1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <asm/uaccess.h> 67 68 #include "cxgb4.h" 69 #include "t4_regs.h" 70 #include "t4_values.h" 71 #include "t4_msg.h" 72 #include "t4fw_api.h" 73 #include "t4fw_version.h" 74 #include "cxgb4_dcb.h" 75 #include "cxgb4_debugfs.h" 76 #include "clip_tbl.h" 77 #include "l2t.h" 78 79 char cxgb4_driver_name[] = KBUILD_MODNAME; 80 81 #ifdef DRV_VERSION 82 #undef DRV_VERSION 83 #endif 84 #define DRV_VERSION "2.0.0-ko" 85 const char cxgb4_driver_version[] = DRV_VERSION; 86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 87 88 /* Host shadow copy of ingress filter entry. This is in host native format 89 * and doesn't match the ordering or bit order, etc. of the hardware of the 90 * firmware command. The use of bit-field structure elements is purely to 91 * remind ourselves of the field size limitations and save memory in the case 92 * where the filter table is large. 93 */ 94 struct filter_entry { 95 /* Administrative fields for filter. 96 */ 97 u32 valid:1; /* filter allocated and valid */ 98 u32 locked:1; /* filter is administratively locked */ 99 100 u32 pending:1; /* filter action is pending firmware reply */ 101 u32 smtidx:8; /* Source MAC Table index for smac */ 102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 103 104 /* The filter itself. Most of this is a straight copy of information 105 * provided by the extended ioctl(). Some fields are translated to 106 * internal forms -- for instance the Ingress Queue ID passed in from 107 * the ioctl() is translated into the Absolute Ingress Queue ID. 108 */ 109 struct ch_filter_specification fs; 110 }; 111 112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 115 116 /* Macros needed to support the PCI Device ID Table ... 117 */ 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 119 static const struct pci_device_id cxgb4_pci_tbl[] = { 120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 121 122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 123 * called for both. 124 */ 125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 126 127 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 128 {PCI_VDEVICE(CHELSIO, (devid)), 4} 129 130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 131 { 0, } \ 132 } 133 134 #include "t4_pci_id_tbl.h" 135 136 #define FW4_FNAME "cxgb4/t4fw.bin" 137 #define FW5_FNAME "cxgb4/t5fw.bin" 138 #define FW6_FNAME "cxgb4/t6fw.bin" 139 #define FW4_CFNAME "cxgb4/t4-config.txt" 140 #define FW5_CFNAME "cxgb4/t5-config.txt" 141 #define FW6_CFNAME "cxgb4/t6-config.txt" 142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 144 #define PHY_AQ1202_DEVICEID 0x4409 145 #define PHY_BCM84834_DEVICEID 0x4486 146 147 MODULE_DESCRIPTION(DRV_DESC); 148 MODULE_AUTHOR("Chelsio Communications"); 149 MODULE_LICENSE("Dual BSD/GPL"); 150 MODULE_VERSION(DRV_VERSION); 151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 152 MODULE_FIRMWARE(FW4_FNAME); 153 MODULE_FIRMWARE(FW5_FNAME); 154 MODULE_FIRMWARE(FW6_FNAME); 155 156 /* 157 * Normally we're willing to become the firmware's Master PF but will be happy 158 * if another PF has already become the Master and initialized the adapter. 159 * Setting "force_init" will cause this driver to forcibly establish itself as 160 * the Master PF and initialize the adapter. 161 */ 162 static uint force_init; 163 164 module_param(force_init, uint, 0644); 165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter," 166 "deprecated parameter"); 167 168 static int dflt_msg_enable = DFLT_MSG_ENABLE; 169 170 module_param(dflt_msg_enable, int, 0644); 171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 172 173 /* 174 * The driver uses the best interrupt scheme available on a platform in the 175 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 176 * of these schemes the driver may consider as follows: 177 * 178 * msi = 2: choose from among all three options 179 * msi = 1: only consider MSI and INTx interrupts 180 * msi = 0: force INTx interrupts 181 */ 182 static int msi = 2; 183 184 module_param(msi, int, 0644); 185 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 186 187 /* 188 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 189 * offset by 2 bytes in order to have the IP headers line up on 4-byte 190 * boundaries. This is a requirement for many architectures which will throw 191 * a machine check fault if an attempt is made to access one of the 4-byte IP 192 * header fields on a non-4-byte boundary. And it's a major performance issue 193 * even on some architectures which allow it like some implementations of the 194 * x86 ISA. However, some architectures don't mind this and for some very 195 * edge-case performance sensitive applications (like forwarding large volumes 196 * of small packets), setting this DMA offset to 0 will decrease the number of 197 * PCI-E Bus transfers enough to measurably affect performance. 198 */ 199 static int rx_dma_offset = 2; 200 201 #ifdef CONFIG_PCI_IOV 202 /* Configure the number of PCI-E Virtual Function which are to be instantiated 203 * on SR-IOV Capable Physical Functions. 204 */ 205 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 206 207 module_param_array(num_vf, uint, NULL, 0644); 208 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 209 #endif 210 211 /* TX Queue select used to determine what algorithm to use for selecting TX 212 * queue. Select between the kernel provided function (select_queue=0) or user 213 * cxgb_select_queue function (select_queue=1) 214 * 215 * Default: select_queue=0 216 */ 217 static int select_queue; 218 module_param(select_queue, int, 0644); 219 MODULE_PARM_DESC(select_queue, 220 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 221 222 static struct dentry *cxgb4_debugfs_root; 223 224 static LIST_HEAD(adapter_list); 225 static DEFINE_MUTEX(uld_mutex); 226 /* Adapter list to be accessed from atomic context */ 227 static LIST_HEAD(adap_rcu_list); 228 static DEFINE_SPINLOCK(adap_rcu_lock); 229 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 230 static const char *uld_str[] = { "RDMA", "iSCSI" }; 231 232 static void link_report(struct net_device *dev) 233 { 234 if (!netif_carrier_ok(dev)) 235 netdev_info(dev, "link down\n"); 236 else { 237 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 238 239 const char *s; 240 const struct port_info *p = netdev_priv(dev); 241 242 switch (p->link_cfg.speed) { 243 case 10000: 244 s = "10Gbps"; 245 break; 246 case 1000: 247 s = "1000Mbps"; 248 break; 249 case 100: 250 s = "100Mbps"; 251 break; 252 case 40000: 253 s = "40Gbps"; 254 break; 255 default: 256 pr_info("%s: unsupported speed: %d\n", 257 dev->name, p->link_cfg.speed); 258 return; 259 } 260 261 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 262 fc[p->link_cfg.fc]); 263 } 264 } 265 266 #ifdef CONFIG_CHELSIO_T4_DCB 267 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 268 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 269 { 270 struct port_info *pi = netdev_priv(dev); 271 struct adapter *adap = pi->adapter; 272 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 273 int i; 274 275 /* We use a simple mapping of Port TX Queue Index to DCB 276 * Priority when we're enabling DCB. 277 */ 278 for (i = 0; i < pi->nqsets; i++, txq++) { 279 u32 name, value; 280 int err; 281 282 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 283 FW_PARAMS_PARAM_X_V( 284 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 285 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 286 value = enable ? i : 0xffffffff; 287 288 /* Since we can be called while atomic (from "interrupt 289 * level") we need to issue the Set Parameters Commannd 290 * without sleeping (timeout < 0). 291 */ 292 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 293 &name, &value, 294 -FW_CMD_MAX_TIMEOUT); 295 296 if (err) 297 dev_err(adap->pdev_dev, 298 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 299 enable ? "set" : "unset", pi->port_id, i, -err); 300 else 301 txq->dcb_prio = value; 302 } 303 } 304 #endif /* CONFIG_CHELSIO_T4_DCB */ 305 306 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 307 { 308 struct net_device *dev = adapter->port[port_id]; 309 310 /* Skip changes from disabled ports. */ 311 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 312 if (link_stat) 313 netif_carrier_on(dev); 314 else { 315 #ifdef CONFIG_CHELSIO_T4_DCB 316 cxgb4_dcb_state_init(dev); 317 dcb_tx_queue_prio_enable(dev, false); 318 #endif /* CONFIG_CHELSIO_T4_DCB */ 319 netif_carrier_off(dev); 320 } 321 322 link_report(dev); 323 } 324 } 325 326 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 327 { 328 static const char *mod_str[] = { 329 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 330 }; 331 332 const struct net_device *dev = adap->port[port_id]; 333 const struct port_info *pi = netdev_priv(dev); 334 335 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 336 netdev_info(dev, "port module unplugged\n"); 337 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 338 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 339 } 340 341 /* 342 * Configure the exact and hash address filters to handle a port's multicast 343 * and secondary unicast MAC addresses. 