1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "srq.h" 78 #include "cxgb4_debugfs.h" 79 #include "clip_tbl.h" 80 #include "l2t.h" 81 #include "smt.h" 82 #include "sched.h" 83 #include "cxgb4_tc_u32.h" 84 #include "cxgb4_tc_flower.h" 85 #include "cxgb4_ptp.h" 86 #include "cxgb4_cudbg.h" 87 88 char cxgb4_driver_name[] = KBUILD_MODNAME; 89 90 #ifdef DRV_VERSION 91 #undef DRV_VERSION 92 #endif 93 #define DRV_VERSION "2.0.0-ko" 94 const char cxgb4_driver_version[] = DRV_VERSION; 95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 96 97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 100 101 /* Macros needed to support the PCI Device ID Table ... 102 */ 103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 104 static const struct pci_device_id cxgb4_pci_tbl[] = { 105 #define CXGB4_UNIFIED_PF 0x4 106 107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 108 109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 110 * called for both. 111 */ 112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 113 114 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 116 117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 118 { 0, } \ 119 } 120 121 #include "t4_pci_id_tbl.h" 122 123 #define FW4_FNAME "cxgb4/t4fw.bin" 124 #define FW5_FNAME "cxgb4/t5fw.bin" 125 #define FW6_FNAME "cxgb4/t6fw.bin" 126 #define FW4_CFNAME "cxgb4/t4-config.txt" 127 #define FW5_CFNAME "cxgb4/t5-config.txt" 128 #define FW6_CFNAME "cxgb4/t6-config.txt" 129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 131 #define PHY_AQ1202_DEVICEID 0x4409 132 #define PHY_BCM84834_DEVICEID 0x4486 133 134 MODULE_DESCRIPTION(DRV_DESC); 135 MODULE_AUTHOR("Chelsio Communications"); 136 MODULE_LICENSE("Dual BSD/GPL"); 137 MODULE_VERSION(DRV_VERSION); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 187 static void link_report(struct net_device *dev) 188 { 189 if (!netif_carrier_ok(dev)) 190 netdev_info(dev, "link down\n"); 191 else { 192 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 193 194 const char *s; 195 const struct port_info *p = netdev_priv(dev); 196 197 switch (p->link_cfg.speed) { 198 case 100: 199 s = "100Mbps"; 200 break; 201 case 1000: 202 s = "1Gbps"; 203 break; 204 case 10000: 205 s = "10Gbps"; 206 break; 207 case 25000: 208 s = "25Gbps"; 209 break; 210 case 40000: 211 s = "40Gbps"; 212 break; 213 case 50000: 214 s = "50Gbps"; 215 break; 216 case 100000: 217 s = "100Gbps"; 218 break; 219 default: 220 pr_info("%s: unsupported speed: %d\n", 221 dev->name, p->link_cfg.speed); 222 return; 223 } 224 225 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 226 fc[p->link_cfg.fc]); 227 } 228 } 229 230 #ifdef CONFIG_CHELSIO_T4_DCB 231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 233 { 234 struct port_info *pi = netdev_priv(dev); 235 struct adapter *adap = pi->adapter; 236 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 237 int i; 238 239 /* We use a simple mapping of Port TX Queue Index to DCB 240 * Priority when we're enabling DCB. 241 */ 242 for (i = 0; i < pi->nqsets; i++, txq++) { 243 u32 name, value; 244 int err; 245 246 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 247 FW_PARAMS_PARAM_X_V( 248 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 249 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 250 value = enable ? i : 0xffffffff; 251 252 /* Since we can be called while atomic (from "interrupt 253 * level") we need to issue the Set Parameters Commannd 254 * without sleeping (timeout < 0). 255 */ 256 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 257 &name, &value, 258 -FW_CMD_MAX_TIMEOUT); 259 260 if (err) 261 dev_err(adap->pdev_dev, 262 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 263 enable ? "set" : "unset", pi->port_id, i, -err); 264 else 265 txq->dcb_prio = enable ? value : 0; 266 } 267 } 268 269 int cxgb4_dcb_enabled(const struct net_device *dev) 270 { 271 struct port_info *pi = netdev_priv(dev); 272 273 if (!pi->dcb.enabled) 274 return 0; 275 276 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 277 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 278 } 279 #endif /* CONFIG_CHELSIO_T4_DCB */ 280 281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 282 { 283 struct net_device *dev = adapter->port[port_id]; 284 285 /* Skip changes from disabled ports. */ 286 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 287 if (link_stat) 288 netif_carrier_on(dev); 289 else { 290 #ifdef CONFIG_CHELSIO_T4_DCB 291 if (cxgb4_dcb_enabled(dev)) { 292 cxgb4_dcb_reset(dev); 293 dcb_tx_queue_prio_enable(dev, false); 294 } 295 #endif /* CONFIG_CHELSIO_T4_DCB */ 296 netif_carrier_off(dev); 297 } 298 299 link_report(dev); 300 } 301 } 302 303 void t4_os_portmod_changed(struct adapter *adap, int port_id) 304 { 305 static const char *mod_str[] = { 306 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 307 }; 308 309 struct net_device *dev = adap->port[port_id]; 310 struct port_info *pi = netdev_priv(dev); 311 312 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 313 netdev_info(dev, "port module unplugged\n"); 314 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 315 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 316 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 317 netdev_info(dev, "%s: unsupported port module inserted\n", 318 dev->name); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 320 netdev_info(dev, "%s: unknown port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 323 netdev_info(dev, "%s: transceiver module error\n", dev->name); 324 else 325 netdev_info(dev, "%s: unknown module type %d inserted\n", 326 dev->name, pi->mod_type); 327 328 /* If the interface is running, then we'll need any "sticky" Link 329 * Parameters redone with a new Transceiver Module. 330 */ 331 pi->link_cfg.redo_l1cfg = netif_running(dev); 332 } 333 334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 335 module_param(dbfifo_int_thresh, int, 0644); 336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 337 338 /* 339 * usecs to sleep while draining the dbfifo 340 */ 341 static int dbfifo_drain_delay = 1000; 342 module_param(dbfifo_drain_delay, int, 0644); 343 MODULE_PARM_DESC(dbfifo_drain_delay, 344 "usecs to sleep while draining the dbfifo"); 345 346 static inline int cxgb4_set_addr_hash(struct port_info *pi) 347 { 348 struct adapter *adap = pi->adapter; 349 u64 vec = 0; 350 bool ucast = false; 351 struct hash_mac_addr *entry; 352 353 /* Calculate the hash vector for the updated list and program it */ 354 list_for_each_entry(entry, &adap->mac_hlist, list) { 355 ucast |= is_unicast_ether_addr(entry->addr); 356 vec |= (1ULL << hash_mac_addr(entry->addr)); 357 } 358 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 359 vec, false); 360 } 361 362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 363 { 364 struct port_info *pi = netdev_priv(netdev); 365 struct adapter *adap = pi->adapter; 366 int ret; 367 u64 mhash = 0; 368 u64 uhash = 0; 369 bool free = false; 370 bool ucast = is_unicast_ether_addr(mac_addr); 371 const u8 *maclist[1] = {mac_addr}; 372 struct hash_mac_addr *new_entry; 373 374 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 375 NULL, ucast ? &uhash : &mhash, false); 376 if (ret < 0) 377 goto out; 378 /* if hash != 0, then add the addr to hash addr list 379 * so on the end we will calculate the hash for the 380 * list and program it 381 */ 382 if (uhash || mhash) { 383 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 384 if (!new_entry) 385 return -ENOMEM; 386 ether_addr_copy(new_entry->addr, mac_addr); 387 list_add_tail(&new_entry->list, &adap->mac_hlist); 388 ret = cxgb4_set_addr_hash(pi); 389 } 390 out: 391 return ret < 0 ? ret : 0; 392 } 393 394 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 395 { 396 struct port_info *pi = netdev_priv(netdev); 397 struct adapter *adap = pi->adapter; 398 int ret; 399 const u8 *maclist[1] = {mac_addr}; 400 struct hash_mac_addr *entry, *tmp; 401 402 /* If the MAC address to be removed is in the hash addr 403 * list, delete it from the list and update hash vector 404 */ 405 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 406 if (ether_addr_equal(entry->addr, mac_addr)) { 407 list_del(&entry->list); 408 kfree(entry); 409 return cxgb4_set_addr_hash(pi); 410 } 411 } 412 413 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 414 return ret < 0 ? -EINVAL : 0; 415 } 416 417 /* 418 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 419 * If @mtu is -1 it is left unchanged. 420 */ 421 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 422 { 423 struct port_info *pi = netdev_priv(dev); 424 struct adapter *adapter = pi->adapter; 425 426 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 427 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 429 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 430 (dev->flags & IFF_PROMISC) ? 1 : 0, 431 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 432 sleep_ok); 433 } 434 435 /** 436 * cxgb4_change_mac - Update match filter for a MAC address. 437 * @pi: the port_info 438 * @viid: the VI id 439 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 440 * or -1 441 * @addr: the new MAC address value 442 * @persist: whether a new MAC allocation should be persistent 443 * @add_smt: if true also add the address to the HW SMT 444 * 445 * Modifies an MPS filter and sets it to the new MAC address if 446 * @tcam_idx >= 0, or adds the MAC address to a new filter if 447 * @tcam_idx < 0. In the latter case the address is added persistently 448 * if @persist is %true. 449 * Addresses are programmed to hash region, if tcam runs out of entries. 450 * 451 */ 452 static int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 453 int *tcam_idx, const u8 *addr, bool persist, 454 u8 *smt_idx) 455 { 456 struct adapter *adapter = pi->adapter; 457 struct hash_mac_addr *entry, *new_entry; 458 int ret; 459 460 ret = t4_change_mac(adapter, adapter->mbox, viid, 461 *tcam_idx, addr, persist, smt_idx); 462 /* We ran out of TCAM entries. try programming hash region. */ 463 if (ret == -ENOMEM) { 464 /* If the MAC address to be updated is in the hash addr 465 * list, update it from the list 466 */ 467 list_for_each_entry(entry, &adapter->mac_hlist, list) { 468 if (entry->iface_mac) { 469 ether_addr_copy(entry->addr, addr); 470 goto set_hash; 471 } 472 } 473 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 474 if (!new_entry) 475 return -ENOMEM; 476 ether_addr_copy(new_entry->addr, addr); 477 new_entry->iface_mac = true; 478 list_add_tail(&new_entry->list, &adapter->mac_hlist); 479 set_hash: 480 ret = cxgb4_set_addr_hash(pi); 481 } else if (ret >= 0) { 482 *tcam_idx = ret; 483 ret = 0; 484 } 485 486 return ret; 487 } 488 489 /* 490 * link_start - enable a port 491 * @dev: the port to enable 492 * 493 * Performs the MAC and PHY actions needed to enable a port. 494 */ 495 static int link_start(struct net_device *dev) 496 { 497 int ret; 498 struct port_info *pi = netdev_priv(dev); 499 unsigned int mb = pi->adapter->pf; 500 501 /* 502 * We do not set address filters and promiscuity here, the stack does 503 * that step explicitly. 504 */ 505 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 506 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 507 if (ret == 0) 508 ret = cxgb4_change_mac(pi, pi->viid, &pi->xact_addr_filt, 509 dev->dev_addr, true, &pi->smt_idx); 510 if (ret == 0) 511 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 512 &pi->link_cfg); 513 if (ret == 0) { 514 local_bh_disable(); 515 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 516 true, CXGB4_DCB_ENABLED); 517 local_bh_enable(); 518 } 519 520 return ret; 521 } 522 523 #ifdef CONFIG_CHELSIO_T4_DCB 524 /* Handle a Data Center Bridging update message from the firmware. */ 525 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 526 { 527 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 528 struct net_device *dev = adap->port[adap->chan_map[port]]; 529 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 530 int new_dcb_enabled; 531 532 cxgb4_dcb_handle_fw_update(adap, pcmd); 533 new_dcb_enabled = cxgb4_dcb_enabled(dev); 534 535 /* If the DCB has become enabled or disabled on the port then we're 536 * going to need to set up/tear down DCB Priority parameters for the 537 * TX Queues associated with the port. 538 */ 539 if (new_dcb_enabled != old_dcb_enabled) 540 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 541 } 542 #endif /* CONFIG_CHELSIO_T4_DCB */ 543 544 /* Response queue handler for the FW event queue. 545 */ 546 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 547 const struct pkt_gl *gl) 548 { 549 u8 opcode = ((const struct rss_header *)rsp)->opcode; 550 551 rsp++; /* skip RSS header */ 552 553 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 554 */ 555 if (unlikely(opcode == CPL_FW4_MSG && 556 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 557 rsp++; 558 opcode = ((const struct rss_header *)rsp)->opcode; 559 rsp++; 560 if (opcode != CPL_SGE_EGR_UPDATE) { 561 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 562 , opcode); 563 goto out; 564 } 565 } 566 567 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 568 const struct cpl_sge_egr_update *p = (void *)rsp; 569 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 570 struct sge_txq *txq; 571 572 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 573 txq->restarts++; 574 if (txq->q_type == CXGB4_TXQ_ETH) { 575 struct sge_eth_txq *eq; 576 577 eq = container_of(txq, struct sge_eth_txq, q); 578 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 579 } else { 580 struct sge_uld_txq *oq; 581 582 oq = container_of(txq, struct sge_uld_txq, q); 583 tasklet_schedule(&oq->qresume_tsk); 584 } 585 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 586 const struct cpl_fw6_msg *p = (void *)rsp; 587 588 #ifdef CONFIG_CHELSIO_T4_DCB 589 const struct fw_port_cmd *pcmd = (const void *)p->data; 590 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 591 unsigned int action = 592 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 593 594 if (cmd == FW_PORT_CMD && 595 (action == FW_PORT_ACTION_GET_PORT_INFO || 596 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 597 int port = FW_PORT_CMD_PORTID_G( 598 be32_to_cpu(pcmd->op_to_portid)); 599 struct net_device *dev; 600 int dcbxdis, state_input; 601 602 dev = q->adap->port[q->adap->chan_map[port]]; 603 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 604 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 605 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 606 & FW_PORT_CMD_DCBXDIS32_F)); 607 state_input = (dcbxdis 608 ? CXGB4_DCB_INPUT_FW_DISABLED 609 : CXGB4_DCB_INPUT_FW_ENABLED); 610 611 cxgb4_dcb_state_fsm(dev, state_input); 612 } 613 614 if (cmd == FW_PORT_CMD && 615 action == FW_PORT_ACTION_L2_DCB_CFG) 616 dcb_rpl(q->adap, pcmd); 617 else 618 #endif 619 if (p->type == 0) 620 t4_handle_fw_rpl(q->adap, p->data); 621 } else if (opcode == CPL_L2T_WRITE_RPL) { 622 const struct cpl_l2t_write_rpl *p = (void *)rsp; 623 624 do_l2t_write_rpl(q->adap, p); 625 } else if (opcode == CPL_SMT_WRITE_RPL) { 626 const struct cpl_smt_write_rpl *p = (void *)rsp; 627 628 do_smt_write_rpl(q->adap, p); 629 } else if (opcode == CPL_SET_TCB_RPL) { 630 const struct cpl_set_tcb_rpl *p = (void *)rsp; 631 632 filter_rpl(q->adap, p); 633 } else if (opcode == CPL_ACT_OPEN_RPL) { 634 const struct cpl_act_open_rpl *p = (void *)rsp; 635 636 hash_filter_rpl(q->adap, p); 637 } else if (opcode == CPL_ABORT_RPL_RSS) { 638 const struct cpl_abort_rpl_rss *p = (void *)rsp; 639 640 hash_del_filter_rpl(q->adap, p); 641 } else if (opcode == CPL_SRQ_TABLE_RPL) { 642 const struct cpl_srq_table_rpl *p = (void *)rsp; 643 644 do_srq_table_rpl(q->adap, p); 645 } else 646 dev_err(q->adap->pdev_dev, 647 "unexpected CPL %#x on FW event queue\n", opcode); 648 out: 649 return 0; 650 } 651 652 static void disable_msi(struct adapter *adapter) 653 { 654 if (adapter->flags & USING_MSIX) { 655 pci_disable_msix(adapter->pdev); 656 adapter->flags &= ~USING_MSIX; 657 } else if (adapter->flags & USING_MSI) { 658 pci_disable_msi(adapter->pdev); 659 adapter->flags &= ~USING_MSI; 660 } 661 } 662 663 /* 664 * Interrupt handler for non-data events used with MSI-X. 665 */ 666 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 667 { 668 struct adapter *adap = cookie; 669 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 670 671 if (v & PFSW_F) { 672 adap->swintr = 1; 673 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 674 } 675 if (adap->flags & MASTER_PF) 676 t4_slow_intr_handler(adap); 677 return IRQ_HANDLED; 678 } 679 680 /* 681 * Name the MSI-X interrupts. 682 */ 683 static void name_msix_vecs(struct adapter *adap) 684 { 685 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 686 687 /* non-data interrupts */ 688 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 689 690 /* FW events */ 691 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 692 adap->port[0]->name); 693 694 /* Ethernet queues */ 695 for_each_port(adap, j) { 696 struct net_device *d = adap->port[j]; 697 const struct port_info *pi = netdev_priv(d); 698 699 for (i = 0; i < pi->nqsets; i++, msi_idx++) 700 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 701 d->name, i); 702 } 703 } 704 705 static int request_msix_queue_irqs(struct adapter *adap) 706 { 707 struct sge *s = &adap->sge; 708 int err, ethqidx; 709 int msi_index = 2; 710 711 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 712 adap->msix_info[1].desc, &s->fw_evtq); 713 if (err) 714 return err; 715 716 for_each_ethrxq(s, ethqidx) { 717 err = request_irq(adap->msix_info[msi_index].vec, 718 t4_sge_intr_msix, 0, 719 adap->msix_info[msi_index].desc, 720 &s->ethrxq[ethqidx].rspq); 721 if (err) 722 goto unwind; 723 msi_index++; 724 } 725 return 0; 726 727 unwind: 728 while (--ethqidx >= 0) 729 free_irq(adap->msix_info[--msi_index].vec, 730 &s->ethrxq[ethqidx].rspq); 731 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 732 return err; 733 } 734 735 static void free_msix_queue_irqs(struct adapter *adap) 736 { 737 int i, msi_index = 2; 738 struct sge *s = &adap->sge; 739 740 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 741 for_each_ethrxq(s, i) 742 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 743 } 744 745 /** 746 * cxgb4_write_rss - write the RSS table for a given port 747 * @pi: the port 748 * @queues: array of queue indices for RSS 749 * 750 * Sets up the portion of the HW RSS table for the port's VI to distribute 751 * packets to the Rx queues in @queues. 752 * Should never be called before setting up sge eth rx queues 753 */ 754 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 755 { 756 u16 *rss; 757 int i, err; 758 struct adapter *adapter = pi->adapter; 759 const struct sge_eth_rxq *rxq; 760 761 rxq = &adapter->sge.ethrxq[pi->first_qset]; 762 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 763 if (!rss) 764 return -ENOMEM; 765 766 /* map the queue indices to queue ids */ 767 for (i = 0; i < pi->rss_size; i++, queues++) 768 rss[i] = rxq[*queues].rspq.abs_id; 769 770 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 771 pi->rss_size, rss, pi->rss_size); 772 /* If Tunnel All Lookup isn't specified in the global RSS 773 * Configuration, then we need to specify a default Ingress 774 * Queue for any ingress packets which aren't hashed. We'll 775 * use our first ingress queue ... 776 */ 777 if (!err) 778 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 779 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 780 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 781 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 782 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 783 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 784 rss[0]); 785 kfree(rss); 786 return err; 787 } 788 789 /** 790 * setup_rss - configure RSS 791 * @adap: the adapter 792 * 793 * Sets up RSS for each port. 794 */ 795 static int setup_rss(struct adapter *adap) 796 { 797 int i, j, err; 798 799 for_each_port(adap, i) { 800 const struct port_info *pi = adap2pinfo(adap, i); 801 802 /* Fill default values with equal distribution */ 803 for (j = 0; j < pi->rss_size; j++) 804 pi->rss[j] = j % pi->nqsets; 805 806 err = cxgb4_write_rss(pi, pi->rss); 807 if (err) 808 return err; 809 } 810 return 0; 811 } 812 813 /* 814 * Return the channel of the ingress queue with the given qid. 815 */ 816 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 817 { 818 qid -= p->ingr_start; 819 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 820 } 821 822 /* 823 * Wait until all NAPI handlers are descheduled. 824 */ 825 static void quiesce_rx(struct adapter *adap) 826 { 827 int i; 828 829 for (i = 0; i < adap->sge.ingr_sz; i++) { 830 struct sge_rspq *q = adap->sge.ingr_map[i]; 831 832 if (q && q->handler) 833 napi_disable(&q->napi); 834 } 835 } 836 837 /* Disable interrupt and napi handler */ 838 static void disable_interrupts(struct adapter *adap) 839 { 840 if (adap->flags & FULL_INIT_DONE) { 841 t4_intr_disable(adap); 842 if (adap->flags & USING_MSIX) { 843 free_msix_queue_irqs(adap); 844 free_irq(adap->msix_info[0].vec, adap); 845 } else { 846 free_irq(adap->pdev->irq, adap); 847 } 848 quiesce_rx(adap); 849 } 850 } 851 852 /* 853 * Enable NAPI scheduling and interrupt generation for all Rx queues. 854 */ 855 static void enable_rx(struct adapter *adap) 856 { 857 int i; 858 859 for (i = 0; i < adap->sge.ingr_sz; i++) { 860 struct sge_rspq *q = adap->sge.ingr_map[i]; 861 862 if (!q) 863 continue; 864 if (q->handler) 865 napi_enable(&q->napi); 866 867 /* 0-increment GTS to start the timer and enable interrupts */ 868 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 869 SEINTARM_V(q->intr_params) | 870 INGRESSQID_V(q->cntxt_id)); 871 } 872 } 873 874 875 static int setup_fw_sge_queues(struct adapter *adap) 876 { 877 struct sge *s = &adap->sge; 878 int err = 0; 879 880 bitmap_zero(s->starving_fl, s->egr_sz); 881 bitmap_zero(s->txq_maperr, s->egr_sz); 882 883 if (adap->flags & USING_MSIX) 884 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 885 else { 886 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 887 NULL, NULL, NULL, -1); 888 if (err) 889 return err; 890 adap->msi_idx = -((int)s->intrq.abs_id + 1); 891 } 892 893 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 894 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 895 return err; 896 } 897 898 /** 899 * setup_sge_queues - configure SGE Tx/Rx/response queues 900 * @adap: the adapter 901 * 902 * Determines how many sets of SGE queues to use and initializes them. 903 * We support multiple queue sets per port if we have MSI-X, otherwise 904 * just one queue set per port. 905 */ 906 static int setup_sge_queues(struct adapter *adap) 907 { 908 int err, i, j; 909 struct sge *s = &adap->sge; 910 struct sge_uld_rxq_info *rxq_info = NULL; 911 unsigned int cmplqid = 0; 912 913 if (is_uld(adap)) 914 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 915 916 for_each_port(adap, i) { 917 struct net_device *dev = adap->port[i]; 918 struct port_info *pi = netdev_priv(dev); 919 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 920 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 921 922 for (j = 0; j < pi->nqsets; j++, q++) { 923 if (adap->msi_idx > 0) 924 adap->msi_idx++; 925 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 926 adap->msi_idx, &q->fl, 927 t4_ethrx_handler, 928 NULL, 929 t4_get_tp_ch_map(adap, 930 pi->tx_chan)); 931 if (err) 932 goto freeout; 933 q->rspq.idx = j; 934 memset(&q->stats, 0, sizeof(q->stats)); 935 } 936 937 q = &s->ethrxq[pi->first_qset]; 938 for (j = 0; j < pi->nqsets; j++, t++, q++) { 939 err = t4_sge_alloc_eth_txq(adap, t, dev, 940 netdev_get_tx_queue(dev, j), 941 q->rspq.cntxt_id, 942 !!