1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 #include <net/udp_tunnel.h> 69 70 #include "cxgb4.h" 71 #include "cxgb4_filter.h" 72 #include "t4_regs.h" 73 #include "t4_values.h" 74 #include "t4_msg.h" 75 #include "t4fw_api.h" 76 #include "t4fw_version.h" 77 #include "cxgb4_dcb.h" 78 #include "srq.h" 79 #include "cxgb4_debugfs.h" 80 #include "clip_tbl.h" 81 #include "l2t.h" 82 #include "smt.h" 83 #include "sched.h" 84 #include "cxgb4_tc_u32.h" 85 #include "cxgb4_tc_flower.h" 86 #include "cxgb4_ptp.h" 87 #include "cxgb4_cudbg.h" 88 89 char cxgb4_driver_name[] = KBUILD_MODNAME; 90 91 #ifdef DRV_VERSION 92 #undef DRV_VERSION 93 #endif 94 #define DRV_VERSION "2.0.0-ko" 95 const char cxgb4_driver_version[] = DRV_VERSION; 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_VERSION(DRV_VERSION); 139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 140 MODULE_FIRMWARE(FW4_FNAME); 141 MODULE_FIRMWARE(FW5_FNAME); 142 MODULE_FIRMWARE(FW6_FNAME); 143 144 /* 145 * The driver uses the best interrupt scheme available on a platform in the 146 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 147 * of these schemes the driver may consider as follows: 148 * 149 * msi = 2: choose from among all three options 150 * msi = 1: only consider MSI and INTx interrupts 151 * msi = 0: force INTx interrupts 152 */ 153 static int msi = 2; 154 155 module_param(msi, int, 0644); 156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 157 158 /* 159 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 160 * offset by 2 bytes in order to have the IP headers line up on 4-byte 161 * boundaries. This is a requirement for many architectures which will throw 162 * a machine check fault if an attempt is made to access one of the 4-byte IP 163 * header fields on a non-4-byte boundary. And it's a major performance issue 164 * even on some architectures which allow it like some implementations of the 165 * x86 ISA. However, some architectures don't mind this and for some very 166 * edge-case performance sensitive applications (like forwarding large volumes 167 * of small packets), setting this DMA offset to 0 will decrease the number of 168 * PCI-E Bus transfers enough to measurably affect performance. 169 */ 170 static int rx_dma_offset = 2; 171 172 /* TX Queue select used to determine what algorithm to use for selecting TX 173 * queue. Select between the kernel provided function (select_queue=0) or user 174 * cxgb_select_queue function (select_queue=1) 175 * 176 * Default: select_queue=0 177 */ 178 static int select_queue; 179 module_param(select_queue, int, 0644); 180 MODULE_PARM_DESC(select_queue, 181 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 182 183 static struct dentry *cxgb4_debugfs_root; 184 185 LIST_HEAD(adapter_list); 186 DEFINE_MUTEX(uld_mutex); 187 188 static void link_report(struct net_device *dev) 189 { 190 if (!netif_carrier_ok(dev)) 191 netdev_info(dev, "link down\n"); 192 else { 193 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 194 195 const char *s; 196 const struct port_info *p = netdev_priv(dev); 197 198 switch (p->link_cfg.speed) { 199 case 100: 200 s = "100Mbps"; 201 break; 202 case 1000: 203 s = "1Gbps"; 204 break; 205 case 10000: 206 s = "10Gbps"; 207 break; 208 case 25000: 209 s = "25Gbps"; 210 break; 211 case 40000: 212 s = "40Gbps"; 213 break; 214 case 50000: 215 s = "50Gbps"; 216 break; 217 case 100000: 218 s = "100Gbps"; 219 break; 220 default: 221 pr_info("%s: unsupported speed: %d\n", 222 dev->name, p->link_cfg.speed); 223 return; 224 } 225 226 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 227 fc[p->link_cfg.fc]); 228 } 229 } 230 231 #ifdef CONFIG_CHELSIO_T4_DCB 232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 234 { 235 struct port_info *pi = netdev_priv(dev); 236 struct adapter *adap = pi->adapter; 237 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 238 int i; 239 240 /* We use a simple mapping of Port TX Queue Index to DCB 241 * Priority when we're enabling DCB. 242 */ 243 for (i = 0; i < pi->nqsets; i++, txq++) { 244 u32 name, value; 245 int err; 246 247 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 248 FW_PARAMS_PARAM_X_V( 249 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 250 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 251 value = enable ? i : 0xffffffff; 252 253 /* Since we can be called while atomic (from "interrupt 254 * level") we need to issue the Set Parameters Commannd 255 * without sleeping (timeout < 0). 256 */ 257 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 258 &name, &value, 259 -FW_CMD_MAX_TIMEOUT); 260 261 if (err) 262 dev_err(adap->pdev_dev, 263 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 264 enable ? "set" : "unset", pi->port_id, i, -err); 265 else 266 txq->dcb_prio = enable ? value : 0; 267 } 268 } 269 270 int cxgb4_dcb_enabled(const struct net_device *dev) 271 { 272 struct port_info *pi = netdev_priv(dev); 273 274 if (!pi->dcb.enabled) 275 return 0; 276 277 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 278 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 279 } 280 #endif /* CONFIG_CHELSIO_T4_DCB */ 281 282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 283 { 284 struct net_device *dev = adapter->port[port_id]; 285 286 /* Skip changes from disabled ports. */ 287 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 288 if (link_stat) 289 netif_carrier_on(dev); 290 else { 291 #ifdef CONFIG_CHELSIO_T4_DCB 292 if (cxgb4_dcb_enabled(dev)) { 293 cxgb4_dcb_reset(dev); 294 dcb_tx_queue_prio_enable(dev, false); 295 } 296 #endif /* CONFIG_CHELSIO_T4_DCB */ 297 netif_carrier_off(dev); 298 } 299 300 link_report(dev); 301 } 302 } 303 304 void t4_os_portmod_changed(struct adapter *adap, int port_id) 305 { 306 static const char *mod_str[] = { 307 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 308 }; 309 310 struct net_device *dev = adap->port[port_id]; 311 struct port_info *pi = netdev_priv(dev); 312 313 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 314 netdev_info(dev, "port module unplugged\n"); 315 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 316 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 317 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 318 netdev_info(dev, "%s: unsupported port module inserted\n", 319 dev->name); 320 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 321 netdev_info(dev, "%s: unknown port module inserted\n", 322 dev->name); 323 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 324 netdev_info(dev, "%s: transceiver module error\n", dev->name); 325 else 326 netdev_info(dev, "%s: unknown module type %d inserted\n", 327 dev->name, pi->mod_type); 328 329 /* If the interface is running, then we'll need any "sticky" Link 330 * Parameters redone with a new Transceiver Module. 331 */ 332 pi->link_cfg.redo_l1cfg = netif_running(dev); 333 } 334 335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 336 module_param(dbfifo_int_thresh, int, 0644); 337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 338 339 /* 340 * usecs to sleep while draining the dbfifo 341 */ 342 static int dbfifo_drain_delay = 1000; 343 module_param(dbfifo_drain_delay, int, 0644); 344 MODULE_PARM_DESC(dbfifo_drain_delay, 345 "usecs to sleep while draining the dbfifo"); 346 347 static inline int cxgb4_set_addr_hash(struct port_info *pi) 348 { 349 struct adapter *adap = pi->adapter; 350 u64 vec = 0; 351 bool ucast = false; 352 struct hash_mac_addr *entry; 353 354 /* Calculate the hash vector for the updated list and program it */ 355 list_for_each_entry(entry, &adap->mac_hlist, list) { 356 ucast |= is_unicast_ether_addr(entry->addr); 357 vec |= (1ULL << hash_mac_addr(entry->addr)); 358 } 359 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 360 vec, false); 361 } 362 363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 364 { 365 struct port_info *pi = netdev_priv(netdev); 366 struct adapter *adap = pi->adapter; 367 int ret; 368 u64 mhash = 0; 369 u64 uhash = 0; 370 bool free = false; 371 bool ucast = is_unicast_ether_addr(mac_addr); 372 const u8 *maclist[1] = {mac_addr}; 373 struct hash_mac_addr *new_entry; 374 375 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 376 NULL, ucast ? &uhash : &mhash, false); 377 if (ret < 0) 378 goto out; 379 /* if hash != 0, then add the addr to hash addr list 380 * so on the end we will calculate the hash for the 381 * list and program it 382 */ 383 if (uhash || mhash) { 384 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 385 if (!new_entry) 386 return -ENOMEM; 387 ether_addr_copy(new_entry->addr, mac_addr); 388 list_add_tail(&new_entry->list, &adap->mac_hlist); 389 ret = cxgb4_set_addr_hash(pi); 390 } 391 out: 392 return ret < 0 ? ret : 0; 393 } 394 395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 396 { 397 struct port_info *pi = netdev_priv(netdev); 398 struct adapter *adap = pi->adapter; 399 int ret; 400 const u8 *maclist[1] = {mac_addr}; 401 struct hash_mac_addr *entry, *tmp; 402 403 /* If the MAC address to be removed is in the hash addr 404 * list, delete it from the list and update hash vector 405 */ 406 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 407 if (ether_addr_equal(entry->addr, mac_addr)) { 408 list_del(&entry->list); 409 kfree(entry); 410 return cxgb4_set_addr_hash(pi); 411 } 412 } 413 414 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 415 return ret < 0 ? -EINVAL : 0; 416 } 417 418 /* 419 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 420 * If @mtu is -1 it is left unchanged. 421 */ 422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 423 { 424 struct port_info *pi = netdev_priv(dev); 425 struct adapter *adapter = pi->adapter; 426 427 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 429 430 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 431 (dev->flags & IFF_PROMISC) ? 1 : 0, 432 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 433 sleep_ok); 434 } 435 436 /** 437 * link_start - enable a port 438 * @dev: the port to enable 439 * 440 * Performs the MAC and PHY actions needed to enable a port. 441 */ 442 static int link_start(struct net_device *dev) 443 { 444 int ret; 445 struct port_info *pi = netdev_priv(dev); 446 unsigned int mb = pi->adapter->pf; 447 448 /* 449 * We do not set address filters and promiscuity here, the stack does 450 * that step explicitly. 451 */ 452 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 453 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 454 if (ret == 0) { 455 ret = t4_change_mac(pi->adapter, mb, pi->viid, 456 pi->xact_addr_filt, dev->dev_addr, true, 457 true); 458 if (ret >= 0) { 459 pi->xact_addr_filt = ret; 460 ret = 0; 461 } 462 } 463 if (ret == 0) 464 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 465 &pi->link_cfg); 466 if (ret == 0) { 467 local_bh_disable(); 468 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 469 true, CXGB4_DCB_ENABLED); 470 local_bh_enable(); 471 } 472 473 return ret; 474 } 475 476 #ifdef CONFIG_CHELSIO_T4_DCB 477 /* Handle a Data Center Bridging update message from the firmware. */ 478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 479 { 480 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 481 struct net_device *dev = adap->port[adap->chan_map[port]]; 482 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 483 int new_dcb_enabled; 484 485 cxgb4_dcb_handle_fw_update(adap, pcmd); 486 new_dcb_enabled = cxgb4_dcb_enabled(dev); 487 488 /* If the DCB has become enabled or disabled on the port then we're 489 * going to need to set up/tear down DCB Priority parameters for the 490 * TX Queues associated with the port. 491 */ 492 if (new_dcb_enabled != old_dcb_enabled) 493 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 494 } 495 #endif /* CONFIG_CHELSIO_T4_DCB */ 496 497 /* Response queue handler for the FW event queue. 498 */ 499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 500 const struct pkt_gl *gl) 501 { 502 u8 opcode = ((const struct rss_header *)rsp)->opcode; 503 504 rsp++; /* skip RSS header */ 505 506 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 507 */ 508 if (unlikely(opcode == CPL_FW4_MSG && 509 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 510 rsp++; 511 opcode = ((const struct rss_header *)rsp)->opcode; 512 rsp++; 513 if (opcode != CPL_SGE_EGR_UPDATE) { 514 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 515 , opcode); 516 goto out; 517 } 518 } 519 520 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 521 const struct cpl_sge_egr_update *p = (void *)rsp; 522 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 523 struct sge_txq *txq; 524 525 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 526 txq->restarts++; 527 if (txq->q_type == CXGB4_TXQ_ETH) { 528 struct sge_eth_txq *eq; 529 530 eq = container_of(txq, struct sge_eth_txq, q); 531 netif_tx_wake_queue(eq->txq); 532 } else { 533 struct sge_uld_txq *oq; 534 535 oq = container_of(txq, struct sge_uld_txq, q); 536 tasklet_schedule(&oq->qresume_tsk); 537 } 538 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 539 const struct cpl_fw6_msg *p = (void *)rsp; 540 541 #ifdef CONFIG_CHELSIO_T4_DCB 542 const struct fw_port_cmd *pcmd = (const void *)p->data; 543 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 544 unsigned int action = 545 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 546 547 if (cmd == FW_PORT_CMD && 548 (action == FW_PORT_ACTION_GET_PORT_INFO || 549 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 550 int port = FW_PORT_CMD_PORTID_G( 551 be32_to_cpu(pcmd->op_to_portid)); 552 struct net_device *dev; 553 int dcbxdis, state_input; 554 555 dev = q->adap->port[q->adap->chan_map[port]]; 556 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 557 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 558 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 559 & FW_PORT_CMD_DCBXDIS32_F)); 560 state_input = (dcbxdis 561 ? CXGB4_DCB_INPUT_FW_DISABLED 562 : CXGB4_DCB_INPUT_FW_ENABLED); 563 564 cxgb4_dcb_state_fsm(dev, state_input); 565 } 566 567 if (cmd == FW_PORT_CMD && 568 action == FW_PORT_ACTION_L2_DCB_CFG) 569 dcb_rpl(q->adap, pcmd); 570 else 571 #endif 572 if (p->type == 0) 573 t4_handle_fw_rpl(q->adap, p->data); 574 } else if (opcode == CPL_L2T_WRITE_RPL) { 575 const struct cpl_l2t_write_rpl *p = (void *)rsp; 576 577 do_l2t_write_rpl(q->adap, p); 578 } else if (opcode == CPL_SMT_WRITE_RPL) { 579 const struct cpl_smt_write_rpl *p = (void *)rsp; 580 581 do_smt_write_rpl(q->adap, p); 582 } else if (opcode == CPL_SET_TCB_RPL) { 583 const struct cpl_set_tcb_rpl *p = (void *)rsp; 584 585 filter_rpl(q->adap, p); 586 } else if (opcode == CPL_ACT_OPEN_RPL) { 587 const struct cpl_act_open_rpl *p = (void *)rsp; 588 589 hash_filter_rpl(q->adap, p); 590 } else if (opcode == CPL_ABORT_RPL_RSS) { 591 const struct cpl_abort_rpl_rss *p = (void *)rsp; 592 593 hash_del_filter_rpl(q->adap, p); 594 } else if (opcode == CPL_SRQ_TABLE_RPL) { 595 const struct cpl_srq_table_rpl *p = (void *)rsp; 596 597 do_srq_table_rpl(q->adap, p); 598 } else 599 dev_err(q->adap->pdev_dev, 600 "unexpected CPL %#x on FW event queue\n", opcode); 601 out: 602 return 0; 603 } 604 605 static void disable_msi(struct adapter *adapter) 606 { 607 if (adapter->flags & USING_MSIX) { 608 pci_disable_msix(adapter->pdev); 609 adapter->flags &= ~USING_MSIX; 610 } else if (adapter->flags & USING_MSI) { 611 pci_disable_msi(adapter->pdev); 612 adapter->flags &= ~USING_MSI; 613 } 614 } 615 616 /* 617 * Interrupt handler for non-data events used with MSI-X. 618 */ 619 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 620 { 621 struct adapter *adap = cookie; 622 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 623 624 if (v & PFSW_F) { 625 adap->swintr = 1; 626 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 627 } 628 if (adap->flags & MASTER_PF) 629 t4_slow_intr_handler(adap); 630 return IRQ_HANDLED; 631 } 632 633 /* 634 * Name the MSI-X interrupts. 635 */ 636 static void name_msix_vecs(struct adapter *adap) 637 { 638 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 639 640 /* non-data interrupts */ 641 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 642 643 /* FW events */ 644 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 645 adap->port[0]->name); 646 647 /* Ethernet queues */ 648 for_each_port(adap, j) { 649 struct net_device *d = adap->port[j]; 650 const struct port_info *pi = netdev_priv(d); 651 652 for (i = 0; i < pi->nqsets; i++, msi_idx++) 653 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 654 d->name, i); 655 } 656 } 657 658 static int request_msix_queue_irqs(struct adapter *adap) 659 { 660 struct sge *s = &adap->sge; 661 int err, ethqidx; 662 int msi_index = 2; 663 664 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 665 adap->msix_info[1].desc, &s->fw_evtq); 666 if (err) 667 return err; 668 669 for_each_ethrxq(s, ethqidx) { 670 err = request_irq(adap->msix_info[msi_index].vec, 671 t4_sge_intr_msix, 0, 672 adap->msix_info[msi_index].desc, 673 &s->ethrxq[ethqidx].rspq); 674 if (err) 675 goto unwind; 676 msi_index++; 677 } 678 return 0; 679 680 unwind: 681 while (--ethqidx >= 0) 682 free_irq(adap->msix_info[--msi_index].vec, 683 &s->ethrxq[ethqidx].rspq); 684 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 685 return err; 686 } 687 688 static void free_msix_queue_irqs(struct adapter *adap) 689 { 690 int i, msi_index = 2; 691 struct sge *s = &adap->sge; 692 693 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 694 for_each_ethrxq(s, i) 695 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 696 } 697 698 /** 699 * cxgb4_write_rss - write the RSS table for a given port 700 * @pi: the port 701 * @queues: array of queue indices for RSS 702 * 703 * Sets up the portion of the HW RSS table for the port's VI to distribute 704 * packets to the Rx queues in @queues. 705 * Should never be called before setting up sge eth rx queues 706 */ 707 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 708 { 709 u16 *rss; 710 int i, err; 711 struct adapter *adapter = pi->adapter; 712 const struct sge_eth_rxq *rxq; 713 714 rxq = &adapter->sge.ethrxq[pi->first_qset]; 715 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 716 if (!rss) 717 return -ENOMEM; 718 719 /* map the queue indices to queue ids */ 720 for (i = 0; i < pi->rss_size; i++, queues++) 721 rss[i] = rxq[*queues].rspq.abs_id; 722 723 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 724 pi->rss_size, rss, pi->rss_size); 725 /* If Tunnel All Lookup isn't specified in the global RSS 726 * Configuration, then we need to specify a default Ingress 727 * Queue for any ingress packets which aren't hashed. We'll 728 * use our first ingress queue ... 729 */ 730 if (!err) 731 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 732 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 733 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 734 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 735 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 736 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 737 rss[0]); 738 kfree(rss); 739 return err; 740 } 741 742 /** 743 * setup_rss - configure RSS 744 * @adap: the adapter 745 * 746 * Sets up RSS for each port. 747 */ 748 static int setup_rss(struct adapter *adap) 749 { 750 int i, j, err; 751 752 for_each_port(adap, i) { 753 const struct port_info *pi = adap2pinfo(adap, i); 754 755 /* Fill default values with equal distribution */ 756 for (j = 0; j < pi->rss_size; j++) 757 pi->rss[j] = j % pi->nqsets; 758 759 err = cxgb4_write_rss(pi, pi->rss); 760 if (err) 761 return err; 762 } 763 return 0; 764 } 765 766 /* 767 * Return the channel of the ingress queue with the given qid. 768 */ 769 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 770 { 771 qid -= p->ingr_start; 772 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 773 } 774 775 /* 776 * Wait until all NAPI handlers are descheduled. 777 */ 778 static void quiesce_rx(struct adapter *adap) 779 { 780 int i; 781 782 for (i = 0; i < adap->sge.ingr_sz; i++) { 783 struct sge_rspq *q = adap->sge.ingr_map[i]; 784 785 if (q && q->handler) 786 napi_disable(&q->napi); 787 } 788 } 789 790 /* Disable interrupt and napi handler */ 791 static void disable_interrupts(struct adapter *adap) 792 { 793 if (adap->flags & FULL_INIT_DONE) { 794 t4_intr_disable(adap); 795 if (adap->flags & USING_MSIX) { 796 free_msix_queue_irqs(adap); 797 free_irq(adap->msix_info[0].vec, adap); 798 } else { 799 free_irq(adap->pdev->irq, adap); 800 } 801 quiesce_rx(adap); 802 } 803 } 804 805 /* 806 * Enable NAPI scheduling and interrupt generation for all Rx queues. 807 */ 808 static void enable_rx(struct adapter *adap) 809 { 810 int i; 811 812 for (i = 0; i < adap->sge.ingr_sz; i++) { 813 struct sge_rspq *q = adap->sge.ingr_map[i]; 814 815 if (!q) 816 continue; 817 if (q->handler) 818 napi_enable(&q->napi); 819 820 /* 0-increment GTS to start the timer and enable interrupts */ 821 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 822 SEINTARM_V(q->intr_params) | 823 INGRESSQID_V(q->cntxt_id)); 824 } 825 } 826 827 828 static int setup_fw_sge_queues(struct adapter *adap) 829 { 830 struct sge *s = &adap->sge; 831 int err = 0; 832 833 bitmap_zero(s->starving_fl, s->egr_sz); 834 bitmap_zero(s->txq_maperr, s->egr_sz); 835 836 if (adap->flags & USING_MSIX) 837 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 838 else { 839 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 840 NULL, NULL, NULL, -1); 841 if (err) 842 return err; 843 adap->msi_idx = -((int)s->intrq.abs_id + 1); 844 } 845 846 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 847 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 848 return err; 849 } 850 851 /** 852 * setup_sge_queues - configure SGE Tx/Rx/response queues 853 * @adap: the adapter 854 * 855 * Determines how many sets of SGE queues to use and initializes them. 856 * We support multiple queue sets per port if we have MSI-X, otherwise 857 * just one queue set per port. 858 */ 859 static int setup_sge_queues(struct adapter *adap) 860 { 861 int err, i, j; 862 struct sge *s = &adap->sge; 863 struct sge_uld_rxq_info *rxq_info = NULL; 864 unsigned int cmplqid = 0; 865 866 if (is_uld(adap)) 867 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 868 869 for_each_port(adap, i) { 870 struct net_device *dev = adap->port[i]; 871 struct port_info *pi = netdev_priv(dev); 872 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 873 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 874 875 for (j = 0; j < pi->nqsets; j++, q++) { 876 if (adap->msi_idx > 0) 877 adap->msi_idx++; 878 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 879 adap->msi_idx, &q->fl, 880 t4_ethrx_handler, 881 NULL, 882 t4_get_tp_ch_map(adap, 883 pi->tx_chan)); 884 if (err) 885 goto freeout; 886 q->rspq.idx = j; 887 memset(&q->stats, 0, sizeof(q->stats)); 888 } 889 for (j = 0; j < pi->nqsets; j++, t++) { 890 err = t4_sge_alloc_eth_txq(adap, t, dev, 891 netdev_get_tx_queue(dev, j), 892 s->fw_evtq.cntxt_id); 893 if (err) 894 goto freeout; 895 } 896 } 897 898 for_each_port(adap, i) { 899 /* Note that cmplqid below is 0 if we don't 900 * have RDMA queues, and that's the right value. 