}
3675 
3676 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3677 		return -EOPNOTSUPP;
3678 
3679 	switch (type) {
3680 	case TC_SETUP_CLSMATCHALL:
3681 		return cxgb_setup_tc_matchall(dev, type_data, false);
3682 	default:
3683 		break;
3684 	}
3685 
3686 	return -EOPNOTSUPP;
3687 }
3688 
3689 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3690 				struct tc_mqprio_qopt_offload *mqprio)
3691 {
3692 	struct adapter *adap = netdev2adap(dev);
3693 
3694 	if (!is_ethofld(adap) || !adap->tc_mqprio)
3695 		return -ENOMEM;
3696 
3697 	return cxgb4_setup_tc_mqprio(dev, mqprio);
3698 }
3699 
3700 static LIST_HEAD(cxgb_block_cb_list);
3701 
3702 static int cxgb_setup_tc_block(struct net_device *dev,
3703 			       struct flow_block_offload *f)
3704 {
3705 	struct port_info *pi = netdev_priv(dev);
3706 	flow_setup_cb_t *cb;
3707 	bool ingress_only;
3708 
3709 	pi->tc_block_shared = f->block_shared;
3710 	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3711 		cb = cxgb_setup_tc_block_egress_cb;
3712 		ingress_only = false;
3713 	} else {
3714 		cb = cxgb_setup_tc_block_ingress_cb;
3715 		ingress_only = true;
3716 	}
3717 
3718 	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3719 					  cb, pi, dev, ingress_only);
3720 }
3721 
3722 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3723 			 void *type_data)
3724 {
3725 	switch (type) {
3726 	case TC_SETUP_QDISC_MQPRIO:
3727 		return cxgb_setup_tc_mqprio(dev, type_data);
3728 	case TC_SETUP_BLOCK:
3729 		return cxgb_setup_tc_block(dev, type_data);
3730 	default:
3731 		return -EOPNOTSUPP;
3732 	}
3733 }
3734 
3735 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3736 				      unsigned int table, unsigned int entry,
3737 				      struct udp_tunnel_info *ti)
3738 {
3739 	struct port_info *pi = netdev_priv(netdev);
3740 	struct adapter *adapter = pi->adapter;
3741 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3742 	int ret = 0, i;
3743 
3744 	switch (ti->type) {
3745 	case UDP_TUNNEL_TYPE_VXLAN:
3746 		adapter->vxlan_port = 0;
3747 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3748 		break;
3749 	case UDP_TUNNEL_TYPE_GENEVE:
3750 		adapter->geneve_port = 0;
3751 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3752 		break;
3753 	default:
3754 		return -EINVAL;
3755 	}
3756 
3757 	/* Matchall mac entries can be deleted only after all tunnel ports
3758 	 * are brought down or removed.
3759 	 */
3760 	if (!adapter->rawf_cnt)
3761 		return 0;
3762 	for_each_port(adapter, i) {
3763 		pi = adap2pinfo(adapter, i);
3764 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3765 					   match_all_mac, match_all_mac,
3766 					   adapter->rawf_start + pi->port_id,
3767 					   1, pi->port_id, false);
3768 		if (ret < 0) {
3769 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3770 				    i);
3771 			return ret;
3772 		}
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3779 				    unsigned int table, unsigned int entry,
3780 				    struct udp_tunnel_info *ti)
3781 {
3782 	struct port_info *pi = netdev_priv(netdev);
3783 	struct adapter *adapter = pi->adapter;
3784 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3785 	int i, ret;
3786 
3787 	switch (ti->type) {
3788 	case UDP_TUNNEL_TYPE_VXLAN:
3789 		adapter->vxlan_port = ti->port;
3790 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3791 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3792 		break;
3793 	case UDP_TUNNEL_TYPE_GENEVE:
3794 		adapter->geneve_port = ti->port;
3795 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3796 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3797 		break;
3798 	default:
3799 		return -EINVAL;
3800 	}
3801 
3802 	/* Create a 'match all' mac filter entry for inner mac,
3803 	 * if raw mac interface is supported. Once the linux kernel provides
3804 	 * driver entry points for adding/deleting the inner mac addresses,
3805 	 * we will remove this 'match all' entry and fallback to adding
3806 	 * exact match filters.
3807 	 */
3808 	for_each_port(adapter, i) {
3809 		pi = adap2pinfo(adapter, i);
3810 
3811 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3812 					    match_all_mac,
3813 					    match_all_mac,
3814 					    adapter->rawf_start + pi->port_id,
3815 					    1, pi->port_id, false);
3816 		if (ret < 0) {
3817 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3818 				    be16_to_cpu(ti->port));
3819 			return ret;
3820 		}
3821 	}
3822 
3823 	return 0;
3824 }
3825 
3826 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3827 	.set_port	= cxgb_udp_tunnel_set_port,
3828 	.unset_port	= cxgb_udp_tunnel_unset_port,
3829 	.tables		= {
3830 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
3831 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3832 	},
3833 };
3834 
3835 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3836 					     struct net_device *dev,
3837 					     netdev_features_t features)
3838 {
3839 	struct port_info *pi = netdev_priv(dev);
3840 	struct adapter *adapter = pi->adapter;
3841 
3842 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3843 		return features;
3844 
3845 	/* Check if hw supports offload for this packet */
3846 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3847 		return features;
3848 
3849 	/* Offload is not supported for this encapsulated packet */
3850 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3851 }
3852 
3853 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3854 					   netdev_features_t features)
3855 {
3856 	/* Disable GRO, if RX_CSUM is disabled */
3857 	if (!(features & NETIF_F_RXCSUM))
3858 		features &= ~NETIF_F_GRO;
3859 
3860 	return features;
3861 }
3862 
3863 static const struct net_device_ops cxgb4_netdev_ops = {
3864 	.ndo_open             = cxgb_open,
3865 	.ndo_stop             = cxgb_close,
3866 	.ndo_start_xmit       = t4_start_xmit,
3867 	.ndo_select_queue     =	cxgb_select_queue,
3868 	.ndo_get_stats64      = cxgb_get_stats,
3869 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3870 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3871 	.ndo_set_features     = cxgb_set_features,
3872 	.ndo_validate_addr    = eth_validate_addr,
3873 	.ndo_do_ioctl         = cxgb_ioctl,
3874 	.ndo_change_mtu       = cxgb_change_mtu,
3875 #ifdef CONFIG_NET_POLL_CONTROLLER
3876 	.ndo_poll_controller  = cxgb_netpoll,
3877 #endif
3878 #ifdef CONFIG_CHELSIO_T4_FCOE
3879 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3880 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3881 #endif /* CONFIG_CHELSIO_T4_FCOE */
3882 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3883 	.ndo_setup_tc         = cxgb_setup_tc,
3884 	.ndo_udp_tunnel_add   = udp_tunnel_nic_add_port,
3885 	.ndo_udp_tunnel_del   = udp_tunnel_nic_del_port,
3886 	.ndo_features_check   = cxgb_features_check,
3887 	.ndo_fix_features     = cxgb_fix_features,
3888 };
3889 
3890 #ifdef CONFIG_PCI_IOV
3891 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3892 	.ndo_open               = cxgb4_mgmt_open,
3893 	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3894 	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3895 	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3896 	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3897 	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3898 	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3899 };
3900 #endif
3901 
3902 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3903 				   struct ethtool_drvinfo *info)
3904 {
3905 	struct adapter *adapter = netdev2adap(dev);
3906 
3907 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3908 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3909 		sizeof(info->bus_info));
3910 }
3911 
3912 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3913 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3914 };
3915 
3916 static void notify_fatal_err(struct work_struct *work)
3917 {
3918 	struct adapter *adap;
3919 
3920 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3921 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3922 }
3923 
3924 void t4_fatal_err(struct adapter *adap)
3925 {
3926 	int port;
3927 
3928 	if (pci_channel_offline(adap->pdev))
3929 		return;
3930 
3931 	/* Disable the SGE since ULDs are going to free resources that
3932 	 * could be exposed to the adapter.  RDMA MWs for example...
3933 	 */
3934 	t4_shutdown_adapter(adap);
3935 	for_each_port(adap, port) {
3936 		struct net_device *dev = adap->port[port];
3937 
3938 		/* If we get here in very early initialization the network
3939 		 * devices may not have been set up yet.
3940 		 */
3941 		if (!dev)
3942 			continue;
3943 
3944 		netif_tx_stop_all_queues(dev);
3945 		netif_carrier_off(dev);
3946 	}
3947 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3948 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3949 }
3950 
3951 static void setup_memwin(struct adapter *adap)
3952 {
3953 	u32 nic_win_base = t4_get_util_window(adap);
3954 
3955 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3956 }
3957 
3958 static void setup_memwin_rdma(struct adapter *adap)
3959 {
3960 	if (adap->vres.ocq.size) {
3961 		u32 start;
3962 		unsigned int sz_kb;
3963 
3964 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3965 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3966 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3967 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3968 		t4_write_reg(adap,
3969 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3970 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3971 		t4_write_reg(adap,
3972 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3973 			     adap->vres.ocq.start);
3974 		t4_read_reg(adap,
3975 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3976 	}
3977 }
3978 
3979 /* HMA Definitions */
3980 
3981 /* The maximum number of address that can be send in a single FW cmd */
3982 #define HMA_MAX_ADDR_IN_CMD	5
3983 
3984 #define HMA_PAGE_SIZE		PAGE_SIZE
3985 
3986 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3987 
3988 #define HMA_PAGE_ORDER					\
3989 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3990 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3991 
3992 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3993  * configuration(in units of MB).
3994  */
3995 #define HMA_MIN_TOTAL_SIZE	1
3996 #define HMA_MAX_TOTAL_SIZE				\
3997 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3998 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3999 
4000 static void adap_free_hma_mem(struct adapter *adapter)
4001 {
4002 	struct scatterlist *iter;
4003 	struct page *page;
4004 	int i;
4005 
4006 	if (!adapter->hma.sgt)
4007 		return;
4008 
4009 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4010 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4011 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
4012 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4013 	}
4014 
4015 	for_each_sg(adapter->hma.sgt->sgl, iter,
4016 		    adapter->hma.sgt->orig_nents, i) {
4017 		page = sg_page(iter);
4018 		if (page)
4019 			__free_pages(page, HMA_PAGE_ORDER);
4020 	}
4021 
4022 	kfree(adapter->hma.phy_addr);
4023 	sg_free_table(adapter->hma.sgt);
4024 	kfree(adapter->hma.sgt);
4025 	adapter->hma.sgt = NULL;
4026 }
4027 
4028 static int adap_config_hma(struct adapter *adapter)
4029 {
4030 	struct scatterlist *sgl, *iter;
4031 	struct sg_table *sgt;
4032 	struct page *newpage;
4033 	unsigned int i, j, k;
4034 	u32 param, hma_size;
4035 	unsigned int ncmds;
4036 	size_t page_size;
4037 	u32 page_order;
4038 	int node, ret;
4039 
4040 	/* HMA is supported only for T6+ cards.
4041 	 * Avoid initializing HMA in kdump kernels.
4042 	 */
4043 	if (is_kdump_kernel() ||
4044 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4045 		return 0;
4046 
4047 	/* Get the HMA region size required by fw */
4048 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4049 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4050 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4051 			      1, &param, &hma_size);
4052 	/* An error means card has its own memory or HMA is not supported by
4053 	 * the firmware. Return without any errors.
4054 	 */
4055 	if (ret || !hma_size)
4056 		return 0;
4057 
4058 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
4059 	    hma_size > HMA_MAX_TOTAL_SIZE) {
4060 		dev_err(adapter->pdev_dev,
4061 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
4062 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4063 		return -EINVAL;
4064 	}
4065 
4066 	page_size = HMA_PAGE_SIZE;
4067 	page_order = HMA_PAGE_ORDER;
4068 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4069 	if (unlikely(!adapter->hma.sgt)) {
4070 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4071 		return -ENOMEM;
4072 	}
4073 	sgt = adapter->hma.sgt;
4074 	/* FW returned value will be in MB's
4075 	 */
4076 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4077 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4078 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4079 		kfree(adapter->hma.sgt);
4080 		adapter->hma.sgt = NULL;
4081 		return -ENOMEM;
4082 	}
4083 
4084 	sgl = adapter->hma.sgt->sgl;
4085 	node = dev_to_node(adapter->pdev_dev);
4086 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
4087 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4088 					   __GFP_ZERO, page_order);
4089 		if (!newpage) {
4090 			dev_err(adapter->pdev_dev,
4091 				"Not enough memory for HMA page allocation\n");
4092 			ret = -ENOMEM;
4093 			goto free_hma;
4094 		}
4095 		sg_set_page(iter, newpage, page_size << page_order, 0);
4096 	}
4097 
4098 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4099 				DMA_BIDIRECTIONAL);
4100 	if (!sgt->nents) {
4101 		dev_err(adapter->pdev_dev,
4102 			"Not enough memory for HMA DMA mapping");
4103 		ret = -ENOMEM;
4104 		goto free_hma;
4105 	}
4106 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4107 
4108 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4109 					GFP_KERNEL);
4110 	if (unlikely(!adapter->hma.phy_addr))
4111 		goto free_hma;
4112 
4113 	for_each_sg(sgl, iter, sgt->nents, i) {
4114 		newpage = sg_page(iter);
4115 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
4116 	}
4117 
4118 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4119 	/* Pass on the addresses to firmware */
4120 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4121 		struct fw_hma_cmd hma_cmd;
4122 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
4123 		u8 soc = 0, eoc = 0;
4124 		u8 hma_mode = 1; /* Presently we support only Page table mode */
4125 
4126 		soc = (i == 0) ? 1 : 0;
4127 		eoc = (i == ncmds - 1) ? 1 : 0;
4128 
4129 		/* For last cmd, set naddr corresponding to remaining
4130 		 * addresses
4131 		 */
4132 		if (i == ncmds - 1) {
4133 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4134 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4135 		}
4136 		memset(&hma_cmd, 0, sizeof(hma_cmd));
4137 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4138 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4139 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4140 
4141 		hma_cmd.mode_to_pcie_params =
4142 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4143 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4144 
4145 		/* HMA cmd size specified in MB's */
4146 		hma_cmd.naddr_size =
4147 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4148 			      FW_HMA_CMD_NADDR_V(naddr));
4149 
4150 		/* Total Page size specified in units of 4K */
4151 		hma_cmd.addr_size_pkd =
4152 			htonl(FW_HMA_CMD_ADDR_SIZE_V
4153 				((page_size << page_order) >> 12));
4154 
4155 		/* Fill the 5 addresses */
4156 		for (j = 0; j < naddr; j++) {
4157 			hma_cmd.phy_address[j] =
4158 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
4159 		}
4160 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4161 				 sizeof(hma_cmd), &hma_cmd);
4162 		if (ret) {
4163 			dev_err(adapter->pdev_dev,
4164 				"HMA FW command failed with err %d\n", ret);
4165 			goto free_hma;
4166 		}
4167 	}
4168 
4169 	if (!ret)
4170 		dev_info(adapter->pdev_dev,
4171 			 "Reserved %uMB host memory for HMA\n", hma_size);
4172 	return ret;
4173 
4174 free_hma:
4175 	adap_free_hma_mem(adapter);
4176 	return ret;
4177 }
4178 
4179 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4180 {
4181 	u32 v;
4182 	int ret;
4183 
4184 	/* Now that we've successfully configured and initialized the adapter
4185 	 * can ask the Firmware what resources it has provisioned for us.
