xref: /linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78 
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80 
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87 
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95 	/* Administrative fields for filter.
96 	 */
97 	u32 valid:1;            /* filter allocated and valid */
98 	u32 locked:1;           /* filter is administratively locked */
99 
100 	u32 pending:1;          /* filter action is pending firmware reply */
101 	u32 smtidx:8;           /* Source MAC Table index for smac */
102 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103 
104 	/* The filter itself.  Most of this is a straight copy of information
105 	 * provided by the extended ioctl().  Some fields are translated to
106 	 * internal forms -- for instance the Ingress Queue ID passed in from
107 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 	 */
109 	struct ch_filter_specification fs;
110 };
111 
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115 
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119 	static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121 
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126 
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
129 
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 		{ 0, } \
132 	}
133 
134 #include "t4_pci_id_tbl.h"
135 
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146 
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155 
156 /*
157  * Normally we're willing to become the firmware's Master PF but will be happy
158  * if another PF has already become the Master and initialized the adapter.
159  * Setting "force_init" will cause this driver to forcibly establish itself as
160  * the Master PF and initialize the adapter.
161  */
162 static uint force_init;
163 
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
166 		 "deprecated parameter");
167 
168 static int dflt_msg_enable = DFLT_MSG_ENABLE;
169 
170 module_param(dflt_msg_enable, int, 0644);
171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
172 
173 /*
174  * The driver uses the best interrupt scheme available on a platform in the
175  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
176  * of these schemes the driver may consider as follows:
177  *
178  * msi = 2: choose from among all three options
179  * msi = 1: only consider MSI and INTx interrupts
180  * msi = 0: force INTx interrupts
181  */
182 static int msi = 2;
183 
184 module_param(msi, int, 0644);
185 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
186 
187 /*
188  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
189  * offset by 2 bytes in order to have the IP headers line up on 4-byte
190  * boundaries.  This is a requirement for many architectures which will throw
191  * a machine check fault if an attempt is made to access one of the 4-byte IP
192  * header fields on a non-4-byte boundary.  And it's a major performance issue
193  * even on some architectures which allow it like some implementations of the
194  * x86 ISA.  However, some architectures don't mind this and for some very
195  * edge-case performance sensitive applications (like forwarding large volumes
196  * of small packets), setting this DMA offset to 0 will decrease the number of
197  * PCI-E Bus transfers enough to measurably affect performance.
198  */
199 static int rx_dma_offset = 2;
200 
201 #ifdef CONFIG_PCI_IOV
202 /* Configure the number of PCI-E Virtual Function which are to be instantiated
203  * on SR-IOV Capable Physical Functions.
204  */
205 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
206 
207 module_param_array(num_vf, uint, NULL, 0644);
208 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
209 #endif
210 
211 /* TX Queue select used to determine what algorithm to use for selecting TX
212  * queue. Select between the kernel provided function (select_queue=0) or user
213  * cxgb_select_queue function (select_queue=1)
214  *
215  * Default: select_queue=0
216  */
217 static int select_queue;
218 module_param(select_queue, int, 0644);
219 MODULE_PARM_DESC(select_queue,
220 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
221 
222 static struct dentry *cxgb4_debugfs_root;
223 
224 static LIST_HEAD(adapter_list);
225 static DEFINE_MUTEX(uld_mutex);
226 /* Adapter list to be accessed from atomic context */
227 static LIST_HEAD(adap_rcu_list);
228 static DEFINE_SPINLOCK(adap_rcu_lock);
229 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
230 static const char *uld_str[] = { "RDMA", "iSCSI" };
231 
232 static void link_report(struct net_device *dev)
233 {
234 	if (!netif_carrier_ok(dev))
235 		netdev_info(dev, "link down\n");
236 	else {
237 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
238 
239 		const char *s;
240 		const struct port_info *p = netdev_priv(dev);
241 
242 		switch (p->link_cfg.speed) {
243 		case 10000:
244 			s = "10Gbps";
245 			break;
246 		case 1000:
247 			s = "1000Mbps";
248 			break;
249 		case 100:
250 			s = "100Mbps";
251 			break;
252 		case 40000:
253 			s = "40Gbps";
254 			break;
255 		default:
256 			pr_info("%s: unsupported speed: %d\n",
257 				dev->name, p->link_cfg.speed);
258 			return;
259 		}
260 
261 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
262 			    fc[p->link_cfg.fc]);
263 	}
264 }
265 
266 #ifdef CONFIG_CHELSIO_T4_DCB
267 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
268 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
269 {
270 	struct port_info *pi = netdev_priv(dev);
271 	struct adapter *adap = pi->adapter;
272 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
273 	int i;
274 
275 	/* We use a simple mapping of Port TX Queue Index to DCB
276 	 * Priority when we're enabling DCB.
277 	 */
278 	for (i = 0; i < pi->nqsets; i++, txq++) {
279 		u32 name, value;
280 		int err;
281 
282 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
283 			FW_PARAMS_PARAM_X_V(
284 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
285 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
286 		value = enable ? i : 0xffffffff;
287 
288 		/* Since we can be called while atomic (from "interrupt
289 		 * level") we need to issue the Set Parameters Commannd
290 		 * without sleeping (timeout < 0).
291 		 */
292 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
293 					    &name, &value,
294 					    -FW_CMD_MAX_TIMEOUT);
295 
296 		if (err)
297 			dev_err(adap->pdev_dev,
298 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
299 				enable ? "set" : "unset", pi->port_id, i, -err);
300 		else
301 			txq->dcb_prio = value;
302 	}
303 }
304 #endif /* CONFIG_CHELSIO_T4_DCB */
305 
306 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
307 {
308 	struct net_device *dev = adapter->port[port_id];
309 
310 	/* Skip changes from disabled ports. */
311 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
312 		if (link_stat)
313 			netif_carrier_on(dev);
314 		else {
315 #ifdef CONFIG_CHELSIO_T4_DCB
316 			cxgb4_dcb_state_init(dev);
317 			dcb_tx_queue_prio_enable(dev, false);
318 #endif /* CONFIG_CHELSIO_T4_DCB */
319 			netif_carrier_off(dev);
320 		}
321 
322 		link_report(dev);
323 	}
324 }
325 
326 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
327 {
328 	static const char *mod_str[] = {
329 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
330 	};
331 
332 	const struct net_device *dev = adap->port[port_id];
333 	const struct port_info *pi = netdev_priv(dev);
334 
335 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
336 		netdev_info(dev, "port module unplugged\n");
337 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
338 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
339 }
340 
341 /*
342  * Configure the exact and hash address filters to handle a port's multicast
343  * and secondary unicast MAC addresses.
344  */
345 static int set_addr_filters(const struct net_device *dev, bool sleep)
346 {
347 	u64 mhash = 0;
348 	u64 uhash = 0;
349 	bool free = true;
350 	u16 filt_idx[7];
351 	const u8 *addr[7];
352 	int ret, naddr = 0;
353 	const struct netdev_hw_addr *ha;
354 	int uc_cnt = netdev_uc_count(dev);
355 	int mc_cnt = netdev_mc_count(dev);
356 	const struct port_info *pi = netdev_priv(dev);
357 	unsigned int mb = pi->adapter->pf;
358 
359 	/* first do the secondary unicast addresses */
360 	netdev_for_each_uc_addr(ha, dev) {
361 		addr[naddr++] = ha->addr;
362 		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
363 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
364 					naddr, addr, filt_idx, &uhash, sleep);
365 			if (ret < 0)
366 				return ret;
367 
368 			free = false;
369 			naddr = 0;
370 		}
371 	}
372 
373 	/* next set up the multicast addresses */
374 	netdev_for_each_mc_addr(ha, dev) {
375 		addr[naddr++] = ha->addr;
376 		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
377 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
378 					naddr, addr, filt_idx, &mhash, sleep);
379 			if (ret < 0)
380 				return ret;
381 
382 			free = false;
383 			naddr = 0;
384 		}
385 	}
386 
387 	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
388 				uhash | mhash, sleep);
389 }
390 
391 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
392 module_param(dbfifo_int_thresh, int, 0644);
393 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
394 
395 /*
396  * usecs to sleep while draining the dbfifo
397  */
398 static int dbfifo_drain_delay = 1000;
399 module_param(dbfifo_drain_delay, int, 0644);
400 MODULE_PARM_DESC(dbfifo_drain_delay,
401 		 "usecs to sleep while draining the dbfifo");
402 
403 /*
404  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
405  * If @mtu is -1 it is left unchanged.
406  */
407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
408 {
409 	int ret;
410 	struct port_info *pi = netdev_priv(dev);
411 
412 	ret = set_addr_filters(dev, sleep_ok);
413 	if (ret == 0)
414 		ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
415 				    (dev->flags & IFF_PROMISC) ? 1 : 0,
416 				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
417 				    sleep_ok);
418 	return ret;
419 }
420 
421 /**
422  *	link_start - enable a port
423  *	@dev: the port to enable
424  *
425  *	Performs the MAC and PHY actions needed to enable a port.
426  */
427 static int link_start(struct net_device *dev)
428 {
429 	int ret;
430 	struct port_info *pi = netdev_priv(dev);
431 	unsigned int mb = pi->adapter->pf;
432 
433 	/*
434 	 * We do not set address filters and promiscuity here, the stack does
435 	 * that step explicitly.
436 	 */
437 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
438 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
439 	if (ret == 0) {
440 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
441 				    pi->xact_addr_filt, dev->dev_addr, true,
442 				    true);
443 		if (ret >= 0) {
444 			pi->xact_addr_filt = ret;
445 			ret = 0;
446 		}
447 	}
448 	if (ret == 0)
449 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
450 				    &pi->link_cfg);
451 	if (ret == 0) {
452 		local_bh_disable();
453 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
454 					  true, CXGB4_DCB_ENABLED);
455 		local_bh_enable();
456 	}
457 
458 	return ret;
459 }
460 
461 int cxgb4_dcb_enabled(const struct net_device *dev)
462 {
463 #ifdef CONFIG_CHELSIO_T4_DCB
464 	struct port_info *pi = netdev_priv(dev);
465 
466 	if (!pi->dcb.enabled)
467 		return 0;
468 
469 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
470 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
471 #else
472 	return 0;
473 #endif
474 }
475 EXPORT_SYMBOL(cxgb4_dcb_enabled);
476 
477 #ifdef CONFIG_CHELSIO_T4_DCB
478 /* Handle a Data Center Bridging update message from the firmware. */
479 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
480 {
481 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
482 	struct net_device *dev = adap->port[port];
483 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
484 	int new_dcb_enabled;
485 
486 	cxgb4_dcb_handle_fw_update(adap, pcmd);
487 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
488 
489 	/* If the DCB has become enabled or disabled on the port then we're
490 	 * going to need to set up/tear down DCB Priority parameters for the
491 	 * TX Queues associated with the port.
492 	 */
493 	if (new_dcb_enabled != old_dcb_enabled)
494 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
495 }
496 #endif /* CONFIG_CHELSIO_T4_DCB */
497 
498 /* Clear a filter and release any of its resources that we own.  This also
499  * clears the filter's "pending" status.
500  */
501 static void clear_filter(struct adapter *adap, struct filter_entry *f)
502 {
503 	/* If the new or old filter have loopback rewriteing rules then we'll
504 	 * need to free any existing Layer Two Table (L2T) entries of the old
505 	 * filter rule.  The firmware will handle freeing up any Source MAC
506 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
507 	 * loopback rules.
508 	 */
509 	if (f->l2t)
510 		cxgb4_l2t_release(f->l2t);
511 
512 	/* The zeroing of the filter rule below clears the filter valid,
513 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
514 	 * this operation.
515 	 */
516 	memset(f, 0, sizeof(*f));
517 }
518 
519 /* Handle a filter write/deletion reply.
520  */
521 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
522 {
523 	unsigned int idx = GET_TID(rpl);
524 	unsigned int nidx = idx - adap->tids.ftid_base;
525 	unsigned int ret;
526 	struct filter_entry *f;
527 
528 	if (idx >= adap->tids.ftid_base && nidx <
529 	   (adap->tids.nftids + adap->tids.nsftids)) {
530 		idx = nidx;
531 		ret = TCB_COOKIE_G(rpl->cookie);
532 		f = &adap->tids.ftid_tab[idx];
533 
534 		if (ret == FW_FILTER_WR_FLT_DELETED) {
535 			/* Clear the filter when we get confirmation from the
536 			 * hardware that the filter has been deleted.
537 			 */
538 			clear_filter(adap, f);
539 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
540 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
541 				idx);
542 			clear_filter(adap, f);
543 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
544 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
545 			f->pending = 0;  /* asynchronous setup completed */
546 			f->valid = 1;
547 		} else {
548 			/* Something went wrong.  Issue a warning about the
549 			 * problem and clear everything out.
550 			 */
551 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
552 				idx, ret);
553 			clear_filter(adap, f);
554 		}
555 	}
556 }
557 
558 /* Response queue handler for the FW event queue.
559  */
560 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
561 			  const struct pkt_gl *gl)
562 {
563 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
564 
565 	rsp++;                                          /* skip RSS header */
566 
567 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
568 	 */
569 	if (unlikely(opcode == CPL_FW4_MSG &&
570 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
571 		rsp++;
572 		opcode = ((const struct rss_header *)rsp)->opcode;
573 		rsp++;
574 		if (opcode != CPL_SGE_EGR_UPDATE) {
575 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
576 				, opcode);
577 			goto out;
578 		}
579 	}
580 
581 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
582 		const struct cpl_sge_egr_update *p = (void *)rsp;
583 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
584 		struct sge_txq *txq;
585 
586 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
587 		txq->restarts++;
588 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
589 			struct sge_eth_txq *eq;
590 
591 			eq = container_of(txq, struct sge_eth_txq, q);
592 			netif_tx_wake_queue(eq->txq);
593 		} else {
594 			struct sge_ofld_txq *oq;
595 
596 			oq = container_of(txq, struct sge_ofld_txq, q);
597 			tasklet_schedule(&oq->qresume_tsk);
598 		}
599 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
600 		const struct cpl_fw6_msg *p = (void *)rsp;
601 
602 #ifdef CONFIG_CHELSIO_T4_DCB
603 		const struct fw_port_cmd *pcmd = (const void *)p->data;
604 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
605 		unsigned int action =
606 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
607 
608 		if (cmd == FW_PORT_CMD &&
609 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
610 			int port = FW_PORT_CMD_PORTID_G(
611 					be32_to_cpu(pcmd->op_to_portid));
612 			struct net_device *dev = q->adap->port[port];
613 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
614 					    FW_PORT_CMD_DCBXDIS_F)
615 					   ? CXGB4_DCB_INPUT_FW_DISABLED
616 					   : CXGB4_DCB_INPUT_FW_ENABLED);
617 
618 			cxgb4_dcb_state_fsm(dev, state_input);
619 		}
620 
621 		if (cmd == FW_PORT_CMD &&
622 		    action == FW_PORT_ACTION_L2_DCB_CFG)
623 			dcb_rpl(q->adap, pcmd);
624 		else
625 #endif
626 			if (p->type == 0)
627 				t4_handle_fw_rpl(q->adap, p->data);
628 	} else if (opcode == CPL_L2T_WRITE_RPL) {
629 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
630 
631 		do_l2t_write_rpl(q->adap, p);
632 	} else if (opcode == CPL_SET_TCB_RPL) {
633 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
634 
635 		filter_rpl(q->adap, p);
636 	} else
637 		dev_err(q->adap->pdev_dev,
638 			"unexpected CPL %#x on FW event queue\n", opcode);
639 out:
640 	return 0;
641 }
642 
643 /**
644  *	uldrx_handler - response queue handler for ULD queues
645  *	@q: the response queue that received the packet
646  *	@rsp: the response queue descriptor holding the offload message
647  *	@gl: the gather list of packet fragments
648  *
649  *	Deliver an ingress offload packet to a ULD.  All processing is done by
650  *	the ULD, we just maintain statistics.
651  */
652 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
653 			 const struct pkt_gl *gl)
654 {
655 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
656 
657 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
658 	 */
659 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
660 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
661 		rsp += 2;
662 
663 	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
664 		rxq->stats.nomem++;
665 		return -1;
666 	}
667 	if (gl == NULL)
668 		rxq->stats.imm++;
669 	else if (gl == CXGB4_MSG_AN)
670 		rxq->stats.an++;
671 	else
672 		rxq->stats.pkts++;
673 	return 0;
674 }
675 
676 static void disable_msi(struct adapter *adapter)
677 {
678 	if (adapter->flags & USING_MSIX) {
679 		pci_disable_msix(adapter->pdev);
680 		adapter->flags &= ~USING_MSIX;
681 	} else if (adapter->flags & USING_MSI) {
682 		pci_disable_msi(adapter->pdev);
683 		adapter->flags &= ~USING_MSI;
684 	}
685 }
686 
687 /*
688  * Interrupt handler for non-data events used with MSI-X.
689  */
690 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
691 {
692 	struct adapter *adap = cookie;
693 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
694 
695 	if (v & PFSW_F) {
696 		adap->swintr = 1;
697 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
698 	}
699 	if (adap->flags & MASTER_PF)
700 		t4_slow_intr_handler(adap);
701 	return IRQ_HANDLED;
702 }
703 
704 /*
705  * Name the MSI-X interrupts.
706  */
707 static void name_msix_vecs(struct adapter *adap)
708 {
709 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
710 
711 	/* non-data interrupts */
712 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
713 
714 	/* FW events */
715 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
716 		 adap->port[0]->name);
717 
718 	/* Ethernet queues */
719 	for_each_port(adap, j) {
720 		struct net_device *d = adap->port[j];
721 		const struct port_info *pi = netdev_priv(d);
722 
723 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
724 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
725 				 d->name, i);
726 	}
727 
728 	/* offload queues */
729 	for_each_iscsirxq(&adap->sge, i)
730 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
731 			 adap->port[0]->name, i);
732 
733 	for_each_rdmarxq(&adap->sge, i)
734 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
735 			 adap->port[0]->name, i);
736 
737 	for_each_rdmaciq(&adap->sge, i)
738 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
739 			 adap->port[0]->name, i);
740 }
741 
742 static int request_msix_queue_irqs(struct adapter *adap)
743 {
744 	struct sge *s = &adap->sge;
745 	int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
746 	int msi_index = 2;
747 
748 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
749 			  adap->msix_info[1].desc, &s->fw_evtq);
750 	if (err)
751 		return err;
752 
753 	for_each_ethrxq(s, ethqidx) {
754 		err = request_irq(adap->msix_info[msi_index].vec,
755 				  t4_sge_intr_msix, 0,
756 				  adap->msix_info[msi_index].desc,
757 				  &s->ethrxq[ethqidx].rspq);
758 		if (err)
759 			goto unwind;
760 		msi_index++;
761 	}
762 	for_each_iscsirxq(s, iscsiqidx) {
763 		err = request_irq(adap->msix_info[msi_index].vec,
764 				  t4_sge_intr_msix, 0,
765 				  adap->msix_info[msi_index].desc,
766 				  &s->iscsirxq[iscsiqidx].rspq);
767 		if (err)
768 			goto unwind;
769 		msi_index++;
770 	}
771 	for_each_rdmarxq(s, rdmaqidx) {
772 		err = request_irq(adap->msix_info[msi_index].vec,
773 				  t4_sge_intr_msix, 0,
774 				  adap->msix_info[msi_index].desc,
775 				  &s->rdmarxq[rdmaqidx].rspq);
776 		if (err)
777 			goto unwind;
778 		msi_index++;
779 	}
780 	for_each_rdmaciq(s, rdmaciqqidx) {
781 		err = request_irq(adap->msix_info[msi_index].vec,
782 				  t4_sge_intr_msix, 0,
783 				  adap->msix_info[msi_index].desc,
784 				  &s->rdmaciq[rdmaciqqidx].rspq);
785 		if (err)
786 			goto unwind;
787 		msi_index++;
788 	}
789 	return 0;
790 
791 unwind:
792 	while (--rdmaciqqidx >= 0)
793 		free_irq(adap->msix_info[--msi_index].vec,
794 			 &s->rdmaciq[rdmaciqqidx].rspq);
795 	while (--rdmaqidx >= 0)
796 		free_irq(adap->msix_info[--msi_index].vec,
797 			 &s->rdmarxq[rdmaqidx].rspq);
798 	while (--iscsiqidx >= 0)
799 		free_irq(adap->msix_info[--msi_index].vec,
800 			 &s->iscsirxq[iscsiqidx].rspq);
801 	while (--ethqidx >= 0)
802 		free_irq(adap->msix_info[--msi_index].vec,
803 			 &s->ethrxq[ethqidx].rspq);
804 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
805 	return err;
806 }
807 
808 static void free_msix_queue_irqs(struct adapter *adap)
809 {
810 	int i, msi_index = 2;
811 	struct sge *s = &adap->sge;
812 
813 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
814 	for_each_ethrxq(s, i)
815 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
816 	for_each_iscsirxq(s, i)
817 		free_irq(adap->msix_info[msi_index++].vec,
818 			 &s->iscsirxq[i].rspq);
819 	for_each_rdmarxq(s, i)
820 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
821 	for_each_rdmaciq(s, i)
822 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
823 }
824 
825 /**
826  *	cxgb4_write_rss - write the RSS table for a given port
827  *	@pi: the port
828  *	@queues: array of queue indices for RSS
829  *
830  *	Sets up the portion of the HW RSS table for the port's VI to distribute
831  *	packets to the Rx queues in @queues.