901 */ 902 if (rxq_info) 903 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 904 905 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 906 s->fw_evtq.cntxt_id, cmplqid); 907 if (err) 908 goto freeout; 909 } 910 911 if (!is_t4(adap->params.chip)) { 912 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 913 netdev_get_tx_queue(adap->port[0], 0) 914 , s->fw_evtq.cntxt_id); 915 if (err) 916 goto freeout; 917 } 918 919 t4_write_reg(adap, is_t4(adap->params.chip) ? 920 MPS_TRC_RSS_CONTROL_A : 921 MPS_T5_TRC_RSS_CONTROL_A, 922 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 923 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 924 return 0; 925 freeout: 926 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 927 t4_free_sge_resources(adap); 928 return err; 929 } 930 931 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 932 struct net_device *sb_dev, 933 select_queue_fallback_t fallback) 934 { 935 int txq; 936 937 #ifdef CONFIG_CHELSIO_T4_DCB 938 /* If a Data Center Bridging has been successfully negotiated on this 939 * link then we'll use the skb's priority to map it to a TX Queue. 940 * The skb's priority is determined via the VLAN Tag Priority Code 941 * Point field. 942 */ 943 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 944 u16 vlan_tci; 945 int err; 946 947 err = vlan_get_tag(skb, &vlan_tci); 948 if (unlikely(err)) { 949 if (net_ratelimit()) 950 netdev_warn(dev, 951 "TX Packet without VLAN Tag on DCB Link\n"); 952 txq = 0; 953 } else { 954 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 955 #ifdef CONFIG_CHELSIO_T4_FCOE 956 if (skb->protocol == htons(ETH_P_FCOE)) 957 txq = skb->priority & 0x7; 958 #endif /* CONFIG_CHELSIO_T4_FCOE */ 959 } 960 return txq; 961 } 962 #endif /* CONFIG_CHELSIO_T4_DCB */ 963 964 if (select_queue) { 965 txq = (skb_rx_queue_recorded(skb) 966 ? skb_get_rx_queue(skb) 967 : smp_processor_id()); 968 969 while (unlikely(txq >= dev->real_num_tx_queues)) 970 txq -= dev->real_num_tx_queues; 971 972 return txq; 973 } 974 975 return fallback(dev, skb, NULL) % dev->real_num_tx_queues; 976 } 977 978 static int closest_timer(const struct sge *s, int time) 979 { 980 int i, delta, match = 0, min_delta = INT_MAX; 981 982 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 983 delta = time - s->timer_val[i]; 984 if (delta < 0) 985 delta = -delta; 986 if (delta < min_delta) { 987 min_delta = delta; 988 match = i; 989 } 990 } 991 return match; 992 } 993 994 static int closest_thres(const struct sge *s, int thres) 995 { 996 int i, delta, match = 0, min_delta = INT_MAX; 997 998 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 999 delta = thres - s->counter_val[i]; 1000 if (delta < 0) 1001 delta = -delta; 1002 if (delta < min_delta) { 1003 min_delta = delta; 1004 match = i; 1005 } 1006 } 1007 return match; 1008 } 1009 1010 /** 1011 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1012 * @q: the Rx queue 1013 * @us: the hold-off time in us, or 0 to disable timer 1014 * @cnt: the hold-off packet count, or 0 to disable counter 1015 * 1016 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1017 * one of the two needs to be enabled for the queue to generate interrupts. 1018 */ 1019 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1020 unsigned int us, unsigned int cnt) 1021 { 1022 struct adapter *adap = q->adap; 1023 1024 if ((us | cnt) == 0) 1025 cnt = 1; 1026 1027 if (cnt) { 1028 int err; 1029 u32 v, new_idx; 1030 1031 new_idx = closest_thres(&adap->sge, cnt); 1032 if (q->desc && q->pktcnt_idx != new_idx) { 1033 /* the queue has already been created, update it */ 1034 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1035 FW_PARAMS_PARAM_X_V( 1036 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1037 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1038 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1039 &v, &new_idx); 1040 if (err) 1041 return err; 1042 } 1043 q->pktcnt_idx = new_idx; 1044 } 1045 1046 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1047 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1048 return 0; 1049 } 1050 1051 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1052 { 1053 const struct port_info *pi = netdev_priv(dev); 1054 netdev_features_t changed = dev->features ^ features; 1055 int err; 1056 1057 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1058 return 0; 1059 1060 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1061 -1, -1, -1, 1062 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1063 if (unlikely(err)) 1064 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1065 return err; 1066 } 1067 1068 static int setup_debugfs(struct adapter *adap) 1069 { 1070 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1071 return -1; 1072 1073 #ifdef CONFIG_DEBUG_FS 1074 t4_setup_debugfs(adap); 1075 #endif 1076 return 0; 1077 } 1078 1079 /* 1080 * upper-layer driver support 1081 */ 1082 1083 /* 1084 * Allocate an active-open TID and set it to the supplied value. 1085 */ 1086 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1087 { 1088 int atid = -1; 1089 1090 spin_lock_bh(&t->atid_lock); 1091 if (t->afree) { 1092 union aopen_entry *p = t->afree; 1093 1094 atid = (p - t->atid_tab) + t->atid_base; 1095 t->afree = p->next; 1096 p->data = data; 1097 t->atids_in_use++; 1098 } 1099 spin_unlock_bh(&t->atid_lock); 1100 return atid; 1101 } 1102 EXPORT_SYMBOL(cxgb4_alloc_atid); 1103 1104 /* 1105 * Release an active-open TID. 1106 */ 1107 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1108 { 1109 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1110 1111 spin_lock_bh(&t->atid_lock); 1112 p->next = t->afree; 1113 t->afree = p; 1114 t->atids_in_use--; 1115 spin_unlock_bh(&t->atid_lock); 1116 } 1117 EXPORT_SYMBOL(cxgb4_free_atid); 1118 1119 /* 1120 * Allocate a server TID and set it to the supplied value. 1121 */ 1122 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1123 { 1124 int stid; 1125 1126 spin_lock_bh(&t->stid_lock); 1127 if (family == PF_INET) { 1128 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1129 if (stid < t->nstids) 1130 __set_bit(stid, t->stid_bmap); 1131 else 1132 stid = -1; 1133 } else { 1134 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1135 if (stid < 0) 1136 stid = -1; 1137 } 1138 if (stid >= 0) { 1139 t->stid_tab[stid].data = data; 1140 stid += t->stid_base; 1141 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1142 * This is equivalent to 4 TIDs. With CLIP enabled it 1143 * needs 2 TIDs. 1144 */ 1145 if (family == PF_INET6) { 1146 t->stids_in_use += 2; 1147 t->v6_stids_in_use += 2; 1148 } else { 1149 t->stids_in_use++; 1150 } 1151 } 1152 spin_unlock_bh(&t->stid_lock); 1153 return stid; 1154 } 1155 EXPORT_SYMBOL(cxgb4_alloc_stid); 1156 1157 /* Allocate a server filter TID and set it to the supplied value. 1158 */ 1159 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1160 { 1161 int stid; 1162 1163 spin_lock_bh(&t->stid_lock); 1164 if (family == PF_INET) { 1165 stid = find_next_zero_bit(t->stid_bmap, 1166 t->nstids + t->nsftids, t->nstids); 1167 if (stid < (t->nstids + t->nsftids)) 1168 __set_bit(stid, t->stid_bmap); 1169 else 1170 stid = -1; 1171 } else { 1172 stid = -1; 1173 } 1174 if (stid >= 0) { 1175 t->stid_tab[stid].data = data; 1176 stid -= t->nstids; 1177 stid += t->sftid_base; 1178 t->sftids_in_use++; 1179 } 1180 spin_unlock_bh(&t->stid_lock); 1181 return stid; 1182 } 1183 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1184 1185 /* Release a server TID. 1186 */ 1187 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1188 { 1189 /* Is it a server filter TID? */ 1190 if (t->nsftids && (stid >= t->sftid_base)) { 1191 stid -= t->sftid_base; 1192 stid += t->nstids; 1193 } else { 1194 stid -= t->stid_base; 1195 } 1196 1197 spin_lock_bh(&t->stid_lock); 1198 if (family == PF_INET) 1199 __clear_bit(stid, t->stid_bmap); 1200 else 1201 bitmap_release_region(t->stid_bmap, stid, 1); 1202 t->stid_tab[stid].data = NULL; 1203 if (stid < t->nstids) { 1204 if (family == PF_INET6) { 1205 t->stids_in_use -= 2; 1206 t->v6_stids_in_use -= 2; 1207 } else { 1208 t->stids_in_use--; 1209 } 1210 } else { 1211 t->sftids_in_use--; 1212 } 1213 1214 spin_unlock_bh(&t->stid_lock); 1215 } 1216 EXPORT_SYMBOL(cxgb4_free_stid); 1217 1218 /* 1219 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1220 */ 1221 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1222 unsigned int tid) 1223 { 1224 struct cpl_tid_release *req; 1225 1226 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1227 req = __skb_put(skb, sizeof(*req)); 1228 INIT_TP_WR(req, tid); 1229 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1230 } 1231 1232 /* 1233 * Queue a TID release request and if necessary schedule a work queue to 1234 * process it. 1235 */ 1236 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1237 unsigned int tid) 1238 { 1239 void **p = &t->tid_tab[tid]; 1240 struct adapter *adap = container_of(t, struct adapter, tids); 1241 1242 spin_lock_bh(&adap->tid_release_lock); 1243 *p = adap->tid_release_head; 1244 /* Low 2 bits encode the Tx channel number */ 1245 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1246 if (!adap->tid_release_task_busy) { 1247 adap->tid_release_task_busy = true; 1248 queue_work(adap->workq, &adap->tid_release_task); 1249 } 1250 spin_unlock_bh(&adap->tid_release_lock); 1251 } 1252 1253 /* 1254 * Process the list of pending TID release requests. 1255 */ 1256 static void process_tid_release_list(struct work_struct *work) 1257 { 1258 struct sk_buff *skb; 1259 struct adapter *adap; 1260 1261 adap = container_of(work, struct adapter, tid_release_task); 1262 1263 spin_lock_bh(&adap->tid_release_lock); 1264 while (adap->tid_release_head) { 1265 void **p = adap->tid_release_head; 1266 unsigned int chan = (uintptr_t)p & 3; 1267 p = (void *)p - chan; 1268 1269 adap->tid_release_head = *p; 1270 *p = NULL; 1271 spin_unlock_bh(&adap->tid_release_lock); 1272 1273 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1274 GFP_KERNEL))) 1275 schedule_timeout_uninterruptible(1); 1276 1277 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1278 t4_ofld_send(adap, skb); 1279 spin_lock_bh(&adap->tid_release_lock); 1280 } 1281 adap->tid_release_task_busy = false; 1282 spin_unlock_bh(&adap->tid_release_lock); 1283 } 1284 1285 /* 1286 * Release a TID and inform HW. If we are unable to allocate the release 1287 * message we defer to a work queue. 1288 */ 1289 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1290 unsigned short family) 1291 { 1292 struct sk_buff *skb; 1293 struct adapter *adap = container_of(t, struct adapter, tids); 1294 1295 WARN_ON(tid >= t->ntids); 1296 1297 if (t->tid_tab[tid]) { 1298 t->tid_tab[tid] = NULL; 1299 atomic_dec(&t->conns_in_use); 1300 if (t->hash_base && (tid >= t->hash_base)) { 1301 if (family == AF_INET6) 1302 atomic_sub(2, &t->hash_tids_in_use); 1303 else 1304 atomic_dec(&t->hash_tids_in_use); 1305 } else { 1306 if (family == AF_INET6) 1307 atomic_sub(2, &t->tids_in_use); 1308 else 1309 atomic_dec(&t->tids_in_use); 1310 } 1311 } 1312 1313 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1314 if (likely(skb)) { 1315 mk_tid_release(skb, chan, tid); 1316 t4_ofld_send(adap, skb); 1317 } else 1318 cxgb4_queue_tid_release(t, chan, tid); 1319 } 1320 EXPORT_SYMBOL(cxgb4_remove_tid); 1321 1322 /* 1323 * Allocate and initialize the TID tables. Returns 0 on success. 1324 */ 1325 static int tid_init(struct tid_info *t) 1326 { 1327 struct adapter *adap = container_of(t, struct adapter, tids); 1328 unsigned int max_ftids = t->nftids + t->nsftids; 1329 unsigned int natids = t->natids; 1330 unsigned int stid_bmap_size; 1331 unsigned int ftid_bmap_size; 1332 size_t size; 1333 1334 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1335 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1336 size = t->ntids * sizeof(*t->tid_tab) + 1337 natids * sizeof(*t->atid_tab) + 1338 t->nstids * sizeof(*t->stid_tab) + 1339 t->nsftids * sizeof(*t->stid_tab) + 1340 stid_bmap_size * sizeof(long) + 1341 max_ftids * sizeof(*t->ftid_tab) + 1342 ftid_bmap_size * sizeof(long); 1343 1344 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1345 if (!t->tid_tab) 1346 return -ENOMEM; 1347 1348 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1349 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1350 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1351 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1352 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1353 spin_lock_init(&t->stid_lock); 1354 spin_lock_init(&t->atid_lock); 1355 spin_lock_init(&t->ftid_lock); 1356 1357 t->stids_in_use = 0; 1358 t->v6_stids_in_use = 0; 1359 t->sftids_in_use = 0; 1360 t->afree = NULL; 1361 t->atids_in_use = 0; 1362 atomic_set(&t->tids_in_use, 0); 1363 atomic_set(&t->conns_in_use, 0); 1364 atomic_set(&t->hash_tids_in_use, 0); 1365 1366 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1367 if (natids) { 1368 while (--natids) 1369 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1370 t->afree = t->atid_tab; 1371 } 1372 1373 if (is_offload(adap)) { 1374 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1375 /* Reserve stid 0 for T4/T5 adapters */ 1376 if (!t->stid_base && 1377 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1378 __set_bit(0, t->stid_bmap); 1379 } 1380 1381 bitmap_zero(t->ftid_bmap, t->nftids); 1382 return 0; 1383 } 1384 1385 /** 1386 * cxgb4_create_server - create an IP server 1387 * @dev: the device 1388 * @stid: the server TID 1389 * @sip: local IP address to bind server to 1390 * @sport: the server's TCP port 1391 * @queue: queue to direct messages from this server to 1392 * 1393 * Create an IP server for the given port and address. 1394 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1395 */ 1396 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1397 __be32 sip, __be16 sport, __be16 vlan, 1398 unsigned int queue) 1399 { 1400 unsigned int chan; 1401 struct sk_buff *skb; 1402 struct adapter *adap; 1403 struct cpl_pass_open_req *req; 1404 int ret; 1405 1406 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1407 if (!skb) 1408 return -ENOMEM; 1409 1410 adap = netdev2adap(dev); 1411 req = __skb_put(skb, sizeof(*req)); 1412 INIT_TP_WR(req, 0); 1413 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1414 req->local_port = sport; 1415 req->peer_port = htons(0); 1416 req->local_ip = sip; 1417 req->peer_ip = htonl(0); 1418 chan = rxq_to_chan(&adap->sge, queue); 1419 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1420 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1421 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1422 ret = t4_mgmt_tx(adap, skb); 1423 return net_xmit_eval(ret); 1424 } 1425 EXPORT_SYMBOL(cxgb4_create_server); 1426 1427 /* cxgb4_create_server6 - create an IPv6 server 1428 * @dev: the device 1429 * @stid: the server TID 1430 * @sip: local IPv6 address to bind server to 1431 * @sport: the server's TCP port 1432 * @queue: queue to direct messages from this server to 1433 * 1434 * Create an IPv6 server for the given port and address. 1435 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1436 */ 1437 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1438 const struct in6_addr *sip, __be16 sport, 1439 unsigned int queue) 1440 { 1441 unsigned int chan; 1442 struct sk_buff *skb; 1443 struct adapter *adap; 1444 struct cpl_pass_open_req6 *req; 1445 int ret; 1446 1447 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1448 if (!skb) 1449 return -ENOMEM; 1450 1451 adap = netdev2adap(dev); 1452 req = __skb_put(skb, sizeof(*req)); 1453 INIT_TP_WR(req, 0); 1454 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1455 req->local_port = sport; 1456 req->peer_port = htons(0); 1457 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1458 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1459 req->peer_ip_hi = cpu_to_be64(0); 1460 req->peer_ip_lo = cpu_to_be64(0); 1461 chan = rxq_to_chan(&adap->sge, queue); 1462 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1463 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1464 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1465 ret = t4_mgmt_tx(adap, skb); 1466 return net_xmit_eval(ret); 1467 } 1468 EXPORT_SYMBOL(cxgb4_create_server6); 1469 1470 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1471 unsigned int queue, bool ipv6) 1472 { 1473 struct sk_buff *skb; 1474 struct adapter *adap; 1475 struct cpl_close_listsvr_req *req; 1476 int ret; 1477 1478 adap = netdev2adap(dev); 1479 1480 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1481 if (!skb) 1482 return -ENOMEM; 1483 1484 req = __skb_put(skb, sizeof(*req)); 1485 INIT_TP_WR(req, 0); 1486 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1487 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1488 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1489 ret = t4_mgmt_tx(adap, skb); 1490 return net_xmit_eval(ret); 1491 } 1492 EXPORT_SYMBOL(cxgb4_remove_server); 1493 1494 /** 1495 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1496 * @mtus: the HW MTU table 1497 * @mtu: the target MTU 1498 * @idx: index of selected entry in the MTU table 1499 * 1500 * Returns the index and the value in the HW MTU table that is closest to 1501 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1502 * table, in which case that smallest available value is selected. 1503 */ 1504 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1505 unsigned int *idx) 1506 { 1507 unsigned int i = 0; 1508 1509 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1510 ++i; 1511 if (idx) 1512 *idx = i; 1513 return mtus[i]; 1514 } 1515 EXPORT_SYMBOL(cxgb4_best_mtu); 1516 1517 /** 1518 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1519 * @mtus: the HW MTU table 1520 * @header_size: Header Size 1521 * @data_size_max: maximum Data Segment Size 1522 * @data_size_align: desired Data Segment Size Alignment (2^N) 1523 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1524 * 1525 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1526 * MTU Table based solely on a Maximum MTU parameter, we break that 1527 * parameter up into a Header Size and Maximum Data Segment Size, and 1528 * provide a desired Data Segment Size Alignment. If we find an MTU in 1529 * the Hardware MTU Table which will result in a Data Segment Size with 1530 * the requested alignment _and_ that MTU isn't "too far" from the 1531 * closest MTU, then we'll return that rather than the closest MTU. 1532 */ 1533 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1534 unsigned short header_size, 1535 unsigned short data_size_max, 1536 unsigned short data_size_align, 1537 unsigned int *mtu_idxp) 1538 { 1539 unsigned short max_mtu = header_size + data_size_max; 1540 unsigned short data_size_align_mask = data_size_align - 1; 1541 int mtu_idx, aligned_mtu_idx; 1542 1543 /* Scan the MTU Table till we find an MTU which is larger than our 1544 * Maximum MTU or we reach the end of the table. Along the way, 1545 * record the last MTU found, if any, which will result in a Data 1546 * Segment Length matching the requested alignment. 1547 */ 1548 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1549 unsigned short data_size = mtus[mtu_idx] - header_size; 1550 1551 /* If this MTU minus the Header Size would result in a 1552 * Data Segment Size of the desired alignment, remember it. 1553 */ 1554 if ((data_size & data_size_align_mask) == 0) 1555 aligned_mtu_idx = mtu_idx; 1556 1557 /* If we're not at the end of the Hardware MTU Table and the 1558 * next element is larger than our Maximum MTU, drop out of 1559 * the loop. 1560 */ 1561 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1562 break; 1563 } 1564 1565 /* If we fell out of the loop because we ran to the end of the table, 1566 * then we just have to use the last [largest] entry. 1567 */ 1568 if (mtu_idx == NMTUS) 1569 mtu_idx--; 1570 1571 /* If we found an MTU which resulted in the requested Data Segment 1572 * Length alignment and that's "not far" from the largest MTU which is 1573 * less than or equal to the maximum MTU, then use that. 1574 */ 1575 if (aligned_mtu_idx >= 0 && 1576 mtu_idx - aligned_mtu_idx <= 1) 1577 mtu_idx = aligned_mtu_idx; 1578 1579 /* If the caller has passed in an MTU Index pointer, pass the 1580 * MTU Index back. Return the MTU value. 