(adap->flags & SGE_DBQ_TIMER)); 943 if (err) 944 goto freeout; 945 } 946 } 947 948 for_each_port(adap, i) { 949 /* Note that cmplqid below is 0 if we don't 950 * have RDMA queues, and that's the right value. 951 */ 952 if (rxq_info) 953 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 954 955 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 956 s->fw_evtq.cntxt_id, cmplqid); 957 if (err) 958 goto freeout; 959 } 960 961 if (!is_t4(adap->params.chip)) { 962 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 963 netdev_get_tx_queue(adap->port[0], 0) 964 , s->fw_evtq.cntxt_id, false); 965 if (err) 966 goto freeout; 967 } 968 969 t4_write_reg(adap, is_t4(adap->params.chip) ? 970 MPS_TRC_RSS_CONTROL_A : 971 MPS_T5_TRC_RSS_CONTROL_A, 972 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 973 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 974 return 0; 975 freeout: 976 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 977 t4_free_sge_resources(adap); 978 return err; 979 } 980 981 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 982 struct net_device *sb_dev, 983 select_queue_fallback_t fallback) 984 { 985 int txq; 986 987 #ifdef CONFIG_CHELSIO_T4_DCB 988 /* If a Data Center Bridging has been successfully negotiated on this 989 * link then we'll use the skb's priority to map it to a TX Queue. 990 * The skb's priority is determined via the VLAN Tag Priority Code 991 * Point field. 992 */ 993 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 994 u16 vlan_tci; 995 int err; 996 997 err = vlan_get_tag(skb, &vlan_tci); 998 if (unlikely(err)) { 999 if (net_ratelimit()) 1000 netdev_warn(dev, 1001 "TX Packet without VLAN Tag on DCB Link\n"); 1002 txq = 0; 1003 } else { 1004 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1005 #ifdef CONFIG_CHELSIO_T4_FCOE 1006 if (skb->protocol == htons(ETH_P_FCOE)) 1007 txq = skb->priority & 0x7; 1008 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1009 } 1010 return txq; 1011 } 1012 #endif /* CONFIG_CHELSIO_T4_DCB */ 1013 1014 if (select_queue) { 1015 txq = (skb_rx_queue_recorded(skb) 1016 ? skb_get_rx_queue(skb) 1017 : smp_processor_id()); 1018 1019 while (unlikely(txq >= dev->real_num_tx_queues)) 1020 txq -= dev->real_num_tx_queues; 1021 1022 return txq; 1023 } 1024 1025 return fallback(dev, skb, NULL) % dev->real_num_tx_queues; 1026 } 1027 1028 static int closest_timer(const struct sge *s, int time) 1029 { 1030 int i, delta, match = 0, min_delta = INT_MAX; 1031 1032 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1033 delta = time - s->timer_val[i]; 1034 if (delta < 0) 1035 delta = -delta; 1036 if (delta < min_delta) { 1037 min_delta = delta; 1038 match = i; 1039 } 1040 } 1041 return match; 1042 } 1043 1044 static int closest_thres(const struct sge *s, int thres) 1045 { 1046 int i, delta, match = 0, min_delta = INT_MAX; 1047 1048 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1049 delta = thres - s->counter_val[i]; 1050 if (delta < 0) 1051 delta = -delta; 1052 if (delta < min_delta) { 1053 min_delta = delta; 1054 match = i; 1055 } 1056 } 1057 return match; 1058 } 1059 1060 /** 1061 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1062 * @q: the Rx queue 1063 * @us: the hold-off time in us, or 0 to disable timer 1064 * @cnt: the hold-off packet count, or 0 to disable counter 1065 * 1066 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1067 * one of the two needs to be enabled for the queue to generate interrupts. 1068 */ 1069 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1070 unsigned int us, unsigned int cnt) 1071 { 1072 struct adapter *adap = q->adap; 1073 1074 if ((us | cnt) == 0) 1075 cnt = 1; 1076 1077 if (cnt) { 1078 int err; 1079 u32 v, new_idx; 1080 1081 new_idx = closest_thres(&adap->sge, cnt); 1082 if (q->desc && q->pktcnt_idx != new_idx) { 1083 /* the queue has already been created, update it */ 1084 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1085 FW_PARAMS_PARAM_X_V( 1086 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1087 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1088 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1089 &v, &new_idx); 1090 if (err) 1091 return err; 1092 } 1093 q->pktcnt_idx = new_idx; 1094 } 1095 1096 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1097 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1098 return 0; 1099 } 1100 1101 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1102 { 1103 const struct port_info *pi = netdev_priv(dev); 1104 netdev_features_t changed = dev->features ^ features; 1105 int err; 1106 1107 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1108 return 0; 1109 1110 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1111 -1, -1, -1, 1112 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1113 if (unlikely(err)) 1114 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1115 return err; 1116 } 1117 1118 static int setup_debugfs(struct adapter *adap) 1119 { 1120 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1121 return -1; 1122 1123 #ifdef CONFIG_DEBUG_FS 1124 t4_setup_debugfs(adap); 1125 #endif 1126 return 0; 1127 } 1128 1129 /* 1130 * upper-layer driver support 1131 */ 1132 1133 /* 1134 * Allocate an active-open TID and set it to the supplied value. 1135 */ 1136 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1137 { 1138 int atid = -1; 1139 1140 spin_lock_bh(&t->atid_lock); 1141 if (t->afree) { 1142 union aopen_entry *p = t->afree; 1143 1144 atid = (p - t->atid_tab) + t->atid_base; 1145 t->afree = p->next; 1146 p->data = data; 1147 t->atids_in_use++; 1148 } 1149 spin_unlock_bh(&t->atid_lock); 1150 return atid; 1151 } 1152 EXPORT_SYMBOL(cxgb4_alloc_atid); 1153 1154 /* 1155 * Release an active-open TID. 1156 */ 1157 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1158 { 1159 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1160 1161 spin_lock_bh(&t->atid_lock); 1162 p->next = t->afree; 1163 t->afree = p; 1164 t->atids_in_use--; 1165 spin_unlock_bh(&t->atid_lock); 1166 } 1167 EXPORT_SYMBOL(cxgb4_free_atid); 1168 1169 /* 1170 * Allocate a server TID and set it to the supplied value. 1171 */ 1172 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1173 { 1174 int stid; 1175 1176 spin_lock_bh(&t->stid_lock); 1177 if (family == PF_INET) { 1178 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1179 if (stid < t->nstids) 1180 __set_bit(stid, t->stid_bmap); 1181 else 1182 stid = -1; 1183 } else { 1184 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1185 if (stid < 0) 1186 stid = -1; 1187 } 1188 if (stid >= 0) { 1189 t->stid_tab[stid].data = data; 1190 stid += t->stid_base; 1191 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1192 * This is equivalent to 4 TIDs. With CLIP enabled it 1193 * needs 2 TIDs. 1194 */ 1195 if (family == PF_INET6) { 1196 t->stids_in_use += 2; 1197 t->v6_stids_in_use += 2; 1198 } else { 1199 t->stids_in_use++; 1200 } 1201 } 1202 spin_unlock_bh(&t->stid_lock); 1203 return stid; 1204 } 1205 EXPORT_SYMBOL(cxgb4_alloc_stid); 1206 1207 /* Allocate a server filter TID and set it to the supplied value. 1208 */ 1209 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1210 { 1211 int stid; 1212 1213 spin_lock_bh(&t->stid_lock); 1214 if (family == PF_INET) { 1215 stid = find_next_zero_bit(t->stid_bmap, 1216 t->nstids + t->nsftids, t->nstids); 1217 if (stid < (t->nstids + t->nsftids)) 1218 __set_bit(stid, t->stid_bmap); 1219 else 1220 stid = -1; 1221 } else { 1222 stid = -1; 1223 } 1224 if (stid >= 0) { 1225 t->stid_tab[stid].data = data; 1226 stid -= t->nstids; 1227 stid += t->sftid_base; 1228 t->sftids_in_use++; 1229 } 1230 spin_unlock_bh(&t->stid_lock); 1231 return stid; 1232 } 1233 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1234 1235 /* Release a server TID. 1236 */ 1237 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1238 { 1239 /* Is it a server filter TID? */ 1240 if (t->nsftids && (stid >= t->sftid_base)) { 1241 stid -= t->sftid_base; 1242 stid += t->nstids; 1243 } else { 1244 stid -= t->stid_base; 1245 } 1246 1247 spin_lock_bh(&t->stid_lock); 1248 if (family == PF_INET) 1249 __clear_bit(stid, t->stid_bmap); 1250 else 1251 bitmap_release_region(t->stid_bmap, stid, 1); 1252 t->stid_tab[stid].data = NULL; 1253 if (stid < t->nstids) { 1254 if (family == PF_INET6) { 1255 t->stids_in_use -= 2; 1256 t->v6_stids_in_use -= 2; 1257 } else { 1258 t->stids_in_use--; 1259 } 1260 } else { 1261 t->sftids_in_use--; 1262 } 1263 1264 spin_unlock_bh(&t->stid_lock); 1265 } 1266 EXPORT_SYMBOL(cxgb4_free_stid); 1267 1268 /* 1269 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1270 */ 1271 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1272 unsigned int tid) 1273 { 1274 struct cpl_tid_release *req; 1275 1276 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1277 req = __skb_put(skb, sizeof(*req)); 1278 INIT_TP_WR(req, tid); 1279 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1280 } 1281 1282 /* 1283 * Queue a TID release request and if necessary schedule a work queue to 1284 * process it. 1285 */ 1286 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1287 unsigned int tid) 1288 { 1289 void **p = &t->tid_tab[tid]; 1290 struct adapter *adap = container_of(t, struct adapter, tids); 1291 1292 spin_lock_bh(&adap->tid_release_lock); 1293 *p = adap->tid_release_head; 1294 /* Low 2 bits encode the Tx channel number */ 1295 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1296 if (!adap->tid_release_task_busy) { 1297 adap->tid_release_task_busy = true; 1298 queue_work(adap->workq, &adap->tid_release_task); 1299 } 1300 spin_unlock_bh(&adap->tid_release_lock); 1301 } 1302 1303 /* 1304 * Process the list of pending TID release requests. 1305 */ 1306 static void process_tid_release_list(struct work_struct *work) 1307 { 1308 struct sk_buff *skb; 1309 struct adapter *adap; 1310 1311 adap = container_of(work, struct adapter, tid_release_task); 1312 1313 spin_lock_bh(&adap->tid_release_lock); 1314 while (adap->tid_release_head) { 1315 void **p = adap->tid_release_head; 1316 unsigned int chan = (uintptr_t)p & 3; 1317 p = (void *)p - chan; 1318 1319 adap->tid_release_head = *p; 1320 *p = NULL; 1321 spin_unlock_bh(&adap->tid_release_lock); 1322 1323 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1324 GFP_KERNEL))) 1325 schedule_timeout_uninterruptible(1); 1326 1327 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1328 t4_ofld_send(adap, skb); 1329 spin_lock_bh(&adap->tid_release_lock); 1330 } 1331 adap->tid_release_task_busy = false; 1332 spin_unlock_bh(&adap->tid_release_lock); 1333 } 1334 1335 /* 1336 * Release a TID and inform HW. If we are unable to allocate the release 1337 * message we defer to a work queue. 1338 */ 1339 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1340 unsigned short family) 1341 { 1342 struct sk_buff *skb; 1343 struct adapter *adap = container_of(t, struct adapter, tids); 1344 1345 WARN_ON(tid >= t->ntids); 1346 1347 if (t->tid_tab[tid]) { 1348 t->tid_tab[tid] = NULL; 1349 atomic_dec(&t->conns_in_use); 1350 if (t->hash_base && (tid >= t->hash_base)) { 1351 if (family == AF_INET6) 1352 atomic_sub(2, &t->hash_tids_in_use); 1353 else 1354 atomic_dec(&t->hash_tids_in_use); 1355 } else { 1356 if (family == AF_INET6) 1357 atomic_sub(2, &t->tids_in_use); 1358 else 1359 atomic_dec(&t->tids_in_use); 1360 } 1361 } 1362 1363 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1364 if (likely(skb)) { 1365 mk_tid_release(skb, chan, tid); 1366 t4_ofld_send(adap, skb); 1367 } else 1368 cxgb4_queue_tid_release(t, chan, tid); 1369 } 1370 EXPORT_SYMBOL(cxgb4_remove_tid); 1371 1372 /* 1373 * Allocate and initialize the TID tables. Returns 0 on success. 1374 */ 1375 static int tid_init(struct tid_info *t) 1376 { 1377 struct adapter *adap = container_of(t, struct adapter, tids); 1378 unsigned int max_ftids = t->nftids + t->nsftids; 1379 unsigned int natids = t->natids; 1380 unsigned int stid_bmap_size; 1381 unsigned int ftid_bmap_size; 1382 size_t size; 1383 1384 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1385 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1386 size = t->ntids * sizeof(*t->tid_tab) + 1387 natids * sizeof(*t->atid_tab) + 1388 t->nstids * sizeof(*t->stid_tab) + 1389 t->nsftids * sizeof(*t->stid_tab) + 1390 stid_bmap_size * sizeof(long) + 1391 max_ftids * sizeof(*t->ftid_tab) + 1392 ftid_bmap_size * sizeof(long); 1393 1394 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1395 if (!t->tid_tab) 1396 return -ENOMEM; 1397 1398 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1399 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1400 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1401 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1402 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1403 spin_lock_init(&t->stid_lock); 1404 spin_lock_init(&t->atid_lock); 1405 spin_lock_init(&t->ftid_lock); 1406 1407 t->stids_in_use = 0; 1408 t->v6_stids_in_use = 0; 1409 t->sftids_in_use = 0; 1410 t->afree = NULL; 1411 t->atids_in_use = 0; 1412 atomic_set(&t->tids_in_use, 0); 1413 atomic_set(&t->conns_in_use, 0); 1414 atomic_set(&t->hash_tids_in_use, 0); 1415 1416 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1417 if (natids) { 1418 while (--natids) 1419 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1420 t->afree = t->atid_tab; 1421 } 1422 1423 if (is_offload(adap)) { 1424 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1425 /* Reserve stid 0 for T4/T5 adapters */ 1426 if (!t->stid_base && 1427 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1428 __set_bit(0, t->stid_bmap); 1429 } 1430 1431 bitmap_zero(t->ftid_bmap, t->nftids); 1432 return 0; 1433 } 1434 1435 /** 1436 * cxgb4_create_server - create an IP server 1437 * @dev: the device 1438 * @stid: the server TID 1439 * @sip: local IP address to bind server to 1440 * @sport: the server's TCP port 1441 * @queue: queue to direct messages from this server to 1442 * 1443 * Create an IP server for the given port and address. 1444 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1445 */ 1446 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1447 __be32 sip, __be16 sport, __be16 vlan, 1448 unsigned int queue) 1449 { 1450 unsigned int chan; 1451 struct sk_buff *skb; 1452 struct adapter *adap; 1453 struct cpl_pass_open_req *req; 1454 int ret; 1455 1456 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1457 if (!skb) 1458 return -ENOMEM; 1459 1460 adap = netdev2adap(dev); 1461 req = __skb_put(skb, sizeof(*req)); 1462 INIT_TP_WR(req, 0); 1463 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1464 req->local_port = sport; 1465 req->peer_port = htons(0); 1466 req->local_ip = sip; 1467 req->peer_ip = htonl(0); 1468 chan = rxq_to_chan(&adap->sge, queue); 1469 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1470 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1471 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1472 ret = t4_mgmt_tx(adap, skb); 1473 return net_xmit_eval(ret); 1474 } 1475 EXPORT_SYMBOL(cxgb4_create_server); 1476 1477 /* cxgb4_create_server6 - create an IPv6 server 1478 * @dev: the device 1479 * @stid: the server TID 1480 * @sip: local IPv6 address to bind server to 1481 * @sport: the server's TCP port 1482 * @queue: queue to direct messages from this server to 1483 * 1484 * Create an IPv6 server for the given port and address. 1485 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1486 */ 1487 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1488 const struct in6_addr *sip, __be16 sport, 1489 unsigned int queue) 1490 { 1491 unsigned int chan; 1492 struct sk_buff *skb; 1493 struct adapter *adap; 1494 struct cpl_pass_open_req6 *req; 1495 int ret; 1496 1497 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1498 if (!skb) 1499 return -ENOMEM; 1500 1501 adap = netdev2adap(dev); 1502 req = __skb_put(skb, sizeof(*req)); 1503 INIT_TP_WR(req, 0); 1504 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1505 req->local_port = sport; 1506 req->peer_port = htons(0); 1507 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1508 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1509 req->peer_ip_hi = cpu_to_be64(0); 1510 req->peer_ip_lo = cpu_to_be64(0); 1511 chan = rxq_to_chan(&adap->sge, queue); 1512 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1513 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1514 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1515 ret = t4_mgmt_tx(adap, skb); 1516 return net_xmit_eval(ret); 1517 } 1518 EXPORT_SYMBOL(cxgb4_create_server6); 1519 1520 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1521 unsigned int queue, bool ipv6) 1522 { 1523 struct sk_buff *skb; 1524 struct adapter *adap; 1525 struct cpl_close_listsvr_req *req; 1526 int ret; 1527 1528 adap = netdev2adap(dev); 1529 1530 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1531 if (!skb) 1532 return -ENOMEM; 1533 1534 req = __skb_put(skb, sizeof(*req)); 1535 INIT_TP_WR(req, 0); 1536 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1537 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1538 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1539 ret = t4_mgmt_tx(adap, skb); 1540 return net_xmit_eval(ret); 1541 } 1542 EXPORT_SYMBOL(cxgb4_remove_server); 1543 1544 /** 1545 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1546 * @mtus: the HW MTU table 1547 * @mtu: the target MTU 1548 * @idx: index of selected entry in the MTU table 1549 * 1550 * Returns the index and the value in the HW MTU table that is closest to 1551 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1552 * table, in which case that smallest available value is selected. 1553 */ 1554 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1555 unsigned int *idx) 1556 { 1557 unsigned int i = 0; 1558 1559 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1560 ++i; 1561 if (idx) 1562 *idx = i; 1563 return mtus[i]; 1564 } 1565 EXPORT_SYMBOL(cxgb4_best_mtu); 1566 1567 /** 1568 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1569 * @mtus: the HW MTU table 1570 * @header_size: Header Size 1571 * @data_size_max: maximum Data Segment Size 1572 * @data_size_align: desired Data Segment Size Alignment (2^N) 1573 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1574 * 1575 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1576 * MTU Table based solely on a Maximum MTU parameter, we break that 1577 * parameter up into a Header Size and Maximum Data Segment Size, and 1578 * provide a desired Data Segment Size Alignment. If we find an MTU in 1579 * the Hardware MTU Table which will result in a Data Segment Size with 1580 * the requested alignment _and_ that MTU isn't "too far" from the 1581 * closest MTU, then we'll return that rather than the closest MTU. 1582 */ 1583 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1584 unsigned short header_size, 1585 unsigned short data_size_max, 1586 unsigned short data_size_align, 1587 unsigned int *mtu_idxp) 1588 { 1589 unsigned short max_mtu = header_size + data_size_max; 1590 unsigned short data_size_align_mask = data_size_align - 1; 1591 int mtu_idx, aligned_mtu_idx; 1592 1593 /* Scan the MTU Table till we find an MTU which is larger than our 1594 * Maximum MTU or we reach the end of the table. Along the way, 1595 * record the last MTU found, if any, which will result in a Data 1596 * Segment Length matching the requested alignment. 1597 */ 1598 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1599 unsigned short data_size = mtus[mtu_idx] - header_size; 1600 1601 /* If this MTU minus the Header Size would result in a 1602 * Data Segment Size of the desired alignment, remember it. 1603 */ 1604 if ((data_size & data_size_align_mask) == 0) 1605 aligned_mtu_idx = mtu_idx; 1606 1607 /* If we're not at the end of the Hardware MTU Table and the 1608 * next element is larger than our Maximum MTU, drop out of 1609 * the loop. 1610 */ 1611 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1612 break; 1613 } 1614 1615 /* If we fell out of the loop because we ran to the end of the table, 1616 * then we just have to use the last [largest] entry. 1617 */ 1618 if (mtu_idx == NMTUS) 1619 mtu_idx--; 1620 1621 /* If we found an MTU which resulted in the requested Data Segment 1622 * Length alignment and that's "not far" from the largest MTU which is 1623 * less than or equal to the maximum MTU, then use that. 1624 */ 1625 if (aligned_mtu_idx >= 0 && 1626 mtu_idx - aligned_mtu_idx <= 1) 1627 mtu_idx = aligned_mtu_idx; 1628 1629 /* If the caller has passed in an MTU Index pointer, pass the 1630 * MTU Index back. Return the MTU value. 