832  *	Should never be called before setting up sge eth rx queues
833  */
834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
835 {
836 	u16 *rss;
837 	int i, err;
838 	struct adapter *adapter = pi->adapter;
839 	const struct sge_eth_rxq *rxq;
840 
841 	rxq = &adapter->sge.ethrxq[pi->first_qset];
842 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
843 	if (!rss)
844 		return -ENOMEM;
845 
846 	/* map the queue indices to queue ids */
847 	for (i = 0; i < pi->rss_size; i++, queues++)
848 		rss[i] = rxq[*queues].rspq.abs_id;
849 
850 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
851 				  pi->rss_size, rss, pi->rss_size);
852 	/* If Tunnel All Lookup isn't specified in the global RSS
853 	 * Configuration, then we need to specify a default Ingress
854 	 * Queue for any ingress packets which aren't hashed.  We'll
855 	 * use our first ingress queue ...
856 	 */
857 	if (!err)
858 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
859 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
860 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
861 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
862 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
863 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
864 				       rss[0]);
865 	kfree(rss);
866 	return err;
867 }
868 
869 /**
870  *	setup_rss - configure RSS
871  *	@adap: the adapter
872  *
873  *	Sets up RSS for each port.
874  */
875 static int setup_rss(struct adapter *adap)
876 {
877 	int i, j, err;
878 
879 	for_each_port(adap, i) {
880 		const struct port_info *pi = adap2pinfo(adap, i);
881 
882 		/* Fill default values with equal distribution */
883 		for (j = 0; j < pi->rss_size; j++)
884 			pi->rss[j] = j % pi->nqsets;
885 
886 		err = cxgb4_write_rss(pi, pi->rss);
887 		if (err)
888 			return err;
889 	}
890 	return 0;
891 }
892 
893 /*
894  * Return the channel of the ingress queue with the given qid.
895  */
896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
897 {
898 	qid -= p->ingr_start;
899 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
900 }
901 
902 /*
903  * Wait until all NAPI handlers are descheduled.
904  */
905 static void quiesce_rx(struct adapter *adap)
906 {
907 	int i;
908 
909 	for (i = 0; i < adap->sge.ingr_sz; i++) {
910 		struct sge_rspq *q = adap->sge.ingr_map[i];
911 
912 		if (q && q->handler) {
913 			napi_disable(&q->napi);
914 			local_bh_disable();
915 			while (!cxgb_poll_lock_napi(q))
916 				mdelay(1);
917 			local_bh_enable();
918 		}
919 
920 	}
921 }
922 
923 /* Disable interrupt and napi handler */
924 static void disable_interrupts(struct adapter *adap)
925 {
926 	if (adap->flags & FULL_INIT_DONE) {
927 		t4_intr_disable(adap);
928 		if (adap->flags & USING_MSIX) {
929 			free_msix_queue_irqs(adap);
930 			free_irq(adap->msix_info[0].vec, adap);
931 		} else {
932 			free_irq(adap->pdev->irq, adap);
933 		}
934 		quiesce_rx(adap);
935 	}
936 }
937 
938 /*
939  * Enable NAPI scheduling and interrupt generation for all Rx queues.
940  */
941 static void enable_rx(struct adapter *adap)
942 {
943 	int i;
944 
945 	for (i = 0; i < adap->sge.ingr_sz; i++) {
946 		struct sge_rspq *q = adap->sge.ingr_map[i];
947 
948 		if (!q)
949 			continue;
950 		if (q->handler) {
951 			cxgb_busy_poll_init_lock(q);
952 			napi_enable(&q->napi);
953 		}
954 		/* 0-increment GTS to start the timer and enable interrupts */
955 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
956 			     SEINTARM_V(q->intr_params) |
957 			     INGRESSQID_V(q->cntxt_id));
958 	}
959 }
960 
961 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
962 			   unsigned int nq, unsigned int per_chan, int msi_idx,
963 			   u16 *ids)
964 {
965 	int i, err;
966 
967 	for (i = 0; i < nq; i++, q++) {
968 		if (msi_idx > 0)
969 			msi_idx++;
970 		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
971 				       adap->port[i / per_chan],
972 				       msi_idx, q->fl.size ? &q->fl : NULL,
973 				       uldrx_handler, 0);
974 		if (err)
975 			return err;
976 		memset(&q->stats, 0, sizeof(q->stats));
977 		if (ids)
978 			ids[i] = q->rspq.abs_id;
979 	}
980 	return 0;
981 }
982 
983 /**
984  *	setup_sge_queues - configure SGE Tx/Rx/response queues
985  *	@adap: the adapter
986  *
987  *	Determines how many sets of SGE queues to use and initializes them.
988  *	We support multiple queue sets per port if we have MSI-X, otherwise
989  *	just one queue set per port.
990  */
991 static int setup_sge_queues(struct adapter *adap)
992 {
993 	int err, msi_idx, i, j;
994 	struct sge *s = &adap->sge;
995 
996 	bitmap_zero(s->starving_fl, s->egr_sz);
997 	bitmap_zero(s->txq_maperr, s->egr_sz);
998 
999 	if (adap->flags & USING_MSIX)
1000 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1001 	else {
1002 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1003 				       NULL, NULL, -1);
1004 		if (err)
1005 			return err;
1006 		msi_idx = -((int)s->intrq.abs_id + 1);
1007 	}
1008 
1009 	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1010 	 * don't forget to update the following which need to be
1011 	 * synchronized to and changes here.
1012 	 *
1013 	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1014 	 *
1015 	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1016 	 *    to accommodate any new/deleted Ingress Queues
1017 	 *    which need MSI-X Vectors.
1018 	 *
1019 	 * 3. Update sge_qinfo_show() to include information on the
1020 	 *    new/deleted queues.
1021 	 */
1022 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1023 			       msi_idx, NULL, fwevtq_handler, -1);
1024 	if (err) {
1025 freeout:	t4_free_sge_resources(adap);
1026 		return err;
1027 	}
1028 
1029 	for_each_port(adap, i) {
1030 		struct net_device *dev = adap->port[i];
1031 		struct port_info *pi = netdev_priv(dev);
1032 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1033 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1034 
1035 		for (j = 0; j < pi->nqsets; j++, q++) {
1036 			if (msi_idx > 0)
1037 				msi_idx++;
1038 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1039 					       msi_idx, &q->fl,
1040 					       t4_ethrx_handler,
1041 					       t4_get_mps_bg_map(adap,
1042 								 pi->tx_chan));
1043 			if (err)
1044 				goto freeout;
1045 			q->rspq.idx = j;
1046 			memset(&q->stats, 0, sizeof(q->stats));
1047 		}
1048 		for (j = 0; j < pi->nqsets; j++, t++) {
1049 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1050 					netdev_get_tx_queue(dev, j),
1051 					s->fw_evtq.cntxt_id);
1052 			if (err)
1053 				goto freeout;
1054 		}
1055 	}
1056 
1057 	j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1058 	for_each_iscsirxq(s, i) {
1059 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1060 					    adap->port[i / j],
1061 					    s->fw_evtq.cntxt_id);
1062 		if (err)
1063 			goto freeout;
1064 	}
1065 
1066 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1067 	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1068 	if (err) \
1069 		goto freeout; \
1070 	if (msi_idx > 0) \
1071 		msi_idx += nq; \
1072 } while (0)
1073 
1074 	ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq);
1075 	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1076 	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1077 	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1078 
1079 #undef ALLOC_OFLD_RXQS
1080 
1081 	for_each_port(adap, i) {
1082 		/*
1083 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1084 		 * have RDMA queues, and that's the right value.
1085 		 */
1086 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1087 					    s->fw_evtq.cntxt_id,
1088 					    s->rdmarxq[i].rspq.cntxt_id);
1089 		if (err)
1090 			goto freeout;
1091 	}
1092 
1093 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1094 				MPS_TRC_RSS_CONTROL_A :
1095 				MPS_T5_TRC_RSS_CONTROL_A,
1096 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1097 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1103  * The allocated memory is cleared.
1104  */
1105 void *t4_alloc_mem(size_t size)
1106 {
1107 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1108 
1109 	if (!p)
1110 		p = vzalloc(size);
1111 	return p;
1112 }
1113 
1114 /*
1115  * Free memory allocated through alloc_mem().
1116  */
1117 void t4_free_mem(void *addr)
1118 {
1119 	kvfree(addr);
1120 }
1121 
1122 /* Send a Work Request to write the filter at a specified index.  We construct
1123  * a Firmware Filter Work Request to have the work done and put the indicated
1124  * filter into "pending" mode which will prevent any further actions against
1125  * it till we get a reply from the firmware on the completion status of the
1126  * request.
1127  */
1128 static int set_filter_wr(struct adapter *adapter, int fidx)
1129 {
1130 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1131 	struct sk_buff *skb;
1132 	struct fw_filter_wr *fwr;
1133 	unsigned int ftid;
1134 
1135 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1136 	if (!skb)
1137 		return -ENOMEM;
1138 
1139 	/* If the new filter requires loopback Destination MAC and/or VLAN
1140 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1141 	 * the filter.
1142 	 */
1143 	if (f->fs.newdmac || f->fs.newvlan) {
1144 		/* allocate L2T entry for new filter */
1145 		f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1146 						f->fs.eport, f->fs.dmac);
1147 		if (f->l2t == NULL) {
1148 			kfree_skb(skb);
1149 			return -ENOMEM;
1150 		}
1151 	}
1152 
1153 	ftid = adapter->tids.ftid_base + fidx;
1154 
1155 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1156 	memset(fwr, 0, sizeof(*fwr));
1157 
1158 	/* It would be nice to put most of the following in t4_hw.c but most
1159 	 * of the work is translating the cxgbtool ch_filter_specification
1160 	 * into the Work Request and the definition of that structure is
1161 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1162 	 * common code.  We may eventually try to come up with a more neutral
1163 	 * filter specification structure but for now it's easiest to simply
1164 	 * put this fairly direct code in line ...
1165 	 */
1166 	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1167 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1168 	fwr->tid_to_iq =
1169 		htonl(FW_FILTER_WR_TID_V(ftid) |
1170 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1171 		      FW_FILTER_WR_NOREPLY_V(0) |
1172 		      FW_FILTER_WR_IQ_V(f->fs.iq));
1173 	fwr->del_filter_to_l2tix =
1174 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1175 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1176 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1177 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1178 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1179 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1180 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1181 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1182 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1183 					     f->fs.newvlan == VLAN_REWRITE) |
1184 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1185 					    f->fs.newvlan == VLAN_REWRITE) |
1186 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1187 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1188 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1189 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1190 	fwr->ethtype = htons(f->fs.val.ethtype);
1191 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1192 	fwr->frag_to_ovlan_vldm =
1193 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1194 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1195 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1196 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1197 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1198 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1199 	fwr->smac_sel = 0;
1200 	fwr->rx_chan_rx_rpl_iq =
1201 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1202 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1203 	fwr->maci_to_matchtypem =
1204 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1205 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1206 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1207 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1208 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1209 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1210 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1211 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1212 	fwr->ptcl = f->fs.val.proto;
1213 	fwr->ptclm = f->fs.mask.proto;
1214 	fwr->ttyp = f->fs.val.tos;
1215 	fwr->ttypm = f->fs.mask.tos;
1216 	fwr->ivlan = htons(f->fs.val.ivlan);
1217 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1218 	fwr->ovlan = htons(f->fs.val.ovlan);
1219 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1220 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1221 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1222 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1223 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1224 	fwr->lp = htons(f->fs.val.lport);
1225 	fwr->lpm = htons(f->fs.mask.lport);
1226 	fwr->fp = htons(f->fs.val.fport);
1227 	fwr->fpm = htons(f->fs.mask.fport);
1228 	if (f->fs.newsmac)
1229 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1230 
1231 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1232 	 * When we get the Work Request Reply we'll clear the pending status.
1233 	 */
1234 	f->pending = 1;
1235 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1236 	t4_ofld_send(adapter, skb);
1237 	return 0;
1238 }
1239 
1240 /* Delete the filter at a specified index.
1241  */
1242 static int del_filter_wr(struct adapter *adapter, int fidx)
1243 {
1244 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1245 	struct sk_buff *skb;
1246 	struct fw_filter_wr *fwr;
1247 	unsigned int len, ftid;
1248 
1249 	len = sizeof(*fwr);
1250 	ftid = adapter->tids.ftid_base + fidx;
1251 
1252 	skb = alloc_skb(len, GFP_KERNEL);
1253 	if (!skb)
1254 		return -ENOMEM;
1255 
1256 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1257 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1258 
1259 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1260 	 * When we get the Work Request Reply we'll clear the pending status.
1261 	 */
1262 	f->pending = 1;
1263 	t4_mgmt_tx(adapter, skb);
1264 	return 0;
1265 }
1266 
1267 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1268 			     void *accel_priv, select_queue_fallback_t fallback)
1269 {
1270 	int txq;
1271 
1272 #ifdef CONFIG_CHELSIO_T4_DCB
1273 	/* If a Data Center Bridging has been successfully negotiated on this
1274 	 * link then we'll use the skb's priority to map it to a TX Queue.
1275 	 * The skb's priority is determined via the VLAN Tag Priority Code
1276 	 * Point field.
1277 	 */
1278 	if (cxgb4_dcb_enabled(dev)) {
1279 		u16 vlan_tci;
1280 		int err;
1281 
1282 		err = vlan_get_tag(skb, &vlan_tci);
1283 		if (unlikely(err)) {
1284 			if (net_ratelimit())
1285 				netdev_warn(dev,
1286 					    "TX Packet without VLAN Tag on DCB Link\n");
1287 			txq = 0;
1288 		} else {
1289 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1290 #ifdef CONFIG_CHELSIO_T4_FCOE
1291 			if (skb->protocol == htons(ETH_P_FCOE))
1292 				txq = skb->priority & 0x7;
1293 #endif /* CONFIG_CHELSIO_T4_FCOE */
1294 		}
1295 		return txq;
1296 	}
1297 #endif /* CONFIG_CHELSIO_T4_DCB */
1298 
1299 	if (select_queue) {
1300 		txq = (skb_rx_queue_recorded(skb)
1301 			? skb_get_rx_queue(skb)
1302 			: smp_processor_id());
1303 
1304 		while (unlikely(txq >= dev->real_num_tx_queues))
1305 			txq -= dev->real_num_tx_queues;
1306 
1307 		return txq;
1308 	}
1309 
1310 	return fallback(dev, skb) % dev->real_num_tx_queues;
1311 }
1312 
1313 static int closest_timer(const struct sge *s, int time)
1314 {
1315 	int i, delta, match = 0, min_delta = INT_MAX;
1316 
1317 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1318 		delta = time - s->timer_val[i];
1319 		if (delta < 0)
1320 			delta = -delta;
1321 		if (delta < min_delta) {
1322 			min_delta = delta;
1323 			match = i;
1324 		}
1325 	}
1326 	return match;
1327 }
1328 
1329 static int closest_thres(const struct sge *s, int thres)
1330 {
1331 	int i, delta, match = 0, min_delta = INT_MAX;
1332 
1333 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1334 		delta = thres - s->counter_val[i];
1335 		if (delta < 0)
1336 			delta = -delta;
1337 		if (delta < min_delta) {
1338 			min_delta = delta;
1339 			match = i;
1340 		}
1341 	}
1342 	return match;
1343 }
1344 
1345 /**
1346  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1347  *	@q: the Rx queue
1348  *	@us: the hold-off time in us, or 0 to disable timer
1349  *	@cnt: the hold-off packet count, or 0 to disable counter
1350  *
1351  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1352  *	one of the two needs to be enabled for the queue to generate interrupts.
1353  */
1354 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1355 			       unsigned int us, unsigned int cnt)
1356 {
1357 	struct adapter *adap = q->adap;
1358 
1359 	if ((us | cnt) == 0)
1360 		cnt = 1;
1361 
1362 	if (cnt) {
1363 		int err;
1364 		u32 v, new_idx;
1365 
1366 		new_idx = closest_thres(&adap->sge, cnt);
1367 		if (q->desc && q->pktcnt_idx != new_idx) {
1368 			/* the queue has already been created, update it */
1369 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1370 			    FW_PARAMS_PARAM_X_V(
1371 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1372 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1373 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1374 					    &v, &new_idx);
1375 			if (err)
1376 				return err;
1377 		}
1378 		q->pktcnt_idx = new_idx;
1379 	}
1380 
1381 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1382 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1383 	return 0;
1384 }
1385 
1386 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1387 {
1388 	const struct port_info *pi = netdev_priv(dev);
1389 	netdev_features_t changed = dev->features ^ features;
1390 	int err;
1391 
1392 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1393 		return 0;
1394 
1395 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1396 			    -1, -1, -1,
1397 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1398 	if (unlikely(err))
1399 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1400 	return err;
1401 }
1402 
1403 static int setup_debugfs(struct adapter *adap)
1404 {
1405 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1406 		return -1;
1407 
1408 #ifdef CONFIG_DEBUG_FS
1409 	t4_setup_debugfs(adap);
1410 #endif
1411 	return 0;
1412 }
1413 
1414 /*
1415  * upper-layer driver support
1416  */
1417 
1418 /*
1419  * Allocate an active-open TID and set it to the supplied value.
1420  */
1421 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1422 {
1423 	int atid = -1;
1424 
1425 	spin_lock_bh(&t->atid_lock);
1426 	if (t->afree) {
1427 		union aopen_entry *p = t->afree;
1428 
1429 		atid = (p - t->atid_tab) + t->atid_base;
1430 		t->afree = p->next;
1431 		p->data = data;
1432 		t->atids_in_use++;
1433 	}
1434 	spin_unlock_bh(&t->atid_lock);
1435 	return atid;
1436 }
1437 EXPORT_SYMBOL(cxgb4_alloc_atid);
1438 
1439 /*
1440  * Release an active-open TID.