344 */ 345 static int set_addr_filters(const struct net_device *dev, bool sleep) 346 { 347 u64 mhash = 0; 348 u64 uhash = 0; 349 bool free = true; 350 u16 filt_idx[7]; 351 const u8 *addr[7]; 352 int ret, naddr = 0; 353 const struct netdev_hw_addr *ha; 354 int uc_cnt = netdev_uc_count(dev); 355 int mc_cnt = netdev_mc_count(dev); 356 const struct port_info *pi = netdev_priv(dev); 357 unsigned int mb = pi->adapter->pf; 358 359 /* first do the secondary unicast addresses */ 360 netdev_for_each_uc_addr(ha, dev) { 361 addr[naddr++] = ha->addr; 362 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 363 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 364 naddr, addr, filt_idx, &uhash, sleep); 365 if (ret < 0) 366 return ret; 367 368 free = false; 369 naddr = 0; 370 } 371 } 372 373 /* next set up the multicast addresses */ 374 netdev_for_each_mc_addr(ha, dev) { 375 addr[naddr++] = ha->addr; 376 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 377 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 378 naddr, addr, filt_idx, &mhash, sleep); 379 if (ret < 0) 380 return ret; 381 382 free = false; 383 naddr = 0; 384 } 385 } 386 387 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 388 uhash | mhash, sleep); 389 } 390 391 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 392 module_param(dbfifo_int_thresh, int, 0644); 393 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 394 395 /* 396 * usecs to sleep while draining the dbfifo 397 */ 398 static int dbfifo_drain_delay = 1000; 399 module_param(dbfifo_drain_delay, int, 0644); 400 MODULE_PARM_DESC(dbfifo_drain_delay, 401 "usecs to sleep while draining the dbfifo"); 402 403 /* 404 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 405 * If @mtu is -1 it is left unchanged. 406 */ 407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 408 { 409 int ret; 410 struct port_info *pi = netdev_priv(dev); 411 412 ret = set_addr_filters(dev, sleep_ok); 413 if (ret == 0) 414 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu, 415 (dev->flags & IFF_PROMISC) ? 1 : 0, 416 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 417 sleep_ok); 418 return ret; 419 } 420 421 /** 422 * link_start - enable a port 423 * @dev: the port to enable 424 * 425 * Performs the MAC and PHY actions needed to enable a port. 426 */ 427 static int link_start(struct net_device *dev) 428 { 429 int ret; 430 struct port_info *pi = netdev_priv(dev); 431 unsigned int mb = pi->adapter->pf; 432 433 /* 434 * We do not set address filters and promiscuity here, the stack does 435 * that step explicitly. 436 */ 437 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 438 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 439 if (ret == 0) { 440 ret = t4_change_mac(pi->adapter, mb, pi->viid, 441 pi->xact_addr_filt, dev->dev_addr, true, 442 true); 443 if (ret >= 0) { 444 pi->xact_addr_filt = ret; 445 ret = 0; 446 } 447 } 448 if (ret == 0) 449 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 450 &pi->link_cfg); 451 if (ret == 0) { 452 local_bh_disable(); 453 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 454 true, CXGB4_DCB_ENABLED); 455 local_bh_enable(); 456 } 457 458 return ret; 459 } 460 461 int cxgb4_dcb_enabled(const struct net_device *dev) 462 { 463 #ifdef CONFIG_CHELSIO_T4_DCB 464 struct port_info *pi = netdev_priv(dev); 465 466 if (!pi->dcb.enabled) 467 return 0; 468 469 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 470 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 471 #else 472 return 0; 473 #endif 474 } 475 EXPORT_SYMBOL(cxgb4_dcb_enabled); 476 477 #ifdef CONFIG_CHELSIO_T4_DCB 478 /* Handle a Data Center Bridging update message from the firmware. */ 479 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 480 { 481 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 482 struct net_device *dev = adap->port[port]; 483 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 484 int new_dcb_enabled; 485 486 cxgb4_dcb_handle_fw_update(adap, pcmd); 487 new_dcb_enabled = cxgb4_dcb_enabled(dev); 488 489 /* If the DCB has become enabled or disabled on the port then we're 490 * going to need to set up/tear down DCB Priority parameters for the 491 * TX Queues associated with the port. 492 */ 493 if (new_dcb_enabled != old_dcb_enabled) 494 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 495 } 496 #endif /* CONFIG_CHELSIO_T4_DCB */ 497 498 /* Clear a filter and release any of its resources that we own. This also 499 * clears the filter's "pending" status. 500 */ 501 static void clear_filter(struct adapter *adap, struct filter_entry *f) 502 { 503 /* If the new or old filter have loopback rewriteing rules then we'll 504 * need to free any existing Layer Two Table (L2T) entries of the old 505 * filter rule. The firmware will handle freeing up any Source MAC 506 * Table (SMT) entries used for rewriting Source MAC Addresses in 507 * loopback rules. 508 */ 509 if (f->l2t) 510 cxgb4_l2t_release(f->l2t); 511 512 /* The zeroing of the filter rule below clears the filter valid, 513 * pending, locked flags, l2t pointer, etc. so it's all we need for 514 * this operation. 515 */ 516 memset(f, 0, sizeof(*f)); 517 } 518 519 /* Handle a filter write/deletion reply. 520 */ 521 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 522 { 523 unsigned int idx = GET_TID(rpl); 524 unsigned int nidx = idx - adap->tids.ftid_base; 525 unsigned int ret; 526 struct filter_entry *f; 527 528 if (idx >= adap->tids.ftid_base && nidx < 529 (adap->tids.nftids + adap->tids.nsftids)) { 530 idx = nidx; 531 ret = TCB_COOKIE_G(rpl->cookie); 532 f = &adap->tids.ftid_tab[idx]; 533 534 if (ret == FW_FILTER_WR_FLT_DELETED) { 535 /* Clear the filter when we get confirmation from the 536 * hardware that the filter has been deleted. 537 */ 538 clear_filter(adap, f); 539 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 540 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 541 idx); 542 clear_filter(adap, f); 543 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 544 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 545 f->pending = 0; /* asynchronous setup completed */ 546 f->valid = 1; 547 } else { 548 /* Something went wrong. Issue a warning about the 549 * problem and clear everything out. 550 */ 551 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 552 idx, ret); 553 clear_filter(adap, f); 554 } 555 } 556 } 557 558 /* Response queue handler for the FW event queue. 559 */ 560 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 561 const struct pkt_gl *gl) 562 { 563 u8 opcode = ((const struct rss_header *)rsp)->opcode; 564 565 rsp++; /* skip RSS header */ 566 567 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 568 */ 569 if (unlikely(opcode == CPL_FW4_MSG && 570 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 571 rsp++; 572 opcode = ((const struct rss_header *)rsp)->opcode; 573 rsp++; 574 if (opcode != CPL_SGE_EGR_UPDATE) { 575 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 576 , opcode); 577 goto out; 578 } 579 } 580 581 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 582 const struct cpl_sge_egr_update *p = (void *)rsp; 583 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 584 struct sge_txq *txq; 585 586 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 587 txq->restarts++; 588 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 589 struct sge_eth_txq *eq; 590 591 eq = container_of(txq, struct sge_eth_txq, q); 592 netif_tx_wake_queue(eq->txq); 593 } else { 594 struct sge_ofld_txq *oq; 595 596 oq = container_of(txq, struct sge_ofld_txq, q); 597 tasklet_schedule(&oq->qresume_tsk); 598 } 599 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 600 const struct cpl_fw6_msg *p = (void *)rsp; 601 602 #ifdef CONFIG_CHELSIO_T4_DCB 603 const struct fw_port_cmd *pcmd = (const void *)p->data; 604 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 605 unsigned int action = 606 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 607 608 if (cmd == FW_PORT_CMD && 609 action == FW_PORT_ACTION_GET_PORT_INFO) { 610 int port = FW_PORT_CMD_PORTID_G( 611 be32_to_cpu(pcmd->op_to_portid)); 612 struct net_device *dev = q->adap->port[port]; 613 int state_input = ((pcmd->u.info.dcbxdis_pkd & 614 FW_PORT_CMD_DCBXDIS_F) 615 ? CXGB4_DCB_INPUT_FW_DISABLED 616 : CXGB4_DCB_INPUT_FW_ENABLED); 617 618 cxgb4_dcb_state_fsm(dev, state_input); 619 } 620 621 if (cmd == FW_PORT_CMD && 622 action == FW_PORT_ACTION_L2_DCB_CFG) 623 dcb_rpl(q->adap, pcmd); 624 else 625 #endif 626 if (p->type == 0) 627 t4_handle_fw_rpl(q->adap, p->data); 628 } else if (opcode == CPL_L2T_WRITE_RPL) { 629 const struct cpl_l2t_write_rpl *p = (void *)rsp; 630 631 do_l2t_write_rpl(q->adap, p); 632 } else if (opcode == CPL_SET_TCB_RPL) { 633 const struct cpl_set_tcb_rpl *p = (void *)rsp; 634 635 filter_rpl(q->adap, p); 636 } else 637 dev_err(q->adap->pdev_dev, 638 "unexpected CPL %#x on FW event queue\n", opcode); 639 out: 640 return 0; 641 } 642 643 /** 644 * uldrx_handler - response queue handler for ULD queues 645 * @q: the response queue that received the packet 646 * @rsp: the response queue descriptor holding the offload message 647 * @gl: the gather list of packet fragments 648 * 649 * Deliver an ingress offload packet to a ULD. All processing is done by 650 * the ULD, we just maintain statistics. 