1631 */ 1632 if (mtu_idxp) 1633 *mtu_idxp = mtu_idx; 1634 return mtus[mtu_idx]; 1635 } 1636 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1637 1638 /** 1639 * cxgb4_port_chan - get the HW channel of a port 1640 * @dev: the net device for the port 1641 * 1642 * Return the HW Tx channel of the given port. 1643 */ 1644 unsigned int cxgb4_port_chan(const struct net_device *dev) 1645 { 1646 return netdev2pinfo(dev)->tx_chan; 1647 } 1648 EXPORT_SYMBOL(cxgb4_port_chan); 1649 1650 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1651 { 1652 struct adapter *adap = netdev2adap(dev); 1653 u32 v1, v2, lp_count, hp_count; 1654 1655 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1656 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1657 if (is_t4(adap->params.chip)) { 1658 lp_count = LP_COUNT_G(v1); 1659 hp_count = HP_COUNT_G(v1); 1660 } else { 1661 lp_count = LP_COUNT_T5_G(v1); 1662 hp_count = HP_COUNT_T5_G(v2); 1663 } 1664 return lpfifo ? lp_count : hp_count; 1665 } 1666 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1667 1668 /** 1669 * cxgb4_port_viid - get the VI id of a port 1670 * @dev: the net device for the port 1671 * 1672 * Return the VI id of the given port. 1673 */ 1674 unsigned int cxgb4_port_viid(const struct net_device *dev) 1675 { 1676 return netdev2pinfo(dev)->viid; 1677 } 1678 EXPORT_SYMBOL(cxgb4_port_viid); 1679 1680 /** 1681 * cxgb4_port_idx - get the index of a port 1682 * @dev: the net device for the port 1683 * 1684 * Return the index of the given port. 1685 */ 1686 unsigned int cxgb4_port_idx(const struct net_device *dev) 1687 { 1688 return netdev2pinfo(dev)->port_id; 1689 } 1690 EXPORT_SYMBOL(cxgb4_port_idx); 1691 1692 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1693 struct tp_tcp_stats *v6) 1694 { 1695 struct adapter *adap = pci_get_drvdata(pdev); 1696 1697 spin_lock(&adap->stats_lock); 1698 t4_tp_get_tcp_stats(adap, v4, v6, false); 1699 spin_unlock(&adap->stats_lock); 1700 } 1701 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1702 1703 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1704 const unsigned int *pgsz_order) 1705 { 1706 struct adapter *adap = netdev2adap(dev); 1707 1708 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1709 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1710 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1711 HPZ3_V(pgsz_order[3])); 1712 } 1713 EXPORT_SYMBOL(cxgb4_iscsi_init); 1714 1715 int cxgb4_flush_eq_cache(struct net_device *dev) 1716 { 1717 struct adapter *adap = netdev2adap(dev); 1718 1719 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1720 } 1721 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1722 1723 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1724 { 1725 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1726 __be64 indices; 1727 int ret; 1728 1729 spin_lock(&adap->win0_lock); 1730 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1731 sizeof(indices), (__be32 *)&indices, 1732 T4_MEMORY_READ); 1733 spin_unlock(&adap->win0_lock); 1734 if (!ret) { 1735 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1736 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1737 } 1738 return ret; 1739 } 1740 1741 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1742 u16 size) 1743 { 1744 struct adapter *adap = netdev2adap(dev); 1745 u16 hw_pidx, hw_cidx; 1746 int ret; 1747 1748 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1749 if (ret) 1750 goto out; 1751 1752 if (pidx != hw_pidx) { 1753 u16 delta; 1754 u32 val; 1755 1756 if (pidx >= hw_pidx) 1757 delta = pidx - hw_pidx; 1758 else 1759 delta = size - hw_pidx + pidx; 1760 1761 if (is_t4(adap->params.chip)) 1762 val = PIDX_V(delta); 1763 else 1764 val = PIDX_T5_V(delta); 1765 wmb(); 1766 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1767 QID_V(qid) | val); 1768 } 1769 out: 1770 return ret; 1771 } 1772 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1773 1774 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1775 { 1776 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1777 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1778 u32 offset, memtype, memaddr; 1779 struct adapter *adap; 1780 u32 hma_size = 0; 1781 int ret; 1782 1783 adap = netdev2adap(dev); 1784 1785 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1786 1787 /* Figure out where the offset lands in the Memory Type/Address scheme. 1788 * This code assumes that the memory is laid out starting at offset 0 1789 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1790 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1791 * MC0, and some have both MC0 and MC1. 1792 */ 1793 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1794 edc0_size = EDRAM0_SIZE_G(size) << 20; 1795 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1796 edc1_size = EDRAM1_SIZE_G(size) << 20; 1797 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1798 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1799 1800 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1801 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1802 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1803 } 1804 edc0_end = edc0_size; 1805 edc1_end = edc0_end + edc1_size; 1806 mc0_end = edc1_end + mc0_size; 1807 1808 if (offset < edc0_end) { 1809 memtype = MEM_EDC0; 1810 memaddr = offset; 1811 } else if (offset < edc1_end) { 1812 memtype = MEM_EDC1; 1813 memaddr = offset - edc0_end; 1814 } else { 1815 if (hma_size && (offset < (edc1_end + hma_size))) { 1816 memtype = MEM_HMA; 1817 memaddr = offset - edc1_end; 1818 } else if (offset < mc0_end) { 1819 memtype = MEM_MC0; 1820 memaddr = offset - edc1_end; 1821 } else if (is_t5(adap->params.chip)) { 1822 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1823 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1824 mc1_end = mc0_end + mc1_size; 1825 if (offset < mc1_end) { 1826 memtype = MEM_MC1; 1827 memaddr = offset - mc0_end; 1828 } else { 1829 /* offset beyond the end of any memory */ 1830 goto err; 1831 } 1832 } else { 1833 /* T4/T6 only has a single memory channel */ 1834 goto err; 1835 } 1836 } 1837 1838 spin_lock(&adap->win0_lock); 1839 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1840 spin_unlock(&adap->win0_lock); 1841 return ret; 1842 1843 err: 1844 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1845 stag, offset); 1846 return -EINVAL; 1847 } 1848 EXPORT_SYMBOL(cxgb4_read_tpte); 1849 1850 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1851 { 1852 u32 hi, lo; 1853 struct adapter *adap; 1854 1855 adap = netdev2adap(dev); 1856 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1857 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1858 1859 return ((u64)hi << 32) | (u64)lo; 1860 } 1861 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1862 1863 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1864 unsigned int qid, 1865 enum cxgb4_bar2_qtype qtype, 1866 int user, 1867 u64 *pbar2_qoffset, 1868 unsigned int *pbar2_qid) 1869 { 1870 return t4_bar2_sge_qregs(netdev2adap(dev), 1871 qid, 1872 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1873 ? T4_BAR2_QTYPE_EGRESS 1874 : T4_BAR2_QTYPE_INGRESS), 1875 user, 1876 pbar2_qoffset, 1877 pbar2_qid); 1878 } 1879 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1880 1881 static struct pci_driver cxgb4_driver; 1882 1883 static void check_neigh_update(struct neighbour *neigh) 1884 { 1885 const struct device *parent; 1886 const struct net_device *netdev = neigh->dev; 1887 1888 if (is_vlan_dev(netdev)) 1889 netdev = vlan_dev_real_dev(netdev); 1890 parent = netdev->dev.parent; 1891 if (parent && parent->driver == &cxgb4_driver.driver) 1892 t4_l2t_update(dev_get_drvdata(parent), neigh); 1893 } 1894 1895 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1896 void *data) 1897 { 1898 switch (event) { 1899 case NETEVENT_NEIGH_UPDATE: 1900 check_neigh_update(data); 1901 break; 1902 case NETEVENT_REDIRECT: 1903 default: 1904 break; 1905 } 1906 return 0; 1907 } 1908 1909 static bool netevent_registered; 1910 static struct notifier_block cxgb4_netevent_nb = { 1911 .notifier_call = netevent_cb 1912 }; 1913 1914 static void drain_db_fifo(struct adapter *adap, int usecs) 1915 { 1916 u32 v1, v2, lp_count, hp_count; 1917 1918 do { 1919 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1920 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1921 if (is_t4(adap->params.chip)) { 1922 lp_count = LP_COUNT_G(v1); 1923 hp_count = HP_COUNT_G(v1); 1924 } else { 1925 lp_count = LP_COUNT_T5_G(v1); 1926 hp_count = HP_COUNT_T5_G(v2); 1927 } 1928 1929 if (lp_count == 0 && hp_count == 0) 1930 break; 1931 set_current_state(TASK_UNINTERRUPTIBLE); 1932 schedule_timeout(usecs_to_jiffies(usecs)); 1933 } while (1); 1934 } 1935 1936 static void disable_txq_db(struct sge_txq *q) 1937 { 1938 unsigned long flags; 1939 1940 spin_lock_irqsave(&q->db_lock, flags); 1941 q->db_disabled = 1; 1942 spin_unlock_irqrestore(&q->db_lock, flags); 1943 } 1944 1945 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1946 { 1947 spin_lock_irq(&q->db_lock); 1948 if (q->db_pidx_inc) { 1949 /* Make sure that all writes to the TX descriptors 1950 * are committed before we tell HW about them. 1951 */ 1952 wmb(); 1953 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1954 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1955 q->db_pidx_inc = 0; 1956 } 1957 q->db_disabled = 0; 1958 spin_unlock_irq(&q->db_lock); 1959 } 1960 1961 static void disable_dbs(struct adapter *adap) 1962 { 1963 int i; 1964 1965 for_each_ethrxq(&adap->sge, i) 1966 disable_txq_db(&adap->sge.ethtxq[i].q); 1967 if (is_offload(adap)) { 1968 struct sge_uld_txq_info *txq_info = 1969 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1970 1971 if (txq_info) { 1972 for_each_ofldtxq(&adap->sge, i) { 1973 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1974 1975 disable_txq_db(&txq->q); 1976 } 1977 } 1978 } 1979 for_each_port(adap, i) 1980 disable_txq_db(&adap->sge.ctrlq[i].q); 1981 } 1982 1983 static void enable_dbs(struct adapter *adap) 1984 { 1985 int i; 1986 1987 for_each_ethrxq(&adap->sge, i) 1988 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1989 if (is_offload(adap)) { 1990 struct sge_uld_txq_info *txq_info = 1991 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1992 1993 if (txq_info) { 1994 for_each_ofldtxq(&adap->sge, i) { 1995 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1996 1997 enable_txq_db(adap, &txq->q); 1998 } 1999 } 2000 } 2001 for_each_port(adap, i) 2002 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2003 } 2004 2005 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2006 { 2007 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2008 2009 if (adap->uld && adap->uld[type].handle) 2010 adap->uld[type].control(adap->uld[type].handle, cmd); 2011 } 2012 2013 static void process_db_full(struct work_struct *work) 2014 { 2015 struct adapter *adap; 2016 2017 adap = container_of(work, struct adapter, db_full_task); 2018 2019 drain_db_fifo(adap, dbfifo_drain_delay); 2020 enable_dbs(adap); 2021 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2022 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2023 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2024 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2025 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2026 else 2027 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2028 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2029 } 2030 2031 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2032 { 2033 u16 hw_pidx, hw_cidx; 2034 int ret; 2035 2036 spin_lock_irq(&q->db_lock); 2037 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2038 if (ret) 2039 goto out; 2040 if (q->db_pidx != hw_pidx) { 2041 u16 delta; 2042 u32 val; 2043 2044 if (q->db_pidx >= hw_pidx) 2045 delta = q->db_pidx - hw_pidx; 2046 else 2047 delta = q->size - hw_pidx + q->db_pidx; 2048 2049 if (is_t4(adap->params.chip)) 2050 val = PIDX_V(delta); 2051 else 2052 val = PIDX_T5_V(delta); 2053 wmb(); 2054 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2055 QID_V(q->cntxt_id) | val); 2056 } 2057 out: 2058 q->db_disabled = 0; 2059 q->db_pidx_inc = 0; 2060 spin_unlock_irq(&q->db_lock); 2061 if (ret) 2062 CH_WARN(adap, "DB drop recovery failed.\n"); 2063 } 2064 2065 static void recover_all_queues(struct adapter *adap) 2066 { 2067 int i; 2068 2069 for_each_ethrxq(&adap->sge, i) 2070 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2071 if (is_offload(adap)) { 2072 struct sge_uld_txq_info *txq_info = 2073 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2074 if (txq_info) { 2075 for_each_ofldtxq(&adap->sge, i) { 2076 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2077 2078 sync_txq_pidx(adap, &txq->q); 2079 } 2080 } 2081 } 2082 for_each_port(adap, i) 2083 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2084 } 2085 2086 static void process_db_drop(struct work_struct *work) 2087 { 2088 struct adapter *adap; 2089 2090 adap = container_of(work, struct adapter, db_drop_task); 2091 2092 if (is_t4(adap->params.chip)) { 2093 drain_db_fifo(adap, dbfifo_drain_delay); 2094 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2095 drain_db_fifo(adap, dbfifo_drain_delay); 2096 recover_all_queues(adap); 2097 drain_db_fifo(adap, dbfifo_drain_delay); 2098 enable_dbs(adap); 2099 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2100 } else if (is_t5(adap->params.chip)) { 2101 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2102 u16 qid = (dropped_db >> 15) & 0x1ffff; 2103 u16 pidx_inc = dropped_db & 0x1fff; 2104 u64 bar2_qoffset; 2105 unsigned int bar2_qid; 2106 int ret; 2107 2108 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2109 0, &bar2_qoffset, &bar2_qid); 2110 if (ret) 2111 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2112 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2113 else 2114 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2115 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2116 2117 /* Re-enable BAR2 WC */ 2118 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2119 } 2120 2121 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2122 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2123 } 2124 2125 void t4_db_full(struct adapter *adap) 2126 { 2127 if (is_t4(adap->params.chip)) { 2128 disable_dbs(adap); 2129 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2130 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2131 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2132 queue_work(adap->workq, &adap->db_full_task); 2133 } 2134 } 2135 2136 void t4_db_dropped(struct adapter *adap) 2137 { 2138 if (is_t4(adap->params.chip)) { 2139 disable_dbs(adap); 2140 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2141 } 2142 queue_work(adap->workq, &adap->db_drop_task); 2143 } 2144 2145 void t4_register_netevent_notifier(void) 2146 { 2147 if (!netevent_registered) { 2148 register_netevent_notifier(&cxgb4_netevent_nb); 2149 netevent_registered = true; 2150 } 2151 } 2152 2153 static void detach_ulds(struct adapter *adap) 2154 { 2155 unsigned int i; 2156 2157 mutex_lock(&uld_mutex); 2158 list_del(&adap->list_node); 2159 2160 for (i = 0; i < CXGB4_ULD_MAX; i++) 2161 if (adap->uld && adap->uld[i].handle) 2162 adap->uld[i].state_change(adap->uld[i].handle, 2163 CXGB4_STATE_DETACH); 2164 2165 if (netevent_registered && list_empty(&adapter_list)) { 2166 unregister_netevent_notifier(&cxgb4_netevent_nb); 2167 netevent_registered = false; 2168 } 2169 mutex_unlock(&uld_mutex); 2170 } 2171 2172 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2173 { 2174 unsigned int i; 2175 2176 mutex_lock(&uld_mutex); 2177 for (i = 0; i < CXGB4_ULD_MAX; i++) 2178 if (adap->uld && adap->uld[i].handle) 2179 adap->uld[i].state_change(adap->uld[i].handle, 2180 new_state); 2181 mutex_unlock(&uld_mutex); 2182 } 2183 2184 #if IS_ENABLED(CONFIG_IPV6) 2185 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2186 unsigned long event, void *data) 2187 { 2188 struct inet6_ifaddr *ifa = data; 2189 struct net_device *event_dev = ifa->idev->dev; 2190 const struct device *parent = NULL; 2191 #if IS_ENABLED(CONFIG_BONDING) 2192 struct adapter *adap; 2193 #endif 2194 if (is_vlan_dev(event_dev)) 2195 event_dev = vlan_dev_real_dev(event_dev); 2196 #if IS_ENABLED(CONFIG_BONDING) 2197 if (event_dev->flags & IFF_MASTER) { 2198 list_for_each_entry(adap, &adapter_list, list_node) { 2199 switch (event) { 2200 case NETDEV_UP: 2201 cxgb4_clip_get(adap->port[0], 2202 (const u32 *)ifa, 1); 2203 break; 2204 case NETDEV_DOWN: 2205 cxgb4_clip_release(adap->port[0], 2206 (const u32 *)ifa, 1); 2207 break; 2208 default: 2209 break; 2210 } 2211 } 2212 return NOTIFY_OK; 2213 } 2214 #endif 2215 2216 if (event_dev) 2217 parent = event_dev->dev.parent; 2218 2219 if (parent && parent->driver == &cxgb4_driver.driver) { 2220 switch (event) { 2221 case NETDEV_UP: 2222 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2223 break; 2224 case NETDEV_DOWN: 2225 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2226 break; 2227 default: 2228 break; 2229 } 2230 } 2231 return NOTIFY_OK; 2232 } 2233 2234 static bool inet6addr_registered; 2235 static struct notifier_block cxgb4_inet6addr_notifier = { 2236 .notifier_call = cxgb4_inet6addr_handler 2237 }; 2238 2239 static void update_clip(const struct adapter *adap) 2240 { 2241 int i; 2242 struct net_device *dev; 2243 int ret; 2244 2245 rcu_read_lock(); 2246 2247 for (i = 0; i < MAX_NPORTS; i++) { 2248 dev = adap->port[i]; 2249 ret = 0; 2250 2251 if (dev) 2252 ret = cxgb4_update_root_dev_clip(dev); 2253 2254 if (ret < 0) 2255 break; 2256 } 2257 rcu_read_unlock(); 2258 } 2259 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2260 2261 /** 2262 * cxgb_up - enable the adapter 2263 * @adap: adapter being enabled 2264 * 2265 * Called when the first port is enabled, this function performs the 2266 * actions necessary to make an adapter operational, such as completing 2267 * the initialization of HW modules, and enabling interrupts. 2268 * 2269 * Must be called with the rtnl lock held. 2270 */ 2271 static int cxgb_up(struct adapter *adap) 2272 { 2273 int err; 2274 2275 mutex_lock(&uld_mutex); 2276 err = setup_sge_queues(adap); 2277 if (err) 2278 goto rel_lock; 2279 err = setup_rss(adap); 2280 if (err) 2281 goto freeq; 2282 2283 if (adap->flags & USING_MSIX) { 2284 name_msix_vecs(adap); 2285 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2286 adap->msix_info[0].desc, adap); 2287 if (err) 2288 goto irq_err; 2289 err = request_msix_queue_irqs(adap); 2290 if (err) { 2291 free_irq(adap->msix_info[0].vec, adap); 2292 goto irq_err; 2293 } 2294 } else { 2295 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2296 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2297 adap->port[0]->name, adap); 2298 if (err) 2299 goto irq_err; 2300 } 2301 2302 enable_rx(adap); 2303 t4_sge_start(adap); 2304 t4_intr_enable(adap); 2305 adap->flags |= FULL_INIT_DONE; 2306 mutex_unlock(&uld_mutex); 2307 2308 notify_ulds(adap, CXGB4_STATE_UP); 2309 #if IS_ENABLED(CONFIG_IPV6) 2310 update_clip(adap); 2311 #endif 2312 return err; 2313 2314 irq_err: 2315 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2316 freeq: 2317 t4_free_sge_resources(adap); 2318 rel_lock: 2319 mutex_unlock(&uld_mutex); 2320 return err; 2321 } 2322 2323 static void cxgb_down(struct adapter *adapter) 2324 { 2325 cancel_work_sync(&adapter->tid_release_task); 2326 cancel_work_sync(&adapter->db_full_task); 2327 cancel_work_sync(&adapter->db_drop_task); 2328 adapter->tid_release_task_busy = false; 2329 adapter->tid_release_head = NULL; 2330 2331 t4_sge_stop(adapter); 2332 t4_free_sge_resources(adapter); 2333 2334 adapter->flags &= ~FULL_INIT_DONE; 2335 } 2336 2337 /* 2338 * net_device operations 2339 */ 2340 static int cxgb_open(struct net_device *dev) 2341 { 2342 int err; 2343 struct port_info *pi = netdev_priv(dev); 2344 struct adapter *adapter = pi->adapter; 2345 2346 netif_carrier_off(dev); 2347 2348 if (!(adapter->flags & FULL_INIT_DONE)) { 2349 err = cxgb_up(adapter); 2350 if (err < 0) 2351 return err; 2352 } 2353 2354 /* It's possible that the basic port information could have 2355 * changed since we first read it. 2356 */ 2357 err = t4_update_port_info(pi); 2358 if (err < 0) 2359 return err; 2360 2361 err = link_start(dev); 2362 if (!err) 2363 netif_tx_start_all_queues(dev); 2364 return err; 2365 } 2366 2367 static int cxgb_close(struct net_device *dev) 2368 { 2369 struct port_info *pi = netdev_priv(dev); 2370 struct adapter *adapter = pi->adapter; 2371 int ret; 2372 2373 netif_tx_stop_all_queues(dev); 2374 netif_carrier_off(dev); 2375 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2376 false, false, false); 2377 #ifdef CONFIG_CHELSIO_T4_DCB 2378 cxgb4_dcb_reset(dev); 2379 dcb_tx_queue_prio_enable(dev, false); 2380 #endif 2381 return ret; 2382 } 2383 2384 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2385 __be32 sip, __be16 sport, __be16 vlan, 2386 unsigned int queue, unsigned char port, unsigned char mask) 2387 { 2388 int ret; 2389 struct filter_entry *f; 2390 struct adapter *adap; 2391 int i; 2392 u8 *val; 2393 2394 adap = netdev2adap(dev); 2395 2396 /* Adjust stid to correct filter index */ 2397 stid -= adap->tids.sftid_base; 2398 stid += adap->tids.nftids; 2399 2400 /* Check to make sure the filter requested is writable ... 2401 */ 2402 f = &adap->tids.ftid_tab[stid]; 2403 ret = writable_filter(f); 2404 if (ret) 2405 return ret; 2406 2407 /* Clear out any old resources being used by the filter before 2408 * we start constructing the new filter. 