1581 */ 1582 if (mtu_idxp) 1583 *mtu_idxp = mtu_idx; 1584 return mtus[mtu_idx]; 1585 } 1586 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1587 1588 /** 1589 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1590 * @chip: chip type 1591 * @viid: VI id of the given port 1592 * 1593 * Return the SMT index for this VI. 1594 */ 1595 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1596 { 1597 /* In T4/T5, SMT contains 256 SMAC entries organized in 1598 * 128 rows of 2 entries each. 1599 * In T6, SMT contains 256 SMAC entries in 256 rows. 1600 * TODO: The below code needs to be updated when we add support 1601 * for 256 VFs. 1602 */ 1603 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1604 return ((viid & 0x7f) << 1); 1605 else 1606 return (viid & 0x7f); 1607 } 1608 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1609 1610 /** 1611 * cxgb4_port_chan - get the HW channel of a port 1612 * @dev: the net device for the port 1613 * 1614 * Return the HW Tx channel of the given port. 1615 */ 1616 unsigned int cxgb4_port_chan(const struct net_device *dev) 1617 { 1618 return netdev2pinfo(dev)->tx_chan; 1619 } 1620 EXPORT_SYMBOL(cxgb4_port_chan); 1621 1622 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1623 { 1624 struct adapter *adap = netdev2adap(dev); 1625 u32 v1, v2, lp_count, hp_count; 1626 1627 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1628 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1629 if (is_t4(adap->params.chip)) { 1630 lp_count = LP_COUNT_G(v1); 1631 hp_count = HP_COUNT_G(v1); 1632 } else { 1633 lp_count = LP_COUNT_T5_G(v1); 1634 hp_count = HP_COUNT_T5_G(v2); 1635 } 1636 return lpfifo ? lp_count : hp_count; 1637 } 1638 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1639 1640 /** 1641 * cxgb4_port_viid - get the VI id of a port 1642 * @dev: the net device for the port 1643 * 1644 * Return the VI id of the given port. 1645 */ 1646 unsigned int cxgb4_port_viid(const struct net_device *dev) 1647 { 1648 return netdev2pinfo(dev)->viid; 1649 } 1650 EXPORT_SYMBOL(cxgb4_port_viid); 1651 1652 /** 1653 * cxgb4_port_idx - get the index of a port 1654 * @dev: the net device for the port 1655 * 1656 * Return the index of the given port. 1657 */ 1658 unsigned int cxgb4_port_idx(const struct net_device *dev) 1659 { 1660 return netdev2pinfo(dev)->port_id; 1661 } 1662 EXPORT_SYMBOL(cxgb4_port_idx); 1663 1664 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1665 struct tp_tcp_stats *v6) 1666 { 1667 struct adapter *adap = pci_get_drvdata(pdev); 1668 1669 spin_lock(&adap->stats_lock); 1670 t4_tp_get_tcp_stats(adap, v4, v6, false); 1671 spin_unlock(&adap->stats_lock); 1672 } 1673 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1674 1675 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1676 const unsigned int *pgsz_order) 1677 { 1678 struct adapter *adap = netdev2adap(dev); 1679 1680 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1681 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1682 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1683 HPZ3_V(pgsz_order[3])); 1684 } 1685 EXPORT_SYMBOL(cxgb4_iscsi_init); 1686 1687 int cxgb4_flush_eq_cache(struct net_device *dev) 1688 { 1689 struct adapter *adap = netdev2adap(dev); 1690 1691 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1692 } 1693 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1694 1695 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1696 { 1697 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1698 __be64 indices; 1699 int ret; 1700 1701 spin_lock(&adap->win0_lock); 1702 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1703 sizeof(indices), (__be32 *)&indices, 1704 T4_MEMORY_READ); 1705 spin_unlock(&adap->win0_lock); 1706 if (!ret) { 1707 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1708 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1709 } 1710 return ret; 1711 } 1712 1713 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1714 u16 size) 1715 { 1716 struct adapter *adap = netdev2adap(dev); 1717 u16 hw_pidx, hw_cidx; 1718 int ret; 1719 1720 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1721 if (ret) 1722 goto out; 1723 1724 if (pidx != hw_pidx) { 1725 u16 delta; 1726 u32 val; 1727 1728 if (pidx >= hw_pidx) 1729 delta = pidx - hw_pidx; 1730 else 1731 delta = size - hw_pidx + pidx; 1732 1733 if (is_t4(adap->params.chip)) 1734 val = PIDX_V(delta); 1735 else 1736 val = PIDX_T5_V(delta); 1737 wmb(); 1738 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1739 QID_V(qid) | val); 1740 } 1741 out: 1742 return ret; 1743 } 1744 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1745 1746 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1747 { 1748 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1749 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1750 u32 offset, memtype, memaddr; 1751 struct adapter *adap; 1752 u32 hma_size = 0; 1753 int ret; 1754 1755 adap = netdev2adap(dev); 1756 1757 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1758 1759 /* Figure out where the offset lands in the Memory Type/Address scheme. 1760 * This code assumes that the memory is laid out starting at offset 0 1761 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1762 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1763 * MC0, and some have both MC0 and MC1. 1764 */ 1765 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1766 edc0_size = EDRAM0_SIZE_G(size) << 20; 1767 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1768 edc1_size = EDRAM1_SIZE_G(size) << 20; 1769 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1770 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1771 1772 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1773 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1774 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1775 } 1776 edc0_end = edc0_size; 1777 edc1_end = edc0_end + edc1_size; 1778 mc0_end = edc1_end + mc0_size; 1779 1780 if (offset < edc0_end) { 1781 memtype = MEM_EDC0; 1782 memaddr = offset; 1783 } else if (offset < edc1_end) { 1784 memtype = MEM_EDC1; 1785 memaddr = offset - edc0_end; 1786 } else { 1787 if (hma_size && (offset < (edc1_end + hma_size))) { 1788 memtype = MEM_HMA; 1789 memaddr = offset - edc1_end; 1790 } else if (offset < mc0_end) { 1791 memtype = MEM_MC0; 1792 memaddr = offset - edc1_end; 1793 } else if (is_t5(adap->params.chip)) { 1794 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1795 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1796 mc1_end = mc0_end + mc1_size; 1797 if (offset < mc1_end) { 1798 memtype = MEM_MC1; 1799 memaddr = offset - mc0_end; 1800 } else { 1801 /* offset beyond the end of any memory */ 1802 goto err; 1803 } 1804 } else { 1805 /* T4/T6 only has a single memory channel */ 1806 goto err; 1807 } 1808 } 1809 1810 spin_lock(&adap->win0_lock); 1811 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1812 spin_unlock(&adap->win0_lock); 1813 return ret; 1814 1815 err: 1816 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1817 stag, offset); 1818 return -EINVAL; 1819 } 1820 EXPORT_SYMBOL(cxgb4_read_tpte); 1821 1822 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1823 { 1824 u32 hi, lo; 1825 struct adapter *adap; 1826 1827 adap = netdev2adap(dev); 1828 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1829 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1830 1831 return ((u64)hi << 32) | (u64)lo; 1832 } 1833 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1834 1835 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1836 unsigned int qid, 1837 enum cxgb4_bar2_qtype qtype, 1838 int user, 1839 u64 *pbar2_qoffset, 1840 unsigned int *pbar2_qid) 1841 { 1842 return t4_bar2_sge_qregs(netdev2adap(dev), 1843 qid, 1844 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1845 ? T4_BAR2_QTYPE_EGRESS 1846 : T4_BAR2_QTYPE_INGRESS), 1847 user, 1848 pbar2_qoffset, 1849 pbar2_qid); 1850 } 1851 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1852 1853 static struct pci_driver cxgb4_driver; 1854 1855 static void check_neigh_update(struct neighbour *neigh) 1856 { 1857 const struct device *parent; 1858 const struct net_device *netdev = neigh->dev; 1859 1860 if (is_vlan_dev(netdev)) 1861 netdev = vlan_dev_real_dev(netdev); 1862 parent = netdev->dev.parent; 1863 if (parent && parent->driver == &cxgb4_driver.driver) 1864 t4_l2t_update(dev_get_drvdata(parent), neigh); 1865 } 1866 1867 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1868 void *data) 1869 { 1870 switch (event) { 1871 case NETEVENT_NEIGH_UPDATE: 1872 check_neigh_update(data); 1873 break; 1874 case NETEVENT_REDIRECT: 1875 default: 1876 break; 1877 } 1878 return 0; 1879 } 1880 1881 static bool netevent_registered; 1882 static struct notifier_block cxgb4_netevent_nb = { 1883 .notifier_call = netevent_cb 1884 }; 1885 1886 static void drain_db_fifo(struct adapter *adap, int usecs) 1887 { 1888 u32 v1, v2, lp_count, hp_count; 1889 1890 do { 1891 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1892 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1893 if (is_t4(adap->params.chip)) { 1894 lp_count = LP_COUNT_G(v1); 1895 hp_count = HP_COUNT_G(v1); 1896 } else { 1897 lp_count = LP_COUNT_T5_G(v1); 1898 hp_count = HP_COUNT_T5_G(v2); 1899 } 1900 1901 if (lp_count == 0 && hp_count == 0) 1902 break; 1903 set_current_state(TASK_UNINTERRUPTIBLE); 1904 schedule_timeout(usecs_to_jiffies(usecs)); 1905 } while (1); 1906 } 1907 1908 static void disable_txq_db(struct sge_txq *q) 1909 { 1910 unsigned long flags; 1911 1912 spin_lock_irqsave(&q->db_lock, flags); 1913 q->db_disabled = 1; 1914 spin_unlock_irqrestore(&q->db_lock, flags); 1915 } 1916 1917 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1918 { 1919 spin_lock_irq(&q->db_lock); 1920 if (q->db_pidx_inc) { 1921 /* Make sure that all writes to the TX descriptors 1922 * are committed before we tell HW about them. 1923 */ 1924 wmb(); 1925 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1926 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1927 q->db_pidx_inc = 0; 1928 } 1929 q->db_disabled = 0; 1930 spin_unlock_irq(&q->db_lock); 1931 } 1932 1933 static void disable_dbs(struct adapter *adap) 1934 { 1935 int i; 1936 1937 for_each_ethrxq(&adap->sge, i) 1938 disable_txq_db(&adap->sge.ethtxq[i].q); 1939 if (is_offload(adap)) { 1940 struct sge_uld_txq_info *txq_info = 1941 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1942 1943 if (txq_info) { 1944 for_each_ofldtxq(&adap->sge, i) { 1945 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1946 1947 disable_txq_db(&txq->q); 1948 } 1949 } 1950 } 1951 for_each_port(adap, i) 1952 disable_txq_db(&adap->sge.ctrlq[i].q); 1953 } 1954 1955 static void enable_dbs(struct adapter *adap) 1956 { 1957 int i; 1958 1959 for_each_ethrxq(&adap->sge, i) 1960 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1961 if (is_offload(adap)) { 1962 struct sge_uld_txq_info *txq_info = 1963 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1964 1965 if (txq_info) { 1966 for_each_ofldtxq(&adap->sge, i) { 1967 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1968 1969 enable_txq_db(adap, &txq->q); 1970 } 1971 } 1972 } 1973 for_each_port(adap, i) 1974 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1975 } 1976 1977 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1978 { 1979 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1980 1981 if (adap->uld && adap->uld[type].handle) 1982 adap->uld[type].control(adap->uld[type].handle, cmd); 1983 } 1984 1985 static void process_db_full(struct work_struct *work) 1986 { 1987 struct adapter *adap; 1988 1989 adap = container_of(work, struct adapter, db_full_task); 1990 1991 drain_db_fifo(adap, dbfifo_drain_delay); 1992 enable_dbs(adap); 1993 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1994 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1995 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1996 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1997 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1998 else 1999 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2000 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2001 } 2002 2003 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2004 { 2005 u16 hw_pidx, hw_cidx; 2006 int ret; 2007 2008 spin_lock_irq(&q->db_lock); 2009 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2010 if (ret) 2011 goto out; 2012 if (q->db_pidx != hw_pidx) { 2013 u16 delta; 2014 u32 val; 2015 2016 if (q->db_pidx >= hw_pidx) 2017 delta = q->db_pidx - hw_pidx; 2018 else 2019 delta = q->size - hw_pidx + q->db_pidx; 2020 2021 if (is_t4(adap->params.chip)) 2022 val = PIDX_V(delta); 2023 else 2024 val = PIDX_T5_V(delta); 2025 wmb(); 2026 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2027 QID_V(q->cntxt_id) | val); 2028 } 2029 out: 2030 q->db_disabled = 0; 2031 q->db_pidx_inc = 0; 2032 spin_unlock_irq(&q->db_lock); 2033 if (ret) 2034 CH_WARN(adap, "DB drop recovery failed.\n"); 2035 } 2036 2037 static void recover_all_queues(struct adapter *adap) 2038 { 2039 int i; 2040 2041 for_each_ethrxq(&adap->sge, i) 2042 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2043 if (is_offload(adap)) { 2044 struct sge_uld_txq_info *txq_info = 2045 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2046 if (txq_info) { 2047 for_each_ofldtxq(&adap->sge, i) { 2048 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2049 2050 sync_txq_pidx(adap, &txq->q); 2051 } 2052 } 2053 } 2054 for_each_port(adap, i) 2055 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2056 } 2057 2058 static void process_db_drop(struct work_struct *work) 2059 { 2060 struct adapter *adap; 2061 2062 adap = container_of(work, struct adapter, db_drop_task); 2063 2064 if (is_t4(adap->params.chip)) { 2065 drain_db_fifo(adap, dbfifo_drain_delay); 2066 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2067 drain_db_fifo(adap, dbfifo_drain_delay); 2068 recover_all_queues(adap); 2069 drain_db_fifo(adap, dbfifo_drain_delay); 2070 enable_dbs(adap); 2071 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2072 } else if (is_t5(adap->params.chip)) { 2073 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2074 u16 qid = (dropped_db >> 15) & 0x1ffff; 2075 u16 pidx_inc = dropped_db & 0x1fff; 2076 u64 bar2_qoffset; 2077 unsigned int bar2_qid; 2078 int ret; 2079 2080 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2081 0, &bar2_qoffset, &bar2_qid); 2082 if (ret) 2083 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2084 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2085 else 2086 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2087 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2088 2089 /* Re-enable BAR2 WC */ 2090 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2091 } 2092 2093 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2094 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2095 } 2096 2097 void t4_db_full(struct adapter *adap) 2098 { 2099 if (is_t4(adap->params.chip)) { 2100 disable_dbs(adap); 2101 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2102 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2103 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2104 queue_work(adap->workq, &adap->db_full_task); 2105 } 2106 } 2107 2108 void t4_db_dropped(struct adapter *adap) 2109 { 2110 if (is_t4(adap->params.chip)) { 2111 disable_dbs(adap); 2112 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2113 } 2114 queue_work(adap->workq, &adap->db_drop_task); 2115 } 2116 2117 void t4_register_netevent_notifier(void) 2118 { 2119 if (!netevent_registered) { 2120 register_netevent_notifier(&cxgb4_netevent_nb); 2121 netevent_registered = true; 2122 } 2123 } 2124 2125 static void detach_ulds(struct adapter *adap) 2126 { 2127 unsigned int i; 2128 2129 mutex_lock(&uld_mutex); 2130 list_del(&adap->list_node); 2131 2132 for (i = 0; i < CXGB4_ULD_MAX; i++) 2133 if (adap->uld && adap->uld[i].handle) 2134 adap->uld[i].state_change(adap->uld[i].handle, 2135 CXGB4_STATE_DETACH); 2136 2137 if (netevent_registered && list_empty(&adapter_list)) { 2138 unregister_netevent_notifier(&cxgb4_netevent_nb); 2139 netevent_registered = false; 2140 } 2141 mutex_unlock(&uld_mutex); 2142 } 2143 2144 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2145 { 2146 unsigned int i; 2147 2148 mutex_lock(&uld_mutex); 2149 for (i = 0; i < CXGB4_ULD_MAX; i++) 2150 if (adap->uld && adap->uld[i].handle) 2151 adap->uld[i].state_change(adap->uld[i].handle, 2152 new_state); 2153 mutex_unlock(&uld_mutex); 2154 } 2155 2156 #if IS_ENABLED(CONFIG_IPV6) 2157 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2158 unsigned long event, void *data) 2159 { 2160 struct inet6_ifaddr *ifa = data; 2161 struct net_device *event_dev = ifa->idev->dev; 2162 const struct device *parent = NULL; 2163 #if IS_ENABLED(CONFIG_BONDING) 2164 struct adapter *adap; 2165 #endif 2166 if (is_vlan_dev(event_dev)) 2167 event_dev = vlan_dev_real_dev(event_dev); 2168 #if IS_ENABLED(CONFIG_BONDING) 2169 if (event_dev->flags & IFF_MASTER) { 2170 list_for_each_entry(adap, &adapter_list, list_node) { 2171 switch (event) { 2172 case NETDEV_UP: 2173 cxgb4_clip_get(adap->port[0], 2174 (const u32 *)ifa, 1); 2175 break; 2176 case NETDEV_DOWN: 2177 cxgb4_clip_release(adap->port[0], 2178 (const u32 *)ifa, 1); 2179 break; 2180 default: 2181 break; 2182 } 2183 } 2184 return NOTIFY_OK; 2185 } 2186 #endif 2187 2188 if (event_dev) 2189 parent = event_dev->dev.parent; 2190 2191 if (parent && parent->driver == &cxgb4_driver.driver) { 2192 switch (event) { 2193 case NETDEV_UP: 2194 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2195 break; 2196 case NETDEV_DOWN: 2197 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2198 break; 2199 default: 2200 break; 2201 } 2202 } 2203 return NOTIFY_OK; 2204 } 2205 2206 static bool inet6addr_registered; 2207 static struct notifier_block cxgb4_inet6addr_notifier = { 2208 .notifier_call = cxgb4_inet6addr_handler 2209 }; 2210 2211 static void update_clip(const struct adapter *adap) 2212 { 2213 int i; 2214 struct net_device *dev; 2215 int ret; 2216 2217 rcu_read_lock(); 2218 2219 for (i = 0; i < MAX_NPORTS; i++) { 2220 dev = adap->port[i]; 2221 ret = 0; 2222 2223 if (dev) 2224 ret = cxgb4_update_root_dev_clip(dev); 2225 2226 if (ret < 0) 2227 break; 2228 } 2229 rcu_read_unlock(); 2230 } 2231 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2232 2233 /** 2234 * cxgb_up - enable the adapter 2235 * @adap: adapter being enabled 2236 * 2237 * Called when the first port is enabled, this function performs the 2238 * actions necessary to make an adapter operational, such as completing 2239 * the initialization of HW modules, and enabling interrupts. 2240 * 2241 * Must be called with the rtnl lock held. 2242 */ 2243 static int cxgb_up(struct adapter *adap) 2244 { 2245 int err; 2246 2247 mutex_lock(&uld_mutex); 2248 err = setup_sge_queues(adap); 2249 if (err) 2250 goto rel_lock; 2251 err = setup_rss(adap); 2252 if (err) 2253 goto freeq; 2254 2255 if (adap->flags & USING_MSIX) { 2256 name_msix_vecs(adap); 2257 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2258 adap->msix_info[0].desc, adap); 2259 if (err) 2260 goto irq_err; 2261 err = request_msix_queue_irqs(adap); 2262 if (err) { 2263 free_irq(adap->msix_info[0].vec, adap); 2264 goto irq_err; 2265 } 2266 } else { 2267 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2268 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2269 adap->port[0]->name, adap); 2270 if (err) 2271 goto irq_err; 2272 } 2273 2274 enable_rx(adap); 2275 t4_sge_start(adap); 2276 t4_intr_enable(adap); 2277 adap->flags |= FULL_INIT_DONE; 2278 mutex_unlock(&uld_mutex); 2279 2280 notify_ulds(adap, CXGB4_STATE_UP); 2281 #if IS_ENABLED(CONFIG_IPV6) 2282 update_clip(adap); 2283 #endif 2284 /* Initialize hash mac addr list*/ 2285 INIT_LIST_HEAD(&adap->mac_hlist); 2286 return err; 2287 2288 irq_err: 2289 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2290 freeq: 2291 t4_free_sge_resources(adap); 2292 rel_lock: 2293 mutex_unlock(&uld_mutex); 2294 return err; 2295 } 2296 2297 static void cxgb_down(struct adapter *adapter) 2298 { 2299 cancel_work_sync(&adapter->tid_release_task); 2300 cancel_work_sync(&adapter->db_full_task); 2301 cancel_work_sync(&adapter->db_drop_task); 2302 adapter->tid_release_task_busy = false; 2303 adapter->tid_release_head = NULL; 2304 2305 t4_sge_stop(adapter); 2306 t4_free_sge_resources(adapter); 2307 adapter->flags &= ~FULL_INIT_DONE; 2308 } 2309 2310 /* 2311 * net_device operations 2312 */ 2313 static int cxgb_open(struct net_device *dev) 2314 { 2315 int err; 2316 struct port_info *pi = netdev_priv(dev); 2317 struct adapter *adapter = pi->adapter; 2318 2319 netif_carrier_off(dev); 2320 2321 if (!(adapter->flags & FULL_INIT_DONE)) { 2322 err = cxgb_up(adapter); 2323 if (err < 0) 2324 return err; 2325 } 2326 2327 /* It's possible that the basic port information could have 2328 * changed since we first read it. 2329 */ 2330 err = t4_update_port_info(pi); 2331 if (err < 0) 2332 return err; 2333 2334 err = link_start(dev); 2335 if (!err) 2336 netif_tx_start_all_queues(dev); 2337 return err; 2338 } 2339 2340 static int cxgb_close(struct net_device *dev) 2341 { 2342 struct port_info *pi = netdev_priv(dev); 2343 struct adapter *adapter = pi->adapter; 2344 int ret; 2345 2346 netif_tx_stop_all_queues(dev); 2347 netif_carrier_off(dev); 2348 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2349 false, false, false); 2350 #ifdef CONFIG_CHELSIO_T4_DCB 2351 cxgb4_dcb_reset(dev); 2352 dcb_tx_queue_prio_enable(dev, false); 2353 #endif 2354 return ret; 2355 } 2356 2357 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2358 __be32 sip, __be16 sport, __be16 vlan, 2359 unsigned int queue, unsigned char port, unsigned char mask) 2360 { 2361 int ret; 2362 struct filter_entry *f; 2363 struct adapter *adap; 2364 int i; 2365 u8 *val; 2366 2367 adap = netdev2adap(dev); 2368 2369 /* Adjust stid to correct filter index */ 2370 stid -= adap->tids.sftid_base; 2371 stid += adap->tids.nftids; 2372 2373 /* Check to make sure the filter requested is writable ... 2374 */ 2375 f = &adap->tids.ftid_tab[stid]; 2376 ret = writable_filter(f); 2377 if (ret) 2378 return ret; 2379 2380 /* Clear out any old resources being used by the filter before 2381 * we start constructing the new filter. 