4186 	 */
4187 	ret = t4_get_pfres(adap);
4188 	if (ret) {
4189 		dev_err(adap->pdev_dev,
4190 			"Unable to retrieve resource provisioning information\n");
4191 		return ret;
4192 	}
4193 
4194 	/* get device capabilities */
4195 	memset(c, 0, sizeof(*c));
4196 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4197 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
4198 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4199 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4200 	if (ret < 0)
4201 		return ret;
4202 
4203 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4204 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4205 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4206 	if (ret < 0)
4207 		return ret;
4208 
4209 	ret = t4_config_glbl_rss(adap, adap->pf,
4210 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4211 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4212 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4213 	if (ret < 0)
4214 		return ret;
4215 
4216 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4217 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4218 			  FW_CMD_CAP_PF);
4219 	if (ret < 0)
4220 		return ret;
4221 
4222 	t4_sge_init(adap);
4223 
4224 	/* tweak some settings */
4225 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4226 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4227 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4228 	v = t4_read_reg(adap, TP_PIO_DATA_A);
4229 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4230 
4231 	/* first 4 Tx modulation queues point to consecutive Tx channels */
4232 	adap->params.tp.tx_modq_map = 0xE4;
4233 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4234 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4235 
4236 	/* associate each Tx modulation queue with consecutive Tx channels */
4237 	v = 0x84218421;
4238 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4239 			  &v, 1, TP_TX_SCHED_HDR_A);
4240 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4241 			  &v, 1, TP_TX_SCHED_FIFO_A);
4242 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4243 			  &v, 1, TP_TX_SCHED_PCMD_A);
4244 
4245 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4246 	if (is_offload(adap)) {
4247 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4248 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4249 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4250 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4251 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4252 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4253 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4254 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4256 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4257 	}
4258 
4259 	/* get basic stuff going */
4260 	return t4_early_init(adap, adap->pf);
4261 }
4262 
4263 /*
4264  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4265  */
4266 #define MAX_ATIDS 8192U
4267 
4268 /*
4269  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4270  *
4271  * If the firmware we're dealing with has Configuration File support, then
4272  * we use that to perform all configuration
4273  */
4274 
4275 /*
4276  * Tweak configuration based on module parameters, etc.  Most of these have
4277  * defaults assigned to them by Firmware Configuration Files (if we're using
4278  * them) but need to be explicitly set if we're using hard-coded
4279  * initialization.  But even in the case of using Firmware Configuration
4280  * Files, we'd like to expose the ability to change these via module
4281  * parameters so these are essentially common tweaks/settings for
4282  * Configuration Files and hard-coded initialization ...
4283  */
4284 static int adap_init0_tweaks(struct adapter *adapter)
4285 {
4286 	/*
4287 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4288 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4289 	 * 64B Cache Line Size ...
4290 	 */
4291 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4292 
4293 	/*
4294 	 * Process module parameters which affect early initialization.
4295 	 */
4296 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4297 		dev_err(&adapter->pdev->dev,
4298 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4299 			rx_dma_offset);
4300 		rx_dma_offset = 2;
4301 	}
4302 	t4_set_reg_field(adapter, SGE_CONTROL_A,
4303 			 PKTSHIFT_V(PKTSHIFT_M),
4304 			 PKTSHIFT_V(rx_dma_offset));
4305 
4306 	/*
4307 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4308 	 * adds the pseudo header itself.
4309 	 */
4310 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4311 			       CSUM_HAS_PSEUDO_HDR_F, 0);
4312 
4313 	return 0;
4314 }
4315 
4316 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4317  * unto themselves and they contain their own firmware to perform their
4318  * tasks ...
4319  */
4320 static int phy_aq1202_version(const u8 *phy_fw_data,
4321 			      size_t phy_fw_size)
4322 {
4323 	int offset;
4324 
4325 	/* At offset 0x8 you're looking for the primary image's
4326 	 * starting offset which is 3 Bytes wide
4327 	 *
4328 	 * At offset 0xa of the primary image, you look for the offset
4329 	 * of the DRAM segment which is 3 Bytes wide.
4330 	 *
4331 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4332 	 * wide
4333 	 */
4334 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
4335 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4336 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
4337 
4338 	offset = le24(phy_fw_data + 0x8) << 12;
4339 	offset = le24(phy_fw_data + offset + 0xa);
4340 	return be16(phy_fw_data + offset + 0x27e);
4341 
4342 	#undef be16
4343 	#undef le16
4344 	#undef le24
4345 }
4346 
4347 static struct info_10gbt_phy_fw {
4348 	unsigned int phy_fw_id;		/* PCI Device ID */
4349 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
4350 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4351 	int phy_flash;			/* Has FLASH for PHY Firmware */
4352 } phy_info_array[] = {
4353 	{
4354 		PHY_AQ1202_DEVICEID,
4355 		PHY_AQ1202_FIRMWARE,
4356 		phy_aq1202_version,
4357 		1,
4358 	},
4359 	{
4360 		PHY_BCM84834_DEVICEID,
4361 		PHY_BCM84834_FIRMWARE,
4362 		NULL,
4363 		0,
4364 	},
4365 	{ 0, NULL, NULL },
4366 };
4367 
4368 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4369 {
4370 	int i;
4371 
4372 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4373 		if (phy_info_array[i].phy_fw_id == devid)
4374 			return &phy_info_array[i];
4375 	}
4376 	return NULL;
4377 }
4378 
4379 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4380  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4381  * we return a negative error number.  If we transfer new firmware we return 1
4382  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4383  */
4384 static int adap_init0_phy(struct adapter *adap)
4385 {
4386 	const struct firmware *phyf;
4387 	int ret;
4388 	struct info_10gbt_phy_fw *phy_info;
4389 
4390 	/* Use the device ID to determine which PHY file to flash.
4391 	 */
4392 	phy_info = find_phy_info(adap->pdev->device);
4393 	if (!phy_info) {
4394 		dev_warn(adap->pdev_dev,
4395 			 "No PHY Firmware file found for this PHY\n");
4396 		return -EOPNOTSUPP;
4397 	}
4398 
4399 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4400 	 * use that. The adapter firmware provides us with a memory buffer
4401 	 * where we can load a PHY firmware file from the host if we want to
4402 	 * override the PHY firmware File in flash.
4403 	 */
4404 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4405 				      adap->pdev_dev);
4406 	if (ret < 0) {
4407 		/* For adapters without FLASH attached to PHY for their
4408 		 * firmware, it's obviously a fatal error if we can't get the
4409 		 * firmware to the adapter.  For adapters with PHY firmware
4410 		 * FLASH storage, it's worth a warning if we can't find the
4411 		 * PHY Firmware but we'll neuter the error ...
4412 		 */
4413 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4414 			"/lib/firmware/%s, error %d\n",
4415 			phy_info->phy_fw_file, -ret);
4416 		if (phy_info->phy_flash) {
4417 			int cur_phy_fw_ver = 0;
4418 
4419 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4420 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4421 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4422 			ret = 0;
4423 		}
4424 
4425 		return ret;
4426 	}
4427 
4428 	/* Load PHY Firmware onto adapter.
4429 	 */
4430 	spin_lock_bh(&adap->win0_lock);
4431 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4432 			     (u8 *)phyf->data, phyf->size);
4433 	spin_unlock_bh(&adap->win0_lock);
4434 	if (ret < 0)
4435 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4436 			-ret);
4437 	else if (ret > 0) {
4438 		int new_phy_fw_ver = 0;
4439 
4440 		if (phy_info->phy_fw_version)
4441 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4442 								  phyf->size);
4443 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
4444 			 "Firmware /lib/firmware/%s, version %#x\n",
4445 			 phy_info->phy_fw_file, new_phy_fw_ver);
4446 	}
4447 
4448 	release_firmware(phyf);
4449 
4450 	return ret;
4451 }
4452 
4453 /*
4454  * Attempt to initialize the adapter via a Firmware Configuration File.
4455  */
4456 static int adap_init0_config(struct adapter *adapter, int reset)
4457 {
4458 	char *fw_config_file, fw_config_file_path[256];
4459 	u32 finiver, finicsum, cfcsum, param, val;
4460 	struct fw_caps_config_cmd caps_cmd;
4461 	unsigned long mtype = 0, maddr = 0;
4462 	const struct firmware *cf;
4463 	char *config_name = NULL;
4464 	int config_issued = 0;
4465 	int ret;
4466 
4467 	/*
4468 	 * Reset device if necessary.
4469 	 */
4470 	if (reset) {
4471 		ret = t4_fw_reset(adapter, adapter->mbox,
4472 				  PIORSTMODE_F | PIORST_F);
4473 		if (ret < 0)
4474 			goto bye;
4475 	}
4476 
4477 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4478 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4479 	 * to be performed after any global adapter RESET above since some
4480 	 * PHYs only have local RAM copies of the PHY firmware.
4481 	 */
4482 	if (is_10gbt_device(adapter->pdev->device)) {
4483 		ret = adap_init0_phy(adapter);
4484 		if (ret < 0)
4485 			goto bye;
4486 	}
4487 	/*
4488 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4489 	 * then use that.  Otherwise, use the configuration file stored
4490 	 * in the adapter flash ...
4491 	 */
4492 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4493 	case CHELSIO_T4:
4494 		fw_config_file = FW4_CFNAME;
4495 		break;
4496 	case CHELSIO_T5:
4497 		fw_config_file = FW5_CFNAME;
4498 		break;
4499 	case CHELSIO_T6:
4500 		fw_config_file = FW6_CFNAME;
4501 		break;
4502 	default:
4503 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4504 		       adapter->pdev->device);
4505 		ret = -EINVAL;
4506 		goto bye;
4507 	}
4508 
4509 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4510 	if (ret < 0) {
4511 		config_name = "On FLASH";
4512 		mtype = FW_MEMTYPE_CF_FLASH;
4513 		maddr = t4_flash_cfg_addr(adapter);
4514 	} else {
4515 		u32 params[7], val[7];
4516 
4517 		sprintf(fw_config_file_path,
4518 			"/lib/firmware/%s", fw_config_file);
4519 		config_name = fw_config_file_path;
4520 
4521 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4522 			ret = -ENOMEM;
4523 		else {
4524 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4525 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4526 			ret = t4_query_params(adapter, adapter->mbox,
4527 					      adapter->pf, 0, 1, params, val);
4528 			if (ret == 0) {
4529 				/*
4530 				 * For t4_memory_rw() below addresses and
4531 				 * sizes have to be in terms of multiples of 4
4532 				 * bytes.  So, if the Configuration File isn't
4533 				 * a multiple of 4 bytes in length we'll have
4534 				 * to write that out separately since we can't
4535 				 * guarantee that the bytes following the
4536 				 * residual byte in the buffer returned by
4537 				 * request_firmware() are zeroed out ...
4538 				 */
4539 				size_t resid = cf->size & 0x3;
4540 				size_t size = cf->size & ~0x3;
4541 				__be32 *data = (__be32 *)cf->data;
4542 
4543 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4544 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4545 
4546 				spin_lock(&adapter->win0_lock);
4547 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4548 						   size, data, T4_MEMORY_WRITE);
4549 				if (ret == 0 && resid != 0) {
4550 					union {
4551 						__be32 word;
4552 						char buf[4];
4553 					} last;
4554 					int i;
4555 
4556 					last.word = data[size >> 2];
4557 					for (i = resid; i < 4; i++)
4558 						last.buf[i] = 0;
4559 					ret = t4_memory_rw(adapter, 0, mtype,
4560 							   maddr + size,
4561 							   4, &last.word,
4562 							   T4_MEMORY_WRITE);
4563 				}
4564 				spin_unlock(&adapter->win0_lock);
4565 			}
4566 		}
4567 
4568 		release_firmware(cf);
4569 		if (ret)
4570 			goto bye;
4571 	}
4572 
4573 	val = 0;
4574 
4575 	/* Ofld + Hash filter is supported. Older fw will fail this request and
4576 	 * it is fine.
4577 	 */
4578 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4579 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4580 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4581 			    1, &param, &val);
4582 
4583 	/* FW doesn't know about Hash filter + ofld support,
4584 	 * it's not a problem, don't return an error.
4585 	 */
4586 	if (ret < 0) {
4587 		dev_warn(adapter->pdev_dev,
4588 			 "Hash filter with ofld is not supported by FW\n");
4589 	}
4590 
4591 	/*
4592 	 * Issue a Capability Configuration command to the firmware to get it
4593 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4594 	 * because we want the ability to modify various features after we've
4595 	 * processed the configuration file ...
4596 	 */
4597 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4598 	caps_cmd.op_to_write =
4599 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4600 		      FW_CMD_REQUEST_F |
4601 		      FW_CMD_READ_F);
4602 	caps_cmd.cfvalid_to_len16 =
4603 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4604 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4605 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4606 		      FW_LEN16(caps_cmd));
4607 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4608 			 &caps_cmd);
4609 
4610 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4611 	 * Configuration File in FLASH), our last gasp effort is to use the
4612 	 * Firmware Configuration File which is embedded in the firmware.  A
4613 	 * very few early versions of the firmware didn't have one embedded
4614 	 * but we can ignore those.
