1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "srq.h" 78 #include "cxgb4_debugfs.h" 79 #include "clip_tbl.h" 80 #include "l2t.h" 81 #include "smt.h" 82 #include "sched.h" 83 #include "cxgb4_tc_u32.h" 84 #include "cxgb4_tc_flower.h" 85 #include "cxgb4_ptp.h" 86 #include "cxgb4_cudbg.h" 87 88 char cxgb4_driver_name[] = KBUILD_MODNAME; 89 90 #ifdef DRV_VERSION 91 #undef DRV_VERSION 92 #endif 93 #define DRV_VERSION "2.0.0-ko" 94 const char cxgb4_driver_version[] = DRV_VERSION; 95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 96 97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 100 101 /* Macros needed to support the PCI Device ID Table ... 102 */ 103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 104 static const struct pci_device_id cxgb4_pci_tbl[] = { 105 #define CXGB4_UNIFIED_PF 0x4 106 107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 108 109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 110 * called for both. 111 */ 112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 113 114 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 116 117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 118 { 0, } \ 119 } 120 121 #include "t4_pci_id_tbl.h" 122 123 #define FW4_FNAME "cxgb4/t4fw.bin" 124 #define FW5_FNAME "cxgb4/t5fw.bin" 125 #define FW6_FNAME "cxgb4/t6fw.bin" 126 #define FW4_CFNAME "cxgb4/t4-config.txt" 127 #define FW5_CFNAME "cxgb4/t5-config.txt" 128 #define FW6_CFNAME "cxgb4/t6-config.txt" 129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 131 #define PHY_AQ1202_DEVICEID 0x4409 132 #define PHY_BCM84834_DEVICEID 0x4486 133 134 MODULE_DESCRIPTION(DRV_DESC); 135 MODULE_AUTHOR("Chelsio Communications"); 136 MODULE_LICENSE("Dual BSD/GPL"); 137 MODULE_VERSION(DRV_VERSION); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 187 static void link_report(struct net_device *dev) 188 { 189 if (!netif_carrier_ok(dev)) 190 netdev_info(dev, "link down\n"); 191 else { 192 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 193 194 const char *s; 195 const struct port_info *p = netdev_priv(dev); 196 197 switch (p->link_cfg.speed) { 198 case 100: 199 s = "100Mbps"; 200 break; 201 case 1000: 202 s = "1Gbps"; 203 break; 204 case 10000: 205 s = "10Gbps"; 206 break; 207 case 25000: 208 s = "25Gbps"; 209 break; 210 case 40000: 211 s = "40Gbps"; 212 break; 213 case 50000: 214 s = "50Gbps"; 215 break; 216 case 100000: 217 s = "100Gbps"; 218 break; 219 default: 220 pr_info("%s: unsupported speed: %d\n", 221 dev->name, p->link_cfg.speed); 222 return; 223 } 224 225 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 226 fc[p->link_cfg.fc]); 227 } 228 } 229 230 #ifdef CONFIG_CHELSIO_T4_DCB 231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 233 { 234 struct port_info *pi = netdev_priv(dev); 235 struct adapter *adap = pi->adapter; 236 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 237 int i; 238 239 /* We use a simple mapping of Port TX Queue Index to DCB 240 * Priority when we're enabling DCB. 241 */ 242 for (i = 0; i < pi->nqsets; i++, txq++) { 243 u32 name, value; 244 int err; 245 246 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 247 FW_PARAMS_PARAM_X_V( 248 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 249 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 250 value = enable ? i : 0xffffffff; 251 252 /* Since we can be called while atomic (from "interrupt 253 * level") we need to issue the Set Parameters Commannd 254 * without sleeping (timeout < 0). 255 */ 256 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 257 &name, &value, 258 -FW_CMD_MAX_TIMEOUT); 259 260 if (err) 261 dev_err(adap->pdev_dev, 262 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 263 enable ? "set" : "unset", pi->port_id, i, -err); 264 else 265 txq->dcb_prio = enable ? value : 0; 266 } 267 } 268 269 int cxgb4_dcb_enabled(const struct net_device *dev) 270 { 271 struct port_info *pi = netdev_priv(dev); 272 273 if (!pi->dcb.enabled) 274 return 0; 275 276 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 277 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 278 } 279 #endif /* CONFIG_CHELSIO_T4_DCB */ 280 281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 282 { 283 struct net_device *dev = adapter->port[port_id]; 284 285 /* Skip changes from disabled ports. */ 286 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 287 if (link_stat) 288 netif_carrier_on(dev); 289 else { 290 #ifdef CONFIG_CHELSIO_T4_DCB 291 if (cxgb4_dcb_enabled(dev)) { 292 cxgb4_dcb_reset(dev); 293 dcb_tx_queue_prio_enable(dev, false); 294 } 295 #endif /* CONFIG_CHELSIO_T4_DCB */ 296 netif_carrier_off(dev); 297 } 298 299 link_report(dev); 300 } 301 } 302 303 void t4_os_portmod_changed(struct adapter *adap, int port_id) 304 { 305 static const char *mod_str[] = { 306 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 307 }; 308 309 struct net_device *dev = adap->port[port_id]; 310 struct port_info *pi = netdev_priv(dev); 311 312 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 313 netdev_info(dev, "port module unplugged\n"); 314 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 315 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 316 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 317 netdev_info(dev, "%s: unsupported port module inserted\n", 318 dev->name); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 320 netdev_info(dev, "%s: unknown port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 323 netdev_info(dev, "%s: transceiver module error\n", dev->name); 324 else 325 netdev_info(dev, "%s: unknown module type %d inserted\n", 326 dev->name, pi->mod_type); 327 328 /* If the interface is running, then we'll need any "sticky" Link 329 * Parameters redone with a new Transceiver Module. 330 */ 331 pi->link_cfg.redo_l1cfg = netif_running(dev); 332 } 333 334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 335 module_param(dbfifo_int_thresh, int, 0644); 336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 337 338 /* 339 * usecs to sleep while draining the dbfifo 340 */ 341 static int dbfifo_drain_delay = 1000; 342 module_param(dbfifo_drain_delay, int, 0644); 343 MODULE_PARM_DESC(dbfifo_drain_delay, 344 "usecs to sleep while draining the dbfifo"); 345 346 static inline int cxgb4_set_addr_hash(struct port_info *pi) 347 { 348 struct adapter *adap = pi->adapter; 349 u64 vec = 0; 350 bool ucast = false; 351 struct hash_mac_addr *entry; 352 353 /* Calculate the hash vector for the updated list and program it */ 354 list_for_each_entry(entry, &adap->mac_hlist, list) { 355 ucast |= is_unicast_ether_addr(entry->addr); 356 vec |= (1ULL << hash_mac_addr(entry->addr)); 357 } 358 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 359 vec, false); 360 } 361 362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 363 { 364 struct port_info *pi = netdev_priv(netdev); 365 struct adapter *adap = pi->adapter; 366 int ret; 367 u64 mhash = 0; 368 u64 uhash = 0; 369 bool free = false; 370 bool ucast = is_unicast_ether_addr(mac_addr); 371 const u8 *maclist[1] = {mac_addr}; 372 struct hash_mac_addr *new_entry; 373 374 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 375 NULL, ucast ? &uhash : &mhash, false); 376 if (ret < 0) 377 goto out; 378 /* if hash != 0, then add the addr to hash addr list 379 * so on the end we will calculate the hash for the 380 * list and program it 381 */ 382 if (uhash || mhash) { 383 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 384 if (!new_entry) 385 return -ENOMEM; 386 ether_addr_copy(new_entry->addr, mac_addr); 387 list_add_tail(&new_entry->list, &adap->mac_hlist); 388 ret = cxgb4_set_addr_hash(pi); 389 } 390 out: 391 return ret < 0 ? ret : 0; 392 } 393 394 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 395 { 396 struct port_info *pi = netdev_priv(netdev); 397 struct adapter *adap = pi->adapter; 398 int ret; 399 const u8 *maclist[1] = {mac_addr}; 400 struct hash_mac_addr *entry, *tmp; 401 402 /* If the MAC address to be removed is in the hash addr 403 * list, delete it from the list and update hash vector 404 */ 405 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 406 if (ether_addr_equal(entry->addr, mac_addr)) { 407 list_del(&entry->list); 408 kfree(entry); 409 return cxgb4_set_addr_hash(pi); 410 } 411 } 412 413 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 414 return ret < 0 ? -EINVAL : 0; 415 } 416 417 /* 418 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 419 * If @mtu is -1 it is left unchanged. 420 */ 421 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 422 { 423 struct port_info *pi = netdev_priv(dev); 424 struct adapter *adapter = pi->adapter; 425 426 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 427 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 429 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 430 (dev->flags & IFF_PROMISC) ? 1 : 0, 431 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 432 sleep_ok); 433 } 434 435 /** 436 * cxgb4_change_mac - Update match filter for a MAC address. 437 * @pi: the port_info 438 * @viid: the VI id 439 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 440 * or -1 441 * @addr: the new MAC address value 442 * @persist: whether a new MAC allocation should be persistent 443 * @add_smt: if true also add the address to the HW SMT 444 * 445 * Modifies an MPS filter and sets it to the new MAC address if 446 * @tcam_idx >= 0, or adds the MAC address to a new filter if 447 * @tcam_idx < 0. In the latter case the address is added persistently 448 * if @persist is %true. 449 * Addresses are programmed to hash region, if tcam runs out of entries. 450 * 451 */ 452 static int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 453 int *tcam_idx, const u8 *addr, bool persist, 454 u8 *smt_idx) 455 { 456 struct adapter *adapter = pi->adapter; 457 struct hash_mac_addr *entry, *new_entry; 458 int ret; 459 460 ret = t4_change_mac(adapter, adapter->mbox, viid, 461 *tcam_idx, addr, persist, smt_idx); 462 /* We ran out of TCAM entries. try programming hash region. */ 463 if (ret == -ENOMEM) { 464 /* If the MAC address to be updated is in the hash addr 465 * list, update it from the list 466 */ 467 list_for_each_entry(entry, &adapter->mac_hlist, list) { 468 if (entry->iface_mac) { 469 ether_addr_copy(entry->addr, addr); 470 goto set_hash; 471 } 472 } 473 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 474 if (!new_entry) 475 return -ENOMEM; 476 ether_addr_copy(new_entry->addr, addr); 477 new_entry->iface_mac = true; 478 list_add_tail(&new_entry->list, &adapter->mac_hlist); 479 set_hash: 480 ret = cxgb4_set_addr_hash(pi); 481 } else if (ret >= 0) { 482 *tcam_idx = ret; 483 ret = 0; 484 } 485 486 return ret; 487 } 488 489 /* 490 * link_start - enable a port 491 * @dev: the port to enable 492 * 493 * Performs the MAC and PHY actions needed to enable a port. 494 */ 495 static int link_start(struct net_device *dev) 496 { 497 int ret; 498 struct port_info *pi = netdev_priv(dev); 499 unsigned int mb = pi->adapter->pf; 500 501 /* 502 * We do not set address filters and promiscuity here, the stack does 503 * that step explicitly. 504 */ 505 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 506 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 507 if (ret == 0) 508 ret = cxgb4_change_mac(pi, pi->viid, &pi->xact_addr_filt, 509 dev->dev_addr, true, &pi->smt_idx); 510 if (ret == 0) 511 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 512 &pi->link_cfg); 513 if (ret == 0) { 514 local_bh_disable(); 515 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 516 true, CXGB4_DCB_ENABLED); 517 local_bh_enable(); 518 } 519 520 return ret; 521 } 522 523 #ifdef CONFIG_CHELSIO_T4_DCB 524 /* Handle a Data Center Bridging update message from the firmware. */ 525 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 526 { 527 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 528 struct net_device *dev = adap->port[adap->chan_map[port]]; 529 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 530 int new_dcb_enabled; 531 532 cxgb4_dcb_handle_fw_update(adap, pcmd); 533 new_dcb_enabled = cxgb4_dcb_enabled(dev); 534 535 /* If the DCB has become enabled or disabled on the port then we're 536 * going to need to set up/tear down DCB Priority parameters for the 537 * TX Queues associated with the port. 538 */ 539 if (new_dcb_enabled != old_dcb_enabled) 540 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 541 } 542 #endif /* CONFIG_CHELSIO_T4_DCB */ 543 544 /* Response queue handler for the FW event queue. 545 */ 546 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 547 const struct pkt_gl *gl) 548 { 549 u8 opcode = ((const struct rss_header *)rsp)->opcode; 550 551 rsp++; /* skip RSS header */ 552 553 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 554 */ 555 if (unlikely(opcode == CPL_FW4_MSG && 556 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 557 rsp++; 558 opcode = ((const struct rss_header *)rsp)->opcode; 559 rsp++; 560 if (opcode != CPL_SGE_EGR_UPDATE) { 561 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 562 , opcode); 563 goto out; 564 } 565 } 566 567 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 568 const struct cpl_sge_egr_update *p = (void *)rsp; 569 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 570 struct sge_txq *txq; 571 572 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 573 txq->restarts++; 574 if (txq->q_type == CXGB4_TXQ_ETH) { 575 struct sge_eth_txq *eq; 576 577 eq = container_of(txq, struct sge_eth_txq, q); 578 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 579 } else { 580 struct sge_uld_txq *oq; 581 582 oq = container_of(txq, struct sge_uld_txq, q); 583 tasklet_schedule(&oq->qresume_tsk); 584 } 585 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 586 const struct cpl_fw6_msg *p = (void *)rsp; 587 588 #ifdef CONFIG_CHELSIO_T4_DCB 589 const struct fw_port_cmd *pcmd = (const void *)p->data; 590 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 591 unsigned int action = 592 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 593 594 if (cmd == FW_PORT_CMD && 595 (action == FW_PORT_ACTION_GET_PORT_INFO || 596 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 597 int port = FW_PORT_CMD_PORTID_G( 598 be32_to_cpu(pcmd->op_to_portid)); 599 struct net_device *dev; 600 int dcbxdis, state_input; 601 602 dev = q->adap->port[q->adap->chan_map[port]]; 603 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 604 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 605 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 606 & FW_PORT_CMD_DCBXDIS32_F)); 607 state_input = (dcbxdis 608 ? CXGB4_DCB_INPUT_FW_DISABLED 609 : CXGB4_DCB_INPUT_FW_ENABLED); 610 611 cxgb4_dcb_state_fsm(dev, state_input); 612 } 613 614 if (cmd == FW_PORT_CMD && 615 action == FW_PORT_ACTION_L2_DCB_CFG) 616 dcb_rpl(q->adap, pcmd); 617 else 618 #endif 619 if (p->type == 0) 620 t4_handle_fw_rpl(q->adap, p->data); 621 } else if (opcode == CPL_L2T_WRITE_RPL) { 622 const struct cpl_l2t_write_rpl *p = (void *)rsp; 623 624 do_l2t_write_rpl(q->adap, p); 625 } else if (opcode == CPL_SMT_WRITE_RPL) { 626 const struct cpl_smt_write_rpl *p = (void *)rsp; 627 628 do_smt_write_rpl(q->adap, p); 629 } else if (opcode == CPL_SET_TCB_RPL) { 630 const struct cpl_set_tcb_rpl *p = (void *)rsp; 631 632 filter_rpl(q->adap, p); 633 } else if (opcode == CPL_ACT_OPEN_RPL) { 634 const struct cpl_act_open_rpl *p = (void *)rsp; 635 636 hash_filter_rpl(q->adap, p); 637 } else if (opcode == CPL_ABORT_RPL_RSS) { 638 const struct cpl_abort_rpl_rss *p = (void *)rsp; 639 640 hash_del_filter_rpl(q->adap, p); 641 } else if (opcode == CPL_SRQ_TABLE_RPL) { 642 const struct cpl_srq_table_rpl *p = (void *)rsp; 643 644 do_srq_table_rpl(q->adap, p); 645 } else 646 dev_err(q->adap->pdev_dev, 647 "unexpected CPL %#x on FW event queue\n", opcode); 648 out: 649 return 0; 650 } 651 652 static void disable_msi(struct adapter *adapter) 653 { 654 if (adapter->flags & CXGB4_USING_MSIX) { 655 pci_disable_msix(adapter->pdev); 656 adapter->flags &= ~CXGB4_USING_MSIX; 657 } else if (adapter->flags & CXGB4_USING_MSI) { 658 pci_disable_msi(adapter->pdev); 659 adapter->flags &= ~CXGB4_USING_MSI; 660 } 661 } 662 663 /* 664 * Interrupt handler for non-data events used with MSI-X. 665 */ 666 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 667 { 668 struct adapter *adap = cookie; 669 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 670 671 if (v & PFSW_F) { 672 adap->swintr = 1; 673 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 674 } 675 if (adap->flags & CXGB4_MASTER_PF) 676 t4_slow_intr_handler(adap); 677 return IRQ_HANDLED; 678 } 679 680 /* 681 * Name the MSI-X interrupts. 682 */ 683 static void name_msix_vecs(struct adapter *adap) 684 { 685 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 686 687 /* non-data interrupts */ 688 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 689 690 /* FW events */ 691 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 692 adap->port[0]->name); 693 694 /* Ethernet queues */ 695 for_each_port(adap, j) { 696 struct net_device *d = adap->port[j]; 697 const struct port_info *pi = netdev_priv(d); 698 699 for (i = 0; i < pi->nqsets; i++, msi_idx++) 700 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 701 d->name, i); 702 } 703 } 704 705 static int request_msix_queue_irqs(struct adapter *adap) 706 { 707 struct sge *s = &adap->sge; 708 int err, ethqidx; 709 int msi_index = 2; 710 711 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 712 adap->msix_info[1].desc, &s->fw_evtq); 713 if (err) 714 return err; 715 716 for_each_ethrxq(s, ethqidx) { 717 err = request_irq(adap->msix_info[msi_index].vec, 718 t4_sge_intr_msix, 0, 719 adap->msix_info[msi_index].desc, 720 &s->ethrxq[ethqidx].rspq); 721 if (err) 722 goto unwind; 723 msi_index++; 724 } 725 return 0; 726 727 unwind: 728 while (--ethqidx >= 0) 729 free_irq(adap->msix_info[--msi_index].vec, 730 &s->ethrxq[ethqidx].rspq); 731 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 732 return err; 733 } 734 735 static void free_msix_queue_irqs(struct adapter *adap) 736 { 737 int i, msi_index = 2; 738 struct sge *s = &adap->sge; 739 740 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 741 for_each_ethrxq(s, i) 742 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 743 } 744 745 /** 746 * cxgb4_write_rss - write the RSS table for a given port 747 * @pi: the port 748 * @queues: array of queue indices for RSS 749 * 750 * Sets up the portion of the HW RSS table for the port's VI to distribute 751 * packets to the Rx queues in @queues. 752 * Should never be called before setting up sge eth rx queues 753 */ 754 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 755 { 756 u16 *rss; 757 int i, err; 758 struct adapter *adapter = pi->adapter; 759 const struct sge_eth_rxq *rxq; 760 761 rxq = &adapter->sge.ethrxq[pi->first_qset]; 762 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 763 if (!rss) 764 return -ENOMEM; 765 766 /* map the queue indices to queue ids */ 767 for (i = 0; i < pi->rss_size; i++, queues++) 768 rss[i] = rxq[*queues].rspq.abs_id; 769 770 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 771 pi->rss_size, rss, pi->rss_size); 772 /* If Tunnel All Lookup isn't specified in the global RSS 773 * Configuration, then we need to specify a default Ingress 774 * Queue for any ingress packets which aren't hashed. We'll 775 * use our first ingress queue ... 776 */ 777 if (!err) 778 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 779 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 780 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 781 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 782 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 783 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 784 rss[0]); 785 kfree(rss); 786 return err; 787 } 788 789 /** 790 * setup_rss - configure RSS 791 * @adap: the adapter 792 * 793 * Sets up RSS for each port. 794 */ 795 static int setup_rss(struct adapter *adap) 796 { 797 int i, j, err; 798 799 for_each_port(adap, i) { 800 const struct port_info *pi = adap2pinfo(adap, i); 801 802 /* Fill default values with equal distribution */ 803 for (j = 0; j < pi->rss_size; j++) 804 pi->rss[j] = j % pi->nqsets; 805 806 err = cxgb4_write_rss(pi, pi->rss); 807 if (err) 808 return err; 809 } 810 return 0; 811 } 812 813 /* 814 * Return the channel of the ingress queue with the given qid. 815 */ 816 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 817 { 818 qid -= p->ingr_start; 819 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 820 } 821 822 /* 823 * Wait until all NAPI handlers are descheduled. 824 */ 825 static void quiesce_rx(struct adapter *adap) 826 { 827 int i; 828 829 for (i = 0; i < adap->sge.ingr_sz; i++) { 830 struct sge_rspq *q = adap->sge.ingr_map[i]; 831 832 if (q && q->handler) 833 napi_disable(&q->napi); 834 } 835 } 836 837 /* Disable interrupt and napi handler */ 838 static void disable_interrupts(struct adapter *adap) 839 { 840 if (adap->flags & CXGB4_FULL_INIT_DONE) { 841 t4_intr_disable(adap); 842 if (adap->flags & CXGB4_USING_MSIX) { 843 free_msix_queue_irqs(adap); 844 free_irq(adap->msix_info[0].vec, adap); 845 } else { 846 free_irq(adap->pdev->irq, adap); 847 } 848 quiesce_rx(adap); 849 } 850 } 851 852 /* 853 * Enable NAPI scheduling and interrupt generation for all Rx queues. 854 */ 855 static void enable_rx(struct adapter *adap) 856 { 857 int i; 858 859 for (i = 0; i < adap->sge.ingr_sz; i++) { 860 struct sge_rspq *q = adap->sge.ingr_map[i]; 861 862 if (!q) 863 continue; 864 if (q->handler) 865 napi_enable(&q->napi); 866 867 /* 0-increment GTS to start the timer and enable interrupts */ 868 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 869 SEINTARM_V(q->intr_params) | 870 INGRESSQID_V(q->cntxt_id)); 871 } 872 } 873 874 875 static int setup_fw_sge_queues(struct adapter *adap) 876 { 877 struct sge *s = &adap->sge; 878 int err = 0; 879 880 bitmap_zero(s->starving_fl, s->egr_sz); 881 bitmap_zero(s->txq_maperr, s->egr_sz); 882 883 if (adap->flags & CXGB4_USING_MSIX) 884 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 885 else { 886 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 887 NULL, NULL, NULL, -1); 888 if (err) 889 return err; 890 adap->msi_idx = -((int)s->intrq.abs_id + 1); 891 } 892 893 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 894 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 895 return err; 896 } 897 898 /** 899 * setup_sge_queues - configure SGE Tx/Rx/response queues 900 * @adap: the adapter 901 * 902 * Determines how many sets of SGE queues to use and initializes them. 903 * We support multiple queue sets per port if we have MSI-X, otherwise 904 * just one queue set per port. 905 */ 906 static int setup_sge_queues(struct adapter *adap) 907 { 908 int err, i, j; 909 struct sge *s = &adap->sge; 910 struct sge_uld_rxq_info *rxq_info = NULL; 911 unsigned int cmplqid = 0; 912 913 if (is_uld(adap)) 914 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 915 916 for_each_port(adap, i) { 917 struct net_device *dev = adap->port[i]; 918 struct port_info *pi = netdev_priv(dev); 919 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 920 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 921 922 for (j = 0; j < pi->nqsets; j++, q++) { 923 if (adap->msi_idx > 0) 924 adap->msi_idx++; 925 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 926 adap->msi_idx, &q->fl, 927 t4_ethrx_handler, 928 NULL, 929 t4_get_tp_ch_map(adap, 930 pi->tx_chan)); 931 if (err) 932 goto freeout; 933 q->rspq.idx = j; 934 memset(&q->stats, 0, sizeof(q->stats)); 935 } 936 937 q = &s->ethrxq[pi->first_qset]; 938 for (j = 0; j < pi->nqsets; j++, t++, q++) { 939 err = t4_sge_alloc_eth_txq(adap, t, dev, 940 netdev_get_tx_queue(dev, j), 941 q->rspq.cntxt_id, 942 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 943 if (err) 944 goto freeout; 945 } 946 } 947 948 for_each_port(adap, i) { 949 /* Note that cmplqid below is 0 if we don't 950 * have RDMA queues, and that's the right value. 