1441  */
1442 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1443 {
1444 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1445 
1446 	spin_lock_bh(&t->atid_lock);
1447 	p->next = t->afree;
1448 	t->afree = p;
1449 	t->atids_in_use--;
1450 	spin_unlock_bh(&t->atid_lock);
1451 }
1452 EXPORT_SYMBOL(cxgb4_free_atid);
1453 
1454 /*
1455  * Allocate a server TID and set it to the supplied value.
1456  */
1457 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1458 {
1459 	int stid;
1460 
1461 	spin_lock_bh(&t->stid_lock);
1462 	if (family == PF_INET) {
1463 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1464 		if (stid < t->nstids)
1465 			__set_bit(stid, t->stid_bmap);
1466 		else
1467 			stid = -1;
1468 	} else {
1469 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1470 		if (stid < 0)
1471 			stid = -1;
1472 	}
1473 	if (stid >= 0) {
1474 		t->stid_tab[stid].data = data;
1475 		stid += t->stid_base;
1476 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1477 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1478 		 * needs 2 TIDs.
1479 		 */
1480 		if (family == PF_INET)
1481 			t->stids_in_use++;
1482 		else
1483 			t->stids_in_use += 2;
1484 	}
1485 	spin_unlock_bh(&t->stid_lock);
1486 	return stid;
1487 }
1488 EXPORT_SYMBOL(cxgb4_alloc_stid);
1489 
1490 /* Allocate a server filter TID and set it to the supplied value.
1491  */
1492 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1493 {
1494 	int stid;
1495 
1496 	spin_lock_bh(&t->stid_lock);
1497 	if (family == PF_INET) {
1498 		stid = find_next_zero_bit(t->stid_bmap,
1499 				t->nstids + t->nsftids, t->nstids);
1500 		if (stid < (t->nstids + t->nsftids))
1501 			__set_bit(stid, t->stid_bmap);
1502 		else
1503 			stid = -1;
1504 	} else {
1505 		stid = -1;
1506 	}
1507 	if (stid >= 0) {
1508 		t->stid_tab[stid].data = data;
1509 		stid -= t->nstids;
1510 		stid += t->sftid_base;
1511 		t->sftids_in_use++;
1512 	}
1513 	spin_unlock_bh(&t->stid_lock);
1514 	return stid;
1515 }
1516 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1517 
1518 /* Release a server TID.
1519  */
1520 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1521 {
1522 	/* Is it a server filter TID? */
1523 	if (t->nsftids && (stid >= t->sftid_base)) {
1524 		stid -= t->sftid_base;
1525 		stid += t->nstids;
1526 	} else {
1527 		stid -= t->stid_base;
1528 	}
1529 
1530 	spin_lock_bh(&t->stid_lock);
1531 	if (family == PF_INET)
1532 		__clear_bit(stid, t->stid_bmap);
1533 	else
1534 		bitmap_release_region(t->stid_bmap, stid, 1);
1535 	t->stid_tab[stid].data = NULL;
1536 	if (stid < t->nstids) {
1537 		if (family == PF_INET)
1538 			t->stids_in_use--;
1539 		else
1540 			t->stids_in_use -= 2;
1541 	} else {
1542 		t->sftids_in_use--;
1543 	}
1544 	spin_unlock_bh(&t->stid_lock);
1545 }
1546 EXPORT_SYMBOL(cxgb4_free_stid);
1547 
1548 /*
1549  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1550  */
1551 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1552 			   unsigned int tid)
1553 {
1554 	struct cpl_tid_release *req;
1555 
1556 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1557 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1558 	INIT_TP_WR(req, tid);
1559 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1560 }
1561 
1562 /*
1563  * Queue a TID release request and if necessary schedule a work queue to
1564  * process it.
1565  */
1566 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1567 				    unsigned int tid)
1568 {
1569 	void **p = &t->tid_tab[tid];
1570 	struct adapter *adap = container_of(t, struct adapter, tids);
1571 
1572 	spin_lock_bh(&adap->tid_release_lock);
1573 	*p = adap->tid_release_head;
1574 	/* Low 2 bits encode the Tx channel number */
1575 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1576 	if (!adap->tid_release_task_busy) {
1577 		adap->tid_release_task_busy = true;
1578 		queue_work(adap->workq, &adap->tid_release_task);
1579 	}
1580 	spin_unlock_bh(&adap->tid_release_lock);
1581 }
1582 
1583 /*
1584  * Process the list of pending TID release requests.
1585  */
1586 static void process_tid_release_list(struct work_struct *work)
1587 {
1588 	struct sk_buff *skb;
1589 	struct adapter *adap;
1590 
1591 	adap = container_of(work, struct adapter, tid_release_task);
1592 
1593 	spin_lock_bh(&adap->tid_release_lock);
1594 	while (adap->tid_release_head) {
1595 		void **p = adap->tid_release_head;
1596 		unsigned int chan = (uintptr_t)p & 3;
1597 		p = (void *)p - chan;
1598 
1599 		adap->tid_release_head = *p;
1600 		*p = NULL;
1601 		spin_unlock_bh(&adap->tid_release_lock);
1602 
1603 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1604 					 GFP_KERNEL)))
1605 			schedule_timeout_uninterruptible(1);
1606 
1607 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1608 		t4_ofld_send(adap, skb);
1609 		spin_lock_bh(&adap->tid_release_lock);
1610 	}
1611 	adap->tid_release_task_busy = false;
1612 	spin_unlock_bh(&adap->tid_release_lock);
1613 }
1614 
1615 /*
1616  * Release a TID and inform HW.  If we are unable to allocate the release
1617  * message we defer to a work queue.
1618  */
1619 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1620 {
1621 	struct sk_buff *skb;
1622 	struct adapter *adap = container_of(t, struct adapter, tids);
1623 
1624 	WARN_ON(tid >= t->ntids);
1625 
1626 	if (t->tid_tab[tid]) {
1627 		t->tid_tab[tid] = NULL;
1628 		if (t->hash_base && (tid >= t->hash_base))
1629 			atomic_dec(&t->hash_tids_in_use);
1630 		else
1631 			atomic_dec(&t->tids_in_use);
1632 	}
1633 
1634 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1635 	if (likely(skb)) {
1636 		mk_tid_release(skb, chan, tid);
1637 		t4_ofld_send(adap, skb);
1638 	} else
1639 		cxgb4_queue_tid_release(t, chan, tid);
1640 }
1641 EXPORT_SYMBOL(cxgb4_remove_tid);
1642 
1643 /*
1644  * Allocate and initialize the TID tables.  Returns 0 on success.
1645  */
1646 static int tid_init(struct tid_info *t)
1647 {
1648 	size_t size;
1649 	unsigned int stid_bmap_size;
1650 	unsigned int natids = t->natids;
1651 	struct adapter *adap = container_of(t, struct adapter, tids);
1652 
1653 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1654 	size = t->ntids * sizeof(*t->tid_tab) +
1655 	       natids * sizeof(*t->atid_tab) +
1656 	       t->nstids * sizeof(*t->stid_tab) +
1657 	       t->nsftids * sizeof(*t->stid_tab) +
1658 	       stid_bmap_size * sizeof(long) +
1659 	       t->nftids * sizeof(*t->ftid_tab) +
1660 	       t->nsftids * sizeof(*t->ftid_tab);
1661 
1662 	t->tid_tab = t4_alloc_mem(size);
1663 	if (!t->tid_tab)
1664 		return -ENOMEM;
1665 
1666 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1667 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1668 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1669 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1670 	spin_lock_init(&t->stid_lock);
1671 	spin_lock_init(&t->atid_lock);
1672 
1673 	t->stids_in_use = 0;
1674 	t->sftids_in_use = 0;
1675 	t->afree = NULL;
1676 	t->atids_in_use = 0;
1677 	atomic_set(&t->tids_in_use, 0);
1678 	atomic_set(&t->hash_tids_in_use, 0);
1679 
1680 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1681 	if (natids) {
1682 		while (--natids)
1683 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1684 		t->afree = t->atid_tab;
1685 	}
1686 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1687 	/* Reserve stid 0 for T4/T5 adapters */
1688 	if (!t->stid_base &&
1689 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1690 		__set_bit(0, t->stid_bmap);
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  *	cxgb4_create_server - create an IP server
1697  *	@dev: the device
1698  *	@stid: the server TID
1699  *	@sip: local IP address to bind server to
1700  *	@sport: the server's TCP port
1701  *	@queue: queue to direct messages from this server to
1702  *
1703  *	Create an IP server for the given port and address.
1704  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1705  */
1706 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1707 			__be32 sip, __be16 sport, __be16 vlan,
1708 			unsigned int queue)
1709 {
1710 	unsigned int chan;
1711 	struct sk_buff *skb;
1712 	struct adapter *adap;
1713 	struct cpl_pass_open_req *req;
1714 	int ret;
1715 
1716 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1717 	if (!skb)
1718 		return -ENOMEM;
1719 
1720 	adap = netdev2adap(dev);
1721 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1722 	INIT_TP_WR(req, 0);
1723 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1724 	req->local_port = sport;
1725 	req->peer_port = htons(0);
1726 	req->local_ip = sip;
1727 	req->peer_ip = htonl(0);
1728 	chan = rxq_to_chan(&adap->sge, queue);
1729 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1730 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1731 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1732 	ret = t4_mgmt_tx(adap, skb);
1733 	return net_xmit_eval(ret);
1734 }
1735 EXPORT_SYMBOL(cxgb4_create_server);
1736 
1737 /*	cxgb4_create_server6 - create an IPv6 server
1738  *	@dev: the device
1739  *	@stid: the server TID
1740  *	@sip: local IPv6 address to bind server to
1741  *	@sport: the server's TCP port
1742  *	@queue: queue to direct messages from this server to
1743  *
1744  *	Create an IPv6 server for the given port and address.
1745  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1746  */
1747 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1748 			 const struct in6_addr *sip, __be16 sport,
1749 			 unsigned int queue)
1750 {
1751 	unsigned int chan;
1752 	struct sk_buff *skb;
1753 	struct adapter *adap;
1754 	struct cpl_pass_open_req6 *req;
1755 	int ret;
1756 
1757 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1758 	if (!skb)
1759 		return -ENOMEM;
1760 
1761 	adap = netdev2adap(dev);
1762 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1763 	INIT_TP_WR(req, 0);
1764 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1765 	req->local_port = sport;
1766 	req->peer_port = htons(0);
1767 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1768 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1769 	req->peer_ip_hi = cpu_to_be64(0);
1770 	req->peer_ip_lo = cpu_to_be64(0);
1771 	chan = rxq_to_chan(&adap->sge, queue);
1772 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1773 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1774 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1775 	ret = t4_mgmt_tx(adap, skb);
1776 	return net_xmit_eval(ret);
1777 }
1778 EXPORT_SYMBOL(cxgb4_create_server6);
1779 
1780 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1781 			unsigned int queue, bool ipv6)
1782 {
1783 	struct sk_buff *skb;
1784 	struct adapter *adap;
1785 	struct cpl_close_listsvr_req *req;
1786 	int ret;
1787 
1788 	adap = netdev2adap(dev);
1789 
1790 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1791 	if (!skb)
1792 		return -ENOMEM;
1793 
1794 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1795 	INIT_TP_WR(req, 0);
1796 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1797 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1798 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1799 	ret = t4_mgmt_tx(adap, skb);
1800 	return net_xmit_eval(ret);
1801 }
1802 EXPORT_SYMBOL(cxgb4_remove_server);
1803 
1804 /**
1805  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1806  *	@mtus: the HW MTU table
1807  *	@mtu: the target MTU
1808  *	@idx: index of selected entry in the MTU table
1809  *
1810  *	Returns the index and the value in the HW MTU table that is closest to
1811  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1812  *	table, in which case that smallest available value is selected.
1813  */
1814 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1815 			    unsigned int *idx)
1816 {
1817 	unsigned int i = 0;
1818 
1819 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1820 		++i;
1821 	if (idx)
1822 		*idx = i;
1823 	return mtus[i];
1824 }
1825 EXPORT_SYMBOL(cxgb4_best_mtu);
1826 
1827 /**
1828  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1829  *     @mtus: the HW MTU table
1830  *     @header_size: Header Size
1831  *     @data_size_max: maximum Data Segment Size
1832  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1833  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1834  *
1835  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1836  *     MTU Table based solely on a Maximum MTU parameter, we break that
1837  *     parameter up into a Header Size and Maximum Data Segment Size, and
1838  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1839  *     the Hardware MTU Table which will result in a Data Segment Size with
1840  *     the requested alignment _and_ that MTU isn't "too far" from the
1841  *     closest MTU, then we'll return that rather than the closest MTU.
1842  */
1843 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1844 				    unsigned short header_size,
1845 				    unsigned short data_size_max,
1846 				    unsigned short data_size_align,
1847 				    unsigned int *mtu_idxp)
1848 {
1849 	unsigned short max_mtu = header_size + data_size_max;
1850 	unsigned short data_size_align_mask = data_size_align - 1;
1851 	int mtu_idx, aligned_mtu_idx;
1852 
1853 	/* Scan the MTU Table till we find an MTU which is larger than our
1854 	 * Maximum MTU or we reach the end of the table.  Along the way,
1855 	 * record the last MTU found, if any, which will result in a Data
1856 	 * Segment Length matching the requested alignment.
1857 	 */
1858 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1859 		unsigned short data_size = mtus[mtu_idx] - header_size;
1860 
1861 		/* If this MTU minus the Header Size would result in a
1862 		 * Data Segment Size of the desired alignment, remember it.
1863 		 */
1864 		if ((data_size & data_size_align_mask) == 0)
1865 			aligned_mtu_idx = mtu_idx;
1866 
1867 		/* If we're not at the end of the Hardware MTU Table and the
1868 		 * next element is larger than our Maximum MTU, drop out of
1869 		 * the loop.
1870 		 */
1871 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1872 			break;
1873 	}
1874 
1875 	/* If we fell out of the loop because we ran to the end of the table,
1876 	 * then we just have to use the last [largest] entry.
1877 	 */
1878 	if (mtu_idx == NMTUS)
1879 		mtu_idx--;
1880 
1881 	/* If we found an MTU which resulted in the requested Data Segment
1882 	 * Length alignment and that's "not far" from the largest MTU which is
1883 	 * less than or equal to the maximum MTU, then use that.
1884 	 */
1885 	if (aligned_mtu_idx >= 0 &&
1886 	    mtu_idx - aligned_mtu_idx <= 1)
1887 		mtu_idx = aligned_mtu_idx;
1888 
1889 	/* If the caller has passed in an MTU Index pointer, pass the
1890 	 * MTU Index back.  Return the MTU value.
1891 	 */
1892 	if (mtu_idxp)
1893 		*mtu_idxp = mtu_idx;
1894 	return mtus[mtu_idx];
1895 }
1896 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1897 
1898 /**
1899  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1900  *	@chip: chip type
1901  *	@viid: VI id of the given port
1902  *
1903  *	Return the SMT index for this VI.
1904  */
1905 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1906 {
1907 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1908 	 * 128 rows of 2 entries each.
1909 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1910 	 * TODO: The below code needs to be updated when we add support
1911 	 * for 256 VFs.
1912 	 */
1913 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1914 		return ((viid & 0x7f) << 1);
1915 	else
1916 		return (viid & 0x7f);
1917 }
1918 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1919 
1920 /**
1921  *	cxgb4_port_chan - get the HW channel of a port
1922  *	@dev: the net device for the port
1923  *
1924  *	Return the HW Tx channel of the given port.
1925  */
1926 unsigned int cxgb4_port_chan(const struct net_device *dev)
1927 {
1928 	return netdev2pinfo(dev)->tx_chan;
1929 }
1930 EXPORT_SYMBOL(cxgb4_port_chan);
1931 
1932 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1933 {
1934 	struct adapter *adap = netdev2adap(dev);
1935 	u32 v1, v2, lp_count, hp_count;
1936 
1937 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1938 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1939 	if (is_t4(adap->params.chip)) {
1940 		lp_count = LP_COUNT_G(v1);
1941 		hp_count = HP_COUNT_G(v1);
1942 	} else {
1943 		lp_count = LP_COUNT_T5_G(v1);
1944 		hp_count = HP_COUNT_T5_G(v2);
1945 	}
1946 	return lpfifo ? lp_count : hp_count;
1947 }
1948 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1949 
1950 /**
1951  *	cxgb4_port_viid - get the VI id of a port
1952  *	@dev: the net device for the port
1953  *
1954  *	Return the VI id of the given port.
1955  */
1956 unsigned int cxgb4_port_viid(const struct net_device *dev)
1957 {
1958 	return netdev2pinfo(dev)->viid;
1959 }
1960 EXPORT_SYMBOL(cxgb4_port_viid);
1961 
1962 /**
1963  *	cxgb4_port_idx - get the index of a port
1964  *	@dev: the net device for the port
1965  *
1966  *	Return the index of the given port.
1967  */
1968 unsigned int cxgb4_port_idx(const struct net_device *dev)
1969 {
1970 	return netdev2pinfo(dev)->port_id;
1971 }
1972 EXPORT_SYMBOL(cxgb4_port_idx);
1973 
1974 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1975 			 struct tp_tcp_stats *v6)
1976 {
1977 	struct adapter *adap = pci_get_drvdata(pdev);
1978 
1979 	spin_lock(&adap->stats_lock);
1980 	t4_tp_get_tcp_stats(adap, v4, v6);
1981 	spin_unlock(&adap->stats_lock);
1982 }
1983 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1984 
1985 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1986 		      const unsigned int *pgsz_order)
1987 {
1988 	struct adapter *adap = netdev2adap(dev);
1989 
1990 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1991 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1992 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1993 		     HPZ3_V(pgsz_order[3]));
1994 }
1995 EXPORT_SYMBOL(cxgb4_iscsi_init);
1996 
1997 int cxgb4_flush_eq_cache(struct net_device *dev)
1998 {
1999 	struct adapter *adap = netdev2adap(dev);
2000 
2001 	return t4_sge_ctxt_flush(adap, adap->mbox);
2002 }
2003 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2004 
2005 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2006 {
2007 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2008 	__be64 indices;
2009 	int ret;
2010 
2011 	spin_lock(&adap->win0_lock);
2012 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2013 			   sizeof(indices), (__be32 *)&indices,
2014 			   T4_MEMORY_READ);
2015 	spin_unlock(&adap->win0_lock);
2016 	if (!ret) {
2017 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2018 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2019 	}
2020 	return ret;
2021 }
2022 
2023 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2024 			u16 size)
2025 {
2026 	struct adapter *adap = netdev2adap(dev);
2027 	u16 hw_pidx, hw_cidx;
2028 	int ret;
2029 
2030 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2031 	if (ret)
2032 		goto out;
2033 
2034 	if (pidx != hw_pidx) {
2035 		u16 delta;
2036 		u32 val;
2037 
2038 		if (pidx >= hw_pidx)
2039 			delta = pidx - hw_pidx;
2040 		else
2041 			delta = size - hw_pidx + pidx;
2042 
2043 		if (is_t4(adap->params.chip))
2044 			val = PIDX_V(delta);
2045 		else
2046 			val = PIDX_T5_V(delta);
2047 		wmb();
2048 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2049 			     QID_V(qid) | val);
2050 	}
2051 out:
2052 	return ret;
2053 }
2054 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2055 
2056 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2057 {
2058 	struct adapter *adap;
2059 	u32 offset, memtype, memaddr;
2060 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2061 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2062 	int ret;
2063 
2064 	adap = netdev2adap(dev);
2065 
2066 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2067 
2068 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2069 	 * This code assumes that the memory is laid out starting at offset 0
2070 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2071 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2072 	 * MC0, and some have both MC0 and MC1.
