1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <asm/uaccess.h> 64 65 #include "cxgb4.h" 66 #include "t4_regs.h" 67 #include "t4_msg.h" 68 #include "t4fw_api.h" 69 #include "l2t.h" 70 71 #define DRV_VERSION "1.3.0-ko" 72 #define DRV_DESC "Chelsio T4 Network Driver" 73 74 /* 75 * Max interrupt hold-off timer value in us. Queues fall back to this value 76 * under extreme memory pressure so it's largish to give the system time to 77 * recover. 78 */ 79 #define MAX_SGE_TIMERVAL 200U 80 81 #ifdef CONFIG_PCI_IOV 82 /* 83 * Virtual Function provisioning constants. We need two extra Ingress Queues 84 * with Interrupt capability to serve as the VF's Firmware Event Queue and 85 * Forwarded Interrupt Queue (when using MSI mode) -- neither will have Free 86 * Lists associated with them). For each Ethernet/Control Egress Queue and 87 * for each Free List, we need an Egress Context. 88 */ 89 enum { 90 VFRES_NPORTS = 1, /* # of "ports" per VF */ 91 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */ 92 93 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */ 94 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */ 95 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */ 96 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */ 97 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */ 98 VFRES_TC = 0, /* PCI-E traffic class */ 99 VFRES_NEXACTF = 16, /* # of exact MPS filters */ 100 101 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT, 102 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF, 103 }; 104 105 /* 106 * Provide a Port Access Rights Mask for the specified PF/VF. This is very 107 * static and likely not to be useful in the long run. We really need to 108 * implement some form of persistent configuration which the firmware 109 * controls. 110 */ 111 static unsigned int pfvfres_pmask(struct adapter *adapter, 112 unsigned int pf, unsigned int vf) 113 { 114 unsigned int portn, portvec; 115 116 /* 117 * Give PF's access to all of the ports. 118 */ 119 if (vf == 0) 120 return FW_PFVF_CMD_PMASK_MASK; 121 122 /* 123 * For VFs, we'll assign them access to the ports based purely on the 124 * PF. We assign active ports in order, wrapping around if there are 125 * fewer active ports than PFs: e.g. active port[pf % nports]. 126 * Unfortunately the adapter's port_info structs haven't been 127 * initialized yet so we have to compute this. 128 */ 129 if (adapter->params.nports == 0) 130 return 0; 131 132 portn = pf % adapter->params.nports; 133 portvec = adapter->params.portvec; 134 for (;;) { 135 /* 136 * Isolate the lowest set bit in the port vector. If we're at 137 * the port number that we want, return that as the pmask. 138 * otherwise mask that bit out of the port vector and 139 * decrement our port number ... 140 */ 141 unsigned int pmask = portvec ^ (portvec & (portvec-1)); 142 if (portn == 0) 143 return pmask; 144 portn--; 145 portvec &= ~pmask; 146 } 147 /*NOTREACHED*/ 148 } 149 #endif 150 151 enum { 152 MEMWIN0_APERTURE = 65536, 153 MEMWIN0_BASE = 0x30000, 154 MEMWIN1_APERTURE = 32768, 155 MEMWIN1_BASE = 0x28000, 156 MEMWIN2_APERTURE = 2048, 157 MEMWIN2_BASE = 0x1b800, 158 }; 159 160 enum { 161 MAX_TXQ_ENTRIES = 16384, 162 MAX_CTRL_TXQ_ENTRIES = 1024, 163 MAX_RSPQ_ENTRIES = 16384, 164 MAX_RX_BUFFERS = 16384, 165 MIN_TXQ_ENTRIES = 32, 166 MIN_CTRL_TXQ_ENTRIES = 32, 167 MIN_RSPQ_ENTRIES = 128, 168 MIN_FL_ENTRIES = 16 169 }; 170 171 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 172 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 173 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 174 175 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) } 176 177 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = { 178 CH_DEVICE(0xa000, 0), /* PE10K */ 179 CH_DEVICE(0x4001, -1), 180 CH_DEVICE(0x4002, -1), 181 CH_DEVICE(0x4003, -1), 182 CH_DEVICE(0x4004, -1), 183 CH_DEVICE(0x4005, -1), 184 CH_DEVICE(0x4006, -1), 185 CH_DEVICE(0x4007, -1), 186 CH_DEVICE(0x4008, -1), 187 CH_DEVICE(0x4009, -1), 188 CH_DEVICE(0x400a, -1), 189 CH_DEVICE(0x4401, 4), 190 CH_DEVICE(0x4402, 4), 191 CH_DEVICE(0x4403, 4), 192 CH_DEVICE(0x4404, 4), 193 CH_DEVICE(0x4405, 4), 194 CH_DEVICE(0x4406, 4), 195 CH_DEVICE(0x4407, 4), 196 CH_DEVICE(0x4408, 4), 197 CH_DEVICE(0x4409, 4), 198 CH_DEVICE(0x440a, 4), 199 { 0, } 200 }; 201 202 #define FW_FNAME "cxgb4/t4fw.bin" 203 204 MODULE_DESCRIPTION(DRV_DESC); 205 MODULE_AUTHOR("Chelsio Communications"); 206 MODULE_LICENSE("Dual BSD/GPL"); 207 MODULE_VERSION(DRV_VERSION); 208 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 209 MODULE_FIRMWARE(FW_FNAME); 210 211 static int dflt_msg_enable = DFLT_MSG_ENABLE; 212 213 module_param(dflt_msg_enable, int, 0644); 214 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 215 216 /* 217 * The driver uses the best interrupt scheme available on a platform in the 218 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 219 * of these schemes the driver may consider as follows: 220 * 221 * msi = 2: choose from among all three options 222 * msi = 1: only consider MSI and INTx interrupts 223 * msi = 0: force INTx interrupts 224 */ 225 static int msi = 2; 226 227 module_param(msi, int, 0644); 228 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 229 230 /* 231 * Queue interrupt hold-off timer values. Queues default to the first of these 232 * upon creation. 233 */ 234 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; 235 236 module_param_array(intr_holdoff, uint, NULL, 0644); 237 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " 238 "0..4 in microseconds"); 239 240 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; 241 242 module_param_array(intr_cnt, uint, NULL, 0644); 243 MODULE_PARM_DESC(intr_cnt, 244 "thresholds 1..3 for queue interrupt packet counters"); 245 246 static bool vf_acls; 247 248 #ifdef CONFIG_PCI_IOV 249 module_param(vf_acls, bool, 0644); 250 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement"); 251 252 static unsigned int num_vf[4]; 253 254 module_param_array(num_vf, uint, NULL, 0644); 255 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 256 #endif 257 258 static struct dentry *cxgb4_debugfs_root; 259 260 static LIST_HEAD(adapter_list); 261 static DEFINE_MUTEX(uld_mutex); 262 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 263 static const char *uld_str[] = { "RDMA", "iSCSI" }; 264 265 static void link_report(struct net_device *dev) 266 { 267 if (!netif_carrier_ok(dev)) 268 netdev_info(dev, "link down\n"); 269 else { 270 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 271 272 const char *s = "10Mbps"; 273 const struct port_info *p = netdev_priv(dev); 274 275 switch (p->link_cfg.speed) { 276 case SPEED_10000: 277 s = "10Gbps"; 278 break; 279 case SPEED_1000: 280 s = "1000Mbps"; 281 break; 282 case SPEED_100: 283 s = "100Mbps"; 284 break; 285 } 286 287 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 288 fc[p->link_cfg.fc]); 289 } 290 } 291 292 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 293 { 294 struct net_device *dev = adapter->port[port_id]; 295 296 /* Skip changes from disabled ports. */ 297 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 298 if (link_stat) 299 netif_carrier_on(dev); 300 else 301 netif_carrier_off(dev); 302 303 link_report(dev); 304 } 305 } 306 307 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 308 { 309 static const char *mod_str[] = { 310 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 311 }; 312 313 const struct net_device *dev = adap->port[port_id]; 314 const struct port_info *pi = netdev_priv(dev); 315 316 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 317 netdev_info(dev, "port module unplugged\n"); 318 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 319 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 320 } 321 322 /* 323 * Configure the exact and hash address filters to handle a port's multicast 324 * and secondary unicast MAC addresses. 325 */ 326 static int set_addr_filters(const struct net_device *dev, bool sleep) 327 { 328 u64 mhash = 0; 329 u64 uhash = 0; 330 bool free = true; 331 u16 filt_idx[7]; 332 const u8 *addr[7]; 333 int ret, naddr = 0; 334 const struct netdev_hw_addr *ha; 335 int uc_cnt = netdev_uc_count(dev); 336 int mc_cnt = netdev_mc_count(dev); 337 const struct port_info *pi = netdev_priv(dev); 338 unsigned int mb = pi->adapter->fn; 339 340 /* first do the secondary unicast addresses */ 341 netdev_for_each_uc_addr(ha, dev) { 342 addr[naddr++] = ha->addr; 343 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 344 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 345 naddr, addr, filt_idx, &uhash, sleep); 346 if (ret < 0) 347 return ret; 348 349 free = false; 350 naddr = 0; 351 } 352 } 353 354 /* next set up the multicast addresses */ 355 netdev_for_each_mc_addr(ha, dev) { 356 addr[naddr++] = ha->addr; 357 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 358 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 359 naddr, addr, filt_idx, &mhash, sleep); 360 if (ret < 0) 361 return ret; 362 363 free = false; 364 naddr = 0; 365 } 366 } 367 368 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 369 uhash | mhash, sleep); 370 } 371 372 /* 373 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 374 * If @mtu is -1 it is left unchanged. 375 */ 376 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 377 { 378 int ret; 379 struct port_info *pi = netdev_priv(dev); 380 381 ret = set_addr_filters(dev, sleep_ok); 382 if (ret == 0) 383 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu, 384 (dev->flags & IFF_PROMISC) ? 1 : 0, 385 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 386 sleep_ok); 387 return ret; 388 } 389 390 /** 391 * link_start - enable a port 392 * @dev: the port to enable 393 * 394 * Performs the MAC and PHY actions needed to enable a port. 395 */ 396 static int link_start(struct net_device *dev) 397 { 398 int ret; 399 struct port_info *pi = netdev_priv(dev); 400 unsigned int mb = pi->adapter->fn; 401 402 /* 403 * We do not set address filters and promiscuity here, the stack does 404 * that step explicitly. 405 */ 406 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 407 !!(dev->features & NETIF_F_HW_VLAN_RX), true); 408 if (ret == 0) { 409 ret = t4_change_mac(pi->adapter, mb, pi->viid, 410 pi->xact_addr_filt, dev->dev_addr, true, 411 true); 412 if (ret >= 0) { 413 pi->xact_addr_filt = ret; 414 ret = 0; 415 } 416 } 417 if (ret == 0) 418 ret = t4_link_start(pi->adapter, mb, pi->tx_chan, 419 &pi->link_cfg); 420 if (ret == 0) 421 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true); 422 return ret; 423 } 424 425 /* 426 * Response queue handler for the FW event queue. 427 */ 428 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 429 const struct pkt_gl *gl) 430 { 431 u8 opcode = ((const struct rss_header *)rsp)->opcode; 432 433 rsp++; /* skip RSS header */ 434 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 435 const struct cpl_sge_egr_update *p = (void *)rsp; 436 unsigned int qid = EGR_QID(ntohl(p->opcode_qid)); 437 struct sge_txq *txq; 438 439 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 440 txq->restarts++; 441 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 442 struct sge_eth_txq *eq; 443 444 eq = container_of(txq, struct sge_eth_txq, q); 445 netif_tx_wake_queue(eq->txq); 446 } else { 447 struct sge_ofld_txq *oq; 448 449 oq = container_of(txq, struct sge_ofld_txq, q); 450 tasklet_schedule(&oq->qresume_tsk); 451 } 452 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 453 const struct cpl_fw6_msg *p = (void *)rsp; 454 455 if (p->type == 0) 456 t4_handle_fw_rpl(q->adap, p->data); 457 } else if (opcode == CPL_L2T_WRITE_RPL) { 458 const struct cpl_l2t_write_rpl *p = (void *)rsp; 459 460 do_l2t_write_rpl(q->adap, p); 461 } else 462 dev_err(q->adap->pdev_dev, 463 "unexpected CPL %#x on FW event queue\n", opcode); 464 return 0; 465 } 466 467 /** 468 * uldrx_handler - response queue handler for ULD queues 469 * @q: the response queue that received the packet 470 * @rsp: the response queue descriptor holding the offload message 471 * @gl: the gather list of packet fragments 472 * 473 * Deliver an ingress offload packet to a ULD. All processing is done by 474 * the ULD, we just maintain statistics. 475 */ 476 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 477 const struct pkt_gl *gl) 478 { 479 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 480 481 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 482 rxq->stats.nomem++; 483 return -1; 484 } 485 if (gl == NULL) 486 rxq->stats.imm++; 487 else if (gl == CXGB4_MSG_AN) 488 rxq->stats.an++; 489 else 490 rxq->stats.pkts++; 491 return 0; 492 } 493 494 static void disable_msi(struct adapter *adapter) 495 { 496 if (adapter->flags & USING_MSIX) { 497 pci_disable_msix(adapter->pdev); 498 adapter->flags &= ~USING_MSIX; 499 } else if (adapter->flags & USING_MSI) { 500 pci_disable_msi(adapter->pdev); 501 adapter->flags &= ~USING_MSI; 502 } 503 } 504 505 /* 506 * Interrupt handler for non-data events used with MSI-X. 507 */ 508 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 509 { 510 struct adapter *adap = cookie; 511 512 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE)); 513 if (v & PFSW) { 514 adap->swintr = 1; 515 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v); 516 } 517 t4_slow_intr_handler(adap); 518 return IRQ_HANDLED; 519 } 520 521 /* 522 * Name the MSI-X interrupts. 