2409 */ 2410 if (f->valid) 2411 clear_filter(adap, f); 2412 2413 /* Clear out filter specifications */ 2414 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2415 f->fs.val.lport = cpu_to_be16(sport); 2416 f->fs.mask.lport = ~0; 2417 val = (u8 *)&sip; 2418 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2419 for (i = 0; i < 4; i++) { 2420 f->fs.val.lip[i] = val[i]; 2421 f->fs.mask.lip[i] = ~0; 2422 } 2423 if (adap->params.tp.vlan_pri_map & PORT_F) { 2424 f->fs.val.iport = port; 2425 f->fs.mask.iport = mask; 2426 } 2427 } 2428 2429 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2430 f->fs.val.proto = IPPROTO_TCP; 2431 f->fs.mask.proto = ~0; 2432 } 2433 2434 f->fs.dirsteer = 1; 2435 f->fs.iq = queue; 2436 /* Mark filter as locked */ 2437 f->locked = 1; 2438 f->fs.rpttid = 1; 2439 2440 /* Save the actual tid. We need this to get the corresponding 2441 * filter entry structure in filter_rpl. 2442 */ 2443 f->tid = stid + adap->tids.ftid_base; 2444 ret = set_filter_wr(adap, stid); 2445 if (ret) { 2446 clear_filter(adap, f); 2447 return ret; 2448 } 2449 2450 return 0; 2451 } 2452 EXPORT_SYMBOL(cxgb4_create_server_filter); 2453 2454 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2455 unsigned int queue, bool ipv6) 2456 { 2457 struct filter_entry *f; 2458 struct adapter *adap; 2459 2460 adap = netdev2adap(dev); 2461 2462 /* Adjust stid to correct filter index */ 2463 stid -= adap->tids.sftid_base; 2464 stid += adap->tids.nftids; 2465 2466 f = &adap->tids.ftid_tab[stid]; 2467 /* Unlock the filter */ 2468 f->locked = 0; 2469 2470 return delete_filter(adap, stid); 2471 } 2472 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2473 2474 static void cxgb_get_stats(struct net_device *dev, 2475 struct rtnl_link_stats64 *ns) 2476 { 2477 struct port_stats stats; 2478 struct port_info *p = netdev_priv(dev); 2479 struct adapter *adapter = p->adapter; 2480 2481 /* Block retrieving statistics during EEH error 2482 * recovery. Otherwise, the recovery might fail 2483 * and the PCI device will be removed permanently 2484 */ 2485 spin_lock(&adapter->stats_lock); 2486 if (!netif_device_present(dev)) { 2487 spin_unlock(&adapter->stats_lock); 2488 return; 2489 } 2490 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2491 &p->stats_base); 2492 spin_unlock(&adapter->stats_lock); 2493 2494 ns->tx_bytes = stats.tx_octets; 2495 ns->tx_packets = stats.tx_frames; 2496 ns->rx_bytes = stats.rx_octets; 2497 ns->rx_packets = stats.rx_frames; 2498 ns->multicast = stats.rx_mcast_frames; 2499 2500 /* detailed rx_errors */ 2501 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2502 stats.rx_runt; 2503 ns->rx_over_errors = 0; 2504 ns->rx_crc_errors = stats.rx_fcs_err; 2505 ns->rx_frame_errors = stats.rx_symbol_err; 2506 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2507 stats.rx_ovflow2 + stats.rx_ovflow3 + 2508 stats.rx_trunc0 + stats.rx_trunc1 + 2509 stats.rx_trunc2 + stats.rx_trunc3; 2510 ns->rx_missed_errors = 0; 2511 2512 /* detailed tx_errors */ 2513 ns->tx_aborted_errors = 0; 2514 ns->tx_carrier_errors = 0; 2515 ns->tx_fifo_errors = 0; 2516 ns->tx_heartbeat_errors = 0; 2517 ns->tx_window_errors = 0; 2518 2519 ns->tx_errors = stats.tx_error_frames; 2520 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2521 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2522 } 2523 2524 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2525 { 2526 unsigned int mbox; 2527 int ret = 0, prtad, devad; 2528 struct port_info *pi = netdev_priv(dev); 2529 struct adapter *adapter = pi->adapter; 2530 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2531 2532 switch (cmd) { 2533 case SIOCGMIIPHY: 2534 if (pi->mdio_addr < 0) 2535 return -EOPNOTSUPP; 2536 data->phy_id = pi->mdio_addr; 2537 break; 2538 case SIOCGMIIREG: 2539 case SIOCSMIIREG: 2540 if (mdio_phy_id_is_c45(data->phy_id)) { 2541 prtad = mdio_phy_id_prtad(data->phy_id); 2542 devad = mdio_phy_id_devad(data->phy_id); 2543 } else if (data->phy_id < 32) { 2544 prtad = data->phy_id; 2545 devad = 0; 2546 data->reg_num &= 0x1f; 2547 } else 2548 return -EINVAL; 2549 2550 mbox = pi->adapter->pf; 2551 if (cmd == SIOCGMIIREG) 2552 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2553 data->reg_num, &data->val_out); 2554 else 2555 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2556 data->reg_num, data->val_in); 2557 break; 2558 case SIOCGHWTSTAMP: 2559 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2560 sizeof(pi->tstamp_config)) ? 2561 -EFAULT : 0; 2562 case SIOCSHWTSTAMP: 2563 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2564 sizeof(pi->tstamp_config))) 2565 return -EFAULT; 2566 2567 if (!is_t4(adapter->params.chip)) { 2568 switch (pi->tstamp_config.tx_type) { 2569 case HWTSTAMP_TX_OFF: 2570 case HWTSTAMP_TX_ON: 2571 break; 2572 default: 2573 return -ERANGE; 2574 } 2575 2576 switch (pi->tstamp_config.rx_filter) { 2577 case HWTSTAMP_FILTER_NONE: 2578 pi->rxtstamp = false; 2579 break; 2580 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2581 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2582 cxgb4_ptprx_timestamping(pi, pi->port_id, 2583 PTP_TS_L4); 2584 break; 2585 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2586 cxgb4_ptprx_timestamping(pi, pi->port_id, 2587 PTP_TS_L2_L4); 2588 break; 2589 case HWTSTAMP_FILTER_ALL: 2590 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2591 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2592 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2593 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2594 pi->rxtstamp = true; 2595 break; 2596 default: 2597 pi->tstamp_config.rx_filter = 2598 HWTSTAMP_FILTER_NONE; 2599 return -ERANGE; 2600 } 2601 2602 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2603 (pi->tstamp_config.rx_filter == 2604 HWTSTAMP_FILTER_NONE)) { 2605 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2606 pi->ptp_enable = false; 2607 } 2608 2609 if (pi->tstamp_config.rx_filter != 2610 HWTSTAMP_FILTER_NONE) { 2611 if (cxgb4_ptp_redirect_rx_packet(adapter, 2612 pi) >= 0) 2613 pi->ptp_enable = true; 2614 } 2615 } else { 2616 /* For T4 Adapters */ 2617 switch (pi->tstamp_config.rx_filter) { 2618 case HWTSTAMP_FILTER_NONE: 2619 pi->rxtstamp = false; 2620 break; 2621 case HWTSTAMP_FILTER_ALL: 2622 pi->rxtstamp = true; 2623 break; 2624 default: 2625 pi->tstamp_config.rx_filter = 2626 HWTSTAMP_FILTER_NONE; 2627 return -ERANGE; 2628 } 2629 } 2630 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2631 sizeof(pi->tstamp_config)) ? 2632 -EFAULT : 0; 2633 default: 2634 return -EOPNOTSUPP; 2635 } 2636 return ret; 2637 } 2638 2639 static void cxgb_set_rxmode(struct net_device *dev) 2640 { 2641 /* unfortunately we can't return errors to the stack */ 2642 set_rxmode(dev, -1, false); 2643 } 2644 2645 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2646 { 2647 int ret; 2648 struct port_info *pi = netdev_priv(dev); 2649 2650 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2651 -1, -1, -1, true); 2652 if (!ret) 2653 dev->mtu = new_mtu; 2654 return ret; 2655 } 2656 2657 #ifdef CONFIG_PCI_IOV 2658 static int cxgb4_mgmt_open(struct net_device *dev) 2659 { 2660 /* Turn carrier off since we don't have to transmit anything on this 2661 * interface. 2662 */ 2663 netif_carrier_off(dev); 2664 return 0; 2665 } 2666 2667 /* Fill MAC address that will be assigned by the FW */ 2668 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2669 { 2670 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2671 unsigned int i, vf, nvfs; 2672 u16 a, b; 2673 int err; 2674 u8 *na; 2675 2676 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2677 PCI_CAP_ID_VPD); 2678 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2679 if (err) 2680 return; 2681 2682 na = adap->params.vpd.na; 2683 for (i = 0; i < ETH_ALEN; i++) 2684 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2685 hex2val(na[2 * i + 1])); 2686 2687 a = (hw_addr[0] << 8) | hw_addr[1]; 2688 b = (hw_addr[1] << 8) | hw_addr[2]; 2689 a ^= b; 2690 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2691 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2692 macaddr[0] = a >> 8; 2693 macaddr[1] = a & 0xff; 2694 2695 for (i = 2; i < 5; i++) 2696 macaddr[i] = hw_addr[i + 1]; 2697 2698 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2699 vf < nvfs; vf++) { 2700 macaddr[5] = adap->pf * nvfs + vf; 2701 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2702 } 2703 } 2704 2705 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2706 { 2707 struct port_info *pi = netdev_priv(dev); 2708 struct adapter *adap = pi->adapter; 2709 int ret; 2710 2711 /* verify MAC addr is valid */ 2712 if (!is_valid_ether_addr(mac)) { 2713 dev_err(pi->adapter->pdev_dev, 2714 "Invalid Ethernet address %pM for VF %d\n", 2715 mac, vf); 2716 return -EINVAL; 2717 } 2718 2719 dev_info(pi->adapter->pdev_dev, 2720 "Setting MAC %pM on VF %d\n", mac, vf); 2721 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2722 if (!ret) 2723 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2724 return ret; 2725 } 2726 2727 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2728 int vf, struct ifla_vf_info *ivi) 2729 { 2730 struct port_info *pi = netdev_priv(dev); 2731 struct adapter *adap = pi->adapter; 2732 struct vf_info *vfinfo; 2733 2734 if (vf >= adap->num_vfs) 2735 return -EINVAL; 2736 vfinfo = &adap->vfinfo[vf]; 2737 2738 ivi->vf = vf; 2739 ivi->max_tx_rate = vfinfo->tx_rate; 2740 ivi->min_tx_rate = 0; 2741 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2742 ivi->vlan = vfinfo->vlan; 2743 return 0; 2744 } 2745 2746 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2747 struct netdev_phys_item_id *ppid) 2748 { 2749 struct port_info *pi = netdev_priv(dev); 2750 unsigned int phy_port_id; 2751 2752 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2753 ppid->id_len = sizeof(phy_port_id); 2754 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2755 return 0; 2756 } 2757 2758 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2759 int min_tx_rate, int max_tx_rate) 2760 { 2761 struct port_info *pi = netdev_priv(dev); 2762 struct adapter *adap = pi->adapter; 2763 unsigned int link_ok, speed, mtu; 2764 u32 fw_pfvf, fw_class; 2765 int class_id = vf; 2766 int ret; 2767 u16 pktsize; 2768 2769 if (vf >= adap->num_vfs) 2770 return -EINVAL; 2771 2772 if (min_tx_rate) { 2773 dev_err(adap->pdev_dev, 2774 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2775 min_tx_rate, vf); 2776 return -EINVAL; 2777 } 2778 2779 if (max_tx_rate == 0) { 2780 /* unbind VF to to any Traffic Class */ 2781 fw_pfvf = 2782 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2784 fw_class = 0xffffffff; 2785 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2786 &fw_pfvf, &fw_class); 2787 if (ret) { 2788 dev_err(adap->pdev_dev, 2789 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2790 ret, adap->pf, vf); 2791 return -EINVAL; 2792 } 2793 dev_info(adap->pdev_dev, 2794 "PF %d VF %d is unbound from TX Rate Limiting\n", 2795 adap->pf, vf); 2796 adap->vfinfo[vf].tx_rate = 0; 2797 return 0; 2798 } 2799 2800 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2801 if (ret != FW_SUCCESS) { 2802 dev_err(adap->pdev_dev, 2803 "Failed to get link information for VF %d\n", vf); 2804 return -EINVAL; 2805 } 2806 2807 if (!link_ok) { 2808 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2809 return -EINVAL; 2810 } 2811 2812 if (max_tx_rate > speed) { 2813 dev_err(adap->pdev_dev, 2814 "Max tx rate %d for VF %d can't be > link-speed %u", 2815 max_tx_rate, vf, speed); 2816 return -EINVAL; 2817 } 2818 2819 pktsize = mtu; 2820 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2821 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2822 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2823 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2824 /* configure Traffic Class for rate-limiting */ 2825 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2826 SCHED_CLASS_LEVEL_CL_RL, 2827 SCHED_CLASS_MODE_CLASS, 2828 SCHED_CLASS_RATEUNIT_BITS, 2829 SCHED_CLASS_RATEMODE_ABS, 2830 pi->tx_chan, class_id, 0, 2831 max_tx_rate * 1000, 0, pktsize); 2832 if (ret) { 2833 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2834 ret); 2835 return -EINVAL; 2836 } 2837 dev_info(adap->pdev_dev, 2838 "Class %d with MSS %u configured with rate %u\n", 2839 class_id, pktsize, max_tx_rate); 2840 2841 /* bind VF to configured Traffic Class */ 2842 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2843 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2844 fw_class = class_id; 2845 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2846 &fw_class); 2847 if (ret) { 2848 dev_err(adap->pdev_dev, 2849 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 2850 ret, adap->pf, vf, class_id); 2851 return -EINVAL; 2852 } 2853 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2854 adap->pf, vf, class_id); 2855 adap->vfinfo[vf].tx_rate = max_tx_rate; 2856 return 0; 2857 } 2858 2859 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2860 u16 vlan, u8 qos, __be16 vlan_proto) 2861 { 2862 struct port_info *pi = netdev_priv(dev); 2863 struct adapter *adap = pi->adapter; 2864 int ret; 2865 2866 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2867 return -EINVAL; 2868 2869 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2870 return -EPROTONOSUPPORT; 2871 2872 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2873 if (!ret) { 2874 adap->vfinfo[vf].vlan = vlan; 2875 return 0; 2876 } 2877 2878 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2879 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2880 return ret; 2881 } 2882 #endif /* CONFIG_PCI_IOV */ 2883 2884 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2885 { 2886 int ret; 2887 struct sockaddr *addr = p; 2888 struct port_info *pi = netdev_priv(dev); 2889 2890 if (!is_valid_ether_addr(addr->sa_data)) 2891 return -EADDRNOTAVAIL; 2892 2893 ret = cxgb4_change_mac(pi, pi->viid, &pi->xact_addr_filt, 2894 addr->sa_data, true, &pi->smt_idx); 2895 if (ret < 0) 2896 return ret; 2897 2898 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2899 pi->xact_addr_filt = ret; 2900 return 0; 2901 } 2902 2903 #ifdef CONFIG_NET_POLL_CONTROLLER 2904 static void cxgb_netpoll(struct net_device *dev) 2905 { 2906 struct port_info *pi = netdev_priv(dev); 2907 struct adapter *adap = pi->adapter; 2908 2909 if (adap->flags & USING_MSIX) { 2910 int i; 2911 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2912 2913 for (i = pi->nqsets; i; i--, rx++) 2914 t4_sge_intr_msix(0, &rx->rspq); 2915 } else 2916 t4_intr_handler(adap)(0, adap); 2917 } 2918 #endif 2919 2920 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2921 { 2922 struct port_info *pi = netdev_priv(dev); 2923 struct adapter *adap = pi->adapter; 2924 struct sched_class *e; 2925 struct ch_sched_params p; 2926 struct ch_sched_queue qe; 2927 u32 req_rate; 2928 int err = 0; 2929 2930 if (!can_sched(dev)) 2931 return -ENOTSUPP; 2932 2933 if (index < 0 || index > pi->nqsets - 1) 2934 return -EINVAL; 2935 2936 if (!(adap->flags & FULL_INIT_DONE)) { 2937 dev_err(adap->pdev_dev, 2938 "Failed to rate limit on queue %d. Link Down?\n", 2939 index); 2940 return -EINVAL; 2941 } 2942 2943 /* Convert from Mbps to Kbps */ 2944 req_rate = rate * 1000; 2945 2946 /* Max rate is 100 Gbps */ 2947 if (req_rate > SCHED_MAX_RATE_KBPS) { 2948 dev_err(adap->pdev_dev, 2949 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2950 rate, SCHED_MAX_RATE_KBPS / 1000); 2951 return -ERANGE; 2952 } 2953 2954 /* First unbind the queue from any existing class */ 2955 memset(&qe, 0, sizeof(qe)); 2956 qe.queue = index; 2957 qe.class = SCHED_CLS_NONE; 2958 2959 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2960 if (err) { 2961 dev_err(adap->pdev_dev, 2962 "Unbinding Queue %d on port %d fail. Err: %d\n", 2963 index, pi->port_id, err); 2964 return err; 2965 } 2966 2967 /* Queue already unbound */ 2968 if (!req_rate) 2969 return 0; 2970 2971 /* Fetch any available unused or matching scheduling class */ 2972 memset(&p, 0, sizeof(p)); 2973 p.type = SCHED_CLASS_TYPE_PACKET; 2974 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2975 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2976 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2977 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2978 p.u.params.channel = pi->tx_chan; 2979 p.u.params.class = SCHED_CLS_NONE; 2980 p.u.params.minrate = 0; 2981 p.u.params.maxrate = req_rate; 2982 p.u.params.weight = 0; 2983 p.u.params.pktsize = dev->mtu; 2984 2985 e = cxgb4_sched_class_alloc(dev, &p); 2986 if (!e) 2987 return -ENOMEM; 2988 2989 /* Bind the queue to a scheduling class */ 2990 memset(&qe, 0, sizeof(qe)); 2991 qe.queue = index; 2992 qe.class = e->idx; 2993 2994 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2995 if (err) 2996 dev_err(adap->pdev_dev, 2997 "Queue rate limiting failed. Err: %d\n", err); 2998 return err; 2999 } 3000 3001 static int cxgb_setup_tc_flower(struct net_device *dev, 3002 struct tc_cls_flower_offload *cls_flower) 3003 { 3004 switch (cls_flower->command) { 3005 case TC_CLSFLOWER_REPLACE: 3006 return cxgb4_tc_flower_replace(dev, cls_flower); 3007 case TC_CLSFLOWER_DESTROY: 3008 return cxgb4_tc_flower_destroy(dev, cls_flower); 3009 case TC_CLSFLOWER_STATS: 3010 return cxgb4_tc_flower_stats(dev, cls_flower); 3011 default: 3012 return -EOPNOTSUPP; 3013 } 3014 } 3015 3016 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3017 struct tc_cls_u32_offload *cls_u32) 3018 { 3019 switch (cls_u32->command) { 3020 case TC_CLSU32_NEW_KNODE: 3021 case TC_CLSU32_REPLACE_KNODE: 3022 return cxgb4_config_knode(dev, cls_u32); 3023 case TC_CLSU32_DELETE_KNODE: 3024 return cxgb4_delete_knode(dev, cls_u32); 3025 default: 3026 return -EOPNOTSUPP; 3027 } 3028 } 3029 3030 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3031 void *cb_priv) 3032 { 3033 struct net_device *dev = cb_priv; 3034 struct port_info *pi = netdev2pinfo(dev); 3035 struct adapter *adap = netdev2adap(dev); 3036 3037 if (!(adap->flags & FULL_INIT_DONE)) { 3038 dev_err(adap->pdev_dev, 3039 "Failed to setup tc on port %d. Link Down?\n", 3040 pi->port_id); 3041 return -EINVAL; 3042 } 3043 3044 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3045 return -EOPNOTSUPP; 3046 3047 switch (type) { 3048 case TC_SETUP_CLSU32: 3049 return cxgb_setup_tc_cls_u32(dev, type_data); 3050 case TC_SETUP_CLSFLOWER: 3051 return cxgb_setup_tc_flower(dev, type_data); 3052 default: 3053 return -EOPNOTSUPP; 3054 } 3055 } 3056 3057 static int cxgb_setup_tc_block(struct net_device *dev, 3058 struct tc_block_offload *f) 3059 { 3060 struct port_info *pi = netdev2pinfo(dev); 3061 3062 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3063 return -EOPNOTSUPP; 3064 3065 switch (f->command) { 3066 case TC_BLOCK_BIND: 3067 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3068 pi, dev, f->extack); 3069 case TC_BLOCK_UNBIND: 3070 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3071 return 0; 3072 default: 3073 return -EOPNOTSUPP; 3074 } 3075 } 3076 3077 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3078 void *type_data) 3079 { 3080 switch (type) { 3081 case TC_SETUP_BLOCK: 3082 return cxgb_setup_tc_block(dev, type_data); 3083 default: 3084 return -EOPNOTSUPP; 3085 } 3086 } 3087 3088 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3089 struct udp_tunnel_info *ti) 3090 { 3091 struct port_info *pi = netdev_priv(netdev); 3092 struct adapter *adapter = pi->adapter; 3093 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3094 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3095 int ret = 0, i; 3096 3097 if (chip_ver < CHELSIO_T6) 3098 return; 3099 3100 switch (ti->type) { 3101 case UDP_TUNNEL_TYPE_VXLAN: 3102 if (!adapter->vxlan_port_cnt || 3103 adapter->vxlan_port != ti->port) 3104 return; /* Invalid VxLAN destination port */ 3105 3106 adapter->vxlan_port_cnt--; 3107 if (adapter->vxlan_port_cnt) 3108 return; 3109 3110 adapter->vxlan_port = 0; 3111 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3112 break; 3113 case UDP_TUNNEL_TYPE_GENEVE: 3114 if (!adapter->geneve_port_cnt || 3115 adapter->geneve_port != ti->port) 3116 return; /* Invalid GENEVE destination port */ 3117 3118 adapter->geneve_port_cnt--; 3119 if (adapter->geneve_port_cnt) 3120 return; 3121 3122 adapter->geneve_port = 0; 3123 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3124 break; 3125 default: 3126 return; 3127 } 3128 3129 /* Matchall mac entries can be deleted only after all tunnel ports 3130 * are brought down or removed. 3131 */ 3132 if (!adapter->rawf_cnt) 3133 return; 3134 for_each_port(adapter, i) { 3135 pi = adap2pinfo(adapter, i); 3136 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3137 match_all_mac, match_all_mac, 3138 adapter->rawf_start + 3139 pi->port_id, 3140 1, pi->port_id, false); 3141 if (ret < 0) { 3142 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3143 i); 3144 return; 3145 } 3146 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3147 pi->port_id].refcnt); 3148 } 3149 } 3150 3151 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3152 struct udp_tunnel_info *ti) 3153 { 3154 struct port_info *pi = netdev_priv(netdev); 3155 struct adapter *adapter = pi->adapter; 3156 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3157 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3158 int i, ret; 3159 3160 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3161 return; 3162 3163 switch (ti->type) { 3164 case UDP_TUNNEL_TYPE_VXLAN: 3165 /* Callback for adding vxlan port can be called with the same 3166 * port for both IPv4 and IPv6. We should not disable the 3167 * offloading when the same port for both protocols is added 3168 * and later one of them is removed. 3169 */ 3170 if (adapter->vxlan_port_cnt && 3171 adapter->vxlan_port == ti->port) { 3172 adapter->vxlan_port_cnt++; 3173 return; 3174 } 3175 3176 /* We will support only one VxLAN port */ 3177 if (adapter->vxlan_port_cnt) { 3178 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3179 be16_to_cpu(adapter->vxlan_port), 3180 be16_to_cpu(ti->port)); 3181 return; 3182 } 3183 3184 adapter->vxlan_port = ti->port; 3185 adapter->vxlan_port_cnt = 1; 3186 3187 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3188 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3189 break; 3190 case UDP_TUNNEL_TYPE_GENEVE: 3191 if (adapter->geneve_port_cnt && 3192 adapter->geneve_port == ti->port) { 3193 adapter->geneve_port_cnt++; 3194 return; 3195 } 3196 3197 /* We will support only one GENEVE port */ 3198 if (adapter->geneve_port_cnt) { 3199 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3200 be16_to_cpu(adapter->geneve_port), 3201 be16_to_cpu(ti->port)); 3202 return; 3203 } 3204 3205 adapter->geneve_port = ti->port; 3206 adapter->geneve_port_cnt = 1; 3207 3208 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3209 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3210 break; 3211 default: 3212 return; 3213 } 3214 3215 /* Create a 'match all' mac filter entry for inner mac, 3216 * if raw mac interface is supported. Once the linux kernel provides 3217 * driver entry points for adding/deleting the inner mac addresses, 3218 * we will remove this 'match all' entry and fallback to adding 3219 * exact match filters. 3220 */ 3221 for_each_port(adapter, i) { 3222 pi = adap2pinfo(adapter, i); 3223 3224 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3225 match_all_mac, 3226 match_all_mac, 3227 adapter->rawf_start + 3228 pi->port_id, 3229 1, pi->port_id, false); 3230 if (ret < 0) { 3231 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3232 be16_to_cpu(ti->port)); 3233 cxgb_del_udp_tunnel(netdev, ti); 3234 return; 3235 } 3236 atomic_inc(&adapter->mps_encap[ret].refcnt); 3237 } 3238 } 3239 3240 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3241 struct net_device *dev, 3242 netdev_features_t features) 3243 { 3244 struct port_info *pi = netdev_priv(dev); 3245 struct adapter *adapter = pi->adapter; 3246 3247 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3248 return features; 3249 3250 /* Check if hw supports offload for this packet */ 3251 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3252 return features; 3253 3254 /* Offload is not supported for this encapsulated packet */ 3255 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3256 } 3257 3258 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3259 netdev_features_t features) 3260 { 3261 /* Disable GRO, if RX_CSUM is disabled */ 3262 if (!