4615 	 */
4616 	if (ret == -ENOENT) {
4617 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4618 		caps_cmd.op_to_write =
4619 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4620 					FW_CMD_REQUEST_F |
4621 					FW_CMD_READ_F);
4622 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4623 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4624 				sizeof(caps_cmd), &caps_cmd);
4625 		config_name = "Firmware Default";
4626 	}
4627 
4628 	config_issued = 1;
4629 	if (ret < 0)
4630 		goto bye;
4631 
4632 	finiver = ntohl(caps_cmd.finiver);
4633 	finicsum = ntohl(caps_cmd.finicsum);
4634 	cfcsum = ntohl(caps_cmd.cfcsum);
4635 	if (finicsum != cfcsum)
4636 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4637 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4638 			 finicsum, cfcsum);
4639 
4640 	/*
4641 	 * And now tell the firmware to use the configuration we just loaded.
4642 	 */
4643 	caps_cmd.op_to_write =
4644 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4645 		      FW_CMD_REQUEST_F |
4646 		      FW_CMD_WRITE_F);
4647 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4648 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4649 			 NULL);
4650 	if (ret < 0)
4651 		goto bye;
4652 
4653 	/*
4654 	 * Tweak configuration based on system architecture, module
4655 	 * parameters, etc.
4656 	 */
4657 	ret = adap_init0_tweaks(adapter);
4658 	if (ret < 0)
4659 		goto bye;
4660 
4661 	/* We will proceed even if HMA init fails. */
4662 	ret = adap_config_hma(adapter);
4663 	if (ret)
4664 		dev_err(adapter->pdev_dev,
4665 			"HMA configuration failed with error %d\n", ret);
4666 
4667 	if (is_t6(adapter->params.chip)) {
4668 		adap_config_hpfilter(adapter);
4669 		ret = setup_ppod_edram(adapter);
4670 		if (!ret)
4671 			dev_info(adapter->pdev_dev, "Successfully enabled "
4672 				 "ppod edram feature\n");
4673 	}
4674 
4675 	/*
4676 	 * And finally tell the firmware to initialize itself using the
4677 	 * parameters from the Configuration File.
4678 	 */
4679 	ret = t4_fw_initialize(adapter, adapter->mbox);
4680 	if (ret < 0)
4681 		goto bye;
4682 
4683 	/* Emit Firmware Configuration File information and return
4684 	 * successfully.
4685 	 */
4686 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4687 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4688 		 config_name, finiver, cfcsum);
4689 	return 0;
4690 
4691 	/*
4692 	 * Something bad happened.  Return the error ...  (If the "error"
4693 	 * is that there's no Configuration File on the adapter we don't
4694 	 * want to issue a warning since this is fairly common.)
4695 	 */
4696 bye:
4697 	if (config_issued && ret != -ENOENT)
4698 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4699 			 config_name, -ret);
4700 	return ret;
4701 }
4702 
4703 static struct fw_info fw_info_array[] = {
4704 	{
4705 		.chip = CHELSIO_T4,
4706 		.fs_name = FW4_CFNAME,
4707 		.fw_mod_name = FW4_FNAME,
4708 		.fw_hdr = {
4709 			.chip = FW_HDR_CHIP_T4,
4710 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4711 			.intfver_nic = FW_INTFVER(T4, NIC),
4712 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4713 			.intfver_ri = FW_INTFVER(T4, RI),
4714 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4715 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4716 		},
4717 	}, {
4718 		.chip = CHELSIO_T5,
4719 		.fs_name = FW5_CFNAME,
4720 		.fw_mod_name = FW5_FNAME,
4721 		.fw_hdr = {
4722 			.chip = FW_HDR_CHIP_T5,
4723 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4724 			.intfver_nic = FW_INTFVER(T5, NIC),
4725 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4726 			.intfver_ri = FW_INTFVER(T5, RI),
4727 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4728 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4729 		},
4730 	}, {
4731 		.chip = CHELSIO_T6,
4732 		.fs_name = FW6_CFNAME,
4733 		.fw_mod_name = FW6_FNAME,
4734 		.fw_hdr = {
4735 			.chip = FW_HDR_CHIP_T6,
4736 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4737 			.intfver_nic = FW_INTFVER(T6, NIC),
4738 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4739 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4740 			.intfver_ri = FW_INTFVER(T6, RI),
4741 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4742 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4743 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4744 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4745 		},
4746 	}
4747 
4748 };
4749 
4750 static struct fw_info *find_fw_info(int chip)
4751 {
4752 	int i;
4753 
4754 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4755 		if (fw_info_array[i].chip == chip)
4756 			return &fw_info_array[i];
4757 	}
4758 	return NULL;
4759 }
4760 
4761 /*
4762  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4763  */
4764 static int adap_init0(struct adapter *adap, int vpd_skip)
4765 {
4766 	struct fw_caps_config_cmd caps_cmd;
4767 	u32 params[7], val[7];
4768 	enum dev_state state;
4769 	u32 v, port_vec;
4770 	int reset = 1;
4771 	int ret;
4772 
4773 	/* Grab Firmware Device Log parameters as early as possible so we have
4774 	 * access to it for debugging, etc.
4775 	 */
4776 	ret = t4_init_devlog_params(adap);
4777 	if (ret < 0)
4778 		return ret;
4779 
4780 	/* Contact FW, advertising Master capability */
4781 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4782 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4783 	if (ret < 0) {
4784 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4785 			ret);
4786 		return ret;
4787 	}
4788 	if (ret == adap->mbox)
4789 		adap->flags |= CXGB4_MASTER_PF;
4790 
4791 	/*
4792 	 * If we're the Master PF Driver and the device is uninitialized,
4793 	 * then let's consider upgrading the firmware ...  (We always want
4794 	 * to check the firmware version number in order to A. get it for
4795 	 * later reporting and B. to warn if the currently loaded firmware
4796 	 * is excessively mismatched relative to the driver.)
4797 	 */
4798 
4799 	t4_get_version_info(adap);
4800 	ret = t4_check_fw_version(adap);
4801 	/* If firmware is too old (not supported by driver) force an update. */
4802 	if (ret)
4803 		state = DEV_STATE_UNINIT;
4804 	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4805 		struct fw_info *fw_info;
4806 		struct fw_hdr *card_fw;
4807 		const struct firmware *fw;
4808 		const u8 *fw_data = NULL;
4809 		unsigned int fw_size = 0;
4810 
4811 		/* This is the firmware whose headers the driver was compiled
4812 		 * against
4813 		 */
4814 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4815 		if (fw_info == NULL) {
4816 			dev_err(adap->pdev_dev,
4817 				"unable to get firmware info for chip %d.\n",
4818 				CHELSIO_CHIP_VERSION(adap->params.chip));
4819 			return -EINVAL;
4820 		}
4821 
4822 		/* allocate memory to read the header of the firmware on the
4823 		 * card
4824 		 */
4825 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4826 		if (!card_fw) {
4827 			ret = -ENOMEM;
4828 			goto bye;
4829 		}
4830 
4831 		/* Get FW from from /lib/firmware/ */
4832 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4833 				       adap->pdev_dev);
4834 		if (ret < 0) {
4835 			dev_err(adap->pdev_dev,
4836 				"unable to load firmware image %s, error %d\n",
4837 				fw_info->fw_mod_name, ret);
4838 		} else {
4839 			fw_data = fw->data;
4840 			fw_size = fw->size;
4841 		}
4842 
4843 		/* upgrade FW logic */
4844 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4845 				 state, &reset);
4846 
4847 		/* Cleaning up */
4848 		release_firmware(fw);
4849 		kvfree(card_fw);
4850 
4851 		if (ret < 0)
4852 			goto bye;
4853 	}
4854 
4855 	/* If the firmware is initialized already, emit a simply note to that
4856 	 * effect. Otherwise, it's time to try initializing the adapter.
4857 	 */
4858 	if (state == DEV_STATE_INIT) {
4859 		ret = adap_config_hma(adap);
4860 		if (ret)
4861 			dev_err(adap->pdev_dev,
4862 				"HMA configuration failed with error %d\n",
4863 				ret);
4864 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4865 			 "Adapter already initialized\n",
4866 			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4867 	} else {
4868 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4869 			 "Initializing adapter\n");
4870 
4871 		/* Find out whether we're dealing with a version of the
4872 		 * firmware which has configuration file support.
4873 		 */
4874 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4875 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4876 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4877 				      params, val);
4878 
4879 		/* If the firmware doesn't support Configuration Files,
4880 		 * return an error.
4881 		 */
4882 		if (ret < 0) {
4883 			dev_err(adap->pdev_dev, "firmware doesn't support "
4884 				"Firmware Configuration Files\n");
4885 			goto bye;
4886 		}
4887 
4888 		/* The firmware provides us with a memory buffer where we can
4889 		 * load a Configuration File from the host if we want to
4890 		 * override the Configuration File in flash.
4891 		 */
4892 		ret = adap_init0_config(adap, reset);
4893 		if (ret == -ENOENT) {
4894 			dev_err(adap->pdev_dev, "no Configuration File "
4895 				"present on adapter.\n");
4896 			goto bye;
4897 		}
4898 		if (ret < 0) {
4899 			dev_err(adap->pdev_dev, "could not initialize "
4900 				"adapter, error %d\n", -ret);
4901 			goto bye;
4902 		}
4903 	}
4904 
4905 	/* Now that we've successfully configured and initialized the adapter
4906 	 * (or found it already initialized), we can ask the Firmware what
4907 	 * resources it has provisioned for us.
4908 	 */
4909 	ret = t4_get_pfres(adap);
4910 	if (ret) {
4911 		dev_err(adap->pdev_dev,
4912 			"Unable to retrieve resource provisioning information\n");
4913 		goto bye;
4914 	}
4915 
4916 	/* Grab VPD parameters.  This should be done after we establish a
4917 	 * connection to the firmware since some of the VPD parameters
4918 	 * (notably the Core Clock frequency) are retrieved via requests to
4919 	 * the firmware.  On the other hand, we need these fairly early on
4920 	 * so we do this right after getting ahold of the firmware.
4921 	 *
4922 	 * We need to do this after initializing the adapter because someone
4923 	 * could have FLASHed a new VPD which won't be read by the firmware
4924 	 * until we do the RESET ...
4925 	 */
4926 	if (!vpd_skip) {
4927 		ret = t4_get_vpd_params(adap, &adap->params.vpd);
4928 		if (ret < 0)
4929 			goto bye;
4930 	}
4931 
4932 	/* Find out what ports are available to us.  Note that we need to do
4933 	 * this before calling adap_init0_no_config() since it needs nports
4934 	 * and portvec ...
4935 	 */
4936 	v =
4937 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4938 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4939 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4940 	if (ret < 0)
4941 		goto bye;
4942 
4943 	adap->params.nports = hweight32(port_vec);
4944 	adap->params.portvec = port_vec;
4945 
4946 	/* Give the SGE code a chance to pull in anything that it needs ...
4947 	 * Note that this must be called after we retrieve our VPD parameters
4948 	 * in order to know how to convert core ticks to seconds, etc.
4949 	 */
4950 	ret = t4_sge_init(adap);
4951 	if (ret < 0)
4952 		goto bye;
4953 
4954 	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4955 	 * indicates that the Firmware and Hardware support this.
4956 	 */
4957 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4958 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4959 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4960 			      1, params, val);
4961 
4962 	if (!ret) {
4963 		adap->sge.dbqtimer_tick = val[0];
4964 		ret = t4_read_sge_dbqtimers(adap,
4965 					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4966 					    adap->sge.dbqtimer_val);
4967 	}
4968 
4969 	if (!ret)
4970 		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4971 
4972 	if (is_bypass_device(adap->pdev->device))
4973 		adap->params.bypass = 1;
4974 
4975 	/*
4976 	 * Grab some of our basic fundamental operating parameters.
4977 	 */
4978 	params[0] = FW_PARAM_PFVF(EQ_START);
4979 	params[1] = FW_PARAM_PFVF(L2T_START);
4980 	params[2] = FW_PARAM_PFVF(L2T_END);
4981 	params[3] = FW_PARAM_PFVF(FILTER_START);
4982 	params[4] = FW_PARAM_PFVF(FILTER_END);
4983 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4984 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4985 	if (ret < 0)
4986 		goto bye;
4987 	adap->sge.egr_start = val[0];
4988 	adap->l2t_start = val[1];
4989 	adap->l2t_end = val[2];
4990 	adap->tids.ftid_base = val[3];
4991 	adap->tids.nftids = val[4] - val[3] + 1;
4992 	adap->sge.ingr_start = val[5];
4993 
4994 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4995 		params[0] = FW_PARAM_PFVF(HPFILTER_START);
4996 		params[1] = FW_PARAM_PFVF(HPFILTER_END);
4997 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4998 				      params, val);
4999 		if (ret < 0)
5000 			goto bye;
5001 
5002 		adap->tids.hpftid_base = val[0];
5003 		adap->tids.nhpftids = val[1] - val[0] + 1;
5004 
5005 		/* Read the raw mps entries. In T6, the last 2 tcam entries
5006 		 * are reserved for raw mac addresses (rawf = 2, one per port).
5007 		 */
5008 		params[0] = FW_PARAM_PFVF(RAWF_START);
5009 		params[1] = FW_PARAM_PFVF(RAWF_END);
5010 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5011 				      params, val);
5012 		if (ret == 0) {
5013 			adap->rawf_start = val[0];
5014 			adap->rawf_cnt = val[1] - val[0] + 1;
5015 		}
5016 
5017 		adap->tids.tid_base =
5018 			t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5019 	}
5020 
5021 	/* qids (ingress/egress) returned from firmware can be anywhere
5022 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5023 	 * Hence driver needs to allocate memory for this range to
5024 	 * store the queue info. Get the highest IQFLINT/EQ index returned
5025 	 * in FW_EQ_*_CMD.alloc command.
5026 	 */
5027 	params[0] = FW_PARAM_PFVF(EQ_END);
5028 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
5029 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5030 	if (ret < 0)
5031 		goto bye;
5032 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5033 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5034 
5035 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5036 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
5037 	if (!adap->sge.egr_map) {
5038 		ret = -ENOMEM;
5039 		goto bye;
5040 	}
5041 
5042 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5043 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5044 	if (!adap->sge.ingr_map) {
5045 		ret = -ENOMEM;
5046 		goto bye;
5047 	}
5048 
5049 	/* Allocate the memory for the vaious egress queue bitmaps
5050 	 * ie starving_fl, txq_maperr and blocked_fl.