523 */ 524 static void name_msix_vecs(struct adapter *adap) 525 { 526 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 527 528 /* non-data interrupts */ 529 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 530 531 /* FW events */ 532 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 533 adap->port[0]->name); 534 535 /* Ethernet queues */ 536 for_each_port(adap, j) { 537 struct net_device *d = adap->port[j]; 538 const struct port_info *pi = netdev_priv(d); 539 540 for (i = 0; i < pi->nqsets; i++, msi_idx++) 541 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 542 d->name, i); 543 } 544 545 /* offload queues */ 546 for_each_ofldrxq(&adap->sge, i) 547 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", 548 adap->port[0]->name, i); 549 550 for_each_rdmarxq(&adap->sge, i) 551 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 552 adap->port[0]->name, i); 553 } 554 555 static int request_msix_queue_irqs(struct adapter *adap) 556 { 557 struct sge *s = &adap->sge; 558 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2; 559 560 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 561 adap->msix_info[1].desc, &s->fw_evtq); 562 if (err) 563 return err; 564 565 for_each_ethrxq(s, ethqidx) { 566 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0, 567 adap->msix_info[msi].desc, 568 &s->ethrxq[ethqidx].rspq); 569 if (err) 570 goto unwind; 571 msi++; 572 } 573 for_each_ofldrxq(s, ofldqidx) { 574 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0, 575 adap->msix_info[msi].desc, 576 &s->ofldrxq[ofldqidx].rspq); 577 if (err) 578 goto unwind; 579 msi++; 580 } 581 for_each_rdmarxq(s, rdmaqidx) { 582 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0, 583 adap->msix_info[msi].desc, 584 &s->rdmarxq[rdmaqidx].rspq); 585 if (err) 586 goto unwind; 587 msi++; 588 } 589 return 0; 590 591 unwind: 592 while (--rdmaqidx >= 0) 593 free_irq(adap->msix_info[--msi].vec, 594 &s->rdmarxq[rdmaqidx].rspq); 595 while (--ofldqidx >= 0) 596 free_irq(adap->msix_info[--msi].vec, 597 &s->ofldrxq[ofldqidx].rspq); 598 while (--ethqidx >= 0) 599 free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq); 600 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 601 return err; 602 } 603 604 static void free_msix_queue_irqs(struct adapter *adap) 605 { 606 int i, msi = 2; 607 struct sge *s = &adap->sge; 608 609 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 610 for_each_ethrxq(s, i) 611 free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq); 612 for_each_ofldrxq(s, i) 613 free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq); 614 for_each_rdmarxq(s, i) 615 free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq); 616 } 617 618 /** 619 * write_rss - write the RSS table for a given port 620 * @pi: the port 621 * @queues: array of queue indices for RSS 622 * 623 * Sets up the portion of the HW RSS table for the port's VI to distribute 624 * packets to the Rx queues in @queues. 625 */ 626 static int write_rss(const struct port_info *pi, const u16 *queues) 627 { 628 u16 *rss; 629 int i, err; 630 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset]; 631 632 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 633 if (!rss) 634 return -ENOMEM; 635 636 /* map the queue indices to queue ids */ 637 for (i = 0; i < pi->rss_size; i++, queues++) 638 rss[i] = q[*queues].rspq.abs_id; 639 640 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0, 641 pi->rss_size, rss, pi->rss_size); 642 kfree(rss); 643 return err; 644 } 645 646 /** 647 * setup_rss - configure RSS 648 * @adap: the adapter 649 * 650 * Sets up RSS for each port. 651 */ 652 static int setup_rss(struct adapter *adap) 653 { 654 int i, err; 655 656 for_each_port(adap, i) { 657 const struct port_info *pi = adap2pinfo(adap, i); 658 659 err = write_rss(pi, pi->rss); 660 if (err) 661 return err; 662 } 663 return 0; 664 } 665 666 /* 667 * Return the channel of the ingress queue with the given qid. 668 */ 669 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 670 { 671 qid -= p->ingr_start; 672 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 673 } 674 675 /* 676 * Wait until all NAPI handlers are descheduled. 677 */ 678 static void quiesce_rx(struct adapter *adap) 679 { 680 int i; 681 682 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 683 struct sge_rspq *q = adap->sge.ingr_map[i]; 684 685 if (q && q->handler) 686 napi_disable(&q->napi); 687 } 688 } 689 690 /* 691 * Enable NAPI scheduling and interrupt generation for all Rx queues. 692 */ 693 static void enable_rx(struct adapter *adap) 694 { 695 int i; 696 697 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 698 struct sge_rspq *q = adap->sge.ingr_map[i]; 699 700 if (!q) 701 continue; 702 if (q->handler) 703 napi_enable(&q->napi); 704 /* 0-increment GTS to start the timer and enable interrupts */ 705 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), 706 SEINTARM(q->intr_params) | 707 INGRESSQID(q->cntxt_id)); 708 } 709 } 710 711 /** 712 * setup_sge_queues - configure SGE Tx/Rx/response queues 713 * @adap: the adapter 714 * 715 * Determines how many sets of SGE queues to use and initializes them. 716 * We support multiple queue sets per port if we have MSI-X, otherwise 717 * just one queue set per port. 718 */ 719 static int setup_sge_queues(struct adapter *adap) 720 { 721 int err, msi_idx, i, j; 722 struct sge *s = &adap->sge; 723 724 bitmap_zero(s->starving_fl, MAX_EGRQ); 725 bitmap_zero(s->txq_maperr, MAX_EGRQ); 726 727 if (adap->flags & USING_MSIX) 728 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 729 else { 730 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 731 NULL, NULL); 732 if (err) 733 return err; 734 msi_idx = -((int)s->intrq.abs_id + 1); 735 } 736 737 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 738 msi_idx, NULL, fwevtq_handler); 739 if (err) { 740 freeout: t4_free_sge_resources(adap); 741 return err; 742 } 743 744 for_each_port(adap, i) { 745 struct net_device *dev = adap->port[i]; 746 struct port_info *pi = netdev_priv(dev); 747 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 748 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 749 750 for (j = 0; j < pi->nqsets; j++, q++) { 751 if (msi_idx > 0) 752 msi_idx++; 753 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 754 msi_idx, &q->fl, 755 t4_ethrx_handler); 756 if (err) 757 goto freeout; 758 q->rspq.idx = j; 759 memset(&q->stats, 0, sizeof(q->stats)); 760 } 761 for (j = 0; j < pi->nqsets; j++, t++) { 762 err = t4_sge_alloc_eth_txq(adap, t, dev, 763 netdev_get_tx_queue(dev, j), 764 s->fw_evtq.cntxt_id); 765 if (err) 766 goto freeout; 767 } 768 } 769 770 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ 771 for_each_ofldrxq(s, i) { 772 struct sge_ofld_rxq *q = &s->ofldrxq[i]; 773 struct net_device *dev = adap->port[i / j]; 774 775 if (msi_idx > 0) 776 msi_idx++; 777 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx, 778 &q->fl, uldrx_handler); 779 if (err) 780 goto freeout; 781 memset(&q->stats, 0, sizeof(q->stats)); 782 s->ofld_rxq[i] = q->rspq.abs_id; 783 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev, 784 s->fw_evtq.cntxt_id); 785 if (err) 786 goto freeout; 787 } 788 789 for_each_rdmarxq(s, i) { 790 struct sge_ofld_rxq *q = &s->rdmarxq[i]; 791 792 if (msi_idx > 0) 793 msi_idx++; 794 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i], 795 msi_idx, &q->fl, uldrx_handler); 796 if (err) 797 goto freeout; 798 memset(&q->stats, 0, sizeof(q->stats)); 799 s->rdma_rxq[i] = q->rspq.abs_id; 800 } 801 802 for_each_port(adap, i) { 803 /* 804 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 805 * have RDMA queues, and that's the right value. 806 */ 807 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 808 s->fw_evtq.cntxt_id, 809 s->rdmarxq[i].rspq.cntxt_id); 810 if (err) 811 goto freeout; 812 } 813 814 t4_write_reg(adap, MPS_TRC_RSS_CONTROL, 815 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) | 816 QUEUENUMBER(s->ethrxq[0].rspq.abs_id)); 817 return 0; 818 } 819 820 /* 821 * Returns 0 if new FW was successfully loaded, a positive errno if a load was 822 * started but failed, and a negative errno if flash load couldn't start. 823 */ 824 static int upgrade_fw(struct adapter *adap) 825 { 826 int ret; 827 u32 vers; 828 const struct fw_hdr *hdr; 829 const struct firmware *fw; 830 struct device *dev = adap->pdev_dev; 831 832 ret = request_firmware(&fw, FW_FNAME, dev); 833 if (ret < 0) { 834 dev_err(dev, "unable to load firmware image " FW_FNAME 835 ", error %d\n", ret); 836 return ret; 837 } 838 839 hdr = (const struct fw_hdr *)fw->data; 840 vers = ntohl(hdr->fw_ver); 841 if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) { 842 ret = -EINVAL; /* wrong major version, won't do */ 843 goto out; 844 } 845 846 /* 847 * If the flash FW is unusable or we found something newer, load it. 848 */ 849 if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR || 850 vers > adap->params.fw_vers) { 851 ret = -t4_load_fw(adap, fw->data, fw->size); 852 if (!ret) 853 dev_info(dev, "firmware upgraded to version %pI4 from " 854 FW_FNAME "\n", &hdr->fw_ver); 855 } 856 out: release_firmware(fw); 857 return ret; 858 } 859 860 /* 861 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 862 * The allocated memory is cleared. 863 */ 864 void *t4_alloc_mem(size_t size) 865 { 866 void *p = kzalloc(size, GFP_KERNEL); 867 868 if (!p) 869 p = vzalloc(size); 870 return p; 871 } 872 873 /* 874 * Free memory allocated through alloc_mem(). 875 */ 876 static void t4_free_mem(void *addr) 877 { 878 if (is_vmalloc_addr(addr)) 879 vfree(addr); 880 else 881 kfree(addr); 882 } 883 884 static inline int is_offload(const struct adapter *adap) 885 { 886 return adap->params.offload; 887 } 888 889 /* 890 * Implementation of ethtool operations. 891 */ 892 893 static u32 get_msglevel(struct net_device *dev) 894 { 895 return netdev2adap(dev)->msg_enable; 896 } 897 898 static void set_msglevel(struct net_device *dev, u32 val) 899 { 900 netdev2adap(dev)->msg_enable = val; 901 } 902 903 static char stats_strings[][ETH_GSTRING_LEN] = { 904 "TxOctetsOK ", 905 "TxFramesOK ", 906 "TxBroadcastFrames ", 907 "TxMulticastFrames ", 908 "TxUnicastFrames ", 909 "TxErrorFrames ", 910 911 "TxFrames64 ", 912 "TxFrames65To127 ", 913 "TxFrames128To255 ", 914 "TxFrames256To511 ", 915 "TxFrames512To1023 ", 916 "TxFrames1024To1518 ", 917 "TxFrames1519ToMax ", 918 919 "TxFramesDropped ", 920 "TxPauseFrames ", 921 "TxPPP0Frames ", 922 "TxPPP1Frames ", 923 "TxPPP2Frames ", 924 "TxPPP3Frames ", 925 "TxPPP4Frames ", 926 "TxPPP5Frames ", 927 "TxPPP6Frames ", 928 "TxPPP7Frames ", 929 930 "RxOctetsOK ", 931 "RxFramesOK ", 932 "RxBroadcastFrames ", 933 "RxMulticastFrames ", 934 "RxUnicastFrames ", 935 936 "RxFramesTooLong ", 937 "RxJabberErrors ", 938 "RxFCSErrors ", 939 "RxLengthErrors ", 940 "RxSymbolErrors ", 941 "RxRuntFrames ", 942 943 "RxFrames64 ", 944 "RxFrames65To127 ", 945 "RxFrames128To255 ", 946 "RxFrames256To511 ", 947 "RxFrames512To1023 ", 948 "RxFrames1024To1518 ", 949 "RxFrames1519ToMax ", 950 951 "RxPauseFrames ", 952 "RxPPP0Frames ", 953 "RxPPP1Frames ", 954 "RxPPP2Frames ", 955 "RxPPP3Frames ", 956 "RxPPP4Frames ", 957 "RxPPP5Frames ", 958 "RxPPP6Frames ", 959 "RxPPP7Frames ", 960 961 "RxBG0FramesDropped ", 962 "RxBG1FramesDropped ", 963 "RxBG2FramesDropped ", 964 "RxBG3FramesDropped ", 965 "RxBG0FramesTrunc ", 966 "RxBG1FramesTrunc ", 967 "RxBG2FramesTrunc ", 968 "RxBG3FramesTrunc ", 969 970 "TSO ", 971 "TxCsumOffload ", 972 "RxCsumGood ", 973 "VLANextractions ", 974 "VLANinsertions ", 975 "GROpackets ", 976 "GROmerged ", 977 }; 978 979 static int get_sset_count(struct net_device *dev, int sset) 980 { 981 switch (sset) { 982 case ETH_SS_STATS: 983 return ARRAY_SIZE(stats_strings); 984 default: 985 return -EOPNOTSUPP; 986 } 987 } 988 989 #define T4_REGMAP_SIZE (160 * 1024) 990 991 static int get_regs_len(struct net_device *dev) 992 { 993 return T4_REGMAP_SIZE; 994 } 995 996 static int get_eeprom_len(struct net_device *dev) 997 { 998 return EEPROMSIZE; 999 } 1000 1001 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1002 { 1003 struct adapter *adapter = netdev2adap(dev); 1004 1005 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 1006 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1007 strlcpy(info->bus_info, pci_name(adapter->pdev), 1008 sizeof(info->bus_info)); 1009 1010 if (adapter->params.fw_vers) 1011 snprintf(info->fw_version, sizeof(info->fw_version), 1012 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1013 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers), 1014 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers), 1015 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers), 1016 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers), 1017 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers), 1018 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers), 1019 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers), 1020 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers)); 1021 } 1022 1023 static void get_strings(struct net_device *dev, u32 stringset, u8 *data) 1024 { 1025 if (stringset == ETH_SS_STATS) 1026 memcpy(data, stats_strings, sizeof(stats_strings)); 1027 } 1028 1029 /* 1030 * port stats maintained per queue of the port. They should be in the same 1031 * order as in stats_strings above. 