651 */ 652 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 653 const struct pkt_gl *gl) 654 { 655 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 656 657 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 658 */ 659 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 660 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 661 rsp += 2; 662 663 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 664 rxq->stats.nomem++; 665 return -1; 666 } 667 if (gl == NULL) 668 rxq->stats.imm++; 669 else if (gl == CXGB4_MSG_AN) 670 rxq->stats.an++; 671 else 672 rxq->stats.pkts++; 673 return 0; 674 } 675 676 static void disable_msi(struct adapter *adapter) 677 { 678 if (adapter->flags & USING_MSIX) { 679 pci_disable_msix(adapter->pdev); 680 adapter->flags &= ~USING_MSIX; 681 } else if (adapter->flags & USING_MSI) { 682 pci_disable_msi(adapter->pdev); 683 adapter->flags &= ~USING_MSI; 684 } 685 } 686 687 /* 688 * Interrupt handler for non-data events used with MSI-X. 689 */ 690 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 691 { 692 struct adapter *adap = cookie; 693 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 694 695 if (v & PFSW_F) { 696 adap->swintr = 1; 697 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 698 } 699 if (adap->flags & MASTER_PF) 700 t4_slow_intr_handler(adap); 701 return IRQ_HANDLED; 702 } 703 704 /* 705 * Name the MSI-X interrupts. 706 */ 707 static void name_msix_vecs(struct adapter *adap) 708 { 709 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 710 711 /* non-data interrupts */ 712 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 713 714 /* FW events */ 715 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 716 adap->port[0]->name); 717 718 /* Ethernet queues */ 719 for_each_port(adap, j) { 720 struct net_device *d = adap->port[j]; 721 const struct port_info *pi = netdev_priv(d); 722 723 for (i = 0; i < pi->nqsets; i++, msi_idx++) 724 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 725 d->name, i); 726 } 727 728 /* offload queues */ 729 for_each_iscsirxq(&adap->sge, i) 730 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d", 731 adap->port[0]->name, i); 732 733 for_each_rdmarxq(&adap->sge, i) 734 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 735 adap->port[0]->name, i); 736 737 for_each_rdmaciq(&adap->sge, i) 738 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d", 739 adap->port[0]->name, i); 740 } 741 742 static int request_msix_queue_irqs(struct adapter *adap) 743 { 744 struct sge *s = &adap->sge; 745 int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0; 746 int msi_index = 2; 747 748 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 749 adap->msix_info[1].desc, &s->fw_evtq); 750 if (err) 751 return err; 752 753 for_each_ethrxq(s, ethqidx) { 754 err = request_irq(adap->msix_info[msi_index].vec, 755 t4_sge_intr_msix, 0, 756 adap->msix_info[msi_index].desc, 757 &s->ethrxq[ethqidx].rspq); 758 if (err) 759 goto unwind; 760 msi_index++; 761 } 762 for_each_iscsirxq(s, iscsiqidx) { 763 err = request_irq(adap->msix_info[msi_index].vec, 764 t4_sge_intr_msix, 0, 765 adap->msix_info[msi_index].desc, 766 &s->iscsirxq[iscsiqidx].rspq); 767 if (err) 768 goto unwind; 769 msi_index++; 770 } 771 for_each_rdmarxq(s, rdmaqidx) { 772 err = request_irq(adap->msix_info[msi_index].vec, 773 t4_sge_intr_msix, 0, 774 adap->msix_info[msi_index].desc, 775 &s->rdmarxq[rdmaqidx].rspq); 776 if (err) 777 goto unwind; 778 msi_index++; 779 } 780 for_each_rdmaciq(s, rdmaciqqidx) { 781 err = request_irq(adap->msix_info[msi_index].vec, 782 t4_sge_intr_msix, 0, 783 adap->msix_info[msi_index].desc, 784 &s->rdmaciq[rdmaciqqidx].rspq); 785 if (err) 786 goto unwind; 787 msi_index++; 788 } 789 return 0; 790 791 unwind: 792 while (--rdmaciqqidx >= 0) 793 free_irq(adap->msix_info[--msi_index].vec, 794 &s->rdmaciq[rdmaciqqidx].rspq); 795 while (--rdmaqidx >= 0) 796 free_irq(adap->msix_info[--msi_index].vec, 797 &s->rdmarxq[rdmaqidx].rspq); 798 while (--iscsiqidx >= 0) 799 free_irq(adap->msix_info[--msi_index].vec, 800 &s->iscsirxq[iscsiqidx].rspq); 801 while (--ethqidx >= 0) 802 free_irq(adap->msix_info[--msi_index].vec, 803 &s->ethrxq[ethqidx].rspq); 804 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 805 return err; 806 } 807 808 static void free_msix_queue_irqs(struct adapter *adap) 809 { 810 int i, msi_index = 2; 811 struct sge *s = &adap->sge; 812 813 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 814 for_each_ethrxq(s, i) 815 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 816 for_each_iscsirxq(s, i) 817 free_irq(adap->msix_info[msi_index++].vec, 818 &s->iscsirxq[i].rspq); 819 for_each_rdmarxq(s, i) 820 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 821 for_each_rdmaciq(s, i) 822 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq); 823 } 824 825 /** 826 * cxgb4_write_rss - write the RSS table for a given port 827 * @pi: the port 828 * @queues: array of queue indices for RSS 829 * 830 * Sets up the portion of the HW RSS table for the port's VI to distribute 831 * packets to the Rx queues in @queues. 832 * Should never be called before setting up sge eth rx queues 833 */ 834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 835 { 836 u16 *rss; 837 int i, err; 838 struct adapter *adapter = pi->adapter; 839 const struct sge_eth_rxq *rxq; 840 841 rxq = &adapter->sge.ethrxq[pi->first_qset]; 842 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 843 if (!rss) 844 return -ENOMEM; 845 846 /* map the queue indices to queue ids */ 847 for (i = 0; i < pi->rss_size; i++, queues++) 848 rss[i] = rxq[*queues].rspq.abs_id; 849 850 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 851 pi->rss_size, rss, pi->rss_size); 852 /* If Tunnel All Lookup isn't specified in the global RSS 853 * Configuration, then we need to specify a default Ingress 854 * Queue for any ingress packets which aren't hashed. We'll 855 * use our first ingress queue ... 856 */ 857 if (!err) 858 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 859 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 860 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 861 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 862 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 863 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 864 rss[0]); 865 kfree(rss); 866 return err; 867 } 868 869 /** 870 * setup_rss - configure RSS 871 * @adap: the adapter 872 * 873 * Sets up RSS for each port. 874 */ 875 static int setup_rss(struct adapter *adap) 876 { 877 int i, j, err; 878 879 for_each_port(adap, i) { 880 const struct port_info *pi = adap2pinfo(adap, i); 881 882 /* Fill default values with equal distribution */ 883 for (j = 0; j < pi->rss_size; j++) 884 pi->rss[j] = j % pi->nqsets; 885 886 err = cxgb4_write_rss(pi, pi->rss); 887 if (err) 888 return err; 889 } 890 return 0; 891 } 892 893 /* 894 * Return the channel of the ingress queue with the given qid. 895 */ 896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 897 { 898 qid -= p->ingr_start; 899 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 900 } 901 902 /* 903 * Wait until all NAPI handlers are descheduled. 904 */ 905 static void quiesce_rx(struct adapter *adap) 906 { 907 int i; 908 909 for (i = 0; i < adap->sge.ingr_sz; i++) { 910 struct sge_rspq *q = adap->sge.ingr_map[i]; 911 912 if (q && q->handler) { 913 napi_disable(&q->napi); 914 local_bh_disable(); 915 while (!cxgb_poll_lock_napi(q)) 916 mdelay(1); 917 local_bh_enable(); 918 } 919 920 } 921 } 922 923 /* Disable interrupt and napi handler */ 924 static void disable_interrupts(struct adapter *adap) 925 { 926 if (adap->flags & FULL_INIT_DONE) { 927 t4_intr_disable(adap); 928 if (adap->flags & USING_MSIX) { 929 free_msix_queue_irqs(adap); 930 free_irq(adap->msix_info[0].vec, adap); 931 } else { 932 free_irq(adap->pdev->irq, adap); 933 } 934 quiesce_rx(adap); 935 } 936 } 937 938 /* 939 * Enable NAPI scheduling and interrupt generation for all Rx queues. 