2382 */ 2383 if (f->valid) 2384 clear_filter(adap, f); 2385 2386 /* Clear out filter specifications */ 2387 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2388 f->fs.val.lport = cpu_to_be16(sport); 2389 f->fs.mask.lport = ~0; 2390 val = (u8 *)&sip; 2391 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2392 for (i = 0; i < 4; i++) { 2393 f->fs.val.lip[i] = val[i]; 2394 f->fs.mask.lip[i] = ~0; 2395 } 2396 if (adap->params.tp.vlan_pri_map & PORT_F) { 2397 f->fs.val.iport = port; 2398 f->fs.mask.iport = mask; 2399 } 2400 } 2401 2402 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2403 f->fs.val.proto = IPPROTO_TCP; 2404 f->fs.mask.proto = ~0; 2405 } 2406 2407 f->fs.dirsteer = 1; 2408 f->fs.iq = queue; 2409 /* Mark filter as locked */ 2410 f->locked = 1; 2411 f->fs.rpttid = 1; 2412 2413 /* Save the actual tid. We need this to get the corresponding 2414 * filter entry structure in filter_rpl. 2415 */ 2416 f->tid = stid + adap->tids.ftid_base; 2417 ret = set_filter_wr(adap, stid); 2418 if (ret) { 2419 clear_filter(adap, f); 2420 return ret; 2421 } 2422 2423 return 0; 2424 } 2425 EXPORT_SYMBOL(cxgb4_create_server_filter); 2426 2427 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2428 unsigned int queue, bool ipv6) 2429 { 2430 struct filter_entry *f; 2431 struct adapter *adap; 2432 2433 adap = netdev2adap(dev); 2434 2435 /* Adjust stid to correct filter index */ 2436 stid -= adap->tids.sftid_base; 2437 stid += adap->tids.nftids; 2438 2439 f = &adap->tids.ftid_tab[stid]; 2440 /* Unlock the filter */ 2441 f->locked = 0; 2442 2443 return delete_filter(adap, stid); 2444 } 2445 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2446 2447 static void cxgb_get_stats(struct net_device *dev, 2448 struct rtnl_link_stats64 *ns) 2449 { 2450 struct port_stats stats; 2451 struct port_info *p = netdev_priv(dev); 2452 struct adapter *adapter = p->adapter; 2453 2454 /* Block retrieving statistics during EEH error 2455 * recovery. Otherwise, the recovery might fail 2456 * and the PCI device will be removed permanently 2457 */ 2458 spin_lock(&adapter->stats_lock); 2459 if (!netif_device_present(dev)) { 2460 spin_unlock(&adapter->stats_lock); 2461 return; 2462 } 2463 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2464 &p->stats_base); 2465 spin_unlock(&adapter->stats_lock); 2466 2467 ns->tx_bytes = stats.tx_octets; 2468 ns->tx_packets = stats.tx_frames; 2469 ns->rx_bytes = stats.rx_octets; 2470 ns->rx_packets = stats.rx_frames; 2471 ns->multicast = stats.rx_mcast_frames; 2472 2473 /* detailed rx_errors */ 2474 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2475 stats.rx_runt; 2476 ns->rx_over_errors = 0; 2477 ns->rx_crc_errors = stats.rx_fcs_err; 2478 ns->rx_frame_errors = stats.rx_symbol_err; 2479 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2480 stats.rx_ovflow2 + stats.rx_ovflow3 + 2481 stats.rx_trunc0 + stats.rx_trunc1 + 2482 stats.rx_trunc2 + stats.rx_trunc3; 2483 ns->rx_missed_errors = 0; 2484 2485 /* detailed tx_errors */ 2486 ns->tx_aborted_errors = 0; 2487 ns->tx_carrier_errors = 0; 2488 ns->tx_fifo_errors = 0; 2489 ns->tx_heartbeat_errors = 0; 2490 ns->tx_window_errors = 0; 2491 2492 ns->tx_errors = stats.tx_error_frames; 2493 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2494 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2495 } 2496 2497 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2498 { 2499 unsigned int mbox; 2500 int ret = 0, prtad, devad; 2501 struct port_info *pi = netdev_priv(dev); 2502 struct adapter *adapter = pi->adapter; 2503 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2504 2505 switch (cmd) { 2506 case SIOCGMIIPHY: 2507 if (pi->mdio_addr < 0) 2508 return -EOPNOTSUPP; 2509 data->phy_id = pi->mdio_addr; 2510 break; 2511 case SIOCGMIIREG: 2512 case SIOCSMIIREG: 2513 if (mdio_phy_id_is_c45(data->phy_id)) { 2514 prtad = mdio_phy_id_prtad(data->phy_id); 2515 devad = mdio_phy_id_devad(data->phy_id); 2516 } else if (data->phy_id < 32) { 2517 prtad = data->phy_id; 2518 devad = 0; 2519 data->reg_num &= 0x1f; 2520 } else 2521 return -EINVAL; 2522 2523 mbox = pi->adapter->pf; 2524 if (cmd == SIOCGMIIREG) 2525 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2526 data->reg_num, &data->val_out); 2527 else 2528 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2529 data->reg_num, data->val_in); 2530 break; 2531 case SIOCGHWTSTAMP: 2532 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2533 sizeof(pi->tstamp_config)) ? 2534 -EFAULT : 0; 2535 case SIOCSHWTSTAMP: 2536 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2537 sizeof(pi->tstamp_config))) 2538 return -EFAULT; 2539 2540 if (!is_t4(adapter->params.chip)) { 2541 switch (pi->tstamp_config.tx_type) { 2542 case HWTSTAMP_TX_OFF: 2543 case HWTSTAMP_TX_ON: 2544 break; 2545 default: 2546 return -ERANGE; 2547 } 2548 2549 switch (pi->tstamp_config.rx_filter) { 2550 case HWTSTAMP_FILTER_NONE: 2551 pi->rxtstamp = false; 2552 break; 2553 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2554 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2555 cxgb4_ptprx_timestamping(pi, pi->port_id, 2556 PTP_TS_L4); 2557 break; 2558 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2559 cxgb4_ptprx_timestamping(pi, pi->port_id, 2560 PTP_TS_L2_L4); 2561 break; 2562 case HWTSTAMP_FILTER_ALL: 2563 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2564 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2565 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2566 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2567 pi->rxtstamp = true; 2568 break; 2569 default: 2570 pi->tstamp_config.rx_filter = 2571 HWTSTAMP_FILTER_NONE; 2572 return -ERANGE; 2573 } 2574 2575 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2576 (pi->tstamp_config.rx_filter == 2577 HWTSTAMP_FILTER_NONE)) { 2578 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2579 pi->ptp_enable = false; 2580 } 2581 2582 if (pi->tstamp_config.rx_filter != 2583 HWTSTAMP_FILTER_NONE) { 2584 if (cxgb4_ptp_redirect_rx_packet(adapter, 2585 pi) >= 0) 2586 pi->ptp_enable = true; 2587 } 2588 } else { 2589 /* For T4 Adapters */ 2590 switch (pi->tstamp_config.rx_filter) { 2591 case HWTSTAMP_FILTER_NONE: 2592 pi->rxtstamp = false; 2593 break; 2594 case HWTSTAMP_FILTER_ALL: 2595 pi->rxtstamp = true; 2596 break; 2597 default: 2598 pi->tstamp_config.rx_filter = 2599 HWTSTAMP_FILTER_NONE; 2600 return -ERANGE; 2601 } 2602 } 2603 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2604 sizeof(pi->tstamp_config)) ? 2605 -EFAULT : 0; 2606 default: 2607 return -EOPNOTSUPP; 2608 } 2609 return ret; 2610 } 2611 2612 static void cxgb_set_rxmode(struct net_device *dev) 2613 { 2614 /* unfortunately we can't return errors to the stack */ 2615 set_rxmode(dev, -1, false); 2616 } 2617 2618 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2619 { 2620 int ret; 2621 struct port_info *pi = netdev_priv(dev); 2622 2623 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2624 -1, -1, -1, true); 2625 if (!ret) 2626 dev->mtu = new_mtu; 2627 return ret; 2628 } 2629 2630 #ifdef CONFIG_PCI_IOV 2631 static int cxgb4_mgmt_open(struct net_device *dev) 2632 { 2633 /* Turn carrier off since we don't have to transmit anything on this 2634 * interface. 2635 */ 2636 netif_carrier_off(dev); 2637 return 0; 2638 } 2639 2640 /* Fill MAC address that will be assigned by the FW */ 2641 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2642 { 2643 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2644 unsigned int i, vf, nvfs; 2645 u16 a, b; 2646 int err; 2647 u8 *na; 2648 2649 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2650 PCI_CAP_ID_VPD); 2651 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2652 if (err) 2653 return; 2654 2655 na = adap->params.vpd.na; 2656 for (i = 0; i < ETH_ALEN; i++) 2657 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2658 hex2val(na[2 * i + 1])); 2659 2660 a = (hw_addr[0] << 8) | hw_addr[1]; 2661 b = (hw_addr[1] << 8) | hw_addr[2]; 2662 a ^= b; 2663 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2664 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2665 macaddr[0] = a >> 8; 2666 macaddr[1] = a & 0xff; 2667 2668 for (i = 2; i < 5; i++) 2669 macaddr[i] = hw_addr[i + 1]; 2670 2671 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2672 vf < nvfs; vf++) { 2673 macaddr[5] = adap->pf * 16 + vf; 2674 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2675 } 2676 } 2677 2678 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2679 { 2680 struct port_info *pi = netdev_priv(dev); 2681 struct adapter *adap = pi->adapter; 2682 int ret; 2683 2684 /* verify MAC addr is valid */ 2685 if (!is_valid_ether_addr(mac)) { 2686 dev_err(pi->adapter->pdev_dev, 2687 "Invalid Ethernet address %pM for VF %d\n", 2688 mac, vf); 2689 return -EINVAL; 2690 } 2691 2692 dev_info(pi->adapter->pdev_dev, 2693 "Setting MAC %pM on VF %d\n", mac, vf); 2694 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2695 if (!ret) 2696 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2697 return ret; 2698 } 2699 2700 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2701 int vf, struct ifla_vf_info *ivi) 2702 { 2703 struct port_info *pi = netdev_priv(dev); 2704 struct adapter *adap = pi->adapter; 2705 struct vf_info *vfinfo; 2706 2707 if (vf >= adap->num_vfs) 2708 return -EINVAL; 2709 vfinfo = &adap->vfinfo[vf]; 2710 2711 ivi->vf = vf; 2712 ivi->max_tx_rate = vfinfo->tx_rate; 2713 ivi->min_tx_rate = 0; 2714 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2715 ivi->vlan = vfinfo->vlan; 2716 return 0; 2717 } 2718 2719 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2720 struct netdev_phys_item_id *ppid) 2721 { 2722 struct port_info *pi = netdev_priv(dev); 2723 unsigned int phy_port_id; 2724 2725 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2726 ppid->id_len = sizeof(phy_port_id); 2727 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2728 return 0; 2729 } 2730 2731 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2732 int min_tx_rate, int max_tx_rate) 2733 { 2734 struct port_info *pi = netdev_priv(dev); 2735 struct adapter *adap = pi->adapter; 2736 unsigned int link_ok, speed, mtu; 2737 u32 fw_pfvf, fw_class; 2738 int class_id = vf; 2739 int ret; 2740 u16 pktsize; 2741 2742 if (vf >= adap->num_vfs) 2743 return -EINVAL; 2744 2745 if (min_tx_rate) { 2746 dev_err(adap->pdev_dev, 2747 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2748 min_tx_rate, vf); 2749 return -EINVAL; 2750 } 2751 2752 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2753 if (ret != FW_SUCCESS) { 2754 dev_err(adap->pdev_dev, 2755 "Failed to get link information for VF %d\n", vf); 2756 return -EINVAL; 2757 } 2758 2759 if (!link_ok) { 2760 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2761 return -EINVAL; 2762 } 2763 2764 if (max_tx_rate > speed) { 2765 dev_err(adap->pdev_dev, 2766 "Max tx rate %d for VF %d can't be > link-speed %u", 2767 max_tx_rate, vf, speed); 2768 return -EINVAL; 2769 } 2770 2771 pktsize = mtu; 2772 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2773 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2774 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2775 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2776 /* configure Traffic Class for rate-limiting */ 2777 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2778 SCHED_CLASS_LEVEL_CL_RL, 2779 SCHED_CLASS_MODE_CLASS, 2780 SCHED_CLASS_RATEUNIT_BITS, 2781 SCHED_CLASS_RATEMODE_ABS, 2782 pi->tx_chan, class_id, 0, 2783 max_tx_rate * 1000, 0, pktsize); 2784 if (ret) { 2785 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2786 ret); 2787 return -EINVAL; 2788 } 2789 dev_info(adap->pdev_dev, 2790 "Class %d with MSS %u configured with rate %u\n", 2791 class_id, pktsize, max_tx_rate); 2792 2793 /* bind VF to configured Traffic Class */ 2794 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2795 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2796 fw_class = class_id; 2797 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2798 &fw_class); 2799 if (ret) { 2800 dev_err(adap->pdev_dev, 2801 "Err %d in binding VF %d to Traffic Class %d\n", 2802 ret, vf, class_id); 2803 return -EINVAL; 2804 } 2805 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2806 adap->pf, vf, class_id); 2807 adap->vfinfo[vf].tx_rate = max_tx_rate; 2808 return 0; 2809 } 2810 2811 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2812 u16 vlan, u8 qos, __be16 vlan_proto) 2813 { 2814 struct port_info *pi = netdev_priv(dev); 2815 struct adapter *adap = pi->adapter; 2816 int ret; 2817 2818 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2819 return -EINVAL; 2820 2821 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2822 return -EPROTONOSUPPORT; 2823 2824 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2825 if (!ret) { 2826 adap->vfinfo[vf].vlan = vlan; 2827 return 0; 2828 } 2829 2830 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2831 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2832 return ret; 2833 } 2834 #endif /* CONFIG_PCI_IOV */ 2835 2836 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2837 { 2838 int ret; 2839 struct sockaddr *addr = p; 2840 struct port_info *pi = netdev_priv(dev); 2841 2842 if (!is_valid_ether_addr(addr->sa_data)) 2843 return -EADDRNOTAVAIL; 2844 2845 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2846 pi->xact_addr_filt, addr->sa_data, true, true); 2847 if (ret < 0) 2848 return ret; 2849 2850 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2851 pi->xact_addr_filt = ret; 2852 return 0; 2853 } 2854 2855 #ifdef CONFIG_NET_POLL_CONTROLLER 2856 static void cxgb_netpoll(struct net_device *dev) 2857 { 2858 struct port_info *pi = netdev_priv(dev); 2859 struct adapter *adap = pi->adapter; 2860 2861 if (adap->flags & USING_MSIX) { 2862 int i; 2863 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2864 2865 for (i = pi->nqsets; i; i--, rx++) 2866 t4_sge_intr_msix(0, &rx->rspq); 2867 } else 2868 t4_intr_handler(adap)(0, adap); 2869 } 2870 #endif 2871 2872 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2873 { 2874 struct port_info *pi = netdev_priv(dev); 2875 struct adapter *adap = pi->adapter; 2876 struct sched_class *e; 2877 struct ch_sched_params p; 2878 struct ch_sched_queue qe; 2879 u32 req_rate; 2880 int err = 0; 2881 2882 if (!can_sched(dev)) 2883 return -ENOTSUPP; 2884 2885 if (index < 0 || index > pi->nqsets - 1) 2886 return -EINVAL; 2887 2888 if (!(adap->flags & FULL_INIT_DONE)) { 2889 dev_err(adap->pdev_dev, 2890 "Failed to rate limit on queue %d. Link Down?\n", 2891 index); 2892 return -EINVAL; 2893 } 2894 2895 /* Convert from Mbps to Kbps */ 2896 req_rate = rate * 1000; 2897 2898 /* Max rate is 100 Gbps */ 2899 if (req_rate > SCHED_MAX_RATE_KBPS) { 2900 dev_err(adap->pdev_dev, 2901 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2902 rate, SCHED_MAX_RATE_KBPS / 1000); 2903 return -ERANGE; 2904 } 2905 2906 /* First unbind the queue from any existing class */ 2907 memset(&qe, 0, sizeof(qe)); 2908 qe.queue = index; 2909 qe.class = SCHED_CLS_NONE; 2910 2911 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2912 if (err) { 2913 dev_err(adap->pdev_dev, 2914 "Unbinding Queue %d on port %d fail. Err: %d\n", 2915 index, pi->port_id, err); 2916 return err; 2917 } 2918 2919 /* Queue already unbound */ 2920 if (!req_rate) 2921 return 0; 2922 2923 /* Fetch any available unused or matching scheduling class */ 2924 memset(&p, 0, sizeof(p)); 2925 p.type = SCHED_CLASS_TYPE_PACKET; 2926 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2927 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2928 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2929 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2930 p.u.params.channel = pi->tx_chan; 2931 p.u.params.class = SCHED_CLS_NONE; 2932 p.u.params.minrate = 0; 2933 p.u.params.maxrate = req_rate; 2934 p.u.params.weight = 0; 2935 p.u.params.pktsize = dev->mtu; 2936 2937 e = cxgb4_sched_class_alloc(dev, &p); 2938 if (!e) 2939 return -ENOMEM; 2940 2941 /* Bind the queue to a scheduling class */ 2942 memset(&qe, 0, sizeof(qe)); 2943 qe.queue = index; 2944 qe.class = e->idx; 2945 2946 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2947 if (err) 2948 dev_err(adap->pdev_dev, 2949 "Queue rate limiting failed. Err: %d\n", err); 2950 return err; 2951 } 2952 2953 static int cxgb_setup_tc_flower(struct net_device *dev, 2954 struct tc_cls_flower_offload *cls_flower) 2955 { 2956 switch (cls_flower->command) { 2957 case TC_CLSFLOWER_REPLACE: 2958 return cxgb4_tc_flower_replace(dev, cls_flower); 2959 case TC_CLSFLOWER_DESTROY: 2960 return cxgb4_tc_flower_destroy(dev, cls_flower); 2961 case TC_CLSFLOWER_STATS: 2962 return cxgb4_tc_flower_stats(dev, cls_flower); 2963 default: 2964 return -EOPNOTSUPP; 2965 } 2966 } 2967 2968 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 2969 struct tc_cls_u32_offload *cls_u32) 2970 { 2971 switch (cls_u32->command) { 2972 case TC_CLSU32_NEW_KNODE: 2973 case TC_CLSU32_REPLACE_KNODE: 2974 return cxgb4_config_knode(dev, cls_u32); 2975 case TC_CLSU32_DELETE_KNODE: 2976 return cxgb4_delete_knode(dev, cls_u32); 2977 default: 2978 return -EOPNOTSUPP; 2979 } 2980 } 2981 2982 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2983 void *cb_priv) 2984 { 2985 struct net_device *dev = cb_priv; 2986 struct port_info *pi = netdev2pinfo(dev); 2987 struct adapter *adap = netdev2adap(dev); 2988 2989 if (!(adap->flags & FULL_INIT_DONE)) { 2990 dev_err(adap->pdev_dev, 2991 "Failed to setup tc on port %d. Link Down?\n", 2992 pi->port_id); 2993 return -EINVAL; 2994 } 2995 2996 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 2997 return -EOPNOTSUPP; 2998 2999 switch (type) { 3000 case TC_SETUP_CLSU32: 3001 return cxgb_setup_tc_cls_u32(dev, type_data); 3002 case TC_SETUP_CLSFLOWER: 3003 return cxgb_setup_tc_flower(dev, type_data); 3004 default: 3005 return -EOPNOTSUPP; 3006 } 3007 } 3008 3009 static int cxgb_setup_tc_block(struct net_device *dev, 3010 struct tc_block_offload *f) 3011 { 3012 struct port_info *pi = netdev2pinfo(dev); 3013 3014 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3015 return -EOPNOTSUPP; 3016 3017 switch (f->command) { 3018 case TC_BLOCK_BIND: 3019 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3020 pi, dev, f->extack); 3021 case TC_BLOCK_UNBIND: 3022 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3023 return 0; 3024 default: 3025 return -EOPNOTSUPP; 3026 } 3027 } 3028 3029 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3030 void *type_data) 3031 { 3032 switch (type) { 3033 case TC_SETUP_BLOCK: 3034 return cxgb_setup_tc_block(dev, type_data); 3035 default: 3036 return -EOPNOTSUPP; 3037 } 3038 } 3039 3040 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3041 struct udp_tunnel_info *ti) 3042 { 3043 struct port_info *pi = netdev_priv(netdev); 3044 struct adapter *adapter = pi->adapter; 3045 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3046 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3047 int ret = 0, i; 3048 3049 if (chip_ver < CHELSIO_T6) 3050 return; 3051 3052 switch (ti->type) { 3053 case UDP_TUNNEL_TYPE_VXLAN: 3054 if (!adapter->vxlan_port_cnt || 3055 adapter->vxlan_port != ti->port) 3056 return; /* Invalid VxLAN destination port */ 3057 3058 adapter->vxlan_port_cnt--; 3059 if (adapter->vxlan_port_cnt) 3060 return; 3061 3062 adapter->vxlan_port = 0; 3063 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3064 break; 3065 case UDP_TUNNEL_TYPE_GENEVE: 3066 if (!adapter->geneve_port_cnt || 3067 adapter->geneve_port != ti->port) 3068 return; /* Invalid GENEVE destination port */ 3069 3070 adapter->geneve_port_cnt--; 3071 if (adapter->geneve_port_cnt) 3072 return; 3073 3074 adapter->geneve_port = 0; 3075 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3076 break; 3077 default: 3078 return; 3079 } 3080 3081 /* Matchall mac entries can be deleted only after all tunnel ports 3082 * are brought down or removed. 3083 */ 3084 if (!adapter->rawf_cnt) 3085 return; 3086 for_each_port(adapter, i) { 3087 pi = adap2pinfo(adapter, i); 3088 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3089 match_all_mac, match_all_mac, 3090 adapter->rawf_start + 3091 pi->port_id, 3092 1, pi->port_id, false); 3093 if (ret < 0) { 3094 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3095 i); 3096 return; 3097 } 3098 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3099 pi->port_id].refcnt); 3100 } 3101 } 3102 3103 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3104 struct udp_tunnel_info *ti) 3105 { 3106 struct port_info *pi = netdev_priv(netdev); 3107 struct adapter *adapter = pi->adapter; 3108 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3109 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3110 int i, ret; 3111 3112 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3113 return; 3114 3115 switch (ti->type) { 3116 case UDP_TUNNEL_TYPE_VXLAN: 3117 /* Callback for adding vxlan port can be called with the same 3118 * port for both IPv4 and IPv6. We should not disable the 3119 * offloading when the same port for both protocols is added 3120 * and later one of them is removed. 3121 */ 3122 if (adapter->vxlan_port_cnt && 3123 adapter->vxlan_port == ti->port) { 3124 adapter->vxlan_port_cnt++; 3125 return; 3126 } 3127 3128 /* We will support only one VxLAN port */ 3129 if (adapter->vxlan_port_cnt) { 3130 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3131 be16_to_cpu(adapter->vxlan_port), 3132 be16_to_cpu(ti->port)); 3133 return; 3134 } 3135 3136 adapter->vxlan_port = ti->port; 3137 adapter->vxlan_port_cnt = 1; 3138 3139 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3140 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3141 break; 3142 case UDP_TUNNEL_TYPE_GENEVE: 3143 if (adapter->geneve_port_cnt && 3144 adapter->geneve_port == ti->port) { 3145 adapter->geneve_port_cnt++; 3146 return; 3147 } 3148 3149 /* We will support only one GENEVE port */ 3150 if (adapter->geneve_port_cnt) { 3151 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3152 be16_to_cpu(adapter->geneve_port), 3153 be16_to_cpu(ti->port)); 3154 return; 3155 } 3156 3157 adapter->geneve_port = ti->port; 3158 adapter->geneve_port_cnt = 1; 3159 3160 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3161 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3162 break; 3163 default: 3164 return; 3165 } 3166 3167 /* Create a 'match all' mac filter entry for inner mac, 3168 * if raw mac interface is supported. Once the linux kernel provides 3169 * driver entry points for adding/deleting the inner mac addresses, 3170 * we will remove this 'match all' entry and fallback to adding 3171 * exact match filters. 3172 */ 3173 for_each_port(adapter, i) { 3174 pi = adap2pinfo(adapter, i); 3175 3176 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3177 match_all_mac, 3178 match_all_mac, 3179 adapter->rawf_start + 3180 pi->port_id, 3181 1, pi->port_id, false); 3182 if (ret < 0) { 3183 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3184 be16_to_cpu(ti->port)); 3185 cxgb_del_udp_tunnel(netdev, ti); 3186 return; 3187 } 3188 atomic_inc(&adapter->mps_encap[ret].refcnt); 3189 } 3190 } 3191 3192 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3193 struct net_device *dev, 3194 netdev_features_t features) 3195 { 3196 struct port_info *pi = netdev_priv(dev); 3197 struct adapter *adapter = pi->adapter; 3198 3199 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3200 return features; 3201 3202 /* Check if hw supports offload for this packet */ 3203 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3204 return features; 3205 3206 /* Offload is not supported for this encapsulated packet */ 3207 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3208 } 3209 3210 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3211 netdev_features_t features) 3212 { 3213 /* Disable GRO, if RX_CSUM is disabled */ 3214 if (!