5051 	 */
5052 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5053 					sizeof(long), GFP_KERNEL);
5054 	if (!adap->sge.starving_fl) {
5055 		ret = -ENOMEM;
5056 		goto bye;
5057 	}
5058 
5059 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5060 				       sizeof(long), GFP_KERNEL);
5061 	if (!adap->sge.txq_maperr) {
5062 		ret = -ENOMEM;
5063 		goto bye;
5064 	}
5065 
5066 #ifdef CONFIG_DEBUG_FS
5067 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5068 				       sizeof(long), GFP_KERNEL);
5069 	if (!adap->sge.blocked_fl) {
5070 		ret = -ENOMEM;
5071 		goto bye;
5072 	}
5073 #endif
5074 
5075 	params[0] = FW_PARAM_PFVF(CLIP_START);
5076 	params[1] = FW_PARAM_PFVF(CLIP_END);
5077 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5078 	if (ret < 0)
5079 		goto bye;
5080 	adap->clipt_start = val[0];
5081 	adap->clipt_end = val[1];
5082 
5083 	/* Get the supported number of traffic classes */
5084 	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5085 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5086 	if (ret < 0) {
5087 		/* We couldn't retrieve the number of Traffic Classes
5088 		 * supported by the hardware/firmware. So we hard
5089 		 * code it here.
5090 		 */
5091 		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5092 	} else {
5093 		adap->params.nsched_cls = val[0];
5094 	}
5095 
5096 	/* query params related to active filter region */
5097 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5098 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5099 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5100 	/* If Active filter size is set we enable establishing
5101 	 * offload connection through firmware work request
5102 	 */
5103 	if ((val[0] != val[1]) && (ret >= 0)) {
5104 		adap->flags |= CXGB4_FW_OFLD_CONN;
5105 		adap->tids.aftid_base = val[0];
5106 		adap->tids.aftid_end = val[1];
5107 	}
5108 
5109 	/* If we're running on newer firmware, let it know that we're
5110 	 * prepared to deal with encapsulated CPL messages.  Older
5111 	 * firmware won't understand this and we'll just get
5112 	 * unencapsulated messages ...
5113 	 */
5114 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5115 	val[0] = 1;
5116 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5117 
5118 	/*
5119 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5120 	 * capability.  Earlier versions of the firmware didn't have the
5121 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5122 	 * permission to use ULPTX MEMWRITE DSGL.
5123 	 */
5124 	if (is_t4(adap->params.chip)) {
5125 		adap->params.ulptx_memwrite_dsgl = false;
5126 	} else {
5127 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5128 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5129 				      1, params, val);
5130 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5131 	}
5132 
5133 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5134 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5135 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5136 			      1, params, val);
5137 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5138 
5139 	/* See if FW supports FW_FILTER2 work request */
5140 	if (is_t4(adap->params.chip)) {
5141 		adap->params.filter2_wr_support = 0;
5142 	} else {
5143 		params[0] = FW_PARAM_DEV(FILTER2_WR);
5144 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5145 				      1, params, val);
5146 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5147 	}
5148 
5149 	/* Check if FW supports returning vin and smt index.
5150 	 * If this is not supported, driver will interpret
5151 	 * these values from viid.
5152 	 */
5153 	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5154 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5155 			      1, params, val);
5156 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5157 
5158 	/*
5159 	 * Get device capabilities so we can determine what resources we need
5160 	 * to manage.
5161 	 */
5162 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5163 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5164 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
5165 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5166 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5167 			 &caps_cmd);
5168 	if (ret < 0)
5169 		goto bye;
5170 
5171 	/* hash filter has some mandatory register settings to be tested and for
5172 	 * that it needs to test whether offload is enabled or not, hence
5173 	 * checking and setting it here.
5174 	 */
5175 	if (caps_cmd.ofldcaps)
5176 		adap->params.offload = 1;
5177 
5178 	if (caps_cmd.ofldcaps ||
5179 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5180 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5181 		/* query offload-related parameters */
5182 		params[0] = FW_PARAM_DEV(NTID);
5183 		params[1] = FW_PARAM_PFVF(SERVER_START);
5184 		params[2] = FW_PARAM_PFVF(SERVER_END);
5185 		params[3] = FW_PARAM_PFVF(TDDP_START);
5186 		params[4] = FW_PARAM_PFVF(TDDP_END);
5187 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5188 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5189 				      params, val);
5190 		if (ret < 0)
5191 			goto bye;
5192 		adap->tids.ntids = val[0];
5193 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5194 		adap->tids.stid_base = val[1];
5195 		adap->tids.nstids = val[2] - val[1] + 1;
5196 		/*
5197 		 * Setup server filter region. Divide the available filter
5198 		 * region into two parts. Regular filters get 1/3rd and server
5199 		 * filters get 2/3rd part. This is only enabled if workarond
5200 		 * path is enabled.
5201 		 * 1. For regular filters.
5202 		 * 2. Server filter: This are special filters which are used
5203 		 * to redirect SYN packets to offload queue.
5204 		 */
5205 		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5206 			adap->tids.sftid_base = adap->tids.ftid_base +
5207 					DIV_ROUND_UP(adap->tids.nftids, 3);
5208 			adap->tids.nsftids = adap->tids.nftids -
5209 					 DIV_ROUND_UP(adap->tids.nftids, 3);
5210 			adap->tids.nftids = adap->tids.sftid_base -
5211 						adap->tids.ftid_base;
5212 		}
5213 		adap->vres.ddp.start = val[3];
5214 		adap->vres.ddp.size = val[4] - val[3] + 1;
5215 		adap->params.ofldq_wr_cred = val[5];
5216 
5217 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5218 			init_hash_filter(adap);
5219 		} else {
5220 			adap->num_ofld_uld += 1;
5221 		}
5222 
5223 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5224 			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5225 			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5226 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5227 					      params, val);
5228 			if (!ret) {
5229 				adap->tids.eotid_base = val[0];
5230 				adap->tids.neotids = min_t(u32, MAX_ATIDS,
5231 							   val[1] - val[0] + 1);
5232 				adap->params.ethofld = 1;
5233 			}
5234 		}
5235 	}
5236 	if (caps_cmd.rdmacaps) {
5237 		params[0] = FW_PARAM_PFVF(STAG_START);
5238 		params[1] = FW_PARAM_PFVF(STAG_END);
5239 		params[2] = FW_PARAM_PFVF(RQ_START);
5240 		params[3] = FW_PARAM_PFVF(RQ_END);
5241 		params[4] = FW_PARAM_PFVF(PBL_START);
5242 		params[5] = FW_PARAM_PFVF(PBL_END);
5243 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5244 				      params, val);
5245 		if (ret < 0)
5246 			goto bye;
5247 		adap->vres.stag.start = val[0];
5248 		adap->vres.stag.size = val[1] - val[0] + 1;
5249 		adap->vres.rq.start = val[2];
5250 		adap->vres.rq.size = val[3] - val[2] + 1;
5251 		adap->vres.pbl.start = val[4];
5252 		adap->vres.pbl.size = val[5] - val[4] + 1;
5253 
5254 		params[0] = FW_PARAM_PFVF(SRQ_START);
5255 		params[1] = FW_PARAM_PFVF(SRQ_END);
5256 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5257 				      params, val);
5258 		if (!ret) {
5259 			adap->vres.srq.start = val[0];
5260 			adap->vres.srq.size = val[1] - val[0] + 1;
5261 		}
5262 		if (adap->vres.srq.size) {
5263 			adap->srq = t4_init_srq(adap->vres.srq.size);
5264 			if (!adap->srq)
5265 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5266 		}
5267 
5268 		params[0] = FW_PARAM_PFVF(SQRQ_START);
5269 		params[1] = FW_PARAM_PFVF(SQRQ_END);
5270 		params[2] = FW_PARAM_PFVF(CQ_START);
5271 		params[3] = FW_PARAM_PFVF(CQ_END);
5272 		params[4] = FW_PARAM_PFVF(OCQ_START);
5273 		params[5] = FW_PARAM_PFVF(OCQ_END);
5274 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5275 				      val);
5276 		if (ret < 0)
5277 			goto bye;
5278 		adap->vres.qp.start = val[0];
5279 		adap->vres.qp.size = val[1] - val[0] + 1;
5280 		adap->vres.cq.start = val[2];
5281 		adap->vres.cq.size = val[3] - val[2] + 1;
5282 		adap->vres.ocq.start = val[4];
5283 		adap->vres.ocq.size = val[5] - val[4] + 1;
5284 
5285 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5286 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5287 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5288 				      val);
5289 		if (ret < 0) {
5290 			adap->params.max_ordird_qp = 8;
5291 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5292 			ret = 0;
5293 		} else {
5294 			adap->params.max_ordird_qp = val[0];
5295 			adap->params.max_ird_adapter = val[1];
5296 		}
5297 		dev_info(adap->pdev_dev,
5298 			 "max_ordird_qp %d max_ird_adapter %d\n",
5299 			 adap->params.max_ordird_qp,
5300 			 adap->params.max_ird_adapter);
5301 
5302 		/* Enable write_with_immediate if FW supports it */
5303 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5304 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5305 				      val);
5306 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5307 
5308 		/* Enable write_cmpl if FW supports it */
5309 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5310 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5311 				      val);
5312 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5313 		adap->num_ofld_uld += 2;
5314 	}
5315 	if (caps_cmd.iscsicaps) {
5316 		params[0] = FW_PARAM_PFVF(ISCSI_START);
5317 		params[1] = FW_PARAM_PFVF(ISCSI_END);
5318 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5319 				      params, val);
5320 		if (ret < 0)
5321 			goto bye;
5322 		adap->vres.iscsi.start = val[0];
5323 		adap->vres.iscsi.size = val[1] - val[0] + 1;
5324 		if (is_t6(adap->params.chip)) {
5325 			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5326 			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5327 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5328 					      params, val);
5329 			if (!ret) {
5330 				adap->vres.ppod_edram.start = val[0];
5331 				adap->vres.ppod_edram.size =
5332 					val[1] - val[0] + 1;
5333 
5334 				dev_info(adap->pdev_dev,
5335 					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5336 					 val[0], val[1],
5337 					 adap->vres.ppod_edram.size);
5338 			}
5339 		}
5340 		/* LIO target and cxgb4i initiaitor */
5341 		adap->num_ofld_uld += 2;
5342 	}
5343 	if (caps_cmd.cryptocaps) {
5344 		if (ntohs(caps_cmd.cryptocaps) &
5345 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5346 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5347 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5348 					      2, params, val);
5349 			if (ret < 0) {
5350 				if (ret != -EINVAL)
5351 					goto bye;
5352 			} else {
5353 				adap->vres.ncrypto_fc = val[0];
5354 			}
5355 			adap->num_ofld_uld += 1;
5356 		}
5357 		if (ntohs(caps_cmd.cryptocaps) &
5358 		    FW_CAPS_CONFIG_TLS_INLINE) {
5359 			params[0] = FW_PARAM_PFVF(TLS_START);
5360 			params[1] = FW_PARAM_PFVF(TLS_END);
5361 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5362 					      2, params, val);
5363 			if (ret < 0)
5364 				goto bye;
5365 			adap->vres.key.start = val[0];
5366 			adap->vres.key.size = val[1] - val[0] + 1;
5367 			adap->num_uld += 1;
5368 		}
5369 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5370 	}
5371 
5372 	/* The MTU/MSS Table is initialized by now, so load their values.  If
5373 	 * we're initializing the adapter, then we'll make any modifications
5374 	 * we want to the MTU/MSS Table and also initialize the congestion
5375 	 * parameters.
5376 	 */
5377 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5378 	if (state != DEV_STATE_INIT) {
5379 		int i;
5380 
5381 		/* The default MTU Table contains values 1492 and 1500.
5382 		 * However, for TCP, it's better to have two values which are
5383 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5384 		 * This allows us to have a TCP Data Payload which is a
5385 		 * multiple of 8 regardless of what combination of TCP Options
5386 		 * are in use (always a multiple of 4 bytes) which is
5387 		 * important for performance reasons.  For instance, if no
5388 		 * options are in use, then we have a 20-byte IP header and a
5389 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5390 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5391 		 * which is not a multiple of 8.  So using an MSS of 1488 in
5392 		 * this case results in a TCP Data Payload of 1448 bytes which
5393 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5394 		 * Stamps have been negotiated, then an MTU of 1500 bytes
5395 		 * results in a TCP Data Payload of 1448 bytes which, as
5396 		 * above, is a multiple of 8 bytes ...
5397 		 */
5398 		for (i = 0; i < NMTUS; i++)
5399 			if (adap->params.mtus[i] == 1492) {
5400 				adap->params.mtus[i] = 1488;
5401 				break;
5402 			}
5403 
5404 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5405 			     adap->params.b_wnd);
5406 	}
5407 	t4_init_sge_params(adap);
5408 	adap->flags |= CXGB4_FW_OK;
5409 	t4_init_tp_params(adap, true);
5410 	return 0;
5411 
5412 	/*
5413 	 * Something bad happened.  If a command timed out or failed with EIO
5414 	 * FW does not operate within its spec or something catastrophic
5415 	 * happened to HW/FW, stop issuing commands.
5416 	 */
5417 bye:
5418 	adap_free_hma_mem(adap);
5419 	kfree(adap->sge.egr_map);
5420 	kfree(adap->sge.ingr_map);
5421 	kfree(adap->sge.starving_fl);
5422 	kfree(adap->sge.txq_maperr);
5423 #ifdef CONFIG_DEBUG_FS
5424 	kfree(adap->sge.blocked_fl);
5425 #endif
5426 	if (ret != -ETIMEDOUT && ret != -EIO)
5427 		t4_fw_bye(adap, adap->mbox);
5428 	return ret;
5429 }
5430 
5431 /* EEH callbacks */
5432 
5433 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5434 					 pci_channel_state_t state)
5435 {
5436 	int i;
5437 	struct adapter *adap = pci_get_drvdata(pdev);
5438 
5439 	if (!adap)
5440 		goto out;
5441 
5442 	rtnl_lock();
5443 	adap->flags &= ~CXGB4_FW_OK;
5444 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5445 	spin_lock(&adap->stats_lock);
5446 	for_each_port(adap, i) {
5447 		struct net_device *dev = adap->port[i];
5448 		if (dev) {
5449 			netif_device_detach(dev);
5450 			netif_carrier_off(dev);
5451 		}
5452 	}
5453 	spin_unlock(&adap->stats_lock);
5454 	disable_interrupts(adap);
5455 	if (adap->flags & CXGB4_FULL_INIT_DONE)
5456 		cxgb_down(adap);
5457 	rtnl_unlock();
5458 	if ((adap->flags & CXGB4_DEV_ENABLED)) {
5459 		pci_disable_device(pdev);
5460 		adap->flags &= ~CXGB4_DEV_ENABLED;
5461 	}
5462 out:	return state == pci_channel_io_perm_failure ?