940 */ 941 static void enable_rx(struct adapter *adap) 942 { 943 int i; 944 945 for (i = 0; i < adap->sge.ingr_sz; i++) { 946 struct sge_rspq *q = adap->sge.ingr_map[i]; 947 948 if (!q) 949 continue; 950 if (q->handler) { 951 cxgb_busy_poll_init_lock(q); 952 napi_enable(&q->napi); 953 } 954 /* 0-increment GTS to start the timer and enable interrupts */ 955 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 956 SEINTARM_V(q->intr_params) | 957 INGRESSQID_V(q->cntxt_id)); 958 } 959 } 960 961 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q, 962 unsigned int nq, unsigned int per_chan, int msi_idx, 963 u16 *ids) 964 { 965 int i, err; 966 967 for (i = 0; i < nq; i++, q++) { 968 if (msi_idx > 0) 969 msi_idx++; 970 err = t4_sge_alloc_rxq(adap, &q->rspq, false, 971 adap->port[i / per_chan], 972 msi_idx, q->fl.size ? &q->fl : NULL, 973 uldrx_handler, 0); 974 if (err) 975 return err; 976 memset(&q->stats, 0, sizeof(q->stats)); 977 if (ids) 978 ids[i] = q->rspq.abs_id; 979 } 980 return 0; 981 } 982 983 /** 984 * setup_sge_queues - configure SGE Tx/Rx/response queues 985 * @adap: the adapter 986 * 987 * Determines how many sets of SGE queues to use and initializes them. 988 * We support multiple queue sets per port if we have MSI-X, otherwise 989 * just one queue set per port. 990 */ 991 static int setup_sge_queues(struct adapter *adap) 992 { 993 int err, msi_idx, i, j; 994 struct sge *s = &adap->sge; 995 996 bitmap_zero(s->starving_fl, s->egr_sz); 997 bitmap_zero(s->txq_maperr, s->egr_sz); 998 999 if (adap->flags & USING_MSIX) 1000 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 1001 else { 1002 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1003 NULL, NULL, -1); 1004 if (err) 1005 return err; 1006 msi_idx = -((int)s->intrq.abs_id + 1); 1007 } 1008 1009 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here, 1010 * don't forget to update the following which need to be 1011 * synchronized to and changes here. 1012 * 1013 * 1. The calculations of MAX_INGQ in cxgb4.h. 1014 * 1015 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs 1016 * to accommodate any new/deleted Ingress Queues 1017 * which need MSI-X Vectors. 1018 * 1019 * 3. Update sge_qinfo_show() to include information on the 1020 * new/deleted queues. 1021 */ 1022 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1023 msi_idx, NULL, fwevtq_handler, -1); 1024 if (err) { 1025 freeout: t4_free_sge_resources(adap); 1026 return err; 1027 } 1028 1029 for_each_port(adap, i) { 1030 struct net_device *dev = adap->port[i]; 1031 struct port_info *pi = netdev_priv(dev); 1032 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1033 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1034 1035 for (j = 0; j < pi->nqsets; j++, q++) { 1036 if (msi_idx > 0) 1037 msi_idx++; 1038 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1039 msi_idx, &q->fl, 1040 t4_ethrx_handler, 1041 t4_get_mps_bg_map(adap, 1042 pi->tx_chan)); 1043 if (err) 1044 goto freeout; 1045 q->rspq.idx = j; 1046 memset(&q->stats, 0, sizeof(q->stats)); 1047 } 1048 for (j = 0; j < pi->nqsets; j++, t++) { 1049 err = t4_sge_alloc_eth_txq(adap, t, dev, 1050 netdev_get_tx_queue(dev, j), 1051 s->fw_evtq.cntxt_id); 1052 if (err) 1053 goto freeout; 1054 } 1055 } 1056 1057 j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */ 1058 for_each_iscsirxq(s, i) { 1059 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], 1060 adap->port[i / j], 1061 s->fw_evtq.cntxt_id); 1062 if (err) 1063 goto freeout; 1064 } 1065 1066 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \ 1067 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \ 1068 if (err) \ 1069 goto freeout; \ 1070 if (msi_idx > 0) \ 1071 msi_idx += nq; \ 1072 } while (0) 1073 1074 ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq); 1075 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq); 1076 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */ 1077 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq); 1078 1079 #undef ALLOC_OFLD_RXQS 1080 1081 for_each_port(adap, i) { 1082 /* 1083 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1084 * have RDMA queues, and that's the right value. 1085 */ 1086 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1087 s->fw_evtq.cntxt_id, 1088 s->rdmarxq[i].rspq.cntxt_id); 1089 if (err) 1090 goto freeout; 1091 } 1092 1093 t4_write_reg(adap, is_t4(adap->params.chip) ? 1094 MPS_TRC_RSS_CONTROL_A : 1095 MPS_T5_TRC_RSS_CONTROL_A, 1096 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1097 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1098 return 0; 1099 } 1100 1101 /* 1102 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1103 * The allocated memory is cleared. 1104 */ 1105 void *t4_alloc_mem(size_t size) 1106 { 1107 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1108 1109 if (!p) 1110 p = vzalloc(size); 1111 return p; 1112 } 1113 1114 /* 1115 * Free memory allocated through alloc_mem(). 1116 */ 1117 void t4_free_mem(void *addr) 1118 { 1119 kvfree(addr); 1120 } 1121 1122 /* Send a Work Request to write the filter at a specified index. We construct 1123 * a Firmware Filter Work Request to have the work done and put the indicated 1124 * filter into "pending" mode which will prevent any further actions against 1125 * it till we get a reply from the firmware on the completion status of the 1126 * request. 1127 */ 1128 static int set_filter_wr(struct adapter *adapter, int fidx) 1129 { 1130 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1131 struct sk_buff *skb; 1132 struct fw_filter_wr *fwr; 1133 unsigned int ftid; 1134 1135 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL); 1136 if (!skb) 1137 return -ENOMEM; 1138 1139 /* If the new filter requires loopback Destination MAC and/or VLAN 1140 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1141 * the filter. 1142 */ 1143 if (f->fs.newdmac || f->fs.newvlan) { 1144 /* allocate L2T entry for new filter */ 1145 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan, 1146 f->fs.eport, f->fs.dmac); 1147 if (f->l2t == NULL) { 1148 kfree_skb(skb); 1149 return -ENOMEM; 1150 } 1151 } 1152 1153 ftid = adapter->tids.ftid_base + fidx; 1154 1155 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1156 memset(fwr, 0, sizeof(*fwr)); 1157 1158 /* It would be nice to put most of the following in t4_hw.c but most 1159 * of the work is translating the cxgbtool ch_filter_specification 1160 * into the Work Request and the definition of that structure is 1161 * currently in cxgbtool.h which isn't appropriate to pull into the 1162 * common code. We may eventually try to come up with a more neutral 1163 * filter specification structure but for now it's easiest to simply 1164 * put this fairly direct code in line ... 1165 */ 1166 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); 1167 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16)); 1168 fwr->tid_to_iq = 1169 htonl(FW_FILTER_WR_TID_V(ftid) | 1170 FW_FILTER_WR_RQTYPE_V(f->fs.type) | 1171 FW_FILTER_WR_NOREPLY_V(0) | 1172 FW_FILTER_WR_IQ_V(f->fs.iq)); 1173 fwr->del_filter_to_l2tix = 1174 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) | 1175 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) | 1176 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) | 1177 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) | 1178 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) | 1179 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) | 1180 FW_FILTER_WR_DMAC_V(f->fs.newdmac) | 1181 FW_FILTER_WR_SMAC_V(f->fs.newsmac) | 1182 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT || 1183 f->fs.newvlan == VLAN_REWRITE) | 1184 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE || 1185 f->fs.newvlan == VLAN_REWRITE) | 1186 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) | 1187 FW_FILTER_WR_TXCHAN_V(f->fs.eport) | 1188 FW_FILTER_WR_PRIO_V(f->fs.prio) | 1189 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0)); 1190 fwr->ethtype = htons(f->fs.val.ethtype); 1191 fwr->ethtypem = htons(f->fs.mask.ethtype); 1192 fwr->frag_to_ovlan_vldm = 1193 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) | 1194 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) | 1195 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) | 1196 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) | 1197 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) | 1198 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld)); 1199 fwr->smac_sel = 0; 1200 fwr->rx_chan_rx_rpl_iq = 1201 htons(FW_FILTER_WR_RX_CHAN_V(0) | 1202 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id)); 1203 fwr->maci_to_matchtypem = 1204 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) | 1205 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) | 1206 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) | 1207 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) | 1208 FW_FILTER_WR_PORT_V(f->fs.val.iport) | 1209 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) | 1210 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) | 1211 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype)); 1212 fwr->ptcl = f->fs.val.proto; 1213 fwr->ptclm = f->fs.mask.proto; 1214 fwr->ttyp = f->fs.val.tos; 1215 fwr->ttypm = f->fs.mask.tos; 1216 fwr->ivlan = htons(f->fs.val.ivlan); 1217 fwr->ivlanm = htons(f->fs.mask.ivlan); 1218 fwr->ovlan = htons(f->fs.val.ovlan); 1219 fwr->ovlanm = htons(f->fs.mask.ovlan); 1220 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1221 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1222 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1223 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1224 fwr->lp = htons(f->fs.val.lport); 1225 fwr->lpm = htons(f->fs.mask.lport); 1226 fwr->fp = htons(f->fs.val.fport); 1227 fwr->fpm = htons(f->fs.mask.fport); 1228 if (f->fs.newsmac) 1229 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1230 1231 /* Mark the filter as "pending" and ship off the Filter Work Request. 