(features & NETIF_F_RXCSUM)) 3215 features &= ~NETIF_F_GRO; 3216 3217 return features; 3218 } 3219 3220 static const struct net_device_ops cxgb4_netdev_ops = { 3221 .ndo_open = cxgb_open, 3222 .ndo_stop = cxgb_close, 3223 .ndo_start_xmit = t4_start_xmit, 3224 .ndo_select_queue = cxgb_select_queue, 3225 .ndo_get_stats64 = cxgb_get_stats, 3226 .ndo_set_rx_mode = cxgb_set_rxmode, 3227 .ndo_set_mac_address = cxgb_set_mac_addr, 3228 .ndo_set_features = cxgb_set_features, 3229 .ndo_validate_addr = eth_validate_addr, 3230 .ndo_do_ioctl = cxgb_ioctl, 3231 .ndo_change_mtu = cxgb_change_mtu, 3232 #ifdef CONFIG_NET_POLL_CONTROLLER 3233 .ndo_poll_controller = cxgb_netpoll, 3234 #endif 3235 #ifdef CONFIG_CHELSIO_T4_FCOE 3236 .ndo_fcoe_enable = cxgb_fcoe_enable, 3237 .ndo_fcoe_disable = cxgb_fcoe_disable, 3238 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3239 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3240 .ndo_setup_tc = cxgb_setup_tc, 3241 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3242 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3243 .ndo_features_check = cxgb_features_check, 3244 .ndo_fix_features = cxgb_fix_features, 3245 }; 3246 3247 #ifdef CONFIG_PCI_IOV 3248 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3249 .ndo_open = cxgb4_mgmt_open, 3250 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3251 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3252 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3253 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3254 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3255 }; 3256 #endif 3257 3258 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3259 struct ethtool_drvinfo *info) 3260 { 3261 struct adapter *adapter = netdev2adap(dev); 3262 3263 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3264 strlcpy(info->version, cxgb4_driver_version, 3265 sizeof(info->version)); 3266 strlcpy(info->bus_info, pci_name(adapter->pdev), 3267 sizeof(info->bus_info)); 3268 } 3269 3270 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3271 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3272 }; 3273 3274 static void notify_fatal_err(struct work_struct *work) 3275 { 3276 struct adapter *adap; 3277 3278 adap = container_of(work, struct adapter, fatal_err_notify_task); 3279 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3280 } 3281 3282 void t4_fatal_err(struct adapter *adap) 3283 { 3284 int port; 3285 3286 if (pci_channel_offline(adap->pdev)) 3287 return; 3288 3289 /* Disable the SGE since ULDs are going to free resources that 3290 * could be exposed to the adapter. RDMA MWs for example... 3291 */ 3292 t4_shutdown_adapter(adap); 3293 for_each_port(adap, port) { 3294 struct net_device *dev = adap->port[port]; 3295 3296 /* If we get here in very early initialization the network 3297 * devices may not have been set up yet. 3298 */ 3299 if (!dev) 3300 continue; 3301 3302 netif_tx_stop_all_queues(dev); 3303 netif_carrier_off(dev); 3304 } 3305 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3306 queue_work(adap->workq, &adap->fatal_err_notify_task); 3307 } 3308 3309 static void setup_memwin(struct adapter *adap) 3310 { 3311 u32 nic_win_base = t4_get_util_window(adap); 3312 3313 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3314 } 3315 3316 static void setup_memwin_rdma(struct adapter *adap) 3317 { 3318 if (adap->vres.ocq.size) { 3319 u32 start; 3320 unsigned int sz_kb; 3321 3322 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3323 start &= PCI_BASE_ADDRESS_MEM_MASK; 3324 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3325 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3326 t4_write_reg(adap, 3327 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3328 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3329 t4_write_reg(adap, 3330 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3331 adap->vres.ocq.start); 3332 t4_read_reg(adap, 3333 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3334 } 3335 } 3336 3337 /* HMA Definitions */ 3338 3339 /* The maximum number of address that can be send in a single FW cmd */ 3340 #define HMA_MAX_ADDR_IN_CMD 5 3341 3342 #define HMA_PAGE_SIZE PAGE_SIZE 3343 3344 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3345 3346 #define HMA_PAGE_ORDER \ 3347 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3348 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3349 3350 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3351 * configuration(in units of MB). 3352 */ 3353 #define HMA_MIN_TOTAL_SIZE 1 3354 #define HMA_MAX_TOTAL_SIZE \ 3355 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3356 HMA_MAX_NO_FW_ADDRESS) >> 20) 3357 3358 static void adap_free_hma_mem(struct adapter *adapter) 3359 { 3360 struct scatterlist *iter; 3361 struct page *page; 3362 int i; 3363 3364 if (!adapter->hma.sgt) 3365 return; 3366 3367 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3368 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3369 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3370 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3371 } 3372 3373 for_each_sg(adapter->hma.sgt->sgl, iter, 3374 adapter->hma.sgt->orig_nents, i) { 3375 page = sg_page(iter); 3376 if (page) 3377 __free_pages(page, HMA_PAGE_ORDER); 3378 } 3379 3380 kfree(adapter->hma.phy_addr); 3381 sg_free_table(adapter->hma.sgt); 3382 kfree(adapter->hma.sgt); 3383 adapter->hma.sgt = NULL; 3384 } 3385 3386 static int adap_config_hma(struct adapter *adapter) 3387 { 3388 struct scatterlist *sgl, *iter; 3389 struct sg_table *sgt; 3390 struct page *newpage; 3391 unsigned int i, j, k; 3392 u32 param, hma_size; 3393 unsigned int ncmds; 3394 size_t page_size; 3395 u32 page_order; 3396 int node, ret; 3397 3398 /* HMA is supported only for T6+ cards. 3399 * Avoid initializing HMA in kdump kernels. 3400 */ 3401 if (is_kdump_kernel() || 3402 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3403 return 0; 3404 3405 /* Get the HMA region size required by fw */ 3406 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3407 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3408 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3409 1, ¶m, &hma_size); 3410 /* An error means card has its own memory or HMA is not supported by 3411 * the firmware. Return without any errors. 3412 */ 3413 if (ret || !hma_size) 3414 return 0; 3415 3416 if (hma_size < HMA_MIN_TOTAL_SIZE || 3417 hma_size > HMA_MAX_TOTAL_SIZE) { 3418 dev_err(adapter->pdev_dev, 3419 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3420 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3421 return -EINVAL; 3422 } 3423 3424 page_size = HMA_PAGE_SIZE; 3425 page_order = HMA_PAGE_ORDER; 3426 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3427 if (unlikely(!adapter->hma.sgt)) { 3428 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3429 return -ENOMEM; 3430 } 3431 sgt = adapter->hma.sgt; 3432 /* FW returned value will be in MB's 3433 */ 3434 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3435 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3436 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3437 kfree(adapter->hma.sgt); 3438 adapter->hma.sgt = NULL; 3439 return -ENOMEM; 3440 } 3441 3442 sgl = adapter->hma.sgt->sgl; 3443 node = dev_to_node(adapter->pdev_dev); 3444 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3445 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3446 __GFP_ZERO, page_order); 3447 if (!newpage) { 3448 dev_err(adapter->pdev_dev, 3449 "Not enough memory for HMA page allocation\n"); 3450 ret = -ENOMEM; 3451 goto free_hma; 3452 } 3453 sg_set_page(iter, newpage, page_size << page_order, 0); 3454 } 3455 3456 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3457 DMA_BIDIRECTIONAL); 3458 if (!sgt->nents) { 3459 dev_err(adapter->pdev_dev, 3460 "Not enough memory for HMA DMA mapping"); 3461 ret = -ENOMEM; 3462 goto free_hma; 3463 } 3464 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3465 3466 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3467 GFP_KERNEL); 3468 if (unlikely(!adapter->hma.phy_addr)) 3469 goto free_hma; 3470 3471 for_each_sg(sgl, iter, sgt->nents, i) { 3472 newpage = sg_page(iter); 3473 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3474 } 3475 3476 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3477 /* Pass on the addresses to firmware */ 3478 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3479 struct fw_hma_cmd hma_cmd; 3480 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3481 u8 soc = 0, eoc = 0; 3482 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3483 3484 soc = (i == 0) ? 1 : 0; 3485 eoc = (i == ncmds - 1) ? 1 : 0; 3486 3487 /* For last cmd, set naddr corresponding to remaining 3488 * addresses 3489 */ 3490 if (i == ncmds - 1) { 3491 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3492 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3493 } 3494 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3495 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3496 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3497 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3498 3499 hma_cmd.mode_to_pcie_params = 3500 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3501 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3502 3503 /* HMA cmd size specified in MB's */ 3504 hma_cmd.naddr_size = 3505 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3506 FW_HMA_CMD_NADDR_V(naddr)); 3507 3508 /* Total Page size specified in units of 4K */ 3509 hma_cmd.addr_size_pkd = 3510 htonl(FW_HMA_CMD_ADDR_SIZE_V 3511 ((page_size << page_order) >> 12)); 3512 3513 /* Fill the 5 addresses */ 3514 for (j = 0; j < naddr; j++) { 3515 hma_cmd.phy_address[j] = 3516 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3517 } 3518 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3519 sizeof(hma_cmd), &hma_cmd); 3520 if (ret) { 3521 dev_err(adapter->pdev_dev, 3522 "HMA FW command failed with err %d\n", ret); 3523 goto free_hma; 3524 } 3525 } 3526 3527 if (!ret) 3528 dev_info(adapter->pdev_dev, 3529 "Reserved %uMB host memory for HMA\n", hma_size); 3530 return ret; 3531 3532 free_hma: 3533 adap_free_hma_mem(adapter); 3534 return ret; 3535 } 3536 3537 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3538 { 3539 u32 v; 3540 int ret; 3541 3542 /* Now that we've successfully configured and initialized the adapter 3543 * can ask the Firmware what resources it has provisioned for us. 3544 */ 3545 ret = t4_get_pfres(adap); 3546 if (ret) { 3547 dev_err(adap->pdev_dev, 3548 "Unable to retrieve resource provisioning information\n"); 3549 return ret; 3550 } 3551 3552 /* get device capabilities */ 3553 memset(c, 0, sizeof(*c)); 3554 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3555 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3556 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3557 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3558 if (ret < 0) 3559 return ret; 3560 3561 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3562 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3563 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3564 if (ret < 0) 3565 return ret; 3566 3567 ret = t4_config_glbl_rss(adap, adap->pf, 3568 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3569 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3570 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3571 if (ret < 0) 3572 return ret; 3573 3574 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3575 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3576 FW_CMD_CAP_PF); 3577 if (ret < 0) 3578 return ret; 3579 3580 t4_sge_init(adap); 3581 3582 /* tweak some settings */ 3583 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3584 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3585 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3586 v = t4_read_reg(adap, TP_PIO_DATA_A); 3587 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3588 3589 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3590 adap->params.tp.tx_modq_map = 0xE4; 3591 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3592 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3593 3594 /* associate each Tx modulation queue with consecutive Tx channels */ 3595 v = 0x84218421; 3596 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3597 &v, 1, TP_TX_SCHED_HDR_A); 3598 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3599 &v, 1, TP_TX_SCHED_FIFO_A); 3600 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3601 &v, 1, TP_TX_SCHED_PCMD_A); 3602 3603 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3604 if (is_offload(adap)) { 3605 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3606 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3607 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3608 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3609 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3610 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3611 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3612 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3613 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3614 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3615 } 3616 3617 /* get basic stuff going */ 3618 return t4_early_init(adap, adap->pf); 3619 } 3620 3621 /* 3622 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3623 */ 3624 #define MAX_ATIDS 8192U 3625 3626 /* 3627 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3628 * 3629 * If the firmware we're dealing with has Configuration File support, then 3630 * we use that to perform all configuration 3631 */ 3632 3633 /* 3634 * Tweak configuration based on module parameters, etc. Most of these have 3635 * defaults assigned to them by Firmware Configuration Files (if we're using 3636 * them) but need to be explicitly set if we're using hard-coded 3637 * initialization. But even in the case of using Firmware Configuration 3638 * Files, we'd like to expose the ability to change these via module 3639 * parameters so these are essentially common tweaks/settings for 3640 * Configuration Files and hard-coded initialization ... 3641 */ 3642 static int adap_init0_tweaks(struct adapter *adapter) 3643 { 3644 /* 3645 * Fix up various Host-Dependent Parameters like Page Size, Cache 3646 * Line Size, etc. The firmware default is for a 4KB Page Size and 3647 * 64B Cache Line Size ... 3648 */ 3649 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3650 3651 /* 3652 * Process module parameters which affect early initialization. 3653 */ 3654 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3655 dev_err(&adapter->pdev->dev, 3656 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3657 rx_dma_offset); 3658 rx_dma_offset = 2; 3659 } 3660 t4_set_reg_field(adapter, SGE_CONTROL_A, 3661 PKTSHIFT_V(PKTSHIFT_M), 3662 PKTSHIFT_V(rx_dma_offset)); 3663 3664 /* 3665 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3666 * adds the pseudo header itself. 3667 */ 3668 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3669 CSUM_HAS_PSEUDO_HDR_F, 0); 3670 3671 return 0; 3672 } 3673 3674 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3675 * unto themselves and they contain their own firmware to perform their 3676 * tasks ... 3677 */ 3678 static int phy_aq1202_version(const u8 *phy_fw_data, 3679 size_t phy_fw_size) 3680 { 3681 int offset; 3682 3683 /* At offset 0x8 you're looking for the primary image's 3684 * starting offset which is 3 Bytes wide 3685 * 3686 * At offset 0xa of the primary image, you look for the offset 3687 * of the DRAM segment which is 3 Bytes wide. 3688 * 3689 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3690 * wide 3691 */ 3692 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3693 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3694 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3695 3696 offset = le24(phy_fw_data + 0x8) << 12; 3697 offset = le24(phy_fw_data + offset + 0xa); 3698 return be16(phy_fw_data + offset + 0x27e); 3699 3700 #undef be16 3701 #undef le16 3702 #undef le24 3703 } 3704 3705 static struct info_10gbt_phy_fw { 3706 unsigned int phy_fw_id; /* PCI Device ID */ 3707 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3708 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3709 int phy_flash; /* Has FLASH for PHY Firmware */ 3710 } phy_info_array[] = { 3711 { 3712 PHY_AQ1202_DEVICEID, 3713 PHY_AQ1202_FIRMWARE, 3714 phy_aq1202_version, 3715 1, 3716 }, 3717 { 3718 PHY_BCM84834_DEVICEID, 3719 PHY_BCM84834_FIRMWARE, 3720 NULL, 3721 0, 3722 }, 3723 { 0, NULL, NULL }, 3724 }; 3725 3726 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3727 { 3728 int i; 3729 3730 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3731 if (phy_info_array[i].phy_fw_id == devid) 3732 return &phy_info_array[i]; 3733 } 3734 return NULL; 3735 } 3736 3737 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3738 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3739 * we return a negative error number. If we transfer new firmware we return 1 3740 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3741 */ 3742 static int adap_init0_phy(struct adapter *adap) 3743 { 3744 const struct firmware *phyf; 3745 int ret; 3746 struct info_10gbt_phy_fw *phy_info; 3747 3748 /* Use the device ID to determine which PHY file to flash. 3749 */ 3750 phy_info = find_phy_info(adap->pdev->device); 3751 if (!phy_info) { 3752 dev_warn(adap->pdev_dev, 3753 "No PHY Firmware file found for this PHY\n"); 3754 return -EOPNOTSUPP; 3755 } 3756 3757 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3758 * use that. The adapter firmware provides us with a memory buffer 3759 * where we can load a PHY firmware file from the host if we want to 3760 * override the PHY firmware File in flash. 3761 */ 3762 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3763 adap->pdev_dev); 3764 if (ret < 0) { 3765 /* For adapters without FLASH attached to PHY for their 3766 * firmware, it's obviously a fatal error if we can't get the 3767 * firmware to the adapter. For adapters with PHY firmware 3768 * FLASH storage, it's worth a warning if we can't find the 3769 * PHY Firmware but we'll neuter the error ... 3770 */ 3771 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3772 "/lib/firmware/%s, error %d\n", 3773 phy_info->phy_fw_file, -ret); 3774 if (phy_info->phy_flash) { 3775 int cur_phy_fw_ver = 0; 3776 3777 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3778 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3779 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3780 ret = 0; 3781 } 3782 3783 return ret; 3784 } 3785 3786 /* Load PHY Firmware onto adapter. 3787 */ 3788 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3789 phy_info->phy_fw_version, 3790 (u8 *)phyf->data, phyf->size); 3791 if (ret < 0) 3792 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3793 -ret); 3794 else if (ret > 0) { 3795 int new_phy_fw_ver = 0; 3796 3797 if (phy_info->phy_fw_version) 3798 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3799 phyf->size); 3800 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3801 "Firmware /lib/firmware/%s, version %#x\n", 3802 phy_info->phy_fw_file, new_phy_fw_ver); 3803 } 3804 3805 release_firmware(phyf); 3806 3807 return ret; 3808 } 3809 3810 /* 3811 * Attempt to initialize the adapter via a Firmware Configuration File. 3812 */ 3813 static int adap_init0_config(struct adapter *adapter, int reset) 3814 { 3815 struct fw_caps_config_cmd caps_cmd; 3816 const struct firmware *cf; 3817 unsigned long mtype = 0, maddr = 0; 3818 u32 finiver, finicsum, cfcsum; 3819 int ret; 3820 int config_issued = 0; 3821 char *fw_config_file, fw_config_file_path[256]; 3822 char *config_name = NULL; 3823 3824 /* 3825 * Reset device if necessary. 3826 */ 3827 if (reset) { 3828 ret = t4_fw_reset(adapter, adapter->mbox, 3829 PIORSTMODE_F | PIORST_F); 3830 if (ret < 0) 3831 goto bye; 3832 } 3833 3834 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3835 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3836 * to be performed after any global adapter RESET above since some 3837 * PHYs only have local RAM copies of the PHY firmware. 3838 */ 3839 if (is_10gbt_device(adapter->pdev->device)) { 3840 ret = adap_init0_phy(adapter); 3841 if (ret < 0) 3842 goto bye; 3843 } 3844 /* 3845 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3846 * then use that. Otherwise, use the configuration file stored 3847 * in the adapter flash ... 3848 */ 3849 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3850 case CHELSIO_T4: 3851 fw_config_file = FW4_CFNAME; 3852 break; 3853 case CHELSIO_T5: 3854 fw_config_file = FW5_CFNAME; 3855 break; 3856 case CHELSIO_T6: 3857 fw_config_file = FW6_CFNAME; 3858 break; 3859 default: 3860 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3861 adapter->pdev->device); 3862 ret = -EINVAL; 3863 goto bye; 3864 } 3865 3866 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3867 if (ret < 0) { 3868 config_name = "On FLASH"; 3869 mtype = FW_MEMTYPE_CF_FLASH; 3870 maddr = t4_flash_cfg_addr(adapter); 3871 } else { 3872 u32 params[7], val[7]; 3873 3874 sprintf(fw_config_file_path, 3875 "/lib/firmware/%s", fw_config_file); 3876 config_name = fw_config_file_path; 3877 3878 if (cf->size >= FLASH_CFG_MAX_SIZE) 3879 ret = -ENOMEM; 3880 else { 3881 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3882 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3883 ret = t4_query_params(adapter, adapter->mbox, 3884 adapter->pf, 0, 1, params, val); 3885 if (ret == 0) { 3886 /* 3887 * For t4_memory_rw() below addresses and 3888 * sizes have to be in terms of multiples of 4 3889 * bytes. So, if the Configuration File isn't 3890 * a multiple of 4 bytes in length we'll have 3891 * to write that out separately since we can't 3892 * guarantee that the bytes following the 3893 * residual byte in the buffer returned by 3894 * request_firmware() are zeroed out ... 