2073 	 */
2074 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2075 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2076 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2077 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2078 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2079 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2080 
2081 	edc0_end = edc0_size;
2082 	edc1_end = edc0_end + edc1_size;
2083 	mc0_end = edc1_end + mc0_size;
2084 
2085 	if (offset < edc0_end) {
2086 		memtype = MEM_EDC0;
2087 		memaddr = offset;
2088 	} else if (offset < edc1_end) {
2089 		memtype = MEM_EDC1;
2090 		memaddr = offset - edc0_end;
2091 	} else {
2092 		if (offset < mc0_end) {
2093 			memtype = MEM_MC0;
2094 			memaddr = offset - edc1_end;
2095 		} else if (is_t5(adap->params.chip)) {
2096 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2097 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2098 			mc1_end = mc0_end + mc1_size;
2099 			if (offset < mc1_end) {
2100 				memtype = MEM_MC1;
2101 				memaddr = offset - mc0_end;
2102 			} else {
2103 				/* offset beyond the end of any memory */
2104 				goto err;
2105 			}
2106 		} else {
2107 			/* T4/T6 only has a single memory channel */
2108 			goto err;
2109 		}
2110 	}
2111 
2112 	spin_lock(&adap->win0_lock);
2113 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2114 	spin_unlock(&adap->win0_lock);
2115 	return ret;
2116 
2117 err:
2118 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2119 		stag, offset);
2120 	return -EINVAL;
2121 }
2122 EXPORT_SYMBOL(cxgb4_read_tpte);
2123 
2124 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2125 {
2126 	u32 hi, lo;
2127 	struct adapter *adap;
2128 
2129 	adap = netdev2adap(dev);
2130 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2131 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2132 
2133 	return ((u64)hi << 32) | (u64)lo;
2134 }
2135 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2136 
2137 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2138 			 unsigned int qid,
2139 			 enum cxgb4_bar2_qtype qtype,
2140 			 int user,
2141 			 u64 *pbar2_qoffset,
2142 			 unsigned int *pbar2_qid)
2143 {
2144 	return t4_bar2_sge_qregs(netdev2adap(dev),
2145 				 qid,
2146 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2147 				  ? T4_BAR2_QTYPE_EGRESS
2148 				  : T4_BAR2_QTYPE_INGRESS),
2149 				 user,
2150 				 pbar2_qoffset,
2151 				 pbar2_qid);
2152 }
2153 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2154 
2155 static struct pci_driver cxgb4_driver;
2156 
2157 static void check_neigh_update(struct neighbour *neigh)
2158 {
2159 	const struct device *parent;
2160 	const struct net_device *netdev = neigh->dev;
2161 
2162 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2163 		netdev = vlan_dev_real_dev(netdev);
2164 	parent = netdev->dev.parent;
2165 	if (parent && parent->driver == &cxgb4_driver.driver)
2166 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2167 }
2168 
2169 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2170 		       void *data)
2171 {
2172 	switch (event) {
2173 	case NETEVENT_NEIGH_UPDATE:
2174 		check_neigh_update(data);
2175 		break;
2176 	case NETEVENT_REDIRECT:
2177 	default:
2178 		break;
2179 	}
2180 	return 0;
2181 }
2182 
2183 static bool netevent_registered;
2184 static struct notifier_block cxgb4_netevent_nb = {
2185 	.notifier_call = netevent_cb
2186 };
2187 
2188 static void drain_db_fifo(struct adapter *adap, int usecs)
2189 {
2190 	u32 v1, v2, lp_count, hp_count;
2191 
2192 	do {
2193 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2194 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2195 		if (is_t4(adap->params.chip)) {
2196 			lp_count = LP_COUNT_G(v1);
2197 			hp_count = HP_COUNT_G(v1);
2198 		} else {
2199 			lp_count = LP_COUNT_T5_G(v1);
2200 			hp_count = HP_COUNT_T5_G(v2);
2201 		}
2202 
2203 		if (lp_count == 0 && hp_count == 0)
2204 			break;
2205 		set_current_state(TASK_UNINTERRUPTIBLE);
2206 		schedule_timeout(usecs_to_jiffies(usecs));
2207 	} while (1);
2208 }
2209 
2210 static void disable_txq_db(struct sge_txq *q)
2211 {
2212 	unsigned long flags;
2213 
2214 	spin_lock_irqsave(&q->db_lock, flags);
2215 	q->db_disabled = 1;
2216 	spin_unlock_irqrestore(&q->db_lock, flags);
2217 }
2218 
2219 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2220 {
2221 	spin_lock_irq(&q->db_lock);
2222 	if (q->db_pidx_inc) {
2223 		/* Make sure that all writes to the TX descriptors
2224 		 * are committed before we tell HW about them.
2225 		 */
2226 		wmb();
2227 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2228 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2229 		q->db_pidx_inc = 0;
2230 	}
2231 	q->db_disabled = 0;
2232 	spin_unlock_irq(&q->db_lock);
2233 }
2234 
2235 static void disable_dbs(struct adapter *adap)
2236 {
2237 	int i;
2238 
2239 	for_each_ethrxq(&adap->sge, i)
2240 		disable_txq_db(&adap->sge.ethtxq[i].q);
2241 	for_each_iscsirxq(&adap->sge, i)
2242 		disable_txq_db(&adap->sge.ofldtxq[i].q);
2243 	for_each_port(adap, i)
2244 		disable_txq_db(&adap->sge.ctrlq[i].q);
2245 }
2246 
2247 static void enable_dbs(struct adapter *adap)
2248 {
2249 	int i;
2250 
2251 	for_each_ethrxq(&adap->sge, i)
2252 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2253 	for_each_iscsirxq(&adap->sge, i)
2254 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2255 	for_each_port(adap, i)
2256 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2257 }
2258 
2259 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2260 {
2261 	if (adap->uld_handle[CXGB4_ULD_RDMA])
2262 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2263 				cmd);
2264 }
2265 
2266 static void process_db_full(struct work_struct *work)
2267 {
2268 	struct adapter *adap;
2269 
2270 	adap = container_of(work, struct adapter, db_full_task);
2271 
2272 	drain_db_fifo(adap, dbfifo_drain_delay);
2273 	enable_dbs(adap);
2274 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2275 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2276 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2277 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2278 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2279 	else
2280 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2281 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2282 }
2283 
2284 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2285 {
2286 	u16 hw_pidx, hw_cidx;
2287 	int ret;
2288 
2289 	spin_lock_irq(&q->db_lock);
2290 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2291 	if (ret)
2292 		goto out;
2293 	if (q->db_pidx != hw_pidx) {
2294 		u16 delta;
2295 		u32 val;
2296 
2297 		if (q->db_pidx >= hw_pidx)
2298 			delta = q->db_pidx - hw_pidx;
2299 		else
2300 			delta = q->size - hw_pidx + q->db_pidx;
2301 
2302 		if (is_t4(adap->params.chip))
2303 			val = PIDX_V(delta);
2304 		else
2305 			val = PIDX_T5_V(delta);
2306 		wmb();
2307 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2308 			     QID_V(q->cntxt_id) | val);
2309 	}
2310 out:
2311 	q->db_disabled = 0;
2312 	q->db_pidx_inc = 0;
2313 	spin_unlock_irq(&q->db_lock);
2314 	if (ret)
2315 		CH_WARN(adap, "DB drop recovery failed.\n");
2316 }
2317 static void recover_all_queues(struct adapter *adap)
2318 {
2319 	int i;
2320 
2321 	for_each_ethrxq(&adap->sge, i)
2322 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2323 	for_each_iscsirxq(&adap->sge, i)
2324 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2325 	for_each_port(adap, i)
2326 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2327 }
2328 
2329 static void process_db_drop(struct work_struct *work)
2330 {
2331 	struct adapter *adap;
2332 
2333 	adap = container_of(work, struct adapter, db_drop_task);
2334 
2335 	if (is_t4(adap->params.chip)) {
2336 		drain_db_fifo(adap, dbfifo_drain_delay);
2337 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2338 		drain_db_fifo(adap, dbfifo_drain_delay);
2339 		recover_all_queues(adap);
2340 		drain_db_fifo(adap, dbfifo_drain_delay);
2341 		enable_dbs(adap);
2342 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2343 	} else if (is_t5(adap->params.chip)) {
2344 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2345 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2346 		u16 pidx_inc = dropped_db & 0x1fff;
2347 		u64 bar2_qoffset;
2348 		unsigned int bar2_qid;
2349 		int ret;
2350 
2351 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2352 					0, &bar2_qoffset, &bar2_qid);
2353 		if (ret)
2354 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2355 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2356 		else
2357 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2358 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2359 
2360 		/* Re-enable BAR2 WC */
2361 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2362 	}
2363 
2364 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2365 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2366 }
2367 
2368 void t4_db_full(struct adapter *adap)
2369 {
2370 	if (is_t4(adap->params.chip)) {
2371 		disable_dbs(adap);
2372 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2373 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2374 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2375 		queue_work(adap->workq, &adap->db_full_task);
2376 	}
2377 }
2378 
2379 void t4_db_dropped(struct adapter *adap)
2380 {
2381 	if (is_t4(adap->params.chip)) {
2382 		disable_dbs(adap);
2383 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2384 	}
2385 	queue_work(adap->workq, &adap->db_drop_task);
2386 }
2387 
2388 static void uld_attach(struct adapter *adap, unsigned int uld)
2389 {
2390 	void *handle;
2391 	struct cxgb4_lld_info lli;
2392 	unsigned short i;
2393 
2394 	lli.pdev = adap->pdev;
2395 	lli.pf = adap->pf;
2396 	lli.l2t = adap->l2t;
2397 	lli.tids = &adap->tids;
2398 	lli.ports = adap->port;
2399 	lli.vr = &adap->vres;
2400 	lli.mtus = adap->params.mtus;
2401 	if (uld == CXGB4_ULD_RDMA) {
2402 		lli.rxq_ids = adap->sge.rdma_rxq;
2403 		lli.ciq_ids = adap->sge.rdma_ciq;
2404 		lli.nrxq = adap->sge.rdmaqs;
2405 		lli.nciq = adap->sge.rdmaciqs;
2406 	} else if (uld == CXGB4_ULD_ISCSI) {
2407 		lli.rxq_ids = adap->sge.iscsi_rxq;
2408 		lli.nrxq = adap->sge.iscsiqsets;
2409 	}
2410 	lli.ntxq = adap->sge.iscsiqsets;
2411 	lli.nchan = adap->params.nports;
2412 	lli.nports = adap->params.nports;
2413 	lli.wr_cred = adap->params.ofldq_wr_cred;
2414 	lli.adapter_type = adap->params.chip;
2415 	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2416 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2417 	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2418 	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2419 	lli.filt_mode = adap->params.tp.vlan_pri_map;
2420 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2421 	for (i = 0; i < NCHAN; i++)
2422 		lli.tx_modq[i] = i;
2423 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2424 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2425 	lli.fw_vers = adap->params.fw_vers;
2426 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2427 	lli.sge_ingpadboundary = adap->sge.fl_align;
2428 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2429 	lli.sge_pktshift = adap->sge.pktshift;
2430 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2431 	lli.max_ordird_qp = adap->params.max_ordird_qp;
2432 	lli.max_ird_adapter = adap->params.max_ird_adapter;
2433 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2434 	lli.nodeid = dev_to_node(adap->pdev_dev);
2435 
2436 	handle = ulds[uld].add(&lli);
2437 	if (IS_ERR(handle)) {
2438 		dev_warn(adap->pdev_dev,
2439 			 "could not attach to the %s driver, error %ld\n",
2440 			 uld_str[uld], PTR_ERR(handle));
2441 		return;
2442 	}
2443 
2444 	adap->uld_handle[uld] = handle;
2445 
2446 	if (!netevent_registered) {
2447 		register_netevent_notifier(&cxgb4_netevent_nb);
2448 		netevent_registered = true;
2449 	}
2450 
2451 	if (adap->flags & FULL_INIT_DONE)
2452 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2453 }
2454 
2455 static void attach_ulds(struct adapter *adap)
2456 {
2457 	unsigned int i;
2458 
2459 	spin_lock(&adap_rcu_lock);
2460 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2461 	spin_unlock(&adap_rcu_lock);
2462 
2463 	mutex_lock(&uld_mutex);
2464 	list_add_tail(&adap->list_node, &adapter_list);
2465 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2466 		if (ulds[i].add)
2467 			uld_attach(adap, i);
2468 	mutex_unlock(&uld_mutex);
2469 }
2470 
2471 static void detach_ulds(struct adapter *adap)
2472 {
2473 	unsigned int i;
2474 
2475 	mutex_lock(&uld_mutex);
2476 	list_del(&adap->list_node);
2477 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2478 		if (adap->uld_handle[i]) {
2479 			ulds[i].state_change(adap->uld_handle[i],
2480 					     CXGB4_STATE_DETACH);
2481 			adap->uld_handle[i] = NULL;
2482 		}
2483 	if (netevent_registered && list_empty(&adapter_list)) {
2484 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2485 		netevent_registered = false;
2486 	}
2487 	mutex_unlock(&uld_mutex);
2488 
2489 	spin_lock(&adap_rcu_lock);
2490 	list_del_rcu(&adap->rcu_node);
2491 	spin_unlock(&adap_rcu_lock);
2492 }
2493 
2494 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2495 {
2496 	unsigned int i;
2497 
2498 	mutex_lock(&uld_mutex);
2499 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2500 		if (adap->uld_handle[i])
2501 			ulds[i].state_change(adap->uld_handle[i], new_state);
2502 	mutex_unlock(&uld_mutex);
2503 }
2504 
2505 /**
2506  *	cxgb4_register_uld - register an upper-layer driver
2507  *	@type: the ULD type
2508  *	@p: the ULD methods
2509  *
2510  *	Registers an upper-layer driver with this driver and notifies the ULD
2511  *	about any presently available devices that support its type.  Returns
2512  *	%-EBUSY if a ULD of the same type is already registered.
2513  */
2514 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2515 {
2516 	int ret = 0;
2517 	struct adapter *adap;
2518 
2519 	if (type >= CXGB4_ULD_MAX)
2520 		return -EINVAL;
2521 	mutex_lock(&uld_mutex);
2522 	if (ulds[type].add) {
2523 		ret = -EBUSY;
2524 		goto out;
2525 	}
2526 	ulds[type] = *p;
2527 	list_for_each_entry(adap, &adapter_list, list_node)
2528 		uld_attach(adap, type);
2529 out:	mutex_unlock(&uld_mutex);
2530 	return ret;
2531 }
2532 EXPORT_SYMBOL(cxgb4_register_uld);
2533 
2534 /**
2535  *	cxgb4_unregister_uld - unregister an upper-layer driver
2536  *	@type: the ULD type
2537  *
2538  *	Unregisters an existing upper-layer driver.
2539  */
2540 int cxgb4_unregister_uld(enum cxgb4_uld type)
2541 {
2542 	struct adapter *adap;
2543 
2544 	if (type >= CXGB4_ULD_MAX)
2545 		return -EINVAL;
2546 	mutex_lock(&uld_mutex);
2547 	list_for_each_entry(adap, &adapter_list, list_node)
2548 		adap->uld_handle[type] = NULL;
2549 	ulds[type].add = NULL;
2550 	mutex_unlock(&uld_mutex);
2551 	return 0;
2552 }
2553 EXPORT_SYMBOL(cxgb4_unregister_uld);
2554 
2555 #if IS_ENABLED(CONFIG_IPV6)
2556 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2557 				   unsigned long event, void *data)
2558 {
2559 	struct inet6_ifaddr *ifa = data;
2560 	struct net_device *event_dev = ifa->idev->dev;
2561 	const struct device *parent = NULL;
2562 #if IS_ENABLED(CONFIG_BONDING)
2563 	struct adapter *adap;
2564 #endif
2565 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2566 		event_dev = vlan_dev_real_dev(event_dev);
2567 #if IS_ENABLED(CONFIG_BONDING)
2568 	if (event_dev->flags & IFF_MASTER) {
2569 		list_for_each_entry(adap, &adapter_list, list_node) {
2570 			switch (event) {
2571 			case NETDEV_UP:
2572 				cxgb4_clip_get(adap->port[0],
2573 					       (const u32 *)ifa, 1);
2574 				break;
2575 			case NETDEV_DOWN:
2576 				cxgb4_clip_release(adap->port[0],
2577 						   (const u32 *)ifa, 1);
2578 				break;
2579 			default:
2580 				break;
2581 			}
2582 		}
2583 		return NOTIFY_OK;
2584 	}
2585 #endif
2586 
2587 	if (event_dev)
2588 		parent = event_dev->dev.parent;
2589 
2590 	if (parent && parent->driver == &cxgb4_driver.driver) {
2591 		switch (event) {
2592 		case NETDEV_UP:
2593 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2594 			break;
2595 		case NETDEV_DOWN:
2596 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2597 			break;
2598 		default:
2599 			break;
2600 		}
2601 	}
2602 	return NOTIFY_OK;
2603 }
2604 
2605 static bool inet6addr_registered;
2606 static struct notifier_block cxgb4_inet6addr_notifier = {
2607 	.notifier_call = cxgb4_inet6addr_handler
2608 };
2609 
2610 static void update_clip(const struct adapter *adap)
2611 {
2612 	int i;
2613 	struct net_device *dev;
2614 	int ret;
2615 
2616 	rcu_read_lock();
2617 
2618 	for (i = 0; i < MAX_NPORTS; i++) {
2619 		dev = adap->port[i];
2620 		ret = 0;
2621 
2622 		if (dev)
2623 			ret = cxgb4_update_root_dev_clip(dev);
2624 
2625 		if (ret < 0)
2626 			break;
2627 	}
2628 	rcu_read_unlock();
2629 }
2630 #endif /* IS_ENABLED(CONFIG_IPV6) */
2631 
2632 /**
2633  *	cxgb_up - enable the adapter
2634  *	@adap: adapter being enabled
2635  *
2636  *	Called when the first port is enabled, this function performs the
2637  *	actions necessary to make an adapter operational, such as completing
2638  *	the initialization of HW modules, and enabling interrupts.
2639  *
2640  *	Must be called with the rtnl lock held.