1032 */ 1033 struct queue_port_stats { 1034 u64 tso; 1035 u64 tx_csum; 1036 u64 rx_csum; 1037 u64 vlan_ex; 1038 u64 vlan_ins; 1039 u64 gro_pkts; 1040 u64 gro_merged; 1041 }; 1042 1043 static void collect_sge_port_stats(const struct adapter *adap, 1044 const struct port_info *p, struct queue_port_stats *s) 1045 { 1046 int i; 1047 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset]; 1048 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset]; 1049 1050 memset(s, 0, sizeof(*s)); 1051 for (i = 0; i < p->nqsets; i++, rx++, tx++) { 1052 s->tso += tx->tso; 1053 s->tx_csum += tx->tx_cso; 1054 s->rx_csum += rx->stats.rx_cso; 1055 s->vlan_ex += rx->stats.vlan_ex; 1056 s->vlan_ins += tx->vlan_ins; 1057 s->gro_pkts += rx->stats.lro_pkts; 1058 s->gro_merged += rx->stats.lro_merged; 1059 } 1060 } 1061 1062 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1063 u64 *data) 1064 { 1065 struct port_info *pi = netdev_priv(dev); 1066 struct adapter *adapter = pi->adapter; 1067 1068 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data); 1069 1070 data += sizeof(struct port_stats) / sizeof(u64); 1071 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1072 } 1073 1074 /* 1075 * Return a version number to identify the type of adapter. The scheme is: 1076 * - bits 0..9: chip version 1077 * - bits 10..15: chip revision 1078 * - bits 16..23: register dump version 1079 */ 1080 static inline unsigned int mk_adap_vers(const struct adapter *ap) 1081 { 1082 return 4 | (ap->params.rev << 10) | (1 << 16); 1083 } 1084 1085 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start, 1086 unsigned int end) 1087 { 1088 u32 *p = buf + start; 1089 1090 for ( ; start <= end; start += sizeof(u32)) 1091 *p++ = t4_read_reg(ap, start); 1092 } 1093 1094 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1095 void *buf) 1096 { 1097 static const unsigned int reg_ranges[] = { 1098 0x1008, 0x1108, 1099 0x1180, 0x11b4, 1100 0x11fc, 0x123c, 1101 0x1300, 0x173c, 1102 0x1800, 0x18fc, 1103 0x3000, 0x30d8, 1104 0x30e0, 0x5924, 1105 0x5960, 0x59d4, 1106 0x5a00, 0x5af8, 1107 0x6000, 0x6098, 1108 0x6100, 0x6150, 1109 0x6200, 0x6208, 1110 0x6240, 0x6248, 1111 0x6280, 0x6338, 1112 0x6370, 0x638c, 1113 0x6400, 0x643c, 1114 0x6500, 0x6524, 1115 0x6a00, 0x6a38, 1116 0x6a60, 0x6a78, 1117 0x6b00, 0x6b84, 1118 0x6bf0, 0x6c84, 1119 0x6cf0, 0x6d84, 1120 0x6df0, 0x6e84, 1121 0x6ef0, 0x6f84, 1122 0x6ff0, 0x7084, 1123 0x70f0, 0x7184, 1124 0x71f0, 0x7284, 1125 0x72f0, 0x7384, 1126 0x73f0, 0x7450, 1127 0x7500, 0x7530, 1128 0x7600, 0x761c, 1129 0x7680, 0x76cc, 1130 0x7700, 0x7798, 1131 0x77c0, 0x77fc, 1132 0x7900, 0x79fc, 1133 0x7b00, 0x7c38, 1134 0x7d00, 0x7efc, 1135 0x8dc0, 0x8e1c, 1136 0x8e30, 0x8e78, 1137 0x8ea0, 0x8f6c, 1138 0x8fc0, 0x9074, 1139 0x90fc, 0x90fc, 1140 0x9400, 0x9458, 1141 0x9600, 0x96bc, 1142 0x9800, 0x9808, 1143 0x9820, 0x983c, 1144 0x9850, 0x9864, 1145 0x9c00, 0x9c6c, 1146 0x9c80, 0x9cec, 1147 0x9d00, 0x9d6c, 1148 0x9d80, 0x9dec, 1149 0x9e00, 0x9e6c, 1150 0x9e80, 0x9eec, 1151 0x9f00, 0x9f6c, 1152 0x9f80, 0x9fec, 1153 0xd004, 0xd03c, 1154 0xdfc0, 0xdfe0, 1155 0xe000, 0xea7c, 1156 0xf000, 0x11190, 1157 0x19040, 0x1906c, 1158 0x19078, 0x19080, 1159 0x1908c, 0x19124, 1160 0x19150, 0x191b0, 1161 0x191d0, 0x191e8, 1162 0x19238, 0x1924c, 1163 0x193f8, 0x19474, 1164 0x19490, 0x194f8, 1165 0x19800, 0x19f30, 1166 0x1a000, 0x1a06c, 1167 0x1a0b0, 0x1a120, 1168 0x1a128, 0x1a138, 1169 0x1a190, 0x1a1c4, 1170 0x1a1fc, 0x1a1fc, 1171 0x1e040, 0x1e04c, 1172 0x1e284, 0x1e28c, 1173 0x1e2c0, 0x1e2c0, 1174 0x1e2e0, 0x1e2e0, 1175 0x1e300, 0x1e384, 1176 0x1e3c0, 0x1e3c8, 1177 0x1e440, 0x1e44c, 1178 0x1e684, 0x1e68c, 1179 0x1e6c0, 0x1e6c0, 1180 0x1e6e0, 0x1e6e0, 1181 0x1e700, 0x1e784, 1182 0x1e7c0, 0x1e7c8, 1183 0x1e840, 0x1e84c, 1184 0x1ea84, 0x1ea8c, 1185 0x1eac0, 0x1eac0, 1186 0x1eae0, 0x1eae0, 1187 0x1eb00, 0x1eb84, 1188 0x1ebc0, 0x1ebc8, 1189 0x1ec40, 0x1ec4c, 1190 0x1ee84, 0x1ee8c, 1191 0x1eec0, 0x1eec0, 1192 0x1eee0, 0x1eee0, 1193 0x1ef00, 0x1ef84, 1194 0x1efc0, 0x1efc8, 1195 0x1f040, 0x1f04c, 1196 0x1f284, 0x1f28c, 1197 0x1f2c0, 0x1f2c0, 1198 0x1f2e0, 0x1f2e0, 1199 0x1f300, 0x1f384, 1200 0x1f3c0, 0x1f3c8, 1201 0x1f440, 0x1f44c, 1202 0x1f684, 0x1f68c, 1203 0x1f6c0, 0x1f6c0, 1204 0x1f6e0, 0x1f6e0, 1205 0x1f700, 0x1f784, 1206 0x1f7c0, 0x1f7c8, 1207 0x1f840, 0x1f84c, 1208 0x1fa84, 0x1fa8c, 1209 0x1fac0, 0x1fac0, 1210 0x1fae0, 0x1fae0, 1211 0x1fb00, 0x1fb84, 1212 0x1fbc0, 0x1fbc8, 1213 0x1fc40, 0x1fc4c, 1214 0x1fe84, 0x1fe8c, 1215 0x1fec0, 0x1fec0, 1216 0x1fee0, 0x1fee0, 1217 0x1ff00, 0x1ff84, 1218 0x1ffc0, 0x1ffc8, 1219 0x20000, 0x2002c, 1220 0x20100, 0x2013c, 1221 0x20190, 0x201c8, 1222 0x20200, 0x20318, 1223 0x20400, 0x20528, 1224 0x20540, 0x20614, 1225 0x21000, 0x21040, 1226 0x2104c, 0x21060, 1227 0x210c0, 0x210ec, 1228 0x21200, 0x21268, 1229 0x21270, 0x21284, 1230 0x212fc, 0x21388, 1231 0x21400, 0x21404, 1232 0x21500, 0x21518, 1233 0x2152c, 0x2153c, 1234 0x21550, 0x21554, 1235 0x21600, 0x21600, 1236 0x21608, 0x21628, 1237 0x21630, 0x2163c, 1238 0x21700, 0x2171c, 1239 0x21780, 0x2178c, 1240 0x21800, 0x21c38, 1241 0x21c80, 0x21d7c, 1242 0x21e00, 0x21e04, 1243 0x22000, 0x2202c, 1244 0x22100, 0x2213c, 1245 0x22190, 0x221c8, 1246 0x22200, 0x22318, 1247 0x22400, 0x22528, 1248 0x22540, 0x22614, 1249 0x23000, 0x23040, 1250 0x2304c, 0x23060, 1251 0x230c0, 0x230ec, 1252 0x23200, 0x23268, 1253 0x23270, 0x23284, 1254 0x232fc, 0x23388, 1255 0x23400, 0x23404, 1256 0x23500, 0x23518, 1257 0x2352c, 0x2353c, 1258 0x23550, 0x23554, 1259 0x23600, 0x23600, 1260 0x23608, 0x23628, 1261 0x23630, 0x2363c, 1262 0x23700, 0x2371c, 1263 0x23780, 0x2378c, 1264 0x23800, 0x23c38, 1265 0x23c80, 0x23d7c, 1266 0x23e00, 0x23e04, 1267 0x24000, 0x2402c, 1268 0x24100, 0x2413c, 1269 0x24190, 0x241c8, 1270 0x24200, 0x24318, 1271 0x24400, 0x24528, 1272 0x24540, 0x24614, 1273 0x25000, 0x25040, 1274 0x2504c, 0x25060, 1275 0x250c0, 0x250ec, 1276 0x25200, 0x25268, 1277 0x25270, 0x25284, 1278 0x252fc, 0x25388, 1279 0x25400, 0x25404, 1280 0x25500, 0x25518, 1281 0x2552c, 0x2553c, 1282 0x25550, 0x25554, 1283 0x25600, 0x25600, 1284 0x25608, 0x25628, 1285 0x25630, 0x2563c, 1286 0x25700, 0x2571c, 1287 0x25780, 0x2578c, 1288 0x25800, 0x25c38, 1289 0x25c80, 0x25d7c, 1290 0x25e00, 0x25e04, 1291 0x26000, 0x2602c, 1292 0x26100, 0x2613c, 1293 0x26190, 0x261c8, 1294 0x26200, 0x26318, 1295 0x26400, 0x26528, 1296 0x26540, 0x26614, 1297 0x27000, 0x27040, 1298 0x2704c, 0x27060, 1299 0x270c0, 0x270ec, 1300 0x27200, 0x27268, 1301 0x27270, 0x27284, 1302 0x272fc, 0x27388, 1303 0x27400, 0x27404, 1304 0x27500, 0x27518, 1305 0x2752c, 0x2753c, 1306 0x27550, 0x27554, 1307 0x27600, 0x27600, 1308 0x27608, 0x27628, 1309 0x27630, 0x2763c, 1310 0x27700, 0x2771c, 1311 0x27780, 0x2778c, 1312 0x27800, 0x27c38, 1313 0x27c80, 0x27d7c, 1314 0x27e00, 0x27e04 1315 }; 1316 1317 int i; 1318 struct adapter *ap = netdev2adap(dev); 1319 1320 regs->version = mk_adap_vers(ap); 1321 1322 memset(buf, 0, T4_REGMAP_SIZE); 1323 for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2) 1324 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]); 1325 } 1326 1327 static int restart_autoneg(struct net_device *dev) 1328 { 1329 struct port_info *p = netdev_priv(dev); 1330 1331 if (!netif_running(dev)) 1332 return -EAGAIN; 1333 if (p->link_cfg.autoneg != AUTONEG_ENABLE) 1334 return -EINVAL; 1335 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan); 1336 return 0; 1337 } 1338 1339 static int identify_port(struct net_device *dev, 1340 enum ethtool_phys_id_state state) 1341 { 1342 unsigned int val; 1343 struct adapter *adap = netdev2adap(dev); 1344 1345 if (state == ETHTOOL_ID_ACTIVE) 1346 val = 0xffff; 1347 else if (state == ETHTOOL_ID_INACTIVE) 1348 val = 0; 1349 else 1350 return -EINVAL; 1351 1352 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val); 1353 } 1354 1355 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps) 1356 { 1357 unsigned int v = 0; 1358 1359 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI || 1360 type == FW_PORT_TYPE_BT_XAUI) { 1361 v |= SUPPORTED_TP; 1362 if (caps & FW_PORT_CAP_SPEED_100M) 1363 v |= SUPPORTED_100baseT_Full; 1364 if (caps & FW_PORT_CAP_SPEED_1G) 1365 v |= SUPPORTED_1000baseT_Full; 1366 if (caps & FW_PORT_CAP_SPEED_10G) 1367 v |= SUPPORTED_10000baseT_Full; 1368 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) { 1369 v |= SUPPORTED_Backplane; 1370 if (caps & FW_PORT_CAP_SPEED_1G) 1371 v |= SUPPORTED_1000baseKX_Full; 1372 if (caps & FW_PORT_CAP_SPEED_10G) 1373 v |= SUPPORTED_10000baseKX4_Full; 1374 } else if (type == FW_PORT_TYPE_KR) 1375 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full; 1376 else if (type == FW_PORT_TYPE_BP_AP) 1377 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 1378 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full; 1379 else if (type == FW_PORT_TYPE_BP4_AP) 1380 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 1381 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full | 1382 SUPPORTED_10000baseKX4_Full; 1383 else if (type == FW_PORT_TYPE_FIBER_XFI || 1384 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP) 1385 v |= SUPPORTED_FIBRE; 1386 1387 if (caps & FW_PORT_CAP_ANEG) 1388 v |= SUPPORTED_Autoneg; 1389 return v; 1390 } 1391 1392 static unsigned int to_fw_linkcaps(unsigned int caps) 1393 { 1394 unsigned int v = 0; 1395 1396 if (caps & ADVERTISED_100baseT_Full) 1397 v |= FW_PORT_CAP_SPEED_100M; 1398 if (caps & ADVERTISED_1000baseT_Full) 1399 v |= FW_PORT_CAP_SPEED_1G; 1400 if (caps & ADVERTISED_10000baseT_Full) 1401 v |= FW_PORT_CAP_SPEED_10G; 1402 return v; 1403 } 1404 1405 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1406 { 1407 const struct port_info *p = netdev_priv(dev); 1408 1409 if (p->port_type == FW_PORT_TYPE_BT_SGMII || 1410 p->port_type == FW_PORT_TYPE_BT_XFI || 1411 p->port_type == FW_PORT_TYPE_BT_XAUI) 1412 cmd->port = PORT_TP; 1413 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI || 1414 p->port_type == FW_PORT_TYPE_FIBER_XAUI) 1415 cmd->port = PORT_FIBRE; 1416 else if (p->port_type == FW_PORT_TYPE_SFP) { 1417 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1418 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1419 cmd->port = PORT_DA; 1420 else 1421 cmd->port = PORT_FIBRE; 1422 } else 1423 cmd->port = PORT_OTHER; 1424 1425 if (p->mdio_addr >= 0) { 1426 cmd->phy_address = p->mdio_addr; 1427 cmd->transceiver = XCVR_EXTERNAL; 1428 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ? 1429 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45; 1430 } else { 1431 cmd->phy_address = 0; /* not really, but no better option */ 1432 cmd->transceiver = XCVR_INTERNAL; 1433 cmd->mdio_support = 0; 1434 } 1435 1436 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported); 1437 cmd->advertising = from_fw_linkcaps(p->port_type, 1438 p->link_cfg.advertising); 1439 ethtool_cmd_speed_set(cmd, 1440 netif_carrier_ok(dev) ? p->link_cfg.speed : 0); 1441 cmd->duplex = DUPLEX_FULL; 1442 cmd->autoneg = p->link_cfg.autoneg; 1443 cmd->maxtxpkt = 0; 1444 cmd->maxrxpkt = 0; 1445 return 0; 1446 } 1447 1448 static unsigned int speed_to_caps(int speed) 1449 { 1450 if (speed == SPEED_100) 1451 return FW_PORT_CAP_SPEED_100M; 1452 if (speed == SPEED_1000) 1453 return FW_PORT_CAP_SPEED_1G; 1454 if (speed == SPEED_10000) 1455 return FW_PORT_CAP_SPEED_10G; 1456 return 0; 1457 } 1458 1459 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1460 { 1461 unsigned int cap; 1462 struct port_info *p = netdev_priv(dev); 1463 struct link_config *lc = &p->link_cfg; 1464 u32 speed = ethtool_cmd_speed(cmd); 1465 1466 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */ 1467 return -EINVAL; 1468 1469 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 1470 /* 1471 * PHY offers a single speed. See if that's what's 1472 * being requested. 1473 */ 1474 if (cmd->autoneg == AUTONEG_DISABLE && 1475 (lc->supported & speed_to_caps(speed))) 1476 return 0; 1477 return -EINVAL; 1478 } 1479 1480 if (cmd->autoneg == AUTONEG_DISABLE) { 1481 cap = speed_to_caps(speed); 1482 1483 if (!(lc->supported & cap) || (speed == SPEED_1000) || 1484 (speed == SPEED_10000)) 1485 return -EINVAL; 1486 lc->requested_speed = cap; 1487 lc->advertising = 0; 1488 } else { 1489 cap = to_fw_linkcaps(cmd->advertising); 1490 if (!