5463 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5464 }
5465 
5466 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5467 {
5468 	int i, ret;
5469 	struct fw_caps_config_cmd c;
5470 	struct adapter *adap = pci_get_drvdata(pdev);
5471 
5472 	if (!adap) {
5473 		pci_restore_state(pdev);
5474 		pci_save_state(pdev);
5475 		return PCI_ERS_RESULT_RECOVERED;
5476 	}
5477 
5478 	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5479 		if (pci_enable_device(pdev)) {
5480 			dev_err(&pdev->dev, "Cannot reenable PCI "
5481 					    "device after reset\n");
5482 			return PCI_ERS_RESULT_DISCONNECT;
5483 		}
5484 		adap->flags |= CXGB4_DEV_ENABLED;
5485 	}
5486 
5487 	pci_set_master(pdev);
5488 	pci_restore_state(pdev);
5489 	pci_save_state(pdev);
5490 
5491 	if (t4_wait_dev_ready(adap->regs) < 0)
5492 		return PCI_ERS_RESULT_DISCONNECT;
5493 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5494 		return PCI_ERS_RESULT_DISCONNECT;
5495 	adap->flags |= CXGB4_FW_OK;
5496 	if (adap_init1(adap, &c))
5497 		return PCI_ERS_RESULT_DISCONNECT;
5498 
5499 	for_each_port(adap, i) {
5500 		struct port_info *pi = adap2pinfo(adap, i);
5501 		u8 vivld = 0, vin = 0;
5502 
5503 		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5504 				  NULL, NULL, &vivld, &vin);
5505 		if (ret < 0)
5506 			return PCI_ERS_RESULT_DISCONNECT;
5507 		pi->viid = ret;
5508 		pi->xact_addr_filt = -1;
5509 		/* If fw supports returning the VIN as part of FW_VI_CMD,
5510 		 * save the returned values.
5511 		 */
5512 		if (adap->params.viid_smt_extn_support) {
5513 			pi->vivld = vivld;
5514 			pi->vin = vin;
5515 		} else {
5516 			/* Retrieve the values from VIID */
5517 			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5518 			pi->vin = FW_VIID_VIN_G(pi->viid);
5519 		}
5520 	}
5521 
5522 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5523 		     adap->params.b_wnd);
5524 	setup_memwin(adap);
5525 	if (cxgb_up(adap))
5526 		return PCI_ERS_RESULT_DISCONNECT;
5527 	return PCI_ERS_RESULT_RECOVERED;
5528 }
5529 
5530 static void eeh_resume(struct pci_dev *pdev)
5531 {
5532 	int i;
5533 	struct adapter *adap = pci_get_drvdata(pdev);
5534 
5535 	if (!adap)
5536 		return;
5537 
5538 	rtnl_lock();
5539 	for_each_port(adap, i) {
5540 		struct net_device *dev = adap->port[i];
5541 		if (dev) {
5542 			if (netif_running(dev)) {
5543 				link_start(dev);
5544 				cxgb_set_rxmode(dev);
5545 			}
5546 			netif_device_attach(dev);
5547 		}
5548 	}
5549 	rtnl_unlock();
5550 }
5551 
5552 static void eeh_reset_prepare(struct pci_dev *pdev)
5553 {
5554 	struct adapter *adapter = pci_get_drvdata(pdev);
5555 	int i;
5556 
5557 	if (adapter->pf != 4)
5558 		return;
5559 
5560 	adapter->flags &= ~CXGB4_FW_OK;
5561 
5562 	notify_ulds(adapter, CXGB4_STATE_DOWN);
5563 
5564 	for_each_port(adapter, i)
5565 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5566 			cxgb_close(adapter->port[i]);
5567 
5568 	disable_interrupts(adapter);
5569 	cxgb4_free_mps_ref_entries(adapter);
5570 
5571 	adap_free_hma_mem(adapter);
5572 
5573 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
5574 		cxgb_down(adapter);
5575 }
5576 
5577 static void eeh_reset_done(struct pci_dev *pdev)
5578 {
5579 	struct adapter *adapter = pci_get_drvdata(pdev);
5580 	int err, i;
5581 
5582 	if (adapter->pf != 4)
5583 		return;
5584 
5585 	err = t4_wait_dev_ready(adapter->regs);
5586 	if (err < 0) {
5587 		dev_err(adapter->pdev_dev,
5588 			"Device not ready, err %d", err);
5589 		return;
5590 	}
5591 
5592 	setup_memwin(adapter);
5593 
5594 	err = adap_init0(adapter, 1);
5595 	if (err) {
5596 		dev_err(adapter->pdev_dev,
5597 			"Adapter init failed, err %d", err);
5598 		return;
5599 	}
5600 
5601 	setup_memwin_rdma(adapter);
5602 
5603 	if (adapter->flags & CXGB4_FW_OK) {
5604 		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5605 		if (err) {
5606 			dev_err(adapter->pdev_dev,
5607 				"Port init failed, err %d", err);
5608 			return;
5609 		}
5610 	}
5611 
5612 	err = cfg_queues(adapter);
5613 	if (err) {
5614 		dev_err(adapter->pdev_dev,
5615 			"Config queues failed, err %d", err);
5616 		return;
5617 	}
5618 
5619 	cxgb4_init_mps_ref_entries(adapter);
5620 
5621 	err = setup_fw_sge_queues(adapter);
5622 	if (err) {
5623 		dev_err(adapter->pdev_dev,
5624 			"FW sge queue allocation failed, err %d", err);
5625 		return;
5626 	}
5627 
5628 	for_each_port(adapter, i)
5629 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5630 			cxgb_open(adapter->port[i]);
5631 }
5632 
5633 static const struct pci_error_handlers cxgb4_eeh = {
5634 	.error_detected = eeh_err_detected,
5635 	.slot_reset     = eeh_slot_reset,
5636 	.resume         = eeh_resume,
5637 	.reset_prepare  = eeh_reset_prepare,
5638 	.reset_done     = eeh_reset_done,
5639 };
5640 
5641 /* Return true if the Link Configuration supports "High Speeds" (those greater
5642  * than 1Gb/s).
5643  */
5644 static inline bool is_x_10g_port(const struct link_config *lc)
5645 {
5646 	unsigned int speeds, high_speeds;
5647 
5648 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5649 	high_speeds = speeds &
5650 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5651 
5652 	return high_speeds != 0;
5653 }
5654 
5655 /* Perform default configuration of DMA queues depending on the number and type
5656  * of ports we found and the number of available CPUs.  Most settings can be
5657  * modified by the admin prior to actual use.
5658  */
5659 static int cfg_queues(struct adapter *adap)
5660 {
5661 	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5662 	u32 ncpus = num_online_cpus();
5663 	u32 niqflint, neq, num_ulds;
5664 	struct sge *s = &adap->sge;
5665 	u32 i, n10g = 0, qidx = 0;
5666 	u32 q10g = 0, q1g;
5667 
5668 	/* Reduce memory usage in kdump environment, disable all offload. */
5669 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5670 		adap->params.offload = 0;
5671 		adap->params.crypto = 0;
5672 		adap->params.ethofld = 0;
5673 	}
5674 
5675 	/* Calculate the number of Ethernet Queue Sets available based on
5676 	 * resources provisioned for us.  We always have an Asynchronous
5677 	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5678 	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5679 	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5680 	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5681 	 *
5682 	 * Note that we should also take into account all of the various
5683 	 * Offload Queues.  But, in any situation where we're operating in
5684 	 * a Resource Constrained Provisioning environment, doing any Offload
5685 	 * at all is problematic ...
5686 	 */
5687 	niqflint = adap->params.pfres.niqflint - 1;
5688 	if (!(adap->flags & CXGB4_USING_MSIX))
5689 		niqflint--;
5690 	neq = adap->params.pfres.neq / 2;
5691 	avail_qsets = min(niqflint, neq);
5692 
5693 	if (avail_qsets < adap->params.nports) {
5694 		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5695 			avail_qsets, adap->params.nports);
5696 		return -ENOMEM;
5697 	}
5698 
5699 	/* Count the number of 10Gb/s or better ports */
5700 	for_each_port(adap, i)
5701 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5702 
5703 	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5704 
5705 	/* We default to 1 queue per non-10G port and up to # of cores queues
5706 	 * per 10G port.
5707 	 */
5708 	if (n10g)
5709 		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5710 
5711 #ifdef CONFIG_CHELSIO_T4_DCB
5712 	/* For Data Center Bridging support we need to be able to support up
5713 	 * to 8 Traffic Priorities; each of which will be assigned to its
5714 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5715 	 */
5716 	q1g = 8;
5717 	if (adap->params.nports * 8 > avail_eth_qsets) {
5718 		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5719 			avail_eth_qsets, adap->params.nports * 8);
5720 		return -ENOMEM;
5721 	}
5722 
5723 	if (adap->params.nports * ncpus < avail_eth_qsets)
5724 		q10g = max(8U, ncpus);
5725 	else
5726 		q10g = max(8U, q10g);
5727 
5728 	while ((q10g * n10g) >
5729 	       (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5730 		q10g--;
5731 
5732 #else /* !CONFIG_CHELSIO_T4_DCB */
5733 	q1g = 1;
5734 	q10g = min(q10g, ncpus);
5735 #endif /* !CONFIG_CHELSIO_T4_DCB */
5736 	if (is_kdump_kernel()) {
5737 		q10g = 1;
5738 		q1g = 1;
5739 	}
5740 
5741 	for_each_port(adap, i) {
5742 		struct port_info *pi = adap2pinfo(adap, i);
5743 
5744 		pi->first_qset = qidx;
5745 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5746 		qidx += pi->nqsets;
5747 	}
5748 
5749 	s->ethqsets = qidx;
5750 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5751 	avail_qsets -= qidx;
5752 
5753 	if (is_uld(adap)) {
5754 		/* For offload we use 1 queue/channel if all ports are up to 1G,
5755 		 * otherwise we divide all available queues amongst the channels
5756 		 * capped by the number of available cores.
5757 		 */
5758 		num_ulds = adap->num_uld + adap->num_ofld_uld;
5759 		i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5760 		avail_uld_qsets = roundup(i, adap->params.nports);
5761 		if (avail_qsets < num_ulds * adap->params.nports) {
5762 			adap->params.offload = 0;
5763 			adap->params.crypto = 0;
5764 			s->ofldqsets = 0;
5765 		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5766 			s->ofldqsets = adap->params.nports;
5767 		} else {
5768 			s->ofldqsets = avail_uld_qsets;
5769 		}
5770 
5771 		avail_qsets -= num_ulds * s->ofldqsets;
5772 	}
5773 
5774 	/* ETHOFLD Queues used for QoS offload should follow same
5775 	 * allocation scheme as normal Ethernet Queues.
5776 	 */
5777 	if (is_ethofld(adap)) {
5778 		if (avail_qsets < s->max_ethqsets) {
5779 			adap->params.ethofld = 0;
5780 			s->eoqsets = 0;
5781 		} else {
5782 			s->eoqsets = s->max_ethqsets;
5783 		}
5784 		avail_qsets -= s->eoqsets;
5785 	}
5786 
5787 	/* Mirror queues must follow same scheme as normal Ethernet
5788 	 * Queues, when there are enough queues available. Otherwise,
5789 	 * allocate at least 1 queue per port. If even 1 queue is not
5790 	 * available, then disable mirror queues support.
5791 	 */
5792 	if (avail_qsets >= s->max_ethqsets)
5793 		s->mirrorqsets = s->max_ethqsets;
5794 	else if (avail_qsets >= adap->params.nports)
5795 		s->mirrorqsets = adap->params.nports;
5796 	else
5797 		s->mirrorqsets = 0;
5798 	avail_qsets -= s->mirrorqsets;
5799 
5800 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5801 		struct sge_eth_rxq *r = &s->ethrxq[i];
5802 
5803 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5804 		r->fl.size = 72;
5805 	}
5806 
5807 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5808 		s->ethtxq[i].q.size = 1024;
5809 
5810 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5811 		s->ctrlq[i].q.size = 512;
5812 
5813 	if (!is_t4(adap->params.chip))
5814 		s->ptptxq.q.size = 8;
5815 
5816 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5817 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5818 
5819 	return 0;
5820 }
5821 
5822 /*
5823  * Reduce the number of Ethernet queues across all ports to at most n.
5824  * n provides at least one queue per port.
5825  */
5826 static void reduce_ethqs(struct adapter *adap, int n)
5827 {
5828 	int i;
5829 	struct port_info *pi;
5830 
5831 	while (n < adap->sge.ethqsets)
5832 		for_each_port(adap, i) {
5833 			pi = adap2pinfo(adap, i);
5834 			if (pi->nqsets > 1) {
5835 				pi->nqsets--;
5836 				adap->sge.ethqsets--;
5837 				if (adap->sge.ethqsets <= n)
5838 					break;
5839 			}
5840 		}
5841 
5842 	n = 0;
5843 	for_each_port(adap, i) {
5844 		pi = adap2pinfo(adap, i);
5845 		pi->first_qset = n;
5846 		n += pi->nqsets;
5847 	}
5848 }
5849 
5850 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5851 {
5852 	struct msix_info *msix_info;
5853 
5854 	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5855 	if (!msix_info)
5856 		return -ENOMEM;
5857 
5858 	adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5859 					    sizeof(long), GFP_KERNEL);
5860 	if (!adap->msix_bmap.msix_bmap) {
5861 		kfree(msix_info);
5862 		return -ENOMEM;
5863 	}
5864 
5865 	spin_lock_init(&adap->msix_bmap.lock);
5866 	adap->msix_bmap.mapsize = num_vec;
5867 
5868 	adap->msix_info = msix_info;
5869 	return 0;
5870 }
5871 
5872 static void free_msix_info(struct adapter *adap)
5873 {
5874 	kfree(adap->msix_bmap.msix_bmap);
5875 	kfree(adap->msix_info);
5876 }
5877 
5878 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5879 {
5880 	struct msix_bmap *bmap = &adap->msix_bmap;
5881 	unsigned int msix_idx;
5882 	unsigned long flags;
5883 
5884 	spin_lock_irqsave(&bmap->lock, flags);
5885 	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5886 	if (msix_idx < bmap->mapsize) {
5887 		__set_bit(msix_idx, bmap->msix_bmap);
5888 	} else {
5889 		spin_unlock_irqrestore(&bmap->lock, flags);
5890 		return -ENOSPC;
5891 	}
5892 
5893 	spin_unlock_irqrestore(&bmap->lock, flags);
5894 	return msix_idx;
5895 }
5896 
5897 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5898 				 unsigned int msix_idx)
5899 {
5900 	struct msix_bmap *bmap = &adap->msix_bmap;
5901 	unsigned long flags;
5902 
5903 	spin_lock_irqsave(&bmap->lock, flags);
5904 	__clear_bit(msix_idx, bmap->msix_bmap);
5905 	spin_unlock_irqrestore(&bmap->lock, flags);
5906 }
5907 
5908 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5909 #define EXTRA_VECS 2
5910 
5911 static int enable_msix(struct adapter *adap)
5912 {
5913 	u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5914 	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5915 	u8 num_uld = 0, nchan = adap->params.nports;
5916 	u32 i, want, need, num_vec;
5917 	struct sge *s = &adap->sge;
5918 	struct msix_entry *entries;
5919 	struct port_info *pi;
5920 	int allocated, ret;
5921 
5922 	want = s->max_ethqsets;
5923 #ifdef CONFIG_CHELSIO_T4_DCB
5924 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5925 	 * each port.