2641  */
2642 static int cxgb_up(struct adapter *adap)
2643 {
2644 	int err;
2645 
2646 	err = setup_sge_queues(adap);
2647 	if (err)
2648 		goto out;
2649 	err = setup_rss(adap);
2650 	if (err)
2651 		goto freeq;
2652 
2653 	if (adap->flags & USING_MSIX) {
2654 		name_msix_vecs(adap);
2655 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2656 				  adap->msix_info[0].desc, adap);
2657 		if (err)
2658 			goto irq_err;
2659 
2660 		err = request_msix_queue_irqs(adap);
2661 		if (err) {
2662 			free_irq(adap->msix_info[0].vec, adap);
2663 			goto irq_err;
2664 		}
2665 	} else {
2666 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2667 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2668 				  adap->port[0]->name, adap);
2669 		if (err)
2670 			goto irq_err;
2671 	}
2672 	enable_rx(adap);
2673 	t4_sge_start(adap);
2674 	t4_intr_enable(adap);
2675 	adap->flags |= FULL_INIT_DONE;
2676 	notify_ulds(adap, CXGB4_STATE_UP);
2677 #if IS_ENABLED(CONFIG_IPV6)
2678 	update_clip(adap);
2679 #endif
2680  out:
2681 	return err;
2682  irq_err:
2683 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2684  freeq:
2685 	t4_free_sge_resources(adap);
2686 	goto out;
2687 }
2688 
2689 static void cxgb_down(struct adapter *adapter)
2690 {
2691 	cancel_work_sync(&adapter->tid_release_task);
2692 	cancel_work_sync(&adapter->db_full_task);
2693 	cancel_work_sync(&adapter->db_drop_task);
2694 	adapter->tid_release_task_busy = false;
2695 	adapter->tid_release_head = NULL;
2696 
2697 	t4_sge_stop(adapter);
2698 	t4_free_sge_resources(adapter);
2699 	adapter->flags &= ~FULL_INIT_DONE;
2700 }
2701 
2702 /*
2703  * net_device operations
2704  */
2705 static int cxgb_open(struct net_device *dev)
2706 {
2707 	int err;
2708 	struct port_info *pi = netdev_priv(dev);
2709 	struct adapter *adapter = pi->adapter;
2710 
2711 	netif_carrier_off(dev);
2712 
2713 	if (!(adapter->flags & FULL_INIT_DONE)) {
2714 		err = cxgb_up(adapter);
2715 		if (err < 0)
2716 			return err;
2717 	}
2718 
2719 	err = link_start(dev);
2720 	if (!err)
2721 		netif_tx_start_all_queues(dev);
2722 	return err;
2723 }
2724 
2725 static int cxgb_close(struct net_device *dev)
2726 {
2727 	struct port_info *pi = netdev_priv(dev);
2728 	struct adapter *adapter = pi->adapter;
2729 
2730 	netif_tx_stop_all_queues(dev);
2731 	netif_carrier_off(dev);
2732 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2733 }
2734 
2735 /* Return an error number if the indicated filter isn't writable ...
2736  */
2737 static int writable_filter(struct filter_entry *f)
2738 {
2739 	if (f->locked)
2740 		return -EPERM;
2741 	if (f->pending)
2742 		return -EBUSY;
2743 
2744 	return 0;
2745 }
2746 
2747 /* Delete the filter at the specified index (if valid).  The checks for all
2748  * the common problems with doing this like the filter being locked, currently
2749  * pending in another operation, etc.
2750  */
2751 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2752 {
2753 	struct filter_entry *f;
2754 	int ret;
2755 
2756 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2757 		return -EINVAL;
2758 
2759 	f = &adapter->tids.ftid_tab[fidx];
2760 	ret = writable_filter(f);
2761 	if (ret)
2762 		return ret;
2763 	if (f->valid)
2764 		return del_filter_wr(adapter, fidx);
2765 
2766 	return 0;
2767 }
2768 
2769 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2770 		__be32 sip, __be16 sport, __be16 vlan,
2771 		unsigned int queue, unsigned char port, unsigned char mask)
2772 {
2773 	int ret;
2774 	struct filter_entry *f;
2775 	struct adapter *adap;
2776 	int i;
2777 	u8 *val;
2778 
2779 	adap = netdev2adap(dev);
2780 
2781 	/* Adjust stid to correct filter index */
2782 	stid -= adap->tids.sftid_base;
2783 	stid += adap->tids.nftids;
2784 
2785 	/* Check to make sure the filter requested is writable ...
2786 	 */
2787 	f = &adap->tids.ftid_tab[stid];
2788 	ret = writable_filter(f);
2789 	if (ret)
2790 		return ret;
2791 
2792 	/* Clear out any old resources being used by the filter before
2793 	 * we start constructing the new filter.
2794 	 */
2795 	if (f->valid)
2796 		clear_filter(adap, f);
2797 
2798 	/* Clear out filter specifications */
2799 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2800 	f->fs.val.lport = cpu_to_be16(sport);
2801 	f->fs.mask.lport  = ~0;
2802 	val = (u8 *)&sip;
2803 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2804 		for (i = 0; i < 4; i++) {
2805 			f->fs.val.lip[i] = val[i];
2806 			f->fs.mask.lip[i] = ~0;
2807 		}
2808 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2809 			f->fs.val.iport = port;
2810 			f->fs.mask.iport = mask;
2811 		}
2812 	}
2813 
2814 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2815 		f->fs.val.proto = IPPROTO_TCP;
2816 		f->fs.mask.proto = ~0;
2817 	}
2818 
2819 	f->fs.dirsteer = 1;
2820 	f->fs.iq = queue;
2821 	/* Mark filter as locked */
2822 	f->locked = 1;
2823 	f->fs.rpttid = 1;
2824 
2825 	ret = set_filter_wr(adap, stid);
2826 	if (ret) {
2827 		clear_filter(adap, f);
2828 		return ret;
2829 	}
2830 
2831 	return 0;
2832 }
2833 EXPORT_SYMBOL(cxgb4_create_server_filter);
2834 
2835 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2836 		unsigned int queue, bool ipv6)
2837 {
2838 	int ret;
2839 	struct filter_entry *f;
2840 	struct adapter *adap;
2841 
2842 	adap = netdev2adap(dev);
2843 
2844 	/* Adjust stid to correct filter index */
2845 	stid -= adap->tids.sftid_base;
2846 	stid += adap->tids.nftids;
2847 
2848 	f = &adap->tids.ftid_tab[stid];
2849 	/* Unlock the filter */
2850 	f->locked = 0;
2851 
2852 	ret = delete_filter(adap, stid);
2853 	if (ret)
2854 		return ret;
2855 
2856 	return 0;
2857 }
2858 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2859 
2860 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2861 						struct rtnl_link_stats64 *ns)
2862 {
2863 	struct port_stats stats;
2864 	struct port_info *p = netdev_priv(dev);
2865 	struct adapter *adapter = p->adapter;
2866 
2867 	/* Block retrieving statistics during EEH error
2868 	 * recovery. Otherwise, the recovery might fail
2869 	 * and the PCI device will be removed permanently
2870 	 */
2871 	spin_lock(&adapter->stats_lock);
2872 	if (!netif_device_present(dev)) {
2873 		spin_unlock(&adapter->stats_lock);
2874 		return ns;
2875 	}
2876 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2877 				 &p->stats_base);
2878 	spin_unlock(&adapter->stats_lock);
2879 
2880 	ns->tx_bytes   = stats.tx_octets;
2881 	ns->tx_packets = stats.tx_frames;
2882 	ns->rx_bytes   = stats.rx_octets;
2883 	ns->rx_packets = stats.rx_frames;
2884 	ns->multicast  = stats.rx_mcast_frames;
2885 
2886 	/* detailed rx_errors */
2887 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2888 			       stats.rx_runt;
2889 	ns->rx_over_errors   = 0;
2890 	ns->rx_crc_errors    = stats.rx_fcs_err;
2891 	ns->rx_frame_errors  = stats.rx_symbol_err;
2892 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2893 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2894 			       stats.rx_trunc0 + stats.rx_trunc1 +
2895 			       stats.rx_trunc2 + stats.rx_trunc3;
2896 	ns->rx_missed_errors = 0;
2897 
2898 	/* detailed tx_errors */
2899 	ns->tx_aborted_errors   = 0;
2900 	ns->tx_carrier_errors   = 0;
2901 	ns->tx_fifo_errors      = 0;
2902 	ns->tx_heartbeat_errors = 0;
2903 	ns->tx_window_errors    = 0;
2904 
2905 	ns->tx_errors = stats.tx_error_frames;
2906 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2907 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2908 	return ns;
2909 }
2910 
2911 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2912 {
2913 	unsigned int mbox;
2914 	int ret = 0, prtad, devad;
2915 	struct port_info *pi = netdev_priv(dev);
2916 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2917 
2918 	switch (cmd) {
2919 	case SIOCGMIIPHY:
2920 		if (pi->mdio_addr < 0)
2921 			return -EOPNOTSUPP;
2922 		data->phy_id = pi->mdio_addr;
2923 		break;
2924 	case SIOCGMIIREG:
2925 	case SIOCSMIIREG:
2926 		if (mdio_phy_id_is_c45(data->phy_id)) {
2927 			prtad = mdio_phy_id_prtad(data->phy_id);
2928 			devad = mdio_phy_id_devad(data->phy_id);
2929 		} else if (data->phy_id < 32) {
2930 			prtad = data->phy_id;
2931 			devad = 0;
2932 			data->reg_num &= 0x1f;
2933 		} else
2934 			return -EINVAL;
2935 
2936 		mbox = pi->adapter->pf;
2937 		if (cmd == SIOCGMIIREG)
2938 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2939 					 data->reg_num, &data->val_out);
2940 		else
2941 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2942 					 data->reg_num, data->val_in);
2943 		break;
2944 	case SIOCGHWTSTAMP:
2945 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2946 				    sizeof(pi->tstamp_config)) ?
2947 			-EFAULT : 0;
2948 	case SIOCSHWTSTAMP:
2949 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2950 				   sizeof(pi->tstamp_config)))
2951 			return -EFAULT;
2952 
2953 		switch (pi->tstamp_config.rx_filter) {
2954 		case HWTSTAMP_FILTER_NONE:
2955 			pi->rxtstamp = false;
2956 			break;
2957 		case HWTSTAMP_FILTER_ALL:
2958 			pi->rxtstamp = true;
2959 			break;
2960 		default:
2961 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2962 			return -ERANGE;
2963 		}
2964 
2965 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2966 				    sizeof(pi->tstamp_config)) ?
2967 			-EFAULT : 0;
2968 	default:
2969 		return -EOPNOTSUPP;
2970 	}
2971 	return ret;
2972 }
2973 
2974 static void cxgb_set_rxmode(struct net_device *dev)
2975 {
2976 	/* unfortunately we can't return errors to the stack */
2977 	set_rxmode(dev, -1, false);
2978 }
2979 
2980 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2981 {
2982 	int ret;
2983 	struct port_info *pi = netdev_priv(dev);
2984 
2985 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2986 		return -EINVAL;
2987 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2988 			    -1, -1, -1, true);
2989 	if (!ret)
2990 		dev->mtu = new_mtu;
2991 	return ret;
2992 }
2993 
2994 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2995 {
2996 	int ret;
2997 	struct sockaddr *addr = p;
2998 	struct port_info *pi = netdev_priv(dev);
2999 
3000 	if (!is_valid_ether_addr(addr->sa_data))
3001 		return -EADDRNOTAVAIL;
3002 
3003 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3004 			    pi->xact_addr_filt, addr->sa_data, true, true);
3005 	if (ret < 0)
3006 		return ret;
3007 
3008 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3009 	pi->xact_addr_filt = ret;
3010 	return 0;
3011 }
3012 
3013 #ifdef CONFIG_NET_POLL_CONTROLLER
3014 static void cxgb_netpoll(struct net_device *dev)
3015 {
3016 	struct port_info *pi = netdev_priv(dev);
3017 	struct adapter *adap = pi->adapter;
3018 
3019 	if (adap->flags & USING_MSIX) {
3020 		int i;
3021 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3022 
3023 		for (i = pi->nqsets; i; i--, rx++)
3024 			t4_sge_intr_msix(0, &rx->rspq);
3025 	} else
3026 		t4_intr_handler(adap)(0, adap);
3027 }
3028 #endif
3029 
3030 static const struct net_device_ops cxgb4_netdev_ops = {
3031 	.ndo_open             = cxgb_open,
3032 	.ndo_stop             = cxgb_close,
3033 	.ndo_start_xmit       = t4_eth_xmit,
3034 	.ndo_select_queue     =	cxgb_select_queue,
3035 	.ndo_get_stats64      = cxgb_get_stats,
3036 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3037 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3038 	.ndo_set_features     = cxgb_set_features,
3039 	.ndo_validate_addr    = eth_validate_addr,
3040 	.ndo_do_ioctl         = cxgb_ioctl,
3041 	.ndo_change_mtu       = cxgb_change_mtu,
3042 #ifdef CONFIG_NET_POLL_CONTROLLER
3043 	.ndo_poll_controller  = cxgb_netpoll,
3044 #endif
3045 #ifdef CONFIG_CHELSIO_T4_FCOE
3046 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3047 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3048 #endif /* CONFIG_CHELSIO_T4_FCOE */
3049 #ifdef CONFIG_NET_RX_BUSY_POLL
3050 	.ndo_busy_poll        = cxgb_busy_poll,
3051 #endif
3052 
3053 };
3054 
3055 void t4_fatal_err(struct adapter *adap)
3056 {
3057 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3058 	t4_intr_disable(adap);
3059 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3060 }
3061 
3062 static void setup_memwin(struct adapter *adap)
3063 {
3064 	u32 nic_win_base = t4_get_util_window(adap);
3065 
3066 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3067 }
3068 
3069 static void setup_memwin_rdma(struct adapter *adap)
3070 {
3071 	if (adap->vres.ocq.size) {
3072 		u32 start;
3073 		unsigned int sz_kb;
3074 
3075 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3076 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3077 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3078 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3079 		t4_write_reg(adap,
3080 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3081 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3082 		t4_write_reg(adap,
3083 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3084 			     adap->vres.ocq.start);
3085 		t4_read_reg(adap,
3086 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3087 	}
3088 }
3089 
3090 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3091 {
3092 	u32 v;
3093 	int ret;
3094 
3095 	/* get device capabilities */
3096 	memset(c, 0, sizeof(*c));
3097 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3098 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3099 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3100 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3101 	if (ret < 0)
3102 		return ret;
3103 
3104 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3105 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3106 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3107 	if (ret < 0)
3108 		return ret;
3109 
3110 	ret = t4_config_glbl_rss(adap, adap->pf,
3111 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3112 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3113 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3114 	if (ret < 0)
3115 		return ret;
3116 
3117 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3118 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3119 			  FW_CMD_CAP_PF);
3120 	if (ret < 0)
3121 		return ret;
3122 
3123 	t4_sge_init(adap);
3124 
3125 	/* tweak some settings */
3126 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3127 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3128 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3129 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3130 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3131 
3132 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3133 	adap->params.tp.tx_modq_map = 0xE4;
3134 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3135 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3136 
3137 	/* associate each Tx modulation queue with consecutive Tx channels */
3138 	v = 0x84218421;
3139 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3140 			  &v, 1, TP_TX_SCHED_HDR_A);
3141 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3142 			  &v, 1, TP_TX_SCHED_FIFO_A);
3143 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3144 			  &v, 1, TP_TX_SCHED_PCMD_A);
3145 
3146 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3147 	if (is_offload(adap)) {
3148 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3149 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3150 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3151 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3152 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3153 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3154 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3155 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3156 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3157 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3158 	}
3159 
3160 	/* get basic stuff going */
3161 	return t4_early_init(adap, adap->pf);
3162 }
3163 
3164 /*
3165  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3166  */
3167 #define MAX_ATIDS 8192U
3168 
3169 /*
3170  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3171  *
3172  * If the firmware we're dealing with has Configuration File support, then
3173  * we use that to perform all configuration
3174  */
3175 
3176 /*
3177  * Tweak configuration based on module parameters, etc.  Most of these have
3178  * defaults assigned to them by Firmware Configuration Files (if we're using
3179  * them) but need to be explicitly set if we're using hard-coded
3180  * initialization.  But even in the case of using Firmware Configuration
3181  * Files, we'd like to expose the ability to change these via module
3182  * parameters so these are essentially common tweaks/settings for
3183  * Configuration Files and hard-coded initialization ...
3184  */
3185 static int adap_init0_tweaks(struct adapter *adapter)
3186 {
3187 	/*
3188 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3189 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3190 	 * 64B Cache Line Size ...
3191 	 */
3192 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3193 
3194 	/*
3195 	 * Process module parameters which affect early initialization.
3196 	 */
3197 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3198 		dev_err(&adapter->pdev->dev,
3199 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3200 			rx_dma_offset);
3201 		rx_dma_offset = 2;
3202 	}
3203 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3204 			 PKTSHIFT_V(PKTSHIFT_M),
3205 			 PKTSHIFT_V(rx_dma_offset));
3206 
3207 	/*
3208 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3209 	 * adds the pseudo header itself.
3210 	 */
3211 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3212 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3213 
3214 	return 0;
3215 }
3216 
3217 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3218  * unto themselves and they contain their own firmware to perform their
3219  * tasks ...
3220  */
3221 static int phy_aq1202_version(const u8 *phy_fw_data,
3222 			      size_t phy_fw_size)
3223 {
3224 	int offset;
3225 
3226 	/* At offset 0x8 you're looking for the primary image's
3227 	 * starting offset which is 3 Bytes wide
3228 	 *
3229 	 * At offset 0xa of the primary image, you look for the offset
3230 	 * of the DRAM segment which is 3 Bytes wide.
3231 	 *
3232 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3233 	 * wide
3234 	 */
3235 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3236 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3237 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3238 
3239 	offset = le24(phy_fw_data + 0x8) << 12;
3240 	offset = le24(phy_fw_data + offset + 0xa);
3241 	return be16(phy_fw_data + offset + 0x27e);
3242 
3243 	#undef be16
3244 	#undef le16
3245 	#undef le24
3246 }
3247 
3248 static struct info_10gbt_phy_fw {
3249 	unsigned int phy_fw_id;		/* PCI Device ID */
3250 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3251 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3252 	int phy_flash;			/* Has FLASH for PHY Firmware */
3253 } phy_info_array[] = {
3254 	{
3255 		PHY_AQ1202_DEVICEID,
3256 		PHY_AQ1202_FIRMWARE,
3257 		phy_aq1202_version,
3258 		1,
3259 	},
3260 	{
3261 		PHY_BCM84834_DEVICEID,
3262 		PHY_BCM84834_FIRMWARE,
3263 		NULL,
3264 		0,
3265 	},
3266 	{ 0, NULL, NULL },
3267 };
3268 
3269 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3270 {
3271 	int i;
3272 
3273 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3274 		if (phy_info_array[i].phy_fw_id == devid)
3275 			return &phy_info_array[i];
3276 	}
3277 	return NULL;
3278 }
3279 
3280 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3281  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3282  * we return a negative error number.  If we transfer new firmware we return 1
3283  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3284  */
3285 static int adap_init0_phy(struct adapter *adap)
3286 {
3287 	const struct firmware *phyf;
3288 	int ret;
3289 	struct info_10gbt_phy_fw *phy_info;
3290 
3291 	/* Use the device ID to determine which PHY file to flash.
3292 	 */
3293 	phy_info = find_phy_info(adap->pdev->device);
3294 	if (!phy_info) {
3295 		dev_warn(adap->pdev_dev,
3296 			 "No PHY Firmware file found for this PHY\n");
3297 		return -EOPNOTSUPP;
3298 	}
3299 
3300 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3301 	 * use that. The adapter firmware provides us with a memory buffer
3302 	 * where we can load a PHY firmware file from the host if we want to
3303 	 * override the PHY firmware File in flash.
3304 	 */
3305 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3306 				      adap->pdev_dev);
3307 	if (ret < 0) {
3308 		/* For adapters without FLASH attached to PHY for their
3309 		 * firmware, it's obviously a fatal error if we can't get the
3310 		 * firmware to the adapter.  For adapters with PHY firmware
3311 		 * FLASH storage, it's worth a warning if we can't find the
3312 		 * PHY Firmware but we'll neuter the error ...