3895 */ 3896 size_t resid = cf->size & 0x3; 3897 size_t size = cf->size & ~0x3; 3898 __be32 *data = (__be32 *)cf->data; 3899 3900 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3901 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3902 3903 spin_lock(&adapter->win0_lock); 3904 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3905 size, data, T4_MEMORY_WRITE); 3906 if (ret == 0 && resid != 0) { 3907 union { 3908 __be32 word; 3909 char buf[4]; 3910 } last; 3911 int i; 3912 3913 last.word = data[size >> 2]; 3914 for (i = resid; i < 4; i++) 3915 last.buf[i] = 0; 3916 ret = t4_memory_rw(adapter, 0, mtype, 3917 maddr + size, 3918 4, &last.word, 3919 T4_MEMORY_WRITE); 3920 } 3921 spin_unlock(&adapter->win0_lock); 3922 } 3923 } 3924 3925 release_firmware(cf); 3926 if (ret) 3927 goto bye; 3928 } 3929 3930 /* 3931 * Issue a Capability Configuration command to the firmware to get it 3932 * to parse the Configuration File. We don't use t4_fw_config_file() 3933 * because we want the ability to modify various features after we've 3934 * processed the configuration file ... 3935 */ 3936 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3937 caps_cmd.op_to_write = 3938 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3939 FW_CMD_REQUEST_F | 3940 FW_CMD_READ_F); 3941 caps_cmd.cfvalid_to_len16 = 3942 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3943 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3944 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3945 FW_LEN16(caps_cmd)); 3946 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3947 &caps_cmd); 3948 3949 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3950 * Configuration File in FLASH), our last gasp effort is to use the 3951 * Firmware Configuration File which is embedded in the firmware. A 3952 * very few early versions of the firmware didn't have one embedded 3953 * but we can ignore those. 3954 */ 3955 if (ret == -ENOENT) { 3956 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3957 caps_cmd.op_to_write = 3958 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3959 FW_CMD_REQUEST_F | 3960 FW_CMD_READ_F); 3961 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3962 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3963 sizeof(caps_cmd), &caps_cmd); 3964 config_name = "Firmware Default"; 3965 } 3966 3967 config_issued = 1; 3968 if (ret < 0) 3969 goto bye; 3970 3971 finiver = ntohl(caps_cmd.finiver); 3972 finicsum = ntohl(caps_cmd.finicsum); 3973 cfcsum = ntohl(caps_cmd.cfcsum); 3974 if (finicsum != cfcsum) 3975 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3976 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3977 finicsum, cfcsum); 3978 3979 /* 3980 * And now tell the firmware to use the configuration we just loaded. 3981 */ 3982 caps_cmd.op_to_write = 3983 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3984 FW_CMD_REQUEST_F | 3985 FW_CMD_WRITE_F); 3986 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3987 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3988 NULL); 3989 if (ret < 0) 3990 goto bye; 3991 3992 /* 3993 * Tweak configuration based on system architecture, module 3994 * parameters, etc. 3995 */ 3996 ret = adap_init0_tweaks(adapter); 3997 if (ret < 0) 3998 goto bye; 3999 4000 /* We will proceed even if HMA init fails. */ 4001 ret = adap_config_hma(adapter); 4002 if (ret) 4003 dev_err(adapter->pdev_dev, 4004 "HMA configuration failed with error %d\n", ret); 4005 4006 /* 4007 * And finally tell the firmware to initialize itself using the 4008 * parameters from the Configuration File. 4009 */ 4010 ret = t4_fw_initialize(adapter, adapter->mbox); 4011 if (ret < 0) 4012 goto bye; 4013 4014 /* Emit Firmware Configuration File information and return 4015 * successfully. 4016 */ 4017 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4018 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4019 config_name, finiver, cfcsum); 4020 return 0; 4021 4022 /* 4023 * Something bad happened. Return the error ... (If the "error" 4024 * is that there's no Configuration File on the adapter we don't 4025 * want to issue a warning since this is fairly common.) 4026 */ 4027 bye: 4028 if (config_issued && ret != -ENOENT) 4029 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4030 config_name, -ret); 4031 return ret; 4032 } 4033 4034 static struct fw_info fw_info_array[] = { 4035 { 4036 .chip = CHELSIO_T4, 4037 .fs_name = FW4_CFNAME, 4038 .fw_mod_name = FW4_FNAME, 4039 .fw_hdr = { 4040 .chip = FW_HDR_CHIP_T4, 4041 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4042 .intfver_nic = FW_INTFVER(T4, NIC), 4043 .intfver_vnic = FW_INTFVER(T4, VNIC), 4044 .intfver_ri = FW_INTFVER(T4, RI), 4045 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4046 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4047 }, 4048 }, { 4049 .chip = CHELSIO_T5, 4050 .fs_name = FW5_CFNAME, 4051 .fw_mod_name = FW5_FNAME, 4052 .fw_hdr = { 4053 .chip = FW_HDR_CHIP_T5, 4054 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4055 .intfver_nic = FW_INTFVER(T5, NIC), 4056 .intfver_vnic = FW_INTFVER(T5, VNIC), 4057 .intfver_ri = FW_INTFVER(T5, RI), 4058 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4059 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4060 }, 4061 }, { 4062 .chip = CHELSIO_T6, 4063 .fs_name = FW6_CFNAME, 4064 .fw_mod_name = FW6_FNAME, 4065 .fw_hdr = { 4066 .chip = FW_HDR_CHIP_T6, 4067 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4068 .intfver_nic = FW_INTFVER(T6, NIC), 4069 .intfver_vnic = FW_INTFVER(T6, VNIC), 4070 .intfver_ofld = FW_INTFVER(T6, OFLD), 4071 .intfver_ri = FW_INTFVER(T6, RI), 4072 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4073 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4074 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4075 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4076 }, 4077 } 4078 4079 }; 4080 4081 static struct fw_info *find_fw_info(int chip) 4082 { 4083 int i; 4084 4085 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4086 if (fw_info_array[i].chip == chip) 4087 return &fw_info_array[i]; 4088 } 4089 return NULL; 4090 } 4091 4092 /* 4093 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4094 */ 4095 static int adap_init0(struct adapter *adap) 4096 { 4097 int ret; 4098 u32 v, port_vec; 4099 enum dev_state state; 4100 u32 params[7], val[7]; 4101 struct fw_caps_config_cmd caps_cmd; 4102 int reset = 1; 4103 4104 /* Grab Firmware Device Log parameters as early as possible so we have 4105 * access to it for debugging, etc. 4106 */ 4107 ret = t4_init_devlog_params(adap); 4108 if (ret < 0) 4109 return ret; 4110 4111 /* Contact FW, advertising Master capability */ 4112 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4113 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4114 if (ret < 0) { 4115 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4116 ret); 4117 return ret; 4118 } 4119 if (ret == adap->mbox) 4120 adap->flags |= MASTER_PF; 4121 4122 /* 4123 * If we're the Master PF Driver and the device is uninitialized, 4124 * then let's consider upgrading the firmware ... (We always want 4125 * to check the firmware version number in order to A. get it for 4126 * later reporting and B. to warn if the currently loaded firmware 4127 * is excessively mismatched relative to the driver.) 4128 */ 4129 4130 t4_get_version_info(adap); 4131 ret = t4_check_fw_version(adap); 4132 /* If firmware is too old (not supported by driver) force an update. */ 4133 if (ret) 4134 state = DEV_STATE_UNINIT; 4135 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4136 struct fw_info *fw_info; 4137 struct fw_hdr *card_fw; 4138 const struct firmware *fw; 4139 const u8 *fw_data = NULL; 4140 unsigned int fw_size = 0; 4141 4142 /* This is the firmware whose headers the driver was compiled 4143 * against 4144 */ 4145 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4146 if (fw_info == NULL) { 4147 dev_err(adap->pdev_dev, 4148 "unable to get firmware info for chip %d.\n", 4149 CHELSIO_CHIP_VERSION(adap->params.chip)); 4150 return -EINVAL; 4151 } 4152 4153 /* allocate memory to read the header of the firmware on the 4154 * card 4155 */ 4156 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4157 if (!card_fw) { 4158 ret = -ENOMEM; 4159 goto bye; 4160 } 4161 4162 /* Get FW from from /lib/firmware/ */ 4163 ret = request_firmware(&fw, fw_info->fw_mod_name, 4164 adap->pdev_dev); 4165 if (ret < 0) { 4166 dev_err(adap->pdev_dev, 4167 "unable to load firmware image %s, error %d\n", 4168 fw_info->fw_mod_name, ret); 4169 } else { 4170 fw_data = fw->data; 4171 fw_size = fw->size; 4172 } 4173 4174 /* upgrade FW logic */ 4175 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4176 state, &reset); 4177 4178 /* Cleaning up */ 4179 release_firmware(fw); 4180 kvfree(card_fw); 4181 4182 if (ret < 0) 4183 goto bye; 4184 } 4185 4186 /* If the firmware is initialized already, emit a simply note to that 4187 * effect. Otherwise, it's time to try initializing the adapter. 4188 */ 4189 if (state == DEV_STATE_INIT) { 4190 ret = adap_config_hma(adap); 4191 if (ret) 4192 dev_err(adap->pdev_dev, 4193 "HMA configuration failed with error %d\n", 4194 ret); 4195 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4196 "Adapter already initialized\n", 4197 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4198 } else { 4199 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4200 "Initializing adapter\n"); 4201 4202 /* Find out whether we're dealing with a version of the 4203 * firmware which has configuration file support. 4204 */ 4205 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4206 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4207 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4208 params, val); 4209 4210 /* If the firmware doesn't support Configuration Files, 4211 * return an error. 4212 */ 4213 if (ret < 0) { 4214 dev_err(adap->pdev_dev, "firmware doesn't support " 4215 "Firmware Configuration Files\n"); 4216 goto bye; 4217 } 4218 4219 /* The firmware provides us with a memory buffer where we can 4220 * load a Configuration File from the host if we want to 4221 * override the Configuration File in flash. 4222 */ 4223 ret = adap_init0_config(adap, reset); 4224 if (ret == -ENOENT) { 4225 dev_err(adap->pdev_dev, "no Configuration File " 4226 "present on adapter.\n"); 4227 goto bye; 4228 } 4229 if (ret < 0) { 4230 dev_err(adap->pdev_dev, "could not initialize " 4231 "adapter, error %d\n", -ret); 4232 goto bye; 4233 } 4234 } 4235 4236 /* Now that we've successfully configured and initialized the adapter 4237 * (or found it already initialized), we can ask the Firmware what 4238 * resources it has provisioned for us. 4239 */ 4240 ret = t4_get_pfres(adap); 4241 if (ret) { 4242 dev_err(adap->pdev_dev, 4243 "Unable to retrieve resource provisioning information\n"); 4244 goto bye; 4245 } 4246 4247 /* Grab VPD parameters. This should be done after we establish a 4248 * connection to the firmware since some of the VPD parameters 4249 * (notably the Core Clock frequency) are retrieved via requests to 4250 * the firmware. On the other hand, we need these fairly early on 4251 * so we do this right after getting ahold of the firmware. 4252 * 4253 * We need to do this after initializing the adapter because someone 4254 * could have FLASHed a new VPD which won't be read by the firmware 4255 * until we do the RESET ... 4256 */ 4257 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4258 if (ret < 0) 4259 goto bye; 4260 4261 /* Find out what ports are available to us. Note that we need to do 4262 * this before calling adap_init0_no_config() since it needs nports 4263 * and portvec ... 4264 */ 4265 v = 4266 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4267 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4268 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4269 if (ret < 0) 4270 goto bye; 4271 4272 adap->params.nports = hweight32(port_vec); 4273 adap->params.portvec = port_vec; 4274 4275 /* Give the SGE code a chance to pull in anything that it needs ... 4276 * Note that this must be called after we retrieve our VPD parameters 4277 * in order to know how to convert core ticks to seconds, etc. 4278 */ 4279 ret = t4_sge_init(adap); 4280 if (ret < 0) 4281 goto bye; 4282 4283 if (is_bypass_device(adap->pdev->device)) 4284 adap->params.bypass = 1; 4285 4286 /* 4287 * Grab some of our basic fundamental operating parameters. 4288 */ 4289 #define FW_PARAM_DEV(param) \ 4290 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4291 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4292 4293 #define FW_PARAM_PFVF(param) \ 4294 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4295 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4296 FW_PARAMS_PARAM_Y_V(0) | \ 4297 FW_PARAMS_PARAM_Z_V(0) 4298 4299 params[0] = FW_PARAM_PFVF(EQ_START); 4300 params[1] = FW_PARAM_PFVF(L2T_START); 4301 params[2] = FW_PARAM_PFVF(L2T_END); 4302 params[3] = FW_PARAM_PFVF(FILTER_START); 4303 params[4] = FW_PARAM_PFVF(FILTER_END); 4304 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4305 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4306 if (ret < 0) 4307 goto bye; 4308 adap->sge.egr_start = val[0]; 4309 adap->l2t_start = val[1]; 4310 adap->l2t_end = val[2]; 4311 adap->tids.ftid_base = val[3]; 4312 adap->tids.nftids = val[4] - val[3] + 1; 4313 adap->sge.ingr_start = val[5]; 4314 4315 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4316 /* Read the raw mps entries. In T6, the last 2 tcam entries 4317 * are reserved for raw mac addresses (rawf = 2, one per port). 4318 */ 4319 params[0] = FW_PARAM_PFVF(RAWF_START); 4320 params[1] = FW_PARAM_PFVF(RAWF_END); 4321 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4322 params, val); 4323 if (ret == 0) { 4324 adap->rawf_start = val[0]; 4325 adap->rawf_cnt = val[1] - val[0] + 1; 4326 } 4327 } 4328 4329 /* qids (ingress/egress) returned from firmware can be anywhere 4330 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4331 * Hence driver needs to allocate memory for this range to 4332 * store the queue info. Get the highest IQFLINT/EQ index returned 4333 * in FW_EQ_*_CMD.alloc command. 4334 */ 4335 params[0] = FW_PARAM_PFVF(EQ_END); 4336 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4337 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4338 if (ret < 0) 4339 goto bye; 4340 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4341 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4342 4343 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4344 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4345 if (!adap->sge.egr_map) { 4346 ret = -ENOMEM; 4347 goto bye; 4348 } 4349 4350 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4351 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4352 if (!adap->sge.ingr_map) { 4353 ret = -ENOMEM; 4354 goto bye; 4355 } 4356 4357 /* Allocate the memory for the vaious egress queue bitmaps 4358 * ie starving_fl, txq_maperr and blocked_fl. 4359 */ 4360 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4361 sizeof(long), GFP_KERNEL); 4362 if (!adap->sge.starving_fl) { 4363 ret = -ENOMEM; 4364 goto bye; 4365 } 4366 4367 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4368 sizeof(long), GFP_KERNEL); 4369 if (!adap->sge.txq_maperr) { 4370 ret = -ENOMEM; 4371 goto bye; 4372 } 4373 4374 #ifdef CONFIG_DEBUG_FS 4375 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4376 sizeof(long), GFP_KERNEL); 4377 if (!adap->sge.blocked_fl) { 4378 ret = -ENOMEM; 4379 goto bye; 4380 } 4381 #endif 4382 4383 params[0] = FW_PARAM_PFVF(CLIP_START); 4384 params[1] = FW_PARAM_PFVF(CLIP_END); 4385 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4386 if (ret < 0) 4387 goto bye; 4388 adap->clipt_start = val[0]; 4389 adap->clipt_end = val[1]; 4390 4391 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4392 * Classes supported by the hardware/firmware so we hard code it here 4393 * for now. 4394 */ 4395 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4396 4397 /* query params related to active filter region */ 4398 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4399 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4400 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4401 /* If Active filter size is set we enable establishing 4402 * offload connection through firmware work request 4403 */ 4404 if ((val[0] != val[1]) && (ret >= 0)) { 4405 adap->flags |= FW_OFLD_CONN; 4406 adap->tids.aftid_base = val[0]; 4407 adap->tids.aftid_end = val[1]; 4408 } 4409 4410 /* If we're running on newer firmware, let it know that we're 4411 * prepared to deal with encapsulated CPL messages. Older 4412 * firmware won't understand this and we'll just get 4413 * unencapsulated messages ... 4414 */ 4415 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4416 val[0] = 1; 4417 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4418 4419 /* 4420 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4421 * capability. Earlier versions of the firmware didn't have the 4422 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4423 * permission to use ULPTX MEMWRITE DSGL. 4424 */ 4425 if (is_t4(adap->params.chip)) { 4426 adap->params.ulptx_memwrite_dsgl = false; 4427 } else { 4428 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4429 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4430 1, params, val); 4431 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4432 } 4433 4434 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4435 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4436 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4437 1, params, val); 4438 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4439 4440 /* See if FW supports FW_FILTER2 work request */ 4441 if (is_t4(adap->params.chip)) { 4442 adap->params.filter2_wr_support = 0; 4443 } else { 4444 params[0] = FW_PARAM_DEV(FILTER2_WR); 4445 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4446 1, params, val); 4447 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4448 } 4449 4450 /* 4451 * Get device capabilities so we can determine what resources we need 4452 * to manage. 4453 */ 4454 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4455 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4456 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4457 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4458 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4459 &caps_cmd); 4460 if (ret < 0) 4461 goto bye; 4462 4463 if (caps_cmd.ofldcaps || 4464 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4465 /* query offload-related parameters */ 4466 params[0] = FW_PARAM_DEV(NTID); 4467 params[1] = FW_PARAM_PFVF(SERVER_START); 4468 params[2] = FW_PARAM_PFVF(SERVER_END); 4469 params[3] = FW_PARAM_PFVF(TDDP_START); 4470 params[4] = FW_PARAM_PFVF(TDDP_END); 4471 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4472 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4473 params, val); 4474 if (ret < 0) 4475 goto bye; 4476 adap->tids.ntids = val[0]; 4477 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4478 adap->tids.stid_base = val[1]; 4479 adap->tids.nstids = val[2] - val[1] + 1; 4480 /* 4481 * Setup server filter region. Divide the available filter 4482 * region into two parts. Regular filters get 1/3rd and server 4483 * filters get 2/3rd part. This is only enabled if workarond 4484 * path is enabled. 4485 * 1. For regular filters. 4486 * 2. Server filter: This are special filters which are used 4487 * to redirect SYN packets to offload queue. 4488 */ 4489 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4490 adap->tids.sftid_base = adap->tids.ftid_base + 4491 DIV_ROUND_UP(adap->tids.nftids, 3); 4492 adap->tids.nsftids = adap->tids.nftids - 4493 DIV_ROUND_UP(adap->tids.nftids, 3); 4494 adap->tids.nftids = adap->tids.sftid_base - 4495 adap->tids.ftid_base; 4496 } 4497 adap->vres.ddp.start = val[3]; 4498 adap->vres.ddp.size = val[4] - val[3] + 1; 4499 adap->params.ofldq_wr_cred = val[5]; 4500 4501 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4502 ret = init_hash_filter(adap); 4503 if (ret < 0) 4504 goto bye; 4505 } else { 4506 adap->params.offload = 1; 4507 adap->num_ofld_uld += 1; 4508 } 4509 } 4510 if (caps_cmd.rdmacaps) { 4511 params[0] = FW_PARAM_PFVF(STAG_START); 4512 params[1] = FW_PARAM_PFVF(STAG_END); 4513 params[2] = FW_PARAM_PFVF(RQ_START); 4514 params[3] = FW_PARAM_PFVF(RQ_END); 4515 params[4] = FW_PARAM_PFVF(PBL_START); 4516 params[5] = FW_PARAM_PFVF(PBL_END); 4517 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4518 params, val); 4519 if (ret < 0) 4520 goto bye; 4521 adap->vres.stag.start = val[0]; 4522 adap->vres.stag.size = val[1] - val[0] + 1; 4523 adap->vres.rq.start = val[2]; 4524 adap->vres.rq.size = val[3] - val[2] + 1; 4525 adap->vres.pbl.start = val[4]; 4526 adap->vres.pbl.size = val[5] - val[4] + 1; 4527 4528 params[0] = FW_PARAM_PFVF(SRQ_START); 4529 params[1] = FW_PARAM_PFVF(SRQ_END); 4530 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4531 params, val); 4532 if (!ret) { 4533 adap->vres.srq.start = val[0]; 4534 adap->vres.srq.size = val[1] - val[0] + 1; 4535 } 4536 if (adap->vres.srq.size) { 4537 adap->srq = t4_init_srq(adap->vres.srq.size); 4538 if (!adap->srq) 4539 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4540 } 4541 4542 params[0] = FW_PARAM_PFVF(SQRQ_START); 4543 params[1] = FW_PARAM_PFVF(SQRQ_END); 4544 params[2] = FW_PARAM_PFVF(CQ_START); 4545 params[3] = FW_PARAM_PFVF(CQ_END); 4546 params[4] = FW_PARAM_PFVF(OCQ_START); 4547 params[5] = FW_PARAM_PFVF(OCQ_END); 4548 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4549 val); 4550 if (ret < 0) 4551 goto bye; 4552 adap->vres.qp.start = val[0]; 4553 adap->vres.qp.size = val[1] - val[0] + 1; 4554 adap->vres.cq.start = val[2]; 4555 adap->vres.cq.size = val[3] - val[2] + 1; 4556 adap->vres.ocq.start = val[4]; 4557 adap->vres.ocq.size = val[5] - val[4] + 1; 4558 4559 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4560 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4561 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4562 val); 4563 if (ret < 0) { 4564 adap->params.max_ordird_qp = 8; 4565 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4566 ret = 0; 4567 } else { 4568 adap->params.max_ordird_qp = val[0]; 4569 adap->params.max_ird_adapter = val[1]; 4570 } 4571 dev_info(adap->pdev_dev, 4572 "max_ordird_qp %d max_ird_adapter %d\n", 4573 adap->params.max_ordird_qp, 4574 adap->params.max_ird_adapter); 4575 4576 /* Enable write_with_immediate if FW supports it */ 4577 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4578 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4579 val); 4580 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4581 4582 /* Enable write_cmpl if FW supports it */ 4583 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4584 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4585 val); 4586 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4587 adap->num_ofld_uld += 2; 4588 } 4589 if (caps_cmd.iscsicaps) { 4590 params[0] = FW_PARAM_PFVF(ISCSI_START); 4591 params[1] = FW_PARAM_PFVF(ISCSI_END); 4592 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4593 params, val); 4594 if (ret < 0) 4595 goto bye; 4596 adap->vres.iscsi.start = val[0]; 4597 adap->vres.iscsi.size = val[1] - val[0] + 1; 4598 /* LIO target and cxgb4i initiaitor */ 4599 adap->num_ofld_uld += 2; 4600 } 4601 if (caps_cmd.cryptocaps) { 4602 if (ntohs(caps_cmd.cryptocaps) & 4603 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4604 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4605 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4606 2, params, val); 4607 if (ret < 0) { 4608 if (ret != -EINVAL) 4609 goto bye; 4610 } else { 4611 adap->vres.ncrypto_fc = val[0]; 4612 } 4613 adap->num_ofld_uld += 1; 4614 } 4615 if (ntohs(caps_cmd.cryptocaps) & 4616 FW_CAPS_CONFIG_TLS_INLINE) { 4617 params[0] = FW_PARAM_PFVF(TLS_START); 4618 params[1] = FW_PARAM_PFVF(TLS_END); 4619 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4620 2, params, val); 4621 if (ret < 0) 4622 goto bye; 4623 adap->vres.key.start = val[0]; 4624 adap->vres.key.size = val[1] - val[0] + 1; 4625 adap->num_uld += 1; 4626 } 4627 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4628 } 4629 #undef FW_PARAM_PFVF 4630 #undef FW_PARAM_DEV 4631 4632 /* The MTU/MSS Table is initialized by now, so load their values. If 4633 * we're initializing the adapter, then we'll make any modifications 4634 * we want to the MTU/MSS Table and also initialize the congestion 4635 * parameters. 