951 */ 952 if (rxq_info) 953 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 954 955 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 956 s->fw_evtq.cntxt_id, cmplqid); 957 if (err) 958 goto freeout; 959 } 960 961 if (!is_t4(adap->params.chip)) { 962 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 963 netdev_get_tx_queue(adap->port[0], 0) 964 , s->fw_evtq.cntxt_id, false); 965 if (err) 966 goto freeout; 967 } 968 969 t4_write_reg(adap, is_t4(adap->params.chip) ? 970 MPS_TRC_RSS_CONTROL_A : 971 MPS_T5_TRC_RSS_CONTROL_A, 972 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 973 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 974 return 0; 975 freeout: 976 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 977 t4_free_sge_resources(adap); 978 return err; 979 } 980 981 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 982 struct net_device *sb_dev) 983 { 984 int txq; 985 986 #ifdef CONFIG_CHELSIO_T4_DCB 987 /* If a Data Center Bridging has been successfully negotiated on this 988 * link then we'll use the skb's priority to map it to a TX Queue. 989 * The skb's priority is determined via the VLAN Tag Priority Code 990 * Point field. 991 */ 992 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 993 u16 vlan_tci; 994 int err; 995 996 err = vlan_get_tag(skb, &vlan_tci); 997 if (unlikely(err)) { 998 if (net_ratelimit()) 999 netdev_warn(dev, 1000 "TX Packet without VLAN Tag on DCB Link\n"); 1001 txq = 0; 1002 } else { 1003 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1004 #ifdef CONFIG_CHELSIO_T4_FCOE 1005 if (skb->protocol == htons(ETH_P_FCOE)) 1006 txq = skb->priority & 0x7; 1007 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1008 } 1009 return txq; 1010 } 1011 #endif /* CONFIG_CHELSIO_T4_DCB */ 1012 1013 if (select_queue) { 1014 txq = (skb_rx_queue_recorded(skb) 1015 ? skb_get_rx_queue(skb) 1016 : smp_processor_id()); 1017 1018 while (unlikely(txq >= dev->real_num_tx_queues)) 1019 txq -= dev->real_num_tx_queues; 1020 1021 return txq; 1022 } 1023 1024 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1025 } 1026 1027 static int closest_timer(const struct sge *s, int time) 1028 { 1029 int i, delta, match = 0, min_delta = INT_MAX; 1030 1031 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1032 delta = time - s->timer_val[i]; 1033 if (delta < 0) 1034 delta = -delta; 1035 if (delta < min_delta) { 1036 min_delta = delta; 1037 match = i; 1038 } 1039 } 1040 return match; 1041 } 1042 1043 static int closest_thres(const struct sge *s, int thres) 1044 { 1045 int i, delta, match = 0, min_delta = INT_MAX; 1046 1047 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1048 delta = thres - s->counter_val[i]; 1049 if (delta < 0) 1050 delta = -delta; 1051 if (delta < min_delta) { 1052 min_delta = delta; 1053 match = i; 1054 } 1055 } 1056 return match; 1057 } 1058 1059 /** 1060 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1061 * @q: the Rx queue 1062 * @us: the hold-off time in us, or 0 to disable timer 1063 * @cnt: the hold-off packet count, or 0 to disable counter 1064 * 1065 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1066 * one of the two needs to be enabled for the queue to generate interrupts. 1067 */ 1068 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1069 unsigned int us, unsigned int cnt) 1070 { 1071 struct adapter *adap = q->adap; 1072 1073 if ((us | cnt) == 0) 1074 cnt = 1; 1075 1076 if (cnt) { 1077 int err; 1078 u32 v, new_idx; 1079 1080 new_idx = closest_thres(&adap->sge, cnt); 1081 if (q->desc && q->pktcnt_idx != new_idx) { 1082 /* the queue has already been created, update it */ 1083 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1084 FW_PARAMS_PARAM_X_V( 1085 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1086 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1087 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1088 &v, &new_idx); 1089 if (err) 1090 return err; 1091 } 1092 q->pktcnt_idx = new_idx; 1093 } 1094 1095 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1096 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1097 return 0; 1098 } 1099 1100 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1101 { 1102 const struct port_info *pi = netdev_priv(dev); 1103 netdev_features_t changed = dev->features ^ features; 1104 int err; 1105 1106 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1107 return 0; 1108 1109 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1110 -1, -1, -1, 1111 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1112 if (unlikely(err)) 1113 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1114 return err; 1115 } 1116 1117 static int setup_debugfs(struct adapter *adap) 1118 { 1119 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1120 return -1; 1121 1122 #ifdef CONFIG_DEBUG_FS 1123 t4_setup_debugfs(adap); 1124 #endif 1125 return 0; 1126 } 1127 1128 /* 1129 * upper-layer driver support 1130 */ 1131 1132 /* 1133 * Allocate an active-open TID and set it to the supplied value. 1134 */ 1135 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1136 { 1137 int atid = -1; 1138 1139 spin_lock_bh(&t->atid_lock); 1140 if (t->afree) { 1141 union aopen_entry *p = t->afree; 1142 1143 atid = (p - t->atid_tab) + t->atid_base; 1144 t->afree = p->next; 1145 p->data = data; 1146 t->atids_in_use++; 1147 } 1148 spin_unlock_bh(&t->atid_lock); 1149 return atid; 1150 } 1151 EXPORT_SYMBOL(cxgb4_alloc_atid); 1152 1153 /* 1154 * Release an active-open TID. 1155 */ 1156 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1157 { 1158 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1159 1160 spin_lock_bh(&t->atid_lock); 1161 p->next = t->afree; 1162 t->afree = p; 1163 t->atids_in_use--; 1164 spin_unlock_bh(&t->atid_lock); 1165 } 1166 EXPORT_SYMBOL(cxgb4_free_atid); 1167 1168 /* 1169 * Allocate a server TID and set it to the supplied value. 1170 */ 1171 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1172 { 1173 int stid; 1174 1175 spin_lock_bh(&t->stid_lock); 1176 if (family == PF_INET) { 1177 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1178 if (stid < t->nstids) 1179 __set_bit(stid, t->stid_bmap); 1180 else 1181 stid = -1; 1182 } else { 1183 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1184 if (stid < 0) 1185 stid = -1; 1186 } 1187 if (stid >= 0) { 1188 t->stid_tab[stid].data = data; 1189 stid += t->stid_base; 1190 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1191 * This is equivalent to 4 TIDs. With CLIP enabled it 1192 * needs 2 TIDs. 1193 */ 1194 if (family == PF_INET6) { 1195 t->stids_in_use += 2; 1196 t->v6_stids_in_use += 2; 1197 } else { 1198 t->stids_in_use++; 1199 } 1200 } 1201 spin_unlock_bh(&t->stid_lock); 1202 return stid; 1203 } 1204 EXPORT_SYMBOL(cxgb4_alloc_stid); 1205 1206 /* Allocate a server filter TID and set it to the supplied value. 1207 */ 1208 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1209 { 1210 int stid; 1211 1212 spin_lock_bh(&t->stid_lock); 1213 if (family == PF_INET) { 1214 stid = find_next_zero_bit(t->stid_bmap, 1215 t->nstids + t->nsftids, t->nstids); 1216 if (stid < (t->nstids + t->nsftids)) 1217 __set_bit(stid, t->stid_bmap); 1218 else 1219 stid = -1; 1220 } else { 1221 stid = -1; 1222 } 1223 if (stid >= 0) { 1224 t->stid_tab[stid].data = data; 1225 stid -= t->nstids; 1226 stid += t->sftid_base; 1227 t->sftids_in_use++; 1228 } 1229 spin_unlock_bh(&t->stid_lock); 1230 return stid; 1231 } 1232 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1233 1234 /* Release a server TID. 1235 */ 1236 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1237 { 1238 /* Is it a server filter TID? */ 1239 if (t->nsftids && (stid >= t->sftid_base)) { 1240 stid -= t->sftid_base; 1241 stid += t->nstids; 1242 } else { 1243 stid -= t->stid_base; 1244 } 1245 1246 spin_lock_bh(&t->stid_lock); 1247 if (family == PF_INET) 1248 __clear_bit(stid, t->stid_bmap); 1249 else 1250 bitmap_release_region(t->stid_bmap, stid, 1); 1251 t->stid_tab[stid].data = NULL; 1252 if (stid < t->nstids) { 1253 if (family == PF_INET6) { 1254 t->stids_in_use -= 2; 1255 t->v6_stids_in_use -= 2; 1256 } else { 1257 t->stids_in_use--; 1258 } 1259 } else { 1260 t->sftids_in_use--; 1261 } 1262 1263 spin_unlock_bh(&t->stid_lock); 1264 } 1265 EXPORT_SYMBOL(cxgb4_free_stid); 1266 1267 /* 1268 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1269 */ 1270 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1271 unsigned int tid) 1272 { 1273 struct cpl_tid_release *req; 1274 1275 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1276 req = __skb_put(skb, sizeof(*req)); 1277 INIT_TP_WR(req, tid); 1278 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1279 } 1280 1281 /* 1282 * Queue a TID release request and if necessary schedule a work queue to 1283 * process it. 1284 */ 1285 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1286 unsigned int tid) 1287 { 1288 void **p = &t->tid_tab[tid]; 1289 struct adapter *adap = container_of(t, struct adapter, tids); 1290 1291 spin_lock_bh(&adap->tid_release_lock); 1292 *p = adap->tid_release_head; 1293 /* Low 2 bits encode the Tx channel number */ 1294 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1295 if (!adap->tid_release_task_busy) { 1296 adap->tid_release_task_busy = true; 1297 queue_work(adap->workq, &adap->tid_release_task); 1298 } 1299 spin_unlock_bh(&adap->tid_release_lock); 1300 } 1301 1302 /* 1303 * Process the list of pending TID release requests. 1304 */ 1305 static void process_tid_release_list(struct work_struct *work) 1306 { 1307 struct sk_buff *skb; 1308 struct adapter *adap; 1309 1310 adap = container_of(work, struct adapter, tid_release_task); 1311 1312 spin_lock_bh(&adap->tid_release_lock); 1313 while (adap->tid_release_head) { 1314 void **p = adap->tid_release_head; 1315 unsigned int chan = (uintptr_t)p & 3; 1316 p = (void *)p - chan; 1317 1318 adap->tid_release_head = *p; 1319 *p = NULL; 1320 spin_unlock_bh(&adap->tid_release_lock); 1321 1322 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1323 GFP_KERNEL))) 1324 schedule_timeout_uninterruptible(1); 1325 1326 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1327 t4_ofld_send(adap, skb); 1328 spin_lock_bh(&adap->tid_release_lock); 1329 } 1330 adap->tid_release_task_busy = false; 1331 spin_unlock_bh(&adap->tid_release_lock); 1332 } 1333 1334 /* 1335 * Release a TID and inform HW. If we are unable to allocate the release 1336 * message we defer to a work queue. 1337 */ 1338 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1339 unsigned short family) 1340 { 1341 struct sk_buff *skb; 1342 struct adapter *adap = container_of(t, struct adapter, tids); 1343 1344 WARN_ON(tid >= t->ntids); 1345 1346 if (t->tid_tab[tid]) { 1347 t->tid_tab[tid] = NULL; 1348 atomic_dec(&t->conns_in_use); 1349 if (t->hash_base && (tid >= t->hash_base)) { 1350 if (family == AF_INET6) 1351 atomic_sub(2, &t->hash_tids_in_use); 1352 else 1353 atomic_dec(&t->hash_tids_in_use); 1354 } else { 1355 if (family == AF_INET6) 1356 atomic_sub(2, &t->tids_in_use); 1357 else 1358 atomic_dec(&t->tids_in_use); 1359 } 1360 } 1361 1362 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1363 if (likely(skb)) { 1364 mk_tid_release(skb, chan, tid); 1365 t4_ofld_send(adap, skb); 1366 } else 1367 cxgb4_queue_tid_release(t, chan, tid); 1368 } 1369 EXPORT_SYMBOL(cxgb4_remove_tid); 1370 1371 /* 1372 * Allocate and initialize the TID tables. Returns 0 on success. 1373 */ 1374 static int tid_init(struct tid_info *t) 1375 { 1376 struct adapter *adap = container_of(t, struct adapter, tids); 1377 unsigned int max_ftids = t->nftids + t->nsftids; 1378 unsigned int natids = t->natids; 1379 unsigned int stid_bmap_size; 1380 unsigned int ftid_bmap_size; 1381 size_t size; 1382 1383 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1384 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1385 size = t->ntids * sizeof(*t->tid_tab) + 1386 natids * sizeof(*t->atid_tab) + 1387 t->nstids * sizeof(*t->stid_tab) + 1388 t->nsftids * sizeof(*t->stid_tab) + 1389 stid_bmap_size * sizeof(long) + 1390 max_ftids * sizeof(*t->ftid_tab) + 1391 ftid_bmap_size * sizeof(long); 1392 1393 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1394 if (!t->tid_tab) 1395 return -ENOMEM; 1396 1397 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1398 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1399 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1400 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1401 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1402 spin_lock_init(&t->stid_lock); 1403 spin_lock_init(&t->atid_lock); 1404 spin_lock_init(&t->ftid_lock); 1405 1406 t->stids_in_use = 0; 1407 t->v6_stids_in_use = 0; 1408 t->sftids_in_use = 0; 1409 t->afree = NULL; 1410 t->atids_in_use = 0; 1411 atomic_set(&t->tids_in_use, 0); 1412 atomic_set(&t->conns_in_use, 0); 1413 atomic_set(&t->hash_tids_in_use, 0); 1414 1415 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1416 if (natids) { 1417 while (--natids) 1418 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1419 t->afree = t->atid_tab; 1420 } 1421 1422 if (is_offload(adap)) { 1423 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1424 /* Reserve stid 0 for T4/T5 adapters */ 1425 if (!t->stid_base && 1426 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1427 __set_bit(0, t->stid_bmap); 1428 } 1429 1430 bitmap_zero(t->ftid_bmap, t->nftids); 1431 return 0; 1432 } 1433 1434 /** 1435 * cxgb4_create_server - create an IP server 1436 * @dev: the device 1437 * @stid: the server TID 1438 * @sip: local IP address to bind server to 1439 * @sport: the server's TCP port 1440 * @queue: queue to direct messages from this server to 1441 * 1442 * Create an IP server for the given port and address. 1443 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1444 */ 1445 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1446 __be32 sip, __be16 sport, __be16 vlan, 1447 unsigned int queue) 1448 { 1449 unsigned int chan; 1450 struct sk_buff *skb; 1451 struct adapter *adap; 1452 struct cpl_pass_open_req *req; 1453 int ret; 1454 1455 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1456 if (!skb) 1457 return -ENOMEM; 1458 1459 adap = netdev2adap(dev); 1460 req = __skb_put(skb, sizeof(*req)); 1461 INIT_TP_WR(req, 0); 1462 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1463 req->local_port = sport; 1464 req->peer_port = htons(0); 1465 req->local_ip = sip; 1466 req->peer_ip = htonl(0); 1467 chan = rxq_to_chan(&adap->sge, queue); 1468 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1469 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1470 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1471 ret = t4_mgmt_tx(adap, skb); 1472 return net_xmit_eval(ret); 1473 } 1474 EXPORT_SYMBOL(cxgb4_create_server); 1475 1476 /* cxgb4_create_server6 - create an IPv6 server 1477 * @dev: the device 1478 * @stid: the server TID 1479 * @sip: local IPv6 address to bind server to 1480 * @sport: the server's TCP port 1481 * @queue: queue to direct messages from this server to 1482 * 1483 * Create an IPv6 server for the given port and address. 1484 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1485 */ 1486 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1487 const struct in6_addr *sip, __be16 sport, 1488 unsigned int queue) 1489 { 1490 unsigned int chan; 1491 struct sk_buff *skb; 1492 struct adapter *adap; 1493 struct cpl_pass_open_req6 *req; 1494 int ret; 1495 1496 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1497 if (!skb) 1498 return -ENOMEM; 1499 1500 adap = netdev2adap(dev); 1501 req = __skb_put(skb, sizeof(*req)); 1502 INIT_TP_WR(req, 0); 1503 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1504 req->local_port = sport; 1505 req->peer_port = htons(0); 1506 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1507 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1508 req->peer_ip_hi = cpu_to_be64(0); 1509 req->peer_ip_lo = cpu_to_be64(0); 1510 chan = rxq_to_chan(&adap->sge, queue); 1511 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1512 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1513 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1514 ret = t4_mgmt_tx(adap, skb); 1515 return net_xmit_eval(ret); 1516 } 1517 EXPORT_SYMBOL(cxgb4_create_server6); 1518 1519 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1520 unsigned int queue, bool ipv6) 1521 { 1522 struct sk_buff *skb; 1523 struct adapter *adap; 1524 struct cpl_close_listsvr_req *req; 1525 int ret; 1526 1527 adap = netdev2adap(dev); 1528 1529 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1530 if (!skb) 1531 return -ENOMEM; 1532 1533 req = __skb_put(skb, sizeof(*req)); 1534 INIT_TP_WR(req, 0); 1535 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1536 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1537 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1538 ret = t4_mgmt_tx(adap, skb); 1539 return net_xmit_eval(ret); 1540 } 1541 EXPORT_SYMBOL(cxgb4_remove_server); 1542 1543 /** 1544 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1545 * @mtus: the HW MTU table 1546 * @mtu: the target MTU 1547 * @idx: index of selected entry in the MTU table 1548 * 1549 * Returns the index and the value in the HW MTU table that is closest to 1550 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1551 * table, in which case that smallest available value is selected. 1552 */ 1553 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1554 unsigned int *idx) 1555 { 1556 unsigned int i = 0; 1557 1558 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1559 ++i; 1560 if (idx) 1561 *idx = i; 1562 return mtus[i]; 1563 } 1564 EXPORT_SYMBOL(cxgb4_best_mtu); 1565 1566 /** 1567 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1568 * @mtus: the HW MTU table 1569 * @header_size: Header Size 1570 * @data_size_max: maximum Data Segment Size 1571 * @data_size_align: desired Data Segment Size Alignment (2^N) 1572 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1573 * 1574 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1575 * MTU Table based solely on a Maximum MTU parameter, we break that 1576 * parameter up into a Header Size and Maximum Data Segment Size, and 1577 * provide a desired Data Segment Size Alignment. If we find an MTU in 1578 * the Hardware MTU Table which will result in a Data Segment Size with 1579 * the requested alignment _and_ that MTU isn't "too far" from the 1580 * closest MTU, then we'll return that rather than the closest MTU. 1581 */ 1582 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1583 unsigned short header_size, 1584 unsigned short data_size_max, 1585 unsigned short data_size_align, 1586 unsigned int *mtu_idxp) 1587 { 1588 unsigned short max_mtu = header_size + data_size_max; 1589 unsigned short data_size_align_mask = data_size_align - 1; 1590 int mtu_idx, aligned_mtu_idx; 1591 1592 /* Scan the MTU Table till we find an MTU which is larger than our 1593 * Maximum MTU or we reach the end of the table. Along the way, 1594 * record the last MTU found, if any, which will result in a Data 1595 * Segment Length matching the requested alignment. 1596 */ 1597 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1598 unsigned short data_size = mtus[mtu_idx] - header_size; 1599 1600 /* If this MTU minus the Header Size would result in a 1601 * Data Segment Size of the desired alignment, remember it. 1602 */ 1603 if ((data_size & data_size_align_mask) == 0) 1604 aligned_mtu_idx = mtu_idx; 1605 1606 /* If we're not at the end of the Hardware MTU Table and the 1607 * next element is larger than our Maximum MTU, drop out of 1608 * the loop. 1609 */ 1610 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1611 break; 1612 } 1613 1614 /* If we fell out of the loop because we ran to the end of the table, 1615 * then we just have to use the last [largest] entry. 1616 */ 1617 if (mtu_idx == NMTUS) 1618 mtu_idx--; 1619 1620 /* If we found an MTU which resulted in the requested Data Segment 1621 * Length alignment and that's "not far" from the largest MTU which is 1622 * less than or equal to the maximum MTU, then use that. 1623 */ 1624 if (aligned_mtu_idx >= 0 && 1625 mtu_idx - aligned_mtu_idx <= 1) 1626 mtu_idx = aligned_mtu_idx; 1627 1628 /* If the caller has passed in an MTU Index pointer, pass the 1629 * MTU Index back. Return the MTU value. 