1232 * When we get the Work Request Reply we'll clear the pending status. 1233 */ 1234 f->pending = 1; 1235 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1236 t4_ofld_send(adapter, skb); 1237 return 0; 1238 } 1239 1240 /* Delete the filter at a specified index. 1241 */ 1242 static int del_filter_wr(struct adapter *adapter, int fidx) 1243 { 1244 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1245 struct sk_buff *skb; 1246 struct fw_filter_wr *fwr; 1247 unsigned int len, ftid; 1248 1249 len = sizeof(*fwr); 1250 ftid = adapter->tids.ftid_base + fidx; 1251 1252 skb = alloc_skb(len, GFP_KERNEL); 1253 if (!skb) 1254 return -ENOMEM; 1255 1256 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1257 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1258 1259 /* Mark the filter as "pending" and ship off the Filter Work Request. 1260 * When we get the Work Request Reply we'll clear the pending status. 1261 */ 1262 f->pending = 1; 1263 t4_mgmt_tx(adapter, skb); 1264 return 0; 1265 } 1266 1267 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1268 void *accel_priv, select_queue_fallback_t fallback) 1269 { 1270 int txq; 1271 1272 #ifdef CONFIG_CHELSIO_T4_DCB 1273 /* If a Data Center Bridging has been successfully negotiated on this 1274 * link then we'll use the skb's priority to map it to a TX Queue. 1275 * The skb's priority is determined via the VLAN Tag Priority Code 1276 * Point field. 1277 */ 1278 if (cxgb4_dcb_enabled(dev)) { 1279 u16 vlan_tci; 1280 int err; 1281 1282 err = vlan_get_tag(skb, &vlan_tci); 1283 if (unlikely(err)) { 1284 if (net_ratelimit()) 1285 netdev_warn(dev, 1286 "TX Packet without VLAN Tag on DCB Link\n"); 1287 txq = 0; 1288 } else { 1289 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1290 #ifdef CONFIG_CHELSIO_T4_FCOE 1291 if (skb->protocol == htons(ETH_P_FCOE)) 1292 txq = skb->priority & 0x7; 1293 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1294 } 1295 return txq; 1296 } 1297 #endif /* CONFIG_CHELSIO_T4_DCB */ 1298 1299 if (select_queue) { 1300 txq = (skb_rx_queue_recorded(skb) 1301 ? skb_get_rx_queue(skb) 1302 : smp_processor_id()); 1303 1304 while (unlikely(txq >= dev->real_num_tx_queues)) 1305 txq -= dev->real_num_tx_queues; 1306 1307 return txq; 1308 } 1309 1310 return fallback(dev, skb) % dev->real_num_tx_queues; 1311 } 1312 1313 static int closest_timer(const struct sge *s, int time) 1314 { 1315 int i, delta, match = 0, min_delta = INT_MAX; 1316 1317 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1318 delta = time - s->timer_val[i]; 1319 if (delta < 0) 1320 delta = -delta; 1321 if (delta < min_delta) { 1322 min_delta = delta; 1323 match = i; 1324 } 1325 } 1326 return match; 1327 } 1328 1329 static int closest_thres(const struct sge *s, int thres) 1330 { 1331 int i, delta, match = 0, min_delta = INT_MAX; 1332 1333 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1334 delta = thres - s->counter_val[i]; 1335 if (delta < 0) 1336 delta = -delta; 1337 if (delta < min_delta) { 1338 min_delta = delta; 1339 match = i; 1340 } 1341 } 1342 return match; 1343 } 1344 1345 /** 1346 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1347 * @q: the Rx queue 1348 * @us: the hold-off time in us, or 0 to disable timer 1349 * @cnt: the hold-off packet count, or 0 to disable counter 1350 * 1351 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1352 * one of the two needs to be enabled for the queue to generate interrupts. 1353 */ 1354 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1355 unsigned int us, unsigned int cnt) 1356 { 1357 struct adapter *adap = q->adap; 1358 1359 if ((us | cnt) == 0) 1360 cnt = 1; 1361 1362 if (cnt) { 1363 int err; 1364 u32 v, new_idx; 1365 1366 new_idx = closest_thres(&adap->sge, cnt); 1367 if (q->desc && q->pktcnt_idx != new_idx) { 1368 /* the queue has already been created, update it */ 1369 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1370 FW_PARAMS_PARAM_X_V( 1371 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1372 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1373 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1374 &v, &new_idx); 1375 if (err) 1376 return err; 1377 } 1378 q->pktcnt_idx = new_idx; 1379 } 1380 1381 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1382 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1383 return 0; 1384 } 1385 1386 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1387 { 1388 const struct port_info *pi = netdev_priv(dev); 1389 netdev_features_t changed = dev->features ^ features; 1390 int err; 1391 1392 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1393 return 0; 1394 1395 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1396 -1, -1, -1, 1397 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1398 if (unlikely(err)) 1399 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1400 return err; 1401 } 1402 1403 static int setup_debugfs(struct adapter *adap) 1404 { 1405 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1406 return -1; 1407 1408 #ifdef CONFIG_DEBUG_FS 1409 t4_setup_debugfs(adap); 1410 #endif 1411 return 0; 1412 } 1413 1414 /* 1415 * upper-layer driver support 1416 */ 1417 1418 /* 1419 * Allocate an active-open TID and set it to the supplied value. 1420 */ 1421 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1422 { 1423 int atid = -1; 1424 1425 spin_lock_bh(&t->atid_lock); 1426 if (t->afree) { 1427 union aopen_entry *p = t->afree; 1428 1429 atid = (p - t->atid_tab) + t->atid_base; 1430 t->afree = p->next; 1431 p->data = data; 1432 t->atids_in_use++; 1433 } 1434 spin_unlock_bh(&t->atid_lock); 1435 return atid; 1436 } 1437 EXPORT_SYMBOL(cxgb4_alloc_atid); 1438 1439 /* 1440 * Release an active-open TID. 1441 */ 1442 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1443 { 1444 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1445 1446 spin_lock_bh(&t->atid_lock); 1447 p->next = t->afree; 1448 t->afree = p; 1449 t->atids_in_use--; 1450 spin_unlock_bh(&t->atid_lock); 1451 } 1452 EXPORT_SYMBOL(cxgb4_free_atid); 1453 1454 /* 1455 * Allocate a server TID and set it to the supplied value. 1456 */ 1457 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1458 { 1459 int stid; 1460 1461 spin_lock_bh(&t->stid_lock); 1462 if (family == PF_INET) { 1463 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1464 if (stid < t->nstids) 1465 __set_bit(stid, t->stid_bmap); 1466 else 1467 stid = -1; 1468 } else { 1469 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1470 if (stid < 0) 1471 stid = -1; 1472 } 1473 if (stid >= 0) { 1474 t->stid_tab[stid].data = data; 1475 stid += t->stid_base; 1476 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1477 * This is equivalent to 4 TIDs. With CLIP enabled it 1478 * needs 2 TIDs. 1479 */ 1480 if (family == PF_INET) 1481 t->stids_in_use++; 1482 else 1483 t->stids_in_use += 2; 1484 } 1485 spin_unlock_bh(&t->stid_lock); 1486 return stid; 1487 } 1488 EXPORT_SYMBOL(cxgb4_alloc_stid); 1489 1490 /* Allocate a server filter TID and set it to the supplied value. 