(features & NETIF_F_RXCSUM)) 3263 features &= ~NETIF_F_GRO; 3264 3265 return features; 3266 } 3267 3268 static const struct net_device_ops cxgb4_netdev_ops = { 3269 .ndo_open = cxgb_open, 3270 .ndo_stop = cxgb_close, 3271 .ndo_start_xmit = t4_start_xmit, 3272 .ndo_select_queue = cxgb_select_queue, 3273 .ndo_get_stats64 = cxgb_get_stats, 3274 .ndo_set_rx_mode = cxgb_set_rxmode, 3275 .ndo_set_mac_address = cxgb_set_mac_addr, 3276 .ndo_set_features = cxgb_set_features, 3277 .ndo_validate_addr = eth_validate_addr, 3278 .ndo_do_ioctl = cxgb_ioctl, 3279 .ndo_change_mtu = cxgb_change_mtu, 3280 #ifdef CONFIG_NET_POLL_CONTROLLER 3281 .ndo_poll_controller = cxgb_netpoll, 3282 #endif 3283 #ifdef CONFIG_CHELSIO_T4_FCOE 3284 .ndo_fcoe_enable = cxgb_fcoe_enable, 3285 .ndo_fcoe_disable = cxgb_fcoe_disable, 3286 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3287 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3288 .ndo_setup_tc = cxgb_setup_tc, 3289 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3290 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3291 .ndo_features_check = cxgb_features_check, 3292 .ndo_fix_features = cxgb_fix_features, 3293 }; 3294 3295 #ifdef CONFIG_PCI_IOV 3296 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3297 .ndo_open = cxgb4_mgmt_open, 3298 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3299 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3300 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3301 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3302 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3303 }; 3304 #endif 3305 3306 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3307 struct ethtool_drvinfo *info) 3308 { 3309 struct adapter *adapter = netdev2adap(dev); 3310 3311 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3312 strlcpy(info->version, cxgb4_driver_version, 3313 sizeof(info->version)); 3314 strlcpy(info->bus_info, pci_name(adapter->pdev), 3315 sizeof(info->bus_info)); 3316 } 3317 3318 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3319 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3320 }; 3321 3322 static void notify_fatal_err(struct work_struct *work) 3323 { 3324 struct adapter *adap; 3325 3326 adap = container_of(work, struct adapter, fatal_err_notify_task); 3327 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3328 } 3329 3330 void t4_fatal_err(struct adapter *adap) 3331 { 3332 int port; 3333 3334 if (pci_channel_offline(adap->pdev)) 3335 return; 3336 3337 /* Disable the SGE since ULDs are going to free resources that 3338 * could be exposed to the adapter. RDMA MWs for example... 3339 */ 3340 t4_shutdown_adapter(adap); 3341 for_each_port(adap, port) { 3342 struct net_device *dev = adap->port[port]; 3343 3344 /* If we get here in very early initialization the network 3345 * devices may not have been set up yet. 3346 */ 3347 if (!dev) 3348 continue; 3349 3350 netif_tx_stop_all_queues(dev); 3351 netif_carrier_off(dev); 3352 } 3353 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3354 queue_work(adap->workq, &adap->fatal_err_notify_task); 3355 } 3356 3357 static void setup_memwin(struct adapter *adap) 3358 { 3359 u32 nic_win_base = t4_get_util_window(adap); 3360 3361 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3362 } 3363 3364 static void setup_memwin_rdma(struct adapter *adap) 3365 { 3366 if (adap->vres.ocq.size) { 3367 u32 start; 3368 unsigned int sz_kb; 3369 3370 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3371 start &= PCI_BASE_ADDRESS_MEM_MASK; 3372 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3373 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3374 t4_write_reg(adap, 3375 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3376 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3377 t4_write_reg(adap, 3378 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3379 adap->vres.ocq.start); 3380 t4_read_reg(adap, 3381 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3382 } 3383 } 3384 3385 /* HMA Definitions */ 3386 3387 /* The maximum number of address that can be send in a single FW cmd */ 3388 #define HMA_MAX_ADDR_IN_CMD 5 3389 3390 #define HMA_PAGE_SIZE PAGE_SIZE 3391 3392 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3393 3394 #define HMA_PAGE_ORDER \ 3395 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3396 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3397 3398 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3399 * configuration(in units of MB). 3400 */ 3401 #define HMA_MIN_TOTAL_SIZE 1 3402 #define HMA_MAX_TOTAL_SIZE \ 3403 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3404 HMA_MAX_NO_FW_ADDRESS) >> 20) 3405 3406 static void adap_free_hma_mem(struct adapter *adapter) 3407 { 3408 struct scatterlist *iter; 3409 struct page *page; 3410 int i; 3411 3412 if (!adapter->hma.sgt) 3413 return; 3414 3415 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3416 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3417 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3418 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3419 } 3420 3421 for_each_sg(adapter->hma.sgt->sgl, iter, 3422 adapter->hma.sgt->orig_nents, i) { 3423 page = sg_page(iter); 3424 if (page) 3425 __free_pages(page, HMA_PAGE_ORDER); 3426 } 3427 3428 kfree(adapter->hma.phy_addr); 3429 sg_free_table(adapter->hma.sgt); 3430 kfree(adapter->hma.sgt); 3431 adapter->hma.sgt = NULL; 3432 } 3433 3434 static int adap_config_hma(struct adapter *adapter) 3435 { 3436 struct scatterlist *sgl, *iter; 3437 struct sg_table *sgt; 3438 struct page *newpage; 3439 unsigned int i, j, k; 3440 u32 param, hma_size; 3441 unsigned int ncmds; 3442 size_t page_size; 3443 u32 page_order; 3444 int node, ret; 3445 3446 /* HMA is supported only for T6+ cards. 3447 * Avoid initializing HMA in kdump kernels. 3448 */ 3449 if (is_kdump_kernel() || 3450 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3451 return 0; 3452 3453 /* Get the HMA region size required by fw */ 3454 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3455 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3456 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3457 1, ¶m, &hma_size); 3458 /* An error means card has its own memory or HMA is not supported by 3459 * the firmware. Return without any errors. 3460 */ 3461 if (ret || !hma_size) 3462 return 0; 3463 3464 if (hma_size < HMA_MIN_TOTAL_SIZE || 3465 hma_size > HMA_MAX_TOTAL_SIZE) { 3466 dev_err(adapter->pdev_dev, 3467 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3468 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3469 return -EINVAL; 3470 } 3471 3472 page_size = HMA_PAGE_SIZE; 3473 page_order = HMA_PAGE_ORDER; 3474 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3475 if (unlikely(!adapter->hma.sgt)) { 3476 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3477 return -ENOMEM; 3478 } 3479 sgt = adapter->hma.sgt; 3480 /* FW returned value will be in MB's 3481 */ 3482 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3483 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3484 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3485 kfree(adapter->hma.sgt); 3486 adapter->hma.sgt = NULL; 3487 return -ENOMEM; 3488 } 3489 3490 sgl = adapter->hma.sgt->sgl; 3491 node = dev_to_node(adapter->pdev_dev); 3492 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3493 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3494 __GFP_ZERO, page_order); 3495 if (!newpage) { 3496 dev_err(adapter->pdev_dev, 3497 "Not enough memory for HMA page allocation\n"); 3498 ret = -ENOMEM; 3499 goto free_hma; 3500 } 3501 sg_set_page(iter, newpage, page_size << page_order, 0); 3502 } 3503 3504 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3505 DMA_BIDIRECTIONAL); 3506 if (!sgt->nents) { 3507 dev_err(adapter->pdev_dev, 3508 "Not enough memory for HMA DMA mapping"); 3509 ret = -ENOMEM; 3510 goto free_hma; 3511 } 3512 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3513 3514 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3515 GFP_KERNEL); 3516 if (unlikely(!adapter->hma.phy_addr)) 3517 goto free_hma; 3518 3519 for_each_sg(sgl, iter, sgt->nents, i) { 3520 newpage = sg_page(iter); 3521 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3522 } 3523 3524 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3525 /* Pass on the addresses to firmware */ 3526 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3527 struct fw_hma_cmd hma_cmd; 3528 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3529 u8 soc = 0, eoc = 0; 3530 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3531 3532 soc = (i == 0) ? 1 : 0; 3533 eoc = (i == ncmds - 1) ? 1 : 0; 3534 3535 /* For last cmd, set naddr corresponding to remaining 3536 * addresses 3537 */ 3538 if (i == ncmds - 1) { 3539 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3540 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3541 } 3542 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3543 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3544 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3545 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3546 3547 hma_cmd.mode_to_pcie_params = 3548 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3549 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3550 3551 /* HMA cmd size specified in MB's */ 3552 hma_cmd.naddr_size = 3553 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3554 FW_HMA_CMD_NADDR_V(naddr)); 3555 3556 /* Total Page size specified in units of 4K */ 3557 hma_cmd.addr_size_pkd = 3558 htonl(FW_HMA_CMD_ADDR_SIZE_V 3559 ((page_size << page_order) >> 12)); 3560 3561 /* Fill the 5 addresses */ 3562 for (j = 0; j < naddr; j++) { 3563 hma_cmd.phy_address[j] = 3564 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3565 } 3566 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3567 sizeof(hma_cmd), &hma_cmd); 3568 if (ret) { 3569 dev_err(adapter->pdev_dev, 3570 "HMA FW command failed with err %d\n", ret); 3571 goto free_hma; 3572 } 3573 } 3574 3575 if (!ret) 3576 dev_info(adapter->pdev_dev, 3577 "Reserved %uMB host memory for HMA\n", hma_size); 3578 return ret; 3579 3580 free_hma: 3581 adap_free_hma_mem(adapter); 3582 return ret; 3583 } 3584 3585 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3586 { 3587 u32 v; 3588 int ret; 3589 3590 /* Now that we've successfully configured and initialized the adapter 3591 * can ask the Firmware what resources it has provisioned for us. 3592 */ 3593 ret = t4_get_pfres(adap); 3594 if (ret) { 3595 dev_err(adap->pdev_dev, 3596 "Unable to retrieve resource provisioning information\n"); 3597 return ret; 3598 } 3599 3600 /* get device capabilities */ 3601 memset(c, 0, sizeof(*c)); 3602 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3603 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3604 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3605 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3606 if (ret < 0) 3607 return ret; 3608 3609 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3610 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3611 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3612 if (ret < 0) 3613 return ret; 3614 3615 ret = t4_config_glbl_rss(adap, adap->pf, 3616 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3617 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3618 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3619 if (ret < 0) 3620 return ret; 3621 3622 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3623 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3624 FW_CMD_CAP_PF); 3625 if (ret < 0) 3626 return ret; 3627 3628 t4_sge_init(adap); 3629 3630 /* tweak some settings */ 3631 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3632 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3633 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3634 v = t4_read_reg(adap, TP_PIO_DATA_A); 3635 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3636 3637 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3638 adap->params.tp.tx_modq_map = 0xE4; 3639 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3640 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3641 3642 /* associate each Tx modulation queue with consecutive Tx channels */ 3643 v = 0x84218421; 3644 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3645 &v, 1, TP_TX_SCHED_HDR_A); 3646 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3647 &v, 1, TP_TX_SCHED_FIFO_A); 3648 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3649 &v, 1, TP_TX_SCHED_PCMD_A); 3650 3651 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3652 if (is_offload(adap)) { 3653 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3654 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3655 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3656 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3657 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3658 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3659 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3660 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3661 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3662 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3663 } 3664 3665 /* get basic stuff going */ 3666 return t4_early_init(adap, adap->pf); 3667 } 3668 3669 /* 3670 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3671 */ 3672 #define MAX_ATIDS 8192U 3673 3674 /* 3675 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3676 * 3677 * If the firmware we're dealing with has Configuration File support, then 3678 * we use that to perform all configuration 3679 */ 3680 3681 /* 3682 * Tweak configuration based on module parameters, etc. Most of these have 3683 * defaults assigned to them by Firmware Configuration Files (if we're using 3684 * them) but need to be explicitly set if we're using hard-coded 3685 * initialization. But even in the case of using Firmware Configuration 3686 * Files, we'd like to expose the ability to change these via module 3687 * parameters so these are essentially common tweaks/settings for 3688 * Configuration Files and hard-coded initialization ... 3689 */ 3690 static int adap_init0_tweaks(struct adapter *adapter) 3691 { 3692 /* 3693 * Fix up various Host-Dependent Parameters like Page Size, Cache 3694 * Line Size, etc. The firmware default is for a 4KB Page Size and 3695 * 64B Cache Line Size ... 3696 */ 3697 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3698 3699 /* 3700 * Process module parameters which affect early initialization. 3701 */ 3702 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3703 dev_err(&adapter->pdev->dev, 3704 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3705 rx_dma_offset); 3706 rx_dma_offset = 2; 3707 } 3708 t4_set_reg_field(adapter, SGE_CONTROL_A, 3709 PKTSHIFT_V(PKTSHIFT_M), 3710 PKTSHIFT_V(rx_dma_offset)); 3711 3712 /* 3713 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3714 * adds the pseudo header itself. 3715 */ 3716 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3717 CSUM_HAS_PSEUDO_HDR_F, 0); 3718 3719 return 0; 3720 } 3721 3722 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3723 * unto themselves and they contain their own firmware to perform their 3724 * tasks ... 3725 */ 3726 static int phy_aq1202_version(const u8 *phy_fw_data, 3727 size_t phy_fw_size) 3728 { 3729 int offset; 3730 3731 /* At offset 0x8 you're looking for the primary image's 3732 * starting offset which is 3 Bytes wide 3733 * 3734 * At offset 0xa of the primary image, you look for the offset 3735 * of the DRAM segment which is 3 Bytes wide. 3736 * 3737 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3738 * wide 3739 */ 3740 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3741 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3742 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3743 3744 offset = le24(phy_fw_data + 0x8) << 12; 3745 offset = le24(phy_fw_data + offset + 0xa); 3746 return be16(phy_fw_data + offset + 0x27e); 3747 3748 #undef be16 3749 #undef le16 3750 #undef le24 3751 } 3752 3753 static struct info_10gbt_phy_fw { 3754 unsigned int phy_fw_id; /* PCI Device ID */ 3755 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3756 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3757 int phy_flash; /* Has FLASH for PHY Firmware */ 3758 } phy_info_array[] = { 3759 { 3760 PHY_AQ1202_DEVICEID, 3761 PHY_AQ1202_FIRMWARE, 3762 phy_aq1202_version, 3763 1, 3764 }, 3765 { 3766 PHY_BCM84834_DEVICEID, 3767 PHY_BCM84834_FIRMWARE, 3768 NULL, 3769 0, 3770 }, 3771 { 0, NULL, NULL }, 3772 }; 3773 3774 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3775 { 3776 int i; 3777 3778 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3779 if (phy_info_array[i].phy_fw_id == devid) 3780 return &phy_info_array[i]; 3781 } 3782 return NULL; 3783 } 3784 3785 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3786 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3787 * we return a negative error number. If we transfer new firmware we return 1 3788 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3789 */ 3790 static int adap_init0_phy(struct adapter *adap) 3791 { 3792 const struct firmware *phyf; 3793 int ret; 3794 struct info_10gbt_phy_fw *phy_info; 3795 3796 /* Use the device ID to determine which PHY file to flash. 3797 */ 3798 phy_info = find_phy_info(adap->pdev->device); 3799 if (!phy_info) { 3800 dev_warn(adap->pdev_dev, 3801 "No PHY Firmware file found for this PHY\n"); 3802 return -EOPNOTSUPP; 3803 } 3804 3805 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3806 * use that. The adapter firmware provides us with a memory buffer 3807 * where we can load a PHY firmware file from the host if we want to 3808 * override the PHY firmware File in flash. 3809 */ 3810 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3811 adap->pdev_dev); 3812 if (ret < 0) { 3813 /* For adapters without FLASH attached to PHY for their 3814 * firmware, it's obviously a fatal error if we can't get the 3815 * firmware to the adapter. For adapters with PHY firmware 3816 * FLASH storage, it's worth a warning if we can't find the 3817 * PHY Firmware but we'll neuter the error ... 3818 */ 3819 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3820 "/lib/firmware/%s, error %d\n", 3821 phy_info->phy_fw_file, -ret); 3822 if (phy_info->phy_flash) { 3823 int cur_phy_fw_ver = 0; 3824 3825 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3826 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3827 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3828 ret = 0; 3829 } 3830 3831 return ret; 3832 } 3833 3834 /* Load PHY Firmware onto adapter. 3835 */ 3836 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3837 phy_info->phy_fw_version, 3838 (u8 *)phyf->data, phyf->size); 3839 if (ret < 0) 3840 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3841 -ret); 3842 else if (ret > 0) { 3843 int new_phy_fw_ver = 0; 3844 3845 if (phy_info->phy_fw_version) 3846 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3847 phyf->size); 3848 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3849 "Firmware /lib/firmware/%s, version %#x\n", 3850 phy_info->phy_fw_file, new_phy_fw_ver); 3851 } 3852 3853 release_firmware(phyf); 3854 3855 return ret; 3856 } 3857 3858 /* 3859 * Attempt to initialize the adapter via a Firmware Configuration File. 3860 */ 3861 static int adap_init0_config(struct adapter *adapter, int reset) 3862 { 3863 struct fw_caps_config_cmd caps_cmd; 3864 const struct firmware *cf; 3865 unsigned long mtype = 0, maddr = 0; 3866 u32 finiver, finicsum, cfcsum; 3867 int ret; 3868 int config_issued = 0; 3869 char *fw_config_file, fw_config_file_path[256]; 3870 char *config_name = NULL; 3871 3872 /* 3873 * Reset device if necessary. 3874 */ 3875 if (reset) { 3876 ret = t4_fw_reset(adapter, adapter->mbox, 3877 PIORSTMODE_F | PIORST_F); 3878 if (ret < 0) 3879 goto bye; 3880 } 3881 3882 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3883 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3884 * to be performed after any global adapter RESET above since some 3885 * PHYs only have local RAM copies of the PHY firmware. 3886 */ 3887 if (is_10gbt_device(adapter->pdev->device)) { 3888 ret = adap_init0_phy(adapter); 3889 if (ret < 0) 3890 goto bye; 3891 } 3892 /* 3893 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3894 * then use that. Otherwise, use the configuration file stored 3895 * in the adapter flash ... 3896 */ 3897 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3898 case CHELSIO_T4: 3899 fw_config_file = FW4_CFNAME; 3900 break; 3901 case CHELSIO_T5: 3902 fw_config_file = FW5_CFNAME; 3903 break; 3904 case CHELSIO_T6: 3905 fw_config_file = FW6_CFNAME; 3906 break; 3907 default: 3908 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3909 adapter->pdev->device); 3910 ret = -EINVAL; 3911 goto bye; 3912 } 3913 3914 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3915 if (ret < 0) { 3916 config_name = "On FLASH"; 3917 mtype = FW_MEMTYPE_CF_FLASH; 3918 maddr = t4_flash_cfg_addr(adapter); 3919 } else { 3920 u32 params[7], val[7]; 3921 3922 sprintf(fw_config_file_path, 3923 "/lib/firmware/%s", fw_config_file); 3924 config_name = fw_config_file_path; 3925 3926 if (cf->size >= FLASH_CFG_MAX_SIZE) 3927 ret = -ENOMEM; 3928 else { 3929 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3930 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3931 ret = t4_query_params(adapter, adapter->mbox, 3932 adapter->pf, 0, 1, params, val); 3933 if (ret == 0) { 3934 /* 3935 * For t4_memory_rw() below addresses and 3936 * sizes have to be in terms of multiples of 4 3937 * bytes. So, if the Configuration File isn't 3938 * a multiple of 4 bytes in length we'll have 3939 * to write that out separately since we can't 3940 * guarantee that the bytes following the 3941 * residual byte in the buffer returned by 3942 * request_firmware() are zeroed out ... 3943 */ 3944 size_t resid = cf->size & 0x3; 3945 size_t size = cf->size & ~0x3; 3946 __be32 *data = (__be32 *)cf->data; 3947 3948 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3949 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3950 3951 spin_lock(&adapter->win0_lock); 3952 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3953 size, data, T4_MEMORY_WRITE); 3954 if (ret == 0 && resid != 0) { 3955 union { 3956 __be32 word; 3957 char buf[4]; 3958 } last; 3959 int i; 3960 3961 last.word = data[size >> 2]; 3962 for (i = resid; i < 4; i++) 3963 last.buf[i] = 0; 3964 ret = t4_memory_rw(adapter, 0, mtype, 3965 maddr + size, 3966 4, &last.word, 3967 T4_MEMORY_WRITE); 3968 } 3969 spin_unlock(&adapter->win0_lock); 3970 } 3971 } 3972 3973 release_firmware(cf); 3974 if (ret) 3975 goto bye; 3976 } 3977 3978 /* 3979 * Issue a Capability Configuration command to the firmware to get it 3980 * to parse the Configuration File. We don't use t4_fw_config_file() 3981 * because we want the ability to modify various features after we've 3982 * processed the configuration file ... 