1630 */ 1631 if (mtu_idxp) 1632 *mtu_idxp = mtu_idx; 1633 return mtus[mtu_idx]; 1634 } 1635 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1636 1637 /** 1638 * cxgb4_port_chan - get the HW channel of a port 1639 * @dev: the net device for the port 1640 * 1641 * Return the HW Tx channel of the given port. 1642 */ 1643 unsigned int cxgb4_port_chan(const struct net_device *dev) 1644 { 1645 return netdev2pinfo(dev)->tx_chan; 1646 } 1647 EXPORT_SYMBOL(cxgb4_port_chan); 1648 1649 /** 1650 * cxgb4_port_e2cchan - get the HW c-channel of a port 1651 * @dev: the net device for the port 1652 * 1653 * Return the HW RX c-channel of the given port. 1654 */ 1655 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 1656 { 1657 return netdev2pinfo(dev)->rx_cchan; 1658 } 1659 EXPORT_SYMBOL(cxgb4_port_e2cchan); 1660 1661 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1662 { 1663 struct adapter *adap = netdev2adap(dev); 1664 u32 v1, v2, lp_count, hp_count; 1665 1666 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1667 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1668 if (is_t4(adap->params.chip)) { 1669 lp_count = LP_COUNT_G(v1); 1670 hp_count = HP_COUNT_G(v1); 1671 } else { 1672 lp_count = LP_COUNT_T5_G(v1); 1673 hp_count = HP_COUNT_T5_G(v2); 1674 } 1675 return lpfifo ? lp_count : hp_count; 1676 } 1677 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1678 1679 /** 1680 * cxgb4_port_viid - get the VI id of a port 1681 * @dev: the net device for the port 1682 * 1683 * Return the VI id of the given port. 1684 */ 1685 unsigned int cxgb4_port_viid(const struct net_device *dev) 1686 { 1687 return netdev2pinfo(dev)->viid; 1688 } 1689 EXPORT_SYMBOL(cxgb4_port_viid); 1690 1691 /** 1692 * cxgb4_port_idx - get the index of a port 1693 * @dev: the net device for the port 1694 * 1695 * Return the index of the given port. 1696 */ 1697 unsigned int cxgb4_port_idx(const struct net_device *dev) 1698 { 1699 return netdev2pinfo(dev)->port_id; 1700 } 1701 EXPORT_SYMBOL(cxgb4_port_idx); 1702 1703 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1704 struct tp_tcp_stats *v6) 1705 { 1706 struct adapter *adap = pci_get_drvdata(pdev); 1707 1708 spin_lock(&adap->stats_lock); 1709 t4_tp_get_tcp_stats(adap, v4, v6, false); 1710 spin_unlock(&adap->stats_lock); 1711 } 1712 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1713 1714 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1715 const unsigned int *pgsz_order) 1716 { 1717 struct adapter *adap = netdev2adap(dev); 1718 1719 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1720 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1721 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1722 HPZ3_V(pgsz_order[3])); 1723 } 1724 EXPORT_SYMBOL(cxgb4_iscsi_init); 1725 1726 int cxgb4_flush_eq_cache(struct net_device *dev) 1727 { 1728 struct adapter *adap = netdev2adap(dev); 1729 1730 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1731 } 1732 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1733 1734 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1735 { 1736 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1737 __be64 indices; 1738 int ret; 1739 1740 spin_lock(&adap->win0_lock); 1741 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1742 sizeof(indices), (__be32 *)&indices, 1743 T4_MEMORY_READ); 1744 spin_unlock(&adap->win0_lock); 1745 if (!ret) { 1746 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1747 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1748 } 1749 return ret; 1750 } 1751 1752 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1753 u16 size) 1754 { 1755 struct adapter *adap = netdev2adap(dev); 1756 u16 hw_pidx, hw_cidx; 1757 int ret; 1758 1759 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1760 if (ret) 1761 goto out; 1762 1763 if (pidx != hw_pidx) { 1764 u16 delta; 1765 u32 val; 1766 1767 if (pidx >= hw_pidx) 1768 delta = pidx - hw_pidx; 1769 else 1770 delta = size - hw_pidx + pidx; 1771 1772 if (is_t4(adap->params.chip)) 1773 val = PIDX_V(delta); 1774 else 1775 val = PIDX_T5_V(delta); 1776 wmb(); 1777 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1778 QID_V(qid) | val); 1779 } 1780 out: 1781 return ret; 1782 } 1783 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1784 1785 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1786 { 1787 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1788 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1789 u32 offset, memtype, memaddr; 1790 struct adapter *adap; 1791 u32 hma_size = 0; 1792 int ret; 1793 1794 adap = netdev2adap(dev); 1795 1796 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1797 1798 /* Figure out where the offset lands in the Memory Type/Address scheme. 1799 * This code assumes that the memory is laid out starting at offset 0 1800 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1801 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1802 * MC0, and some have both MC0 and MC1. 1803 */ 1804 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1805 edc0_size = EDRAM0_SIZE_G(size) << 20; 1806 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1807 edc1_size = EDRAM1_SIZE_G(size) << 20; 1808 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1809 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1810 1811 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1812 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1813 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1814 } 1815 edc0_end = edc0_size; 1816 edc1_end = edc0_end + edc1_size; 1817 mc0_end = edc1_end + mc0_size; 1818 1819 if (offset < edc0_end) { 1820 memtype = MEM_EDC0; 1821 memaddr = offset; 1822 } else if (offset < edc1_end) { 1823 memtype = MEM_EDC1; 1824 memaddr = offset - edc0_end; 1825 } else { 1826 if (hma_size && (offset < (edc1_end + hma_size))) { 1827 memtype = MEM_HMA; 1828 memaddr = offset - edc1_end; 1829 } else if (offset < mc0_end) { 1830 memtype = MEM_MC0; 1831 memaddr = offset - edc1_end; 1832 } else if (is_t5(adap->params.chip)) { 1833 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1834 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1835 mc1_end = mc0_end + mc1_size; 1836 if (offset < mc1_end) { 1837 memtype = MEM_MC1; 1838 memaddr = offset - mc0_end; 1839 } else { 1840 /* offset beyond the end of any memory */ 1841 goto err; 1842 } 1843 } else { 1844 /* T4/T6 only has a single memory channel */ 1845 goto err; 1846 } 1847 } 1848 1849 spin_lock(&adap->win0_lock); 1850 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1851 spin_unlock(&adap->win0_lock); 1852 return ret; 1853 1854 err: 1855 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1856 stag, offset); 1857 return -EINVAL; 1858 } 1859 EXPORT_SYMBOL(cxgb4_read_tpte); 1860 1861 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1862 { 1863 u32 hi, lo; 1864 struct adapter *adap; 1865 1866 adap = netdev2adap(dev); 1867 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1868 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1869 1870 return ((u64)hi << 32) | (u64)lo; 1871 } 1872 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1873 1874 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1875 unsigned int qid, 1876 enum cxgb4_bar2_qtype qtype, 1877 int user, 1878 u64 *pbar2_qoffset, 1879 unsigned int *pbar2_qid) 1880 { 1881 return t4_bar2_sge_qregs(netdev2adap(dev), 1882 qid, 1883 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1884 ? T4_BAR2_QTYPE_EGRESS 1885 : T4_BAR2_QTYPE_INGRESS), 1886 user, 1887 pbar2_qoffset, 1888 pbar2_qid); 1889 } 1890 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1891 1892 static struct pci_driver cxgb4_driver; 1893 1894 static void check_neigh_update(struct neighbour *neigh) 1895 { 1896 const struct device *parent; 1897 const struct net_device *netdev = neigh->dev; 1898 1899 if (is_vlan_dev(netdev)) 1900 netdev = vlan_dev_real_dev(netdev); 1901 parent = netdev->dev.parent; 1902 if (parent && parent->driver == &cxgb4_driver.driver) 1903 t4_l2t_update(dev_get_drvdata(parent), neigh); 1904 } 1905 1906 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1907 void *data) 1908 { 1909 switch (event) { 1910 case NETEVENT_NEIGH_UPDATE: 1911 check_neigh_update(data); 1912 break; 1913 case NETEVENT_REDIRECT: 1914 default: 1915 break; 1916 } 1917 return 0; 1918 } 1919 1920 static bool netevent_registered; 1921 static struct notifier_block cxgb4_netevent_nb = { 1922 .notifier_call = netevent_cb 1923 }; 1924 1925 static void drain_db_fifo(struct adapter *adap, int usecs) 1926 { 1927 u32 v1, v2, lp_count, hp_count; 1928 1929 do { 1930 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1931 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1932 if (is_t4(adap->params.chip)) { 1933 lp_count = LP_COUNT_G(v1); 1934 hp_count = HP_COUNT_G(v1); 1935 } else { 1936 lp_count = LP_COUNT_T5_G(v1); 1937 hp_count = HP_COUNT_T5_G(v2); 1938 } 1939 1940 if (lp_count == 0 && hp_count == 0) 1941 break; 1942 set_current_state(TASK_UNINTERRUPTIBLE); 1943 schedule_timeout(usecs_to_jiffies(usecs)); 1944 } while (1); 1945 } 1946 1947 static void disable_txq_db(struct sge_txq *q) 1948 { 1949 unsigned long flags; 1950 1951 spin_lock_irqsave(&q->db_lock, flags); 1952 q->db_disabled = 1; 1953 spin_unlock_irqrestore(&q->db_lock, flags); 1954 } 1955 1956 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1957 { 1958 spin_lock_irq(&q->db_lock); 1959 if (q->db_pidx_inc) { 1960 /* Make sure that all writes to the TX descriptors 1961 * are committed before we tell HW about them. 1962 */ 1963 wmb(); 1964 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1965 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1966 q->db_pidx_inc = 0; 1967 } 1968 q->db_disabled = 0; 1969 spin_unlock_irq(&q->db_lock); 1970 } 1971 1972 static void disable_dbs(struct adapter *adap) 1973 { 1974 int i; 1975 1976 for_each_ethrxq(&adap->sge, i) 1977 disable_txq_db(&adap->sge.ethtxq[i].q); 1978 if (is_offload(adap)) { 1979 struct sge_uld_txq_info *txq_info = 1980 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1981 1982 if (txq_info) { 1983 for_each_ofldtxq(&adap->sge, i) { 1984 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1985 1986 disable_txq_db(&txq->q); 1987 } 1988 } 1989 } 1990 for_each_port(adap, i) 1991 disable_txq_db(&adap->sge.ctrlq[i].q); 1992 } 1993 1994 static void enable_dbs(struct adapter *adap) 1995 { 1996 int i; 1997 1998 for_each_ethrxq(&adap->sge, i) 1999 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2000 if (is_offload(adap)) { 2001 struct sge_uld_txq_info *txq_info = 2002 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2003 2004 if (txq_info) { 2005 for_each_ofldtxq(&adap->sge, i) { 2006 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2007 2008 enable_txq_db(adap, &txq->q); 2009 } 2010 } 2011 } 2012 for_each_port(adap, i) 2013 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2014 } 2015 2016 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2017 { 2018 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2019 2020 if (adap->uld && adap->uld[type].handle) 2021 adap->uld[type].control(adap->uld[type].handle, cmd); 2022 } 2023 2024 static void process_db_full(struct work_struct *work) 2025 { 2026 struct adapter *adap; 2027 2028 adap = container_of(work, struct adapter, db_full_task); 2029 2030 drain_db_fifo(adap, dbfifo_drain_delay); 2031 enable_dbs(adap); 2032 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2033 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2034 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2035 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2036 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2037 else 2038 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2039 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2040 } 2041 2042 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2043 { 2044 u16 hw_pidx, hw_cidx; 2045 int ret; 2046 2047 spin_lock_irq(&q->db_lock); 2048 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2049 if (ret) 2050 goto out; 2051 if (q->db_pidx != hw_pidx) { 2052 u16 delta; 2053 u32 val; 2054 2055 if (q->db_pidx >= hw_pidx) 2056 delta = q->db_pidx - hw_pidx; 2057 else 2058 delta = q->size - hw_pidx + q->db_pidx; 2059 2060 if (is_t4(adap->params.chip)) 2061 val = PIDX_V(delta); 2062 else 2063 val = PIDX_T5_V(delta); 2064 wmb(); 2065 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2066 QID_V(q->cntxt_id) | val); 2067 } 2068 out: 2069 q->db_disabled = 0; 2070 q->db_pidx_inc = 0; 2071 spin_unlock_irq(&q->db_lock); 2072 if (ret) 2073 CH_WARN(adap, "DB drop recovery failed.\n"); 2074 } 2075 2076 static void recover_all_queues(struct adapter *adap) 2077 { 2078 int i; 2079 2080 for_each_ethrxq(&adap->sge, i) 2081 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2082 if (is_offload(adap)) { 2083 struct sge_uld_txq_info *txq_info = 2084 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2085 if (txq_info) { 2086 for_each_ofldtxq(&adap->sge, i) { 2087 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2088 2089 sync_txq_pidx(adap, &txq->q); 2090 } 2091 } 2092 } 2093 for_each_port(adap, i) 2094 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2095 } 2096 2097 static void process_db_drop(struct work_struct *work) 2098 { 2099 struct adapter *adap; 2100 2101 adap = container_of(work, struct adapter, db_drop_task); 2102 2103 if (is_t4(adap->params.chip)) { 2104 drain_db_fifo(adap, dbfifo_drain_delay); 2105 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2106 drain_db_fifo(adap, dbfifo_drain_delay); 2107 recover_all_queues(adap); 2108 drain_db_fifo(adap, dbfifo_drain_delay); 2109 enable_dbs(adap); 2110 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2111 } else if (is_t5(adap->params.chip)) { 2112 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2113 u16 qid = (dropped_db >> 15) & 0x1ffff; 2114 u16 pidx_inc = dropped_db & 0x1fff; 2115 u64 bar2_qoffset; 2116 unsigned int bar2_qid; 2117 int ret; 2118 2119 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2120 0, &bar2_qoffset, &bar2_qid); 2121 if (ret) 2122 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2123 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2124 else 2125 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2126 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2127 2128 /* Re-enable BAR2 WC */ 2129 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2130 } 2131 2132 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2133 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2134 } 2135 2136 void t4_db_full(struct adapter *adap) 2137 { 2138 if (is_t4(adap->params.chip)) { 2139 disable_dbs(adap); 2140 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2141 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2142 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2143 queue_work(adap->workq, &adap->db_full_task); 2144 } 2145 } 2146 2147 void t4_db_dropped(struct adapter *adap) 2148 { 2149 if (is_t4(adap->params.chip)) { 2150 disable_dbs(adap); 2151 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2152 } 2153 queue_work(adap->workq, &adap->db_drop_task); 2154 } 2155 2156 void t4_register_netevent_notifier(void) 2157 { 2158 if (!netevent_registered) { 2159 register_netevent_notifier(&cxgb4_netevent_nb); 2160 netevent_registered = true; 2161 } 2162 } 2163 2164 static void detach_ulds(struct adapter *adap) 2165 { 2166 unsigned int i; 2167 2168 mutex_lock(&uld_mutex); 2169 list_del(&adap->list_node); 2170 2171 for (i = 0; i < CXGB4_ULD_MAX; i++) 2172 if (adap->uld && adap->uld[i].handle) 2173 adap->uld[i].state_change(adap->uld[i].handle, 2174 CXGB4_STATE_DETACH); 2175 2176 if (netevent_registered && list_empty(&adapter_list)) { 2177 unregister_netevent_notifier(&cxgb4_netevent_nb); 2178 netevent_registered = false; 2179 } 2180 mutex_unlock(&uld_mutex); 2181 } 2182 2183 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2184 { 2185 unsigned int i; 2186 2187 mutex_lock(&uld_mutex); 2188 for (i = 0; i < CXGB4_ULD_MAX; i++) 2189 if (adap->uld && adap->uld[i].handle) 2190 adap->uld[i].state_change(adap->uld[i].handle, 2191 new_state); 2192 mutex_unlock(&uld_mutex); 2193 } 2194 2195 #if IS_ENABLED(CONFIG_IPV6) 2196 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2197 unsigned long event, void *data) 2198 { 2199 struct inet6_ifaddr *ifa = data; 2200 struct net_device *event_dev = ifa->idev->dev; 2201 const struct device *parent = NULL; 2202 #if IS_ENABLED(CONFIG_BONDING) 2203 struct adapter *adap; 2204 #endif 2205 if (is_vlan_dev(event_dev)) 2206 event_dev = vlan_dev_real_dev(event_dev); 2207 #if IS_ENABLED(CONFIG_BONDING) 2208 if (event_dev->flags & IFF_MASTER) { 2209 list_for_each_entry(adap, &adapter_list, list_node) { 2210 switch (event) { 2211 case NETDEV_UP: 2212 cxgb4_clip_get(adap->port[0], 2213 (const u32 *)ifa, 1); 2214 break; 2215 case NETDEV_DOWN: 2216 cxgb4_clip_release(adap->port[0], 2217 (const u32 *)ifa, 1); 2218 break; 2219 default: 2220 break; 2221 } 2222 } 2223 return NOTIFY_OK; 2224 } 2225 #endif 2226 2227 if (event_dev) 2228 parent = event_dev->dev.parent; 2229 2230 if (parent && parent->driver == &cxgb4_driver.driver) { 2231 switch (event) { 2232 case NETDEV_UP: 2233 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2234 break; 2235 case NETDEV_DOWN: 2236 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2237 break; 2238 default: 2239 break; 2240 } 2241 } 2242 return NOTIFY_OK; 2243 } 2244 2245 static bool inet6addr_registered; 2246 static struct notifier_block cxgb4_inet6addr_notifier = { 2247 .notifier_call = cxgb4_inet6addr_handler 2248 }; 2249 2250 static void update_clip(const struct adapter *adap) 2251 { 2252 int i; 2253 struct net_device *dev; 2254 int ret; 2255 2256 rcu_read_lock(); 2257 2258 for (i = 0; i < MAX_NPORTS; i++) { 2259 dev = adap->port[i]; 2260 ret = 0; 2261 2262 if (dev) 2263 ret = cxgb4_update_root_dev_clip(dev); 2264 2265 if (ret < 0) 2266 break; 2267 } 2268 rcu_read_unlock(); 2269 } 2270 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2271 2272 /** 2273 * cxgb_up - enable the adapter 2274 * @adap: adapter being enabled 2275 * 2276 * Called when the first port is enabled, this function performs the 2277 * actions necessary to make an adapter operational, such as completing 2278 * the initialization of HW modules, and enabling interrupts. 2279 * 2280 * Must be called with the rtnl lock held. 2281 */ 2282 static int cxgb_up(struct adapter *adap) 2283 { 2284 int err; 2285 2286 mutex_lock(&uld_mutex); 2287 err = setup_sge_queues(adap); 2288 if (err) 2289 goto rel_lock; 2290 err = setup_rss(adap); 2291 if (err) 2292 goto freeq; 2293 2294 if (adap->flags & CXGB4_USING_MSIX) { 2295 name_msix_vecs(adap); 2296 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2297 adap->msix_info[0].desc, adap); 2298 if (err) 2299 goto irq_err; 2300 err = request_msix_queue_irqs(adap); 2301 if (err) { 2302 free_irq(adap->msix_info[0].vec, adap); 2303 goto irq_err; 2304 } 2305 } else { 2306 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2307 (adap->flags & CXGB4_USING_MSI) ? 0 2308 : IRQF_SHARED, 2309 adap->port[0]->name, adap); 2310 if (err) 2311 goto irq_err; 2312 } 2313 2314 enable_rx(adap); 2315 t4_sge_start(adap); 2316 t4_intr_enable(adap); 2317 adap->flags |= CXGB4_FULL_INIT_DONE; 2318 mutex_unlock(&uld_mutex); 2319 2320 notify_ulds(adap, CXGB4_STATE_UP); 2321 #if IS_ENABLED(CONFIG_IPV6) 2322 update_clip(adap); 2323 #endif 2324 return err; 2325 2326 irq_err: 2327 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2328 freeq: 2329 t4_free_sge_resources(adap); 2330 rel_lock: 2331 mutex_unlock(&uld_mutex); 2332 return err; 2333 } 2334 2335 static void cxgb_down(struct adapter *adapter) 2336 { 2337 cancel_work_sync(&adapter->tid_release_task); 2338 cancel_work_sync(&adapter->db_full_task); 2339 cancel_work_sync(&adapter->db_drop_task); 2340 adapter->tid_release_task_busy = false; 2341 adapter->tid_release_head = NULL; 2342 2343 t4_sge_stop(adapter); 2344 t4_free_sge_resources(adapter); 2345 2346 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2347 } 2348 2349 /* 2350 * net_device operations 2351 */ 2352 static int cxgb_open(struct net_device *dev) 2353 { 2354 int err; 2355 struct port_info *pi = netdev_priv(dev); 2356 struct adapter *adapter = pi->adapter; 2357 2358 netif_carrier_off(dev); 2359 2360 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2361 err = cxgb_up(adapter); 2362 if (err < 0) 2363 return err; 2364 } 2365 2366 /* It's possible that the basic port information could have 2367 * changed since we first read it. 2368 */ 2369 err = t4_update_port_info(pi); 2370 if (err < 0) 2371 return err; 2372 2373 err = link_start(dev); 2374 if (!err) 2375 netif_tx_start_all_queues(dev); 2376 return err; 2377 } 2378 2379 static int cxgb_close(struct net_device *dev) 2380 { 2381 struct port_info *pi = netdev_priv(dev); 2382 struct adapter *adapter = pi->adapter; 2383 int ret; 2384 2385 netif_tx_stop_all_queues(dev); 2386 netif_carrier_off(dev); 2387 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2388 false, false, false); 2389 #ifdef CONFIG_CHELSIO_T4_DCB 2390 cxgb4_dcb_reset(dev); 2391 dcb_tx_queue_prio_enable(dev, false); 2392 #endif 2393 return ret; 2394 } 2395 2396 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2397 __be32 sip, __be16 sport, __be16 vlan, 2398 unsigned int queue, unsigned char port, unsigned char mask) 2399 { 2400 int ret; 2401 struct filter_entry *f; 2402 struct adapter *adap; 2403 int i; 2404 u8 *val; 2405 2406 adap = netdev2adap(dev); 2407 2408 /* Adjust stid to correct filter index */ 2409 stid -= adap->tids.sftid_base; 2410 stid += adap->tids.nftids; 2411 2412 /* Check to make sure the filter requested is writable ... 2413 */ 2414 f = &adap->tids.ftid_tab[stid]; 2415 ret = writable_filter(f); 2416 if (ret) 2417 return ret; 2418 2419 /* Clear out any old resources being used by the filter before 2420 * we start constructing the new filter. 2421 */ 2422 if (f->valid) 2423 clear_filter(adap, f); 2424 2425 /* Clear out filter specifications */ 2426 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2427 f->fs.val.lport = cpu_to_be16(sport); 2428 f->fs.mask.lport = ~0; 2429 val = (u8 *)&sip; 2430 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2431 for (i = 0; i < 4; i++) { 2432 f->fs.val.lip[i] = val[i]; 2433 f->fs.mask.lip[i] = ~0; 2434 } 2435 if (adap->params.tp.vlan_pri_map & PORT_F) { 2436 f->fs.val.iport = port; 2437 f->fs.mask.iport = mask; 2438 } 2439 } 2440 2441 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2442 f->fs.val.proto = IPPROTO_TCP; 2443 f->fs.mask.proto = ~0; 2444 } 2445 2446 f->fs.dirsteer = 1; 2447 f->fs.iq = queue; 2448 /* Mark filter as locked */ 2449 f->locked = 1; 2450 f->fs.rpttid = 1; 2451 2452 /* Save the actual tid. We need this to get the corresponding 2453 * filter entry structure in filter_rpl. 2454 */ 2455 f->tid = stid + adap->tids.ftid_base; 2456 ret = set_filter_wr(adap, stid); 2457 if (ret) { 2458 clear_filter(adap, f); 2459 return ret; 2460 } 2461 2462 return 0; 2463 } 2464 EXPORT_SYMBOL(cxgb4_create_server_filter); 2465 2466 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2467 unsigned int queue, bool ipv6) 2468 { 2469 struct filter_entry *f; 2470 struct adapter *adap; 2471 2472 adap = netdev2adap(dev); 2473 2474 /* Adjust stid to correct filter index */ 2475 stid -= adap->tids.sftid_base; 2476 stid += adap->tids.nftids; 2477 2478 f = &adap->tids.ftid_tab[stid]; 2479 /* Unlock the filter */ 2480 f->locked = 0; 2481 2482 return delete_filter(adap, stid); 2483 } 2484 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2485 2486 static void cxgb_get_stats(struct net_device *dev, 2487 struct rtnl_link_stats64 *ns) 2488 { 2489 struct port_stats stats; 2490 struct port_info *p = netdev_priv(dev); 2491 struct adapter *adapter = p->adapter; 2492 2493 /* Block retrieving statistics during EEH error 2494 * recovery. Otherwise, the recovery might fail 2495 * and the PCI device will be removed permanently 2496 */ 2497 spin_lock(&adapter->stats_lock); 2498 if (!netif_device_present(dev)) { 2499 spin_unlock(&adapter->stats_lock); 2500 return; 2501 } 2502 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2503 &p->stats_base); 2504 spin_unlock(&adapter->stats_lock); 2505 2506 ns->tx_bytes = stats.tx_octets; 2507 ns->tx_packets = stats.tx_frames; 2508 ns->rx_bytes = stats.rx_octets; 2509 ns->rx_packets = stats.rx_frames; 2510 ns->multicast = stats.rx_mcast_frames; 2511 2512 /* detailed rx_errors */ 2513 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2514 stats.rx_runt; 2515 ns->rx_over_errors = 0; 2516 ns->rx_crc_errors = stats.rx_fcs_err; 2517 ns->rx_frame_errors = stats.rx_symbol_err; 2518 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2519 stats.rx_ovflow2 + stats.rx_ovflow3 + 2520 stats.rx_trunc0 + stats.rx_trunc1 + 2521 stats.rx_trunc2 + stats.rx_trunc3; 2522 ns->rx_missed_errors = 0; 2523 2524 /* detailed tx_errors */ 2525 ns->tx_aborted_errors = 0; 2526 ns->tx_carrier_errors = 0; 2527 ns->tx_fifo_errors = 0; 2528 ns->tx_heartbeat_errors = 0; 2529 ns->tx_window_errors = 0; 2530 2531 ns->tx_errors = stats.tx_error_frames; 2532 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2533 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2534 } 2535 2536 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2537 { 2538 unsigned int mbox; 2539 int ret = 0, prtad, devad; 2540 struct port_info *pi = netdev_priv(dev); 2541 struct adapter *adapter = pi->adapter; 2542 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2543 2544 switch (cmd) { 2545 case SIOCGMIIPHY: 2546 if (pi->mdio_addr < 0) 2547 return -EOPNOTSUPP; 2548 data->phy_id = pi->mdio_addr; 2549 break; 2550 case SIOCGMIIREG: 2551 case SIOCSMIIREG: 2552 if (mdio_phy_id_is_c45(data->phy_id)) { 2553 prtad = mdio_phy_id_prtad(data->phy_id); 2554 devad = mdio_phy_id_devad(data->phy_id); 2555 } else if (data->phy_id < 32) { 2556 prtad = data->phy_id; 2557 devad = 0; 2558 data->reg_num &= 0x1f; 2559 } else 2560 return -EINVAL; 2561 2562 mbox = pi->adapter->pf; 2563 if (cmd == SIOCGMIIREG) 2564 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2565 data->reg_num, &data->val_out); 2566 else 2567 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2568 data->reg_num, data->val_in); 2569 break; 2570 case SIOCGHWTSTAMP: 2571 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2572 sizeof(pi->tstamp_config)) ? 