1491 */ 1492 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1493 { 1494 int stid; 1495 1496 spin_lock_bh(&t->stid_lock); 1497 if (family == PF_INET) { 1498 stid = find_next_zero_bit(t->stid_bmap, 1499 t->nstids + t->nsftids, t->nstids); 1500 if (stid < (t->nstids + t->nsftids)) 1501 __set_bit(stid, t->stid_bmap); 1502 else 1503 stid = -1; 1504 } else { 1505 stid = -1; 1506 } 1507 if (stid >= 0) { 1508 t->stid_tab[stid].data = data; 1509 stid -= t->nstids; 1510 stid += t->sftid_base; 1511 t->sftids_in_use++; 1512 } 1513 spin_unlock_bh(&t->stid_lock); 1514 return stid; 1515 } 1516 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1517 1518 /* Release a server TID. 1519 */ 1520 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1521 { 1522 /* Is it a server filter TID? */ 1523 if (t->nsftids && (stid >= t->sftid_base)) { 1524 stid -= t->sftid_base; 1525 stid += t->nstids; 1526 } else { 1527 stid -= t->stid_base; 1528 } 1529 1530 spin_lock_bh(&t->stid_lock); 1531 if (family == PF_INET) 1532 __clear_bit(stid, t->stid_bmap); 1533 else 1534 bitmap_release_region(t->stid_bmap, stid, 1); 1535 t->stid_tab[stid].data = NULL; 1536 if (stid < t->nstids) { 1537 if (family == PF_INET) 1538 t->stids_in_use--; 1539 else 1540 t->stids_in_use -= 2; 1541 } else { 1542 t->sftids_in_use--; 1543 } 1544 spin_unlock_bh(&t->stid_lock); 1545 } 1546 EXPORT_SYMBOL(cxgb4_free_stid); 1547 1548 /* 1549 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1550 */ 1551 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1552 unsigned int tid) 1553 { 1554 struct cpl_tid_release *req; 1555 1556 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1557 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1558 INIT_TP_WR(req, tid); 1559 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1560 } 1561 1562 /* 1563 * Queue a TID release request and if necessary schedule a work queue to 1564 * process it. 1565 */ 1566 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1567 unsigned int tid) 1568 { 1569 void **p = &t->tid_tab[tid]; 1570 struct adapter *adap = container_of(t, struct adapter, tids); 1571 1572 spin_lock_bh(&adap->tid_release_lock); 1573 *p = adap->tid_release_head; 1574 /* Low 2 bits encode the Tx channel number */ 1575 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1576 if (!adap->tid_release_task_busy) { 1577 adap->tid_release_task_busy = true; 1578 queue_work(adap->workq, &adap->tid_release_task); 1579 } 1580 spin_unlock_bh(&adap->tid_release_lock); 1581 } 1582 1583 /* 1584 * Process the list of pending TID release requests. 1585 */ 1586 static void process_tid_release_list(struct work_struct *work) 1587 { 1588 struct sk_buff *skb; 1589 struct adapter *adap; 1590 1591 adap = container_of(work, struct adapter, tid_release_task); 1592 1593 spin_lock_bh(&adap->tid_release_lock); 1594 while (adap->tid_release_head) { 1595 void **p = adap->tid_release_head; 1596 unsigned int chan = (uintptr_t)p & 3; 1597 p = (void *)p - chan; 1598 1599 adap->tid_release_head = *p; 1600 *p = NULL; 1601 spin_unlock_bh(&adap->tid_release_lock); 1602 1603 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1604 GFP_KERNEL))) 1605 schedule_timeout_uninterruptible(1); 1606 1607 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1608 t4_ofld_send(adap, skb); 1609 spin_lock_bh(&adap->tid_release_lock); 1610 } 1611 adap->tid_release_task_busy = false; 1612 spin_unlock_bh(&adap->tid_release_lock); 1613 } 1614 1615 /* 1616 * Release a TID and inform HW. If we are unable to allocate the release 1617 * message we defer to a work queue. 1618 */ 1619 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1620 { 1621 struct sk_buff *skb; 1622 struct adapter *adap = container_of(t, struct adapter, tids); 1623 1624 WARN_ON(tid >= t->ntids); 1625 1626 if (t->tid_tab[tid]) { 1627 t->tid_tab[tid] = NULL; 1628 if (t->hash_base && (tid >= t->hash_base)) 1629 atomic_dec(&t->hash_tids_in_use); 1630 else 1631 atomic_dec(&t->tids_in_use); 1632 } 1633 1634 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1635 if (likely(skb)) { 1636 mk_tid_release(skb, chan, tid); 1637 t4_ofld_send(adap, skb); 1638 } else 1639 cxgb4_queue_tid_release(t, chan, tid); 1640 } 1641 EXPORT_SYMBOL(cxgb4_remove_tid); 1642 1643 /* 1644 * Allocate and initialize the TID tables. Returns 0 on success. 1645 */ 1646 static int tid_init(struct tid_info *t) 1647 { 1648 size_t size; 1649 unsigned int stid_bmap_size; 1650 unsigned int natids = t->natids; 1651 struct adapter *adap = container_of(t, struct adapter, tids); 1652 1653 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1654 size = t->ntids * sizeof(*t->tid_tab) + 1655 natids * sizeof(*t->atid_tab) + 1656 t->nstids * sizeof(*t->stid_tab) + 1657 t->nsftids * sizeof(*t->stid_tab) + 1658 stid_bmap_size * sizeof(long) + 1659 t->nftids * sizeof(*t->ftid_tab) + 1660 t->nsftids * sizeof(*t->ftid_tab); 1661 1662 t->tid_tab = t4_alloc_mem(size); 1663 if (!t->tid_tab) 1664 return -ENOMEM; 1665 1666 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1667 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1668 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1669 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1670 spin_lock_init(&t->stid_lock); 1671 spin_lock_init(&t->atid_lock); 1672 1673 t->stids_in_use = 0; 1674 t->sftids_in_use = 0; 1675 t->afree = NULL; 1676 t->atids_in_use = 0; 1677 atomic_set(&t->tids_in_use, 0); 1678 atomic_set(&t->hash_tids_in_use, 0); 1679 1680 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1681 if (natids) { 1682 while (--natids) 1683 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1684 t->afree = t->atid_tab; 1685 } 1686 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1687 /* Reserve stid 0 for T4/T5 adapters */ 1688 if (!t->stid_base && 1689 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)) 1690 __set_bit(0, t->stid_bmap); 1691 1692 return 0; 1693 } 1694 1695 /** 1696 * cxgb4_create_server - create an IP server 1697 * @dev: the device 1698 * @stid: the server TID 1699 * @sip: local IP address to bind server to 1700 * @sport: the server's TCP port 1701 * @queue: queue to direct messages from this server to 1702 * 1703 * Create an IP server for the given port and address. 1704 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1705 */ 1706 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1707 __be32 sip, __be16 sport, __be16 vlan, 1708 unsigned int queue) 1709 { 1710 unsigned int chan; 1711 struct sk_buff *skb; 1712 struct adapter *adap; 1713 struct cpl_pass_open_req *req; 1714 int ret; 1715 1716 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1717 if (!skb) 1718 return -ENOMEM; 1719 1720 adap = netdev2adap(dev); 1721 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1722 INIT_TP_WR(req, 0); 1723 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1724 req->local_port = sport; 1725 req->peer_port = htons(0); 1726 req->local_ip = sip; 1727 req->peer_ip = htonl(0); 1728 chan = rxq_to_chan(&adap->sge, queue); 1729 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1730 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1731 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1732 ret = t4_mgmt_tx(adap, skb); 1733 return net_xmit_eval(ret); 1734 } 1735 EXPORT_SYMBOL(cxgb4_create_server); 1736 1737 /* cxgb4_create_server6 - create an IPv6 server 1738 * @dev: the device 1739 * @stid: the server TID 1740 * @sip: local IPv6 address to bind server to 1741 * @sport: the server's TCP port 1742 * @queue: queue to direct messages from this server to 1743 * 1744 * Create an IPv6 server for the given port and address. 1745 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1746 */ 1747 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1748 const struct in6_addr *sip, __be16 sport, 1749 unsigned int queue) 1750 { 1751 unsigned int chan; 1752 struct sk_buff *skb; 1753 struct adapter *adap; 1754 struct cpl_pass_open_req6 *req; 1755 int ret; 1756 1757 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1758 if (!skb) 1759 return -ENOMEM; 1760 1761 adap = netdev2adap(dev); 1762 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1763 INIT_TP_WR(req, 0); 1764 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1765 req->local_port = sport; 1766 req->peer_port = htons(0); 1767 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1768 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1769 req->peer_ip_hi = cpu_to_be64(0); 1770 req->peer_ip_lo = cpu_to_be64(0); 1771 chan = rxq_to_chan(&adap->sge, queue); 1772 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1773 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1774 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1775 ret = t4_mgmt_tx(adap, skb); 1776 return net_xmit_eval(ret); 1777 } 1778 EXPORT_SYMBOL(cxgb4_create_server6); 1779 1780 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1781 unsigned int queue, bool ipv6) 1782 { 1783 struct sk_buff *skb; 1784 struct adapter *adap; 1785 struct cpl_close_listsvr_req *req; 1786 int ret; 1787 1788 adap = netdev2adap(dev); 1789 1790 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1791 if (!skb) 1792 return -ENOMEM; 1793 1794 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1795 INIT_TP_WR(req, 0); 1796 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1797 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1798 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1799 ret = t4_mgmt_tx(adap, skb); 1800 return net_xmit_eval(ret); 1801 } 1802 EXPORT_SYMBOL(cxgb4_remove_server); 1803 1804 /** 1805 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1806 * @mtus: the HW MTU table 1807 * @mtu: the target MTU 1808 * @idx: index of selected entry in the MTU table 1809 * 1810 * Returns the index and the value in the HW MTU table that is closest to 1811 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1812 * table, in which case that smallest available value is selected. 