3983 */ 3984 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3985 caps_cmd.op_to_write = 3986 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3987 FW_CMD_REQUEST_F | 3988 FW_CMD_READ_F); 3989 caps_cmd.cfvalid_to_len16 = 3990 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3991 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3992 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3993 FW_LEN16(caps_cmd)); 3994 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3995 &caps_cmd); 3996 3997 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3998 * Configuration File in FLASH), our last gasp effort is to use the 3999 * Firmware Configuration File which is embedded in the firmware. A 4000 * very few early versions of the firmware didn't have one embedded 4001 * but we can ignore those. 4002 */ 4003 if (ret == -ENOENT) { 4004 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4005 caps_cmd.op_to_write = 4006 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4007 FW_CMD_REQUEST_F | 4008 FW_CMD_READ_F); 4009 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4010 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4011 sizeof(caps_cmd), &caps_cmd); 4012 config_name = "Firmware Default"; 4013 } 4014 4015 config_issued = 1; 4016 if (ret < 0) 4017 goto bye; 4018 4019 finiver = ntohl(caps_cmd.finiver); 4020 finicsum = ntohl(caps_cmd.finicsum); 4021 cfcsum = ntohl(caps_cmd.cfcsum); 4022 if (finicsum != cfcsum) 4023 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4024 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4025 finicsum, cfcsum); 4026 4027 /* 4028 * And now tell the firmware to use the configuration we just loaded. 4029 */ 4030 caps_cmd.op_to_write = 4031 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4032 FW_CMD_REQUEST_F | 4033 FW_CMD_WRITE_F); 4034 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4035 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4036 NULL); 4037 if (ret < 0) 4038 goto bye; 4039 4040 /* 4041 * Tweak configuration based on system architecture, module 4042 * parameters, etc. 4043 */ 4044 ret = adap_init0_tweaks(adapter); 4045 if (ret < 0) 4046 goto bye; 4047 4048 /* We will proceed even if HMA init fails. */ 4049 ret = adap_config_hma(adapter); 4050 if (ret) 4051 dev_err(adapter->pdev_dev, 4052 "HMA configuration failed with error %d\n", ret); 4053 4054 /* 4055 * And finally tell the firmware to initialize itself using the 4056 * parameters from the Configuration File. 4057 */ 4058 ret = t4_fw_initialize(adapter, adapter->mbox); 4059 if (ret < 0) 4060 goto bye; 4061 4062 /* Emit Firmware Configuration File information and return 4063 * successfully. 4064 */ 4065 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4066 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4067 config_name, finiver, cfcsum); 4068 return 0; 4069 4070 /* 4071 * Something bad happened. Return the error ... (If the "error" 4072 * is that there's no Configuration File on the adapter we don't 4073 * want to issue a warning since this is fairly common.) 4074 */ 4075 bye: 4076 if (config_issued && ret != -ENOENT) 4077 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4078 config_name, -ret); 4079 return ret; 4080 } 4081 4082 static struct fw_info fw_info_array[] = { 4083 { 4084 .chip = CHELSIO_T4, 4085 .fs_name = FW4_CFNAME, 4086 .fw_mod_name = FW4_FNAME, 4087 .fw_hdr = { 4088 .chip = FW_HDR_CHIP_T4, 4089 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4090 .intfver_nic = FW_INTFVER(T4, NIC), 4091 .intfver_vnic = FW_INTFVER(T4, VNIC), 4092 .intfver_ri = FW_INTFVER(T4, RI), 4093 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4094 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4095 }, 4096 }, { 4097 .chip = CHELSIO_T5, 4098 .fs_name = FW5_CFNAME, 4099 .fw_mod_name = FW5_FNAME, 4100 .fw_hdr = { 4101 .chip = FW_HDR_CHIP_T5, 4102 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4103 .intfver_nic = FW_INTFVER(T5, NIC), 4104 .intfver_vnic = FW_INTFVER(T5, VNIC), 4105 .intfver_ri = FW_INTFVER(T5, RI), 4106 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4107 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4108 }, 4109 }, { 4110 .chip = CHELSIO_T6, 4111 .fs_name = FW6_CFNAME, 4112 .fw_mod_name = FW6_FNAME, 4113 .fw_hdr = { 4114 .chip = FW_HDR_CHIP_T6, 4115 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4116 .intfver_nic = FW_INTFVER(T6, NIC), 4117 .intfver_vnic = FW_INTFVER(T6, VNIC), 4118 .intfver_ofld = FW_INTFVER(T6, OFLD), 4119 .intfver_ri = FW_INTFVER(T6, RI), 4120 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4121 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4122 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4123 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4124 }, 4125 } 4126 4127 }; 4128 4129 static struct fw_info *find_fw_info(int chip) 4130 { 4131 int i; 4132 4133 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4134 if (fw_info_array[i].chip == chip) 4135 return &fw_info_array[i]; 4136 } 4137 return NULL; 4138 } 4139 4140 /* 4141 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4142 */ 4143 static int adap_init0(struct adapter *adap) 4144 { 4145 int ret; 4146 u32 v, port_vec; 4147 enum dev_state state; 4148 u32 params[7], val[7]; 4149 struct fw_caps_config_cmd caps_cmd; 4150 int reset = 1; 4151 4152 /* Grab Firmware Device Log parameters as early as possible so we have 4153 * access to it for debugging, etc. 4154 */ 4155 ret = t4_init_devlog_params(adap); 4156 if (ret < 0) 4157 return ret; 4158 4159 /* Contact FW, advertising Master capability */ 4160 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4161 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4162 if (ret < 0) { 4163 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4164 ret); 4165 return ret; 4166 } 4167 if (ret == adap->mbox) 4168 adap->flags |= MASTER_PF; 4169 4170 /* 4171 * If we're the Master PF Driver and the device is uninitialized, 4172 * then let's consider upgrading the firmware ... (We always want 4173 * to check the firmware version number in order to A. get it for 4174 * later reporting and B. to warn if the currently loaded firmware 4175 * is excessively mismatched relative to the driver.) 4176 */ 4177 4178 t4_get_version_info(adap); 4179 ret = t4_check_fw_version(adap); 4180 /* If firmware is too old (not supported by driver) force an update. */ 4181 if (ret) 4182 state = DEV_STATE_UNINIT; 4183 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4184 struct fw_info *fw_info; 4185 struct fw_hdr *card_fw; 4186 const struct firmware *fw; 4187 const u8 *fw_data = NULL; 4188 unsigned int fw_size = 0; 4189 4190 /* This is the firmware whose headers the driver was compiled 4191 * against 4192 */ 4193 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4194 if (fw_info == NULL) { 4195 dev_err(adap->pdev_dev, 4196 "unable to get firmware info for chip %d.\n", 4197 CHELSIO_CHIP_VERSION(adap->params.chip)); 4198 return -EINVAL; 4199 } 4200 4201 /* allocate memory to read the header of the firmware on the 4202 * card 4203 */ 4204 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4205 if (!card_fw) { 4206 ret = -ENOMEM; 4207 goto bye; 4208 } 4209 4210 /* Get FW from from /lib/firmware/ */ 4211 ret = request_firmware(&fw, fw_info->fw_mod_name, 4212 adap->pdev_dev); 4213 if (ret < 0) { 4214 dev_err(adap->pdev_dev, 4215 "unable to load firmware image %s, error %d\n", 4216 fw_info->fw_mod_name, ret); 4217 } else { 4218 fw_data = fw->data; 4219 fw_size = fw->size; 4220 } 4221 4222 /* upgrade FW logic */ 4223 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4224 state, &reset); 4225 4226 /* Cleaning up */ 4227 release_firmware(fw); 4228 kvfree(card_fw); 4229 4230 if (ret < 0) 4231 goto bye; 4232 } 4233 4234 /* If the firmware is initialized already, emit a simply note to that 4235 * effect. Otherwise, it's time to try initializing the adapter. 4236 */ 4237 if (state == DEV_STATE_INIT) { 4238 ret = adap_config_hma(adap); 4239 if (ret) 4240 dev_err(adap->pdev_dev, 4241 "HMA configuration failed with error %d\n", 4242 ret); 4243 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4244 "Adapter already initialized\n", 4245 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4246 } else { 4247 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4248 "Initializing adapter\n"); 4249 4250 /* Find out whether we're dealing with a version of the 4251 * firmware which has configuration file support. 4252 */ 4253 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4254 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4255 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4256 params, val); 4257 4258 /* If the firmware doesn't support Configuration Files, 4259 * return an error. 4260 */ 4261 if (ret < 0) { 4262 dev_err(adap->pdev_dev, "firmware doesn't support " 4263 "Firmware Configuration Files\n"); 4264 goto bye; 4265 } 4266 4267 /* The firmware provides us with a memory buffer where we can 4268 * load a Configuration File from the host if we want to 4269 * override the Configuration File in flash. 4270 */ 4271 ret = adap_init0_config(adap, reset); 4272 if (ret == -ENOENT) { 4273 dev_err(adap->pdev_dev, "no Configuration File " 4274 "present on adapter.\n"); 4275 goto bye; 4276 } 4277 if (ret < 0) { 4278 dev_err(adap->pdev_dev, "could not initialize " 4279 "adapter, error %d\n", -ret); 4280 goto bye; 4281 } 4282 } 4283 4284 /* Now that we've successfully configured and initialized the adapter 4285 * (or found it already initialized), we can ask the Firmware what 4286 * resources it has provisioned for us. 4287 */ 4288 ret = t4_get_pfres(adap); 4289 if (ret) { 4290 dev_err(adap->pdev_dev, 4291 "Unable to retrieve resource provisioning information\n"); 4292 goto bye; 4293 } 4294 4295 /* Grab VPD parameters. This should be done after we establish a 4296 * connection to the firmware since some of the VPD parameters 4297 * (notably the Core Clock frequency) are retrieved via requests to 4298 * the firmware. On the other hand, we need these fairly early on 4299 * so we do this right after getting ahold of the firmware. 4300 * 4301 * We need to do this after initializing the adapter because someone 4302 * could have FLASHed a new VPD which won't be read by the firmware 4303 * until we do the RESET ... 4304 */ 4305 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4306 if (ret < 0) 4307 goto bye; 4308 4309 /* Find out what ports are available to us. Note that we need to do 4310 * this before calling adap_init0_no_config() since it needs nports 4311 * and portvec ... 4312 */ 4313 v = 4314 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4315 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4316 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4317 if (ret < 0) 4318 goto bye; 4319 4320 adap->params.nports = hweight32(port_vec); 4321 adap->params.portvec = port_vec; 4322 4323 /* Give the SGE code a chance to pull in anything that it needs ... 4324 * Note that this must be called after we retrieve our VPD parameters 4325 * in order to know how to convert core ticks to seconds, etc. 4326 */ 4327 ret = t4_sge_init(adap); 4328 if (ret < 0) 4329 goto bye; 4330 4331 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4332 * indicates that the Firmware and Hardware support this. 4333 */ 4334 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4335 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4336 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4337 1, params, val); 4338 4339 if (!ret) { 4340 adap->sge.dbqtimer_tick = val[0]; 4341 ret = t4_read_sge_dbqtimers(adap, 4342 ARRAY_SIZE(adap->sge.dbqtimer_val), 4343 adap->sge.dbqtimer_val); 4344 } 4345 4346 if (!ret) 4347 adap->flags |= SGE_DBQ_TIMER; 4348 4349 if (is_bypass_device(adap->pdev->device)) 4350 adap->params.bypass = 1; 4351 4352 /* 4353 * Grab some of our basic fundamental operating parameters. 4354 */ 4355 #define FW_PARAM_DEV(param) \ 4356 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4357 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4358 4359 #define FW_PARAM_PFVF(param) \ 4360 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4361 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4362 FW_PARAMS_PARAM_Y_V(0) | \ 4363 FW_PARAMS_PARAM_Z_V(0) 4364 4365 params[0] = FW_PARAM_PFVF(EQ_START); 4366 params[1] = FW_PARAM_PFVF(L2T_START); 4367 params[2] = FW_PARAM_PFVF(L2T_END); 4368 params[3] = FW_PARAM_PFVF(FILTER_START); 4369 params[4] = FW_PARAM_PFVF(FILTER_END); 4370 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4371 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4372 if (ret < 0) 4373 goto bye; 4374 adap->sge.egr_start = val[0]; 4375 adap->l2t_start = val[1]; 4376 adap->l2t_end = val[2]; 4377 adap->tids.ftid_base = val[3]; 4378 adap->tids.nftids = val[4] - val[3] + 1; 4379 adap->sge.ingr_start = val[5]; 4380 4381 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4382 /* Read the raw mps entries. In T6, the last 2 tcam entries 4383 * are reserved for raw mac addresses (rawf = 2, one per port). 4384 */ 4385 params[0] = FW_PARAM_PFVF(RAWF_START); 4386 params[1] = FW_PARAM_PFVF(RAWF_END); 4387 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4388 params, val); 4389 if (ret == 0) { 4390 adap->rawf_start = val[0]; 4391 adap->rawf_cnt = val[1] - val[0] + 1; 4392 } 4393 } 4394 4395 /* qids (ingress/egress) returned from firmware can be anywhere 4396 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4397 * Hence driver needs to allocate memory for this range to 4398 * store the queue info. Get the highest IQFLINT/EQ index returned 4399 * in FW_EQ_*_CMD.alloc command. 4400 */ 4401 params[0] = FW_PARAM_PFVF(EQ_END); 4402 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4403 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4404 if (ret < 0) 4405 goto bye; 4406 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4407 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4408 4409 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4410 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4411 if (!adap->sge.egr_map) { 4412 ret = -ENOMEM; 4413 goto bye; 4414 } 4415 4416 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4417 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4418 if (!adap->sge.ingr_map) { 4419 ret = -ENOMEM; 4420 goto bye; 4421 } 4422 4423 /* Allocate the memory for the vaious egress queue bitmaps 4424 * ie starving_fl, txq_maperr and blocked_fl. 4425 */ 4426 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4427 sizeof(long), GFP_KERNEL); 4428 if (!adap->sge.starving_fl) { 4429 ret = -ENOMEM; 4430 goto bye; 4431 } 4432 4433 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4434 sizeof(long), GFP_KERNEL); 4435 if (!adap->sge.txq_maperr) { 4436 ret = -ENOMEM; 4437 goto bye; 4438 } 4439 4440 #ifdef CONFIG_DEBUG_FS 4441 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4442 sizeof(long), GFP_KERNEL); 4443 if (!adap->sge.blocked_fl) { 4444 ret = -ENOMEM; 4445 goto bye; 4446 } 4447 #endif 4448 4449 params[0] = FW_PARAM_PFVF(CLIP_START); 4450 params[1] = FW_PARAM_PFVF(CLIP_END); 4451 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4452 if (ret < 0) 4453 goto bye; 4454 adap->clipt_start = val[0]; 4455 adap->clipt_end = val[1]; 4456 4457 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4458 * Classes supported by the hardware/firmware so we hard code it here 4459 * for now. 4460 */ 4461 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4462 4463 /* query params related to active filter region */ 4464 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4465 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4466 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4467 /* If Active filter size is set we enable establishing 4468 * offload connection through firmware work request 4469 */ 4470 if ((val[0] != val[1]) && (ret >= 0)) { 4471 adap->flags |= FW_OFLD_CONN; 4472 adap->tids.aftid_base = val[0]; 4473 adap->tids.aftid_end = val[1]; 4474 } 4475 4476 /* If we're running on newer firmware, let it know that we're 4477 * prepared to deal with encapsulated CPL messages. Older 4478 * firmware won't understand this and we'll just get 4479 * unencapsulated messages ... 4480 */ 4481 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4482 val[0] = 1; 4483 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4484 4485 /* 4486 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4487 * capability. Earlier versions of the firmware didn't have the 4488 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4489 * permission to use ULPTX MEMWRITE DSGL. 4490 */ 4491 if (is_t4(adap->params.chip)) { 4492 adap->params.ulptx_memwrite_dsgl = false; 4493 } else { 4494 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4495 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4496 1, params, val); 4497 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4498 } 4499 4500 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4501 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4502 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4503 1, params, val); 4504 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4505 4506 /* See if FW supports FW_FILTER2 work request */ 4507 if (is_t4(adap->params.chip)) { 4508 adap->params.filter2_wr_support = 0; 4509 } else { 4510 params[0] = FW_PARAM_DEV(FILTER2_WR); 4511 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4512 1, params, val); 4513 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4514 } 4515 4516 /* Check if FW supports returning vin and smt index. 4517 * If this is not supported, driver will interpret 4518 * these values from viid. 4519 */ 4520 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4521 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4522 1, params, val); 4523 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4524 4525 /* 4526 * Get device capabilities so we can determine what resources we need 4527 * to manage. 4528 */ 4529 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4530 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4531 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4532 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4533 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4534 &caps_cmd); 4535 if (ret < 0) 4536 goto bye; 4537 4538 if (caps_cmd.ofldcaps || 4539 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4540 /* query offload-related parameters */ 4541 params[0] = FW_PARAM_DEV(NTID); 4542 params[1] = FW_PARAM_PFVF(SERVER_START); 4543 params[2] = FW_PARAM_PFVF(SERVER_END); 4544 params[3] = FW_PARAM_PFVF(TDDP_START); 4545 params[4] = FW_PARAM_PFVF(TDDP_END); 4546 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4547 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4548 params, val); 4549 if (ret < 0) 4550 goto bye; 4551 adap->tids.ntids = val[0]; 4552 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4553 adap->tids.stid_base = val[1]; 4554 adap->tids.nstids = val[2] - val[1] + 1; 4555 /* 4556 * Setup server filter region. Divide the available filter 4557 * region into two parts. Regular filters get 1/3rd and server 4558 * filters get 2/3rd part. This is only enabled if workarond 4559 * path is enabled. 4560 * 1. For regular filters. 4561 * 2. Server filter: This are special filters which are used 4562 * to redirect SYN packets to offload queue. 4563 */ 4564 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4565 adap->tids.sftid_base = adap->tids.ftid_base + 4566 DIV_ROUND_UP(adap->tids.nftids, 3); 4567 adap->tids.nsftids = adap->tids.nftids - 4568 DIV_ROUND_UP(adap->tids.nftids, 3); 4569 adap->tids.nftids = adap->tids.sftid_base - 4570 adap->tids.ftid_base; 4571 } 4572 adap->vres.ddp.start = val[3]; 4573 adap->vres.ddp.size = val[4] - val[3] + 1; 4574 adap->params.ofldq_wr_cred = val[5]; 4575 4576 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4577 ret = init_hash_filter(adap); 4578 if (ret < 0) 4579 goto bye; 4580 } else { 4581 adap->params.offload = 1; 4582 adap->num_ofld_uld += 1; 4583 } 4584 } 4585 if (caps_cmd.rdmacaps) { 4586 params[0] = FW_PARAM_PFVF(STAG_START); 4587 params[1] = FW_PARAM_PFVF(STAG_END); 4588 params[2] = FW_PARAM_PFVF(RQ_START); 4589 params[3] = FW_PARAM_PFVF(RQ_END); 4590 params[4] = FW_PARAM_PFVF(PBL_START); 4591 params[5] = FW_PARAM_PFVF(PBL_END); 4592 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4593 params, val); 4594 if (ret < 0) 4595 goto bye; 4596 adap->vres.stag.start = val[0]; 4597 adap->vres.stag.size = val[1] - val[0] + 1; 4598 adap->vres.rq.start = val[2]; 4599 adap->vres.rq.size = val[3] - val[2] + 1; 4600 adap->vres.pbl.start = val[4]; 4601 adap->vres.pbl.size = val[5] - val[4] + 1; 4602 4603 params[0] = FW_PARAM_PFVF(SRQ_START); 4604 params[1] = FW_PARAM_PFVF(SRQ_END); 4605 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4606 params, val); 4607 if (!ret) { 4608 adap->vres.srq.start = val[0]; 4609 adap->vres.srq.size = val[1] - val[0] + 1; 4610 } 4611 if (adap->vres.srq.size) { 4612 adap->srq = t4_init_srq(adap->vres.srq.size); 4613 if (!adap->srq) 4614 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4615 } 4616 4617 params[0] = FW_PARAM_PFVF(SQRQ_START); 4618 params[1] = FW_PARAM_PFVF(SQRQ_END); 4619 params[2] = FW_PARAM_PFVF(CQ_START); 4620 params[3] = FW_PARAM_PFVF(CQ_END); 4621 params[4] = FW_PARAM_PFVF(OCQ_START); 4622 params[5] = FW_PARAM_PFVF(OCQ_END); 4623 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4624 val); 4625 if (ret < 0) 4626 goto bye; 4627 adap->vres.qp.start = val[0]; 4628 adap->vres.qp.size = val[1] - val[0] + 1; 4629 adap->vres.cq.start = val[2]; 4630 adap->vres.cq.size = val[3] - val[2] + 1; 4631 adap->vres.ocq.start = val[4]; 4632 adap->vres.ocq.size = val[5] - val[4] + 1; 4633 4634 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4635 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4636 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4637 val); 4638 if (ret < 0) { 4639 adap->params.max_ordird_qp = 8; 4640 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4641 ret = 0; 4642 } else { 4643 adap->params.max_ordird_qp = val[0]; 4644 adap->params.max_ird_adapter = val[1]; 4645 } 4646 dev_info(adap->pdev_dev, 4647 "max_ordird_qp %d max_ird_adapter %d\n", 4648 adap->params.max_ordird_qp, 4649 adap->params.max_ird_adapter); 4650 4651 /* Enable write_with_immediate if FW supports it */ 4652 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4653 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4654 val); 4655 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4656 4657 /* Enable write_cmpl if FW supports it */ 4658 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4659 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4660 val); 4661 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4662 adap->num_ofld_uld += 2; 4663 } 4664 if (caps_cmd.iscsicaps) { 4665 params[0] = FW_PARAM_PFVF(ISCSI_START); 4666 params[1] = FW_PARAM_PFVF(ISCSI_END); 4667 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4668 params, val); 4669 if (ret < 0) 4670 goto bye; 4671 adap->vres.iscsi.start = val[0]; 4672 adap->vres.iscsi.size = val[1] - val[0] + 1; 4673 /* LIO target and cxgb4i initiaitor */ 4674 adap->num_ofld_uld += 2; 4675 } 4676 if (caps_cmd.cryptocaps) { 4677 if (ntohs(caps_cmd.cryptocaps) & 4678 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4679 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4680 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4681 2, params, val); 4682 if (ret < 0) { 4683 if (ret != -EINVAL) 4684 goto bye; 4685 } else { 4686 adap->vres.ncrypto_fc = val[0]; 4687 } 4688 adap->num_ofld_uld += 1; 4689 } 4690 if (ntohs(caps_cmd.cryptocaps) & 4691 FW_CAPS_CONFIG_TLS_INLINE) { 4692 params[0] = FW_PARAM_PFVF(TLS_START); 4693 params[1] = FW_PARAM_PFVF(TLS_END); 4694 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4695 2, params, val); 4696 if (ret < 0) 4697 goto bye; 4698 adap->vres.key.start = val[0]; 4699 adap->vres.key.size = val[1] - val[0] + 1; 4700 adap->num_uld += 1; 4701 } 4702 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4703 } 4704 #undef FW_PARAM_PFVF 4705 #undef FW_PARAM_DEV 4706 4707 /* The MTU/MSS Table is initialized by now, so load their values. If 4708 * we're initializing the adapter, then we'll make any modifications 4709 * we want to the MTU/MSS Table and also initialize the congestion 4710 * parameters. 