2573 -EFAULT : 0; 2574 case SIOCSHWTSTAMP: 2575 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2576 sizeof(pi->tstamp_config))) 2577 return -EFAULT; 2578 2579 if (!is_t4(adapter->params.chip)) { 2580 switch (pi->tstamp_config.tx_type) { 2581 case HWTSTAMP_TX_OFF: 2582 case HWTSTAMP_TX_ON: 2583 break; 2584 default: 2585 return -ERANGE; 2586 } 2587 2588 switch (pi->tstamp_config.rx_filter) { 2589 case HWTSTAMP_FILTER_NONE: 2590 pi->rxtstamp = false; 2591 break; 2592 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2593 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2594 cxgb4_ptprx_timestamping(pi, pi->port_id, 2595 PTP_TS_L4); 2596 break; 2597 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2598 cxgb4_ptprx_timestamping(pi, pi->port_id, 2599 PTP_TS_L2_L4); 2600 break; 2601 case HWTSTAMP_FILTER_ALL: 2602 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2603 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2604 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2605 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2606 pi->rxtstamp = true; 2607 break; 2608 default: 2609 pi->tstamp_config.rx_filter = 2610 HWTSTAMP_FILTER_NONE; 2611 return -ERANGE; 2612 } 2613 2614 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2615 (pi->tstamp_config.rx_filter == 2616 HWTSTAMP_FILTER_NONE)) { 2617 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2618 pi->ptp_enable = false; 2619 } 2620 2621 if (pi->tstamp_config.rx_filter != 2622 HWTSTAMP_FILTER_NONE) { 2623 if (cxgb4_ptp_redirect_rx_packet(adapter, 2624 pi) >= 0) 2625 pi->ptp_enable = true; 2626 } 2627 } else { 2628 /* For T4 Adapters */ 2629 switch (pi->tstamp_config.rx_filter) { 2630 case HWTSTAMP_FILTER_NONE: 2631 pi->rxtstamp = false; 2632 break; 2633 case HWTSTAMP_FILTER_ALL: 2634 pi->rxtstamp = true; 2635 break; 2636 default: 2637 pi->tstamp_config.rx_filter = 2638 HWTSTAMP_FILTER_NONE; 2639 return -ERANGE; 2640 } 2641 } 2642 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2643 sizeof(pi->tstamp_config)) ? 2644 -EFAULT : 0; 2645 default: 2646 return -EOPNOTSUPP; 2647 } 2648 return ret; 2649 } 2650 2651 static void cxgb_set_rxmode(struct net_device *dev) 2652 { 2653 /* unfortunately we can't return errors to the stack */ 2654 set_rxmode(dev, -1, false); 2655 } 2656 2657 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2658 { 2659 int ret; 2660 struct port_info *pi = netdev_priv(dev); 2661 2662 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2663 -1, -1, -1, true); 2664 if (!ret) 2665 dev->mtu = new_mtu; 2666 return ret; 2667 } 2668 2669 #ifdef CONFIG_PCI_IOV 2670 static int cxgb4_mgmt_open(struct net_device *dev) 2671 { 2672 /* Turn carrier off since we don't have to transmit anything on this 2673 * interface. 2674 */ 2675 netif_carrier_off(dev); 2676 return 0; 2677 } 2678 2679 /* Fill MAC address that will be assigned by the FW */ 2680 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2681 { 2682 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2683 unsigned int i, vf, nvfs; 2684 u16 a, b; 2685 int err; 2686 u8 *na; 2687 2688 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2689 PCI_CAP_ID_VPD); 2690 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2691 if (err) 2692 return; 2693 2694 na = adap->params.vpd.na; 2695 for (i = 0; i < ETH_ALEN; i++) 2696 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2697 hex2val(na[2 * i + 1])); 2698 2699 a = (hw_addr[0] << 8) | hw_addr[1]; 2700 b = (hw_addr[1] << 8) | hw_addr[2]; 2701 a ^= b; 2702 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2703 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2704 macaddr[0] = a >> 8; 2705 macaddr[1] = a & 0xff; 2706 2707 for (i = 2; i < 5; i++) 2708 macaddr[i] = hw_addr[i + 1]; 2709 2710 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2711 vf < nvfs; vf++) { 2712 macaddr[5] = adap->pf * nvfs + vf; 2713 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2714 } 2715 } 2716 2717 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2718 { 2719 struct port_info *pi = netdev_priv(dev); 2720 struct adapter *adap = pi->adapter; 2721 int ret; 2722 2723 /* verify MAC addr is valid */ 2724 if (!is_valid_ether_addr(mac)) { 2725 dev_err(pi->adapter->pdev_dev, 2726 "Invalid Ethernet address %pM for VF %d\n", 2727 mac, vf); 2728 return -EINVAL; 2729 } 2730 2731 dev_info(pi->adapter->pdev_dev, 2732 "Setting MAC %pM on VF %d\n", mac, vf); 2733 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2734 if (!ret) 2735 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2736 return ret; 2737 } 2738 2739 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2740 int vf, struct ifla_vf_info *ivi) 2741 { 2742 struct port_info *pi = netdev_priv(dev); 2743 struct adapter *adap = pi->adapter; 2744 struct vf_info *vfinfo; 2745 2746 if (vf >= adap->num_vfs) 2747 return -EINVAL; 2748 vfinfo = &adap->vfinfo[vf]; 2749 2750 ivi->vf = vf; 2751 ivi->max_tx_rate = vfinfo->tx_rate; 2752 ivi->min_tx_rate = 0; 2753 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2754 ivi->vlan = vfinfo->vlan; 2755 ivi->linkstate = vfinfo->link_state; 2756 return 0; 2757 } 2758 2759 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2760 struct netdev_phys_item_id *ppid) 2761 { 2762 struct port_info *pi = netdev_priv(dev); 2763 unsigned int phy_port_id; 2764 2765 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2766 ppid->id_len = sizeof(phy_port_id); 2767 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2768 return 0; 2769 } 2770 2771 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2772 int min_tx_rate, int max_tx_rate) 2773 { 2774 struct port_info *pi = netdev_priv(dev); 2775 struct adapter *adap = pi->adapter; 2776 unsigned int link_ok, speed, mtu; 2777 u32 fw_pfvf, fw_class; 2778 int class_id = vf; 2779 int ret; 2780 u16 pktsize; 2781 2782 if (vf >= adap->num_vfs) 2783 return -EINVAL; 2784 2785 if (min_tx_rate) { 2786 dev_err(adap->pdev_dev, 2787 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2788 min_tx_rate, vf); 2789 return -EINVAL; 2790 } 2791 2792 if (max_tx_rate == 0) { 2793 /* unbind VF to to any Traffic Class */ 2794 fw_pfvf = 2795 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2796 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2797 fw_class = 0xffffffff; 2798 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2799 &fw_pfvf, &fw_class); 2800 if (ret) { 2801 dev_err(adap->pdev_dev, 2802 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2803 ret, adap->pf, vf); 2804 return -EINVAL; 2805 } 2806 dev_info(adap->pdev_dev, 2807 "PF %d VF %d is unbound from TX Rate Limiting\n", 2808 adap->pf, vf); 2809 adap->vfinfo[vf].tx_rate = 0; 2810 return 0; 2811 } 2812 2813 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2814 if (ret != FW_SUCCESS) { 2815 dev_err(adap->pdev_dev, 2816 "Failed to get link information for VF %d\n", vf); 2817 return -EINVAL; 2818 } 2819 2820 if (!link_ok) { 2821 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2822 return -EINVAL; 2823 } 2824 2825 if (max_tx_rate > speed) { 2826 dev_err(adap->pdev_dev, 2827 "Max tx rate %d for VF %d can't be > link-speed %u", 2828 max_tx_rate, vf, speed); 2829 return -EINVAL; 2830 } 2831 2832 pktsize = mtu; 2833 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2834 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2835 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2836 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2837 /* configure Traffic Class for rate-limiting */ 2838 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2839 SCHED_CLASS_LEVEL_CL_RL, 2840 SCHED_CLASS_MODE_CLASS, 2841 SCHED_CLASS_RATEUNIT_BITS, 2842 SCHED_CLASS_RATEMODE_ABS, 2843 pi->tx_chan, class_id, 0, 2844 max_tx_rate * 1000, 0, pktsize); 2845 if (ret) { 2846 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2847 ret); 2848 return -EINVAL; 2849 } 2850 dev_info(adap->pdev_dev, 2851 "Class %d with MSS %u configured with rate %u\n", 2852 class_id, pktsize, max_tx_rate); 2853 2854 /* bind VF to configured Traffic Class */ 2855 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2856 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2857 fw_class = class_id; 2858 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2859 &fw_class); 2860 if (ret) { 2861 dev_err(adap->pdev_dev, 2862 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 2863 ret, adap->pf, vf, class_id); 2864 return -EINVAL; 2865 } 2866 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2867 adap->pf, vf, class_id); 2868 adap->vfinfo[vf].tx_rate = max_tx_rate; 2869 return 0; 2870 } 2871 2872 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2873 u16 vlan, u8 qos, __be16 vlan_proto) 2874 { 2875 struct port_info *pi = netdev_priv(dev); 2876 struct adapter *adap = pi->adapter; 2877 int ret; 2878 2879 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2880 return -EINVAL; 2881 2882 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2883 return -EPROTONOSUPPORT; 2884 2885 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2886 if (!ret) { 2887 adap->vfinfo[vf].vlan = vlan; 2888 return 0; 2889 } 2890 2891 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2892 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2893 return ret; 2894 } 2895 2896 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 2897 int link) 2898 { 2899 struct port_info *pi = netdev_priv(dev); 2900 struct adapter *adap = pi->adapter; 2901 u32 param, val; 2902 int ret = 0; 2903 2904 if (vf >= adap->num_vfs) 2905 return -EINVAL; 2906 2907 switch (link) { 2908 case IFLA_VF_LINK_STATE_AUTO: 2909 val = FW_VF_LINK_STATE_AUTO; 2910 break; 2911 2912 case IFLA_VF_LINK_STATE_ENABLE: 2913 val = FW_VF_LINK_STATE_ENABLE; 2914 break; 2915 2916 case IFLA_VF_LINK_STATE_DISABLE: 2917 val = FW_VF_LINK_STATE_DISABLE; 2918 break; 2919 2920 default: 2921 return -EINVAL; 2922 } 2923 2924 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2925 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 2926 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2927 ¶m, &val); 2928 if (ret) { 2929 dev_err(adap->pdev_dev, 2930 "Error %d in setting PF %d VF %d link state\n", 2931 ret, adap->pf, vf); 2932 return -EINVAL; 2933 } 2934 2935 adap->vfinfo[vf].link_state = link; 2936 return ret; 2937 } 2938 #endif /* CONFIG_PCI_IOV */ 2939 2940 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2941 { 2942 int ret; 2943 struct sockaddr *addr = p; 2944 struct port_info *pi = netdev_priv(dev); 2945 2946 if (!is_valid_ether_addr(addr->sa_data)) 2947 return -EADDRNOTAVAIL; 2948 2949 ret = cxgb4_change_mac(pi, pi->viid, &pi->xact_addr_filt, 2950 addr->sa_data, true, &pi->smt_idx); 2951 if (ret < 0) 2952 return ret; 2953 2954 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2955 pi->xact_addr_filt = ret; 2956 return 0; 2957 } 2958 2959 #ifdef CONFIG_NET_POLL_CONTROLLER 2960 static void cxgb_netpoll(struct net_device *dev) 2961 { 2962 struct port_info *pi = netdev_priv(dev); 2963 struct adapter *adap = pi->adapter; 2964 2965 if (adap->flags & CXGB4_USING_MSIX) { 2966 int i; 2967 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2968 2969 for (i = pi->nqsets; i; i--, rx++) 2970 t4_sge_intr_msix(0, &rx->rspq); 2971 } else 2972 t4_intr_handler(adap)(0, adap); 2973 } 2974 #endif 2975 2976 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2977 { 2978 struct port_info *pi = netdev_priv(dev); 2979 struct adapter *adap = pi->adapter; 2980 struct sched_class *e; 2981 struct ch_sched_params p; 2982 struct ch_sched_queue qe; 2983 u32 req_rate; 2984 int err = 0; 2985 2986 if (!can_sched(dev)) 2987 return -ENOTSUPP; 2988 2989 if (index < 0 || index > pi->nqsets - 1) 2990 return -EINVAL; 2991 2992 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 2993 dev_err(adap->pdev_dev, 2994 "Failed to rate limit on queue %d. Link Down?\n", 2995 index); 2996 return -EINVAL; 2997 } 2998 2999 /* Convert from Mbps to Kbps */ 3000 req_rate = rate * 1000; 3001 3002 /* Max rate is 100 Gbps */ 3003 if (req_rate > SCHED_MAX_RATE_KBPS) { 3004 dev_err(adap->pdev_dev, 3005 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3006 rate, SCHED_MAX_RATE_KBPS / 1000); 3007 return -ERANGE; 3008 } 3009 3010 /* First unbind the queue from any existing class */ 3011 memset(&qe, 0, sizeof(qe)); 3012 qe.queue = index; 3013 qe.class = SCHED_CLS_NONE; 3014 3015 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3016 if (err) { 3017 dev_err(adap->pdev_dev, 3018 "Unbinding Queue %d on port %d fail. Err: %d\n", 3019 index, pi->port_id, err); 3020 return err; 3021 } 3022 3023 /* Queue already unbound */ 3024 if (!req_rate) 3025 return 0; 3026 3027 /* Fetch any available unused or matching scheduling class */ 3028 memset(&p, 0, sizeof(p)); 3029 p.type = SCHED_CLASS_TYPE_PACKET; 3030 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3031 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3032 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3033 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3034 p.u.params.channel = pi->tx_chan; 3035 p.u.params.class = SCHED_CLS_NONE; 3036 p.u.params.minrate = 0; 3037 p.u.params.maxrate = req_rate; 3038 p.u.params.weight = 0; 3039 p.u.params.pktsize = dev->mtu; 3040 3041 e = cxgb4_sched_class_alloc(dev, &p); 3042 if (!e) 3043 return -ENOMEM; 3044 3045 /* Bind the queue to a scheduling class */ 3046 memset(&qe, 0, sizeof(qe)); 3047 qe.queue = index; 3048 qe.class = e->idx; 3049 3050 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3051 if (err) 3052 dev_err(adap->pdev_dev, 3053 "Queue rate limiting failed. Err: %d\n", err); 3054 return err; 3055 } 3056 3057 static int cxgb_setup_tc_flower(struct net_device *dev, 3058 struct tc_cls_flower_offload *cls_flower) 3059 { 3060 switch (cls_flower->command) { 3061 case TC_CLSFLOWER_REPLACE: 3062 return cxgb4_tc_flower_replace(dev, cls_flower); 3063 case TC_CLSFLOWER_DESTROY: 3064 return cxgb4_tc_flower_destroy(dev, cls_flower); 3065 case TC_CLSFLOWER_STATS: 3066 return cxgb4_tc_flower_stats(dev, cls_flower); 3067 default: 3068 return -EOPNOTSUPP; 3069 } 3070 } 3071 3072 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3073 struct tc_cls_u32_offload *cls_u32) 3074 { 3075 switch (cls_u32->command) { 3076 case TC_CLSU32_NEW_KNODE: 3077 case TC_CLSU32_REPLACE_KNODE: 3078 return cxgb4_config_knode(dev, cls_u32); 3079 case TC_CLSU32_DELETE_KNODE: 3080 return cxgb4_delete_knode(dev, cls_u32); 3081 default: 3082 return -EOPNOTSUPP; 3083 } 3084 } 3085 3086 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3087 void *cb_priv) 3088 { 3089 struct net_device *dev = cb_priv; 3090 struct port_info *pi = netdev2pinfo(dev); 3091 struct adapter *adap = netdev2adap(dev); 3092 3093 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3094 dev_err(adap->pdev_dev, 3095 "Failed to setup tc on port %d. Link Down?\n", 3096 pi->port_id); 3097 return -EINVAL; 3098 } 3099 3100 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3101 return -EOPNOTSUPP; 3102 3103 switch (type) { 3104 case TC_SETUP_CLSU32: 3105 return cxgb_setup_tc_cls_u32(dev, type_data); 3106 case TC_SETUP_CLSFLOWER: 3107 return cxgb_setup_tc_flower(dev, type_data); 3108 default: 3109 return -EOPNOTSUPP; 3110 } 3111 } 3112 3113 static int cxgb_setup_tc_block(struct net_device *dev, 3114 struct tc_block_offload *f) 3115 { 3116 struct port_info *pi = netdev2pinfo(dev); 3117 3118 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3119 return -EOPNOTSUPP; 3120 3121 switch (f->command) { 3122 case TC_BLOCK_BIND: 3123 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3124 pi, dev, f->extack); 3125 case TC_BLOCK_UNBIND: 3126 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3127 return 0; 3128 default: 3129 return -EOPNOTSUPP; 3130 } 3131 } 3132 3133 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3134 void *type_data) 3135 { 3136 switch (type) { 3137 case TC_SETUP_BLOCK: 3138 return cxgb_setup_tc_block(dev, type_data); 3139 default: 3140 return -EOPNOTSUPP; 3141 } 3142 } 3143 3144 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3145 struct udp_tunnel_info *ti) 3146 { 3147 struct port_info *pi = netdev_priv(netdev); 3148 struct adapter *adapter = pi->adapter; 3149 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3150 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3151 int ret = 0, i; 3152 3153 if (chip_ver < CHELSIO_T6) 3154 return; 3155 3156 switch (ti->type) { 3157 case UDP_TUNNEL_TYPE_VXLAN: 3158 if (!adapter->vxlan_port_cnt || 3159 adapter->vxlan_port != ti->port) 3160 return; /* Invalid VxLAN destination port */ 3161 3162 adapter->vxlan_port_cnt--; 3163 if (adapter->vxlan_port_cnt) 3164 return; 3165 3166 adapter->vxlan_port = 0; 3167 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3168 break; 3169 case UDP_TUNNEL_TYPE_GENEVE: 3170 if (!adapter->geneve_port_cnt || 3171 adapter->geneve_port != ti->port) 3172 return; /* Invalid GENEVE destination port */ 3173 3174 adapter->geneve_port_cnt--; 3175 if (adapter->geneve_port_cnt) 3176 return; 3177 3178 adapter->geneve_port = 0; 3179 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3180 break; 3181 default: 3182 return; 3183 } 3184 3185 /* Matchall mac entries can be deleted only after all tunnel ports 3186 * are brought down or removed. 3187 */ 3188 if (!adapter->rawf_cnt) 3189 return; 3190 for_each_port(adapter, i) { 3191 pi = adap2pinfo(adapter, i); 3192 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3193 match_all_mac, match_all_mac, 3194 adapter->rawf_start + 3195 pi->port_id, 3196 1, pi->port_id, false); 3197 if (ret < 0) { 3198 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3199 i); 3200 return; 3201 } 3202 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3203 pi->port_id].refcnt); 3204 } 3205 } 3206 3207 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3208 struct udp_tunnel_info *ti) 3209 { 3210 struct port_info *pi = netdev_priv(netdev); 3211 struct adapter *adapter = pi->adapter; 3212 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3213 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3214 int i, ret; 3215 3216 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3217 return; 3218 3219 switch (ti->type) { 3220 case UDP_TUNNEL_TYPE_VXLAN: 3221 /* Callback for adding vxlan port can be called with the same 3222 * port for both IPv4 and IPv6. We should not disable the 3223 * offloading when the same port for both protocols is added 3224 * and later one of them is removed. 3225 */ 3226 if (adapter->vxlan_port_cnt && 3227 adapter->vxlan_port == ti->port) { 3228 adapter->vxlan_port_cnt++; 3229 return; 3230 } 3231 3232 /* We will support only one VxLAN port */ 3233 if (adapter->vxlan_port_cnt) { 3234 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3235 be16_to_cpu(adapter->vxlan_port), 3236 be16_to_cpu(ti->port)); 3237 return; 3238 } 3239 3240 adapter->vxlan_port = ti->port; 3241 adapter->vxlan_port_cnt = 1; 3242 3243 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3244 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3245 break; 3246 case UDP_TUNNEL_TYPE_GENEVE: 3247 if (adapter->geneve_port_cnt && 3248 adapter->geneve_port == ti->port) { 3249 adapter->geneve_port_cnt++; 3250 return; 3251 } 3252 3253 /* We will support only one GENEVE port */ 3254 if (adapter->geneve_port_cnt) { 3255 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3256 be16_to_cpu(adapter->geneve_port), 3257 be16_to_cpu(ti->port)); 3258 return; 3259 } 3260 3261 adapter->geneve_port = ti->port; 3262 adapter->geneve_port_cnt = 1; 3263 3264 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3265 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3266 break; 3267 default: 3268 return; 3269 } 3270 3271 /* Create a 'match all' mac filter entry for inner mac, 3272 * if raw mac interface is supported. Once the linux kernel provides 3273 * driver entry points for adding/deleting the inner mac addresses, 3274 * we will remove this 'match all' entry and fallback to adding 3275 * exact match filters. 3276 */ 3277 for_each_port(adapter, i) { 3278 pi = adap2pinfo(adapter, i); 3279 3280 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3281 match_all_mac, 3282 match_all_mac, 3283 adapter->rawf_start + 3284 pi->port_id, 3285 1, pi->port_id, false); 3286 if (ret < 0) { 3287 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3288 be16_to_cpu(ti->port)); 3289 cxgb_del_udp_tunnel(netdev, ti); 3290 return; 3291 } 3292 atomic_inc(&adapter->mps_encap[ret].refcnt); 3293 } 3294 } 3295 3296 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3297 struct net_device *dev, 3298 netdev_features_t features) 3299 { 3300 struct port_info *pi = netdev_priv(dev); 3301 struct adapter *adapter = pi->adapter; 3302 3303 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3304 return features; 3305 3306 /* Check if hw supports offload for this packet */ 3307 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3308 return features; 3309 3310 /* Offload is not supported for this encapsulated packet */ 3311 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3312 } 3313 3314 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3315 netdev_features_t features) 3316 { 3317 /* Disable GRO, if RX_CSUM is disabled */ 3318 if (!