5926 	 */
5927 	need = 8 * nchan;
5928 #else
5929 	need = nchan;
5930 #endif
5931 	eth_need = need;
5932 	if (is_uld(adap)) {
5933 		num_uld = adap->num_ofld_uld + adap->num_uld;
5934 		want += num_uld * s->ofldqsets;
5935 		uld_need = num_uld * nchan;
5936 		need += uld_need;
5937 	}
5938 
5939 	if (is_ethofld(adap)) {
5940 		want += s->eoqsets;
5941 		ethofld_need = eth_need;
5942 		need += ethofld_need;
5943 	}
5944 
5945 	if (s->mirrorqsets) {
5946 		want += s->mirrorqsets;
5947 		mirror_need = nchan;
5948 		need += mirror_need;
5949 	}
5950 
5951 	want += EXTRA_VECS;
5952 	need += EXTRA_VECS;
5953 
5954 	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5955 	if (!entries)
5956 		return -ENOMEM;
5957 
5958 	for (i = 0; i < want; i++)
5959 		entries[i].entry = i;
5960 
5961 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5962 	if (allocated < 0) {
5963 		/* Disable offload and attempt to get vectors for NIC
5964 		 * only mode.
5965 		 */
5966 		want = s->max_ethqsets + EXTRA_VECS;
5967 		need = eth_need + EXTRA_VECS;
5968 		allocated = pci_enable_msix_range(adap->pdev, entries,
5969 						  need, want);
5970 		if (allocated < 0) {
5971 			dev_info(adap->pdev_dev,
5972 				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5973 			ret = allocated;
5974 			goto out_free;
5975 		}
5976 
5977 		dev_info(adap->pdev_dev,
5978 			 "Disabling offload due to insufficient MSI-X vectors\n");
5979 		adap->params.offload = 0;
5980 		adap->params.crypto = 0;
5981 		adap->params.ethofld = 0;
5982 		s->ofldqsets = 0;
5983 		s->eoqsets = 0;
5984 		s->mirrorqsets = 0;
5985 		uld_need = 0;
5986 		ethofld_need = 0;
5987 		mirror_need = 0;
5988 	}
5989 
5990 	num_vec = allocated;
5991 	if (num_vec < want) {
5992 		/* Distribute available vectors to the various queue groups.
5993 		 * Every group gets its minimum requirement and NIC gets top
5994 		 * priority for leftovers.
5995 		 */
5996 		ethqsets = eth_need;
5997 		if (is_uld(adap))
5998 			ofldqsets = nchan;
5999 		if (is_ethofld(adap))
6000 			eoqsets = ethofld_need;
6001 		if (s->mirrorqsets)
6002 			mirrorqsets = mirror_need;
6003 
6004 		num_vec -= need;
6005 		while (num_vec) {
6006 			if (num_vec < eth_need + ethofld_need ||
6007 			    ethqsets > s->max_ethqsets)
6008 				break;
6009 
6010 			for_each_port(adap, i) {
6011 				pi = adap2pinfo(adap, i);
6012 				if (pi->nqsets < 2)
6013 					continue;
6014 
6015 				ethqsets++;
6016 				num_vec--;
6017 				if (ethofld_need) {
6018 					eoqsets++;
6019 					num_vec--;
6020 				}
6021 			}
6022 		}
6023 
6024 		if (is_uld(adap)) {
6025 			while (num_vec) {
6026 				if (num_vec < uld_need ||
6027 				    ofldqsets > s->ofldqsets)
6028 					break;
6029 
6030 				ofldqsets++;
6031 				num_vec -= uld_need;
6032 			}
6033 		}
6034 
6035 		if (s->mirrorqsets) {
6036 			while (num_vec) {
6037 				if (num_vec < mirror_need ||
6038 				    mirrorqsets > s->mirrorqsets)
6039 					break;
6040 
6041 				mirrorqsets++;
6042 				num_vec -= mirror_need;
6043 			}
6044 		}
6045 	} else {
6046 		ethqsets = s->max_ethqsets;
6047 		if (is_uld(adap))
6048 			ofldqsets = s->ofldqsets;
6049 		if (is_ethofld(adap))
6050 			eoqsets = s->eoqsets;
6051 		if (s->mirrorqsets)
6052 			mirrorqsets = s->mirrorqsets;
6053 	}
6054 
6055 	if (ethqsets < s->max_ethqsets) {
6056 		s->max_ethqsets = ethqsets;
6057 		reduce_ethqs(adap, ethqsets);
6058 	}
6059 
6060 	if (is_uld(adap)) {
6061 		s->ofldqsets = ofldqsets;
6062 		s->nqs_per_uld = s->ofldqsets;
6063 	}
6064 
6065 	if (is_ethofld(adap))
6066 		s->eoqsets = eoqsets;
6067 
6068 	if (s->mirrorqsets) {
6069 		s->mirrorqsets = mirrorqsets;
6070 		for_each_port(adap, i) {
6071 			pi = adap2pinfo(adap, i);
6072 			pi->nmirrorqsets = s->mirrorqsets / nchan;
6073 			mutex_init(&pi->vi_mirror_mutex);
6074 		}
6075 	}
6076 
6077 	/* map for msix */
6078 	ret = alloc_msix_info(adap, allocated);
6079 	if (ret)
6080 		goto out_disable_msix;
6081 
6082 	for (i = 0; i < allocated; i++) {
6083 		adap->msix_info[i].vec = entries[i].vector;
6084 		adap->msix_info[i].idx = i;
6085 	}
6086 
6087 	dev_info(adap->pdev_dev,
6088 		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6089 		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6090 		 s->mirrorqsets);
6091 
6092 	kfree(entries);
6093 	return 0;
6094 
6095 out_disable_msix:
6096 	pci_disable_msix(adap->pdev);
6097 
6098 out_free:
6099 	kfree(entries);
6100 	return ret;
6101 }
6102 
6103 #undef EXTRA_VECS
6104 
6105 static int init_rss(struct adapter *adap)
6106 {
6107 	unsigned int i;
6108 	int err;
6109 
6110 	err = t4_init_rss_mode(adap, adap->mbox);
6111 	if (err)
6112 		return err;
6113 
6114 	for_each_port(adap, i) {
6115 		struct port_info *pi = adap2pinfo(adap, i);
6116 
6117 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6118 		if (!pi->rss)
6119 			return -ENOMEM;
6120 	}
6121 	return 0;
6122 }
6123 
6124 /* Dump basic information about the adapter */
6125 static void print_adapter_info(struct adapter *adapter)
6126 {
6127 	/* Hardware/Firmware/etc. Version/Revision IDs */
6128 	t4_dump_version_info(adapter);
6129 
6130 	/* Software/Hardware configuration */
6131 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6132 		 is_offload(adapter) ? "R" : "",
6133 		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6134 		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6135 		 is_offload(adapter) ? "Offload" : "non-Offload");
6136 }
6137 
6138 static void print_port_info(const struct net_device *dev)
6139 {
6140 	char buf[80];
6141 	char *bufp = buf;
6142 	const struct port_info *pi = netdev_priv(dev);
6143 	const struct adapter *adap = pi->adapter;
6144 
6145 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6146 		bufp += sprintf(bufp, "100M/");
6147 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6148 		bufp += sprintf(bufp, "1G/");
6149 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6150 		bufp += sprintf(bufp, "10G/");
6151 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6152 		bufp += sprintf(bufp, "25G/");
6153 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6154 		bufp += sprintf(bufp, "40G/");
6155 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6156 		bufp += sprintf(bufp, "50G/");
6157 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6158 		bufp += sprintf(bufp, "100G/");
6159 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6160 		bufp += sprintf(bufp, "200G/");
6161 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6162 		bufp += sprintf(bufp, "400G/");
6163 	if (bufp != buf)
6164 		--bufp;
6165 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6166 
6167 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
6168 		    dev->name, adap->params.vpd.id, adap->name, buf);
6169 }
6170 
6171 /*
6172  * Free the following resources:
6173  * - memory used for tables
6174  * - MSI/MSI-X
6175  * - net devices
6176  * - resources FW is holding for us
6177  */
6178 static void free_some_resources(struct adapter *adapter)
6179 {
6180 	unsigned int i;
6181 
6182 	kvfree(adapter->smt);
6183 	kvfree(adapter->l2t);
6184 	kvfree(adapter->srq);
6185 	t4_cleanup_sched(adapter);
6186 	kvfree(adapter->tids.tid_tab);
6187 	cxgb4_cleanup_tc_matchall(adapter);
6188 	cxgb4_cleanup_tc_mqprio(adapter);
6189 	cxgb4_cleanup_tc_flower(adapter);
6190 	cxgb4_cleanup_tc_u32(adapter);
6191 	cxgb4_cleanup_ethtool_filters(adapter);
6192 	kfree(adapter->sge.egr_map);
6193 	kfree(adapter->sge.ingr_map);
6194 	kfree(adapter->sge.starving_fl);
6195 	kfree(adapter->sge.txq_maperr);
6196 #ifdef CONFIG_DEBUG_FS
6197 	kfree(adapter->sge.blocked_fl);
6198 #endif
6199 	disable_msi(adapter);
6200 
6201 	for_each_port(adapter, i)
6202 		if (adapter->port[i]) {
6203 			struct port_info *pi = adap2pinfo(adapter, i);
6204 
6205 			if (pi->viid != 0)
6206 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
6207 					   0, pi->viid);
6208 			kfree(adap2pinfo(adapter, i)->rss);
6209 			free_netdev(adapter->port[i]);
6210 		}
6211 	if (adapter->flags & CXGB4_FW_OK)
6212 		t4_fw_bye(adapter, adapter->pf);
6213 }
6214 
6215 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6216 		   NETIF_F_GSO_UDP_L4)
6217 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6218 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6219 #define SEGMENT_SIZE 128
6220 
6221 static int t4_get_chip_type(struct adapter *adap, int ver)
6222 {
6223 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6224 
6225 	switch (ver) {
6226 	case CHELSIO_T4:
6227 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6228 	case CHELSIO_T5:
6229 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6230 	case CHELSIO_T6:
6231 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6232 	default:
6233 		break;
6234 	}
6235 	return -EINVAL;
6236 }
6237 
6238 #ifdef CONFIG_PCI_IOV
6239 static void cxgb4_mgmt_setup(struct net_device *dev)
6240 {
6241 	dev->type = ARPHRD_NONE;
6242 	dev->mtu = 0;
6243 	dev->hard_header_len = 0;
6244 	dev->addr_len = 0;
6245 	dev->tx_queue_len = 0;
6246 	dev->flags |= IFF_NOARP;
6247 	dev->priv_flags |= IFF_NO_QUEUE;
6248 
6249 	/* Initialize the device structure. */
6250 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6251 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6252 }
6253 
6254 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6255 {
6256 	struct adapter *adap = pci_get_drvdata(pdev);
6257 	int err = 0;
6258 	int current_vfs = pci_num_vf(pdev);
6259 	u32 pcie_fw;
6260 
6261 	pcie_fw = readl(adap->regs + PCIE_FW_A);
6262 	/* Check if fw is initialized */
6263 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
6264 		dev_warn(&pdev->dev, "Device not initialized\n");
6265 		return -EOPNOTSUPP;
6266 	}
6267 
6268 	/* If any of the VF's is already assigned to Guest OS, then
6269 	 * SRIOV for the same cannot be modified
6270 	 */
6271 	if (current_vfs && pci_vfs_assigned(pdev)) {
6272 		dev_err(&pdev->dev,
6273 			"Cannot modify SR-IOV while VFs are assigned\n");
6274 		return current_vfs;
6275 	}
6276 	/* Note that the upper-level code ensures that we're never called with
6277 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
6278 	 * it never hurts to code defensively.
6279 	 */
6280 	if (num_vfs != 0 && current_vfs != 0)
6281 		return -EBUSY;
6282 
6283 	/* Nothing to do for no change. */
6284 	if (num_vfs == current_vfs)
6285 		return num_vfs;
6286 
6287 	/* Disable SRIOV when zero is passed. */
6288 	if (!num_vfs) {
6289 		pci_disable_sriov(pdev);
6290 		/* free VF Management Interface */
6291 		unregister_netdev(adap->port[0]);
6292 		free_netdev(adap->port[0]);
6293 		adap->port[0] = NULL;
6294 
6295 		/* free VF resources */
6296 		adap->num_vfs = 0;
6297 		kfree(adap->vfinfo);
6298 		adap->vfinfo = NULL;
6299 		return 0;
6300 	}
6301 
6302 	if (!current_vfs) {
6303 		struct fw_pfvf_cmd port_cmd, port_rpl;
6304 		struct net_device *netdev;
6305 		unsigned int pmask, port;
6306 		struct pci_dev *pbridge;
6307 		struct port_info *pi;
6308 		char name[IFNAMSIZ];
6309 		u32 devcap2;
6310 		u16 flags;
6311 
6312 		/* If we want to instantiate Virtual Functions, then our
6313 		 * parent bridge's PCI-E needs to support Alternative Routing
6314 		 * ID (ARI) because our VFs will show up at function offset 8
6315 		 * and above.
6316 		 */
6317 		pbridge = pdev->bus->self;
6318 		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6319 		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6320 
6321 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6322 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6323 			/* Our parent bridge does not support ARI so issue a
6324 			 * warning and skip instantiating the VFs.  They
6325 			 * won't be reachable.