4711 */ 4712 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4713 if (state != DEV_STATE_INIT) { 4714 int i; 4715 4716 /* The default MTU Table contains values 1492 and 1500. 4717 * However, for TCP, it's better to have two values which are 4718 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4719 * This allows us to have a TCP Data Payload which is a 4720 * multiple of 8 regardless of what combination of TCP Options 4721 * are in use (always a multiple of 4 bytes) which is 4722 * important for performance reasons. For instance, if no 4723 * options are in use, then we have a 20-byte IP header and a 4724 * 20-byte TCP header. In this case, a 1500-byte MSS would 4725 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4726 * which is not a multiple of 8. So using an MSS of 1488 in 4727 * this case results in a TCP Data Payload of 1448 bytes which 4728 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4729 * Stamps have been negotiated, then an MTU of 1500 bytes 4730 * results in a TCP Data Payload of 1448 bytes which, as 4731 * above, is a multiple of 8 bytes ... 4732 */ 4733 for (i = 0; i < NMTUS; i++) 4734 if (adap->params.mtus[i] == 1492) { 4735 adap->params.mtus[i] = 1488; 4736 break; 4737 } 4738 4739 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4740 adap->params.b_wnd); 4741 } 4742 t4_init_sge_params(adap); 4743 adap->flags |= FW_OK; 4744 t4_init_tp_params(adap, true); 4745 return 0; 4746 4747 /* 4748 * Something bad happened. If a command timed out or failed with EIO 4749 * FW does not operate within its spec or something catastrophic 4750 * happened to HW/FW, stop issuing commands. 4751 */ 4752 bye: 4753 adap_free_hma_mem(adap); 4754 kfree(adap->sge.egr_map); 4755 kfree(adap->sge.ingr_map); 4756 kfree(adap->sge.starving_fl); 4757 kfree(adap->sge.txq_maperr); 4758 #ifdef CONFIG_DEBUG_FS 4759 kfree(adap->sge.blocked_fl); 4760 #endif 4761 if (ret != -ETIMEDOUT && ret != -EIO) 4762 t4_fw_bye(adap, adap->mbox); 4763 return ret; 4764 } 4765 4766 /* EEH callbacks */ 4767 4768 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4769 pci_channel_state_t state) 4770 { 4771 int i; 4772 struct adapter *adap = pci_get_drvdata(pdev); 4773 4774 if (!adap) 4775 goto out; 4776 4777 rtnl_lock(); 4778 adap->flags &= ~FW_OK; 4779 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4780 spin_lock(&adap->stats_lock); 4781 for_each_port(adap, i) { 4782 struct net_device *dev = adap->port[i]; 4783 if (dev) { 4784 netif_device_detach(dev); 4785 netif_carrier_off(dev); 4786 } 4787 } 4788 spin_unlock(&adap->stats_lock); 4789 disable_interrupts(adap); 4790 if (adap->flags & FULL_INIT_DONE) 4791 cxgb_down(adap); 4792 rtnl_unlock(); 4793 if ((adap->flags & DEV_ENABLED)) { 4794 pci_disable_device(pdev); 4795 adap->flags &= ~DEV_ENABLED; 4796 } 4797 out: return state == pci_channel_io_perm_failure ? 4798 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4799 } 4800 4801 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4802 { 4803 int i, ret; 4804 struct fw_caps_config_cmd c; 4805 struct adapter *adap = pci_get_drvdata(pdev); 4806 4807 if (!adap) { 4808 pci_restore_state(pdev); 4809 pci_save_state(pdev); 4810 return PCI_ERS_RESULT_RECOVERED; 4811 } 4812 4813 if (!(adap->flags & DEV_ENABLED)) { 4814 if (pci_enable_device(pdev)) { 4815 dev_err(&pdev->dev, "Cannot reenable PCI " 4816 "device after reset\n"); 4817 return PCI_ERS_RESULT_DISCONNECT; 4818 } 4819 adap->flags |= DEV_ENABLED; 4820 } 4821 4822 pci_set_master(pdev); 4823 pci_restore_state(pdev); 4824 pci_save_state(pdev); 4825 4826 if (t4_wait_dev_ready(adap->regs) < 0) 4827 return PCI_ERS_RESULT_DISCONNECT; 4828 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4829 return PCI_ERS_RESULT_DISCONNECT; 4830 adap->flags |= FW_OK; 4831 if (adap_init1(adap, &c)) 4832 return PCI_ERS_RESULT_DISCONNECT; 4833 4834 for_each_port(adap, i) { 4835 struct port_info *pi = adap2pinfo(adap, i); 4836 u8 vivld = 0, vin = 0; 4837 4838 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 4839 NULL, NULL, &vivld, &vin); 4840 if (ret < 0) 4841 return PCI_ERS_RESULT_DISCONNECT; 4842 pi->viid = ret; 4843 pi->xact_addr_filt = -1; 4844 /* If fw supports returning the VIN as part of FW_VI_CMD, 4845 * save the returned values. 4846 */ 4847 if (adap->params.viid_smt_extn_support) { 4848 pi->vivld = vivld; 4849 pi->vin = vin; 4850 } else { 4851 /* Retrieve the values from VIID */ 4852 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 4853 pi->vin = FW_VIID_VIN_G(pi->viid); 4854 } 4855 } 4856 4857 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4858 adap->params.b_wnd); 4859 setup_memwin(adap); 4860 if (cxgb_up(adap)) 4861 return PCI_ERS_RESULT_DISCONNECT; 4862 return PCI_ERS_RESULT_RECOVERED; 4863 } 4864 4865 static void eeh_resume(struct pci_dev *pdev) 4866 { 4867 int i; 4868 struct adapter *adap = pci_get_drvdata(pdev); 4869 4870 if (!adap) 4871 return; 4872 4873 rtnl_lock(); 4874 for_each_port(adap, i) { 4875 struct net_device *dev = adap->port[i]; 4876 if (dev) { 4877 if (netif_running(dev)) { 4878 link_start(dev); 4879 cxgb_set_rxmode(dev); 4880 } 4881 netif_device_attach(dev); 4882 } 4883 } 4884 rtnl_unlock(); 4885 } 4886 4887 static const struct pci_error_handlers cxgb4_eeh = { 4888 .error_detected = eeh_err_detected, 4889 .slot_reset = eeh_slot_reset, 4890 .resume = eeh_resume, 4891 }; 4892 4893 /* Return true if the Link Configuration supports "High Speeds" (those greater 4894 * than 1Gb/s). 4895 */ 4896 static inline bool is_x_10g_port(const struct link_config *lc) 4897 { 4898 unsigned int speeds, high_speeds; 4899 4900 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4901 high_speeds = speeds & 4902 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4903 4904 return high_speeds != 0; 4905 } 4906 4907 /* 4908 * Perform default configuration of DMA queues depending on the number and type 4909 * of ports we found and the number of available CPUs. Most settings can be 4910 * modified by the admin prior to actual use. 4911 */ 4912 static int cfg_queues(struct adapter *adap) 4913 { 4914 struct sge *s = &adap->sge; 4915 int i, n10g = 0, qidx = 0; 4916 int niqflint, neq, avail_eth_qsets; 4917 int max_eth_qsets = 32; 4918 #ifndef CONFIG_CHELSIO_T4_DCB 4919 int q10g = 0; 4920 #endif 4921 4922 /* Reduce memory usage in kdump environment, disable all offload. 4923 */ 4924 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4925 adap->params.offload = 0; 4926 adap->params.crypto = 0; 4927 } 4928 4929 /* Calculate the number of Ethernet Queue Sets available based on 4930 * resources provisioned for us. We always have an Asynchronous 4931 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 4932 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 4933 * Ingress Queue. Meanwhile, we need two Egress Queues for each 4934 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 4935 * 4936 * Note that we should also take into account all of the various 4937 * Offload Queues. But, in any situation where we're operating in 4938 * a Resource Constrained Provisioning environment, doing any Offload 4939 * at all is problematic ... 4940 */ 4941 niqflint = adap->params.pfres.niqflint - 1; 4942 if (!(adap->flags & USING_MSIX)) 4943 niqflint--; 4944 neq = adap->params.pfres.neq / 2; 4945 avail_eth_qsets = min(niqflint, neq); 4946 4947 if (avail_eth_qsets > max_eth_qsets) 4948 avail_eth_qsets = max_eth_qsets; 4949 4950 if (avail_eth_qsets < adap->params.nports) { 4951 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 4952 avail_eth_qsets, adap->params.nports); 4953 return -ENOMEM; 4954 } 4955 4956 /* Count the number of 10Gb/s or better ports */ 4957 for_each_port(adap, i) 4958 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4959 4960 #ifdef CONFIG_CHELSIO_T4_DCB 4961 /* For Data Center Bridging support we need to be able to support up 4962 * to 8 Traffic Priorities; each of which will be assigned to its 4963 * own TX Queue in order to prevent Head-Of-Line Blocking. 4964 */ 4965 if (adap->params.nports * 8 > avail_eth_qsets) { 4966 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 4967 avail_eth_qsets, adap->params.nports * 8); 4968 return -ENOMEM; 4969 } 4970 4971 for_each_port(adap, i) { 4972 struct port_info *pi = adap2pinfo(adap, i); 4973 4974 pi->first_qset = qidx; 4975 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4976 qidx += pi->nqsets; 4977 } 4978 #else /* !CONFIG_CHELSIO_T4_DCB */ 4979 /* 4980 * We default to 1 queue per non-10G port and up to # of cores queues 4981 * per 10G port. 4982 */ 4983 if (n10g) 4984 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 4985 if (q10g > netif_get_num_default_rss_queues()) 4986 q10g = netif_get_num_default_rss_queues(); 4987 4988 if (is_kdump_kernel()) 4989 q10g = 1; 4990 4991 for_each_port(adap, i) { 4992 struct port_info *pi = adap2pinfo(adap, i); 4993 4994 pi->first_qset = qidx; 4995 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4996 qidx += pi->nqsets; 4997 } 4998 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4999 5000 s->ethqsets = qidx; 5001 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5002 5003 if (is_uld(adap)) { 5004 /* 5005 * For offload we use 1 queue/channel if all ports are up to 1G, 5006 * otherwise we divide all available queues amongst the channels 5007 * capped by the number of available cores. 5008 */ 5009 if (n10g) { 5010 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 5011 s->ofldqsets = roundup(i, adap->params.nports); 5012 } else { 5013 s->ofldqsets = adap->params.nports; 5014 } 5015 } 5016 5017 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5018 struct sge_eth_rxq *r = &s->ethrxq[i]; 5019 5020 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5021 r->fl.size = 72; 5022 } 5023 5024 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5025 s->ethtxq[i].q.size = 1024; 5026 5027 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5028 s->ctrlq[i].q.size = 512; 5029 5030 if (!is_t4(adap->params.chip)) 5031 s->ptptxq.q.size = 8; 5032 5033 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5034 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5035 5036 return 0; 5037 } 5038 5039 /* 5040 * Reduce the number of Ethernet queues across all ports to at most n. 5041 * n provides at least one queue per port. 5042 */ 5043 static void reduce_ethqs(struct adapter *adap, int n) 5044 { 5045 int i; 5046 struct port_info *pi; 5047 5048 while (n < adap->sge.ethqsets) 5049 for_each_port(adap, i) { 5050 pi = adap2pinfo(adap, i); 5051 if (pi->nqsets > 1) { 5052 pi->nqsets--; 5053 adap->sge.ethqsets--; 5054 if (adap->sge.ethqsets <= n) 5055 break; 5056 } 5057 } 5058 5059 n = 0; 5060 for_each_port(adap, i) { 5061 pi = adap2pinfo(adap, i); 5062 pi->first_qset = n; 5063 n += pi->nqsets; 5064 } 5065 } 5066 5067 static int get_msix_info(struct adapter *adap) 5068 { 5069 struct uld_msix_info *msix_info; 5070 unsigned int max_ingq = 0; 5071 5072 if (is_offload(adap)) 5073 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 5074 if (is_pci_uld(adap)) 5075 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 5076 5077 if (!max_ingq) 5078 goto out; 5079 5080 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 5081 if (!msix_info) 5082 return -ENOMEM; 5083 5084 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 5085 sizeof(long), GFP_KERNEL); 5086 if (!adap->msix_bmap_ulds.msix_bmap) { 5087 kfree(msix_info); 5088 return -ENOMEM; 5089 } 5090 spin_lock_init(&adap->msix_bmap_ulds.lock); 5091 adap->msix_info_ulds = msix_info; 5092 out: 5093 return 0; 5094 } 5095 5096 static void free_msix_info(struct adapter *adap) 5097 { 5098 if (!(adap->num_uld && adap->num_ofld_uld)) 5099 return; 5100 5101 kfree(adap->msix_info_ulds); 5102 kfree(adap->msix_bmap_ulds.msix_bmap); 5103 } 5104 5105 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5106 #define EXTRA_VECS 2 5107 5108 static int enable_msix(struct adapter *adap) 5109 { 5110 int ofld_need = 0, uld_need = 0; 5111 int i, j, want, need, allocated; 5112 struct sge *s = &adap->sge; 5113 unsigned int nchan = adap->params.nports; 5114 struct msix_entry *entries; 5115 int max_ingq = MAX_INGQ; 5116 5117 if (is_pci_uld(adap)) 5118 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5119 if (is_offload(adap)) 5120 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5121 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5122 GFP_KERNEL); 5123 if (!entries) 5124 return -ENOMEM; 5125 5126 /* map for msix */ 5127 if (get_msix_info(adap)) { 5128 adap->params.offload = 0; 5129 adap->params.crypto = 0; 5130 } 5131 5132 for (i = 0; i < max_ingq + 1; ++i) 5133 entries[i].entry = i; 5134 5135 want = s->max_ethqsets + EXTRA_VECS; 5136 if (is_offload(adap)) { 5137 want += adap->num_ofld_uld * s->ofldqsets; 5138 ofld_need = adap->num_ofld_uld * nchan; 5139 } 5140 if (is_pci_uld(adap)) { 5141 want += adap->num_uld * s->ofldqsets; 5142 uld_need = adap->num_uld * nchan; 5143 } 5144 #ifdef CONFIG_CHELSIO_T4_DCB 5145 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5146 * each port. 5147 */ 5148 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5149 #else 5150 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5151 #endif 5152 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5153 if (allocated < 0) { 5154 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5155 " not using MSI-X\n"); 5156 kfree(entries); 5157 return allocated; 5158 } 5159 5160 /* Distribute available vectors to the various queue groups. 5161 * Every group gets its minimum requirement and NIC gets top 5162 * priority for leftovers. 5163 */ 5164 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5165 if (i < s->max_ethqsets) { 5166 s->max_ethqsets = i; 5167 if (i < s->ethqsets) 5168 reduce_ethqs(adap, i); 5169 } 5170 if (is_uld(adap)) { 5171 if (allocated < want) 5172 s->nqs_per_uld = nchan; 5173 else 5174 s->nqs_per_uld = s->ofldqsets; 5175 } 5176 5177 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5178 adap->msix_info[i].vec = entries[i].vector; 5179 if (is_uld(adap)) { 5180 for (j = 0 ; i < allocated; ++i, j++) { 5181 adap->msix_info_ulds[j].vec = entries[i].vector; 5182 adap->msix_info_ulds[j].idx = i; 5183 } 5184 adap->msix_bmap_ulds.mapsize = j; 5185 } 5186 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5187 "nic %d per uld %d\n", 5188 allocated, s->max_ethqsets, s->nqs_per_uld); 5189 5190 kfree(entries); 5191 return 0; 5192 } 5193 5194 #undef EXTRA_VECS 5195 5196 static int init_rss(struct adapter *adap) 5197 { 5198 unsigned int i; 5199 int err; 5200 5201 err = t4_init_rss_mode(adap, adap->mbox); 5202 if (err) 5203 return err; 5204 5205 for_each_port(adap, i) { 5206 struct port_info *pi = adap2pinfo(adap, i); 5207 5208 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5209 if (!pi->rss) 5210 return -ENOMEM; 5211 } 5212 return 0; 5213 } 5214 5215 /* Dump basic information about the adapter */ 5216 static void print_adapter_info(struct adapter *adapter) 5217 { 5218 /* Hardware/Firmware/etc. Version/Revision IDs */ 5219 t4_dump_version_info(adapter); 5220 5221 /* Software/Hardware configuration */ 5222 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5223 is_offload(adapter) ? "R" : "", 5224 ((adapter->flags & USING_MSIX) ? "MSI-X" : 5225 (adapter->flags & USING_MSI) ? "MSI" : ""), 5226 is_offload(adapter) ? "Offload" : "non-Offload"); 5227 } 5228 5229 static void print_port_info(const struct net_device *dev) 5230 { 5231 char buf[80]; 5232 char *bufp = buf; 5233 const struct port_info *pi = netdev_priv(dev); 5234 const struct adapter *adap = pi->adapter; 5235 5236 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5237 bufp += sprintf(bufp, "100M/"); 5238 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5239 bufp += sprintf(bufp, "1G/"); 5240 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5241 bufp += sprintf(bufp, "10G/"); 5242 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5243 bufp += sprintf(bufp, "25G/"); 5244 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5245 bufp += sprintf(bufp, "40G/"); 5246 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5247 bufp += sprintf(bufp, "50G/"); 5248 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5249 bufp += sprintf(bufp, "100G/"); 5250 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5251 bufp += sprintf(bufp, "200G/"); 5252 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5253 bufp += sprintf(bufp, "400G/"); 5254 if (bufp != buf) 5255 --bufp; 5256 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5257 5258 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5259 dev->name, adap->params.vpd.id, adap->name, buf); 5260 } 5261 5262 /* 5263 * Free the following resources: 5264 * - memory used for tables 5265 * - MSI/MSI-X 5266 * - net devices 5267 * - resources FW is holding for us 5268 */ 5269 static void free_some_resources(struct adapter *adapter) 5270 { 5271 unsigned int i; 5272 5273 kvfree(adapter->mps_encap); 5274 kvfree(adapter->smt); 5275 kvfree(adapter->l2t); 5276 kvfree(adapter->srq); 5277 t4_cleanup_sched(adapter); 5278 kvfree(adapter->tids.tid_tab); 5279 cxgb4_cleanup_tc_flower(adapter); 5280 cxgb4_cleanup_tc_u32(adapter); 5281 kfree(adapter->sge.egr_map); 5282 kfree(adapter->sge.ingr_map); 5283 kfree(adapter->sge.starving_fl); 5284 kfree(adapter->sge.txq_maperr); 5285 #ifdef CONFIG_DEBUG_FS 5286 kfree(adapter->sge.blocked_fl); 5287 #endif 5288 disable_msi(adapter); 5289 5290 for_each_port(adapter, i) 5291 if (adapter->port[i]) { 5292 struct port_info *pi = adap2pinfo(adapter, i); 5293 5294 if (pi->viid != 0) 5295 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5296 0, pi->viid); 5297 kfree(adap2pinfo(adapter, i)->rss); 5298 free_netdev(adapter->port[i]); 5299 } 5300 if (adapter->flags & FW_OK) 5301 t4_fw_bye(adapter, adapter->pf); 5302 } 5303 5304 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5305 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5306 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5307 #define SEGMENT_SIZE 128 5308 5309 static int t4_get_chip_type(struct adapter *adap, int ver) 5310 { 5311 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5312 5313 switch (ver) { 5314 case CHELSIO_T4: 5315 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5316 case CHELSIO_T5: 5317 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5318 case CHELSIO_T6: 5319 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5320 default: 5321 break; 5322 } 5323 return -EINVAL; 5324 } 5325 5326 #ifdef CONFIG_PCI_IOV 5327 static void cxgb4_mgmt_setup(struct net_device *dev) 5328 { 5329 dev->type = ARPHRD_NONE; 5330 dev->mtu = 0; 5331 dev->hard_header_len = 0; 5332 dev->addr_len = 0; 5333 dev->tx_queue_len = 0; 5334 dev->flags |= IFF_NOARP; 5335 dev->priv_flags |= IFF_NO_QUEUE; 5336 5337 /* Initialize the device structure. */ 5338 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5339 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5340 } 5341 5342 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5343 { 5344 struct adapter *adap = pci_get_drvdata(pdev); 5345 int err = 0; 5346 int current_vfs = pci_num_vf(pdev); 5347 u32 pcie_fw; 5348 5349 pcie_fw = readl(adap->regs + PCIE_FW_A); 5350 /* Check if fw is initialized */ 5351 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5352 dev_warn(&pdev->dev, "Device not initialized\n"); 5353 return -EOPNOTSUPP; 5354 } 5355 5356 /* If any of the VF's is already assigned to Guest OS, then 5357 * SRIOV for the same cannot be modified 5358 */ 5359 if (current_vfs && pci_vfs_assigned(pdev)) { 5360 dev_err(&pdev->dev, 5361 "Cannot modify SR-IOV while VFs are assigned\n"); 5362 return current_vfs; 5363 } 5364 /* Note that the upper-level code ensures that we're never called with 5365 * a non-zero "num_vfs" when we already have VFs instantiated. But 5366 * it never hurts to code defensively. 5367 */ 5368 if (num_vfs != 0 && current_vfs != 0) 5369 return -EBUSY; 5370 5371 /* Nothing to do for no change. */ 5372 if (num_vfs == current_vfs) 5373 return num_vfs; 5374 5375 /* Disable SRIOV when zero is passed. */ 5376 if (!num_vfs) { 5377 pci_disable_sriov(pdev); 5378 /* free VF Management Interface */ 5379 unregister_netdev(adap->port[0]); 5380 free_netdev(adap->port[0]); 5381 adap->port[0] = NULL; 5382 5383 /* free VF resources */ 5384 adap->num_vfs = 0; 5385 kfree(adap->vfinfo); 5386 adap->vfinfo = NULL; 5387 return 0; 5388 } 5389 5390 if (!current_vfs) { 5391 struct fw_pfvf_cmd port_cmd, port_rpl; 5392 struct net_device *netdev; 5393 unsigned int pmask, port; 5394 struct pci_dev *pbridge; 5395 struct port_info *pi; 5396 char name[IFNAMSIZ]; 5397 u32 devcap2; 5398 u16 flags; 5399 int pos; 5400 5401 /* If we want to instantiate Virtual Functions, then our 5402 * parent bridge's PCI-E needs to support Alternative Routing 5403 * ID (ARI) because our VFs will show up at function offset 8 5404 * and above. 