(features & NETIF_F_RXCSUM)) 3319 features &= ~NETIF_F_GRO; 3320 3321 return features; 3322 } 3323 3324 static const struct net_device_ops cxgb4_netdev_ops = { 3325 .ndo_open = cxgb_open, 3326 .ndo_stop = cxgb_close, 3327 .ndo_start_xmit = t4_start_xmit, 3328 .ndo_select_queue = cxgb_select_queue, 3329 .ndo_get_stats64 = cxgb_get_stats, 3330 .ndo_set_rx_mode = cxgb_set_rxmode, 3331 .ndo_set_mac_address = cxgb_set_mac_addr, 3332 .ndo_set_features = cxgb_set_features, 3333 .ndo_validate_addr = eth_validate_addr, 3334 .ndo_do_ioctl = cxgb_ioctl, 3335 .ndo_change_mtu = cxgb_change_mtu, 3336 #ifdef CONFIG_NET_POLL_CONTROLLER 3337 .ndo_poll_controller = cxgb_netpoll, 3338 #endif 3339 #ifdef CONFIG_CHELSIO_T4_FCOE 3340 .ndo_fcoe_enable = cxgb_fcoe_enable, 3341 .ndo_fcoe_disable = cxgb_fcoe_disable, 3342 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3343 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3344 .ndo_setup_tc = cxgb_setup_tc, 3345 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3346 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3347 .ndo_features_check = cxgb_features_check, 3348 .ndo_fix_features = cxgb_fix_features, 3349 }; 3350 3351 #ifdef CONFIG_PCI_IOV 3352 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3353 .ndo_open = cxgb4_mgmt_open, 3354 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3355 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3356 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3357 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3358 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3359 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3360 }; 3361 #endif 3362 3363 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3364 struct ethtool_drvinfo *info) 3365 { 3366 struct adapter *adapter = netdev2adap(dev); 3367 3368 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3369 strlcpy(info->version, cxgb4_driver_version, 3370 sizeof(info->version)); 3371 strlcpy(info->bus_info, pci_name(adapter->pdev), 3372 sizeof(info->bus_info)); 3373 } 3374 3375 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3376 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3377 }; 3378 3379 static void notify_fatal_err(struct work_struct *work) 3380 { 3381 struct adapter *adap; 3382 3383 adap = container_of(work, struct adapter, fatal_err_notify_task); 3384 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3385 } 3386 3387 void t4_fatal_err(struct adapter *adap) 3388 { 3389 int port; 3390 3391 if (pci_channel_offline(adap->pdev)) 3392 return; 3393 3394 /* Disable the SGE since ULDs are going to free resources that 3395 * could be exposed to the adapter. RDMA MWs for example... 3396 */ 3397 t4_shutdown_adapter(adap); 3398 for_each_port(adap, port) { 3399 struct net_device *dev = adap->port[port]; 3400 3401 /* If we get here in very early initialization the network 3402 * devices may not have been set up yet. 3403 */ 3404 if (!dev) 3405 continue; 3406 3407 netif_tx_stop_all_queues(dev); 3408 netif_carrier_off(dev); 3409 } 3410 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3411 queue_work(adap->workq, &adap->fatal_err_notify_task); 3412 } 3413 3414 static void setup_memwin(struct adapter *adap) 3415 { 3416 u32 nic_win_base = t4_get_util_window(adap); 3417 3418 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3419 } 3420 3421 static void setup_memwin_rdma(struct adapter *adap) 3422 { 3423 if (adap->vres.ocq.size) { 3424 u32 start; 3425 unsigned int sz_kb; 3426 3427 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3428 start &= PCI_BASE_ADDRESS_MEM_MASK; 3429 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3430 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3431 t4_write_reg(adap, 3432 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3433 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3434 t4_write_reg(adap, 3435 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3436 adap->vres.ocq.start); 3437 t4_read_reg(adap, 3438 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3439 } 3440 } 3441 3442 /* HMA Definitions */ 3443 3444 /* The maximum number of address that can be send in a single FW cmd */ 3445 #define HMA_MAX_ADDR_IN_CMD 5 3446 3447 #define HMA_PAGE_SIZE PAGE_SIZE 3448 3449 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3450 3451 #define HMA_PAGE_ORDER \ 3452 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3453 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3454 3455 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3456 * configuration(in units of MB). 3457 */ 3458 #define HMA_MIN_TOTAL_SIZE 1 3459 #define HMA_MAX_TOTAL_SIZE \ 3460 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3461 HMA_MAX_NO_FW_ADDRESS) >> 20) 3462 3463 static void adap_free_hma_mem(struct adapter *adapter) 3464 { 3465 struct scatterlist *iter; 3466 struct page *page; 3467 int i; 3468 3469 if (!adapter->hma.sgt) 3470 return; 3471 3472 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3473 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3474 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3475 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3476 } 3477 3478 for_each_sg(adapter->hma.sgt->sgl, iter, 3479 adapter->hma.sgt->orig_nents, i) { 3480 page = sg_page(iter); 3481 if (page) 3482 __free_pages(page, HMA_PAGE_ORDER); 3483 } 3484 3485 kfree(adapter->hma.phy_addr); 3486 sg_free_table(adapter->hma.sgt); 3487 kfree(adapter->hma.sgt); 3488 adapter->hma.sgt = NULL; 3489 } 3490 3491 static int adap_config_hma(struct adapter *adapter) 3492 { 3493 struct scatterlist *sgl, *iter; 3494 struct sg_table *sgt; 3495 struct page *newpage; 3496 unsigned int i, j, k; 3497 u32 param, hma_size; 3498 unsigned int ncmds; 3499 size_t page_size; 3500 u32 page_order; 3501 int node, ret; 3502 3503 /* HMA is supported only for T6+ cards. 3504 * Avoid initializing HMA in kdump kernels. 3505 */ 3506 if (is_kdump_kernel() || 3507 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3508 return 0; 3509 3510 /* Get the HMA region size required by fw */ 3511 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3512 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3513 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3514 1, ¶m, &hma_size); 3515 /* An error means card has its own memory or HMA is not supported by 3516 * the firmware. Return without any errors. 3517 */ 3518 if (ret || !hma_size) 3519 return 0; 3520 3521 if (hma_size < HMA_MIN_TOTAL_SIZE || 3522 hma_size > HMA_MAX_TOTAL_SIZE) { 3523 dev_err(adapter->pdev_dev, 3524 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3525 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3526 return -EINVAL; 3527 } 3528 3529 page_size = HMA_PAGE_SIZE; 3530 page_order = HMA_PAGE_ORDER; 3531 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3532 if (unlikely(!adapter->hma.sgt)) { 3533 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3534 return -ENOMEM; 3535 } 3536 sgt = adapter->hma.sgt; 3537 /* FW returned value will be in MB's 3538 */ 3539 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3540 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3541 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3542 kfree(adapter->hma.sgt); 3543 adapter->hma.sgt = NULL; 3544 return -ENOMEM; 3545 } 3546 3547 sgl = adapter->hma.sgt->sgl; 3548 node = dev_to_node(adapter->pdev_dev); 3549 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3550 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3551 __GFP_ZERO, page_order); 3552 if (!newpage) { 3553 dev_err(adapter->pdev_dev, 3554 "Not enough memory for HMA page allocation\n"); 3555 ret = -ENOMEM; 3556 goto free_hma; 3557 } 3558 sg_set_page(iter, newpage, page_size << page_order, 0); 3559 } 3560 3561 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3562 DMA_BIDIRECTIONAL); 3563 if (!sgt->nents) { 3564 dev_err(adapter->pdev_dev, 3565 "Not enough memory for HMA DMA mapping"); 3566 ret = -ENOMEM; 3567 goto free_hma; 3568 } 3569 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3570 3571 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3572 GFP_KERNEL); 3573 if (unlikely(!adapter->hma.phy_addr)) 3574 goto free_hma; 3575 3576 for_each_sg(sgl, iter, sgt->nents, i) { 3577 newpage = sg_page(iter); 3578 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3579 } 3580 3581 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3582 /* Pass on the addresses to firmware */ 3583 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3584 struct fw_hma_cmd hma_cmd; 3585 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3586 u8 soc = 0, eoc = 0; 3587 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3588 3589 soc = (i == 0) ? 1 : 0; 3590 eoc = (i == ncmds - 1) ? 1 : 0; 3591 3592 /* For last cmd, set naddr corresponding to remaining 3593 * addresses 3594 */ 3595 if (i == ncmds - 1) { 3596 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3597 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3598 } 3599 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3600 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3601 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3602 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3603 3604 hma_cmd.mode_to_pcie_params = 3605 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3606 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3607 3608 /* HMA cmd size specified in MB's */ 3609 hma_cmd.naddr_size = 3610 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3611 FW_HMA_CMD_NADDR_V(naddr)); 3612 3613 /* Total Page size specified in units of 4K */ 3614 hma_cmd.addr_size_pkd = 3615 htonl(FW_HMA_CMD_ADDR_SIZE_V 3616 ((page_size << page_order) >> 12)); 3617 3618 /* Fill the 5 addresses */ 3619 for (j = 0; j < naddr; j++) { 3620 hma_cmd.phy_address[j] = 3621 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3622 } 3623 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3624 sizeof(hma_cmd), &hma_cmd); 3625 if (ret) { 3626 dev_err(adapter->pdev_dev, 3627 "HMA FW command failed with err %d\n", ret); 3628 goto free_hma; 3629 } 3630 } 3631 3632 if (!ret) 3633 dev_info(adapter->pdev_dev, 3634 "Reserved %uMB host memory for HMA\n", hma_size); 3635 return ret; 3636 3637 free_hma: 3638 adap_free_hma_mem(adapter); 3639 return ret; 3640 } 3641 3642 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3643 { 3644 u32 v; 3645 int ret; 3646 3647 /* Now that we've successfully configured and initialized the adapter 3648 * can ask the Firmware what resources it has provisioned for us. 3649 */ 3650 ret = t4_get_pfres(adap); 3651 if (ret) { 3652 dev_err(adap->pdev_dev, 3653 "Unable to retrieve resource provisioning information\n"); 3654 return ret; 3655 } 3656 3657 /* get device capabilities */ 3658 memset(c, 0, sizeof(*c)); 3659 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3660 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3661 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3662 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3663 if (ret < 0) 3664 return ret; 3665 3666 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3667 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3668 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3669 if (ret < 0) 3670 return ret; 3671 3672 ret = t4_config_glbl_rss(adap, adap->pf, 3673 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3674 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3675 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3676 if (ret < 0) 3677 return ret; 3678 3679 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3680 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3681 FW_CMD_CAP_PF); 3682 if (ret < 0) 3683 return ret; 3684 3685 t4_sge_init(adap); 3686 3687 /* tweak some settings */ 3688 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3689 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3690 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3691 v = t4_read_reg(adap, TP_PIO_DATA_A); 3692 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3693 3694 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3695 adap->params.tp.tx_modq_map = 0xE4; 3696 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3697 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3698 3699 /* associate each Tx modulation queue with consecutive Tx channels */ 3700 v = 0x84218421; 3701 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3702 &v, 1, TP_TX_SCHED_HDR_A); 3703 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3704 &v, 1, TP_TX_SCHED_FIFO_A); 3705 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3706 &v, 1, TP_TX_SCHED_PCMD_A); 3707 3708 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3709 if (is_offload(adap)) { 3710 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3711 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3712 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3713 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3714 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3715 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3716 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3717 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3718 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3719 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3720 } 3721 3722 /* get basic stuff going */ 3723 return t4_early_init(adap, adap->pf); 3724 } 3725 3726 /* 3727 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3728 */ 3729 #define MAX_ATIDS 8192U 3730 3731 /* 3732 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3733 * 3734 * If the firmware we're dealing with has Configuration File support, then 3735 * we use that to perform all configuration 3736 */ 3737 3738 /* 3739 * Tweak configuration based on module parameters, etc. Most of these have 3740 * defaults assigned to them by Firmware Configuration Files (if we're using 3741 * them) but need to be explicitly set if we're using hard-coded 3742 * initialization. But even in the case of using Firmware Configuration 3743 * Files, we'd like to expose the ability to change these via module 3744 * parameters so these are essentially common tweaks/settings for 3745 * Configuration Files and hard-coded initialization ... 3746 */ 3747 static int adap_init0_tweaks(struct adapter *adapter) 3748 { 3749 /* 3750 * Fix up various Host-Dependent Parameters like Page Size, Cache 3751 * Line Size, etc. The firmware default is for a 4KB Page Size and 3752 * 64B Cache Line Size ... 3753 */ 3754 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3755 3756 /* 3757 * Process module parameters which affect early initialization. 3758 */ 3759 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3760 dev_err(&adapter->pdev->dev, 3761 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3762 rx_dma_offset); 3763 rx_dma_offset = 2; 3764 } 3765 t4_set_reg_field(adapter, SGE_CONTROL_A, 3766 PKTSHIFT_V(PKTSHIFT_M), 3767 PKTSHIFT_V(rx_dma_offset)); 3768 3769 /* 3770 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3771 * adds the pseudo header itself. 3772 */ 3773 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3774 CSUM_HAS_PSEUDO_HDR_F, 0); 3775 3776 return 0; 3777 } 3778 3779 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3780 * unto themselves and they contain their own firmware to perform their 3781 * tasks ... 3782 */ 3783 static int phy_aq1202_version(const u8 *phy_fw_data, 3784 size_t phy_fw_size) 3785 { 3786 int offset; 3787 3788 /* At offset 0x8 you're looking for the primary image's 3789 * starting offset which is 3 Bytes wide 3790 * 3791 * At offset 0xa of the primary image, you look for the offset 3792 * of the DRAM segment which is 3 Bytes wide. 3793 * 3794 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3795 * wide 3796 */ 3797 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3798 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3799 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3800 3801 offset = le24(phy_fw_data + 0x8) << 12; 3802 offset = le24(phy_fw_data + offset + 0xa); 3803 return be16(phy_fw_data + offset + 0x27e); 3804 3805 #undef be16 3806 #undef le16 3807 #undef le24 3808 } 3809 3810 static struct info_10gbt_phy_fw { 3811 unsigned int phy_fw_id; /* PCI Device ID */ 3812 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3813 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3814 int phy_flash; /* Has FLASH for PHY Firmware */ 3815 } phy_info_array[] = { 3816 { 3817 PHY_AQ1202_DEVICEID, 3818 PHY_AQ1202_FIRMWARE, 3819 phy_aq1202_version, 3820 1, 3821 }, 3822 { 3823 PHY_BCM84834_DEVICEID, 3824 PHY_BCM84834_FIRMWARE, 3825 NULL, 3826 0, 3827 }, 3828 { 0, NULL, NULL }, 3829 }; 3830 3831 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3832 { 3833 int i; 3834 3835 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3836 if (phy_info_array[i].phy_fw_id == devid) 3837 return &phy_info_array[i]; 3838 } 3839 return NULL; 3840 } 3841 3842 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3843 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3844 * we return a negative error number. If we transfer new firmware we return 1 3845 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3846 */ 3847 static int adap_init0_phy(struct adapter *adap) 3848 { 3849 const struct firmware *phyf; 3850 int ret; 3851 struct info_10gbt_phy_fw *phy_info; 3852 3853 /* Use the device ID to determine which PHY file to flash. 3854 */ 3855 phy_info = find_phy_info(adap->pdev->device); 3856 if (!phy_info) { 3857 dev_warn(adap->pdev_dev, 3858 "No PHY Firmware file found for this PHY\n"); 3859 return -EOPNOTSUPP; 3860 } 3861 3862 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3863 * use that. The adapter firmware provides us with a memory buffer 3864 * where we can load a PHY firmware file from the host if we want to 3865 * override the PHY firmware File in flash. 3866 */ 3867 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3868 adap->pdev_dev); 3869 if (ret < 0) { 3870 /* For adapters without FLASH attached to PHY for their 3871 * firmware, it's obviously a fatal error if we can't get the 3872 * firmware to the adapter. For adapters with PHY firmware 3873 * FLASH storage, it's worth a warning if we can't find the 3874 * PHY Firmware but we'll neuter the error ... 3875 */ 3876 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3877 "/lib/firmware/%s, error %d\n", 3878 phy_info->phy_fw_file, -ret); 3879 if (phy_info->phy_flash) { 3880 int cur_phy_fw_ver = 0; 3881 3882 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3883 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3884 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3885 ret = 0; 3886 } 3887 3888 return ret; 3889 } 3890 3891 /* Load PHY Firmware onto adapter. 3892 */ 3893 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3894 phy_info->phy_fw_version, 3895 (u8 *)phyf->data, phyf->size); 3896 if (ret < 0) 3897 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3898 -ret); 3899 else if (ret > 0) { 3900 int new_phy_fw_ver = 0; 3901 3902 if (phy_info->phy_fw_version) 3903 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3904 phyf->size); 3905 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3906 "Firmware /lib/firmware/%s, version %#x\n", 3907 phy_info->phy_fw_file, new_phy_fw_ver); 3908 } 3909 3910 release_firmware(phyf); 3911 3912 return ret; 3913 } 3914 3915 /* 3916 * Attempt to initialize the adapter via a Firmware Configuration File. 3917 */ 3918 static int adap_init0_config(struct adapter *adapter, int reset) 3919 { 3920 char *fw_config_file, fw_config_file_path[256]; 3921 u32 finiver, finicsum, cfcsum, param, val; 3922 struct fw_caps_config_cmd caps_cmd; 3923 unsigned long mtype = 0, maddr = 0; 3924 const struct firmware *cf; 3925 char *config_name = NULL; 3926 int config_issued = 0; 3927 int ret; 3928 3929 /* 3930 * Reset device if necessary. 3931 */ 3932 if (reset) { 3933 ret = t4_fw_reset(adapter, adapter->mbox, 3934 PIORSTMODE_F | PIORST_F); 3935 if (ret < 0) 3936 goto bye; 3937 } 3938 3939 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3940 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3941 * to be performed after any global adapter RESET above since some 3942 * PHYs only have local RAM copies of the PHY firmware. 3943 */ 3944 if (is_10gbt_device(adapter->pdev->device)) { 3945 ret = adap_init0_phy(adapter); 3946 if (ret < 0) 3947 goto bye; 3948 } 3949 /* 3950 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3951 * then use that. Otherwise, use the configuration file stored 3952 * in the adapter flash ... 3953 */ 3954 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3955 case CHELSIO_T4: 3956 fw_config_file = FW4_CFNAME; 3957 break; 3958 case CHELSIO_T5: 3959 fw_config_file = FW5_CFNAME; 3960 break; 3961 case CHELSIO_T6: 3962 fw_config_file = FW6_CFNAME; 3963 break; 3964 default: 3965 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3966 adapter->pdev->device); 3967 ret = -EINVAL; 3968 goto bye; 3969 } 3970 3971 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3972 if (ret < 0) { 3973 config_name = "On FLASH"; 3974 mtype = FW_MEMTYPE_CF_FLASH; 3975 maddr = t4_flash_cfg_addr(adapter); 3976 } else { 3977 u32 params[7], val[7]; 3978 3979 sprintf(fw_config_file_path, 3980 "/lib/firmware/%s", fw_config_file); 3981 config_name = fw_config_file_path; 3982 3983 if (cf->size >= FLASH_CFG_MAX_SIZE) 3984 ret = -ENOMEM; 3985 else { 3986 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3987 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3988 ret = t4_query_params(adapter, adapter->mbox, 3989 adapter->pf, 0, 1, params, val); 3990 if (ret == 0) { 3991 /* 3992 * For t4_memory_rw() below addresses and 3993 * sizes have to be in terms of multiples of 4 3994 * bytes. So, if the Configuration File isn't 3995 * a multiple of 4 bytes in length we'll have 3996 * to write that out separately since we can't 3997 * guarantee that the bytes following the 3998 * residual byte in the buffer returned by 3999 * request_firmware() are zeroed out ... 4000 */ 4001 size_t resid = cf->size & 0x3; 4002 size_t size = cf->size & ~0x3; 4003 __be32 *data = (__be32 *)cf->data; 4004 4005 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4006 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4007 4008 spin_lock(&adapter->win0_lock); 4009 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4010 size, data, T4_MEMORY_WRITE); 4011 if (ret == 0 && resid != 0) { 4012 union { 4013 __be32 word; 4014 char buf[4]; 4015 } last; 4016 int i; 4017 4018 last.word = data[size >> 2]; 4019 for (i = resid; i < 4; i++) 4020 last.buf[i] = 0; 4021 ret = t4_memory_rw(adapter, 0, mtype, 4022 maddr + size, 4023 4, &last.word, 4024 T4_MEMORY_WRITE); 4025 } 4026 spin_unlock(&adapter->win0_lock); 4027 } 4028 } 4029 4030 release_firmware(cf); 4031 if (ret) 4032 goto bye; 4033 } 4034 4035 val = 0; 4036 4037 /* Ofld + Hash filter is supported. Older fw will fail this request and 4038 * it is fine. 4039 */ 4040 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4041 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4042 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4043 1, ¶m, &val); 4044 4045 /* FW doesn't know about Hash filter + ofld support, 4046 * it's not a problem, don't return an error. 