1813 */ 1814 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1815 unsigned int *idx) 1816 { 1817 unsigned int i = 0; 1818 1819 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1820 ++i; 1821 if (idx) 1822 *idx = i; 1823 return mtus[i]; 1824 } 1825 EXPORT_SYMBOL(cxgb4_best_mtu); 1826 1827 /** 1828 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1829 * @mtus: the HW MTU table 1830 * @header_size: Header Size 1831 * @data_size_max: maximum Data Segment Size 1832 * @data_size_align: desired Data Segment Size Alignment (2^N) 1833 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1834 * 1835 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1836 * MTU Table based solely on a Maximum MTU parameter, we break that 1837 * parameter up into a Header Size and Maximum Data Segment Size, and 1838 * provide a desired Data Segment Size Alignment. If we find an MTU in 1839 * the Hardware MTU Table which will result in a Data Segment Size with 1840 * the requested alignment _and_ that MTU isn't "too far" from the 1841 * closest MTU, then we'll return that rather than the closest MTU. 1842 */ 1843 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1844 unsigned short header_size, 1845 unsigned short data_size_max, 1846 unsigned short data_size_align, 1847 unsigned int *mtu_idxp) 1848 { 1849 unsigned short max_mtu = header_size + data_size_max; 1850 unsigned short data_size_align_mask = data_size_align - 1; 1851 int mtu_idx, aligned_mtu_idx; 1852 1853 /* Scan the MTU Table till we find an MTU which is larger than our 1854 * Maximum MTU or we reach the end of the table. Along the way, 1855 * record the last MTU found, if any, which will result in a Data 1856 * Segment Length matching the requested alignment. 1857 */ 1858 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1859 unsigned short data_size = mtus[mtu_idx] - header_size; 1860 1861 /* If this MTU minus the Header Size would result in a 1862 * Data Segment Size of the desired alignment, remember it. 1863 */ 1864 if ((data_size & data_size_align_mask) == 0) 1865 aligned_mtu_idx = mtu_idx; 1866 1867 /* If we're not at the end of the Hardware MTU Table and the 1868 * next element is larger than our Maximum MTU, drop out of 1869 * the loop. 1870 */ 1871 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1872 break; 1873 } 1874 1875 /* If we fell out of the loop because we ran to the end of the table, 1876 * then we just have to use the last [largest] entry. 1877 */ 1878 if (mtu_idx == NMTUS) 1879 mtu_idx--; 1880 1881 /* If we found an MTU which resulted in the requested Data Segment 1882 * Length alignment and that's "not far" from the largest MTU which is 1883 * less than or equal to the maximum MTU, then use that. 1884 */ 1885 if (aligned_mtu_idx >= 0 && 1886 mtu_idx - aligned_mtu_idx <= 1) 1887 mtu_idx = aligned_mtu_idx; 1888 1889 /* If the caller has passed in an MTU Index pointer, pass the 1890 * MTU Index back. Return the MTU value. 1891 */ 1892 if (mtu_idxp) 1893 *mtu_idxp = mtu_idx; 1894 return mtus[mtu_idx]; 1895 } 1896 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1897 1898 /** 1899 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1900 * @chip: chip type 1901 * @viid: VI id of the given port 1902 * 1903 * Return the SMT index for this VI. 1904 */ 1905 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1906 { 1907 /* In T4/T5, SMT contains 256 SMAC entries organized in 1908 * 128 rows of 2 entries each. 1909 * In T6, SMT contains 256 SMAC entries in 256 rows. 1910 * TODO: The below code needs to be updated when we add support 1911 * for 256 VFs. 1912 */ 1913 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1914 return ((viid & 0x7f) << 1); 1915 else 1916 return (viid & 0x7f); 1917 } 1918 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1919 1920 /** 1921 * cxgb4_port_chan - get the HW channel of a port 1922 * @dev: the net device for the port 1923 * 1924 * Return the HW Tx channel of the given port. 1925 */ 1926 unsigned int cxgb4_port_chan(const struct net_device *dev) 1927 { 1928 return netdev2pinfo(dev)->tx_chan; 1929 } 1930 EXPORT_SYMBOL(cxgb4_port_chan); 1931 1932 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1933 { 1934 struct adapter *adap = netdev2adap(dev); 1935 u32 v1, v2, lp_count, hp_count; 1936 1937 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1938 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1939 if (is_t4(adap->params.chip)) { 1940 lp_count = LP_COUNT_G(v1); 1941 hp_count = HP_COUNT_G(v1); 1942 } else { 1943 lp_count = LP_COUNT_T5_G(v1); 1944 hp_count = HP_COUNT_T5_G(v2); 1945 } 1946 return lpfifo ? lp_count : hp_count; 1947 } 1948 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1949 1950 /** 1951 * cxgb4_port_viid - get the VI id of a port 1952 * @dev: the net device for the port 1953 * 1954 * Return the VI id of the given port. 1955 */ 1956 unsigned int cxgb4_port_viid(const struct net_device *dev) 1957 { 1958 return netdev2pinfo(dev)->viid; 1959 } 1960 EXPORT_SYMBOL(cxgb4_port_viid); 1961 1962 /** 1963 * cxgb4_port_idx - get the index of a port 1964 * @dev: the net device for the port 1965 * 1966 * Return the index of the given port. 1967 */ 1968 unsigned int cxgb4_port_idx(const struct net_device *dev) 1969 { 1970 return netdev2pinfo(dev)->port_id; 1971 } 1972 EXPORT_SYMBOL(cxgb4_port_idx); 1973 1974 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1975 struct tp_tcp_stats *v6) 1976 { 1977 struct adapter *adap = pci_get_drvdata(pdev); 1978 1979 spin_lock(&adap->stats_lock); 1980 t4_tp_get_tcp_stats(adap, v4, v6); 1981 spin_unlock(&adap->stats_lock); 1982 } 1983 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1984 1985 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1986 const unsigned int *pgsz_order) 1987 { 1988 struct adapter *adap = netdev2adap(dev); 1989 1990 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1991 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1992 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1993 HPZ3_V(pgsz_order[3])); 1994 } 1995 EXPORT_SYMBOL(cxgb4_iscsi_init); 1996 1997 int cxgb4_flush_eq_cache(struct net_device *dev) 1998 { 1999 struct adapter *adap = netdev2adap(dev); 2000 2001 return t4_sge_ctxt_flush(adap, adap->mbox); 2002 } 2003 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2004 2005 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2006 { 2007 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 2008 __be64 indices; 2009 int ret; 2010 2011 spin_lock(&adap->win0_lock); 2012 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2013 sizeof(indices), (__be32 *)&indices, 2014 T4_MEMORY_READ); 2015 spin_unlock(&adap->win0_lock); 2016 if (!ret) { 2017 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2018 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2019 } 2020 return ret; 2021 } 2022 2023 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2024 u16 size) 2025 { 2026 struct adapter *adap = netdev2adap(dev); 2027 u16 hw_pidx, hw_cidx; 2028 int ret; 2029 2030 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2031 if (ret) 2032 goto out; 2033 2034 if (pidx != hw_pidx) { 2035 u16 delta; 2036 u32 val; 2037 2038 if (pidx >= hw_pidx) 2039 delta = pidx - hw_pidx; 2040 else 2041 delta = size - hw_pidx + pidx; 2042 2043 if (is_t4(adap->params.chip)) 2044 val = PIDX_V(delta); 2045 else 2046 val = PIDX_T5_V(delta); 2047 wmb(); 2048 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2049 QID_V(qid) | val); 2050 } 2051 out: 2052 return ret; 2053 } 2054 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2055 2056 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2057 { 2058 struct adapter *adap; 2059 u32 offset, memtype, memaddr; 2060 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2061 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2062 int ret; 2063 2064 adap = netdev2adap(dev); 2065 2066 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2067 2068 /* Figure out where the offset lands in the Memory Type/Address scheme. 2069 * This code assumes that the memory is laid out starting at offset 0 2070 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2071 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2072 * MC0, and some have both MC0 and MC1. 