(lc->supported & cap)) 1491 return -EINVAL; 1492 lc->requested_speed = 0; 1493 lc->advertising = cap | FW_PORT_CAP_ANEG; 1494 } 1495 lc->autoneg = cmd->autoneg; 1496 1497 if (netif_running(dev)) 1498 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 1499 lc); 1500 return 0; 1501 } 1502 1503 static void get_pauseparam(struct net_device *dev, 1504 struct ethtool_pauseparam *epause) 1505 { 1506 struct port_info *p = netdev_priv(dev); 1507 1508 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1509 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0; 1510 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0; 1511 } 1512 1513 static int set_pauseparam(struct net_device *dev, 1514 struct ethtool_pauseparam *epause) 1515 { 1516 struct port_info *p = netdev_priv(dev); 1517 struct link_config *lc = &p->link_cfg; 1518 1519 if (epause->autoneg == AUTONEG_DISABLE) 1520 lc->requested_fc = 0; 1521 else if (lc->supported & FW_PORT_CAP_ANEG) 1522 lc->requested_fc = PAUSE_AUTONEG; 1523 else 1524 return -EINVAL; 1525 1526 if (epause->rx_pause) 1527 lc->requested_fc |= PAUSE_RX; 1528 if (epause->tx_pause) 1529 lc->requested_fc |= PAUSE_TX; 1530 if (netif_running(dev)) 1531 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 1532 lc); 1533 return 0; 1534 } 1535 1536 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1537 { 1538 const struct port_info *pi = netdev_priv(dev); 1539 const struct sge *s = &pi->adapter->sge; 1540 1541 e->rx_max_pending = MAX_RX_BUFFERS; 1542 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1543 e->rx_jumbo_max_pending = 0; 1544 e->tx_max_pending = MAX_TXQ_ENTRIES; 1545 1546 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8; 1547 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1548 e->rx_jumbo_pending = 0; 1549 e->tx_pending = s->ethtxq[pi->first_qset].q.size; 1550 } 1551 1552 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1553 { 1554 int i; 1555 const struct port_info *pi = netdev_priv(dev); 1556 struct adapter *adapter = pi->adapter; 1557 struct sge *s = &adapter->sge; 1558 1559 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending || 1560 e->tx_pending > MAX_TXQ_ENTRIES || 1561 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1562 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1563 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES) 1564 return -EINVAL; 1565 1566 if (adapter->flags & FULL_INIT_DONE) 1567 return -EBUSY; 1568 1569 for (i = 0; i < pi->nqsets; ++i) { 1570 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending; 1571 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8; 1572 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending; 1573 } 1574 return 0; 1575 } 1576 1577 static int closest_timer(const struct sge *s, int time) 1578 { 1579 int i, delta, match = 0, min_delta = INT_MAX; 1580 1581 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1582 delta = time - s->timer_val[i]; 1583 if (delta < 0) 1584 delta = -delta; 1585 if (delta < min_delta) { 1586 min_delta = delta; 1587 match = i; 1588 } 1589 } 1590 return match; 1591 } 1592 1593 static int closest_thres(const struct sge *s, int thres) 1594 { 1595 int i, delta, match = 0, min_delta = INT_MAX; 1596 1597 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1598 delta = thres - s->counter_val[i]; 1599 if (delta < 0) 1600 delta = -delta; 1601 if (delta < min_delta) { 1602 min_delta = delta; 1603 match = i; 1604 } 1605 } 1606 return match; 1607 } 1608 1609 /* 1610 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1611 */ 1612 static unsigned int qtimer_val(const struct adapter *adap, 1613 const struct sge_rspq *q) 1614 { 1615 unsigned int idx = q->intr_params >> 1; 1616 1617 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0; 1618 } 1619 1620 /** 1621 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1622 * @adap: the adapter 1623 * @q: the Rx queue 1624 * @us: the hold-off time in us, or 0 to disable timer 1625 * @cnt: the hold-off packet count, or 0 to disable counter 1626 * 1627 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1628 * one of the two needs to be enabled for the queue to generate interrupts. 1629 */ 1630 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q, 1631 unsigned int us, unsigned int cnt) 1632 { 1633 if ((us | cnt) == 0) 1634 cnt = 1; 1635 1636 if (cnt) { 1637 int err; 1638 u32 v, new_idx; 1639 1640 new_idx = closest_thres(&adap->sge, cnt); 1641 if (q->desc && q->pktcnt_idx != new_idx) { 1642 /* the queue has already been created, update it */ 1643 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 1644 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1645 FW_PARAMS_PARAM_YZ(q->cntxt_id); 1646 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v, 1647 &new_idx); 1648 if (err) 1649 return err; 1650 } 1651 q->pktcnt_idx = new_idx; 1652 } 1653 1654 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1655 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0); 1656 return 0; 1657 } 1658 1659 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 1660 { 1661 const struct port_info *pi = netdev_priv(dev); 1662 struct adapter *adap = pi->adapter; 1663 1664 return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq, 1665 c->rx_coalesce_usecs, c->rx_max_coalesced_frames); 1666 } 1667 1668 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 1669 { 1670 const struct port_info *pi = netdev_priv(dev); 1671 const struct adapter *adap = pi->adapter; 1672 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq; 1673 1674 c->rx_coalesce_usecs = qtimer_val(adap, rq); 1675 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ? 1676 adap->sge.counter_val[rq->pktcnt_idx] : 0; 1677 return 0; 1678 } 1679 1680 /** 1681 * eeprom_ptov - translate a physical EEPROM address to virtual 1682 * @phys_addr: the physical EEPROM address 1683 * @fn: the PCI function number 1684 * @sz: size of function-specific area 1685 * 1686 * Translate a physical EEPROM address to virtual. The first 1K is 1687 * accessed through virtual addresses starting at 31K, the rest is 1688 * accessed through virtual addresses starting at 0. 1689 * 1690 * The mapping is as follows: 1691 * [0..1K) -> [31K..32K) 1692 * [1K..1K+A) -> [31K-A..31K) 1693 * [1K+A..ES) -> [0..ES-A-1K) 1694 * 1695 * where A = @fn * @sz, and ES = EEPROM size. 1696 */ 1697 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 1698 { 1699 fn *= sz; 1700 if (phys_addr < 1024) 1701 return phys_addr + (31 << 10); 1702 if (phys_addr < 1024 + fn) 1703 return 31744 - fn + phys_addr - 1024; 1704 if (phys_addr < EEPROMSIZE) 1705 return phys_addr - 1024 - fn; 1706 return -EINVAL; 1707 } 1708 1709 /* 1710 * The next two routines implement eeprom read/write from physical addresses. 1711 */ 1712 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v) 1713 { 1714 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 1715 1716 if (vaddr >= 0) 1717 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v); 1718 return vaddr < 0 ? vaddr : 0; 1719 } 1720 1721 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v) 1722 { 1723 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 1724 1725 if (vaddr >= 0) 1726 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v); 1727 return vaddr < 0 ? vaddr : 0; 1728 } 1729 1730 #define EEPROM_MAGIC 0x38E2F10C 1731 1732 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 1733 u8 *data) 1734 { 1735 int i, err = 0; 1736 struct adapter *adapter = netdev2adap(dev); 1737 1738 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 1739 if (!buf) 1740 return -ENOMEM; 1741 1742 e->magic = EEPROM_MAGIC; 1743 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 1744 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]); 1745 1746 if (!err) 1747 memcpy(data, buf + e->offset, e->len); 1748 kfree(buf); 1749 return err; 1750 } 1751 1752 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 1753 u8 *data) 1754 { 1755 u8 *buf; 1756 int err = 0; 1757 u32 aligned_offset, aligned_len, *p; 1758 struct adapter *adapter = netdev2adap(dev); 1759 1760 if (eeprom->magic != EEPROM_MAGIC) 1761 return -EINVAL; 1762 1763 aligned_offset = eeprom->offset & ~3; 1764 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 1765 1766 if (adapter->fn > 0) { 1767 u32 start = 1024 + adapter->fn * EEPROMPFSIZE; 1768 1769 if (aligned_offset < start || 1770 aligned_offset + aligned_len > start + EEPROMPFSIZE) 1771 return -EPERM; 1772 } 1773 1774 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 1775 /* 1776 * RMW possibly needed for first or last words. 1777 */ 1778 buf = kmalloc(aligned_len, GFP_KERNEL); 1779 if (!buf) 1780 return -ENOMEM; 1781 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf); 1782 if (!err && aligned_len > 4) 1783 err = eeprom_rd_phys(adapter, 1784 aligned_offset + aligned_len - 4, 1785 (u32 *)&buf[aligned_len - 4]); 1786 if (err) 1787 goto out; 1788 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 1789 } else 1790 buf = data; 1791 1792 err = t4_seeprom_wp(adapter, false); 1793 if (err) 1794 goto out; 1795 1796 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) { 1797 err = eeprom_wr_phys(adapter, aligned_offset, *p); 1798 aligned_offset += 4; 1799 } 1800 1801 if (!err) 1802 err = t4_seeprom_wp(adapter, true); 1803 out: 1804 if (buf != data) 1805 kfree(buf); 1806 return err; 1807 } 1808 1809 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef) 1810 { 1811 int ret; 1812 const struct firmware *fw; 1813 struct adapter *adap = netdev2adap(netdev); 1814 1815 ef->data[sizeof(ef->data) - 1] = '\0'; 1816 ret = request_firmware(&fw, ef->data, adap->pdev_dev); 1817 if (ret < 0) 1818 return ret; 1819 1820 ret = t4_load_fw(adap, fw->data, fw->size); 1821 release_firmware(fw); 1822 if (!ret) 1823 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data); 1824 return ret; 1825 } 1826 1827 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC) 1828 #define BCAST_CRC 0xa0ccc1a6 1829 1830 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 1831 { 1832 wol->supported = WAKE_BCAST | WAKE_MAGIC; 1833 wol->wolopts = netdev2adap(dev)->wol; 1834 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1835 } 1836 1837 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 1838 { 1839 int err = 0; 1840 struct port_info *pi = netdev_priv(dev); 1841 1842 if (wol->wolopts & ~WOL_SUPPORTED) 1843 return -EINVAL; 1844 t4_wol_magic_enable(pi->adapter, pi->tx_chan, 1845 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL); 1846 if (wol->wolopts & WAKE_BCAST) { 1847 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL, 1848 ~0ULL, 0, false); 1849 if (!err) 1850 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1, 1851 ~6ULL, ~0ULL, BCAST_CRC, true); 1852 } else 1853 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false); 1854 return err; 1855 } 1856 1857 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1858 { 1859 const struct port_info *pi = netdev_priv(dev); 1860 netdev_features_t changed = dev->features ^ features; 1861 int err; 1862 1863 if (!(changed & NETIF_F_HW_VLAN_RX)) 1864 return 0; 1865 1866 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1, 1867 -1, -1, -1, 1868 !!(features & NETIF_F_HW_VLAN_RX), true); 1869 if (unlikely(err)) 1870 dev->features = features ^ NETIF_F_HW_VLAN_RX; 1871 return err; 1872 } 1873 1874 static u32 get_rss_table_size(struct net_device *dev) 1875 { 1876 const struct port_info *pi = netdev_priv(dev); 1877 1878 return pi->rss_size; 1879 } 1880 1881 static int get_rss_table(struct net_device *dev, u32 *p) 1882 { 1883 const struct port_info *pi = netdev_priv(dev); 1884 unsigned int n = pi->rss_size; 1885 1886 while (n--) 1887 p[n] = pi->rss[n]; 1888 return 0; 1889 } 1890 1891 static int set_rss_table(struct net_device *dev, const u32 *p) 1892 { 1893 unsigned int i; 1894 struct port_info *pi = netdev_priv(dev); 1895 1896 for (i = 0; i < pi->rss_size; i++) 1897 pi->rss[i] = p[i]; 1898 if (pi->adapter->flags & FULL_INIT_DONE) 1899 return write_rss(pi, pi->rss); 1900 return 0; 1901 } 1902 1903 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1904 u32 *rules) 1905 { 1906 const struct port_info *pi = netdev_priv(dev); 1907 1908 switch (info->cmd) { 1909 case ETHTOOL_GRXFH: { 1910 unsigned int v = pi->rss_mode; 1911 1912 info->data = 0; 1913 switch (info->flow_type) { 1914 case TCP_V4_FLOW: 1915 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 1916 info->data = RXH_IP_SRC | RXH_IP_DST | 1917 RXH_L4_B_0_1 | RXH_L4_B_2_3; 1918 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 1919 info->data = RXH_IP_SRC | RXH_IP_DST; 1920 break; 1921 case UDP_V4_FLOW: 1922 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) && 1923 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 1924 info->data = RXH_IP_SRC | RXH_IP_DST | 1925 RXH_L4_B_0_1 | RXH_L4_B_2_3; 1926 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 1927 info->data = RXH_IP_SRC | RXH_IP_DST; 1928 break; 1929 case SCTP_V4_FLOW: 1930 case AH_ESP_V4_FLOW: 1931 case IPV4_FLOW: 1932 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 1933 info->data = RXH_IP_SRC | RXH_IP_DST; 1934 break; 1935 case TCP_V6_FLOW: 1936 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 1937 info->data = RXH_IP_SRC | RXH_IP_DST | 1938 RXH_L4_B_0_1 | RXH_L4_B_2_3; 1939 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 1940 info->data = RXH_IP_SRC | RXH_IP_DST; 1941 break; 1942 case UDP_V6_FLOW: 1943 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) && 1944 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 1945 info->data = RXH_IP_SRC | RXH_IP_DST | 1946 RXH_L4_B_0_1 | RXH_L4_B_2_3; 1947 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 1948 info->data = RXH_IP_SRC | RXH_IP_DST; 1949 break; 1950 case SCTP_V6_FLOW: 1951 case AH_ESP_V6_FLOW: 1952 case IPV6_FLOW: 1953 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 1954 info->data = RXH_IP_SRC | RXH_IP_DST; 1955 break; 1956 } 1957 return 0; 1958 } 1959 case ETHTOOL_GRXRINGS: 1960 info->data = pi->nqsets; 1961 return 0; 1962 } 1963 return -EOPNOTSUPP; 1964 } 1965 1966 static const struct ethtool_ops cxgb_ethtool_ops = { 1967 .get_settings = get_settings, 1968 .set_settings = set_settings, 1969 .get_drvinfo = get_drvinfo, 1970 .get_msglevel = get_msglevel, 1971 .set_msglevel = set_msglevel, 1972 .get_ringparam = get_sge_param, 1973 .set_ringparam = set_sge_param, 1974 .get_coalesce = get_coalesce, 1975 .set_coalesce = set_coalesce, 1976 .get_eeprom_len = get_eeprom_len, 1977 .get_eeprom = get_eeprom, 1978 .set_eeprom = set_eeprom, 1979 .get_pauseparam = get_pauseparam, 1980 .set_pauseparam = set_pauseparam, 1981 .get_link = ethtool_op_get_link, 1982 .get_strings = get_strings, 