4047 */ 4048 if (ret < 0) { 4049 dev_warn(adapter->pdev_dev, 4050 "Hash filter with ofld is not supported by FW\n"); 4051 } 4052 4053 /* 4054 * Issue a Capability Configuration command to the firmware to get it 4055 * to parse the Configuration File. We don't use t4_fw_config_file() 4056 * because we want the ability to modify various features after we've 4057 * processed the configuration file ... 4058 */ 4059 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4060 caps_cmd.op_to_write = 4061 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4062 FW_CMD_REQUEST_F | 4063 FW_CMD_READ_F); 4064 caps_cmd.cfvalid_to_len16 = 4065 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4066 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4067 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4068 FW_LEN16(caps_cmd)); 4069 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4070 &caps_cmd); 4071 4072 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4073 * Configuration File in FLASH), our last gasp effort is to use the 4074 * Firmware Configuration File which is embedded in the firmware. A 4075 * very few early versions of the firmware didn't have one embedded 4076 * but we can ignore those. 4077 */ 4078 if (ret == -ENOENT) { 4079 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4080 caps_cmd.op_to_write = 4081 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4082 FW_CMD_REQUEST_F | 4083 FW_CMD_READ_F); 4084 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4085 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4086 sizeof(caps_cmd), &caps_cmd); 4087 config_name = "Firmware Default"; 4088 } 4089 4090 config_issued = 1; 4091 if (ret < 0) 4092 goto bye; 4093 4094 finiver = ntohl(caps_cmd.finiver); 4095 finicsum = ntohl(caps_cmd.finicsum); 4096 cfcsum = ntohl(caps_cmd.cfcsum); 4097 if (finicsum != cfcsum) 4098 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4099 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4100 finicsum, cfcsum); 4101 4102 /* 4103 * And now tell the firmware to use the configuration we just loaded. 4104 */ 4105 caps_cmd.op_to_write = 4106 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4107 FW_CMD_REQUEST_F | 4108 FW_CMD_WRITE_F); 4109 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4110 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4111 NULL); 4112 if (ret < 0) 4113 goto bye; 4114 4115 /* 4116 * Tweak configuration based on system architecture, module 4117 * parameters, etc. 4118 */ 4119 ret = adap_init0_tweaks(adapter); 4120 if (ret < 0) 4121 goto bye; 4122 4123 /* We will proceed even if HMA init fails. */ 4124 ret = adap_config_hma(adapter); 4125 if (ret) 4126 dev_err(adapter->pdev_dev, 4127 "HMA configuration failed with error %d\n", ret); 4128 4129 /* 4130 * And finally tell the firmware to initialize itself using the 4131 * parameters from the Configuration File. 4132 */ 4133 ret = t4_fw_initialize(adapter, adapter->mbox); 4134 if (ret < 0) 4135 goto bye; 4136 4137 /* Emit Firmware Configuration File information and return 4138 * successfully. 4139 */ 4140 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4141 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4142 config_name, finiver, cfcsum); 4143 return 0; 4144 4145 /* 4146 * Something bad happened. Return the error ... (If the "error" 4147 * is that there's no Configuration File on the adapter we don't 4148 * want to issue a warning since this is fairly common.) 4149 */ 4150 bye: 4151 if (config_issued && ret != -ENOENT) 4152 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4153 config_name, -ret); 4154 return ret; 4155 } 4156 4157 static struct fw_info fw_info_array[] = { 4158 { 4159 .chip = CHELSIO_T4, 4160 .fs_name = FW4_CFNAME, 4161 .fw_mod_name = FW4_FNAME, 4162 .fw_hdr = { 4163 .chip = FW_HDR_CHIP_T4, 4164 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4165 .intfver_nic = FW_INTFVER(T4, NIC), 4166 .intfver_vnic = FW_INTFVER(T4, VNIC), 4167 .intfver_ri = FW_INTFVER(T4, RI), 4168 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4169 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4170 }, 4171 }, { 4172 .chip = CHELSIO_T5, 4173 .fs_name = FW5_CFNAME, 4174 .fw_mod_name = FW5_FNAME, 4175 .fw_hdr = { 4176 .chip = FW_HDR_CHIP_T5, 4177 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4178 .intfver_nic = FW_INTFVER(T5, NIC), 4179 .intfver_vnic = FW_INTFVER(T5, VNIC), 4180 .intfver_ri = FW_INTFVER(T5, RI), 4181 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4182 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4183 }, 4184 }, { 4185 .chip = CHELSIO_T6, 4186 .fs_name = FW6_CFNAME, 4187 .fw_mod_name = FW6_FNAME, 4188 .fw_hdr = { 4189 .chip = FW_HDR_CHIP_T6, 4190 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4191 .intfver_nic = FW_INTFVER(T6, NIC), 4192 .intfver_vnic = FW_INTFVER(T6, VNIC), 4193 .intfver_ofld = FW_INTFVER(T6, OFLD), 4194 .intfver_ri = FW_INTFVER(T6, RI), 4195 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4196 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4197 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4198 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4199 }, 4200 } 4201 4202 }; 4203 4204 static struct fw_info *find_fw_info(int chip) 4205 { 4206 int i; 4207 4208 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4209 if (fw_info_array[i].chip == chip) 4210 return &fw_info_array[i]; 4211 } 4212 return NULL; 4213 } 4214 4215 /* 4216 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4217 */ 4218 static int adap_init0(struct adapter *adap) 4219 { 4220 int ret; 4221 u32 v, port_vec; 4222 enum dev_state state; 4223 u32 params[7], val[7]; 4224 struct fw_caps_config_cmd caps_cmd; 4225 int reset = 1; 4226 4227 /* Grab Firmware Device Log parameters as early as possible so we have 4228 * access to it for debugging, etc. 4229 */ 4230 ret = t4_init_devlog_params(adap); 4231 if (ret < 0) 4232 return ret; 4233 4234 /* Contact FW, advertising Master capability */ 4235 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4236 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4237 if (ret < 0) { 4238 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4239 ret); 4240 return ret; 4241 } 4242 if (ret == adap->mbox) 4243 adap->flags |= CXGB4_MASTER_PF; 4244 4245 /* 4246 * If we're the Master PF Driver and the device is uninitialized, 4247 * then let's consider upgrading the firmware ... (We always want 4248 * to check the firmware version number in order to A. get it for 4249 * later reporting and B. to warn if the currently loaded firmware 4250 * is excessively mismatched relative to the driver.) 4251 */ 4252 4253 t4_get_version_info(adap); 4254 ret = t4_check_fw_version(adap); 4255 /* If firmware is too old (not supported by driver) force an update. */ 4256 if (ret) 4257 state = DEV_STATE_UNINIT; 4258 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4259 struct fw_info *fw_info; 4260 struct fw_hdr *card_fw; 4261 const struct firmware *fw; 4262 const u8 *fw_data = NULL; 4263 unsigned int fw_size = 0; 4264 4265 /* This is the firmware whose headers the driver was compiled 4266 * against 4267 */ 4268 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4269 if (fw_info == NULL) { 4270 dev_err(adap->pdev_dev, 4271 "unable to get firmware info for chip %d.\n", 4272 CHELSIO_CHIP_VERSION(adap->params.chip)); 4273 return -EINVAL; 4274 } 4275 4276 /* allocate memory to read the header of the firmware on the 4277 * card 4278 */ 4279 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4280 if (!card_fw) { 4281 ret = -ENOMEM; 4282 goto bye; 4283 } 4284 4285 /* Get FW from from /lib/firmware/ */ 4286 ret = request_firmware(&fw, fw_info->fw_mod_name, 4287 adap->pdev_dev); 4288 if (ret < 0) { 4289 dev_err(adap->pdev_dev, 4290 "unable to load firmware image %s, error %d\n", 4291 fw_info->fw_mod_name, ret); 4292 } else { 4293 fw_data = fw->data; 4294 fw_size = fw->size; 4295 } 4296 4297 /* upgrade FW logic */ 4298 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4299 state, &reset); 4300 4301 /* Cleaning up */ 4302 release_firmware(fw); 4303 kvfree(card_fw); 4304 4305 if (ret < 0) 4306 goto bye; 4307 } 4308 4309 /* If the firmware is initialized already, emit a simply note to that 4310 * effect. Otherwise, it's time to try initializing the adapter. 4311 */ 4312 if (state == DEV_STATE_INIT) { 4313 ret = adap_config_hma(adap); 4314 if (ret) 4315 dev_err(adap->pdev_dev, 4316 "HMA configuration failed with error %d\n", 4317 ret); 4318 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4319 "Adapter already initialized\n", 4320 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4321 } else { 4322 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4323 "Initializing adapter\n"); 4324 4325 /* Find out whether we're dealing with a version of the 4326 * firmware which has configuration file support. 4327 */ 4328 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4329 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4330 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4331 params, val); 4332 4333 /* If the firmware doesn't support Configuration Files, 4334 * return an error. 4335 */ 4336 if (ret < 0) { 4337 dev_err(adap->pdev_dev, "firmware doesn't support " 4338 "Firmware Configuration Files\n"); 4339 goto bye; 4340 } 4341 4342 /* The firmware provides us with a memory buffer where we can 4343 * load a Configuration File from the host if we want to 4344 * override the Configuration File in flash. 4345 */ 4346 ret = adap_init0_config(adap, reset); 4347 if (ret == -ENOENT) { 4348 dev_err(adap->pdev_dev, "no Configuration File " 4349 "present on adapter.\n"); 4350 goto bye; 4351 } 4352 if (ret < 0) { 4353 dev_err(adap->pdev_dev, "could not initialize " 4354 "adapter, error %d\n", -ret); 4355 goto bye; 4356 } 4357 } 4358 4359 /* Now that we've successfully configured and initialized the adapter 4360 * (or found it already initialized), we can ask the Firmware what 4361 * resources it has provisioned for us. 4362 */ 4363 ret = t4_get_pfres(adap); 4364 if (ret) { 4365 dev_err(adap->pdev_dev, 4366 "Unable to retrieve resource provisioning information\n"); 4367 goto bye; 4368 } 4369 4370 /* Grab VPD parameters. This should be done after we establish a 4371 * connection to the firmware since some of the VPD parameters 4372 * (notably the Core Clock frequency) are retrieved via requests to 4373 * the firmware. On the other hand, we need these fairly early on 4374 * so we do this right after getting ahold of the firmware. 4375 * 4376 * We need to do this after initializing the adapter because someone 4377 * could have FLASHed a new VPD which won't be read by the firmware 4378 * until we do the RESET ... 4379 */ 4380 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4381 if (ret < 0) 4382 goto bye; 4383 4384 /* Find out what ports are available to us. Note that we need to do 4385 * this before calling adap_init0_no_config() since it needs nports 4386 * and portvec ... 4387 */ 4388 v = 4389 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4390 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4391 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4392 if (ret < 0) 4393 goto bye; 4394 4395 adap->params.nports = hweight32(port_vec); 4396 adap->params.portvec = port_vec; 4397 4398 /* Give the SGE code a chance to pull in anything that it needs ... 4399 * Note that this must be called after we retrieve our VPD parameters 4400 * in order to know how to convert core ticks to seconds, etc. 4401 */ 4402 ret = t4_sge_init(adap); 4403 if (ret < 0) 4404 goto bye; 4405 4406 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4407 * indicates that the Firmware and Hardware support this. 4408 */ 4409 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4410 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4411 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4412 1, params, val); 4413 4414 if (!ret) { 4415 adap->sge.dbqtimer_tick = val[0]; 4416 ret = t4_read_sge_dbqtimers(adap, 4417 ARRAY_SIZE(adap->sge.dbqtimer_val), 4418 adap->sge.dbqtimer_val); 4419 } 4420 4421 if (!ret) 4422 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4423 4424 if (is_bypass_device(adap->pdev->device)) 4425 adap->params.bypass = 1; 4426 4427 /* 4428 * Grab some of our basic fundamental operating parameters. 4429 */ 4430 #define FW_PARAM_DEV(param) \ 4431 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4432 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4433 4434 #define FW_PARAM_PFVF(param) \ 4435 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4436 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4437 FW_PARAMS_PARAM_Y_V(0) | \ 4438 FW_PARAMS_PARAM_Z_V(0) 4439 4440 params[0] = FW_PARAM_PFVF(EQ_START); 4441 params[1] = FW_PARAM_PFVF(L2T_START); 4442 params[2] = FW_PARAM_PFVF(L2T_END); 4443 params[3] = FW_PARAM_PFVF(FILTER_START); 4444 params[4] = FW_PARAM_PFVF(FILTER_END); 4445 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4446 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4447 if (ret < 0) 4448 goto bye; 4449 adap->sge.egr_start = val[0]; 4450 adap->l2t_start = val[1]; 4451 adap->l2t_end = val[2]; 4452 adap->tids.ftid_base = val[3]; 4453 adap->tids.nftids = val[4] - val[3] + 1; 4454 adap->sge.ingr_start = val[5]; 4455 4456 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4457 /* Read the raw mps entries. In T6, the last 2 tcam entries 4458 * are reserved for raw mac addresses (rawf = 2, one per port). 4459 */ 4460 params[0] = FW_PARAM_PFVF(RAWF_START); 4461 params[1] = FW_PARAM_PFVF(RAWF_END); 4462 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4463 params, val); 4464 if (ret == 0) { 4465 adap->rawf_start = val[0]; 4466 adap->rawf_cnt = val[1] - val[0] + 1; 4467 } 4468 } 4469 4470 /* qids (ingress/egress) returned from firmware can be anywhere 4471 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4472 * Hence driver needs to allocate memory for this range to 4473 * store the queue info. Get the highest IQFLINT/EQ index returned 4474 * in FW_EQ_*_CMD.alloc command. 4475 */ 4476 params[0] = FW_PARAM_PFVF(EQ_END); 4477 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4478 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4479 if (ret < 0) 4480 goto bye; 4481 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4482 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4483 4484 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4485 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4486 if (!adap->sge.egr_map) { 4487 ret = -ENOMEM; 4488 goto bye; 4489 } 4490 4491 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4492 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4493 if (!adap->sge.ingr_map) { 4494 ret = -ENOMEM; 4495 goto bye; 4496 } 4497 4498 /* Allocate the memory for the vaious egress queue bitmaps 4499 * ie starving_fl, txq_maperr and blocked_fl. 4500 */ 4501 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4502 sizeof(long), GFP_KERNEL); 4503 if (!adap->sge.starving_fl) { 4504 ret = -ENOMEM; 4505 goto bye; 4506 } 4507 4508 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4509 sizeof(long), GFP_KERNEL); 4510 if (!adap->sge.txq_maperr) { 4511 ret = -ENOMEM; 4512 goto bye; 4513 } 4514 4515 #ifdef CONFIG_DEBUG_FS 4516 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4517 sizeof(long), GFP_KERNEL); 4518 if (!adap->sge.blocked_fl) { 4519 ret = -ENOMEM; 4520 goto bye; 4521 } 4522 #endif 4523 4524 params[0] = FW_PARAM_PFVF(CLIP_START); 4525 params[1] = FW_PARAM_PFVF(CLIP_END); 4526 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4527 if (ret < 0) 4528 goto bye; 4529 adap->clipt_start = val[0]; 4530 adap->clipt_end = val[1]; 4531 4532 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4533 * Classes supported by the hardware/firmware so we hard code it here 4534 * for now. 4535 */ 4536 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4537 4538 /* query params related to active filter region */ 4539 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4540 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4541 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4542 /* If Active filter size is set we enable establishing 4543 * offload connection through firmware work request 4544 */ 4545 if ((val[0] != val[1]) && (ret >= 0)) { 4546 adap->flags |= CXGB4_FW_OFLD_CONN; 4547 adap->tids.aftid_base = val[0]; 4548 adap->tids.aftid_end = val[1]; 4549 } 4550 4551 /* If we're running on newer firmware, let it know that we're 4552 * prepared to deal with encapsulated CPL messages. Older 4553 * firmware won't understand this and we'll just get 4554 * unencapsulated messages ... 4555 */ 4556 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4557 val[0] = 1; 4558 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4559 4560 /* 4561 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4562 * capability. Earlier versions of the firmware didn't have the 4563 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4564 * permission to use ULPTX MEMWRITE DSGL. 4565 */ 4566 if (is_t4(adap->params.chip)) { 4567 adap->params.ulptx_memwrite_dsgl = false; 4568 } else { 4569 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4570 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4571 1, params, val); 4572 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4573 } 4574 4575 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4576 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4577 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4578 1, params, val); 4579 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4580 4581 /* See if FW supports FW_FILTER2 work request */ 4582 if (is_t4(adap->params.chip)) { 4583 adap->params.filter2_wr_support = 0; 4584 } else { 4585 params[0] = FW_PARAM_DEV(FILTER2_WR); 4586 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4587 1, params, val); 4588 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4589 } 4590 4591 /* Check if FW supports returning vin and smt index. 4592 * If this is not supported, driver will interpret 4593 * these values from viid. 4594 */ 4595 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4596 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4597 1, params, val); 4598 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4599 4600 /* 4601 * Get device capabilities so we can determine what resources we need 4602 * to manage. 4603 */ 4604 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4605 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4606 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4607 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4608 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4609 &caps_cmd); 4610 if (ret < 0) 4611 goto bye; 4612 4613 /* hash filter has some mandatory register settings to be tested and for 4614 * that it needs to test whether offload is enabled or not, hence 4615 * checking and setting it here. 4616 */ 4617 if (caps_cmd.ofldcaps) 4618 adap->params.offload = 1; 4619 4620 if (caps_cmd.ofldcaps || 4621 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4622 /* query offload-related parameters */ 4623 params[0] = FW_PARAM_DEV(NTID); 4624 params[1] = FW_PARAM_PFVF(SERVER_START); 4625 params[2] = FW_PARAM_PFVF(SERVER_END); 4626 params[3] = FW_PARAM_PFVF(TDDP_START); 4627 params[4] = FW_PARAM_PFVF(TDDP_END); 4628 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4629 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4630 params, val); 4631 if (ret < 0) 4632 goto bye; 4633 adap->tids.ntids = val[0]; 4634 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4635 adap->tids.stid_base = val[1]; 4636 adap->tids.nstids = val[2] - val[1] + 1; 4637 /* 4638 * Setup server filter region. Divide the available filter 4639 * region into two parts. Regular filters get 1/3rd and server 4640 * filters get 2/3rd part. This is only enabled if workarond 4641 * path is enabled. 4642 * 1. For regular filters. 4643 * 2. Server filter: This are special filters which are used 4644 * to redirect SYN packets to offload queue. 