6326 			 */
6327 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6328 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6329 				 PCI_FUNC(pbridge->devfn));
6330 			return -ENOTSUPP;
6331 		}
6332 		memset(&port_cmd, 0, sizeof(port_cmd));
6333 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6334 						 FW_CMD_REQUEST_F |
6335 						 FW_CMD_READ_F |
6336 						 FW_PFVF_CMD_PFN_V(adap->pf) |
6337 						 FW_PFVF_CMD_VFN_V(0));
6338 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6339 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6340 				 &port_rpl);
6341 		if (err)
6342 			return err;
6343 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6344 		port = ffs(pmask) - 1;
6345 		/* Allocate VF Management Interface. */
6346 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6347 			 adap->pf);
6348 		netdev = alloc_netdev(sizeof(struct port_info),
6349 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6350 		if (!netdev)
6351 			return -ENOMEM;
6352 
6353 		pi = netdev_priv(netdev);
6354 		pi->adapter = adap;
6355 		pi->lport = port;
6356 		pi->tx_chan = port;
6357 		SET_NETDEV_DEV(netdev, &pdev->dev);
6358 
6359 		adap->port[0] = netdev;
6360 		pi->port_id = 0;
6361 
6362 		err = register_netdev(adap->port[0]);
6363 		if (err) {
6364 			pr_info("Unable to register VF mgmt netdev %s\n", name);
6365 			free_netdev(adap->port[0]);
6366 			adap->port[0] = NULL;
6367 			return err;
6368 		}
6369 		/* Allocate and set up VF Information. */
6370 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6371 				       sizeof(struct vf_info), GFP_KERNEL);
6372 		if (!adap->vfinfo) {
6373 			unregister_netdev(adap->port[0]);
6374 			free_netdev(adap->port[0]);
6375 			adap->port[0] = NULL;
6376 			return -ENOMEM;
6377 		}
6378 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6379 	}
6380 	/* Instantiate the requested number of VFs. */
6381 	err = pci_enable_sriov(pdev, num_vfs);
6382 	if (err) {
6383 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
6384 		if (!current_vfs) {
6385 			unregister_netdev(adap->port[0]);
6386 			free_netdev(adap->port[0]);
6387 			adap->port[0] = NULL;
6388 			kfree(adap->vfinfo);
6389 			adap->vfinfo = NULL;
6390 		}
6391 		return err;
6392 	}
6393 
6394 	adap->num_vfs = num_vfs;
6395 	return num_vfs;
6396 }
6397 #endif /* CONFIG_PCI_IOV */
6398 
6399 #if defined(CONFIG_CHELSIO_TLS_DEVICE)
6400 
6401 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6402 			      enum tls_offload_ctx_dir direction,
6403 			      struct tls_crypto_info *crypto_info,
6404 			      u32 tcp_sn)
6405 {
6406 	struct adapter *adap = netdev2adap(netdev);
6407 	int ret = 0;
6408 
6409 	mutex_lock(&uld_mutex);
6410 	if (!adap->uld[CXGB4_ULD_CRYPTO].handle) {
6411 		dev_err(adap->pdev_dev, "chcr driver is not loaded\n");
6412 		ret = -EOPNOTSUPP;
6413 		goto out_unlock;
6414 	}
6415 
6416 	if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) {
6417 		dev_err(adap->pdev_dev,
6418 			"chcr driver has no registered tlsdev_ops()\n");
6419 		ret = -EOPNOTSUPP;
6420 		goto out_unlock;
6421 	}
6422 
6423 	ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6424 	if (ret)
6425 		goto out_unlock;
6426 
6427 	ret = adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_add(netdev, sk,
6428 								  direction,
6429 								  crypto_info,
6430 								  tcp_sn);
6431 	/* if there is a failure, clear the refcount */
6432 	if (ret)
6433 		cxgb4_set_ktls_feature(adap,
6434 				       FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6435 out_unlock:
6436 	mutex_unlock(&uld_mutex);
6437 	return ret;
6438 }
6439 
6440 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6441 			       struct tls_context *tls_ctx,
6442 			       enum tls_offload_ctx_dir direction)
6443 {
6444 	struct adapter *adap = netdev2adap(netdev);
6445 
6446 	mutex_lock(&uld_mutex);
6447 	if (!adap->uld[CXGB4_ULD_CRYPTO].handle) {
6448 		dev_err(adap->pdev_dev, "chcr driver is not loaded\n");
6449 		goto out_unlock;
6450 	}
6451 
6452 	if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) {
6453 		dev_err(adap->pdev_dev,
6454 			"chcr driver has no registered tlsdev_ops\n");
6455 		goto out_unlock;
6456 	}
6457 
6458 	adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6459 							    direction);
6460 	cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6461 
6462 out_unlock:
6463 	mutex_unlock(&uld_mutex);
6464 }
6465 
6466 static const struct tlsdev_ops cxgb4_ktls_ops = {
6467 	.tls_dev_add = cxgb4_ktls_dev_add,
6468 	.tls_dev_del = cxgb4_ktls_dev_del,
6469 };
6470 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6471 
6472 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6473 {
6474 	struct net_device *netdev;
6475 	struct adapter *adapter;
6476 	static int adap_idx = 1;
6477 	int s_qpp, qpp, num_seg;
6478 	struct port_info *pi;
6479 	bool highdma = false;
6480 	enum chip_type chip;
6481 	void __iomem *regs;
6482 	int func, chip_ver;
6483 	u16 device_id;
6484 	int i, err;
6485 	u32 whoami;
6486 
6487 	err = pci_request_regions(pdev, KBUILD_MODNAME);
6488 	if (err) {
6489 		/* Just info, some other driver may have claimed the device. */
6490 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6491 		return err;
6492 	}
6493 
6494 	err = pci_enable_device(pdev);
6495 	if (err) {
6496 		dev_err(&pdev->dev, "cannot enable PCI device\n");
6497 		goto out_release_regions;
6498 	}
6499 
6500 	regs = pci_ioremap_bar(pdev, 0);
6501 	if (!regs) {
6502 		dev_err(&pdev->dev, "cannot map device registers\n");
6503 		err = -ENOMEM;
6504 		goto out_disable_device;
6505 	}
6506 
6507 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6508 	if (!adapter) {
6509 		err = -ENOMEM;
6510 		goto out_unmap_bar0;
6511 	}
6512 
6513 	adapter->regs = regs;
6514 	err = t4_wait_dev_ready(regs);
6515 	if (err < 0)
6516 		goto out_free_adapter;
6517 
6518 	/* We control everything through one PF */
6519 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6520 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6521 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6522 	if ((int)chip < 0) {
6523 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6524 		err = chip;
6525 		goto out_free_adapter;
6526 	}
6527 	chip_ver = CHELSIO_CHIP_VERSION(chip);
6528 	func = chip_ver <= CHELSIO_T5 ?
6529 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6530 
6531 	adapter->pdev = pdev;
6532 	adapter->pdev_dev = &pdev->dev;
6533 	adapter->name = pci_name(pdev);
6534 	adapter->mbox = func;
6535 	adapter->pf = func;
6536 	adapter->params.chip = chip;
6537 	adapter->adap_idx = adap_idx;
6538 	adapter->msg_enable = DFLT_MSG_ENABLE;
6539 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6540 				    (sizeof(struct mbox_cmd) *
6541 				     T4_OS_LOG_MBOX_CMDS),
6542 				    GFP_KERNEL);
6543 	if (!adapter->mbox_log) {
6544 		err = -ENOMEM;
6545 		goto out_free_adapter;
6546 	}
6547 	spin_lock_init(&adapter->mbox_lock);
6548 	INIT_LIST_HEAD(&adapter->mlist.list);
6549 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6550 	pci_set_drvdata(pdev, adapter);
6551 
6552 	if (func != ent->driver_data) {
6553 		pci_disable_device(pdev);
6554 		pci_save_state(pdev);        /* to restore SR-IOV later */
6555 		return 0;
6556 	}
6557 
6558 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6559 		highdma = true;
6560 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6561 		if (err) {
6562 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6563 				"coherent allocations\n");
6564 			goto out_free_adapter;
6565 		}
6566 	} else {
6567 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6568 		if (err) {
6569 			dev_err(&pdev->dev, "no usable DMA configuration\n");
6570 			goto out_free_adapter;
6571 		}
6572 	}
6573 
6574 	pci_enable_pcie_error_reporting(pdev);
6575 	pci_set_master(pdev);
6576 	pci_save_state(pdev);
6577 	adap_idx++;
6578 	adapter->workq = create_singlethread_workqueue("cxgb4");
6579 	if (!adapter->workq) {
6580 		err = -ENOMEM;
6581 		goto out_free_adapter;
6582 	}
6583 
6584 	/* PCI device has been enabled */
6585 	adapter->flags |= CXGB4_DEV_ENABLED;
6586 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6587 
6588 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6589 	 * Ingress Packet Data to Free List Buffers in order to allow for
6590 	 * chipset performance optimizations between the Root Complex and
6591 	 * Memory Controllers.  (Messages to the associated Ingress Queue
6592 	 * notifying new Packet Placement in the Free Lists Buffers will be
6593 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
6594 	 * all preceding PCIe Transaction Layer Packets will be processed
6595 	 * first.)  But some Root Complexes have various issues with Upstream
6596 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6597 	 * The PCIe devices which under the Root Complexes will be cleared the
6598 	 * Relaxed Ordering bit in the configuration space, So we check our
6599 	 * PCIe configuration space to see if it's flagged with advice against
6600 	 * using Relaxed Ordering.
6601 	 */
6602 	if (!pcie_relaxed_ordering_enabled(pdev))
6603 		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6604 
6605 	spin_lock_init(&adapter->stats_lock);
6606 	spin_lock_init(&adapter->tid_release_lock);
6607 	spin_lock_init(&adapter->win0_lock);
6608 
6609 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6610 	INIT_WORK(&adapter->db_full_task, process_db_full);
6611 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6612 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6613 
6614 	err = t4_prep_adapter(adapter);
6615 	if (err)
6616 		goto out_free_adapter;
6617 
6618 	if (is_kdump_kernel()) {
6619 		/* Collect hardware state and append to /proc/vmcore */
6620 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
6621 		if (err) {
6622 			dev_warn(adapter->pdev_dev,
6623 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6624 				 err);
6625 			err = 0;
6626 		}
6627 	}
6628 
6629 	if (!is_t4(adapter->params.chip)) {
6630 		s_qpp = (QUEUESPERPAGEPF0_S +
6631 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6632 			adapter->pf);
6633 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6634 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6635 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6636 
6637 		/* Each segment size is 128B. Write coalescing is enabled only
6638 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6639 		 * queue is less no of segments that can be accommodated in
6640 		 * a page size.
6641 		 */
6642 		if (qpp > num_seg) {
6643 			dev_err(&pdev->dev,
6644 				"Incorrect number of egress queues per page\n");
6645 			err = -EINVAL;
6646 			goto out_free_adapter;
6647 		}
6648 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6649 		pci_resource_len(pdev, 2));
6650 		if (!adapter->bar2) {
6651 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6652 			err = -ENOMEM;
6653 			goto out_free_adapter;
6654 		}
6655 	}
6656 
6657 	setup_memwin(adapter);
6658 	err = adap_init0(adapter, 0);
6659 #ifdef CONFIG_DEBUG_FS
6660 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6661 #endif
6662 	setup_memwin_rdma(adapter);
6663 	if (err)
6664 		goto out_unmap_bar;
6665 
6666 	/* configure SGE_STAT_CFG_A to read WC stats */
6667 	if (!is_t4(adapter->params.chip))
6668 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6669 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6670 			      T6_STATMODE_V(0)));
6671 
6672 	/* Initialize hash mac addr list */
6673 	INIT_LIST_HEAD(&adapter->mac_hlist);
6674 
6675 	for_each_port(adapter, i) {
6676 		/* For supporting MQPRIO Offload, need some extra
6677 		 * queues for each ETHOFLD TIDs. Keep it equal to
6678 		 * MAX_ATIDs for now. Once we connect to firmware
6679 		 * later and query the EOTID params, we'll come to
6680 		 * know the actual # of EOTIDs supported.
6681 		 */
6682 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6683 					   MAX_ETH_QSETS + MAX_ATIDS);
6684 		if (!netdev) {
6685 			err = -ENOMEM;
6686 			goto out_free_dev;
6687 		}
6688 
6689 		SET_NETDEV_DEV(netdev, &pdev->dev);
6690 
6691 		adapter->port[i] = netdev;
6692 		pi = netdev_priv(netdev);
6693 		pi->adapter = adapter;
6694 		pi->xact_addr_filt = -1;
6695 		pi->port_id = i;
6696 		netdev->irq = pdev->irq;
6697 
6698 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6699 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6700 			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6701 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6702 			NETIF_F_HW_TC | NETIF_F_NTUPLE;
6703 
6704 		if (chip_ver > CHELSIO_T5) {
6705 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6706 						   NETIF_F_IPV6_CSUM |
6707 						   NETIF_F_RXCSUM |
6708 						   NETIF_F_GSO_UDP_TUNNEL |
6709 						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6710 						   NETIF_F_TSO | NETIF_F_TSO6;
6711 
6712 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6713 					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
6714 					       NETIF_F_HW_TLS_RECORD;
6715 
6716 			if (adapter->rawf_cnt)
6717 				netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6718 		}
6719 
6720 		if (highdma)
6721 			netdev->hw_features |= NETIF_F_HIGHDMA;
6722 		netdev->features |= netdev->hw_features;
6723 		netdev->vlan_features = netdev->features & VLAN_FEAT;
6724 #if defined(CONFIG_CHELSIO_TLS_DEVICE)
6725 		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6726 			netdev->hw_features |= NETIF_F_HW_TLS_TX;
6727 			netdev->tlsdev_ops = &cxgb4_ktls_ops;
6728 			/* initialize the refcount */
6729 			refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6730 		}
6731 #endif
6732 		netdev->priv_flags |= IFF_UNICAST_FLT;
6733 
6734 		/* MTU range: 81 - 9600 */
6735 		netdev->min_mtu = 81;              /* accommodate SACK */
6736 		netdev->max_mtu = MAX_MTU;
6737 
6738 		netdev->netdev_ops = &cxgb4_netdev_ops;
6739 #ifdef CONFIG_CHELSIO_T4_DCB
6740 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6741 		cxgb4_dcb_state_init(netdev);
6742 		cxgb4_dcb_version_init(netdev);
6743 #endif
6744 		cxgb4_set_ethtool_ops(netdev);
6745 	}
6746 
6747 	cxgb4_init_ethtool_dump(adapter);
6748 
6749 	pci_set_drvdata(pdev, adapter);
6750 
6751 	if (adapter->flags & CXGB4_FW_OK) {
6752 		err = t4_port_init(adapter, func, func, 0);
6753 		if (err)
6754 			goto out_free_dev;
6755 	} else if (adapter->params.nports == 1) {
6756 		/* If we don't have a connection to the firmware -- possibly
6757 		 * because of an error -- grab the raw VPD parameters so we
6758 		 * can set the proper MAC Address on the debug network
6759 		 * interface that we've created.