1983 .set_phys_id = identify_port, 1984 .nway_reset = restart_autoneg, 1985 .get_sset_count = get_sset_count, 1986 .get_ethtool_stats = get_stats, 1987 .get_regs_len = get_regs_len, 1988 .get_regs = get_regs, 1989 .get_wol = get_wol, 1990 .set_wol = set_wol, 1991 .get_rxnfc = get_rxnfc, 1992 .get_rxfh_indir_size = get_rss_table_size, 1993 .get_rxfh_indir = get_rss_table, 1994 .set_rxfh_indir = set_rss_table, 1995 .flash_device = set_flash, 1996 }; 1997 1998 /* 1999 * debugfs support 2000 */ 2001 2002 static int mem_open(struct inode *inode, struct file *file) 2003 { 2004 file->private_data = inode->i_private; 2005 return 0; 2006 } 2007 2008 static ssize_t mem_read(struct file *file, char __user *buf, size_t count, 2009 loff_t *ppos) 2010 { 2011 loff_t pos = *ppos; 2012 loff_t avail = file->f_path.dentry->d_inode->i_size; 2013 unsigned int mem = (uintptr_t)file->private_data & 3; 2014 struct adapter *adap = file->private_data - mem; 2015 2016 if (pos < 0) 2017 return -EINVAL; 2018 if (pos >= avail) 2019 return 0; 2020 if (count > avail - pos) 2021 count = avail - pos; 2022 2023 while (count) { 2024 size_t len; 2025 int ret, ofst; 2026 __be32 data[16]; 2027 2028 if (mem == MEM_MC) 2029 ret = t4_mc_read(adap, pos, data, NULL); 2030 else 2031 ret = t4_edc_read(adap, mem, pos, data, NULL); 2032 if (ret) 2033 return ret; 2034 2035 ofst = pos % sizeof(data); 2036 len = min(count, sizeof(data) - ofst); 2037 if (copy_to_user(buf, (u8 *)data + ofst, len)) 2038 return -EFAULT; 2039 2040 buf += len; 2041 pos += len; 2042 count -= len; 2043 } 2044 count = pos - *ppos; 2045 *ppos = pos; 2046 return count; 2047 } 2048 2049 static const struct file_operations mem_debugfs_fops = { 2050 .owner = THIS_MODULE, 2051 .open = mem_open, 2052 .read = mem_read, 2053 .llseek = default_llseek, 2054 }; 2055 2056 static void __devinit add_debugfs_mem(struct adapter *adap, const char *name, 2057 unsigned int idx, unsigned int size_mb) 2058 { 2059 struct dentry *de; 2060 2061 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root, 2062 (void *)adap + idx, &mem_debugfs_fops); 2063 if (de && de->d_inode) 2064 de->d_inode->i_size = size_mb << 20; 2065 } 2066 2067 static int __devinit setup_debugfs(struct adapter *adap) 2068 { 2069 int i; 2070 2071 if (IS_ERR_OR_NULL(adap->debugfs_root)) 2072 return -1; 2073 2074 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE); 2075 if (i & EDRAM0_ENABLE) 2076 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5); 2077 if (i & EDRAM1_ENABLE) 2078 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5); 2079 if (i & EXT_MEM_ENABLE) 2080 add_debugfs_mem(adap, "mc", MEM_MC, 2081 EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR))); 2082 if (adap->l2t) 2083 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap, 2084 &t4_l2t_fops); 2085 return 0; 2086 } 2087 2088 /* 2089 * upper-layer driver support 2090 */ 2091 2092 /* 2093 * Allocate an active-open TID and set it to the supplied value. 2094 */ 2095 int cxgb4_alloc_atid(struct tid_info *t, void *data) 2096 { 2097 int atid = -1; 2098 2099 spin_lock_bh(&t->atid_lock); 2100 if (t->afree) { 2101 union aopen_entry *p = t->afree; 2102 2103 atid = p - t->atid_tab; 2104 t->afree = p->next; 2105 p->data = data; 2106 t->atids_in_use++; 2107 } 2108 spin_unlock_bh(&t->atid_lock); 2109 return atid; 2110 } 2111 EXPORT_SYMBOL(cxgb4_alloc_atid); 2112 2113 /* 2114 * Release an active-open TID. 2115 */ 2116 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 2117 { 2118 union aopen_entry *p = &t->atid_tab[atid]; 2119 2120 spin_lock_bh(&t->atid_lock); 2121 p->next = t->afree; 2122 t->afree = p; 2123 t->atids_in_use--; 2124 spin_unlock_bh(&t->atid_lock); 2125 } 2126 EXPORT_SYMBOL(cxgb4_free_atid); 2127 2128 /* 2129 * Allocate a server TID and set it to the supplied value. 2130 */ 2131 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 2132 { 2133 int stid; 2134 2135 spin_lock_bh(&t->stid_lock); 2136 if (family == PF_INET) { 2137 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 2138 if (stid < t->nstids) 2139 __set_bit(stid, t->stid_bmap); 2140 else 2141 stid = -1; 2142 } else { 2143 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); 2144 if (stid < 0) 2145 stid = -1; 2146 } 2147 if (stid >= 0) { 2148 t->stid_tab[stid].data = data; 2149 stid += t->stid_base; 2150 t->stids_in_use++; 2151 } 2152 spin_unlock_bh(&t->stid_lock); 2153 return stid; 2154 } 2155 EXPORT_SYMBOL(cxgb4_alloc_stid); 2156 2157 /* 2158 * Release a server TID. 2159 */ 2160 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 2161 { 2162 stid -= t->stid_base; 2163 spin_lock_bh(&t->stid_lock); 2164 if (family == PF_INET) 2165 __clear_bit(stid, t->stid_bmap); 2166 else 2167 bitmap_release_region(t->stid_bmap, stid, 2); 2168 t->stid_tab[stid].data = NULL; 2169 t->stids_in_use--; 2170 spin_unlock_bh(&t->stid_lock); 2171 } 2172 EXPORT_SYMBOL(cxgb4_free_stid); 2173 2174 /* 2175 * Populate a TID_RELEASE WR. Caller must properly size the skb. 2176 */ 2177 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 2178 unsigned int tid) 2179 { 2180 struct cpl_tid_release *req; 2181 2182 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 2183 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 2184 INIT_TP_WR(req, tid); 2185 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 2186 } 2187 2188 /* 2189 * Queue a TID release request and if necessary schedule a work queue to 2190 * process it. 2191 */ 2192 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 2193 unsigned int tid) 2194 { 2195 void **p = &t->tid_tab[tid]; 2196 struct adapter *adap = container_of(t, struct adapter, tids); 2197 2198 spin_lock_bh(&adap->tid_release_lock); 2199 *p = adap->tid_release_head; 2200 /* Low 2 bits encode the Tx channel number */ 2201 adap->tid_release_head = (void **)((uintptr_t)p | chan); 2202 if (!adap->tid_release_task_busy) { 2203 adap->tid_release_task_busy = true; 2204 schedule_work(&adap->tid_release_task); 2205 } 2206 spin_unlock_bh(&adap->tid_release_lock); 2207 } 2208 2209 /* 2210 * Process the list of pending TID release requests. 2211 */ 2212 static void process_tid_release_list(struct work_struct *work) 2213 { 2214 struct sk_buff *skb; 2215 struct adapter *adap; 2216 2217 adap = container_of(work, struct adapter, tid_release_task); 2218 2219 spin_lock_bh(&adap->tid_release_lock); 2220 while (adap->tid_release_head) { 2221 void **p = adap->tid_release_head; 2222 unsigned int chan = (uintptr_t)p & 3; 2223 p = (void *)p - chan; 2224 2225 adap->tid_release_head = *p; 2226 *p = NULL; 2227 spin_unlock_bh(&adap->tid_release_lock); 2228 2229 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 2230 GFP_KERNEL))) 2231 schedule_timeout_uninterruptible(1); 2232 2233 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 2234 t4_ofld_send(adap, skb); 2235 spin_lock_bh(&adap->tid_release_lock); 2236 } 2237 adap->tid_release_task_busy = false; 2238 spin_unlock_bh(&adap->tid_release_lock); 2239 } 2240 2241 /* 2242 * Release a TID and inform HW. If we are unable to allocate the release 2243 * message we defer to a work queue. 2244 */ 2245 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 2246 { 2247 void *old; 2248 struct sk_buff *skb; 2249 struct adapter *adap = container_of(t, struct adapter, tids); 2250 2251 old = t->tid_tab[tid]; 2252 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 2253 if (likely(skb)) { 2254 t->tid_tab[tid] = NULL; 2255 mk_tid_release(skb, chan, tid); 2256 t4_ofld_send(adap, skb); 2257 } else 2258 cxgb4_queue_tid_release(t, chan, tid); 2259 if (old) 2260 atomic_dec(&t->tids_in_use); 2261 } 2262 EXPORT_SYMBOL(cxgb4_remove_tid); 2263 2264 /* 2265 * Allocate and initialize the TID tables. Returns 0 on success. 2266 */ 2267 static int tid_init(struct tid_info *t) 2268 { 2269 size_t size; 2270 unsigned int natids = t->natids; 2271 2272 size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) + 2273 t->nstids * sizeof(*t->stid_tab) + 2274 BITS_TO_LONGS(t->nstids) * sizeof(long); 2275 t->tid_tab = t4_alloc_mem(size); 2276 if (!t->tid_tab) 2277 return -ENOMEM; 2278 2279 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 2280 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 2281 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids]; 2282 spin_lock_init(&t->stid_lock); 2283 spin_lock_init(&t->atid_lock); 2284 2285 t->stids_in_use = 0; 2286 t->afree = NULL; 2287 t->atids_in_use = 0; 2288 atomic_set(&t->tids_in_use, 0); 2289 2290 /* Setup the free list for atid_tab and clear the stid bitmap. */ 2291 if (natids) { 2292 while (--natids) 2293 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 2294 t->afree = t->atid_tab; 2295 } 2296 bitmap_zero(t->stid_bmap, t->nstids); 2297 return 0; 2298 } 2299 2300 /** 2301 * cxgb4_create_server - create an IP server 2302 * @dev: the device 2303 * @stid: the server TID 2304 * @sip: local IP address to bind server to 2305 * @sport: the server's TCP port 2306 * @queue: queue to direct messages from this server to 2307 * 2308 * Create an IP server for the given port and address. 2309 * Returns <0 on error and one of the %NET_XMIT_* values on success. 2310 */ 2311 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 2312 __be32 sip, __be16 sport, unsigned int queue) 2313 { 2314 unsigned int chan; 2315 struct sk_buff *skb; 2316 struct adapter *adap; 2317 struct cpl_pass_open_req *req; 2318 2319 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 2320 if (!skb) 2321 return -ENOMEM; 2322 2323 adap = netdev2adap(dev); 2324 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 2325 INIT_TP_WR(req, 0); 2326 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 2327 req->local_port = sport; 2328 req->peer_port = htons(0); 2329 req->local_ip = sip; 2330 req->peer_ip = htonl(0); 2331 chan = rxq_to_chan(&adap->sge, queue); 2332 req->opt0 = cpu_to_be64(TX_CHAN(chan)); 2333 req->opt1 = cpu_to_be64(CONN_POLICY_ASK | 2334 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue)); 2335 return t4_mgmt_tx(adap, skb); 2336 } 2337 EXPORT_SYMBOL(cxgb4_create_server); 2338 2339 /** 2340 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 2341 * @mtus: the HW MTU table 2342 * @mtu: the target MTU 2343 * @idx: index of selected entry in the MTU table 2344 * 2345 * Returns the index and the value in the HW MTU table that is closest to 2346 * but does not exceed @mtu, unless @mtu is smaller than any value in the 2347 * table, in which case that smallest available value is selected. 2348 */ 2349 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 2350 unsigned int *idx) 2351 { 2352 unsigned int i = 0; 2353 2354 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 2355 ++i; 2356 if (idx) 2357 *idx = i; 2358 return mtus[i]; 2359 } 2360 EXPORT_SYMBOL(cxgb4_best_mtu); 2361 2362 /** 2363 * cxgb4_port_chan - get the HW channel of a port 2364 * @dev: the net device for the port 2365 * 2366 * Return the HW Tx channel of the given port. 2367 */ 2368 unsigned int cxgb4_port_chan(const struct net_device *dev) 2369 { 2370 return netdev2pinfo(dev)->tx_chan; 2371 } 2372 EXPORT_SYMBOL(cxgb4_port_chan); 2373 2374 /** 2375 * cxgb4_port_viid - get the VI id of a port 2376 * @dev: the net device for the port 2377 * 2378 * Return the VI id of the given port. 2379 */ 2380 unsigned int cxgb4_port_viid(const struct net_device *dev) 2381 { 2382 return netdev2pinfo(dev)->viid; 2383 } 2384 EXPORT_SYMBOL(cxgb4_port_viid); 2385 2386 /** 2387 * cxgb4_port_idx - get the index of a port 2388 * @dev: the net device for the port 2389 * 2390 * Return the index of the given port. 2391 */ 2392 unsigned int cxgb4_port_idx(const struct net_device *dev) 2393 { 2394 return netdev2pinfo(dev)->port_id; 2395 } 2396 EXPORT_SYMBOL(cxgb4_port_idx); 2397 2398 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2399 struct tp_tcp_stats *v6) 2400 { 2401 struct adapter *adap = pci_get_drvdata(pdev); 2402 2403 spin_lock(&adap->stats_lock); 2404 t4_tp_get_tcp_stats(adap, v4, v6); 2405 spin_unlock(&adap->stats_lock); 2406 } 2407 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2408 2409 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 2410 const unsigned int *pgsz_order) 2411 { 2412 struct adapter *adap = netdev2adap(dev); 2413 2414 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask); 2415 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) | 2416 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) | 2417 HPZ3(pgsz_order[3])); 2418 } 2419 EXPORT_SYMBOL(cxgb4_iscsi_init); 2420 2421 static struct pci_driver cxgb4_driver; 2422 2423 static void check_neigh_update(struct neighbour *neigh) 2424 { 2425 const struct device *parent; 2426 const struct net_device *netdev = neigh->dev; 2427 2428 if (netdev->priv_flags & IFF_802_1Q_VLAN) 2429 netdev = vlan_dev_real_dev(netdev); 2430 parent = netdev->dev.parent; 2431 if (parent && parent->driver == &cxgb4_driver.driver) 2432 t4_l2t_update(dev_get_drvdata(parent), neigh); 2433 } 2434 2435 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2436 void *data) 2437 { 2438 switch (event) { 2439 case NETEVENT_NEIGH_UPDATE: 2440 check_neigh_update(data); 2441 break; 2442 case NETEVENT_REDIRECT: 2443 default: 2444 break; 2445 } 2446 return 0; 2447 } 2448 2449 static bool netevent_registered; 2450 static struct notifier_block cxgb4_netevent_nb = { 2451 .notifier_call = netevent_cb 2452 }; 2453 2454 static void uld_attach(struct adapter *adap, unsigned int uld) 2455 { 