4645 */ 4646 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 4647 adap->tids.sftid_base = adap->tids.ftid_base + 4648 DIV_ROUND_UP(adap->tids.nftids, 3); 4649 adap->tids.nsftids = adap->tids.nftids - 4650 DIV_ROUND_UP(adap->tids.nftids, 3); 4651 adap->tids.nftids = adap->tids.sftid_base - 4652 adap->tids.ftid_base; 4653 } 4654 adap->vres.ddp.start = val[3]; 4655 adap->vres.ddp.size = val[4] - val[3] + 1; 4656 adap->params.ofldq_wr_cred = val[5]; 4657 4658 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4659 init_hash_filter(adap); 4660 } else { 4661 adap->num_ofld_uld += 1; 4662 } 4663 } 4664 if (caps_cmd.rdmacaps) { 4665 params[0] = FW_PARAM_PFVF(STAG_START); 4666 params[1] = FW_PARAM_PFVF(STAG_END); 4667 params[2] = FW_PARAM_PFVF(RQ_START); 4668 params[3] = FW_PARAM_PFVF(RQ_END); 4669 params[4] = FW_PARAM_PFVF(PBL_START); 4670 params[5] = FW_PARAM_PFVF(PBL_END); 4671 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4672 params, val); 4673 if (ret < 0) 4674 goto bye; 4675 adap->vres.stag.start = val[0]; 4676 adap->vres.stag.size = val[1] - val[0] + 1; 4677 adap->vres.rq.start = val[2]; 4678 adap->vres.rq.size = val[3] - val[2] + 1; 4679 adap->vres.pbl.start = val[4]; 4680 adap->vres.pbl.size = val[5] - val[4] + 1; 4681 4682 params[0] = FW_PARAM_PFVF(SRQ_START); 4683 params[1] = FW_PARAM_PFVF(SRQ_END); 4684 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4685 params, val); 4686 if (!ret) { 4687 adap->vres.srq.start = val[0]; 4688 adap->vres.srq.size = val[1] - val[0] + 1; 4689 } 4690 if (adap->vres.srq.size) { 4691 adap->srq = t4_init_srq(adap->vres.srq.size); 4692 if (!adap->srq) 4693 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4694 } 4695 4696 params[0] = FW_PARAM_PFVF(SQRQ_START); 4697 params[1] = FW_PARAM_PFVF(SQRQ_END); 4698 params[2] = FW_PARAM_PFVF(CQ_START); 4699 params[3] = FW_PARAM_PFVF(CQ_END); 4700 params[4] = FW_PARAM_PFVF(OCQ_START); 4701 params[5] = FW_PARAM_PFVF(OCQ_END); 4702 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4703 val); 4704 if (ret < 0) 4705 goto bye; 4706 adap->vres.qp.start = val[0]; 4707 adap->vres.qp.size = val[1] - val[0] + 1; 4708 adap->vres.cq.start = val[2]; 4709 adap->vres.cq.size = val[3] - val[2] + 1; 4710 adap->vres.ocq.start = val[4]; 4711 adap->vres.ocq.size = val[5] - val[4] + 1; 4712 4713 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4714 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4715 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4716 val); 4717 if (ret < 0) { 4718 adap->params.max_ordird_qp = 8; 4719 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4720 ret = 0; 4721 } else { 4722 adap->params.max_ordird_qp = val[0]; 4723 adap->params.max_ird_adapter = val[1]; 4724 } 4725 dev_info(adap->pdev_dev, 4726 "max_ordird_qp %d max_ird_adapter %d\n", 4727 adap->params.max_ordird_qp, 4728 adap->params.max_ird_adapter); 4729 4730 /* Enable write_with_immediate if FW supports it */ 4731 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4732 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4733 val); 4734 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4735 4736 /* Enable write_cmpl if FW supports it */ 4737 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4738 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4739 val); 4740 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4741 adap->num_ofld_uld += 2; 4742 } 4743 if (caps_cmd.iscsicaps) { 4744 params[0] = FW_PARAM_PFVF(ISCSI_START); 4745 params[1] = FW_PARAM_PFVF(ISCSI_END); 4746 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4747 params, val); 4748 if (ret < 0) 4749 goto bye; 4750 adap->vres.iscsi.start = val[0]; 4751 adap->vres.iscsi.size = val[1] - val[0] + 1; 4752 /* LIO target and cxgb4i initiaitor */ 4753 adap->num_ofld_uld += 2; 4754 } 4755 if (caps_cmd.cryptocaps) { 4756 if (ntohs(caps_cmd.cryptocaps) & 4757 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4758 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4759 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4760 2, params, val); 4761 if (ret < 0) { 4762 if (ret != -EINVAL) 4763 goto bye; 4764 } else { 4765 adap->vres.ncrypto_fc = val[0]; 4766 } 4767 adap->num_ofld_uld += 1; 4768 } 4769 if (ntohs(caps_cmd.cryptocaps) & 4770 FW_CAPS_CONFIG_TLS_INLINE) { 4771 params[0] = FW_PARAM_PFVF(TLS_START); 4772 params[1] = FW_PARAM_PFVF(TLS_END); 4773 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4774 2, params, val); 4775 if (ret < 0) 4776 goto bye; 4777 adap->vres.key.start = val[0]; 4778 adap->vres.key.size = val[1] - val[0] + 1; 4779 adap->num_uld += 1; 4780 } 4781 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4782 } 4783 #undef FW_PARAM_PFVF 4784 #undef FW_PARAM_DEV 4785 4786 /* The MTU/MSS Table is initialized by now, so load their values. If 4787 * we're initializing the adapter, then we'll make any modifications 4788 * we want to the MTU/MSS Table and also initialize the congestion 4789 * parameters. 4790 */ 4791 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4792 if (state != DEV_STATE_INIT) { 4793 int i; 4794 4795 /* The default MTU Table contains values 1492 and 1500. 4796 * However, for TCP, it's better to have two values which are 4797 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4798 * This allows us to have a TCP Data Payload which is a 4799 * multiple of 8 regardless of what combination of TCP Options 4800 * are in use (always a multiple of 4 bytes) which is 4801 * important for performance reasons. For instance, if no 4802 * options are in use, then we have a 20-byte IP header and a 4803 * 20-byte TCP header. In this case, a 1500-byte MSS would 4804 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4805 * which is not a multiple of 8. So using an MSS of 1488 in 4806 * this case results in a TCP Data Payload of 1448 bytes which 4807 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4808 * Stamps have been negotiated, then an MTU of 1500 bytes 4809 * results in a TCP Data Payload of 1448 bytes which, as 4810 * above, is a multiple of 8 bytes ... 4811 */ 4812 for (i = 0; i < NMTUS; i++) 4813 if (adap->params.mtus[i] == 1492) { 4814 adap->params.mtus[i] = 1488; 4815 break; 4816 } 4817 4818 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4819 adap->params.b_wnd); 4820 } 4821 t4_init_sge_params(adap); 4822 adap->flags |= CXGB4_FW_OK; 4823 t4_init_tp_params(adap, true); 4824 return 0; 4825 4826 /* 4827 * Something bad happened. If a command timed out or failed with EIO 4828 * FW does not operate within its spec or something catastrophic 4829 * happened to HW/FW, stop issuing commands. 4830 */ 4831 bye: 4832 adap_free_hma_mem(adap); 4833 kfree(adap->sge.egr_map); 4834 kfree(adap->sge.ingr_map); 4835 kfree(adap->sge.starving_fl); 4836 kfree(adap->sge.txq_maperr); 4837 #ifdef CONFIG_DEBUG_FS 4838 kfree(adap->sge.blocked_fl); 4839 #endif 4840 if (ret != -ETIMEDOUT && ret != -EIO) 4841 t4_fw_bye(adap, adap->mbox); 4842 return ret; 4843 } 4844 4845 /* EEH callbacks */ 4846 4847 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4848 pci_channel_state_t state) 4849 { 4850 int i; 4851 struct adapter *adap = pci_get_drvdata(pdev); 4852 4853 if (!adap) 4854 goto out; 4855 4856 rtnl_lock(); 4857 adap->flags &= ~CXGB4_FW_OK; 4858 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4859 spin_lock(&adap->stats_lock); 4860 for_each_port(adap, i) { 4861 struct net_device *dev = adap->port[i]; 4862 if (dev) { 4863 netif_device_detach(dev); 4864 netif_carrier_off(dev); 4865 } 4866 } 4867 spin_unlock(&adap->stats_lock); 4868 disable_interrupts(adap); 4869 if (adap->flags & CXGB4_FULL_INIT_DONE) 4870 cxgb_down(adap); 4871 rtnl_unlock(); 4872 if ((adap->flags & CXGB4_DEV_ENABLED)) { 4873 pci_disable_device(pdev); 4874 adap->flags &= ~CXGB4_DEV_ENABLED; 4875 } 4876 out: return state == pci_channel_io_perm_failure ? 4877 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4878 } 4879 4880 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4881 { 4882 int i, ret; 4883 struct fw_caps_config_cmd c; 4884 struct adapter *adap = pci_get_drvdata(pdev); 4885 4886 if (!adap) { 4887 pci_restore_state(pdev); 4888 pci_save_state(pdev); 4889 return PCI_ERS_RESULT_RECOVERED; 4890 } 4891 4892 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 4893 if (pci_enable_device(pdev)) { 4894 dev_err(&pdev->dev, "Cannot reenable PCI " 4895 "device after reset\n"); 4896 return PCI_ERS_RESULT_DISCONNECT; 4897 } 4898 adap->flags |= CXGB4_DEV_ENABLED; 4899 } 4900 4901 pci_set_master(pdev); 4902 pci_restore_state(pdev); 4903 pci_save_state(pdev); 4904 4905 if (t4_wait_dev_ready(adap->regs) < 0) 4906 return PCI_ERS_RESULT_DISCONNECT; 4907 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4908 return PCI_ERS_RESULT_DISCONNECT; 4909 adap->flags |= CXGB4_FW_OK; 4910 if (adap_init1(adap, &c)) 4911 return PCI_ERS_RESULT_DISCONNECT; 4912 4913 for_each_port(adap, i) { 4914 struct port_info *pi = adap2pinfo(adap, i); 4915 u8 vivld = 0, vin = 0; 4916 4917 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 4918 NULL, NULL, &vivld, &vin); 4919 if (ret < 0) 4920 return PCI_ERS_RESULT_DISCONNECT; 4921 pi->viid = ret; 4922 pi->xact_addr_filt = -1; 4923 /* If fw supports returning the VIN as part of FW_VI_CMD, 4924 * save the returned values. 4925 */ 4926 if (adap->params.viid_smt_extn_support) { 4927 pi->vivld = vivld; 4928 pi->vin = vin; 4929 } else { 4930 /* Retrieve the values from VIID */ 4931 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 4932 pi->vin = FW_VIID_VIN_G(pi->viid); 4933 } 4934 } 4935 4936 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4937 adap->params.b_wnd); 4938 setup_memwin(adap); 4939 if (cxgb_up(adap)) 4940 return PCI_ERS_RESULT_DISCONNECT; 4941 return PCI_ERS_RESULT_RECOVERED; 4942 } 4943 4944 static void eeh_resume(struct pci_dev *pdev) 4945 { 4946 int i; 4947 struct adapter *adap = pci_get_drvdata(pdev); 4948 4949 if (!adap) 4950 return; 4951 4952 rtnl_lock(); 4953 for_each_port(adap, i) { 4954 struct net_device *dev = adap->port[i]; 4955 if (dev) { 4956 if (netif_running(dev)) { 4957 link_start(dev); 4958 cxgb_set_rxmode(dev); 4959 } 4960 netif_device_attach(dev); 4961 } 4962 } 4963 rtnl_unlock(); 4964 } 4965 4966 static const struct pci_error_handlers cxgb4_eeh = { 4967 .error_detected = eeh_err_detected, 4968 .slot_reset = eeh_slot_reset, 4969 .resume = eeh_resume, 4970 }; 4971 4972 /* Return true if the Link Configuration supports "High Speeds" (those greater 4973 * than 1Gb/s). 4974 */ 4975 static inline bool is_x_10g_port(const struct link_config *lc) 4976 { 4977 unsigned int speeds, high_speeds; 4978 4979 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4980 high_speeds = speeds & 4981 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4982 4983 return high_speeds != 0; 4984 } 4985 4986 /* 4987 * Perform default configuration of DMA queues depending on the number and type 4988 * of ports we found and the number of available CPUs. Most settings can be 4989 * modified by the admin prior to actual use. 4990 */ 4991 static int cfg_queues(struct adapter *adap) 4992 { 4993 struct sge *s = &adap->sge; 4994 int i, n10g = 0, qidx = 0; 4995 int niqflint, neq, avail_eth_qsets; 4996 int max_eth_qsets = 32; 4997 #ifndef CONFIG_CHELSIO_T4_DCB 4998 int q10g = 0; 4999 #endif 5000 5001 /* Reduce memory usage in kdump environment, disable all offload. 5002 */ 5003 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5004 adap->params.offload = 0; 5005 adap->params.crypto = 0; 5006 } 5007 5008 /* Calculate the number of Ethernet Queue Sets available based on 5009 * resources provisioned for us. We always have an Asynchronous 5010 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5011 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5012 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5013 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5014 * 5015 * Note that we should also take into account all of the various 5016 * Offload Queues. But, in any situation where we're operating in 5017 * a Resource Constrained Provisioning environment, doing any Offload 5018 * at all is problematic ... 5019 */ 5020 niqflint = adap->params.pfres.niqflint - 1; 5021 if (!(adap->flags & CXGB4_USING_MSIX)) 5022 niqflint--; 5023 neq = adap->params.pfres.neq / 2; 5024 avail_eth_qsets = min(niqflint, neq); 5025 5026 if (avail_eth_qsets > max_eth_qsets) 5027 avail_eth_qsets = max_eth_qsets; 5028 5029 if (avail_eth_qsets < adap->params.nports) { 5030 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5031 avail_eth_qsets, adap->params.nports); 5032 return -ENOMEM; 5033 } 5034 5035 /* Count the number of 10Gb/s or better ports */ 5036 for_each_port(adap, i) 5037 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5038 5039 #ifdef CONFIG_CHELSIO_T4_DCB 5040 /* For Data Center Bridging support we need to be able to support up 5041 * to 8 Traffic Priorities; each of which will be assigned to its 5042 * own TX Queue in order to prevent Head-Of-Line Blocking. 5043 */ 5044 if (adap->params.nports * 8 > avail_eth_qsets) { 5045 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5046 avail_eth_qsets, adap->params.nports * 8); 5047 return -ENOMEM; 5048 } 5049 5050 for_each_port(adap, i) { 5051 struct port_info *pi = adap2pinfo(adap, i); 5052 5053 pi->first_qset = qidx; 5054 pi->nqsets = is_kdump_kernel() ? 1 : 8; 5055 qidx += pi->nqsets; 5056 } 5057 #else /* !CONFIG_CHELSIO_T4_DCB */ 5058 /* 5059 * We default to 1 queue per non-10G port and up to # of cores queues 5060 * per 10G port. 5061 */ 5062 if (n10g) 5063 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5064 if (q10g > netif_get_num_default_rss_queues()) 5065 q10g = netif_get_num_default_rss_queues(); 5066 5067 if (is_kdump_kernel()) 5068 q10g = 1; 5069 5070 for_each_port(adap, i) { 5071 struct port_info *pi = adap2pinfo(adap, i); 5072 5073 pi->first_qset = qidx; 5074 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 5075 qidx += pi->nqsets; 5076 } 5077 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5078 5079 s->ethqsets = qidx; 5080 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5081 5082 if (is_uld(adap)) { 5083 /* 5084 * For offload we use 1 queue/channel if all ports are up to 1G, 5085 * otherwise we divide all available queues amongst the channels 5086 * capped by the number of available cores. 5087 */ 5088 if (n10g) { 5089 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 5090 s->ofldqsets = roundup(i, adap->params.nports); 5091 } else { 5092 s->ofldqsets = adap->params.nports; 5093 } 5094 } 5095 5096 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5097 struct sge_eth_rxq *r = &s->ethrxq[i]; 5098 5099 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5100 r->fl.size = 72; 5101 } 5102 5103 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5104 s->ethtxq[i].q.size = 1024; 5105 5106 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5107 s->ctrlq[i].q.size = 512; 5108 5109 if (!is_t4(adap->params.chip)) 5110 s->ptptxq.q.size = 8; 5111 5112 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5113 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5114 5115 return 0; 5116 } 5117 5118 /* 5119 * Reduce the number of Ethernet queues across all ports to at most n. 5120 * n provides at least one queue per port. 5121 */ 5122 static void reduce_ethqs(struct adapter *adap, int n) 5123 { 5124 int i; 5125 struct port_info *pi; 5126 5127 while (n < adap->sge.ethqsets) 5128 for_each_port(adap, i) { 5129 pi = adap2pinfo(adap, i); 5130 if (pi->nqsets > 1) { 5131 pi->nqsets--; 5132 adap->sge.ethqsets--; 5133 if (adap->sge.ethqsets <= n) 5134 break; 5135 } 5136 } 5137 5138 n = 0; 5139 for_each_port(adap, i) { 5140 pi = adap2pinfo(adap, i); 5141 pi->first_qset = n; 5142 n += pi->nqsets; 5143 } 5144 } 5145 5146 static int get_msix_info(struct adapter *adap) 5147 { 5148 struct uld_msix_info *msix_info; 5149 unsigned int max_ingq = 0; 5150 5151 if (is_offload(adap)) 5152 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 5153 if (is_pci_uld(adap)) 5154 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 5155 5156 if (!max_ingq) 5157 goto out; 5158 5159 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 5160 if (!msix_info) 5161 return -ENOMEM; 5162 5163 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 5164 sizeof(long), GFP_KERNEL); 5165 if (!adap->msix_bmap_ulds.msix_bmap) { 5166 kfree(msix_info); 5167 return -ENOMEM; 5168 } 5169 spin_lock_init(&adap->msix_bmap_ulds.lock); 5170 adap->msix_info_ulds = msix_info; 5171 out: 5172 return 0; 5173 } 5174 5175 static void free_msix_info(struct adapter *adap) 5176 { 5177 if (!(adap->num_uld && adap->num_ofld_uld)) 5178 return; 5179 5180 kfree(adap->msix_info_ulds); 5181 kfree(adap->msix_bmap_ulds.msix_bmap); 5182 } 5183 5184 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5185 #define EXTRA_VECS 2 5186 5187 static int enable_msix(struct adapter *adap) 5188 { 5189 int ofld_need = 0, uld_need = 0; 5190 int i, j, want, need, allocated; 5191 struct sge *s = &adap->sge; 5192 unsigned int nchan = adap->params.nports; 5193 struct msix_entry *entries; 5194 int max_ingq = MAX_INGQ; 5195 5196 if (is_pci_uld(adap)) 5197 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5198 if (is_offload(adap)) 5199 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5200 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5201 GFP_KERNEL); 5202 if (!entries) 5203 return -ENOMEM; 5204 5205 /* map for msix */ 5206 if (get_msix_info(adap)) { 5207 adap->params.offload = 0; 5208 adap->params.crypto = 0; 5209 } 5210 5211 for (i = 0; i < max_ingq + 1; ++i) 5212 entries[i].entry = i; 5213 5214 want = s->max_ethqsets + EXTRA_VECS; 5215 if (is_offload(adap)) { 5216 want += adap->num_ofld_uld * s->ofldqsets; 5217 ofld_need = adap->num_ofld_uld * nchan; 5218 } 5219 if (is_pci_uld(adap)) { 5220 want += adap->num_uld * s->ofldqsets; 5221 uld_need = adap->num_uld * nchan; 5222 } 5223 #ifdef CONFIG_CHELSIO_T4_DCB 5224 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5225 * each port. 5226 */ 5227 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5228 #else 5229 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5230 #endif 5231 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5232 if (allocated < 0) { 5233 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5234 " not using MSI-X\n"); 5235 kfree(entries); 5236 return allocated; 5237 } 5238 5239 /* Distribute available vectors to the various queue groups. 5240 * Every group gets its minimum requirement and NIC gets top 5241 * priority for leftovers. 5242 */ 5243 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5244 if (i < s->max_ethqsets) { 5245 s->max_ethqsets = i; 5246 if (i < s->ethqsets) 5247 reduce_ethqs(adap, i); 5248 } 5249 if (is_uld(adap)) { 5250 if (allocated < want) 5251 s->nqs_per_uld = nchan; 5252 else 5253 s->nqs_per_uld = s->ofldqsets; 5254 } 5255 5256 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5257 adap->msix_info[i].vec = entries[i].vector; 5258 if (is_uld(adap)) { 5259 for (j = 0 ; i < allocated; ++i, j++) { 5260 adap->msix_info_ulds[j].vec = entries[i].vector; 5261 adap->msix_info_ulds[j].idx = i; 5262 } 5263 adap->msix_bmap_ulds.mapsize = j; 5264 } 5265 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5266 "nic %d per uld %d\n", 5267 allocated, s->max_ethqsets, s->nqs_per_uld); 5268 5269 kfree(entries); 5270 return 0; 5271 } 5272 5273 #undef EXTRA_VECS 5274 5275 static int init_rss(struct adapter *adap) 5276 { 5277 unsigned int i; 5278 int err; 5279 5280 err = t4_init_rss_mode(adap, adap->mbox); 5281 if (err) 5282 return err; 5283 5284 for_each_port(adap, i) { 5285 struct port_info *pi = adap2pinfo(adap, i); 5286 5287 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5288 if (!pi->rss) 5289 return -ENOMEM; 5290 } 5291 return 0; 5292 } 5293 5294 /* Dump basic information about the adapter */ 5295 static void print_adapter_info(struct adapter *adapter) 5296 { 5297 /* Hardware/Firmware/etc. Version/Revision IDs */ 5298 t4_dump_version_info(adapter); 5299 5300 /* Software/Hardware configuration */ 5301 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5302 is_offload(adapter) ? "R" : "", 5303 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 5304 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 5305 is_offload(adapter) ? "Offload" : "non-Offload"); 5306 } 5307 5308 static void print_port_info(const struct net_device *dev) 5309 { 5310 char buf[80]; 5311 char *bufp = buf; 5312 const struct port_info *pi = netdev_priv(dev); 5313 const struct adapter *adap = pi->adapter; 5314 5315 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5316 bufp += sprintf(bufp, "100M/"); 5317 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5318 bufp += sprintf(bufp, "1G/"); 5319 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5320 bufp += sprintf(bufp, "10G/"); 5321 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5322 bufp += sprintf(bufp, "25G/"); 5323 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5324 bufp += sprintf(bufp, "40G/"); 5325 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5326 bufp += sprintf(bufp, "50G/"); 5327 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5328 bufp += sprintf(bufp, "100G/"); 5329 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5330 bufp += sprintf(bufp, "200G/"); 5331 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5332 bufp += sprintf(bufp, "400G/"); 5333 if (bufp != buf) 5334 --bufp; 5335 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5336 5337 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5338 dev->name, adap->params.vpd.id, adap->name, buf); 5339 } 5340 5341 /* 5342 * Free the following resources: 5343 * - memory used for tables 5344 * - MSI/MSI-X 5345 * - net devices 5346 * - resources FW is holding for us 5347 */ 5348 static void free_some_resources(struct adapter *adapter) 5349 { 5350 unsigned int i; 5351 5352 kvfree(adapter->mps_encap); 5353 kvfree(adapter->smt); 5354 kvfree(adapter->l2t); 5355 kvfree(adapter->srq); 5356 t4_cleanup_sched(adapter); 5357 kvfree(adapter->tids.tid_tab); 5358 cxgb4_cleanup_tc_flower(adapter); 5359 cxgb4_cleanup_tc_u32(adapter); 5360 kfree(adapter->sge.egr_map); 5361 kfree(adapter->sge.ingr_map); 5362 kfree(adapter->sge.starving_fl); 5363 kfree(adapter->sge.txq_maperr); 5364 #ifdef CONFIG_DEBUG_FS 5365 kfree(adapter->sge.blocked_fl); 5366 #endif 5367 disable_msi(adapter); 5368 5369 for_each_port(adapter, i) 5370 if (adapter->port[i]) { 5371 struct port_info *pi = adap2pinfo(adapter, i); 5372 5373 if (pi->viid != 0) 5374 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5375 0, pi->viid); 5376 kfree(adap2pinfo(adapter, i)->rss); 5377 free_netdev(adapter->port[i]); 5378 } 5379 if (adapter->flags & CXGB4_FW_OK) 5380 t4_fw_bye(adapter, adapter->pf); 5381 } 5382 5383 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5384 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5385 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5386 #define SEGMENT_SIZE 128 5387 5388 static int t4_get_chip_type(struct adapter *adap, int ver) 5389 { 5390 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5391 5392 switch (ver) { 5393 case CHELSIO_T4: 5394 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5395 case CHELSIO_T5: 5396 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5397 case CHELSIO_T6: 5398 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5399 default: 5400 break; 5401 } 5402 return -EINVAL; 5403 } 5404 5405 #ifdef CONFIG_PCI_IOV 5406 static void cxgb4_mgmt_setup(struct net_device *dev) 5407 { 5408 dev->type = ARPHRD_NONE; 5409 dev->mtu = 0; 5410 dev->hard_header_len = 0; 5411 dev->addr_len = 0; 5412 dev->tx_queue_len = 0; 5413 dev->flags |= IFF_NOARP; 5414 dev->priv_flags |= IFF_NO_QUEUE; 5415 5416 /* Initialize the device structure. */ 5417 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5418 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5419 } 5420 5421 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5422 { 5423 struct adapter *adap = pci_get_drvdata(pdev); 5424 int err = 0; 5425 int current_vfs = pci_num_vf(pdev); 5426 u32 pcie_fw; 5427 5428 pcie_fw = readl(adap->regs + PCIE_FW_A); 5429 /* Check if fw is initialized */ 5430 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5431 dev_warn(&pdev->dev, "Device not initialized\n"); 5432 return -EOPNOTSUPP; 5433 } 5434 5435 /* If any of the VF's is already assigned to Guest OS, then 5436 * SRIOV for the same cannot be modified 5437 */ 5438 if (current_vfs && pci_vfs_assigned(pdev)) { 5439 dev_err(&pdev->dev, 5440 "Cannot modify SR-IOV while VFs are assigned\n"); 5441 return current_vfs; 5442 } 5443 /* Note that the upper-level code ensures that we're never called with 5444 * a non-zero "num_vfs" when we already have VFs instantiated. But 5445 * it never hurts to code defensively. 5446 */ 5447 if (num_vfs != 0 && current_vfs != 0) 5448 return -EBUSY; 5449 5450 /* Nothing to do for no change. */ 5451 if (num_vfs == current_vfs) 5452 return num_vfs; 5453 5454 /* Disable SRIOV when zero is passed. */ 5455 if (!num_vfs) { 5456 pci_disable_sriov(pdev); 5457 /* free VF Management Interface */ 5458 unregister_netdev(adap->port[0]); 5459 free_netdev(adap->port[0]); 5460 adap->port[0] = NULL; 5461 5462 /* free VF resources */ 5463 adap->num_vfs = 0; 5464 kfree(adap->vfinfo); 5465 adap->vfinfo = NULL; 5466 return 0; 5467 } 5468 5469 if (!current_vfs) { 5470 struct fw_pfvf_cmd port_cmd, port_rpl; 5471 struct net_device *netdev; 5472 unsigned int pmask, port; 5473 struct pci_dev *pbridge; 5474 struct port_info *pi; 5475 char name[IFNAMSIZ]; 5476 u32 devcap2; 5477 u16 flags; 5478 int pos; 5479 5480 /* If we want to instantiate Virtual Functions, then our 5481 * parent bridge's PCI-E needs to support Alternative Routing 5482 * ID (ARI) because our VFs will show up at function offset 8 5483 * and above. 