4636 */ 4637 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4638 if (state != DEV_STATE_INIT) { 4639 int i; 4640 4641 /* The default MTU Table contains values 1492 and 1500. 4642 * However, for TCP, it's better to have two values which are 4643 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4644 * This allows us to have a TCP Data Payload which is a 4645 * multiple of 8 regardless of what combination of TCP Options 4646 * are in use (always a multiple of 4 bytes) which is 4647 * important for performance reasons. For instance, if no 4648 * options are in use, then we have a 20-byte IP header and a 4649 * 20-byte TCP header. In this case, a 1500-byte MSS would 4650 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4651 * which is not a multiple of 8. So using an MSS of 1488 in 4652 * this case results in a TCP Data Payload of 1448 bytes which 4653 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4654 * Stamps have been negotiated, then an MTU of 1500 bytes 4655 * results in a TCP Data Payload of 1448 bytes which, as 4656 * above, is a multiple of 8 bytes ... 4657 */ 4658 for (i = 0; i < NMTUS; i++) 4659 if (adap->params.mtus[i] == 1492) { 4660 adap->params.mtus[i] = 1488; 4661 break; 4662 } 4663 4664 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4665 adap->params.b_wnd); 4666 } 4667 t4_init_sge_params(adap); 4668 adap->flags |= FW_OK; 4669 t4_init_tp_params(adap, true); 4670 return 0; 4671 4672 /* 4673 * Something bad happened. If a command timed out or failed with EIO 4674 * FW does not operate within its spec or something catastrophic 4675 * happened to HW/FW, stop issuing commands. 4676 */ 4677 bye: 4678 adap_free_hma_mem(adap); 4679 kfree(adap->sge.egr_map); 4680 kfree(adap->sge.ingr_map); 4681 kfree(adap->sge.starving_fl); 4682 kfree(adap->sge.txq_maperr); 4683 #ifdef CONFIG_DEBUG_FS 4684 kfree(adap->sge.blocked_fl); 4685 #endif 4686 if (ret != -ETIMEDOUT && ret != -EIO) 4687 t4_fw_bye(adap, adap->mbox); 4688 return ret; 4689 } 4690 4691 /* EEH callbacks */ 4692 4693 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4694 pci_channel_state_t state) 4695 { 4696 int i; 4697 struct adapter *adap = pci_get_drvdata(pdev); 4698 4699 if (!adap) 4700 goto out; 4701 4702 rtnl_lock(); 4703 adap->flags &= ~FW_OK; 4704 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4705 spin_lock(&adap->stats_lock); 4706 for_each_port(adap, i) { 4707 struct net_device *dev = adap->port[i]; 4708 if (dev) { 4709 netif_device_detach(dev); 4710 netif_carrier_off(dev); 4711 } 4712 } 4713 spin_unlock(&adap->stats_lock); 4714 disable_interrupts(adap); 4715 if (adap->flags & FULL_INIT_DONE) 4716 cxgb_down(adap); 4717 rtnl_unlock(); 4718 if ((adap->flags & DEV_ENABLED)) { 4719 pci_disable_device(pdev); 4720 adap->flags &= ~DEV_ENABLED; 4721 } 4722 out: return state == pci_channel_io_perm_failure ? 4723 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4724 } 4725 4726 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4727 { 4728 int i, ret; 4729 struct fw_caps_config_cmd c; 4730 struct adapter *adap = pci_get_drvdata(pdev); 4731 4732 if (!adap) { 4733 pci_restore_state(pdev); 4734 pci_save_state(pdev); 4735 return PCI_ERS_RESULT_RECOVERED; 4736 } 4737 4738 if (!(adap->flags & DEV_ENABLED)) { 4739 if (pci_enable_device(pdev)) { 4740 dev_err(&pdev->dev, "Cannot reenable PCI " 4741 "device after reset\n"); 4742 return PCI_ERS_RESULT_DISCONNECT; 4743 } 4744 adap->flags |= DEV_ENABLED; 4745 } 4746 4747 pci_set_master(pdev); 4748 pci_restore_state(pdev); 4749 pci_save_state(pdev); 4750 pci_cleanup_aer_uncorrect_error_status(pdev); 4751 4752 if (t4_wait_dev_ready(adap->regs) < 0) 4753 return PCI_ERS_RESULT_DISCONNECT; 4754 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4755 return PCI_ERS_RESULT_DISCONNECT; 4756 adap->flags |= FW_OK; 4757 if (adap_init1(adap, &c)) 4758 return PCI_ERS_RESULT_DISCONNECT; 4759 4760 for_each_port(adap, i) { 4761 struct port_info *p = adap2pinfo(adap, i); 4762 4763 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4764 NULL, NULL); 4765 if (ret < 0) 4766 return PCI_ERS_RESULT_DISCONNECT; 4767 p->viid = ret; 4768 p->xact_addr_filt = -1; 4769 } 4770 4771 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4772 adap->params.b_wnd); 4773 setup_memwin(adap); 4774 if (cxgb_up(adap)) 4775 return PCI_ERS_RESULT_DISCONNECT; 4776 return PCI_ERS_RESULT_RECOVERED; 4777 } 4778 4779 static void eeh_resume(struct pci_dev *pdev) 4780 { 4781 int i; 4782 struct adapter *adap = pci_get_drvdata(pdev); 4783 4784 if (!adap) 4785 return; 4786 4787 rtnl_lock(); 4788 for_each_port(adap, i) { 4789 struct net_device *dev = adap->port[i]; 4790 if (dev) { 4791 if (netif_running(dev)) { 4792 link_start(dev); 4793 cxgb_set_rxmode(dev); 4794 } 4795 netif_device_attach(dev); 4796 } 4797 } 4798 rtnl_unlock(); 4799 } 4800 4801 static const struct pci_error_handlers cxgb4_eeh = { 4802 .error_detected = eeh_err_detected, 4803 .slot_reset = eeh_slot_reset, 4804 .resume = eeh_resume, 4805 }; 4806 4807 /* Return true if the Link Configuration supports "High Speeds" (those greater 4808 * than 1Gb/s). 4809 */ 4810 static inline bool is_x_10g_port(const struct link_config *lc) 4811 { 4812 unsigned int speeds, high_speeds; 4813 4814 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4815 high_speeds = speeds & 4816 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4817 4818 return high_speeds != 0; 4819 } 4820 4821 /* 4822 * Perform default configuration of DMA queues depending on the number and type 4823 * of ports we found and the number of available CPUs. Most settings can be 4824 * modified by the admin prior to actual use. 4825 */ 4826 static int cfg_queues(struct adapter *adap) 4827 { 4828 struct sge *s = &adap->sge; 4829 int i, n10g = 0, qidx = 0; 4830 int niqflint, neq, avail_eth_qsets; 4831 int max_eth_qsets = 32; 4832 #ifndef CONFIG_CHELSIO_T4_DCB 4833 int q10g = 0; 4834 #endif 4835 4836 /* Reduce memory usage in kdump environment, disable all offload. 4837 */ 4838 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4839 adap->params.offload = 0; 4840 adap->params.crypto = 0; 4841 } 4842 4843 /* Calculate the number of Ethernet Queue Sets available based on 4844 * resources provisioned for us. We always have an Asynchronous 4845 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 4846 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 4847 * Ingress Queue. Meanwhile, we need two Egress Queues for each 4848 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 4849 * 4850 * Note that we should also take into account all of the various 4851 * Offload Queues. But, in any situation where we're operating in 4852 * a Resource Constrained Provisioning environment, doing any Offload 4853 * at all is problematic ... 4854 */ 4855 niqflint = adap->params.pfres.niqflint - 1; 4856 if (!(adap->flags & USING_MSIX)) 4857 niqflint--; 4858 neq = adap->params.pfres.neq / 2; 4859 avail_eth_qsets = min(niqflint, neq); 4860 4861 if (avail_eth_qsets > max_eth_qsets) 4862 avail_eth_qsets = max_eth_qsets; 4863 4864 if (avail_eth_qsets < adap->params.nports) { 4865 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 4866 avail_eth_qsets, adap->params.nports); 4867 return -ENOMEM; 4868 } 4869 4870 /* Count the number of 10Gb/s or better ports */ 4871 for_each_port(adap, i) 4872 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4873 4874 #ifdef CONFIG_CHELSIO_T4_DCB 4875 /* For Data Center Bridging support we need to be able to support up 4876 * to 8 Traffic Priorities; each of which will be assigned to its 4877 * own TX Queue in order to prevent Head-Of-Line Blocking. 4878 */ 4879 if (adap->params.nports * 8 > avail_eth_qsets) { 4880 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 4881 avail_eth_qsets, adap->params.nports * 8); 4882 return -ENOMEM; 4883 } 4884 4885 for_each_port(adap, i) { 4886 struct port_info *pi = adap2pinfo(adap, i); 4887 4888 pi->first_qset = qidx; 4889 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4890 qidx += pi->nqsets; 4891 } 4892 #else /* !CONFIG_CHELSIO_T4_DCB */ 4893 /* 4894 * We default to 1 queue per non-10G port and up to # of cores queues 4895 * per 10G port. 4896 */ 4897 if (n10g) 4898 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 4899 if (q10g > netif_get_num_default_rss_queues()) 4900 q10g = netif_get_num_default_rss_queues(); 4901 4902 if (is_kdump_kernel()) 4903 q10g = 1; 4904 4905 for_each_port(adap, i) { 4906 struct port_info *pi = adap2pinfo(adap, i); 4907 4908 pi->first_qset = qidx; 4909 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4910 qidx += pi->nqsets; 4911 } 4912 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4913 4914 s->ethqsets = qidx; 4915 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4916 4917 if (is_uld(adap)) { 4918 /* 4919 * For offload we use 1 queue/channel if all ports are up to 1G, 4920 * otherwise we divide all available queues amongst the channels 4921 * capped by the number of available cores. 4922 */ 4923 if (n10g) { 4924 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4925 s->ofldqsets = roundup(i, adap->params.nports); 4926 } else { 4927 s->ofldqsets = adap->params.nports; 4928 } 4929 } 4930 4931 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4932 struct sge_eth_rxq *r = &s->ethrxq[i]; 4933 4934 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4935 r->fl.size = 72; 4936 } 4937 4938 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4939 s->ethtxq[i].q.size = 1024; 4940 4941 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4942 s->ctrlq[i].q.size = 512; 4943 4944 if (!is_t4(adap->params.chip)) 4945 s->ptptxq.q.size = 8; 4946 4947 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4948 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4949 4950 return 0; 4951 } 4952 4953 /* 4954 * Reduce the number of Ethernet queues across all ports to at most n. 4955 * n provides at least one queue per port. 4956 */ 4957 static void reduce_ethqs(struct adapter *adap, int n) 4958 { 4959 int i; 4960 struct port_info *pi; 4961 4962 while (n < adap->sge.ethqsets) 4963 for_each_port(adap, i) { 4964 pi = adap2pinfo(adap, i); 4965 if (pi->nqsets > 1) { 4966 pi->nqsets--; 4967 adap->sge.ethqsets--; 4968 if (adap->sge.ethqsets <= n) 4969 break; 4970 } 4971 } 4972 4973 n = 0; 4974 for_each_port(adap, i) { 4975 pi = adap2pinfo(adap, i); 4976 pi->first_qset = n; 4977 n += pi->nqsets; 4978 } 4979 } 4980 4981 static int get_msix_info(struct adapter *adap) 4982 { 4983 struct uld_msix_info *msix_info; 4984 unsigned int max_ingq = 0; 4985 4986 if (is_offload(adap)) 4987 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4988 if (is_pci_uld(adap)) 4989 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4990 4991 if (!max_ingq) 4992 goto out; 4993 4994 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4995 if (!msix_info) 4996 return -ENOMEM; 4997 4998 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4999 sizeof(long), GFP_KERNEL); 5000 if (!adap->msix_bmap_ulds.msix_bmap) { 5001 kfree(msix_info); 5002 return -ENOMEM; 5003 } 5004 spin_lock_init(&adap->msix_bmap_ulds.lock); 5005 adap->msix_info_ulds = msix_info; 5006 out: 5007 return 0; 5008 } 5009 5010 static void free_msix_info(struct adapter *adap) 5011 { 5012 if (!(adap->num_uld && adap->num_ofld_uld)) 5013 return; 5014 5015 kfree(adap->msix_info_ulds); 5016 kfree(adap->msix_bmap_ulds.msix_bmap); 5017 } 5018 5019 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5020 #define EXTRA_VECS 2 5021 5022 static int enable_msix(struct adapter *adap) 5023 { 5024 int ofld_need = 0, uld_need = 0; 5025 int i, j, want, need, allocated; 5026 struct sge *s = &adap->sge; 5027 unsigned int nchan = adap->params.nports; 5028 struct msix_entry *entries; 5029 int max_ingq = MAX_INGQ; 5030 5031 if (is_pci_uld(adap)) 5032 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5033 if (is_offload(adap)) 5034 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5035 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5036 GFP_KERNEL); 5037 if (!entries) 5038 return -ENOMEM; 5039 5040 /* map for msix */ 5041 if (get_msix_info(adap)) { 5042 adap->params.offload = 0; 5043 adap->params.crypto = 0; 5044 } 5045 5046 for (i = 0; i < max_ingq + 1; ++i) 5047 entries[i].entry = i; 5048 5049 want = s->max_ethqsets + EXTRA_VECS; 5050 if (is_offload(adap)) { 5051 want += adap->num_ofld_uld * s->ofldqsets; 5052 ofld_need = adap->num_ofld_uld * nchan; 5053 } 5054 if (is_pci_uld(adap)) { 5055 want += adap->num_uld * s->ofldqsets; 5056 uld_need = adap->num_uld * nchan; 5057 } 5058 #ifdef CONFIG_CHELSIO_T4_DCB 5059 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5060 * each port. 5061 */ 5062 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5063 #else 5064 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5065 #endif 5066 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5067 if (allocated < 0) { 5068 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5069 " not using MSI-X\n"); 5070 kfree(entries); 5071 return allocated; 5072 } 5073 5074 /* Distribute available vectors to the various queue groups. 5075 * Every group gets its minimum requirement and NIC gets top 5076 * priority for leftovers. 5077 */ 5078 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5079 if (i < s->max_ethqsets) { 5080 s->max_ethqsets = i; 5081 if (i < s->ethqsets) 5082 reduce_ethqs(adap, i); 5083 } 5084 if (is_uld(adap)) { 5085 if (allocated < want) 5086 s->nqs_per_uld = nchan; 5087 else 5088 s->nqs_per_uld = s->ofldqsets; 5089 } 5090 5091 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5092 adap->msix_info[i].vec = entries[i].vector; 5093 if (is_uld(adap)) { 5094 for (j = 0 ; i < allocated; ++i, j++) { 5095 adap->msix_info_ulds[j].vec = entries[i].vector; 5096 adap->msix_info_ulds[j].idx = i; 5097 } 5098 adap->msix_bmap_ulds.mapsize = j; 5099 } 5100 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5101 "nic %d per uld %d\n", 5102 allocated, s->max_ethqsets, s->nqs_per_uld); 5103 5104 kfree(entries); 5105 return 0; 5106 } 5107 5108 #undef EXTRA_VECS 5109 5110 static int init_rss(struct adapter *adap) 5111 { 5112 unsigned int i; 5113 int err; 5114 5115 err = t4_init_rss_mode(adap, adap->mbox); 5116 if (err) 5117 return err; 5118 5119 for_each_port(adap, i) { 5120 struct port_info *pi = adap2pinfo(adap, i); 5121 5122 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5123 if (!pi->rss) 5124 return -ENOMEM; 5125 } 5126 return 0; 5127 } 5128 5129 /* Dump basic information about the adapter */ 5130 static void print_adapter_info(struct adapter *adapter) 5131 { 5132 /* Hardware/Firmware/etc. Version/Revision IDs */ 5133 t4_dump_version_info(adapter); 5134 5135 /* Software/Hardware configuration */ 5136 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5137 is_offload(adapter) ? "R" : "", 5138 ((adapter->flags & USING_MSIX) ? "MSI-X" : 5139 (adapter->flags & USING_MSI) ? "MSI" : ""), 5140 is_offload(adapter) ? "Offload" : "non-Offload"); 5141 } 5142 5143 static void print_port_info(const struct net_device *dev) 5144 { 5145 char buf[80]; 5146 char *bufp = buf; 5147 const struct port_info *pi = netdev_priv(dev); 5148 const struct adapter *adap = pi->adapter; 5149 5150 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5151 bufp += sprintf(bufp, "100M/"); 5152 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5153 bufp += sprintf(bufp, "1G/"); 5154 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5155 bufp += sprintf(bufp, "10G/"); 5156 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5157 bufp += sprintf(bufp, "25G/"); 5158 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5159 bufp += sprintf(bufp, "40G/"); 5160 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5161 bufp += sprintf(bufp, "50G/"); 5162 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5163 bufp += sprintf(bufp, "100G/"); 5164 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5165 bufp += sprintf(bufp, "200G/"); 5166 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5167 bufp += sprintf(bufp, "400G/"); 5168 if (bufp != buf) 5169 --bufp; 5170 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5171 5172 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5173 dev->name, adap->params.vpd.id, adap->name, buf); 5174 } 5175 5176 /* 5177 * Free the following resources: 5178 * - memory used for tables 5179 * - MSI/MSI-X 5180 * - net devices 5181 * - resources FW is holding for us 5182 */ 5183 static void free_some_resources(struct adapter *adapter) 5184 { 5185 unsigned int i; 5186 5187 kvfree(adapter->mps_encap); 5188 kvfree(adapter->smt); 5189 kvfree(adapter->l2t); 5190 kvfree(adapter->srq); 5191 t4_cleanup_sched(adapter); 5192 kvfree(adapter->tids.tid_tab); 5193 cxgb4_cleanup_tc_flower(adapter); 5194 cxgb4_cleanup_tc_u32(adapter); 5195 kfree(adapter->sge.egr_map); 5196 kfree(adapter->sge.ingr_map); 5197 kfree(adapter->sge.starving_fl); 5198 kfree(adapter->sge.txq_maperr); 5199 #ifdef CONFIG_DEBUG_FS 5200 kfree(adapter->sge.blocked_fl); 5201 #endif 5202 disable_msi(adapter); 5203 5204 for_each_port(adapter, i) 5205 if (adapter->port[i]) { 5206 struct port_info *pi = adap2pinfo(adapter, i); 5207 5208 if (pi->viid != 0) 5209 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5210 0, pi->viid); 5211 kfree(adap2pinfo(adapter, i)->rss); 5212 free_netdev(adapter->port[i]); 5213 } 5214 if (adapter->flags & FW_OK) 5215 t4_fw_bye(adapter, adapter->pf); 5216 } 5217 5218 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5219 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5220 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5221 #define SEGMENT_SIZE 128 5222 5223 static int t4_get_chip_type(struct adapter *adap, int ver) 5224 { 5225 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5226 5227 switch (ver) { 5228 case CHELSIO_T4: 5229 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5230 case CHELSIO_T5: 5231 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5232 case CHELSIO_T6: 5233 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5234 default: 5235 break; 5236 } 5237 return -EINVAL; 5238 } 5239 5240 #ifdef CONFIG_PCI_IOV 5241 static void cxgb4_mgmt_setup(struct net_device *dev) 5242 { 5243 dev->type = ARPHRD_NONE; 5244 dev->mtu = 0; 5245 dev->hard_header_len = 0; 5246 dev->addr_len = 0; 5247 dev->tx_queue_len = 0; 5248 dev->flags |= IFF_NOARP; 5249 dev->priv_flags |= IFF_NO_QUEUE; 5250 5251 /* Initialize the device structure. */ 5252 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5253 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5254 } 5255 5256 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5257 { 5258 struct adapter *adap = pci_get_drvdata(pdev); 5259 int err = 0; 5260 int current_vfs = pci_num_vf(pdev); 5261 u32 pcie_fw; 5262 5263 pcie_fw = readl(adap->regs + PCIE_FW_A); 5264 /* Check if fw is initialized */ 5265 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5266 dev_warn(&pdev->dev, "Device not initialized\n"); 5267 return -EOPNOTSUPP; 5268 } 5269 5270 /* If any of the VF's is already assigned to Guest OS, then 5271 * SRIOV for the same cannot be modified 5272 */ 5273 if (current_vfs && pci_vfs_assigned(pdev)) { 5274 dev_err(&pdev->dev, 5275 "Cannot modify SR-IOV while VFs are assigned\n"); 5276 return current_vfs; 5277 } 5278 /* Note that the upper-level code ensures that we're never called with 5279 * a non-zero "num_vfs" when we already have VFs instantiated. But 5280 * it never hurts to code defensively. 