2456 void *handle; 2457 struct cxgb4_lld_info lli; 2458 2459 lli.pdev = adap->pdev; 2460 lli.l2t = adap->l2t; 2461 lli.tids = &adap->tids; 2462 lli.ports = adap->port; 2463 lli.vr = &adap->vres; 2464 lli.mtus = adap->params.mtus; 2465 if (uld == CXGB4_ULD_RDMA) { 2466 lli.rxq_ids = adap->sge.rdma_rxq; 2467 lli.nrxq = adap->sge.rdmaqs; 2468 } else if (uld == CXGB4_ULD_ISCSI) { 2469 lli.rxq_ids = adap->sge.ofld_rxq; 2470 lli.nrxq = adap->sge.ofldqsets; 2471 } 2472 lli.ntxq = adap->sge.ofldqsets; 2473 lli.nchan = adap->params.nports; 2474 lli.nports = adap->params.nports; 2475 lli.wr_cred = adap->params.ofldq_wr_cred; 2476 lli.adapter_type = adap->params.rev; 2477 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2)); 2478 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET( 2479 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >> 2480 (adap->fn * 4)); 2481 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET( 2482 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >> 2483 (adap->fn * 4)); 2484 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS); 2485 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL); 2486 lli.fw_vers = adap->params.fw_vers; 2487 2488 handle = ulds[uld].add(&lli); 2489 if (IS_ERR(handle)) { 2490 dev_warn(adap->pdev_dev, 2491 "could not attach to the %s driver, error %ld\n", 2492 uld_str[uld], PTR_ERR(handle)); 2493 return; 2494 } 2495 2496 adap->uld_handle[uld] = handle; 2497 2498 if (!netevent_registered) { 2499 register_netevent_notifier(&cxgb4_netevent_nb); 2500 netevent_registered = true; 2501 } 2502 2503 if (adap->flags & FULL_INIT_DONE) 2504 ulds[uld].state_change(handle, CXGB4_STATE_UP); 2505 } 2506 2507 static void attach_ulds(struct adapter *adap) 2508 { 2509 unsigned int i; 2510 2511 mutex_lock(&uld_mutex); 2512 list_add_tail(&adap->list_node, &adapter_list); 2513 for (i = 0; i < CXGB4_ULD_MAX; i++) 2514 if (ulds[i].add) 2515 uld_attach(adap, i); 2516 mutex_unlock(&uld_mutex); 2517 } 2518 2519 static void detach_ulds(struct adapter *adap) 2520 { 2521 unsigned int i; 2522 2523 mutex_lock(&uld_mutex); 2524 list_del(&adap->list_node); 2525 for (i = 0; i < CXGB4_ULD_MAX; i++) 2526 if (adap->uld_handle[i]) { 2527 ulds[i].state_change(adap->uld_handle[i], 2528 CXGB4_STATE_DETACH); 2529 adap->uld_handle[i] = NULL; 2530 } 2531 if (netevent_registered && list_empty(&adapter_list)) { 2532 unregister_netevent_notifier(&cxgb4_netevent_nb); 2533 netevent_registered = false; 2534 } 2535 mutex_unlock(&uld_mutex); 2536 } 2537 2538 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2539 { 2540 unsigned int i; 2541 2542 mutex_lock(&uld_mutex); 2543 for (i = 0; i < CXGB4_ULD_MAX; i++) 2544 if (adap->uld_handle[i]) 2545 ulds[i].state_change(adap->uld_handle[i], new_state); 2546 mutex_unlock(&uld_mutex); 2547 } 2548 2549 /** 2550 * cxgb4_register_uld - register an upper-layer driver 2551 * @type: the ULD type 2552 * @p: the ULD methods 2553 * 2554 * Registers an upper-layer driver with this driver and notifies the ULD 2555 * about any presently available devices that support its type. Returns 2556 * %-EBUSY if a ULD of the same type is already registered. 2557 */ 2558 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 2559 { 2560 int ret = 0; 2561 struct adapter *adap; 2562 2563 if (type >= CXGB4_ULD_MAX) 2564 return -EINVAL; 2565 mutex_lock(&uld_mutex); 2566 if (ulds[type].add) { 2567 ret = -EBUSY; 2568 goto out; 2569 } 2570 ulds[type] = *p; 2571 list_for_each_entry(adap, &adapter_list, list_node) 2572 uld_attach(adap, type); 2573 out: mutex_unlock(&uld_mutex); 2574 return ret; 2575 } 2576 EXPORT_SYMBOL(cxgb4_register_uld); 2577 2578 /** 2579 * cxgb4_unregister_uld - unregister an upper-layer driver 2580 * @type: the ULD type 2581 * 2582 * Unregisters an existing upper-layer driver. 2583 */ 2584 int cxgb4_unregister_uld(enum cxgb4_uld type) 2585 { 2586 struct adapter *adap; 2587 2588 if (type >= CXGB4_ULD_MAX) 2589 return -EINVAL; 2590 mutex_lock(&uld_mutex); 2591 list_for_each_entry(adap, &adapter_list, list_node) 2592 adap->uld_handle[type] = NULL; 2593 ulds[type].add = NULL; 2594 mutex_unlock(&uld_mutex); 2595 return 0; 2596 } 2597 EXPORT_SYMBOL(cxgb4_unregister_uld); 2598 2599 /** 2600 * cxgb_up - enable the adapter 2601 * @adap: adapter being enabled 2602 * 2603 * Called when the first port is enabled, this function performs the 2604 * actions necessary to make an adapter operational, such as completing 2605 * the initialization of HW modules, and enabling interrupts. 2606 * 2607 * Must be called with the rtnl lock held. 2608 */ 2609 static int cxgb_up(struct adapter *adap) 2610 { 2611 int err; 2612 2613 err = setup_sge_queues(adap); 2614 if (err) 2615 goto out; 2616 err = setup_rss(adap); 2617 if (err) 2618 goto freeq; 2619 2620 if (adap->flags & USING_MSIX) { 2621 name_msix_vecs(adap); 2622 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2623 adap->msix_info[0].desc, adap); 2624 if (err) 2625 goto irq_err; 2626 2627 err = request_msix_queue_irqs(adap); 2628 if (err) { 2629 free_irq(adap->msix_info[0].vec, adap); 2630 goto irq_err; 2631 } 2632 } else { 2633 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2634 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2635 adap->port[0]->name, adap); 2636 if (err) 2637 goto irq_err; 2638 } 2639 enable_rx(adap); 2640 t4_sge_start(adap); 2641 t4_intr_enable(adap); 2642 adap->flags |= FULL_INIT_DONE; 2643 notify_ulds(adap, CXGB4_STATE_UP); 2644 out: 2645 return err; 2646 irq_err: 2647 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2648 freeq: 2649 t4_free_sge_resources(adap); 2650 goto out; 2651 } 2652 2653 static void cxgb_down(struct adapter *adapter) 2654 { 2655 t4_intr_disable(adapter); 2656 cancel_work_sync(&adapter->tid_release_task); 2657 adapter->tid_release_task_busy = false; 2658 adapter->tid_release_head = NULL; 2659 2660 if (adapter->flags & USING_MSIX) { 2661 free_msix_queue_irqs(adapter); 2662 free_irq(adapter->msix_info[0].vec, adapter); 2663 } else 2664 free_irq(adapter->pdev->irq, adapter); 2665 quiesce_rx(adapter); 2666 t4_sge_stop(adapter); 2667 t4_free_sge_resources(adapter); 2668 adapter->flags &= ~FULL_INIT_DONE; 2669 } 2670 2671 /* 2672 * net_device operations 2673 */ 2674 static int cxgb_open(struct net_device *dev) 2675 { 2676 int err; 2677 struct port_info *pi = netdev_priv(dev); 2678 struct adapter *adapter = pi->adapter; 2679 2680 netif_carrier_off(dev); 2681 2682 if (!(adapter->flags & FULL_INIT_DONE)) { 2683 err = cxgb_up(adapter); 2684 if (err < 0) 2685 return err; 2686 } 2687 2688 err = link_start(dev); 2689 if (!err) 2690 netif_tx_start_all_queues(dev); 2691 return err; 2692 } 2693 2694 static int cxgb_close(struct net_device *dev) 2695 { 2696 struct port_info *pi = netdev_priv(dev); 2697 struct adapter *adapter = pi->adapter; 2698 2699 netif_tx_stop_all_queues(dev); 2700 netif_carrier_off(dev); 2701 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false); 2702 } 2703 2704 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2705 struct rtnl_link_stats64 *ns) 2706 { 2707 struct port_stats stats; 2708 struct port_info *p = netdev_priv(dev); 2709 struct adapter *adapter = p->adapter; 2710 2711 spin_lock(&adapter->stats_lock); 2712 t4_get_port_stats(adapter, p->tx_chan, &stats); 2713 spin_unlock(&adapter->stats_lock); 2714 2715 ns->tx_bytes = stats.tx_octets; 2716 ns->tx_packets = stats.tx_frames; 2717 ns->rx_bytes = stats.rx_octets; 2718 ns->rx_packets = stats.rx_frames; 2719 ns->multicast = stats.rx_mcast_frames; 2720 2721 /* detailed rx_errors */ 2722 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2723 stats.rx_runt; 2724 ns->rx_over_errors = 0; 2725 ns->rx_crc_errors = stats.rx_fcs_err; 2726 ns->rx_frame_errors = stats.rx_symbol_err; 2727 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2728 stats.rx_ovflow2 + stats.rx_ovflow3 + 2729 stats.rx_trunc0 + stats.rx_trunc1 + 2730 stats.rx_trunc2 + stats.rx_trunc3; 2731 ns->rx_missed_errors = 0; 2732 2733 /* detailed tx_errors */ 2734 ns->tx_aborted_errors = 0; 2735 ns->tx_carrier_errors = 0; 2736 ns->tx_fifo_errors = 0; 2737 ns->tx_heartbeat_errors = 0; 2738 ns->tx_window_errors = 0; 2739 2740 ns->tx_errors = stats.tx_error_frames; 2741 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2742 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2743 return ns; 2744 } 2745 2746 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2747 { 2748 unsigned int mbox; 2749 int ret = 0, prtad, devad; 2750 struct port_info *pi = netdev_priv(dev); 2751 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2752 2753 switch (cmd) { 2754 case SIOCGMIIPHY: 2755 if (pi->mdio_addr < 0) 2756 return -EOPNOTSUPP; 2757 data->phy_id = pi->mdio_addr; 2758 break; 2759 case SIOCGMIIREG: 2760 case SIOCSMIIREG: 2761 if (mdio_phy_id_is_c45(data->phy_id)) { 2762 prtad = mdio_phy_id_prtad(data->phy_id); 2763 devad = mdio_phy_id_devad(data->phy_id); 2764 } else if (data->phy_id < 32) { 2765 prtad = data->phy_id; 2766 devad = 0; 2767 data->reg_num &= 0x1f; 2768 } else 2769 return -EINVAL; 2770 2771 mbox = pi->adapter->fn; 2772 if (cmd == SIOCGMIIREG) 2773 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2774 data->reg_num, &data->val_out); 2775 else 2776 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2777 data->reg_num, data->val_in); 2778 break; 2779 default: 2780 return -EOPNOTSUPP; 2781 } 2782 return ret; 2783 } 2784 2785 static void cxgb_set_rxmode(struct net_device *dev) 2786 { 2787 /* unfortunately we can't return errors to the stack */ 2788 set_rxmode(dev, -1, false); 2789 } 2790 2791 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2792 { 2793 int ret; 2794 struct port_info *pi = netdev_priv(dev); 2795 2796 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 2797 return -EINVAL; 2798 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1, 2799 -1, -1, -1, true); 2800 if (!ret) 2801 dev->mtu = new_mtu; 2802 return ret; 2803 } 2804 2805 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2806 { 2807 int ret; 2808 struct sockaddr *addr = p; 2809 struct port_info *pi = netdev_priv(dev); 2810 2811 if (!is_valid_ether_addr(addr->sa_data)) 2812 return -EINVAL; 2813 2814 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid, 2815 pi->xact_addr_filt, addr->sa_data, true, true); 2816 if (ret < 0) 2817 return ret; 2818 2819 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2820 pi->xact_addr_filt = ret; 2821 return 0; 2822 } 2823 2824 #ifdef CONFIG_NET_POLL_CONTROLLER 2825 static void cxgb_netpoll(struct net_device *dev) 2826 { 2827 struct port_info *pi = netdev_priv(dev); 2828 struct adapter *adap = pi->adapter; 2829 2830 if (adap->flags & USING_MSIX) { 2831 int i; 2832 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2833 2834 for (i = pi->nqsets; i; i--, rx++) 2835 t4_sge_intr_msix(0, &rx->rspq); 2836 } else 2837 t4_intr_handler(adap)(0, adap); 2838 } 2839 #endif 2840 2841 static const struct net_device_ops cxgb4_netdev_ops = { 2842 .ndo_open = cxgb_open, 2843 .ndo_stop = cxgb_close, 2844 .ndo_start_xmit = t4_eth_xmit, 2845 .ndo_get_stats64 = cxgb_get_stats, 2846 .ndo_set_rx_mode = cxgb_set_rxmode, 2847 .ndo_set_mac_address = cxgb_set_mac_addr, 2848 .ndo_set_features = cxgb_set_features, 2849 .ndo_validate_addr = eth_validate_addr, 2850 .ndo_do_ioctl = cxgb_ioctl, 2851 .ndo_change_mtu = cxgb_change_mtu, 2852 #ifdef CONFIG_NET_POLL_CONTROLLER 2853 .ndo_poll_controller = cxgb_netpoll, 2854 #endif 2855 }; 2856 2857 void t4_fatal_err(struct adapter *adap) 2858 { 2859 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0); 2860 t4_intr_disable(adap); 2861 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 2862 } 2863 2864 static void setup_memwin(struct adapter *adap) 2865 { 2866 u32 bar0; 2867 2868 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */ 2869 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0), 2870 (bar0 + MEMWIN0_BASE) | BIR(0) | 2871 WINDOW(ilog2(MEMWIN0_APERTURE) - 10)); 2872 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1), 2873 (bar0 + MEMWIN1_BASE) | BIR(0) | 2874 WINDOW(ilog2(MEMWIN1_APERTURE) - 10)); 2875 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2), 2876 (bar0 + MEMWIN2_BASE) | BIR(0) | 2877 WINDOW(ilog2(MEMWIN2_APERTURE) - 10)); 2878 if (adap->vres.ocq.size) { 2879 unsigned int start, sz_kb; 2880 2881 start = pci_resource_start(adap->pdev, 2) + 2882 OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 2883 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 2884 t4_write_reg(adap, 2885 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3), 2886 start | BIR(1) | WINDOW(ilog2(sz_kb))); 2887 t4_write_reg(adap, 2888 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3), 2889 adap->vres.ocq.start); 2890 t4_read_reg(adap, 2891 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3)); 2892 } 2893 } 2894 2895 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 2896 { 2897 u32 v; 2898 int ret; 2899 2900 /* get device capabilities */ 2901 memset(c, 0, sizeof(*c)); 2902 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 2903 FW_CMD_REQUEST | FW_CMD_READ); 2904 c->retval_len16 = htonl(FW_LEN16(*c)); 2905 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c); 2906 if (ret < 0) 2907 return ret; 2908 2909 /* select capabilities we'll be using */ 2910 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 2911 if (!vf_acls) 2912 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 2913 else 