6760 		 */
6761 		u8 hw_addr[ETH_ALEN];
6762 		u8 *na = adapter->params.vpd.na;
6763 
6764 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6765 		if (!err) {
6766 			for (i = 0; i < ETH_ALEN; i++)
6767 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6768 					      hex2val(na[2 * i + 1]));
6769 			t4_set_hw_addr(adapter, 0, hw_addr);
6770 		}
6771 	}
6772 
6773 	if (!(adapter->flags & CXGB4_FW_OK))
6774 		goto fw_attach_fail;
6775 
6776 	/* Configure queues and allocate tables now, they can be needed as
6777 	 * soon as the first register_netdev completes.
6778 	 */
6779 	err = cfg_queues(adapter);
6780 	if (err)
6781 		goto out_free_dev;
6782 
6783 	adapter->smt = t4_init_smt();
6784 	if (!adapter->smt) {
6785 		/* We tolerate a lack of SMT, giving up some functionality */
6786 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6787 	}
6788 
6789 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6790 	if (!adapter->l2t) {
6791 		/* We tolerate a lack of L2T, giving up some functionality */
6792 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6793 		adapter->params.offload = 0;
6794 	}
6795 
6796 #if IS_ENABLED(CONFIG_IPV6)
6797 	if (chip_ver <= CHELSIO_T5 &&
6798 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6799 		/* CLIP functionality is not present in hardware,
6800 		 * hence disable all offload features
6801 		 */
6802 		dev_warn(&pdev->dev,
6803 			 "CLIP not enabled in hardware, continuing\n");
6804 		adapter->params.offload = 0;
6805 	} else {
6806 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6807 						  adapter->clipt_end);
6808 		if (!adapter->clipt) {
6809 			/* We tolerate a lack of clip_table, giving up
6810 			 * some functionality
6811 			 */
6812 			dev_warn(&pdev->dev,
6813 				 "could not allocate Clip table, continuing\n");
6814 			adapter->params.offload = 0;
6815 		}
6816 	}
6817 #endif
6818 
6819 	for_each_port(adapter, i) {
6820 		pi = adap2pinfo(adapter, i);
6821 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6822 		if (!pi->sched_tbl)
6823 			dev_warn(&pdev->dev,
6824 				 "could not activate scheduling on port %d\n",
6825 				 i);
6826 	}
6827 
6828 	if (is_offload(adapter) || is_hashfilter(adapter)) {
6829 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6830 			u32 v;
6831 
6832 			v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6833 			if (chip_ver <= CHELSIO_T5) {
6834 				adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6835 				v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6836 				adapter->tids.hash_base = v / 4;
6837 			} else {
6838 				adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6839 				v = t4_read_reg(adapter,
6840 						T6_LE_DB_HASH_TID_BASE_A);
6841 				adapter->tids.hash_base = v;
6842 			}
6843 		}
6844 	}
6845 
6846 	if (tid_init(&adapter->tids) < 0) {
6847 		dev_warn(&pdev->dev, "could not allocate TID table, "
6848 			 "continuing\n");
6849 		adapter->params.offload = 0;
6850 	} else {
6851 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6852 		if (!adapter->tc_u32)
6853 			dev_warn(&pdev->dev,
6854 				 "could not offload tc u32, continuing\n");
6855 
6856 		if (cxgb4_init_tc_flower(adapter))
6857 			dev_warn(&pdev->dev,
6858 				 "could not offload tc flower, continuing\n");
6859 
6860 		if (cxgb4_init_tc_mqprio(adapter))
6861 			dev_warn(&pdev->dev,
6862 				 "could not offload tc mqprio, continuing\n");
6863 
6864 		if (cxgb4_init_tc_matchall(adapter))
6865 			dev_warn(&pdev->dev,
6866 				 "could not offload tc matchall, continuing\n");
6867 		if (cxgb4_init_ethtool_filters(adapter))
6868 			dev_warn(&pdev->dev,
6869 				 "could not initialize ethtool filters, continuing\n");
6870 	}
6871 
6872 	/* See what interrupts we'll be using */
6873 	if (msi > 1 && enable_msix(adapter) == 0)
6874 		adapter->flags |= CXGB4_USING_MSIX;
6875 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6876 		adapter->flags |= CXGB4_USING_MSI;
6877 		if (msi > 1)
6878 			free_msix_info(adapter);
6879 	}
6880 
6881 	/* check for PCI Express bandwidth capabiltites */
6882 	pcie_print_link_status(pdev);
6883 
6884 	cxgb4_init_mps_ref_entries(adapter);
6885 
6886 	err = init_rss(adapter);
6887 	if (err)
6888 		goto out_free_dev;
6889 
6890 	err = setup_non_data_intr(adapter);
6891 	if (err) {
6892 		dev_err(adapter->pdev_dev,
6893 			"Non Data interrupt allocation failed, err: %d\n", err);
6894 		goto out_free_dev;
6895 	}
6896 
6897 	err = setup_fw_sge_queues(adapter);
6898 	if (err) {
6899 		dev_err(adapter->pdev_dev,
6900 			"FW sge queue allocation failed, err %d", err);
6901 		goto out_free_dev;
6902 	}
6903 
6904 fw_attach_fail:
6905 	/*
6906 	 * The card is now ready to go.  If any errors occur during device
6907 	 * registration we do not fail the whole card but rather proceed only
6908 	 * with the ports we manage to register successfully.  However we must
6909 	 * register at least one net device.
6910 	 */
6911 	for_each_port(adapter, i) {
6912 		pi = adap2pinfo(adapter, i);
6913 		adapter->port[i]->dev_port = pi->lport;
6914 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6915 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6916 
6917 		netif_carrier_off(adapter->port[i]);
6918 
6919 		err = register_netdev(adapter->port[i]);
6920 		if (err)
6921 			break;
6922 		adapter->chan_map[pi->tx_chan] = i;
6923 		print_port_info(adapter->port[i]);
6924 	}
6925 	if (i == 0) {
6926 		dev_err(&pdev->dev, "could not register any net devices\n");
6927 		goto out_free_dev;
6928 	}
6929 	if (err) {
6930 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6931 		err = 0;
6932 	}
6933 
6934 	if (cxgb4_debugfs_root) {
6935 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6936 							   cxgb4_debugfs_root);
6937 		setup_debugfs(adapter);
6938 	}
6939 
6940 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6941 	pdev->needs_freset = 1;
6942 
6943 	if (is_uld(adapter))
6944 		cxgb4_uld_enable(adapter);
6945 
6946 	if (!is_t4(adapter->params.chip))
6947 		cxgb4_ptp_init(adapter);
6948 
6949 	if (IS_REACHABLE(CONFIG_THERMAL) &&
6950 	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6951 		cxgb4_thermal_init(adapter);
6952 
6953 	print_adapter_info(adapter);
6954 	return 0;
6955 
6956  out_free_dev:
6957 	t4_free_sge_resources(adapter);
6958 	free_some_resources(adapter);
6959 	if (adapter->flags & CXGB4_USING_MSIX)
6960 		free_msix_info(adapter);
6961 	if (adapter->num_uld || adapter->num_ofld_uld)
6962 		t4_uld_mem_free(adapter);
6963  out_unmap_bar:
6964 	if (!is_t4(adapter->params.chip))
6965 		iounmap(adapter->bar2);
6966  out_free_adapter:
6967 	if (adapter->workq)
6968 		destroy_workqueue(adapter->workq);
6969 
6970 	kfree(adapter->mbox_log);
6971 	kfree(adapter);
6972  out_unmap_bar0:
6973 	iounmap(regs);
6974  out_disable_device:
6975 	pci_disable_pcie_error_reporting(pdev);
6976 	pci_disable_device(pdev);
6977  out_release_regions:
6978 	pci_release_regions(pdev);
6979 	return err;
6980 }
6981 
6982 static void remove_one(struct pci_dev *pdev)
6983 {
6984 	struct adapter *adapter = pci_get_drvdata(pdev);
6985 	struct hash_mac_addr *entry, *tmp;
6986 
6987 	if (!adapter) {
6988 		pci_release_regions(pdev);
6989 		return;
6990 	}
6991 
6992 	/* If we allocated filters, free up state associated with any
6993 	 * valid filters ...
6994 	 */
6995 	clear_all_filters(adapter);
6996 
6997 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6998 
6999 	if (adapter->pf == 4) {
7000 		int i;
7001 
7002 		/* Tear down per-adapter Work Queue first since it can contain
7003 		 * references to our adapter data structure.
7004 		 */
7005 		destroy_workqueue(adapter->workq);
7006 
7007 		if (is_uld(adapter)) {
7008 			detach_ulds(adapter);
7009 			t4_uld_clean_up(adapter);
7010 		}
7011 
7012 		adap_free_hma_mem(adapter);
7013 
7014 		disable_interrupts(adapter);
7015 
7016 		cxgb4_free_mps_ref_entries(adapter);
7017 
7018 		for_each_port(adapter, i)
7019 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7020 				unregister_netdev(adapter->port[i]);
7021 
7022 		debugfs_remove_recursive(adapter->debugfs_root);
7023 
7024 		if (!is_t4(adapter->params.chip))
7025 			cxgb4_ptp_stop(adapter);
7026 		if (IS_REACHABLE(CONFIG_THERMAL))
7027 			cxgb4_thermal_remove(adapter);
7028 
7029 		if (adapter->flags & CXGB4_FULL_INIT_DONE)
7030 			cxgb_down(adapter);
7031 
7032 		if (adapter->flags & CXGB4_USING_MSIX)
7033 			free_msix_info(adapter);
7034 		if (adapter->num_uld || adapter->num_ofld_uld)
7035 			t4_uld_mem_free(adapter);
7036 		free_some_resources(adapter);
7037 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7038 					 list) {
7039 			list_del(&entry->list);
7040 			kfree(entry);
7041 		}
7042 
7043 #if IS_ENABLED(CONFIG_IPV6)
7044 		t4_cleanup_clip_tbl(adapter);
7045 #endif
7046 		if (!is_t4(adapter->params.chip))
7047 			iounmap(adapter->bar2);
7048 	}
7049 #ifdef CONFIG_PCI_IOV
7050 	else {
7051 		cxgb4_iov_configure(adapter->pdev, 0);
7052 	}
7053 #endif
7054 	iounmap(adapter->regs);
7055 	pci_disable_pcie_error_reporting(pdev);
7056 	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7057 		pci_disable_device(pdev);
7058 		adapter->flags &= ~CXGB4_DEV_ENABLED;
7059 	}
7060 	pci_release_regions(pdev);
7061 	kfree(adapter->mbox_log);
7062 	synchronize_rcu();
7063 	kfree(adapter);
7064 }
7065 
7066 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7067  * delivery.  This is essentially a stripped down version of the PCI remove()
7068  * function where we do the minimal amount of work necessary to shutdown any
7069  * further activity.
7070  */
7071 static void shutdown_one(struct pci_dev *pdev)
7072 {
7073 	struct adapter *adapter = pci_get_drvdata(pdev);
7074 
7075 	/* As with remove_one() above (see extended comment), we only want do
7076 	 * do cleanup on PCI Devices which went all the way through init_one()
7077 	 * ...
7078 	 */
7079 	if (!adapter) {
7080 		pci_release_regions(pdev);
7081 		return;
7082 	}
7083 
7084 	adapter->flags |= CXGB4_SHUTTING_DOWN;
7085 
7086 	if (adapter->pf == 4) {
7087 		int i;
7088 
7089 		for_each_port(adapter, i)
7090 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7091 				cxgb_close(adapter->port[i]);
7092 
7093 		rtnl_lock();
7094 		cxgb4_mqprio_stop_offload(adapter);
7095 		rtnl_unlock();
7096 
7097 		if (is_uld(adapter)) {
7098 			detach_ulds(adapter);
7099 			t4_uld_clean_up(adapter);
7100 		}
7101 
7102 		disable_interrupts(adapter);
7103 		disable_msi(adapter);
7104 
7105 		t4_sge_stop(adapter);
7106 		if (adapter->flags & CXGB4_FW_OK)
7107 			t4_fw_bye(adapter, adapter->mbox);
7108 	}
7109 }
7110 
7111 static struct pci_driver cxgb4_driver = {
7112 	.name     = KBUILD_MODNAME,
7113 	.id_table = cxgb4_pci_tbl,
7114 	.probe    = init_one,
7115 	.remove   = remove_one,
7116 	.shutdown = shutdown_one,
7117 #ifdef CONFIG_PCI_IOV
7118 	.sriov_configure = cxgb4_iov_configure,
7119 #endif
7120 	.err_handler = &cxgb4_eeh,
7121 };
7122 
7123 static int __init cxgb4_init_module(void)
7124 {
7125 	int ret;
7126 
7127 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7128 
7129 	ret = pci_register_driver(&cxgb4_driver);
7130 	if (ret < 0)
7131 		goto err_pci;
7132 
7133 #if IS_ENABLED(CONFIG_IPV6)
7134 	if (!inet6addr_registered) {
7135 		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7136 		if (ret)
7137 			pci_unregister_driver(&cxgb4_driver);
7138 		else
7139 			inet6addr_registered = true;
7140 	}
7141 #endif
7142 
7143 	if (ret == 0)
7144 		return ret;
7145 
7146 err_pci:
7147 	debugfs_remove(cxgb4_debugfs_root);
7148 
7149 	return ret;
7150 }
7151 
7152 static void __exit cxgb4_cleanup_module(void)
7153 {
7154 #if IS_ENABLED(CONFIG_IPV6)
7155 	if (inet6addr_registered) {
7156 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7157 		inet6addr_registered = false;
7158 	}
7159 #endif
7160 	pci_unregister_driver(&cxgb4_driver);
7161 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
7162 }
7163 
7164 module_init(cxgb4_init_module);
7165 module_exit(cxgb4_cleanup_module);
7166