5281 */ 5282 if (num_vfs != 0 && current_vfs != 0) 5283 return -EBUSY; 5284 5285 /* Nothing to do for no change. */ 5286 if (num_vfs == current_vfs) 5287 return num_vfs; 5288 5289 /* Disable SRIOV when zero is passed. */ 5290 if (!num_vfs) { 5291 pci_disable_sriov(pdev); 5292 /* free VF Management Interface */ 5293 unregister_netdev(adap->port[0]); 5294 free_netdev(adap->port[0]); 5295 adap->port[0] = NULL; 5296 5297 /* free VF resources */ 5298 adap->num_vfs = 0; 5299 kfree(adap->vfinfo); 5300 adap->vfinfo = NULL; 5301 return 0; 5302 } 5303 5304 if (!current_vfs) { 5305 struct fw_pfvf_cmd port_cmd, port_rpl; 5306 struct net_device *netdev; 5307 unsigned int pmask, port; 5308 struct pci_dev *pbridge; 5309 struct port_info *pi; 5310 char name[IFNAMSIZ]; 5311 u32 devcap2; 5312 u16 flags; 5313 int pos; 5314 5315 /* If we want to instantiate Virtual Functions, then our 5316 * parent bridge's PCI-E needs to support Alternative Routing 5317 * ID (ARI) because our VFs will show up at function offset 8 5318 * and above. 5319 */ 5320 pbridge = pdev->bus->self; 5321 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5322 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5323 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5324 5325 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5326 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5327 /* Our parent bridge does not support ARI so issue a 5328 * warning and skip instantiating the VFs. They 5329 * won't be reachable. 5330 */ 5331 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5332 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5333 PCI_FUNC(pbridge->devfn)); 5334 return -ENOTSUPP; 5335 } 5336 memset(&port_cmd, 0, sizeof(port_cmd)); 5337 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5338 FW_CMD_REQUEST_F | 5339 FW_CMD_READ_F | 5340 FW_PFVF_CMD_PFN_V(adap->pf) | 5341 FW_PFVF_CMD_VFN_V(0)); 5342 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5343 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5344 &port_rpl); 5345 if (err) 5346 return err; 5347 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5348 port = ffs(pmask) - 1; 5349 /* Allocate VF Management Interface. */ 5350 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5351 adap->pf); 5352 netdev = alloc_netdev(sizeof(struct port_info), 5353 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5354 if (!netdev) 5355 return -ENOMEM; 5356 5357 pi = netdev_priv(netdev); 5358 pi->adapter = adap; 5359 pi->lport = port; 5360 pi->tx_chan = port; 5361 SET_NETDEV_DEV(netdev, &pdev->dev); 5362 5363 adap->port[0] = netdev; 5364 pi->port_id = 0; 5365 5366 err = register_netdev(adap->port[0]); 5367 if (err) { 5368 pr_info("Unable to register VF mgmt netdev %s\n", name); 5369 free_netdev(adap->port[0]); 5370 adap->port[0] = NULL; 5371 return err; 5372 } 5373 /* Allocate and set up VF Information. */ 5374 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5375 sizeof(struct vf_info), GFP_KERNEL); 5376 if (!adap->vfinfo) { 5377 unregister_netdev(adap->port[0]); 5378 free_netdev(adap->port[0]); 5379 adap->port[0] = NULL; 5380 return -ENOMEM; 5381 } 5382 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5383 } 5384 /* Instantiate the requested number of VFs. */ 5385 err = pci_enable_sriov(pdev, num_vfs); 5386 if (err) { 5387 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5388 if (!current_vfs) { 5389 unregister_netdev(adap->port[0]); 5390 free_netdev(adap->port[0]); 5391 adap->port[0] = NULL; 5392 kfree(adap->vfinfo); 5393 adap->vfinfo = NULL; 5394 } 5395 return err; 5396 } 5397 5398 adap->num_vfs = num_vfs; 5399 return num_vfs; 5400 } 5401 #endif /* CONFIG_PCI_IOV */ 5402 5403 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5404 { 5405 struct net_device *netdev; 5406 struct adapter *adapter; 5407 static int adap_idx = 1; 5408 int s_qpp, qpp, num_seg; 5409 struct port_info *pi; 5410 bool highdma = false; 5411 enum chip_type chip; 5412 void __iomem *regs; 5413 int func, chip_ver; 5414 u16 device_id; 5415 int i, err; 5416 u32 whoami; 5417 5418 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5419 5420 err = pci_request_regions(pdev, KBUILD_MODNAME); 5421 if (err) { 5422 /* Just info, some other driver may have claimed the device. */ 5423 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5424 return err; 5425 } 5426 5427 err = pci_enable_device(pdev); 5428 if (err) { 5429 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5430 goto out_release_regions; 5431 } 5432 5433 regs = pci_ioremap_bar(pdev, 0); 5434 if (!regs) { 5435 dev_err(&pdev->dev, "cannot map device registers\n"); 5436 err = -ENOMEM; 5437 goto out_disable_device; 5438 } 5439 5440 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5441 if (!adapter) { 5442 err = -ENOMEM; 5443 goto out_unmap_bar0; 5444 } 5445 5446 adapter->regs = regs; 5447 err = t4_wait_dev_ready(regs); 5448 if (err < 0) 5449 goto out_free_adapter; 5450 5451 /* We control everything through one PF */ 5452 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5453 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5454 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5455 if (chip < 0) { 5456 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5457 err = chip; 5458 goto out_free_adapter; 5459 } 5460 chip_ver = CHELSIO_CHIP_VERSION(chip); 5461 func = chip_ver <= CHELSIO_T5 ? 5462 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5463 5464 adapter->pdev = pdev; 5465 adapter->pdev_dev = &pdev->dev; 5466 adapter->name = pci_name(pdev); 5467 adapter->mbox = func; 5468 adapter->pf = func; 5469 adapter->params.chip = chip; 5470 adapter->adap_idx = adap_idx; 5471 adapter->msg_enable = DFLT_MSG_ENABLE; 5472 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5473 (sizeof(struct mbox_cmd) * 5474 T4_OS_LOG_MBOX_CMDS), 5475 GFP_KERNEL); 5476 if (!adapter->mbox_log) { 5477 err = -ENOMEM; 5478 goto out_free_adapter; 5479 } 5480 spin_lock_init(&adapter->mbox_lock); 5481 INIT_LIST_HEAD(&adapter->mlist.list); 5482 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5483 pci_set_drvdata(pdev, adapter); 5484 5485 if (func != ent->driver_data) { 5486 pci_disable_device(pdev); 5487 pci_save_state(pdev); /* to restore SR-IOV later */ 5488 return 0; 5489 } 5490 5491 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5492 highdma = true; 5493 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5494 if (err) { 5495 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5496 "coherent allocations\n"); 5497 goto out_free_adapter; 5498 } 5499 } else { 5500 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5501 if (err) { 5502 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5503 goto out_free_adapter; 5504 } 5505 } 5506 5507 pci_enable_pcie_error_reporting(pdev); 5508 pci_set_master(pdev); 5509 pci_save_state(pdev); 5510 adap_idx++; 5511 adapter->workq = create_singlethread_workqueue("cxgb4"); 5512 if (!adapter->workq) { 5513 err = -ENOMEM; 5514 goto out_free_adapter; 5515 } 5516 5517 /* PCI device has been enabled */ 5518 adapter->flags |= DEV_ENABLED; 5519 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5520 5521 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5522 * Ingress Packet Data to Free List Buffers in order to allow for 5523 * chipset performance optimizations between the Root Complex and 5524 * Memory Controllers. (Messages to the associated Ingress Queue 5525 * notifying new Packet Placement in the Free Lists Buffers will be 5526 * send without the Relaxed Ordering Attribute thus guaranteeing that 5527 * all preceding PCIe Transaction Layer Packets will be processed 5528 * first.) But some Root Complexes have various issues with Upstream 5529 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5530 * The PCIe devices which under the Root Complexes will be cleared the 5531 * Relaxed Ordering bit in the configuration space, So we check our 5532 * PCIe configuration space to see if it's flagged with advice against 5533 * using Relaxed Ordering. 5534 */ 5535 if (!pcie_relaxed_ordering_enabled(pdev)) 5536 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5537 5538 spin_lock_init(&adapter->stats_lock); 5539 spin_lock_init(&adapter->tid_release_lock); 5540 spin_lock_init(&adapter->win0_lock); 5541 5542 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5543 INIT_WORK(&adapter->db_full_task, process_db_full); 5544 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5545 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5546 5547 err = t4_prep_adapter(adapter); 5548 if (err) 5549 goto out_free_adapter; 5550 5551 if (is_kdump_kernel()) { 5552 /* Collect hardware state and append to /proc/vmcore */ 5553 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5554 if (err) { 5555 dev_warn(adapter->pdev_dev, 5556 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5557 err); 5558 err = 0; 5559 } 5560 } 5561 5562 if (!is_t4(adapter->params.chip)) { 5563 s_qpp = (QUEUESPERPAGEPF0_S + 5564 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5565 adapter->pf); 5566 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5567 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5568 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5569 5570 /* Each segment size is 128B. Write coalescing is enabled only 5571 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5572 * queue is less no of segments that can be accommodated in 5573 * a page size. 5574 */ 5575 if (qpp > num_seg) { 5576 dev_err(&pdev->dev, 5577 "Incorrect number of egress queues per page\n"); 5578 err = -EINVAL; 5579 goto out_free_adapter; 5580 } 5581 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5582 pci_resource_len(pdev, 2)); 5583 if (!adapter->bar2) { 5584 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5585 err = -ENOMEM; 5586 goto out_free_adapter; 5587 } 5588 } 5589 5590 setup_memwin(adapter); 5591 err = adap_init0(adapter); 5592 #ifdef CONFIG_DEBUG_FS 5593 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5594 #endif 5595 setup_memwin_rdma(adapter); 5596 if (err) 5597 goto out_unmap_bar; 5598 5599 /* configure SGE_STAT_CFG_A to read WC stats */ 5600 if (!is_t4(adapter->params.chip)) 5601 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5602 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5603 T6_STATMODE_V(0))); 5604 5605 for_each_port(adapter, i) { 5606 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5607 MAX_ETH_QSETS); 5608 if (!netdev) { 5609 err = -ENOMEM; 5610 goto out_free_dev; 5611 } 5612 5613 SET_NETDEV_DEV(netdev, &pdev->dev); 5614 5615 adapter->port[i] = netdev; 5616 pi = netdev_priv(netdev); 5617 pi->adapter = adapter; 5618 pi->xact_addr_filt = -1; 5619 pi->port_id = i; 5620 netdev->irq = pdev->irq; 5621 5622 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5623 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5624 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5625 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5626 NETIF_F_HW_TC; 5627 5628 if (chip_ver > CHELSIO_T5) { 5629 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5630 NETIF_F_IPV6_CSUM | 5631 NETIF_F_RXCSUM | 5632 NETIF_F_GSO_UDP_TUNNEL | 5633 NETIF_F_TSO | NETIF_F_TSO6; 5634 5635 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 5636 } 5637 5638 if (highdma) 5639 netdev->hw_features |= NETIF_F_HIGHDMA; 5640 netdev->features |= netdev->hw_features; 5641 netdev->vlan_features = netdev->features & VLAN_FEAT; 5642 5643 netdev->priv_flags |= IFF_UNICAST_FLT; 5644 5645 /* MTU range: 81 - 9600 */ 5646 netdev->min_mtu = 81; /* accommodate SACK */ 5647 netdev->max_mtu = MAX_MTU; 5648 5649 netdev->netdev_ops = &cxgb4_netdev_ops; 5650 #ifdef CONFIG_CHELSIO_T4_DCB 5651 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5652 cxgb4_dcb_state_init(netdev); 5653 cxgb4_dcb_version_init(netdev); 5654 #endif 5655 cxgb4_set_ethtool_ops(netdev); 5656 } 5657 5658 cxgb4_init_ethtool_dump(adapter); 5659 5660 pci_set_drvdata(pdev, adapter); 5661 5662 if (adapter->flags & FW_OK) { 5663 err = t4_port_init(adapter, func, func, 0); 5664 if (err) 5665 goto out_free_dev; 5666 } else if (adapter->params.nports == 1) { 5667 /* If we don't have a connection to the firmware -- possibly 5668 * because of an error -- grab the raw VPD parameters so we 5669 * can set the proper MAC Address on the debug network 5670 * interface that we've created. 5671 */ 5672 u8 hw_addr[ETH_ALEN]; 5673 u8 *na = adapter->params.vpd.na; 5674 5675 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5676 if (!err) { 5677 for (i = 0; i < ETH_ALEN; i++) 5678 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5679 hex2val(na[2 * i + 1])); 5680 t4_set_hw_addr(adapter, 0, hw_addr); 5681 } 5682 } 5683 5684 if (!(adapter->flags & FW_OK)) 5685 goto fw_attach_fail; 5686 5687 /* Configure queues and allocate tables now, they can be needed as 5688 * soon as the first register_netdev completes. 5689 */ 5690 err = cfg_queues(adapter); 5691 if (err) 5692 goto out_free_dev; 5693 5694 adapter->smt = t4_init_smt(); 5695 if (!adapter->smt) { 5696 /* We tolerate a lack of SMT, giving up some functionality */ 5697 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5698 } 5699 5700 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5701 if (!adapter->l2t) { 5702 /* We tolerate a lack of L2T, giving up some functionality */ 5703 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5704 adapter->params.offload = 0; 5705 } 5706 5707 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5708 sizeof(struct mps_encap_entry), 5709 GFP_KERNEL); 5710 if (!adapter->mps_encap) 5711 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5712 5713 #if IS_ENABLED(CONFIG_IPV6) 5714 if (chip_ver <= CHELSIO_T5 && 5715 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5716 /* CLIP functionality is not present in hardware, 5717 * hence disable all offload features 5718 */ 5719 dev_warn(&pdev->dev, 5720 "CLIP not enabled in hardware, continuing\n"); 5721 adapter->params.offload = 0; 5722 } else { 5723 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5724 adapter->clipt_end); 5725 if (!adapter->clipt) { 5726 /* We tolerate a lack of clip_table, giving up 5727 * some functionality 5728 */ 5729 dev_warn(&pdev->dev, 5730 "could not allocate Clip table, continuing\n"); 5731 adapter->params.offload = 0; 5732 } 5733 } 5734 #endif 5735 5736 for_each_port(adapter, i) { 5737 pi = adap2pinfo(adapter, i); 5738 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5739 if (!pi->sched_tbl) 5740 dev_warn(&pdev->dev, 5741 "could not activate scheduling on port %d\n", 5742 i); 5743 } 5744 5745 if (tid_init(&adapter->tids) < 0) { 5746 dev_warn(&pdev->dev, "could not allocate TID table, " 5747 "continuing\n"); 5748 adapter->params.offload = 0; 5749 } else { 5750 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5751 if (!adapter->tc_u32) 5752 dev_warn(&pdev->dev, 5753 "could not offload tc u32, continuing\n"); 5754 5755 if (cxgb4_init_tc_flower(adapter)) 5756 dev_warn(&pdev->dev, 5757 "could not offload tc flower, continuing\n"); 5758 } 5759 5760 if (is_offload(adapter) || is_hashfilter(adapter)) { 5761 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5762 u32 hash_base, hash_reg; 5763 5764 if (chip_ver <= CHELSIO_T5) { 5765 hash_reg = LE_DB_TID_HASHBASE_A; 5766 hash_base = t4_read_reg(adapter, hash_reg); 5767 adapter->tids.hash_base = hash_base / 4; 5768 } else { 5769 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5770 hash_base = t4_read_reg(adapter, hash_reg); 5771 adapter->tids.hash_base = hash_base; 5772 } 5773 } 5774 } 5775 5776 /* See what interrupts we'll be using */ 5777 if (msi > 1 && enable_msix(adapter) == 0) 5778 adapter->flags |= USING_MSIX; 5779 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5780 adapter->flags |= USING_MSI; 5781 if (msi > 1) 5782 free_msix_info(adapter); 5783 } 5784 5785 /* check for PCI Express bandwidth capabiltites */ 5786 pcie_print_link_status(pdev); 5787 5788 err = init_rss(adapter); 5789 if (err) 5790 goto out_free_dev; 5791 5792 err = setup_fw_sge_queues(adapter); 5793 if (err) { 5794 dev_err(adapter->pdev_dev, 5795 "FW sge queue allocation failed, err %d", err); 5796 goto out_free_dev; 5797 } 5798 5799 fw_attach_fail: 5800 /* 5801 * The card is now ready to go. If any errors occur during device 5802 * registration we do not fail the whole card but rather proceed only 5803 * with the ports we manage to register successfully. However we must 5804 * register at least one net device. 5805 */ 5806 for_each_port(adapter, i) { 5807 pi = adap2pinfo(adapter, i); 5808 adapter->port[i]->dev_port = pi->lport; 5809 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5810 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5811 5812 netif_carrier_off(adapter->port[i]); 5813 5814 err = register_netdev(adapter->port[i]); 5815 if (err) 5816 break; 5817 adapter->chan_map[pi->tx_chan] = i; 5818 print_port_info(adapter->port[i]); 5819 } 5820 if (i == 0) { 5821 dev_err(&pdev->dev, "could not register any net devices\n"); 5822 goto out_free_dev; 5823 } 5824 if (err) { 5825 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5826 err = 0; 5827 } 5828 5829 if (cxgb4_debugfs_root) { 5830 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5831 cxgb4_debugfs_root); 5832 setup_debugfs(adapter); 5833 } 5834 5835 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5836 pdev->needs_freset = 1; 5837 5838 if (is_uld(adapter)) { 5839 mutex_lock(&uld_mutex); 5840 list_add_tail(&adapter->list_node, &adapter_list); 5841 mutex_unlock(&uld_mutex); 5842 } 5843 5844 if (!is_t4(adapter->params.chip)) 5845 cxgb4_ptp_init(adapter); 5846 5847 print_adapter_info(adapter); 5848 return 0; 5849 5850 out_free_dev: 5851 t4_free_sge_resources(adapter); 5852 free_some_resources(adapter); 5853 if (adapter->flags & USING_MSIX) 5854 free_msix_info(adapter); 5855 if (adapter->num_uld || adapter->num_ofld_uld) 5856 t4_uld_mem_free(adapter); 5857 out_unmap_bar: 5858 if (!is_t4(adapter->params.chip)) 5859 iounmap(adapter->bar2); 5860 out_free_adapter: 5861 if (adapter->workq) 5862 destroy_workqueue(adapter->workq); 5863 5864 kfree(adapter->mbox_log); 5865 kfree(adapter); 5866 out_unmap_bar0: 5867 iounmap(regs); 5868 out_disable_device: 5869 pci_disable_pcie_error_reporting(pdev); 5870 pci_disable_device(pdev); 5871 out_release_regions: 5872 pci_release_regions(pdev); 5873 return err; 5874 } 5875 5876 static void remove_one(struct pci_dev *pdev) 5877 { 5878 struct adapter *adapter = pci_get_drvdata(pdev); 5879 5880 if (!adapter) { 5881 pci_release_regions(pdev); 5882 return; 5883 } 5884 5885 adapter->flags |= SHUTTING_DOWN; 5886 5887 if (adapter->pf == 4) { 5888 int i; 5889 5890 /* Tear down per-adapter Work Queue first since it can contain 5891 * references to our adapter data structure. 5892 */ 5893 destroy_workqueue(adapter->workq); 5894 5895 if (is_uld(adapter)) { 5896 detach_ulds(adapter); 5897 t4_uld_clean_up(adapter); 5898 } 5899 5900 adap_free_hma_mem(adapter); 5901 5902 disable_interrupts(adapter); 5903 5904 for_each_port(adapter, i) 5905 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5906 unregister_netdev(adapter->port[i]); 5907 5908 debugfs_remove_recursive(adapter->debugfs_root); 5909 5910 if (!is_t4(adapter->params.chip)) 5911 cxgb4_ptp_stop(adapter); 5912 5913 /* If we allocated filters, free up state associated with any 5914 * valid filters ... 5915 */ 5916 clear_all_filters(adapter); 5917 5918 if (adapter->flags & FULL_INIT_DONE) 5919 cxgb_down(adapter); 5920 5921 if (adapter->flags & USING_MSIX) 5922 free_msix_info(adapter); 5923 if (adapter->num_uld || adapter->num_ofld_uld) 5924 t4_uld_mem_free(adapter); 5925 free_some_resources(adapter); 5926 #if IS_ENABLED(CONFIG_IPV6) 5927 t4_cleanup_clip_tbl(adapter); 5928 #endif 5929 if (!is_t4(adapter->params.chip)) 5930 iounmap(adapter->bar2); 5931 } 5932 #ifdef CONFIG_PCI_IOV 5933 else { 5934 cxgb4_iov_configure(adapter->pdev, 0); 5935 } 5936 #endif 5937 iounmap(adapter->regs); 5938 pci_disable_pcie_error_reporting(pdev); 5939 if ((adapter->flags & DEV_ENABLED)) { 5940 pci_disable_device(pdev); 5941 adapter->flags &= ~DEV_ENABLED; 5942 } 5943 pci_release_regions(pdev); 5944 kfree(adapter->mbox_log); 5945 synchronize_rcu(); 5946 kfree(adapter); 5947 } 5948 5949 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5950 * delivery. This is essentially a stripped down version of the PCI remove() 5951 * function where we do the minimal amount of work necessary to shutdown any 5952 * further activity. 5953 */ 5954 static void shutdown_one(struct pci_dev *pdev) 5955 { 5956 struct adapter *adapter = pci_get_drvdata(pdev); 5957 5958 /* As with remove_one() above (see extended comment), we only want do 5959 * do cleanup on PCI Devices which went all the way through init_one() 5960 * ... 5961 */ 5962 if (!adapter) { 5963 pci_release_regions(pdev); 5964 return; 5965 } 5966 5967 adapter->flags |= SHUTTING_DOWN; 5968 5969 if (adapter->pf == 4) { 5970 int i; 5971 5972 for_each_port(adapter, i) 5973 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5974 cxgb_close(adapter->port[i]); 5975 5976 if (is_uld(adapter)) { 5977 detach_ulds(adapter); 5978 t4_uld_clean_up(adapter); 5979 } 5980 5981 disable_interrupts(adapter); 5982 disable_msi(adapter); 5983 5984 t4_sge_stop(adapter); 5985 if (adapter->flags & FW_OK) 5986 t4_fw_bye(adapter, adapter->mbox); 5987 } 5988 } 5989 5990 static struct pci_driver cxgb4_driver = { 5991 .name = KBUILD_MODNAME, 5992 .id_table = cxgb4_pci_tbl, 5993 .probe = init_one, 5994 .remove = remove_one, 5995 .shutdown = shutdown_one, 5996 #ifdef CONFIG_PCI_IOV 5997 .sriov_configure = cxgb4_iov_configure, 5998 #endif 5999 .err_handler = &cxgb4_eeh, 6000 }; 6001 6002 static int __init cxgb4_init_module(void) 6003 { 6004 int ret; 6005 6006 /* Debugfs support is optional, just warn if this fails */ 6007 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6008 if (!cxgb4_debugfs_root) 6009 pr_warn("could not create debugfs entry, continuing\n"); 6010 6011 ret = pci_register_driver(&cxgb4_driver); 6012 if (ret < 0) 6013 debugfs_remove(cxgb4_debugfs_root); 6014 6015 #if IS_ENABLED(CONFIG_IPV6) 6016 if (!inet6addr_registered) { 6017 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6018 inet6addr_registered = true; 6019 } 6020 #endif 6021 6022 return ret; 6023 } 6024 6025 static void __exit cxgb4_cleanup_module(void) 6026 { 6027 #if IS_ENABLED(CONFIG_IPV6) 6028 if (inet6addr_registered) { 6029 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6030 inet6addr_registered = false; 6031 } 6032 #endif 6033 pci_unregister_driver(&cxgb4_driver); 6034 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6035 } 6036 6037 module_init(cxgb4_init_module); 6038 module_exit(cxgb4_cleanup_module); 6039