3313 		 */
3314 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3315 			"/lib/firmware/%s, error %d\n",
3316 			phy_info->phy_fw_file, -ret);
3317 		if (phy_info->phy_flash) {
3318 			int cur_phy_fw_ver = 0;
3319 
3320 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3321 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3322 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3323 			ret = 0;
3324 		}
3325 
3326 		return ret;
3327 	}
3328 
3329 	/* Load PHY Firmware onto adapter.
3330 	 */
3331 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3332 			     phy_info->phy_fw_version,
3333 			     (u8 *)phyf->data, phyf->size);
3334 	if (ret < 0)
3335 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3336 			-ret);
3337 	else if (ret > 0) {
3338 		int new_phy_fw_ver = 0;
3339 
3340 		if (phy_info->phy_fw_version)
3341 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3342 								  phyf->size);
3343 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3344 			 "Firmware /lib/firmware/%s, version %#x\n",
3345 			 phy_info->phy_fw_file, new_phy_fw_ver);
3346 	}
3347 
3348 	release_firmware(phyf);
3349 
3350 	return ret;
3351 }
3352 
3353 /*
3354  * Attempt to initialize the adapter via a Firmware Configuration File.
3355  */
3356 static int adap_init0_config(struct adapter *adapter, int reset)
3357 {
3358 	struct fw_caps_config_cmd caps_cmd;
3359 	const struct firmware *cf;
3360 	unsigned long mtype = 0, maddr = 0;
3361 	u32 finiver, finicsum, cfcsum;
3362 	int ret;
3363 	int config_issued = 0;
3364 	char *fw_config_file, fw_config_file_path[256];
3365 	char *config_name = NULL;
3366 
3367 	/*
3368 	 * Reset device if necessary.
3369 	 */
3370 	if (reset) {
3371 		ret = t4_fw_reset(adapter, adapter->mbox,
3372 				  PIORSTMODE_F | PIORST_F);
3373 		if (ret < 0)
3374 			goto bye;
3375 	}
3376 
3377 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3378 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3379 	 * to be performed after any global adapter RESET above since some
3380 	 * PHYs only have local RAM copies of the PHY firmware.
3381 	 */
3382 	if (is_10gbt_device(adapter->pdev->device)) {
3383 		ret = adap_init0_phy(adapter);
3384 		if (ret < 0)
3385 			goto bye;
3386 	}
3387 	/*
3388 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3389 	 * then use that.  Otherwise, use the configuration file stored
3390 	 * in the adapter flash ...
3391 	 */
3392 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3393 	case CHELSIO_T4:
3394 		fw_config_file = FW4_CFNAME;
3395 		break;
3396 	case CHELSIO_T5:
3397 		fw_config_file = FW5_CFNAME;
3398 		break;
3399 	case CHELSIO_T6:
3400 		fw_config_file = FW6_CFNAME;
3401 		break;
3402 	default:
3403 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3404 		       adapter->pdev->device);
3405 		ret = -EINVAL;
3406 		goto bye;
3407 	}
3408 
3409 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3410 	if (ret < 0) {
3411 		config_name = "On FLASH";
3412 		mtype = FW_MEMTYPE_CF_FLASH;
3413 		maddr = t4_flash_cfg_addr(adapter);
3414 	} else {
3415 		u32 params[7], val[7];
3416 
3417 		sprintf(fw_config_file_path,
3418 			"/lib/firmware/%s", fw_config_file);
3419 		config_name = fw_config_file_path;
3420 
3421 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3422 			ret = -ENOMEM;
3423 		else {
3424 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3425 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3426 			ret = t4_query_params(adapter, adapter->mbox,
3427 					      adapter->pf, 0, 1, params, val);
3428 			if (ret == 0) {
3429 				/*
3430 				 * For t4_memory_rw() below addresses and
3431 				 * sizes have to be in terms of multiples of 4
3432 				 * bytes.  So, if the Configuration File isn't
3433 				 * a multiple of 4 bytes in length we'll have
3434 				 * to write that out separately since we can't
3435 				 * guarantee that the bytes following the
3436 				 * residual byte in the buffer returned by
3437 				 * request_firmware() are zeroed out ...
3438 				 */
3439 				size_t resid = cf->size & 0x3;
3440 				size_t size = cf->size & ~0x3;
3441 				__be32 *data = (__be32 *)cf->data;
3442 
3443 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3444 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3445 
3446 				spin_lock(&adapter->win0_lock);
3447 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3448 						   size, data, T4_MEMORY_WRITE);
3449 				if (ret == 0 && resid != 0) {
3450 					union {
3451 						__be32 word;
3452 						char buf[4];
3453 					} last;
3454 					int i;
3455 
3456 					last.word = data[size >> 2];
3457 					for (i = resid; i < 4; i++)
3458 						last.buf[i] = 0;
3459 					ret = t4_memory_rw(adapter, 0, mtype,
3460 							   maddr + size,
3461 							   4, &last.word,
3462 							   T4_MEMORY_WRITE);
3463 				}
3464 				spin_unlock(&adapter->win0_lock);
3465 			}
3466 		}
3467 
3468 		release_firmware(cf);
3469 		if (ret)
3470 			goto bye;
3471 	}
3472 
3473 	/*
3474 	 * Issue a Capability Configuration command to the firmware to get it
3475 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3476 	 * because we want the ability to modify various features after we've
3477 	 * processed the configuration file ...
3478 	 */
3479 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3480 	caps_cmd.op_to_write =
3481 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3482 		      FW_CMD_REQUEST_F |
3483 		      FW_CMD_READ_F);
3484 	caps_cmd.cfvalid_to_len16 =
3485 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3486 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3487 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3488 		      FW_LEN16(caps_cmd));
3489 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3490 			 &caps_cmd);
3491 
3492 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3493 	 * Configuration File in FLASH), our last gasp effort is to use the
3494 	 * Firmware Configuration File which is embedded in the firmware.  A
3495 	 * very few early versions of the firmware didn't have one embedded
3496 	 * but we can ignore those.
3497 	 */
3498 	if (ret == -ENOENT) {
3499 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3500 		caps_cmd.op_to_write =
3501 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3502 					FW_CMD_REQUEST_F |
3503 					FW_CMD_READ_F);
3504 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3505 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3506 				sizeof(caps_cmd), &caps_cmd);
3507 		config_name = "Firmware Default";
3508 	}
3509 
3510 	config_issued = 1;
3511 	if (ret < 0)
3512 		goto bye;
3513 
3514 	finiver = ntohl(caps_cmd.finiver);
3515 	finicsum = ntohl(caps_cmd.finicsum);
3516 	cfcsum = ntohl(caps_cmd.cfcsum);
3517 	if (finicsum != cfcsum)
3518 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3519 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3520 			 finicsum, cfcsum);
3521 
3522 	/*
3523 	 * And now tell the firmware to use the configuration we just loaded.
3524 	 */
3525 	caps_cmd.op_to_write =
3526 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3527 		      FW_CMD_REQUEST_F |
3528 		      FW_CMD_WRITE_F);
3529 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3530 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3531 			 NULL);
3532 	if (ret < 0)
3533 		goto bye;
3534 
3535 	/*
3536 	 * Tweak configuration based on system architecture, module
3537 	 * parameters, etc.
3538 	 */
3539 	ret = adap_init0_tweaks(adapter);
3540 	if (ret < 0)
3541 		goto bye;
3542 
3543 	/*
3544 	 * And finally tell the firmware to initialize itself using the
3545 	 * parameters from the Configuration File.
3546 	 */
3547 	ret = t4_fw_initialize(adapter, adapter->mbox);
3548 	if (ret < 0)
3549 		goto bye;
3550 
3551 	/* Emit Firmware Configuration File information and return
3552 	 * successfully.
3553 	 */
3554 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3555 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3556 		 config_name, finiver, cfcsum);
3557 	return 0;
3558 
3559 	/*
3560 	 * Something bad happened.  Return the error ...  (If the "error"
3561 	 * is that there's no Configuration File on the adapter we don't
3562 	 * want to issue a warning since this is fairly common.)
3563 	 */
3564 bye:
3565 	if (config_issued && ret != -ENOENT)
3566 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3567 			 config_name, -ret);
3568 	return ret;
3569 }
3570 
3571 static struct fw_info fw_info_array[] = {
3572 	{
3573 		.chip = CHELSIO_T4,
3574 		.fs_name = FW4_CFNAME,
3575 		.fw_mod_name = FW4_FNAME,
3576 		.fw_hdr = {
3577 			.chip = FW_HDR_CHIP_T4,
3578 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3579 			.intfver_nic = FW_INTFVER(T4, NIC),
3580 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3581 			.intfver_ri = FW_INTFVER(T4, RI),
3582 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3583 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3584 		},
3585 	}, {
3586 		.chip = CHELSIO_T5,
3587 		.fs_name = FW5_CFNAME,
3588 		.fw_mod_name = FW5_FNAME,
3589 		.fw_hdr = {
3590 			.chip = FW_HDR_CHIP_T5,
3591 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3592 			.intfver_nic = FW_INTFVER(T5, NIC),
3593 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3594 			.intfver_ri = FW_INTFVER(T5, RI),
3595 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3596 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3597 		},
3598 	}, {
3599 		.chip = CHELSIO_T6,
3600 		.fs_name = FW6_CFNAME,
3601 		.fw_mod_name = FW6_FNAME,
3602 		.fw_hdr = {
3603 			.chip = FW_HDR_CHIP_T6,
3604 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3605 			.intfver_nic = FW_INTFVER(T6, NIC),
3606 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3607 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3608 			.intfver_ri = FW_INTFVER(T6, RI),
3609 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3610 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3611 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3612 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3613 		},
3614 	}
3615 
3616 };
3617 
3618 static struct fw_info *find_fw_info(int chip)
3619 {
3620 	int i;
3621 
3622 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3623 		if (fw_info_array[i].chip == chip)
3624 			return &fw_info_array[i];
3625 	}
3626 	return NULL;
3627 }
3628 
3629 /*
3630  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3631  */
3632 static int adap_init0(struct adapter *adap)
3633 {
3634 	int ret;
3635 	u32 v, port_vec;
3636 	enum dev_state state;
3637 	u32 params[7], val[7];
3638 	struct fw_caps_config_cmd caps_cmd;
3639 	int reset = 1;
3640 
3641 	/* Grab Firmware Device Log parameters as early as possible so we have
3642 	 * access to it for debugging, etc.
3643 	 */
3644 	ret = t4_init_devlog_params(adap);
3645 	if (ret < 0)
3646 		return ret;
3647 
3648 	/* Contact FW, advertising Master capability */
3649 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3650 	if (ret < 0) {
3651 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3652 			ret);
3653 		return ret;
3654 	}
3655 	if (ret == adap->mbox)
3656 		adap->flags |= MASTER_PF;
3657 
3658 	/*
3659 	 * If we're the Master PF Driver and the device is uninitialized,
3660 	 * then let's consider upgrading the firmware ...  (We always want
3661 	 * to check the firmware version number in order to A. get it for
3662 	 * later reporting and B. to warn if the currently loaded firmware
3663 	 * is excessively mismatched relative to the driver.)
3664 	 */
3665 	t4_get_fw_version(adap, &adap->params.fw_vers);
3666 	t4_get_tp_version(adap, &adap->params.tp_vers);
3667 	ret = t4_check_fw_version(adap);
3668 	/* If firmware is too old (not supported by driver) force an update. */
3669 	if (ret)
3670 		state = DEV_STATE_UNINIT;
3671 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3672 		struct fw_info *fw_info;
3673 		struct fw_hdr *card_fw;
3674 		const struct firmware *fw;
3675 		const u8 *fw_data = NULL;
3676 		unsigned int fw_size = 0;
3677 
3678 		/* This is the firmware whose headers the driver was compiled
3679 		 * against
3680 		 */
3681 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3682 		if (fw_info == NULL) {
3683 			dev_err(adap->pdev_dev,
3684 				"unable to get firmware info for chip %d.\n",
3685 				CHELSIO_CHIP_VERSION(adap->params.chip));
3686 			return -EINVAL;
3687 		}
3688 
3689 		/* allocate memory to read the header of the firmware on the
3690 		 * card
3691 		 */
3692 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3693 
3694 		/* Get FW from from /lib/firmware/ */
3695 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3696 				       adap->pdev_dev);
3697 		if (ret < 0) {
3698 			dev_err(adap->pdev_dev,
3699 				"unable to load firmware image %s, error %d\n",
3700 				fw_info->fw_mod_name, ret);
3701 		} else {
3702 			fw_data = fw->data;
3703 			fw_size = fw->size;
3704 		}
3705 
3706 		/* upgrade FW logic */
3707 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3708 				 state, &reset);
3709 
3710 		/* Cleaning up */
3711 		release_firmware(fw);
3712 		t4_free_mem(card_fw);
3713 
3714 		if (ret < 0)
3715 			goto bye;
3716 	}
3717 
3718 	/*
3719 	 * Grab VPD parameters.  This should be done after we establish a
3720 	 * connection to the firmware since some of the VPD parameters
3721 	 * (notably the Core Clock frequency) are retrieved via requests to
3722 	 * the firmware.  On the other hand, we need these fairly early on
3723 	 * so we do this right after getting ahold of the firmware.
3724 	 */
3725 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3726 	if (ret < 0)
3727 		goto bye;
3728 
3729 	/*
3730 	 * Find out what ports are available to us.  Note that we need to do
3731 	 * this before calling adap_init0_no_config() since it needs nports
3732 	 * and portvec ...
3733 	 */
3734 	v =
3735 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3736 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3737 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3738 	if (ret < 0)
3739 		goto bye;
3740 
3741 	adap->params.nports = hweight32(port_vec);
3742 	adap->params.portvec = port_vec;
3743 
3744 	/* If the firmware is initialized already, emit a simply note to that
3745 	 * effect. Otherwise, it's time to try initializing the adapter.
3746 	 */
3747 	if (state == DEV_STATE_INIT) {
3748 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3749 			 "Adapter already initialized\n",
3750 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3751 	} else {
3752 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3753 			 "Initializing adapter\n");
3754 
3755 		/* Find out whether we're dealing with a version of the
3756 		 * firmware which has configuration file support.
3757 		 */
3758 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3759 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3760 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3761 				      params, val);
3762 
3763 		/* If the firmware doesn't support Configuration Files,
3764 		 * return an error.
3765 		 */
3766 		if (ret < 0) {
3767 			dev_err(adap->pdev_dev, "firmware doesn't support "
3768 				"Firmware Configuration Files\n");
3769 			goto bye;
3770 		}
3771 
3772 		/* The firmware provides us with a memory buffer where we can
3773 		 * load a Configuration File from the host if we want to
3774 		 * override the Configuration File in flash.
3775 		 */
3776 		ret = adap_init0_config(adap, reset);
3777 		if (ret == -ENOENT) {
3778 			dev_err(adap->pdev_dev, "no Configuration File "
3779 				"present on adapter.\n");
3780 			goto bye;
3781 		}
3782 		if (ret < 0) {
3783 			dev_err(adap->pdev_dev, "could not initialize "
3784 				"adapter, error %d\n", -ret);
3785 			goto bye;
3786 		}
3787 	}
3788 
3789 	/* Give the SGE code a chance to pull in anything that it needs ...
3790 	 * Note that this must be called after we retrieve our VPD parameters
3791 	 * in order to know how to convert core ticks to seconds, etc.
3792 	 */
3793 	ret = t4_sge_init(adap);
3794 	if (ret < 0)
3795 		goto bye;
3796 
3797 	if (is_bypass_device(adap->pdev->device))
3798 		adap->params.bypass = 1;
3799 
3800 	/*
3801 	 * Grab some of our basic fundamental operating parameters.
3802 	 */
3803 #define FW_PARAM_DEV(param) \
3804 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3805 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3806 
3807 #define FW_PARAM_PFVF(param) \
3808 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3809 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3810 	FW_PARAMS_PARAM_Y_V(0) | \
3811 	FW_PARAMS_PARAM_Z_V(0)
3812 
3813 	params[0] = FW_PARAM_PFVF(EQ_START);
3814 	params[1] = FW_PARAM_PFVF(L2T_START);
3815 	params[2] = FW_PARAM_PFVF(L2T_END);
3816 	params[3] = FW_PARAM_PFVF(FILTER_START);
3817 	params[4] = FW_PARAM_PFVF(FILTER_END);
3818 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3819 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3820 	if (ret < 0)
3821 		goto bye;
3822 	adap->sge.egr_start = val[0];
3823 	adap->l2t_start = val[1];
3824 	adap->l2t_end = val[2];
3825 	adap->tids.ftid_base = val[3];
3826 	adap->tids.nftids = val[4] - val[3] + 1;
3827 	adap->sge.ingr_start = val[5];
3828 
3829 	/* qids (ingress/egress) returned from firmware can be anywhere
3830 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3831 	 * Hence driver needs to allocate memory for this range to
3832 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3833 	 * in FW_EQ_*_CMD.alloc command.
3834 	 */
3835 	params[0] = FW_PARAM_PFVF(EQ_END);
3836 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3837 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3838 	if (ret < 0)
3839 		goto bye;
3840 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3841 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3842 
3843 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3844 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3845 	if (!adap->sge.egr_map) {
3846 		ret = -ENOMEM;
3847 		goto bye;
3848 	}
3849 
3850 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3851 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3852 	if (!adap->sge.ingr_map) {
3853 		ret = -ENOMEM;
3854 		goto bye;
3855 	}
3856 
3857 	/* Allocate the memory for the vaious egress queue bitmaps
3858 	 * ie starving_fl, txq_maperr and blocked_fl.
3859 	 */
3860 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3861 					sizeof(long), GFP_KERNEL);
3862 	if (!adap->sge.starving_fl) {
3863 		ret = -ENOMEM;
3864 		goto bye;
3865 	}
3866 
3867 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3868 				       sizeof(long), GFP_KERNEL);
3869 	if (!adap->sge.txq_maperr) {
3870 		ret = -ENOMEM;
3871 		goto bye;
3872 	}
3873 
3874 #ifdef CONFIG_DEBUG_FS
3875 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3876 				       sizeof(long), GFP_KERNEL);
3877 	if (!adap->sge.blocked_fl) {
3878 		ret = -ENOMEM;
3879 		goto bye;
3880 	}
3881 #endif
3882 
3883 	params[0] = FW_PARAM_PFVF(CLIP_START);
3884 	params[1] = FW_PARAM_PFVF(CLIP_END);
3885 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3886 	if (ret < 0)
3887 		goto bye;
3888 	adap->clipt_start = val[0];
3889 	adap->clipt_end = val[1];
3890 
3891 	/* query params related to active filter region */
3892 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3893 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3894 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3895 	/* If Active filter size is set we enable establishing
3896 	 * offload connection through firmware work request
3897 	 */
3898 	if ((val[0] != val[1]) && (ret >= 0)) {
3899 		adap->flags |= FW_OFLD_CONN;
3900 		adap->tids.aftid_base = val[0];
3901 		adap->tids.aftid_end = val[1];
3902 	}
3903 
3904 	/* If we're running on newer firmware, let it know that we're
3905 	 * prepared to deal with encapsulated CPL messages.  Older
3906 	 * firmware won't understand this and we'll just get
3907 	 * unencapsulated messages ...
3908 	 */
3909 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3910 	val[0] = 1;
3911 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3912 
3913 	/*
3914 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3915 	 * capability.  Earlier versions of the firmware didn't have the
3916 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3917 	 * permission to use ULPTX MEMWRITE DSGL.