2914 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 2915 } else if (vf_acls) { 2916 dev_err(adap->pdev_dev, "virtualization ACLs not supported"); 2917 return ret; 2918 } 2919 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 2920 FW_CMD_REQUEST | FW_CMD_WRITE); 2921 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL); 2922 if (ret < 0) 2923 return ret; 2924 2925 ret = t4_config_glbl_rss(adap, adap->fn, 2926 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 2927 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 2928 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP); 2929 if (ret < 0) 2930 return ret; 2931 2932 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ, 2933 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF); 2934 if (ret < 0) 2935 return ret; 2936 2937 t4_sge_init(adap); 2938 2939 /* tweak some settings */ 2940 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849); 2941 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12)); 2942 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG); 2943 v = t4_read_reg(adap, TP_PIO_DATA); 2944 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR); 2945 2946 /* get basic stuff going */ 2947 return t4_early_init(adap, adap->fn); 2948 } 2949 2950 /* 2951 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 2952 */ 2953 #define MAX_ATIDS 8192U 2954 2955 /* 2956 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 2957 */ 2958 static int adap_init0(struct adapter *adap) 2959 { 2960 int ret; 2961 u32 v, port_vec; 2962 enum dev_state state; 2963 u32 params[7], val[7]; 2964 struct fw_caps_config_cmd c; 2965 2966 ret = t4_check_fw_version(adap); 2967 if (ret == -EINVAL || ret > 0) { 2968 if (upgrade_fw(adap) >= 0) /* recache FW version */ 2969 ret = t4_check_fw_version(adap); 2970 } 2971 if (ret < 0) 2972 return ret; 2973 2974 /* contact FW, request master */ 2975 ret = t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, &state); 2976 if (ret < 0) { 2977 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 2978 ret); 2979 return ret; 2980 } 2981 2982 /* reset device */ 2983 ret = t4_fw_reset(adap, adap->fn, PIORSTMODE | PIORST); 2984 if (ret < 0) 2985 goto bye; 2986 2987 for (v = 0; v < SGE_NTIMERS - 1; v++) 2988 adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL); 2989 adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL; 2990 adap->sge.counter_val[0] = 1; 2991 for (v = 1; v < SGE_NCOUNTERS; v++) 2992 adap->sge.counter_val[v] = min(intr_cnt[v - 1], 2993 THRESHOLD_3_MASK); 2994 #define FW_PARAM_DEV(param) \ 2995 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 2996 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 2997 2998 params[0] = FW_PARAM_DEV(CCLK); 2999 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 1, params, val); 3000 if (ret < 0) 3001 goto bye; 3002 adap->params.vpd.cclk = val[0]; 3003 3004 ret = adap_init1(adap, &c); 3005 if (ret < 0) 3006 goto bye; 3007 3008 #define FW_PARAM_PFVF(param) \ 3009 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 3010 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \ 3011 FW_PARAMS_PARAM_Y(adap->fn)) 3012 3013 params[0] = FW_PARAM_DEV(PORTVEC); 3014 params[1] = FW_PARAM_PFVF(L2T_START); 3015 params[2] = FW_PARAM_PFVF(L2T_END); 3016 params[3] = FW_PARAM_PFVF(FILTER_START); 3017 params[4] = FW_PARAM_PFVF(FILTER_END); 3018 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3019 params[6] = FW_PARAM_PFVF(EQ_START); 3020 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 7, params, val); 3021 if (ret < 0) 3022 goto bye; 3023 port_vec = val[0]; 3024 adap->tids.ftid_base = val[3]; 3025 adap->tids.nftids = val[4] - val[3] + 1; 3026 adap->sge.ingr_start = val[5]; 3027 adap->sge.egr_start = val[6]; 3028 3029 if (c.ofldcaps) { 3030 /* query offload-related parameters */ 3031 params[0] = FW_PARAM_DEV(NTID); 3032 params[1] = FW_PARAM_PFVF(SERVER_START); 3033 params[2] = FW_PARAM_PFVF(SERVER_END); 3034 params[3] = FW_PARAM_PFVF(TDDP_START); 3035 params[4] = FW_PARAM_PFVF(TDDP_END); 3036 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3037 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params, 3038 val); 3039 if (ret < 0) 3040 goto bye; 3041 adap->tids.ntids = val[0]; 3042 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3043 adap->tids.stid_base = val[1]; 3044 adap->tids.nstids = val[2] - val[1] + 1; 3045 adap->vres.ddp.start = val[3]; 3046 adap->vres.ddp.size = val[4] - val[3] + 1; 3047 adap->params.ofldq_wr_cred = val[5]; 3048 adap->params.offload = 1; 3049 } 3050 if (c.rdmacaps) { 3051 params[0] = FW_PARAM_PFVF(STAG_START); 3052 params[1] = FW_PARAM_PFVF(STAG_END); 3053 params[2] = FW_PARAM_PFVF(RQ_START); 3054 params[3] = FW_PARAM_PFVF(RQ_END); 3055 params[4] = FW_PARAM_PFVF(PBL_START); 3056 params[5] = FW_PARAM_PFVF(PBL_END); 3057 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params, 3058 val); 3059 if (ret < 0) 3060 goto bye; 3061 adap->vres.stag.start = val[0]; 3062 adap->vres.stag.size = val[1] - val[0] + 1; 3063 adap->vres.rq.start = val[2]; 3064 adap->vres.rq.size = val[3] - val[2] + 1; 3065 adap->vres.pbl.start = val[4]; 3066 adap->vres.pbl.size = val[5] - val[4] + 1; 3067 3068 params[0] = FW_PARAM_PFVF(SQRQ_START); 3069 params[1] = FW_PARAM_PFVF(SQRQ_END); 3070 params[2] = FW_PARAM_PFVF(CQ_START); 3071 params[3] = FW_PARAM_PFVF(CQ_END); 3072 params[4] = FW_PARAM_PFVF(OCQ_START); 3073 params[5] = FW_PARAM_PFVF(OCQ_END); 3074 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params, 3075 val); 3076 if (ret < 0) 3077 goto bye; 3078 adap->vres.qp.start = val[0]; 3079 adap->vres.qp.size = val[1] - val[0] + 1; 3080 adap->vres.cq.start = val[2]; 3081 adap->vres.cq.size = val[3] - val[2] + 1; 3082 adap->vres.ocq.start = val[4]; 3083 adap->vres.ocq.size = val[5] - val[4] + 1; 3084 } 3085 if (c.iscsicaps) { 3086 params[0] = FW_PARAM_PFVF(ISCSI_START); 3087 params[1] = FW_PARAM_PFVF(ISCSI_END); 3088 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 2, params, 3089 val); 3090 if (ret < 0) 3091 goto bye; 3092 adap->vres.iscsi.start = val[0]; 3093 adap->vres.iscsi.size = val[1] - val[0] + 1; 3094 } 3095 #undef FW_PARAM_PFVF 3096 #undef FW_PARAM_DEV 3097 3098 adap->params.nports = hweight32(port_vec); 3099 adap->params.portvec = port_vec; 3100 adap->flags |= FW_OK; 3101 3102 /* These are finalized by FW initialization, load their values now */ 3103 v = t4_read_reg(adap, TP_TIMER_RESOLUTION); 3104 adap->params.tp.tre = TIMERRESOLUTION_GET(v); 3105 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3106 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3107 adap->params.b_wnd); 3108 3109 #ifdef CONFIG_PCI_IOV 3110 /* 3111 * Provision resource limits for Virtual Functions. We currently 3112 * grant them all the same static resource limits except for the Port 3113 * Access Rights Mask which we're assigning based on the PF. All of 3114 * the static provisioning stuff for both the PF and VF really needs 3115 * to be managed in a persistent manner for each device which the 3116 * firmware controls. 3117 */ 3118 { 3119 int pf, vf; 3120 3121 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) { 3122 if (num_vf[pf] <= 0) 3123 continue; 3124 3125 /* VF numbering starts at 1! */ 3126 for (vf = 1; vf <= num_vf[pf]; vf++) { 3127 ret = t4_cfg_pfvf(adap, adap->fn, pf, vf, 3128 VFRES_NEQ, VFRES_NETHCTRL, 3129 VFRES_NIQFLINT, VFRES_NIQ, 3130 VFRES_TC, VFRES_NVI, 3131 FW_PFVF_CMD_CMASK_MASK, 3132 pfvfres_pmask(adap, pf, vf), 3133 VFRES_NEXACTF, 3134 VFRES_R_CAPS, VFRES_WX_CAPS); 3135 if (ret < 0) 3136 dev_warn(adap->pdev_dev, "failed to " 3137 "provision pf/vf=%d/%d; " 3138 "err=%d\n", pf, vf, ret); 3139 } 3140 } 3141 } 3142 #endif 3143 3144 setup_memwin(adap); 3145 return 0; 3146 3147 /* 3148 * If a command timed out or failed with EIO FW does not operate within 3149 * its spec or something catastrophic happened to HW/FW, stop issuing 3150 * commands. 3151 */ 3152 bye: if (ret != -ETIMEDOUT && ret != -EIO) 3153 t4_fw_bye(adap, adap->fn); 3154 return ret; 3155 } 3156 3157 /* EEH callbacks */ 3158 3159 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 3160 pci_channel_state_t state) 3161 { 3162 int i; 3163 struct adapter *adap = pci_get_drvdata(pdev); 3164 3165 if (!adap) 3166 goto out; 3167 3168 rtnl_lock(); 3169 adap->flags &= ~FW_OK; 3170 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 3171 for_each_port(adap, i) { 3172 struct net_device *dev = adap->port[i]; 3173 3174 netif_device_detach(dev); 3175 netif_carrier_off(dev); 3176 } 3177 if (adap->flags & FULL_INIT_DONE) 3178 cxgb_down(adap); 3179 rtnl_unlock(); 3180 pci_disable_device(pdev); 3181 out: return state == pci_channel_io_perm_failure ? 3182 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 3183 } 3184 3185 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 3186 { 3187 int i, ret; 3188 struct fw_caps_config_cmd c; 3189 struct adapter *adap = pci_get_drvdata(pdev); 3190 3191 if (!adap) { 3192 pci_restore_state(pdev); 3193 pci_save_state(pdev); 3194 return PCI_ERS_RESULT_RECOVERED; 3195 } 3196 3197 if (pci_enable_device(pdev)) { 3198 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n"); 3199 return PCI_ERS_RESULT_DISCONNECT; 3200 } 3201 3202 pci_set_master(pdev); 3203 pci_restore_state(pdev); 3204 pci_save_state(pdev); 3205 pci_cleanup_aer_uncorrect_error_status(pdev); 3206 3207 if (t4_wait_dev_ready(adap) < 0) 3208 return PCI_ERS_RESULT_DISCONNECT; 3209 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL)) 3210 return PCI_ERS_RESULT_DISCONNECT; 3211 adap->flags |= FW_OK; 3212 if (adap_init1(adap, &c)) 3213 return PCI_ERS_RESULT_DISCONNECT; 3214 3215 for_each_port(adap, i) { 3216 struct port_info *p = adap2pinfo(adap, i); 3217 3218 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1, 3219 NULL, NULL); 3220 if (ret < 0) 3221 return PCI_ERS_RESULT_DISCONNECT; 3222 p->viid = ret; 3223 p->xact_addr_filt = -1; 3224 } 3225 3226 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3227 adap->params.b_wnd); 3228 setup_memwin(adap); 3229 if (cxgb_up(adap)) 3230 return PCI_ERS_RESULT_DISCONNECT; 3231 return PCI_ERS_RESULT_RECOVERED; 3232 } 3233 3234 static void eeh_resume(struct pci_dev *pdev) 3235 { 3236 int i; 3237 struct adapter *adap = pci_get_drvdata(pdev); 3238 3239 if (!adap) 3240 return; 3241 3242 rtnl_lock(); 3243 for_each_port(adap, i) { 3244 struct net_device *dev = adap->port[i]; 3245 3246 if (netif_running(dev)) { 3247 link_start(dev); 3248 cxgb_set_rxmode(dev); 3249 } 3250 netif_device_attach(dev); 3251 } 3252 rtnl_unlock(); 3253 } 3254 3255 static struct pci_error_handlers cxgb4_eeh = { 3256 .error_detected = eeh_err_detected, 3257 .slot_reset = eeh_slot_reset, 3258 .resume = eeh_resume, 3259 }; 3260 3261 static inline bool is_10g_port(const struct link_config *lc) 3262 { 3263 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0; 3264 } 3265 3266 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx, 3267 unsigned int size, unsigned int iqe_size) 3268 { 3269 q->intr_params = QINTR_TIMER_IDX(timer_idx) | 3270 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0); 3271 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0; 3272 q->iqe_len = iqe_size; 3273 q->size = size; 3274 } 3275 3276 /* 3277 * Perform default configuration of DMA queues depending on the number and type 3278 * of ports we found and the number of available CPUs. Most settings can be 3279 * modified by the admin prior to actual use. 3280 */ 3281 static void __devinit cfg_queues(struct adapter *adap) 3282 { 3283 struct sge *s = &adap->sge; 3284 int i, q10g = 0, n10g = 0, qidx = 0; 3285 3286 for_each_port(adap, i) 3287 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg); 3288 3289 /* 3290 * We default to 1 queue per non-10G port and up to # of cores queues 3291 * per 10G port. 3292 */ 3293 if (n10g) 3294 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 3295 if (q10g > num_online_cpus()) 3296 q10g = num_online_cpus(); 3297 3298 for_each_port(adap, i) { 3299 struct port_info *pi = adap2pinfo(adap, i); 3300 3301 pi->first_qset = qidx; 3302 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1; 3303 qidx += pi->nqsets; 3304 } 3305 3306 s->ethqsets = qidx; 3307 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 3308 3309 if (is_offload(adap)) { 3310 /* 3311 * For offload we use 1 queue/channel if all ports are up to 1G, 3312 * otherwise we divide all available queues amongst the channels 3313 * capped by the number of available cores. 