5484 */ 5485 pbridge = pdev->bus->self; 5486 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5487 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5488 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5489 5490 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5491 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5492 /* Our parent bridge does not support ARI so issue a 5493 * warning and skip instantiating the VFs. They 5494 * won't be reachable. 5495 */ 5496 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5497 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5498 PCI_FUNC(pbridge->devfn)); 5499 return -ENOTSUPP; 5500 } 5501 memset(&port_cmd, 0, sizeof(port_cmd)); 5502 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5503 FW_CMD_REQUEST_F | 5504 FW_CMD_READ_F | 5505 FW_PFVF_CMD_PFN_V(adap->pf) | 5506 FW_PFVF_CMD_VFN_V(0)); 5507 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5508 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5509 &port_rpl); 5510 if (err) 5511 return err; 5512 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5513 port = ffs(pmask) - 1; 5514 /* Allocate VF Management Interface. */ 5515 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5516 adap->pf); 5517 netdev = alloc_netdev(sizeof(struct port_info), 5518 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5519 if (!netdev) 5520 return -ENOMEM; 5521 5522 pi = netdev_priv(netdev); 5523 pi->adapter = adap; 5524 pi->lport = port; 5525 pi->tx_chan = port; 5526 SET_NETDEV_DEV(netdev, &pdev->dev); 5527 5528 adap->port[0] = netdev; 5529 pi->port_id = 0; 5530 5531 err = register_netdev(adap->port[0]); 5532 if (err) { 5533 pr_info("Unable to register VF mgmt netdev %s\n", name); 5534 free_netdev(adap->port[0]); 5535 adap->port[0] = NULL; 5536 return err; 5537 } 5538 /* Allocate and set up VF Information. */ 5539 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5540 sizeof(struct vf_info), GFP_KERNEL); 5541 if (!adap->vfinfo) { 5542 unregister_netdev(adap->port[0]); 5543 free_netdev(adap->port[0]); 5544 adap->port[0] = NULL; 5545 return -ENOMEM; 5546 } 5547 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5548 } 5549 /* Instantiate the requested number of VFs. */ 5550 err = pci_enable_sriov(pdev, num_vfs); 5551 if (err) { 5552 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5553 if (!current_vfs) { 5554 unregister_netdev(adap->port[0]); 5555 free_netdev(adap->port[0]); 5556 adap->port[0] = NULL; 5557 kfree(adap->vfinfo); 5558 adap->vfinfo = NULL; 5559 } 5560 return err; 5561 } 5562 5563 adap->num_vfs = num_vfs; 5564 return num_vfs; 5565 } 5566 #endif /* CONFIG_PCI_IOV */ 5567 5568 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5569 { 5570 struct net_device *netdev; 5571 struct adapter *adapter; 5572 static int adap_idx = 1; 5573 int s_qpp, qpp, num_seg; 5574 struct port_info *pi; 5575 bool highdma = false; 5576 enum chip_type chip; 5577 void __iomem *regs; 5578 int func, chip_ver; 5579 u16 device_id; 5580 int i, err; 5581 u32 whoami; 5582 5583 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5584 5585 err = pci_request_regions(pdev, KBUILD_MODNAME); 5586 if (err) { 5587 /* Just info, some other driver may have claimed the device. */ 5588 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5589 return err; 5590 } 5591 5592 err = pci_enable_device(pdev); 5593 if (err) { 5594 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5595 goto out_release_regions; 5596 } 5597 5598 regs = pci_ioremap_bar(pdev, 0); 5599 if (!regs) { 5600 dev_err(&pdev->dev, "cannot map device registers\n"); 5601 err = -ENOMEM; 5602 goto out_disable_device; 5603 } 5604 5605 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5606 if (!adapter) { 5607 err = -ENOMEM; 5608 goto out_unmap_bar0; 5609 } 5610 5611 adapter->regs = regs; 5612 err = t4_wait_dev_ready(regs); 5613 if (err < 0) 5614 goto out_free_adapter; 5615 5616 /* We control everything through one PF */ 5617 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5618 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5619 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5620 if (chip < 0) { 5621 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5622 err = chip; 5623 goto out_free_adapter; 5624 } 5625 chip_ver = CHELSIO_CHIP_VERSION(chip); 5626 func = chip_ver <= CHELSIO_T5 ? 5627 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5628 5629 adapter->pdev = pdev; 5630 adapter->pdev_dev = &pdev->dev; 5631 adapter->name = pci_name(pdev); 5632 adapter->mbox = func; 5633 adapter->pf = func; 5634 adapter->params.chip = chip; 5635 adapter->adap_idx = adap_idx; 5636 adapter->msg_enable = DFLT_MSG_ENABLE; 5637 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5638 (sizeof(struct mbox_cmd) * 5639 T4_OS_LOG_MBOX_CMDS), 5640 GFP_KERNEL); 5641 if (!adapter->mbox_log) { 5642 err = -ENOMEM; 5643 goto out_free_adapter; 5644 } 5645 spin_lock_init(&adapter->mbox_lock); 5646 INIT_LIST_HEAD(&adapter->mlist.list); 5647 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5648 pci_set_drvdata(pdev, adapter); 5649 5650 if (func != ent->driver_data) { 5651 pci_disable_device(pdev); 5652 pci_save_state(pdev); /* to restore SR-IOV later */ 5653 return 0; 5654 } 5655 5656 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5657 highdma = true; 5658 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5659 if (err) { 5660 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5661 "coherent allocations\n"); 5662 goto out_free_adapter; 5663 } 5664 } else { 5665 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5666 if (err) { 5667 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5668 goto out_free_adapter; 5669 } 5670 } 5671 5672 pci_enable_pcie_error_reporting(pdev); 5673 pci_set_master(pdev); 5674 pci_save_state(pdev); 5675 adap_idx++; 5676 adapter->workq = create_singlethread_workqueue("cxgb4"); 5677 if (!adapter->workq) { 5678 err = -ENOMEM; 5679 goto out_free_adapter; 5680 } 5681 5682 /* PCI device has been enabled */ 5683 adapter->flags |= CXGB4_DEV_ENABLED; 5684 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5685 5686 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5687 * Ingress Packet Data to Free List Buffers in order to allow for 5688 * chipset performance optimizations between the Root Complex and 5689 * Memory Controllers. (Messages to the associated Ingress Queue 5690 * notifying new Packet Placement in the Free Lists Buffers will be 5691 * send without the Relaxed Ordering Attribute thus guaranteeing that 5692 * all preceding PCIe Transaction Layer Packets will be processed 5693 * first.) But some Root Complexes have various issues with Upstream 5694 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5695 * The PCIe devices which under the Root Complexes will be cleared the 5696 * Relaxed Ordering bit in the configuration space, So we check our 5697 * PCIe configuration space to see if it's flagged with advice against 5698 * using Relaxed Ordering. 5699 */ 5700 if (!pcie_relaxed_ordering_enabled(pdev)) 5701 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 5702 5703 spin_lock_init(&adapter->stats_lock); 5704 spin_lock_init(&adapter->tid_release_lock); 5705 spin_lock_init(&adapter->win0_lock); 5706 5707 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5708 INIT_WORK(&adapter->db_full_task, process_db_full); 5709 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5710 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5711 5712 err = t4_prep_adapter(adapter); 5713 if (err) 5714 goto out_free_adapter; 5715 5716 if (is_kdump_kernel()) { 5717 /* Collect hardware state and append to /proc/vmcore */ 5718 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5719 if (err) { 5720 dev_warn(adapter->pdev_dev, 5721 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5722 err); 5723 err = 0; 5724 } 5725 } 5726 5727 if (!is_t4(adapter->params.chip)) { 5728 s_qpp = (QUEUESPERPAGEPF0_S + 5729 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5730 adapter->pf); 5731 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5732 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5733 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5734 5735 /* Each segment size is 128B. Write coalescing is enabled only 5736 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5737 * queue is less no of segments that can be accommodated in 5738 * a page size. 5739 */ 5740 if (qpp > num_seg) { 5741 dev_err(&pdev->dev, 5742 "Incorrect number of egress queues per page\n"); 5743 err = -EINVAL; 5744 goto out_free_adapter; 5745 } 5746 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5747 pci_resource_len(pdev, 2)); 5748 if (!adapter->bar2) { 5749 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5750 err = -ENOMEM; 5751 goto out_free_adapter; 5752 } 5753 } 5754 5755 setup_memwin(adapter); 5756 err = adap_init0(adapter); 5757 #ifdef CONFIG_DEBUG_FS 5758 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5759 #endif 5760 setup_memwin_rdma(adapter); 5761 if (err) 5762 goto out_unmap_bar; 5763 5764 /* configure SGE_STAT_CFG_A to read WC stats */ 5765 if (!is_t4(adapter->params.chip)) 5766 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5767 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5768 T6_STATMODE_V(0))); 5769 5770 /* Initialize hash mac addr list */ 5771 INIT_LIST_HEAD(&adapter->mac_hlist); 5772 5773 for_each_port(adapter, i) { 5774 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5775 MAX_ETH_QSETS); 5776 if (!netdev) { 5777 err = -ENOMEM; 5778 goto out_free_dev; 5779 } 5780 5781 SET_NETDEV_DEV(netdev, &pdev->dev); 5782 5783 adapter->port[i] = netdev; 5784 pi = netdev_priv(netdev); 5785 pi->adapter = adapter; 5786 pi->xact_addr_filt = -1; 5787 pi->port_id = i; 5788 netdev->irq = pdev->irq; 5789 5790 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5791 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5792 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 5793 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5794 NETIF_F_HW_TC; 5795 5796 if (chip_ver > CHELSIO_T5) { 5797 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5798 NETIF_F_IPV6_CSUM | 5799 NETIF_F_RXCSUM | 5800 NETIF_F_GSO_UDP_TUNNEL | 5801 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5802 NETIF_F_TSO | NETIF_F_TSO6; 5803 5804 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 5805 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5806 NETIF_F_HW_TLS_RECORD; 5807 } 5808 5809 if (highdma) 5810 netdev->hw_features |= NETIF_F_HIGHDMA; 5811 netdev->features |= netdev->hw_features; 5812 netdev->vlan_features = netdev->features & VLAN_FEAT; 5813 5814 netdev->priv_flags |= IFF_UNICAST_FLT; 5815 5816 /* MTU range: 81 - 9600 */ 5817 netdev->min_mtu = 81; /* accommodate SACK */ 5818 netdev->max_mtu = MAX_MTU; 5819 5820 netdev->netdev_ops = &cxgb4_netdev_ops; 5821 #ifdef CONFIG_CHELSIO_T4_DCB 5822 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5823 cxgb4_dcb_state_init(netdev); 5824 cxgb4_dcb_version_init(netdev); 5825 #endif 5826 cxgb4_set_ethtool_ops(netdev); 5827 } 5828 5829 cxgb4_init_ethtool_dump(adapter); 5830 5831 pci_set_drvdata(pdev, adapter); 5832 5833 if (adapter->flags & CXGB4_FW_OK) { 5834 err = t4_port_init(adapter, func, func, 0); 5835 if (err) 5836 goto out_free_dev; 5837 } else if (adapter->params.nports == 1) { 5838 /* If we don't have a connection to the firmware -- possibly 5839 * because of an error -- grab the raw VPD parameters so we 5840 * can set the proper MAC Address on the debug network 5841 * interface that we've created. 5842 */ 5843 u8 hw_addr[ETH_ALEN]; 5844 u8 *na = adapter->params.vpd.na; 5845 5846 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5847 if (!err) { 5848 for (i = 0; i < ETH_ALEN; i++) 5849 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5850 hex2val(na[2 * i + 1])); 5851 t4_set_hw_addr(adapter, 0, hw_addr); 5852 } 5853 } 5854 5855 if (!(adapter->flags & CXGB4_FW_OK)) 5856 goto fw_attach_fail; 5857 5858 /* Configure queues and allocate tables now, they can be needed as 5859 * soon as the first register_netdev completes. 5860 */ 5861 err = cfg_queues(adapter); 5862 if (err) 5863 goto out_free_dev; 5864 5865 adapter->smt = t4_init_smt(); 5866 if (!adapter->smt) { 5867 /* We tolerate a lack of SMT, giving up some functionality */ 5868 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5869 } 5870 5871 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5872 if (!adapter->l2t) { 5873 /* We tolerate a lack of L2T, giving up some functionality */ 5874 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5875 adapter->params.offload = 0; 5876 } 5877 5878 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5879 sizeof(struct mps_encap_entry), 5880 GFP_KERNEL); 5881 if (!adapter->mps_encap) 5882 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5883 5884 #if IS_ENABLED(CONFIG_IPV6) 5885 if (chip_ver <= CHELSIO_T5 && 5886 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5887 /* CLIP functionality is not present in hardware, 5888 * hence disable all offload features 5889 */ 5890 dev_warn(&pdev->dev, 5891 "CLIP not enabled in hardware, continuing\n"); 5892 adapter->params.offload = 0; 5893 } else { 5894 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5895 adapter->clipt_end); 5896 if (!adapter->clipt) { 5897 /* We tolerate a lack of clip_table, giving up 5898 * some functionality 5899 */ 5900 dev_warn(&pdev->dev, 5901 "could not allocate Clip table, continuing\n"); 5902 adapter->params.offload = 0; 5903 } 5904 } 5905 #endif 5906 5907 for_each_port(adapter, i) { 5908 pi = adap2pinfo(adapter, i); 5909 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5910 if (!pi->sched_tbl) 5911 dev_warn(&pdev->dev, 5912 "could not activate scheduling on port %d\n", 5913 i); 5914 } 5915 5916 if (tid_init(&adapter->tids) < 0) { 5917 dev_warn(&pdev->dev, "could not allocate TID table, " 5918 "continuing\n"); 5919 adapter->params.offload = 0; 5920 } else { 5921 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5922 if (!adapter->tc_u32) 5923 dev_warn(&pdev->dev, 5924 "could not offload tc u32, continuing\n"); 5925 5926 if (cxgb4_init_tc_flower(adapter)) 5927 dev_warn(&pdev->dev, 5928 "could not offload tc flower, continuing\n"); 5929 } 5930 5931 if (is_offload(adapter) || is_hashfilter(adapter)) { 5932 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5933 u32 hash_base, hash_reg; 5934 5935 if (chip_ver <= CHELSIO_T5) { 5936 hash_reg = LE_DB_TID_HASHBASE_A; 5937 hash_base = t4_read_reg(adapter, hash_reg); 5938 adapter->tids.hash_base = hash_base / 4; 5939 } else { 5940 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5941 hash_base = t4_read_reg(adapter, hash_reg); 5942 adapter->tids.hash_base = hash_base; 5943 } 5944 } 5945 } 5946 5947 /* See what interrupts we'll be using */ 5948 if (msi > 1 && enable_msix(adapter) == 0) 5949 adapter->flags |= CXGB4_USING_MSIX; 5950 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5951 adapter->flags |= CXGB4_USING_MSI; 5952 if (msi > 1) 5953 free_msix_info(adapter); 5954 } 5955 5956 /* check for PCI Express bandwidth capabiltites */ 5957 pcie_print_link_status(pdev); 5958 5959 err = init_rss(adapter); 5960 if (err) 5961 goto out_free_dev; 5962 5963 err = setup_fw_sge_queues(adapter); 5964 if (err) { 5965 dev_err(adapter->pdev_dev, 5966 "FW sge queue allocation failed, err %d", err); 5967 goto out_free_dev; 5968 } 5969 5970 fw_attach_fail: 5971 /* 5972 * The card is now ready to go. If any errors occur during device 5973 * registration we do not fail the whole card but rather proceed only 5974 * with the ports we manage to register successfully. However we must 5975 * register at least one net device. 5976 */ 5977 for_each_port(adapter, i) { 5978 pi = adap2pinfo(adapter, i); 5979 adapter->port[i]->dev_port = pi->lport; 5980 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5981 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5982 5983 netif_carrier_off(adapter->port[i]); 5984 5985 err = register_netdev(adapter->port[i]); 5986 if (err) 5987 break; 5988 adapter->chan_map[pi->tx_chan] = i; 5989 print_port_info(adapter->port[i]); 5990 } 5991 if (i == 0) { 5992 dev_err(&pdev->dev, "could not register any net devices\n"); 5993 goto out_free_dev; 5994 } 5995 if (err) { 5996 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5997 err = 0; 5998 } 5999 6000 if (cxgb4_debugfs_root) { 6001 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6002 cxgb4_debugfs_root); 6003 setup_debugfs(adapter); 6004 } 6005 6006 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6007 pdev->needs_freset = 1; 6008 6009 if (is_uld(adapter)) { 6010 mutex_lock(&uld_mutex); 6011 list_add_tail(&adapter->list_node, &adapter_list); 6012 mutex_unlock(&uld_mutex); 6013 } 6014 6015 if (!is_t4(adapter->params.chip)) 6016 cxgb4_ptp_init(adapter); 6017 6018 if (IS_REACHABLE(CONFIG_THERMAL) && 6019 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 6020 cxgb4_thermal_init(adapter); 6021 6022 print_adapter_info(adapter); 6023 return 0; 6024 6025 out_free_dev: 6026 t4_free_sge_resources(adapter); 6027 free_some_resources(adapter); 6028 if (adapter->flags & CXGB4_USING_MSIX) 6029 free_msix_info(adapter); 6030 if (adapter->num_uld || adapter->num_ofld_uld) 6031 t4_uld_mem_free(adapter); 6032 out_unmap_bar: 6033 if (!is_t4(adapter->params.chip)) 6034 iounmap(adapter->bar2); 6035 out_free_adapter: 6036 if (adapter->workq) 6037 destroy_workqueue(adapter->workq); 6038 6039 kfree(adapter->mbox_log); 6040 kfree(adapter); 6041 out_unmap_bar0: 6042 iounmap(regs); 6043 out_disable_device: 6044 pci_disable_pcie_error_reporting(pdev); 6045 pci_disable_device(pdev); 6046 out_release_regions: 6047 pci_release_regions(pdev); 6048 return err; 6049 } 6050 6051 static void remove_one(struct pci_dev *pdev) 6052 { 6053 struct adapter *adapter = pci_get_drvdata(pdev); 6054 struct hash_mac_addr *entry, *tmp; 6055 6056 if (!adapter) { 6057 pci_release_regions(pdev); 6058 return; 6059 } 6060 6061 /* If we allocated filters, free up state associated with any 6062 * valid filters ... 6063 */ 6064 clear_all_filters(adapter); 6065 6066 adapter->flags |= CXGB4_SHUTTING_DOWN; 6067 6068 if (adapter->pf == 4) { 6069 int i; 6070 6071 /* Tear down per-adapter Work Queue first since it can contain 6072 * references to our adapter data structure. 6073 */ 6074 destroy_workqueue(adapter->workq); 6075 6076 if (is_uld(adapter)) { 6077 detach_ulds(adapter); 6078 t4_uld_clean_up(adapter); 6079 } 6080 6081 adap_free_hma_mem(adapter); 6082 6083 disable_interrupts(adapter); 6084 6085 for_each_port(adapter, i) 6086 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6087 unregister_netdev(adapter->port[i]); 6088 6089 debugfs_remove_recursive(adapter->debugfs_root); 6090 6091 if (!is_t4(adapter->params.chip)) 6092 cxgb4_ptp_stop(adapter); 6093 if (IS_REACHABLE(CONFIG_THERMAL)) 6094 cxgb4_thermal_remove(adapter); 6095 6096 if (adapter->flags & CXGB4_FULL_INIT_DONE) 6097 cxgb_down(adapter); 6098 6099 if (adapter->flags & CXGB4_USING_MSIX) 6100 free_msix_info(adapter); 6101 if (adapter->num_uld || adapter->num_ofld_uld) 6102 t4_uld_mem_free(adapter); 6103 free_some_resources(adapter); 6104 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 6105 list) { 6106 list_del(&entry->list); 6107 kfree(entry); 6108 } 6109 6110 #if IS_ENABLED(CONFIG_IPV6) 6111 t4_cleanup_clip_tbl(adapter); 6112 #endif 6113 if (!is_t4(adapter->params.chip)) 6114 iounmap(adapter->bar2); 6115 } 6116 #ifdef CONFIG_PCI_IOV 6117 else { 6118 cxgb4_iov_configure(adapter->pdev, 0); 6119 } 6120 #endif 6121 iounmap(adapter->regs); 6122 pci_disable_pcie_error_reporting(pdev); 6123 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 6124 pci_disable_device(pdev); 6125 adapter->flags &= ~CXGB4_DEV_ENABLED; 6126 } 6127 pci_release_regions(pdev); 6128 kfree(adapter->mbox_log); 6129 synchronize_rcu(); 6130 kfree(adapter); 6131 } 6132 6133 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 6134 * delivery. This is essentially a stripped down version of the PCI remove() 6135 * function where we do the minimal amount of work necessary to shutdown any 6136 * further activity. 6137 */ 6138 static void shutdown_one(struct pci_dev *pdev) 6139 { 6140 struct adapter *adapter = pci_get_drvdata(pdev); 6141 6142 /* As with remove_one() above (see extended comment), we only want do 6143 * do cleanup on PCI Devices which went all the way through init_one() 6144 * ... 6145 */ 6146 if (!adapter) { 6147 pci_release_regions(pdev); 6148 return; 6149 } 6150 6151 adapter->flags |= CXGB4_SHUTTING_DOWN; 6152 6153 if (adapter->pf == 4) { 6154 int i; 6155 6156 for_each_port(adapter, i) 6157 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6158 cxgb_close(adapter->port[i]); 6159 6160 if (is_uld(adapter)) { 6161 detach_ulds(adapter); 6162 t4_uld_clean_up(adapter); 6163 } 6164 6165 disable_interrupts(adapter); 6166 disable_msi(adapter); 6167 6168 t4_sge_stop(adapter); 6169 if (adapter->flags & CXGB4_FW_OK) 6170 t4_fw_bye(adapter, adapter->mbox); 6171 } 6172 } 6173 6174 static struct pci_driver cxgb4_driver = { 6175 .name = KBUILD_MODNAME, 6176 .id_table = cxgb4_pci_tbl, 6177 .probe = init_one, 6178 .remove = remove_one, 6179 .shutdown = shutdown_one, 6180 #ifdef CONFIG_PCI_IOV 6181 .sriov_configure = cxgb4_iov_configure, 6182 #endif 6183 .err_handler = &cxgb4_eeh, 6184 }; 6185 6186 static int __init cxgb4_init_module(void) 6187 { 6188 int ret; 6189 6190 /* Debugfs support is optional, just warn if this fails */ 6191 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6192 if (!cxgb4_debugfs_root) 6193 pr_warn("could not create debugfs entry, continuing\n"); 6194 6195 ret = pci_register_driver(&cxgb4_driver); 6196 if (ret < 0) 6197 goto err_pci; 6198 6199 #if IS_ENABLED(CONFIG_IPV6) 6200 if (!inet6addr_registered) { 6201 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6202 if (ret) 6203 pci_unregister_driver(&cxgb4_driver); 6204 else 6205 inet6addr_registered = true; 6206 } 6207 #endif 6208 6209 if (ret == 0) 6210 return ret; 6211 6212 err_pci: 6213 debugfs_remove(cxgb4_debugfs_root); 6214 6215 return ret; 6216 } 6217 6218 static void __exit cxgb4_cleanup_module(void) 6219 { 6220 #if IS_ENABLED(CONFIG_IPV6) 6221 if (inet6addr_registered) { 6222 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6223 inet6addr_registered = false; 6224 } 6225 #endif 6226 pci_unregister_driver(&cxgb4_driver); 6227 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6228 } 6229 6230 module_init(cxgb4_init_module); 6231 module_exit(cxgb4_cleanup_module); 6232