3918 	 */
3919 	if (is_t4(adap->params.chip)) {
3920 		adap->params.ulptx_memwrite_dsgl = false;
3921 	} else {
3922 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3923 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3924 				      1, params, val);
3925 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3926 	}
3927 
3928 	/*
3929 	 * Get device capabilities so we can determine what resources we need
3930 	 * to manage.
3931 	 */
3932 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3933 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3934 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3935 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3936 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3937 			 &caps_cmd);
3938 	if (ret < 0)
3939 		goto bye;
3940 
3941 	if (caps_cmd.ofldcaps) {
3942 		/* query offload-related parameters */
3943 		params[0] = FW_PARAM_DEV(NTID);
3944 		params[1] = FW_PARAM_PFVF(SERVER_START);
3945 		params[2] = FW_PARAM_PFVF(SERVER_END);
3946 		params[3] = FW_PARAM_PFVF(TDDP_START);
3947 		params[4] = FW_PARAM_PFVF(TDDP_END);
3948 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3949 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3950 				      params, val);
3951 		if (ret < 0)
3952 			goto bye;
3953 		adap->tids.ntids = val[0];
3954 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3955 		adap->tids.stid_base = val[1];
3956 		adap->tids.nstids = val[2] - val[1] + 1;
3957 		/*
3958 		 * Setup server filter region. Divide the available filter
3959 		 * region into two parts. Regular filters get 1/3rd and server
3960 		 * filters get 2/3rd part. This is only enabled if workarond
3961 		 * path is enabled.
3962 		 * 1. For regular filters.
3963 		 * 2. Server filter: This are special filters which are used
3964 		 * to redirect SYN packets to offload queue.
3965 		 */
3966 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3967 			adap->tids.sftid_base = adap->tids.ftid_base +
3968 					DIV_ROUND_UP(adap->tids.nftids, 3);
3969 			adap->tids.nsftids = adap->tids.nftids -
3970 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3971 			adap->tids.nftids = adap->tids.sftid_base -
3972 						adap->tids.ftid_base;
3973 		}
3974 		adap->vres.ddp.start = val[3];
3975 		adap->vres.ddp.size = val[4] - val[3] + 1;
3976 		adap->params.ofldq_wr_cred = val[5];
3977 
3978 		adap->params.offload = 1;
3979 	}
3980 	if (caps_cmd.rdmacaps) {
3981 		params[0] = FW_PARAM_PFVF(STAG_START);
3982 		params[1] = FW_PARAM_PFVF(STAG_END);
3983 		params[2] = FW_PARAM_PFVF(RQ_START);
3984 		params[3] = FW_PARAM_PFVF(RQ_END);
3985 		params[4] = FW_PARAM_PFVF(PBL_START);
3986 		params[5] = FW_PARAM_PFVF(PBL_END);
3987 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3988 				      params, val);
3989 		if (ret < 0)
3990 			goto bye;
3991 		adap->vres.stag.start = val[0];
3992 		adap->vres.stag.size = val[1] - val[0] + 1;
3993 		adap->vres.rq.start = val[2];
3994 		adap->vres.rq.size = val[3] - val[2] + 1;
3995 		adap->vres.pbl.start = val[4];
3996 		adap->vres.pbl.size = val[5] - val[4] + 1;
3997 
3998 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3999 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4000 		params[2] = FW_PARAM_PFVF(CQ_START);
4001 		params[3] = FW_PARAM_PFVF(CQ_END);
4002 		params[4] = FW_PARAM_PFVF(OCQ_START);
4003 		params[5] = FW_PARAM_PFVF(OCQ_END);
4004 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4005 				      val);
4006 		if (ret < 0)
4007 			goto bye;
4008 		adap->vres.qp.start = val[0];
4009 		adap->vres.qp.size = val[1] - val[0] + 1;
4010 		adap->vres.cq.start = val[2];
4011 		adap->vres.cq.size = val[3] - val[2] + 1;
4012 		adap->vres.ocq.start = val[4];
4013 		adap->vres.ocq.size = val[5] - val[4] + 1;
4014 
4015 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4016 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4017 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4018 				      val);
4019 		if (ret < 0) {
4020 			adap->params.max_ordird_qp = 8;
4021 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4022 			ret = 0;
4023 		} else {
4024 			adap->params.max_ordird_qp = val[0];
4025 			adap->params.max_ird_adapter = val[1];
4026 		}
4027 		dev_info(adap->pdev_dev,
4028 			 "max_ordird_qp %d max_ird_adapter %d\n",
4029 			 adap->params.max_ordird_qp,
4030 			 adap->params.max_ird_adapter);
4031 	}
4032 	if (caps_cmd.iscsicaps) {
4033 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4034 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4035 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4036 				      params, val);
4037 		if (ret < 0)
4038 			goto bye;
4039 		adap->vres.iscsi.start = val[0];
4040 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4041 	}
4042 #undef FW_PARAM_PFVF
4043 #undef FW_PARAM_DEV
4044 
4045 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4046 	 * we're initializing the adapter, then we'll make any modifications
4047 	 * we want to the MTU/MSS Table and also initialize the congestion
4048 	 * parameters.
4049 	 */
4050 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4051 	if (state != DEV_STATE_INIT) {
4052 		int i;
4053 
4054 		/* The default MTU Table contains values 1492 and 1500.
4055 		 * However, for TCP, it's better to have two values which are
4056 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4057 		 * This allows us to have a TCP Data Payload which is a
4058 		 * multiple of 8 regardless of what combination of TCP Options
4059 		 * are in use (always a multiple of 4 bytes) which is
4060 		 * important for performance reasons.  For instance, if no
4061 		 * options are in use, then we have a 20-byte IP header and a
4062 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4063 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4064 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4065 		 * this case results in a TCP Data Payload of 1448 bytes which
4066 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4067 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4068 		 * results in a TCP Data Payload of 1448 bytes which, as
4069 		 * above, is a multiple of 8 bytes ...
4070 		 */
4071 		for (i = 0; i < NMTUS; i++)
4072 			if (adap->params.mtus[i] == 1492) {
4073 				adap->params.mtus[i] = 1488;
4074 				break;
4075 			}
4076 
4077 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4078 			     adap->params.b_wnd);
4079 	}
4080 	t4_init_sge_params(adap);
4081 	adap->flags |= FW_OK;
4082 	t4_init_tp_params(adap);
4083 	return 0;
4084 
4085 	/*
4086 	 * Something bad happened.  If a command timed out or failed with EIO
4087 	 * FW does not operate within its spec or something catastrophic
4088 	 * happened to HW/FW, stop issuing commands.
4089 	 */
4090 bye:
4091 	kfree(adap->sge.egr_map);
4092 	kfree(adap->sge.ingr_map);
4093 	kfree(adap->sge.starving_fl);
4094 	kfree(adap->sge.txq_maperr);
4095 #ifdef CONFIG_DEBUG_FS
4096 	kfree(adap->sge.blocked_fl);
4097 #endif
4098 	if (ret != -ETIMEDOUT && ret != -EIO)
4099 		t4_fw_bye(adap, adap->mbox);
4100 	return ret;
4101 }
4102 
4103 /* EEH callbacks */
4104 
4105 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4106 					 pci_channel_state_t state)
4107 {
4108 	int i;
4109 	struct adapter *adap = pci_get_drvdata(pdev);
4110 
4111 	if (!adap)
4112 		goto out;
4113 
4114 	rtnl_lock();
4115 	adap->flags &= ~FW_OK;
4116 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4117 	spin_lock(&adap->stats_lock);
4118 	for_each_port(adap, i) {
4119 		struct net_device *dev = adap->port[i];
4120 
4121 		netif_device_detach(dev);
4122 		netif_carrier_off(dev);
4123 	}
4124 	spin_unlock(&adap->stats_lock);
4125 	disable_interrupts(adap);
4126 	if (adap->flags & FULL_INIT_DONE)
4127 		cxgb_down(adap);
4128 	rtnl_unlock();
4129 	if ((adap->flags & DEV_ENABLED)) {
4130 		pci_disable_device(pdev);
4131 		adap->flags &= ~DEV_ENABLED;
4132 	}
4133 out:	return state == pci_channel_io_perm_failure ?
4134 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4135 }
4136 
4137 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4138 {
4139 	int i, ret;
4140 	struct fw_caps_config_cmd c;
4141 	struct adapter *adap = pci_get_drvdata(pdev);
4142 
4143 	if (!adap) {
4144 		pci_restore_state(pdev);
4145 		pci_save_state(pdev);
4146 		return PCI_ERS_RESULT_RECOVERED;
4147 	}
4148 
4149 	if (!(adap->flags & DEV_ENABLED)) {
4150 		if (pci_enable_device(pdev)) {
4151 			dev_err(&pdev->dev, "Cannot reenable PCI "
4152 					    "device after reset\n");
4153 			return PCI_ERS_RESULT_DISCONNECT;
4154 		}
4155 		adap->flags |= DEV_ENABLED;
4156 	}
4157 
4158 	pci_set_master(pdev);
4159 	pci_restore_state(pdev);
4160 	pci_save_state(pdev);
4161 	pci_cleanup_aer_uncorrect_error_status(pdev);
4162 
4163 	if (t4_wait_dev_ready(adap->regs) < 0)
4164 		return PCI_ERS_RESULT_DISCONNECT;
4165 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4166 		return PCI_ERS_RESULT_DISCONNECT;
4167 	adap->flags |= FW_OK;
4168 	if (adap_init1(adap, &c))
4169 		return PCI_ERS_RESULT_DISCONNECT;
4170 
4171 	for_each_port(adap, i) {
4172 		struct port_info *p = adap2pinfo(adap, i);
4173 
4174 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4175 				  NULL, NULL);
4176 		if (ret < 0)
4177 			return PCI_ERS_RESULT_DISCONNECT;
4178 		p->viid = ret;
4179 		p->xact_addr_filt = -1;
4180 	}
4181 
4182 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4183 		     adap->params.b_wnd);
4184 	setup_memwin(adap);
4185 	if (cxgb_up(adap))
4186 		return PCI_ERS_RESULT_DISCONNECT;
4187 	return PCI_ERS_RESULT_RECOVERED;
4188 }
4189 
4190 static void eeh_resume(struct pci_dev *pdev)
4191 {
4192 	int i;
4193 	struct adapter *adap = pci_get_drvdata(pdev);
4194 
4195 	if (!adap)
4196 		return;
4197 
4198 	rtnl_lock();
4199 	for_each_port(adap, i) {
4200 		struct net_device *dev = adap->port[i];
4201 
4202 		if (netif_running(dev)) {
4203 			link_start(dev);
4204 			cxgb_set_rxmode(dev);
4205 		}
4206 		netif_device_attach(dev);
4207 	}
4208 	rtnl_unlock();
4209 }
4210 
4211 static const struct pci_error_handlers cxgb4_eeh = {
4212 	.error_detected = eeh_err_detected,
4213 	.slot_reset     = eeh_slot_reset,
4214 	.resume         = eeh_resume,
4215 };
4216 
4217 static inline bool is_x_10g_port(const struct link_config *lc)
4218 {
4219 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4220 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4221 }
4222 
4223 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4224 			     unsigned int us, unsigned int cnt,
4225 			     unsigned int size, unsigned int iqe_size)
4226 {
4227 	q->adap = adap;
4228 	cxgb4_set_rspq_intr_params(q, us, cnt);
4229 	q->iqe_len = iqe_size;
4230 	q->size = size;
4231 }
4232 
4233 /*
4234  * Perform default configuration of DMA queues depending on the number and type
4235  * of ports we found and the number of available CPUs.  Most settings can be
4236  * modified by the admin prior to actual use.
4237  */
4238 static void cfg_queues(struct adapter *adap)
4239 {
4240 	struct sge *s = &adap->sge;
4241 	int i, n10g = 0, qidx = 0;
4242 #ifndef CONFIG_CHELSIO_T4_DCB
4243 	int q10g = 0;
4244 #endif
4245 	int ciq_size;
4246 
4247 	for_each_port(adap, i)
4248 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4249 #ifdef CONFIG_CHELSIO_T4_DCB
4250 	/* For Data Center Bridging support we need to be able to support up
4251 	 * to 8 Traffic Priorities; each of which will be assigned to its
4252 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4253 	 */
4254 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4255 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4256 			MAX_ETH_QSETS, adap->params.nports * 8);
4257 		BUG_ON(1);
4258 	}
4259 
4260 	for_each_port(adap, i) {
4261 		struct port_info *pi = adap2pinfo(adap, i);
4262 
4263 		pi->first_qset = qidx;
4264 		pi->nqsets = 8;
4265 		qidx += pi->nqsets;
4266 	}
4267 #else /* !CONFIG_CHELSIO_T4_DCB */
4268 	/*
4269 	 * We default to 1 queue per non-10G port and up to # of cores queues
4270 	 * per 10G port.
4271 	 */
4272 	if (n10g)
4273 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4274 	if (q10g > netif_get_num_default_rss_queues())
4275 		q10g = netif_get_num_default_rss_queues();
4276 
4277 	for_each_port(adap, i) {
4278 		struct port_info *pi = adap2pinfo(adap, i);
4279 
4280 		pi->first_qset = qidx;
4281 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4282 		qidx += pi->nqsets;
4283 	}
4284 #endif /* !CONFIG_CHELSIO_T4_DCB */
4285 
4286 	s->ethqsets = qidx;
4287 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4288 
4289 	if (is_offload(adap)) {
4290 		/*
4291 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4292 		 * otherwise we divide all available queues amongst the channels
4293 		 * capped by the number of available cores.
4294 		 */
4295 		if (n10g) {
4296 			i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4297 				  num_online_cpus());
4298 			s->iscsiqsets = roundup(i, adap->params.nports);
4299 		} else
4300 			s->iscsiqsets = adap->params.nports;
4301 		/* For RDMA one Rx queue per channel suffices */
4302 		s->rdmaqs = adap->params.nports;
4303 		/* Try and allow at least 1 CIQ per cpu rounding down
4304 		 * to the number of ports, with a minimum of 1 per port.
4305 		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4306 		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4307 		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4308 		 */
4309 		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4310 		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4311 				adap->params.nports;
4312 		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4313 	}
4314 
4315 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4316 		struct sge_eth_rxq *r = &s->ethrxq[i];
4317 
4318 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4319 		r->fl.size = 72;
4320 	}
4321 
4322 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4323 		s->ethtxq[i].q.size = 1024;
4324 
4325 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4326 		s->ctrlq[i].q.size = 512;
4327 
4328 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4329 		s->ofldtxq[i].q.size = 1024;
4330 
4331 	for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4332 		struct sge_ofld_rxq *r = &s->iscsirxq[i];
4333 
4334 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4335 		r->rspq.uld = CXGB4_ULD_ISCSI;
4336 		r->fl.size = 72;
4337 	}
4338 
4339 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4340 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4341 
4342 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4343 		r->rspq.uld = CXGB4_ULD_RDMA;
4344 		r->fl.size = 72;
4345 	}
4346 
4347 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4348 	if (ciq_size > SGE_MAX_IQ_SIZE) {
4349 		CH_WARN(adap, "CIQ size too small for available IQs\n");
4350 		ciq_size = SGE_MAX_IQ_SIZE;
4351 	}
4352 
4353 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4354 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4355 
4356 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4357 		r->rspq.uld = CXGB4_ULD_RDMA;
4358 	}
4359 
4360 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4361 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4362 }
4363 
4364 /*
4365  * Reduce the number of Ethernet queues across all ports to at most n.
4366  * n provides at least one queue per port.
4367  */
4368 static void reduce_ethqs(struct adapter *adap, int n)
4369 {
4370 	int i;
4371 	struct port_info *pi;
4372 
4373 	while (n < adap->sge.ethqsets)
4374 		for_each_port(adap, i) {
4375 			pi = adap2pinfo(adap, i);
4376 			if (pi->nqsets > 1) {
4377 				pi->nqsets--;
4378 				adap->sge.ethqsets--;
4379 				if (adap->sge.ethqsets <= n)
4380 					break;
4381 			}
4382 		}
4383 
4384 	n = 0;
4385 	for_each_port(adap, i) {
4386 		pi = adap2pinfo(adap, i);
4387 		pi->first_qset = n;
4388 		n += pi->nqsets;
4389 	}
4390 }
4391 
4392 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4393 #define EXTRA_VECS 2
4394 
4395 static int enable_msix(struct adapter *adap)
4396 {
4397 	int ofld_need = 0;
4398 	int i, want, need, allocated;
4399 	struct sge *s = &adap->sge;
4400 	unsigned int nchan = adap->params.nports;
4401 	struct msix_entry *entries;
4402 
4403 	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4404 			  GFP_KERNEL);
4405 	if (!entries)
4406 		return -ENOMEM;
4407 
4408 	for (i = 0; i < MAX_INGQ + 1; ++i)
4409 		entries[i].entry = i;
4410 
4411 	want = s->max_ethqsets + EXTRA_VECS;
4412 	if (is_offload(adap)) {
4413 		want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets;
4414 		/* need nchan for each possible ULD */
4415 		ofld_need = 3 * nchan;
4416 	}
4417 #ifdef CONFIG_CHELSIO_T4_DCB
4418 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4419 	 * each port.
4420 	 */
4421 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4422 #else
4423 	need = adap->params.nports + EXTRA_VECS + ofld_need;
4424 #endif
4425 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4426 	if (allocated < 0) {
4427 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4428 			 " not using MSI-X\n");
4429 		kfree(entries);
4430 		return allocated;
4431 	}
4432 
4433 	/* Distribute available vectors to the various queue groups.
4434 	 * Every group gets its minimum requirement and NIC gets top
4435 	 * priority for leftovers.