5405 */ 5406 pbridge = pdev->bus->self; 5407 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5408 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5409 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5410 5411 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5412 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5413 /* Our parent bridge does not support ARI so issue a 5414 * warning and skip instantiating the VFs. They 5415 * won't be reachable. 5416 */ 5417 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5418 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5419 PCI_FUNC(pbridge->devfn)); 5420 return -ENOTSUPP; 5421 } 5422 memset(&port_cmd, 0, sizeof(port_cmd)); 5423 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5424 FW_CMD_REQUEST_F | 5425 FW_CMD_READ_F | 5426 FW_PFVF_CMD_PFN_V(adap->pf) | 5427 FW_PFVF_CMD_VFN_V(0)); 5428 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5429 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5430 &port_rpl); 5431 if (err) 5432 return err; 5433 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5434 port = ffs(pmask) - 1; 5435 /* Allocate VF Management Interface. */ 5436 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5437 adap->pf); 5438 netdev = alloc_netdev(sizeof(struct port_info), 5439 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5440 if (!netdev) 5441 return -ENOMEM; 5442 5443 pi = netdev_priv(netdev); 5444 pi->adapter = adap; 5445 pi->lport = port; 5446 pi->tx_chan = port; 5447 SET_NETDEV_DEV(netdev, &pdev->dev); 5448 5449 adap->port[0] = netdev; 5450 pi->port_id = 0; 5451 5452 err = register_netdev(adap->port[0]); 5453 if (err) { 5454 pr_info("Unable to register VF mgmt netdev %s\n", name); 5455 free_netdev(adap->port[0]); 5456 adap->port[0] = NULL; 5457 return err; 5458 } 5459 /* Allocate and set up VF Information. */ 5460 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5461 sizeof(struct vf_info), GFP_KERNEL); 5462 if (!adap->vfinfo) { 5463 unregister_netdev(adap->port[0]); 5464 free_netdev(adap->port[0]); 5465 adap->port[0] = NULL; 5466 return -ENOMEM; 5467 } 5468 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5469 } 5470 /* Instantiate the requested number of VFs. */ 5471 err = pci_enable_sriov(pdev, num_vfs); 5472 if (err) { 5473 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5474 if (!current_vfs) { 5475 unregister_netdev(adap->port[0]); 5476 free_netdev(adap->port[0]); 5477 adap->port[0] = NULL; 5478 kfree(adap->vfinfo); 5479 adap->vfinfo = NULL; 5480 } 5481 return err; 5482 } 5483 5484 adap->num_vfs = num_vfs; 5485 return num_vfs; 5486 } 5487 #endif /* CONFIG_PCI_IOV */ 5488 5489 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5490 { 5491 struct net_device *netdev; 5492 struct adapter *adapter; 5493 static int adap_idx = 1; 5494 int s_qpp, qpp, num_seg; 5495 struct port_info *pi; 5496 bool highdma = false; 5497 enum chip_type chip; 5498 void __iomem *regs; 5499 int func, chip_ver; 5500 u16 device_id; 5501 int i, err; 5502 u32 whoami; 5503 5504 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5505 5506 err = pci_request_regions(pdev, KBUILD_MODNAME); 5507 if (err) { 5508 /* Just info, some other driver may have claimed the device. */ 5509 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5510 return err; 5511 } 5512 5513 err = pci_enable_device(pdev); 5514 if (err) { 5515 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5516 goto out_release_regions; 5517 } 5518 5519 regs = pci_ioremap_bar(pdev, 0); 5520 if (!regs) { 5521 dev_err(&pdev->dev, "cannot map device registers\n"); 5522 err = -ENOMEM; 5523 goto out_disable_device; 5524 } 5525 5526 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5527 if (!adapter) { 5528 err = -ENOMEM; 5529 goto out_unmap_bar0; 5530 } 5531 5532 adapter->regs = regs; 5533 err = t4_wait_dev_ready(regs); 5534 if (err < 0) 5535 goto out_free_adapter; 5536 5537 /* We control everything through one PF */ 5538 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5539 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5540 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5541 if (chip < 0) { 5542 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5543 err = chip; 5544 goto out_free_adapter; 5545 } 5546 chip_ver = CHELSIO_CHIP_VERSION(chip); 5547 func = chip_ver <= CHELSIO_T5 ? 5548 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5549 5550 adapter->pdev = pdev; 5551 adapter->pdev_dev = &pdev->dev; 5552 adapter->name = pci_name(pdev); 5553 adapter->mbox = func; 5554 adapter->pf = func; 5555 adapter->params.chip = chip; 5556 adapter->adap_idx = adap_idx; 5557 adapter->msg_enable = DFLT_MSG_ENABLE; 5558 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5559 (sizeof(struct mbox_cmd) * 5560 T4_OS_LOG_MBOX_CMDS), 5561 GFP_KERNEL); 5562 if (!adapter->mbox_log) { 5563 err = -ENOMEM; 5564 goto out_free_adapter; 5565 } 5566 spin_lock_init(&adapter->mbox_lock); 5567 INIT_LIST_HEAD(&adapter->mlist.list); 5568 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5569 pci_set_drvdata(pdev, adapter); 5570 5571 if (func != ent->driver_data) { 5572 pci_disable_device(pdev); 5573 pci_save_state(pdev); /* to restore SR-IOV later */ 5574 return 0; 5575 } 5576 5577 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5578 highdma = true; 5579 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5580 if (err) { 5581 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5582 "coherent allocations\n"); 5583 goto out_free_adapter; 5584 } 5585 } else { 5586 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5587 if (err) { 5588 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5589 goto out_free_adapter; 5590 } 5591 } 5592 5593 pci_enable_pcie_error_reporting(pdev); 5594 pci_set_master(pdev); 5595 pci_save_state(pdev); 5596 adap_idx++; 5597 adapter->workq = create_singlethread_workqueue("cxgb4"); 5598 if (!adapter->workq) { 5599 err = -ENOMEM; 5600 goto out_free_adapter; 5601 } 5602 5603 /* PCI device has been enabled */ 5604 adapter->flags |= DEV_ENABLED; 5605 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5606 5607 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5608 * Ingress Packet Data to Free List Buffers in order to allow for 5609 * chipset performance optimizations between the Root Complex and 5610 * Memory Controllers. (Messages to the associated Ingress Queue 5611 * notifying new Packet Placement in the Free Lists Buffers will be 5612 * send without the Relaxed Ordering Attribute thus guaranteeing that 5613 * all preceding PCIe Transaction Layer Packets will be processed 5614 * first.) But some Root Complexes have various issues with Upstream 5615 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5616 * The PCIe devices which under the Root Complexes will be cleared the 5617 * Relaxed Ordering bit in the configuration space, So we check our 5618 * PCIe configuration space to see if it's flagged with advice against 5619 * using Relaxed Ordering. 5620 */ 5621 if (!pcie_relaxed_ordering_enabled(pdev)) 5622 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5623 5624 spin_lock_init(&adapter->stats_lock); 5625 spin_lock_init(&adapter->tid_release_lock); 5626 spin_lock_init(&adapter->win0_lock); 5627 5628 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5629 INIT_WORK(&adapter->db_full_task, process_db_full); 5630 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5631 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5632 5633 err = t4_prep_adapter(adapter); 5634 if (err) 5635 goto out_free_adapter; 5636 5637 if (is_kdump_kernel()) { 5638 /* Collect hardware state and append to /proc/vmcore */ 5639 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5640 if (err) { 5641 dev_warn(adapter->pdev_dev, 5642 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5643 err); 5644 err = 0; 5645 } 5646 } 5647 5648 if (!is_t4(adapter->params.chip)) { 5649 s_qpp = (QUEUESPERPAGEPF0_S + 5650 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5651 adapter->pf); 5652 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5653 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5654 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5655 5656 /* Each segment size is 128B. Write coalescing is enabled only 5657 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5658 * queue is less no of segments that can be accommodated in 5659 * a page size. 5660 */ 5661 if (qpp > num_seg) { 5662 dev_err(&pdev->dev, 5663 "Incorrect number of egress queues per page\n"); 5664 err = -EINVAL; 5665 goto out_free_adapter; 5666 } 5667 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5668 pci_resource_len(pdev, 2)); 5669 if (!adapter->bar2) { 5670 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5671 err = -ENOMEM; 5672 goto out_free_adapter; 5673 } 5674 } 5675 5676 setup_memwin(adapter); 5677 err = adap_init0(adapter); 5678 #ifdef CONFIG_DEBUG_FS 5679 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5680 #endif 5681 setup_memwin_rdma(adapter); 5682 if (err) 5683 goto out_unmap_bar; 5684 5685 /* configure SGE_STAT_CFG_A to read WC stats */ 5686 if (!is_t4(adapter->params.chip)) 5687 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5688 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5689 T6_STATMODE_V(0))); 5690 5691 /* Initialize hash mac addr list */ 5692 INIT_LIST_HEAD(&adapter->mac_hlist); 5693 5694 for_each_port(adapter, i) { 5695 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5696 MAX_ETH_QSETS); 5697 if (!netdev) { 5698 err = -ENOMEM; 5699 goto out_free_dev; 5700 } 5701 5702 SET_NETDEV_DEV(netdev, &pdev->dev); 5703 5704 adapter->port[i] = netdev; 5705 pi = netdev_priv(netdev); 5706 pi->adapter = adapter; 5707 pi->xact_addr_filt = -1; 5708 pi->port_id = i; 5709 netdev->irq = pdev->irq; 5710 5711 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5712 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5713 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5714 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5715 NETIF_F_HW_TC; 5716 5717 if (chip_ver > CHELSIO_T5) { 5718 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5719 NETIF_F_IPV6_CSUM | 5720 NETIF_F_RXCSUM | 5721 NETIF_F_GSO_UDP_TUNNEL | 5722 NETIF_F_TSO | NETIF_F_TSO6; 5723 5724 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 5725 NETIF_F_HW_TLS_RECORD; 5726 } 5727 5728 if (highdma) 5729 netdev->hw_features |= NETIF_F_HIGHDMA; 5730 netdev->features |= netdev->hw_features; 5731 netdev->vlan_features = netdev->features & VLAN_FEAT; 5732 5733 netdev->priv_flags |= IFF_UNICAST_FLT; 5734 5735 /* MTU range: 81 - 9600 */ 5736 netdev->min_mtu = 81; /* accommodate SACK */ 5737 netdev->max_mtu = MAX_MTU; 5738 5739 netdev->netdev_ops = &cxgb4_netdev_ops; 5740 #ifdef CONFIG_CHELSIO_T4_DCB 5741 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5742 cxgb4_dcb_state_init(netdev); 5743 cxgb4_dcb_version_init(netdev); 5744 #endif 5745 cxgb4_set_ethtool_ops(netdev); 5746 } 5747 5748 cxgb4_init_ethtool_dump(adapter); 5749 5750 pci_set_drvdata(pdev, adapter); 5751 5752 if (adapter->flags & FW_OK) { 5753 err = t4_port_init(adapter, func, func, 0); 5754 if (err) 5755 goto out_free_dev; 5756 } else if (adapter->params.nports == 1) { 5757 /* If we don't have a connection to the firmware -- possibly 5758 * because of an error -- grab the raw VPD parameters so we 5759 * can set the proper MAC Address on the debug network 5760 * interface that we've created. 5761 */ 5762 u8 hw_addr[ETH_ALEN]; 5763 u8 *na = adapter->params.vpd.na; 5764 5765 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5766 if (!err) { 5767 for (i = 0; i < ETH_ALEN; i++) 5768 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5769 hex2val(na[2 * i + 1])); 5770 t4_set_hw_addr(adapter, 0, hw_addr); 5771 } 5772 } 5773 5774 if (!(adapter->flags & FW_OK)) 5775 goto fw_attach_fail; 5776 5777 /* Configure queues and allocate tables now, they can be needed as 5778 * soon as the first register_netdev completes. 5779 */ 5780 err = cfg_queues(adapter); 5781 if (err) 5782 goto out_free_dev; 5783 5784 adapter->smt = t4_init_smt(); 5785 if (!adapter->smt) { 5786 /* We tolerate a lack of SMT, giving up some functionality */ 5787 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5788 } 5789 5790 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5791 if (!adapter->l2t) { 5792 /* We tolerate a lack of L2T, giving up some functionality */ 5793 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5794 adapter->params.offload = 0; 5795 } 5796 5797 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5798 sizeof(struct mps_encap_entry), 5799 GFP_KERNEL); 5800 if (!adapter->mps_encap) 5801 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5802 5803 #if IS_ENABLED(CONFIG_IPV6) 5804 if (chip_ver <= CHELSIO_T5 && 5805 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5806 /* CLIP functionality is not present in hardware, 5807 * hence disable all offload features 5808 */ 5809 dev_warn(&pdev->dev, 5810 "CLIP not enabled in hardware, continuing\n"); 5811 adapter->params.offload = 0; 5812 } else { 5813 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5814 adapter->clipt_end); 5815 if (!adapter->clipt) { 5816 /* We tolerate a lack of clip_table, giving up 5817 * some functionality 5818 */ 5819 dev_warn(&pdev->dev, 5820 "could not allocate Clip table, continuing\n"); 5821 adapter->params.offload = 0; 5822 } 5823 } 5824 #endif 5825 5826 for_each_port(adapter, i) { 5827 pi = adap2pinfo(adapter, i); 5828 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5829 if (!pi->sched_tbl) 5830 dev_warn(&pdev->dev, 5831 "could not activate scheduling on port %d\n", 5832 i); 5833 } 5834 5835 if (tid_init(&adapter->tids) < 0) { 5836 dev_warn(&pdev->dev, "could not allocate TID table, " 5837 "continuing\n"); 5838 adapter->params.offload = 0; 5839 } else { 5840 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5841 if (!adapter->tc_u32) 5842 dev_warn(&pdev->dev, 5843 "could not offload tc u32, continuing\n"); 5844 5845 if (cxgb4_init_tc_flower(adapter)) 5846 dev_warn(&pdev->dev, 5847 "could not offload tc flower, continuing\n"); 5848 } 5849 5850 if (is_offload(adapter) || is_hashfilter(adapter)) { 5851 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5852 u32 hash_base, hash_reg; 5853 5854 if (chip_ver <= CHELSIO_T5) { 5855 hash_reg = LE_DB_TID_HASHBASE_A; 5856 hash_base = t4_read_reg(adapter, hash_reg); 5857 adapter->tids.hash_base = hash_base / 4; 5858 } else { 5859 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5860 hash_base = t4_read_reg(adapter, hash_reg); 5861 adapter->tids.hash_base = hash_base; 5862 } 5863 } 5864 } 5865 5866 /* See what interrupts we'll be using */ 5867 if (msi > 1 && enable_msix(adapter) == 0) 5868 adapter->flags |= USING_MSIX; 5869 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5870 adapter->flags |= USING_MSI; 5871 if (msi > 1) 5872 free_msix_info(adapter); 5873 } 5874 5875 /* check for PCI Express bandwidth capabiltites */ 5876 pcie_print_link_status(pdev); 5877 5878 err = init_rss(adapter); 5879 if (err) 5880 goto out_free_dev; 5881 5882 err = setup_fw_sge_queues(adapter); 5883 if (err) { 5884 dev_err(adapter->pdev_dev, 5885 "FW sge queue allocation failed, err %d", err); 5886 goto out_free_dev; 5887 } 5888 5889 fw_attach_fail: 5890 /* 5891 * The card is now ready to go. If any errors occur during device 5892 * registration we do not fail the whole card but rather proceed only 5893 * with the ports we manage to register successfully. However we must 5894 * register at least one net device. 5895 */ 5896 for_each_port(adapter, i) { 5897 pi = adap2pinfo(adapter, i); 5898 adapter->port[i]->dev_port = pi->lport; 5899 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5900 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5901 5902 netif_carrier_off(adapter->port[i]); 5903 5904 err = register_netdev(adapter->port[i]); 5905 if (err) 5906 break; 5907 adapter->chan_map[pi->tx_chan] = i; 5908 print_port_info(adapter->port[i]); 5909 } 5910 if (i == 0) { 5911 dev_err(&pdev->dev, "could not register any net devices\n"); 5912 goto out_free_dev; 5913 } 5914 if (err) { 5915 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5916 err = 0; 5917 } 5918 5919 if (cxgb4_debugfs_root) { 5920 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5921 cxgb4_debugfs_root); 5922 setup_debugfs(adapter); 5923 } 5924 5925 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5926 pdev->needs_freset = 1; 5927 5928 if (is_uld(adapter)) { 5929 mutex_lock(&uld_mutex); 5930 list_add_tail(&adapter->list_node, &adapter_list); 5931 mutex_unlock(&uld_mutex); 5932 } 5933 5934 if (!is_t4(adapter->params.chip)) 5935 cxgb4_ptp_init(adapter); 5936 5937 if (IS_REACHABLE(CONFIG_THERMAL) && 5938 !is_t4(adapter->params.chip) && (adapter->flags & FW_OK)) 5939 cxgb4_thermal_init(adapter); 5940 5941 print_adapter_info(adapter); 5942 return 0; 5943 5944 out_free_dev: 5945 t4_free_sge_resources(adapter); 5946 free_some_resources(adapter); 5947 if (adapter->flags & USING_MSIX) 5948 free_msix_info(adapter); 5949 if (adapter->num_uld || adapter->num_ofld_uld) 5950 t4_uld_mem_free(adapter); 5951 out_unmap_bar: 5952 if (!is_t4(adapter->params.chip)) 5953 iounmap(adapter->bar2); 5954 out_free_adapter: 5955 if (adapter->workq) 5956 destroy_workqueue(adapter->workq); 5957 5958 kfree(adapter->mbox_log); 5959 kfree(adapter); 5960 out_unmap_bar0: 5961 iounmap(regs); 5962 out_disable_device: 5963 pci_disable_pcie_error_reporting(pdev); 5964 pci_disable_device(pdev); 5965 out_release_regions: 5966 pci_release_regions(pdev); 5967 return err; 5968 } 5969 5970 static void remove_one(struct pci_dev *pdev) 5971 { 5972 struct adapter *adapter = pci_get_drvdata(pdev); 5973 struct hash_mac_addr *entry, *tmp; 5974 5975 if (!adapter) { 5976 pci_release_regions(pdev); 5977 return; 5978 } 5979 5980 adapter->flags |= SHUTTING_DOWN; 5981 5982 if (adapter->pf == 4) { 5983 int i; 5984 5985 /* Tear down per-adapter Work Queue first since it can contain 5986 * references to our adapter data structure. 5987 */ 5988 destroy_workqueue(adapter->workq); 5989 5990 if (is_uld(adapter)) { 5991 detach_ulds(adapter); 5992 t4_uld_clean_up(adapter); 5993 } 5994 5995 adap_free_hma_mem(adapter); 5996 5997 disable_interrupts(adapter); 5998 5999 for_each_port(adapter, i) 6000 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6001 unregister_netdev(adapter->port[i]); 6002 6003 debugfs_remove_recursive(adapter->debugfs_root); 6004 6005 if (!is_t4(adapter->params.chip)) 6006 cxgb4_ptp_stop(adapter); 6007 if (IS_REACHABLE(CONFIG_THERMAL)) 6008 cxgb4_thermal_remove(adapter); 6009 6010 /* If we allocated filters, free up state associated with any 6011 * valid filters ... 6012 */ 6013 clear_all_filters(adapter); 6014 6015 if (adapter->flags & FULL_INIT_DONE) 6016 cxgb_down(adapter); 6017 6018 if (adapter->flags & USING_MSIX) 6019 free_msix_info(adapter); 6020 if (adapter->num_uld || adapter->num_ofld_uld) 6021 t4_uld_mem_free(adapter); 6022 free_some_resources(adapter); 6023 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 6024 list) { 6025 list_del(&entry->list); 6026 kfree(entry); 6027 } 6028 6029 #if IS_ENABLED(CONFIG_IPV6) 6030 t4_cleanup_clip_tbl(adapter); 6031 #endif 6032 if (!is_t4(adapter->params.chip)) 6033 iounmap(adapter->bar2); 6034 } 6035 #ifdef CONFIG_PCI_IOV 6036 else { 6037 cxgb4_iov_configure(adapter->pdev, 0); 6038 } 6039 #endif 6040 iounmap(adapter->regs); 6041 pci_disable_pcie_error_reporting(pdev); 6042 if ((adapter->flags & DEV_ENABLED)) { 6043 pci_disable_device(pdev); 6044 adapter->flags &= ~DEV_ENABLED; 6045 } 6046 pci_release_regions(pdev); 6047 kfree(adapter->mbox_log); 6048 synchronize_rcu(); 6049 kfree(adapter); 6050 } 6051 6052 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 6053 * delivery. This is essentially a stripped down version of the PCI remove() 6054 * function where we do the minimal amount of work necessary to shutdown any 6055 * further activity. 6056 */ 6057 static void shutdown_one(struct pci_dev *pdev) 6058 { 6059 struct adapter *adapter = pci_get_drvdata(pdev); 6060 6061 /* As with remove_one() above (see extended comment), we only want do 6062 * do cleanup on PCI Devices which went all the way through init_one() 6063 * ... 6064 */ 6065 if (!adapter) { 6066 pci_release_regions(pdev); 6067 return; 6068 } 6069 6070 adapter->flags |= SHUTTING_DOWN; 6071 6072 if (adapter->pf == 4) { 6073 int i; 6074 6075 for_each_port(adapter, i) 6076 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6077 cxgb_close(adapter->port[i]); 6078 6079 if (is_uld(adapter)) { 6080 detach_ulds(adapter); 6081 t4_uld_clean_up(adapter); 6082 } 6083 6084 disable_interrupts(adapter); 6085 disable_msi(adapter); 6086 6087 t4_sge_stop(adapter); 6088 if (adapter->flags & FW_OK) 6089 t4_fw_bye(adapter, adapter->mbox); 6090 } 6091 } 6092 6093 static struct pci_driver cxgb4_driver = { 6094 .name = KBUILD_MODNAME, 6095 .id_table = cxgb4_pci_tbl, 6096 .probe = init_one, 6097 .remove = remove_one, 6098 .shutdown = shutdown_one, 6099 #ifdef CONFIG_PCI_IOV 6100 .sriov_configure = cxgb4_iov_configure, 6101 #endif 6102 .err_handler = &cxgb4_eeh, 6103 }; 6104 6105 static int __init cxgb4_init_module(void) 6106 { 6107 int ret; 6108 6109 /* Debugfs support is optional, just warn if this fails */ 6110 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6111 if (!cxgb4_debugfs_root) 6112 pr_warn("could not create debugfs entry, continuing\n"); 6113 6114 ret = pci_register_driver(&cxgb4_driver); 6115 if (ret < 0) 6116 debugfs_remove(cxgb4_debugfs_root); 6117 6118 #if IS_ENABLED(CONFIG_IPV6) 6119 if (!inet6addr_registered) { 6120 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6121 inet6addr_registered = true; 6122 } 6123 #endif 6124 6125 return ret; 6126 } 6127 6128 static void __exit cxgb4_cleanup_module(void) 6129 { 6130 #if IS_ENABLED(CONFIG_IPV6) 6131 if (inet6addr_registered) { 6132 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6133 inet6addr_registered = false; 6134 } 6135 #endif 6136 pci_unregister_driver(&cxgb4_driver); 6137 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6138 } 6139 6140 module_init(cxgb4_init_module); 6141 module_exit(cxgb4_cleanup_module); 6142