3314 */ 3315 if (n10g) { 3316 i = min_t(int, ARRAY_SIZE(s->ofldrxq), 3317 num_online_cpus()); 3318 s->ofldqsets = roundup(i, adap->params.nports); 3319 } else 3320 s->ofldqsets = adap->params.nports; 3321 /* For RDMA one Rx queue per channel suffices */ 3322 s->rdmaqs = adap->params.nports; 3323 } 3324 3325 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 3326 struct sge_eth_rxq *r = &s->ethrxq[i]; 3327 3328 init_rspq(&r->rspq, 0, 0, 1024, 64); 3329 r->fl.size = 72; 3330 } 3331 3332 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 3333 s->ethtxq[i].q.size = 1024; 3334 3335 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 3336 s->ctrlq[i].q.size = 512; 3337 3338 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 3339 s->ofldtxq[i].q.size = 1024; 3340 3341 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { 3342 struct sge_ofld_rxq *r = &s->ofldrxq[i]; 3343 3344 init_rspq(&r->rspq, 0, 0, 1024, 64); 3345 r->rspq.uld = CXGB4_ULD_ISCSI; 3346 r->fl.size = 72; 3347 } 3348 3349 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 3350 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 3351 3352 init_rspq(&r->rspq, 0, 0, 511, 64); 3353 r->rspq.uld = CXGB4_ULD_RDMA; 3354 r->fl.size = 72; 3355 } 3356 3357 init_rspq(&s->fw_evtq, 6, 0, 512, 64); 3358 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64); 3359 } 3360 3361 /* 3362 * Reduce the number of Ethernet queues across all ports to at most n. 3363 * n provides at least one queue per port. 3364 */ 3365 static void __devinit reduce_ethqs(struct adapter *adap, int n) 3366 { 3367 int i; 3368 struct port_info *pi; 3369 3370 while (n < adap->sge.ethqsets) 3371 for_each_port(adap, i) { 3372 pi = adap2pinfo(adap, i); 3373 if (pi->nqsets > 1) { 3374 pi->nqsets--; 3375 adap->sge.ethqsets--; 3376 if (adap->sge.ethqsets <= n) 3377 break; 3378 } 3379 } 3380 3381 n = 0; 3382 for_each_port(adap, i) { 3383 pi = adap2pinfo(adap, i); 3384 pi->first_qset = n; 3385 n += pi->nqsets; 3386 } 3387 } 3388 3389 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 3390 #define EXTRA_VECS 2 3391 3392 static int __devinit enable_msix(struct adapter *adap) 3393 { 3394 int ofld_need = 0; 3395 int i, err, want, need; 3396 struct sge *s = &adap->sge; 3397 unsigned int nchan = adap->params.nports; 3398 struct msix_entry entries[MAX_INGQ + 1]; 3399 3400 for (i = 0; i < ARRAY_SIZE(entries); ++i) 3401 entries[i].entry = i; 3402 3403 want = s->max_ethqsets + EXTRA_VECS; 3404 if (is_offload(adap)) { 3405 want += s->rdmaqs + s->ofldqsets; 3406 /* need nchan for each possible ULD */ 3407 ofld_need = 2 * nchan; 3408 } 3409 need = adap->params.nports + EXTRA_VECS + ofld_need; 3410 3411 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need) 3412 want = err; 3413 3414 if (!err) { 3415 /* 3416 * Distribute available vectors to the various queue groups. 3417 * Every group gets its minimum requirement and NIC gets top 3418 * priority for leftovers. 3419 */ 3420 i = want - EXTRA_VECS - ofld_need; 3421 if (i < s->max_ethqsets) { 3422 s->max_ethqsets = i; 3423 if (i < s->ethqsets) 3424 reduce_ethqs(adap, i); 3425 } 3426 if (is_offload(adap)) { 3427 i = want - EXTRA_VECS - s->max_ethqsets; 3428 i -= ofld_need - nchan; 3429 s->ofldqsets = (i / nchan) * nchan; /* round down */ 3430 } 3431 for (i = 0; i < want; ++i) 3432 adap->msix_info[i].vec = entries[i].vector; 3433 } else if (err > 0) 3434 dev_info(adap->pdev_dev, 3435 "only %d MSI-X vectors left, not using MSI-X\n", err); 3436 return err; 3437 } 3438 3439 #undef EXTRA_VECS 3440 3441 static int __devinit init_rss(struct adapter *adap) 3442 { 3443 unsigned int i, j; 3444 3445 for_each_port(adap, i) { 3446 struct port_info *pi = adap2pinfo(adap, i); 3447 3448 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 3449 if (!pi->rss) 3450 return -ENOMEM; 3451 for (j = 0; j < pi->rss_size; j++) 3452 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets); 3453 } 3454 return 0; 3455 } 3456 3457 static void __devinit print_port_info(const struct net_device *dev) 3458 { 3459 static const char *base[] = { 3460 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4", 3461 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4" 3462 }; 3463 3464 char buf[80]; 3465 char *bufp = buf; 3466 const char *spd = ""; 3467 const struct port_info *pi = netdev_priv(dev); 3468 const struct adapter *adap = pi->adapter; 3469 3470 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 3471 spd = " 2.5 GT/s"; 3472 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 3473 spd = " 5 GT/s"; 3474 3475 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 3476 bufp += sprintf(bufp, "100/"); 3477 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 3478 bufp += sprintf(bufp, "1000/"); 3479 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 3480 bufp += sprintf(bufp, "10G/"); 3481 if (bufp != buf) 3482 --bufp; 3483 sprintf(bufp, "BASE-%s", base[pi->port_type]); 3484 3485 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", 3486 adap->params.vpd.id, adap->params.rev, buf, 3487 is_offload(adap) ? "R" : "", adap->params.pci.width, spd, 3488 (adap->flags & USING_MSIX) ? " MSI-X" : 3489 (adap->flags & USING_MSI) ? " MSI" : ""); 3490 netdev_info(dev, "S/N: %s, E/C: %s\n", 3491 adap->params.vpd.sn, adap->params.vpd.ec); 3492 } 3493 3494 static void __devinit enable_pcie_relaxed_ordering(struct pci_dev *dev) 3495 { 3496 u16 v; 3497 int pos; 3498 3499 pos = pci_pcie_cap(dev); 3500 if (pos > 0) { 3501 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &v); 3502 v |= PCI_EXP_DEVCTL_RELAX_EN; 3503 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, v); 3504 } 3505 } 3506 3507 /* 3508 * Free the following resources: 3509 * - memory used for tables 3510 * - MSI/MSI-X 3511 * - net devices 3512 * - resources FW is holding for us 3513 */ 3514 static void free_some_resources(struct adapter *adapter) 3515 { 3516 unsigned int i; 3517 3518 t4_free_mem(adapter->l2t); 3519 t4_free_mem(adapter->tids.tid_tab); 3520 disable_msi(adapter); 3521 3522 for_each_port(adapter, i) 3523 if (adapter->port[i]) { 3524 kfree(adap2pinfo(adapter, i)->rss); 3525 free_netdev(adapter->port[i]); 3526 } 3527 if (adapter->flags & FW_OK) 3528 t4_fw_bye(adapter, adapter->fn); 3529 } 3530 3531 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 3532 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 3533 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 3534 3535 static int __devinit init_one(struct pci_dev *pdev, 3536 const struct pci_device_id *ent) 3537 { 3538 int func, i, err; 3539 struct port_info *pi; 3540 bool highdma = false; 3541 struct adapter *adapter = NULL; 3542 3543 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 3544 3545 err = pci_request_regions(pdev, KBUILD_MODNAME); 3546 if (err) { 3547 /* Just info, some other driver may have claimed the device. */ 3548 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 3549 return err; 3550 } 3551 3552 /* We control everything through one PF */ 3553 func = PCI_FUNC(pdev->devfn); 3554 if (func != ent->driver_data) { 3555 pci_save_state(pdev); /* to restore SR-IOV later */ 3556 goto sriov; 3557 } 3558 3559 err = pci_enable_device(pdev); 3560 if (err) { 3561 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3562 goto out_release_regions; 3563 } 3564 3565 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3566 highdma = true; 3567 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3568 if (err) { 3569 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 3570 "coherent allocations\n"); 3571 goto out_disable_device; 3572 } 3573 } else { 3574 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3575 if (err) { 3576 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3577 goto out_disable_device; 3578 } 3579 } 3580 3581 pci_enable_pcie_error_reporting(pdev); 3582 enable_pcie_relaxed_ordering(pdev); 3583 pci_set_master(pdev); 3584 pci_save_state(pdev); 3585 3586 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3587 if (!adapter) { 3588 err = -ENOMEM; 3589 goto out_disable_device; 3590 } 3591 3592 adapter->regs = pci_ioremap_bar(pdev, 0); 3593 if (!adapter->regs) { 3594 dev_err(&pdev->dev, "cannot map device registers\n"); 3595 err = -ENOMEM; 3596 goto out_free_adapter; 3597 } 3598 3599 adapter->pdev = pdev; 3600 adapter->pdev_dev = &pdev->dev; 3601 adapter->fn = func; 3602 adapter->msg_enable = dflt_msg_enable; 3603 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 3604 3605 spin_lock_init(&adapter->stats_lock); 3606 spin_lock_init(&adapter->tid_release_lock); 3607 3608 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 3609 3610 err = t4_prep_adapter(adapter); 3611 if (err) 3612 goto out_unmap_bar; 3613 err = adap_init0(adapter); 3614 if (err) 3615 goto out_unmap_bar; 3616 3617 for_each_port(adapter, i) { 3618 struct net_device *netdev; 3619 3620 netdev = alloc_etherdev_mq(sizeof(struct port_info), 3621 MAX_ETH_QSETS); 3622 if (!netdev) { 3623 err = -ENOMEM; 3624 goto out_free_dev; 3625 } 3626 3627 SET_NETDEV_DEV(netdev, &pdev->dev); 3628 3629 adapter->port[i] = netdev; 3630 pi = netdev_priv(netdev); 3631 pi->adapter = adapter; 3632 pi->xact_addr_filt = -1; 3633 pi->port_id = i; 3634 netdev->irq = pdev->irq; 3635 3636 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 3637 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3638 NETIF_F_RXCSUM | NETIF_F_RXHASH | 3639 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 3640 if (highdma) 3641 netdev->hw_features |= NETIF_F_HIGHDMA; 3642 netdev->features |= netdev->hw_features; 3643 netdev->vlan_features = netdev->features & VLAN_FEAT; 3644 3645 netdev->priv_flags |= IFF_UNICAST_FLT; 3646 3647 netdev->netdev_ops = &cxgb4_netdev_ops; 3648 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops); 3649 } 3650 3651 pci_set_drvdata(pdev, adapter); 3652 3653 if (adapter->flags & FW_OK) { 3654 err = t4_port_init(adapter, func, func, 0); 3655 if (err) 3656 goto out_free_dev; 3657 } 3658 3659 /* 3660 * Configure queues and allocate tables now, they can be needed as 3661 * soon as the first register_netdev completes. 3662 */ 3663 cfg_queues(adapter); 3664 3665 adapter->l2t = t4_init_l2t(); 3666 if (!adapter->l2t) { 3667 /* We tolerate a lack of L2T, giving up some functionality */ 3668 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 3669 adapter->params.offload = 0; 3670 } 3671 3672 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 3673 dev_warn(&pdev->dev, "could not allocate TID table, " 3674 "continuing\n"); 3675 adapter->params.offload = 0; 3676 } 3677 3678 /* See what interrupts we'll be using */ 3679 if (msi > 1 && enable_msix(adapter) == 0) 3680 adapter->flags |= USING_MSIX; 3681 else if (msi > 0 && pci_enable_msi(pdev) == 0) 3682 adapter->flags |= USING_MSI; 3683 3684 err = init_rss(adapter); 3685 if (err) 3686 goto out_free_dev; 3687 3688 /* 3689 * The card is now ready to go. If any errors occur during device 3690 * registration we do not fail the whole card but rather proceed only 3691 * with the ports we manage to register successfully. However we must 3692 * register at least one net device. 3693 */ 3694 for_each_port(adapter, i) { 3695 pi = adap2pinfo(adapter, i); 3696 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 3697 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 3698 3699 err = register_netdev(adapter->port[i]); 3700 if (err) 3701 break; 3702 adapter->chan_map[pi->tx_chan] = i; 3703 print_port_info(adapter->port[i]); 3704 } 3705 if (i == 0) { 3706 dev_err(&pdev->dev, "could not register any net devices\n"); 3707 goto out_free_dev; 3708 } 3709 if (err) { 3710 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 3711 err = 0; 3712 } 3713 3714 if (cxgb4_debugfs_root) { 3715 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 3716 cxgb4_debugfs_root); 3717 setup_debugfs(adapter); 3718 } 3719 3720 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 3721 pdev->needs_freset = 1; 3722 3723 if (is_offload(adapter)) 3724 attach_ulds(adapter); 3725 3726 sriov: 3727 #ifdef CONFIG_PCI_IOV 3728 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 3729 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 3730 dev_info(&pdev->dev, 3731 "instantiated %u virtual functions\n", 3732 num_vf[func]); 3733 #endif 3734 return 0; 3735 3736 out_free_dev: 3737 free_some_resources(adapter); 3738 out_unmap_bar: 3739 iounmap(adapter->regs); 3740 out_free_adapter: 3741 kfree(adapter); 3742 out_disable_device: 3743 pci_disable_pcie_error_reporting(pdev); 3744 pci_disable_device(pdev); 3745 out_release_regions: 3746 pci_release_regions(pdev); 3747 pci_set_drvdata(pdev, NULL); 3748 return err; 3749 } 3750 3751 static void __devexit remove_one(struct pci_dev *pdev) 3752 { 3753 struct adapter *adapter = pci_get_drvdata(pdev); 3754 3755 pci_disable_sriov(pdev); 3756 3757 if (adapter) { 3758 int i; 3759 3760 if (is_offload(adapter)) 3761 detach_ulds(adapter); 3762 3763 for_each_port(adapter, i) 3764 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 3765 unregister_netdev(adapter->port[i]); 3766 3767 if (adapter->debugfs_root) 3768 debugfs_remove_recursive(adapter->debugfs_root); 3769 3770 if (adapter->flags & FULL_INIT_DONE) 3771 cxgb_down(adapter); 3772 3773 free_some_resources(adapter); 3774 iounmap(adapter->regs); 3775 kfree(adapter); 3776 pci_disable_pcie_error_reporting(pdev); 3777 pci_disable_device(pdev); 3778 pci_release_regions(pdev); 3779 pci_set_drvdata(pdev, NULL); 3780 } else 3781 pci_release_regions(pdev); 3782 } 3783 3784 static struct pci_driver cxgb4_driver = { 3785 .name = KBUILD_MODNAME, 3786 .id_table = cxgb4_pci_tbl, 3787 .probe = init_one, 3788 .remove = __devexit_p(remove_one), 3789 .err_handler = &cxgb4_eeh, 3790 }; 3791 3792 static int __init cxgb4_init_module(void) 3793 { 3794 int ret; 3795 3796 /* Debugfs support is optional, just warn if this fails */ 3797 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 3798 if (!cxgb4_debugfs_root) 3799 pr_warning("could not create debugfs entry, continuing\n"); 3800 3801 ret = pci_register_driver(&cxgb4_driver); 3802 if (ret < 0) 3803 debugfs_remove(cxgb4_debugfs_root); 3804 return ret; 3805 } 3806 3807 static void __exit cxgb4_cleanup_module(void) 3808 { 3809 pci_unregister_driver(&cxgb4_driver); 3810 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 3811 } 3812 3813 module_init(cxgb4_init_module); 3814 module_exit(cxgb4_cleanup_module); 3815