4436 	 */
4437 	i = allocated - EXTRA_VECS - ofld_need;
4438 	if (i < s->max_ethqsets) {
4439 		s->max_ethqsets = i;
4440 		if (i < s->ethqsets)
4441 			reduce_ethqs(adap, i);
4442 	}
4443 	if (is_offload(adap)) {
4444 		if (allocated < want) {
4445 			s->rdmaqs = nchan;
4446 			s->rdmaciqs = nchan;
4447 		}
4448 
4449 		/* leftovers go to OFLD */
4450 		i = allocated - EXTRA_VECS - s->max_ethqsets -
4451 		    s->rdmaqs - s->rdmaciqs;
4452 		s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4453 	}
4454 	for (i = 0; i < allocated; ++i)
4455 		adap->msix_info[i].vec = entries[i].vector;
4456 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4457 		 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4458 		 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4459 		 s->rdmaciqs);
4460 
4461 	kfree(entries);
4462 	return 0;
4463 }
4464 
4465 #undef EXTRA_VECS
4466 
4467 static int init_rss(struct adapter *adap)
4468 {
4469 	unsigned int i;
4470 	int err;
4471 
4472 	err = t4_init_rss_mode(adap, adap->mbox);
4473 	if (err)
4474 		return err;
4475 
4476 	for_each_port(adap, i) {
4477 		struct port_info *pi = adap2pinfo(adap, i);
4478 
4479 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4480 		if (!pi->rss)
4481 			return -ENOMEM;
4482 	}
4483 	return 0;
4484 }
4485 
4486 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4487 					enum pci_bus_speed *speed,
4488 					enum pcie_link_width *width)
4489 {
4490 	u32 lnkcap1, lnkcap2;
4491 	int err1, err2;
4492 
4493 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4494 
4495 	*speed = PCI_SPEED_UNKNOWN;
4496 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4497 
4498 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4499 					  &lnkcap1);
4500 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4501 					  &lnkcap2);
4502 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4503 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4504 			*speed = PCIE_SPEED_8_0GT;
4505 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4506 			*speed = PCIE_SPEED_5_0GT;
4507 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4508 			*speed = PCIE_SPEED_2_5GT;
4509 	}
4510 	if (!err1) {
4511 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4512 		if (!lnkcap2) { /* pre-r3.0 */
4513 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4514 				*speed = PCIE_SPEED_5_0GT;
4515 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4516 				*speed = PCIE_SPEED_2_5GT;
4517 		}
4518 	}
4519 
4520 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4521 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4522 	return 0;
4523 }
4524 
4525 static void cxgb4_check_pcie_caps(struct adapter *adap)
4526 {
4527 	enum pcie_link_width width, width_cap;
4528 	enum pci_bus_speed speed, speed_cap;
4529 
4530 #define PCIE_SPEED_STR(speed) \
4531 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4532 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4533 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4534 	 "Unknown")
4535 
4536 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4537 		dev_warn(adap->pdev_dev,
4538 			 "Unable to determine PCIe device BW capabilities\n");
4539 		return;
4540 	}
4541 
4542 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4543 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4544 		dev_warn(adap->pdev_dev,
4545 			 "Unable to determine PCI Express bandwidth.\n");
4546 		return;
4547 	}
4548 
4549 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4550 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4551 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4552 		 width, width_cap);
4553 	if (speed < speed_cap || width < width_cap)
4554 		dev_info(adap->pdev_dev,
4555 			 "A slot with more lanes and/or higher speed is "
4556 			 "suggested for optimal performance.\n");
4557 }
4558 
4559 static void print_port_info(const struct net_device *dev)
4560 {
4561 	char buf[80];
4562 	char *bufp = buf;
4563 	const char *spd = "";
4564 	const struct port_info *pi = netdev_priv(dev);
4565 	const struct adapter *adap = pi->adapter;
4566 
4567 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4568 		spd = " 2.5 GT/s";
4569 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4570 		spd = " 5 GT/s";
4571 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4572 		spd = " 8 GT/s";
4573 
4574 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4575 		bufp += sprintf(bufp, "100/");
4576 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4577 		bufp += sprintf(bufp, "1000/");
4578 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4579 		bufp += sprintf(bufp, "10G/");
4580 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4581 		bufp += sprintf(bufp, "40G/");
4582 	if (bufp != buf)
4583 		--bufp;
4584 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4585 
4586 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n",
4587 		    adap->params.vpd.id,
4588 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4589 		    is_offload(adap) ? "R" : "",
4590 		    (adap->flags & USING_MSIX) ? " MSI-X" :
4591 		    (adap->flags & USING_MSI) ? " MSI" : "");
4592 	netdev_info(dev, "S/N: %s, P/N: %s\n",
4593 		    adap->params.vpd.sn, adap->params.vpd.pn);
4594 }
4595 
4596 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4597 {
4598 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4599 }
4600 
4601 /*
4602  * Free the following resources:
4603  * - memory used for tables
4604  * - MSI/MSI-X
4605  * - net devices
4606  * - resources FW is holding for us
4607  */
4608 static void free_some_resources(struct adapter *adapter)
4609 {
4610 	unsigned int i;
4611 
4612 	t4_free_mem(adapter->l2t);
4613 	t4_free_mem(adapter->tids.tid_tab);
4614 	kfree(adapter->sge.egr_map);
4615 	kfree(adapter->sge.ingr_map);
4616 	kfree(adapter->sge.starving_fl);
4617 	kfree(adapter->sge.txq_maperr);
4618 #ifdef CONFIG_DEBUG_FS
4619 	kfree(adapter->sge.blocked_fl);
4620 #endif
4621 	disable_msi(adapter);
4622 
4623 	for_each_port(adapter, i)
4624 		if (adapter->port[i]) {
4625 			struct port_info *pi = adap2pinfo(adapter, i);
4626 
4627 			if (pi->viid != 0)
4628 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4629 					   0, pi->viid);
4630 			kfree(adap2pinfo(adapter, i)->rss);
4631 			free_netdev(adapter->port[i]);
4632 		}
4633 	if (adapter->flags & FW_OK)
4634 		t4_fw_bye(adapter, adapter->pf);
4635 }
4636 
4637 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4638 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4639 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4640 #define SEGMENT_SIZE 128
4641 
4642 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4643 {
4644 	u16 device_id;
4645 
4646 	/* Retrieve adapter's device ID */
4647 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4648 
4649 	switch (device_id >> 12) {
4650 	case CHELSIO_T4:
4651 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4652 	case CHELSIO_T5:
4653 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4654 	case CHELSIO_T6:
4655 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4656 	default:
4657 		dev_err(&pdev->dev, "Device %d is not supported\n",
4658 			device_id);
4659 	}
4660 	return -EINVAL;
4661 }
4662 
4663 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4664 {
4665 	int func, i, err, s_qpp, qpp, num_seg;
4666 	struct port_info *pi;
4667 	bool highdma = false;
4668 	struct adapter *adapter = NULL;
4669 	void __iomem *regs;
4670 	u32 whoami, pl_rev;
4671 	enum chip_type chip;
4672 
4673 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4674 
4675 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4676 	if (err) {
4677 		/* Just info, some other driver may have claimed the device. */
4678 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4679 		return err;
4680 	}
4681 
4682 	err = pci_enable_device(pdev);
4683 	if (err) {
4684 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4685 		goto out_release_regions;
4686 	}
4687 
4688 	regs = pci_ioremap_bar(pdev, 0);
4689 	if (!regs) {
4690 		dev_err(&pdev->dev, "cannot map device registers\n");
4691 		err = -ENOMEM;
4692 		goto out_disable_device;
4693 	}
4694 
4695 	err = t4_wait_dev_ready(regs);
4696 	if (err < 0)
4697 		goto out_unmap_bar0;
4698 
4699 	/* We control everything through one PF */
4700 	whoami = readl(regs + PL_WHOAMI_A);
4701 	pl_rev = REV_G(readl(regs + PL_REV_A));
4702 	chip = get_chip_type(pdev, pl_rev);
4703 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4704 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4705 	if (func != ent->driver_data) {
4706 		iounmap(regs);
4707 		pci_disable_device(pdev);
4708 		pci_save_state(pdev);        /* to restore SR-IOV later */
4709 		goto sriov;
4710 	}
4711 
4712 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4713 		highdma = true;
4714 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4715 		if (err) {
4716 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4717 				"coherent allocations\n");
4718 			goto out_unmap_bar0;
4719 		}
4720 	} else {
4721 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4722 		if (err) {
4723 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4724 			goto out_unmap_bar0;
4725 		}
4726 	}
4727 
4728 	pci_enable_pcie_error_reporting(pdev);
4729 	enable_pcie_relaxed_ordering(pdev);
4730 	pci_set_master(pdev);
4731 	pci_save_state(pdev);
4732 
4733 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4734 	if (!adapter) {
4735 		err = -ENOMEM;
4736 		goto out_unmap_bar0;
4737 	}
4738 
4739 	adapter->workq = create_singlethread_workqueue("cxgb4");
4740 	if (!adapter->workq) {
4741 		err = -ENOMEM;
4742 		goto out_free_adapter;
4743 	}
4744 
4745 	/* PCI device has been enabled */
4746 	adapter->flags |= DEV_ENABLED;
4747 
4748 	adapter->regs = regs;
4749 	adapter->pdev = pdev;
4750 	adapter->pdev_dev = &pdev->dev;
4751 	adapter->mbox = func;
4752 	adapter->pf = func;
4753 	adapter->msg_enable = dflt_msg_enable;
4754 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4755 
4756 	spin_lock_init(&adapter->stats_lock);
4757 	spin_lock_init(&adapter->tid_release_lock);
4758 	spin_lock_init(&adapter->win0_lock);
4759 
4760 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4761 	INIT_WORK(&adapter->db_full_task, process_db_full);
4762 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4763 
4764 	err = t4_prep_adapter(adapter);
4765 	if (err)
4766 		goto out_free_adapter;
4767 
4768 
4769 	if (!is_t4(adapter->params.chip)) {
4770 		s_qpp = (QUEUESPERPAGEPF0_S +
4771 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4772 			adapter->pf);
4773 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4774 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4775 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4776 
4777 		/* Each segment size is 128B. Write coalescing is enabled only
4778 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4779 		 * queue is less no of segments that can be accommodated in
4780 		 * a page size.
4781 		 */
4782 		if (qpp > num_seg) {
4783 			dev_err(&pdev->dev,
4784 				"Incorrect number of egress queues per page\n");
4785 			err = -EINVAL;
4786 			goto out_free_adapter;
4787 		}
4788 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4789 		pci_resource_len(pdev, 2));
4790 		if (!adapter->bar2) {
4791 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4792 			err = -ENOMEM;
4793 			goto out_free_adapter;
4794 		}
4795 	}
4796 
4797 	setup_memwin(adapter);
4798 	err = adap_init0(adapter);
4799 #ifdef CONFIG_DEBUG_FS
4800 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4801 #endif
4802 	setup_memwin_rdma(adapter);
4803 	if (err)
4804 		goto out_unmap_bar;
4805 
4806 	/* configure SGE_STAT_CFG_A to read WC stats */
4807 	if (!is_t4(adapter->params.chip))
4808 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4809 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4810 			      T6_STATMODE_V(0)));
4811 
4812 	for_each_port(adapter, i) {
4813 		struct net_device *netdev;
4814 
4815 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4816 					   MAX_ETH_QSETS);
4817 		if (!netdev) {
4818 			err = -ENOMEM;
4819 			goto out_free_dev;
4820 		}
4821 
4822 		SET_NETDEV_DEV(netdev, &pdev->dev);
4823 
4824 		adapter->port[i] = netdev;
4825 		pi = netdev_priv(netdev);
4826 		pi->adapter = adapter;
4827 		pi->xact_addr_filt = -1;
4828 		pi->port_id = i;
4829 		netdev->irq = pdev->irq;
4830 
4831 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4832 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4833 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4834 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4835 		if (highdma)
4836 			netdev->hw_features |= NETIF_F_HIGHDMA;
4837 		netdev->features |= netdev->hw_features;
4838 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4839 
4840 		netdev->priv_flags |= IFF_UNICAST_FLT;
4841 
4842 		netdev->netdev_ops = &cxgb4_netdev_ops;
4843 #ifdef CONFIG_CHELSIO_T4_DCB
4844 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4845 		cxgb4_dcb_state_init(netdev);
4846 #endif
4847 		cxgb4_set_ethtool_ops(netdev);
4848 	}
4849 
4850 	pci_set_drvdata(pdev, adapter);
4851 
4852 	if (adapter->flags & FW_OK) {
4853 		err = t4_port_init(adapter, func, func, 0);
4854 		if (err)
4855 			goto out_free_dev;
4856 	} else if (adapter->params.nports == 1) {
4857 		/* If we don't have a connection to the firmware -- possibly
4858 		 * because of an error -- grab the raw VPD parameters so we
4859 		 * can set the proper MAC Address on the debug network
4860 		 * interface that we've created.
4861 		 */
4862 		u8 hw_addr[ETH_ALEN];
4863 		u8 *na = adapter->params.vpd.na;
4864 
4865 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4866 		if (!err) {
4867 			for (i = 0; i < ETH_ALEN; i++)
4868 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4869 					      hex2val(na[2 * i + 1]));
4870 			t4_set_hw_addr(adapter, 0, hw_addr);
4871 		}
4872 	}
4873 
4874 	/* Configure queues and allocate tables now, they can be needed as
4875 	 * soon as the first register_netdev completes.
4876 	 */
4877 	cfg_queues(adapter);
4878 
4879 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4880 	if (!adapter->l2t) {
4881 		/* We tolerate a lack of L2T, giving up some functionality */
4882 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4883 		adapter->params.offload = 0;
4884 	}
4885 
4886 #if IS_ENABLED(CONFIG_IPV6)
4887 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4888 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4889 		/* CLIP functionality is not present in hardware,
4890 		 * hence disable all offload features
4891 		 */
4892 		dev_warn(&pdev->dev,
4893 			 "CLIP not enabled in hardware, continuing\n");
4894 		adapter->params.offload = 0;
4895 	} else {
4896 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4897 						  adapter->clipt_end);
4898 		if (!adapter->clipt) {
4899 			/* We tolerate a lack of clip_table, giving up
4900 			 * some functionality
4901 			 */
4902 			dev_warn(&pdev->dev,
4903 				 "could not allocate Clip table, continuing\n");
4904 			adapter->params.offload = 0;
4905 		}
4906 	}
4907 #endif
4908 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4909 		dev_warn(&pdev->dev, "could not allocate TID table, "
4910 			 "continuing\n");
4911 		adapter->params.offload = 0;
4912 	}
4913 
4914 	if (is_offload(adapter)) {
4915 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4916 			u32 hash_base, hash_reg;
4917 
4918 			if (chip <= CHELSIO_T5) {
4919 				hash_reg = LE_DB_TID_HASHBASE_A;
4920 				hash_base = t4_read_reg(adapter, hash_reg);
4921 				adapter->tids.hash_base = hash_base / 4;
4922 			} else {
4923 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4924 				hash_base = t4_read_reg(adapter, hash_reg);
4925 				adapter->tids.hash_base = hash_base;
4926 			}
4927 		}
4928 	}
4929 
4930 	/* See what interrupts we'll be using */
4931 	if (msi > 1 && enable_msix(adapter) == 0)
4932 		adapter->flags |= USING_MSIX;
4933 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
4934 		adapter->flags |= USING_MSI;
4935 
4936 	/* check for PCI Express bandwidth capabiltites */
4937 	cxgb4_check_pcie_caps(adapter);
4938 
4939 	err = init_rss(adapter);
4940 	if (err)
4941 		goto out_free_dev;
4942 
4943 	/*
4944 	 * The card is now ready to go.  If any errors occur during device
4945 	 * registration we do not fail the whole card but rather proceed only
4946 	 * with the ports we manage to register successfully.  However we must
4947 	 * register at least one net device.
4948 	 */
4949 	for_each_port(adapter, i) {
4950 		pi = adap2pinfo(adapter, i);
4951 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4952 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4953 
4954 		err = register_netdev(adapter->port[i]);
4955 		if (err)
4956 			break;
4957 		adapter->chan_map[pi->tx_chan] = i;
4958 		print_port_info(adapter->port[i]);
4959 	}
4960 	if (i == 0) {
4961 		dev_err(&pdev->dev, "could not register any net devices\n");
4962 		goto out_free_dev;
4963 	}
4964 	if (err) {
4965 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4966 		err = 0;
4967 	}
4968 
4969 	if (cxgb4_debugfs_root) {
4970 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4971 							   cxgb4_debugfs_root);
4972 		setup_debugfs(adapter);
4973 	}
4974 
4975 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4976 	pdev->needs_freset = 1;
4977 
4978 	if (is_offload(adapter))
4979 		attach_ulds(adapter);
4980 
4981 sriov:
4982 #ifdef CONFIG_PCI_IOV
4983 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4984 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4985 			dev_info(&pdev->dev,
4986 				 "instantiated %u virtual functions\n",
4987 				 num_vf[func]);
4988 #endif
4989 	return 0;
4990 
4991  out_free_dev:
4992 	free_some_resources(adapter);
4993  out_unmap_bar:
4994 	if (!is_t4(adapter->params.chip))
4995 		iounmap(adapter->bar2);
4996  out_free_adapter:
4997 	if (adapter->workq)
4998 		destroy_workqueue(adapter->workq);
4999 
5000 	kfree(adapter);
5001  out_unmap_bar0:
5002 	iounmap(regs);
5003  out_disable_device:
5004 	pci_disable_pcie_error_reporting(pdev);
5005 	pci_disable_device(pdev);
5006  out_release_regions:
5007 	pci_release_regions(pdev);
5008 	return err;
5009 }
5010 
5011 static void remove_one(struct pci_dev *pdev)
5012 {
5013 	struct adapter *adapter = pci_get_drvdata(pdev);
5014 
5015 #ifdef CONFIG_PCI_IOV
5016 	pci_disable_sriov(pdev);
5017 
5018 #endif
5019 
5020 	if (adapter) {
5021 		int i;
5022 
5023 		/* Tear down per-adapter Work Queue first since it can contain
5024 		 * references to our adapter data structure.
5025 		 */
5026 		destroy_workqueue(adapter->workq);
5027 
5028 		if (is_offload(adapter))
5029 			detach_ulds(adapter);
5030 
5031 		disable_interrupts(adapter);
5032 
5033 		for_each_port(adapter, i)
5034 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5035 				unregister_netdev(adapter->port[i]);
5036 
5037 		debugfs_remove_recursive(adapter->debugfs_root);
5038 
5039 		/* If we allocated filters, free up state associated with any
5040 		 * valid filters ...
5041 		 */
5042 		if (adapter->tids.ftid_tab) {
5043 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
5044 			for (i = 0; i < (adapter->tids.nftids +
5045 					adapter->tids.nsftids); i++, f++)
5046 				if (f->valid)
5047 					clear_filter(adapter, f);
5048 		}
5049 
5050 		if (adapter->flags & FULL_INIT_DONE)
5051 			cxgb_down(adapter);
5052 
5053 		free_some_resources(adapter);
5054 #if IS_ENABLED(CONFIG_IPV6)
5055 		t4_cleanup_clip_tbl(adapter);
5056 #endif
5057 		iounmap(adapter->regs);
5058 		if (!is_t4(adapter->params.chip))
5059 			iounmap(adapter->bar2);
5060 		pci_disable_pcie_error_reporting(pdev);
5061 		if ((adapter->flags & DEV_ENABLED)) {
5062 			pci_disable_device(pdev);
5063 			adapter->flags &= ~DEV_ENABLED;
5064 		}
5065 		pci_release_regions(pdev);
5066 		synchronize_rcu();
5067 		kfree(adapter);
5068 	} else
5069 		pci_release_regions(pdev);
5070 }
5071 
5072 static struct pci_driver cxgb4_driver = {
5073 	.name     = KBUILD_MODNAME,
5074 	.id_table = cxgb4_pci_tbl,
5075 	.probe    = init_one,
5076 	.remove   = remove_one,
5077 	.shutdown = remove_one,
5078 	.err_handler = &cxgb4_eeh,
5079 };
5080 
5081 static int __init cxgb4_init_module(void)
5082 {
5083 	int ret;
5084 
5085 	/* Debugfs support is optional, just warn if this fails */
5086 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5087 	if (!cxgb4_debugfs_root)
5088 		pr_warn("could not create debugfs entry, continuing\n");
5089 
5090 	ret = pci_register_driver(&cxgb4_driver);
5091 	if (ret < 0)
5092 		debugfs_remove(cxgb4_debugfs_root);
5093 
5094 #if IS_ENABLED(CONFIG_IPV6)
5095 	if (!inet6addr_registered) {
5096 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5097 		inet6addr_registered = true;
5098 	}
5099 #endif
5100 
5101 	return ret;
5102 }
5103 
5104 static void __exit cxgb4_cleanup_module(void)
5105 {
5106 #if IS_ENABLED(CONFIG_IPV6)
5107 	if (inet6addr_registered) {
5108 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5109 		inet6addr_registered = false;
5110 	}
5111 #endif
5112 	pci_unregister_driver(&cxgb4_driver);
5113 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5114 }
5115 
5116 module_init(cxgb4_init_module);
5117 module_exit(cxgb4_cleanup_module);
5118