2073 */ 2074 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2075 edc0_size = EDRAM0_SIZE_G(size) << 20; 2076 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2077 edc1_size = EDRAM1_SIZE_G(size) << 20; 2078 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2079 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2080 2081 edc0_end = edc0_size; 2082 edc1_end = edc0_end + edc1_size; 2083 mc0_end = edc1_end + mc0_size; 2084 2085 if (offset < edc0_end) { 2086 memtype = MEM_EDC0; 2087 memaddr = offset; 2088 } else if (offset < edc1_end) { 2089 memtype = MEM_EDC1; 2090 memaddr = offset - edc0_end; 2091 } else { 2092 if (offset < mc0_end) { 2093 memtype = MEM_MC0; 2094 memaddr = offset - edc1_end; 2095 } else if (is_t5(adap->params.chip)) { 2096 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2097 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2098 mc1_end = mc0_end + mc1_size; 2099 if (offset < mc1_end) { 2100 memtype = MEM_MC1; 2101 memaddr = offset - mc0_end; 2102 } else { 2103 /* offset beyond the end of any memory */ 2104 goto err; 2105 } 2106 } else { 2107 /* T4/T6 only has a single memory channel */ 2108 goto err; 2109 } 2110 } 2111 2112 spin_lock(&adap->win0_lock); 2113 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2114 spin_unlock(&adap->win0_lock); 2115 return ret; 2116 2117 err: 2118 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2119 stag, offset); 2120 return -EINVAL; 2121 } 2122 EXPORT_SYMBOL(cxgb4_read_tpte); 2123 2124 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2125 { 2126 u32 hi, lo; 2127 struct adapter *adap; 2128 2129 adap = netdev2adap(dev); 2130 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2131 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2132 2133 return ((u64)hi << 32) | (u64)lo; 2134 } 2135 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2136 2137 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2138 unsigned int qid, 2139 enum cxgb4_bar2_qtype qtype, 2140 int user, 2141 u64 *pbar2_qoffset, 2142 unsigned int *pbar2_qid) 2143 { 2144 return t4_bar2_sge_qregs(netdev2adap(dev), 2145 qid, 2146 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2147 ? T4_BAR2_QTYPE_EGRESS 2148 : T4_BAR2_QTYPE_INGRESS), 2149 user, 2150 pbar2_qoffset, 2151 pbar2_qid); 2152 } 2153 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2154 2155 static struct pci_driver cxgb4_driver; 2156 2157 static void check_neigh_update(struct neighbour *neigh) 2158 { 2159 const struct device *parent; 2160 const struct net_device *netdev = neigh->dev; 2161 2162 if (netdev->priv_flags & IFF_802_1Q_VLAN) 2163 netdev = vlan_dev_real_dev(netdev); 2164 parent = netdev->dev.parent; 2165 if (parent && parent->driver == &cxgb4_driver.driver) 2166 t4_l2t_update(dev_get_drvdata(parent), neigh); 2167 } 2168 2169 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2170 void *data) 2171 { 2172 switch (event) { 2173 case NETEVENT_NEIGH_UPDATE: 2174 check_neigh_update(data); 2175 break; 2176 case NETEVENT_REDIRECT: 2177 default: 2178 break; 2179 } 2180 return 0; 2181 } 2182 2183 static bool netevent_registered; 2184 static struct notifier_block cxgb4_netevent_nb = { 2185 .notifier_call = netevent_cb 2186 }; 2187 2188 static void drain_db_fifo(struct adapter *adap, int usecs) 2189 { 2190 u32 v1, v2, lp_count, hp_count; 2191 2192 do { 2193 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2194 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2195 if (is_t4(adap->params.chip)) { 2196 lp_count = LP_COUNT_G(v1); 2197 hp_count = HP_COUNT_G(v1); 2198 } else { 2199 lp_count = LP_COUNT_T5_G(v1); 2200 hp_count = HP_COUNT_T5_G(v2); 2201 } 2202 2203 if (lp_count == 0 && hp_count == 0) 2204 break; 2205 set_current_state(TASK_UNINTERRUPTIBLE); 2206 schedule_timeout(usecs_to_jiffies(usecs)); 2207 } while (1); 2208 } 2209 2210 static void disable_txq_db(struct sge_txq *q) 2211 { 2212 unsigned long flags; 2213 2214 spin_lock_irqsave(&q->db_lock, flags); 2215 q->db_disabled = 1; 2216 spin_unlock_irqrestore(&q->db_lock, flags); 2217 } 2218 2219 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2220 { 2221 spin_lock_irq(&q->db_lock); 2222 if (q->db_pidx_inc) { 2223 /* Make sure that all writes to the TX descriptors 2224 * are committed before we tell HW about them. 2225 */ 2226 wmb(); 2227 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2228 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2229 q->db_pidx_inc = 0; 2230 } 2231 q->db_disabled = 0; 2232 spin_unlock_irq(&q->db_lock); 2233 } 2234 2235 static void disable_dbs(struct adapter *adap) 2236 { 2237 int i; 2238 2239 for_each_ethrxq(&adap->sge, i) 2240 disable_txq_db(&adap->sge.ethtxq[i].q); 2241 for_each_iscsirxq(&adap->sge, i) 2242 disable_txq_db(&adap->sge.ofldtxq[i].q); 2243 for_each_port(adap, i) 2244 disable_txq_db(&adap->sge.ctrlq[i].q); 2245 } 2246 2247 static void enable_dbs(struct adapter *adap) 2248 { 2249 int i; 2250 2251 for_each_ethrxq(&adap->sge, i) 2252 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2253 for_each_iscsirxq(&adap->sge, i) 2254 enable_txq_db(adap, &adap->sge.ofldtxq[i].q); 2255 for_each_port(adap, i) 2256 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2257 } 2258 2259 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2260 { 2261 if (adap->uld_handle[CXGB4_ULD_RDMA]) 2262 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 2263 cmd); 2264 } 2265 2266 static void process_db_full(struct work_struct *work) 2267 { 2268 struct adapter *adap; 2269 2270 adap = container_of(work, struct adapter, db_full_task); 2271 2272 drain_db_fifo(adap, dbfifo_drain_delay); 2273 enable_dbs(adap); 2274 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2275 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2276 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2277 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2278 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2279 else 2280 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2281 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2282 } 2283 2284 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2285 { 2286 u16 hw_pidx, hw_cidx; 2287 int ret; 2288 2289 spin_lock_irq(&q->db_lock); 2290 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2291 if (ret) 2292 goto out; 2293 if (q->db_pidx != hw_pidx) { 2294 u16 delta; 2295 u32 val; 2296 2297 if (q->db_pidx >= hw_pidx) 2298 delta = q->db_pidx - hw_pidx; 2299 else 2300 delta = q->size - hw_pidx + q->db_pidx; 2301 2302 if (is_t4(adap->params.chip)) 2303 val = PIDX_V(delta); 2304 else 2305 val = PIDX_T5_V(delta); 2306 wmb(); 2307 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2308 QID_V(q->cntxt_id) | val); 2309 } 2310 out: 2311 q->db_disabled = 0; 2312 q->db_pidx_inc = 0; 2313 spin_unlock_irq(&q->db_lock); 2314 if (ret) 2315 CH_WARN(adap, "DB drop recovery failed.\n"); 2316 } 2317 static void recover_all_queues(struct adapter *adap) 2318 { 2319 int i; 2320 2321 for_each_ethrxq(&adap->sge, i) 2322 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2323 for_each_iscsirxq(&adap->sge, i) 2324 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 2325 for_each_port(adap, i) 2326 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2327 } 2328 2329 static void process_db_drop(struct work_struct *work) 2330 { 2331 struct adapter *adap; 2332 2333 adap = container_of(work, struct adapter, db_drop_task); 2334 2335 if (is_t4(adap->params.chip)) { 2336 drain_db_fifo(adap, dbfifo_drain_delay); 2337 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2338 drain_db_fifo(adap, dbfifo_drain_delay); 2339 recover_all_queues(adap); 2340 drain_db_fifo(adap, dbfifo_drain_delay); 2341 enable_dbs(adap); 2342 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2343 } else if (is_t5(adap->params.chip)) { 2344 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2345 u16 qid = (dropped_db >> 15) & 0x1ffff; 2346 u16 pidx_inc = dropped_db & 0x1fff; 2347 u64 bar2_qoffset; 2348 unsigned int bar2_qid; 2349 int ret; 2350 2351 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2352 0, &bar2_qoffset, &bar2_qid); 2353 if (ret) 2354 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2355 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2356 else 2357 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2358 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2359 2360 /* Re-enable BAR2 WC */ 2361 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2362 } 2363 2364 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2365 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2366 } 2367 2368 void t4_db_full(struct adapter *adap) 2369 { 2370 if (is_t4(adap->params.chip)) { 2371 disable_dbs(adap); 2372 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2373 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2374 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2375 queue_work(adap->workq, &adap->db_full_task); 2376 } 2377 } 2378 2379 void t4_db_dropped(struct adapter *adap) 2380 { 2381 if (is_t4(adap->params.chip)) { 2382 disable_dbs(adap); 2383 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2384 } 2385 queue_work(adap->workq, &adap->db_drop_task); 2386 } 2387 2388 static void uld_attach(struct adapter *adap, unsigned int uld) 2389 { 2390 void *handle; 2391 struct cxgb4_lld_info lli; 2392 unsigned short i; 2393 2394 lli.pdev = adap->pdev; 2395 lli.pf = adap->pf; 2396 lli.l2t = adap->l2t; 2397 lli.tids = &adap->tids; 2398 lli.ports = adap->port; 2399 lli.vr = &adap->vres; 2400 lli.mtus = adap->params.mtus; 2401 if (uld == CXGB4_ULD_RDMA) { 2402 lli.rxq_ids = adap->sge.rdma_rxq; 2403 lli.ciq_ids = adap->sge.rdma_ciq; 2404 lli.nrxq = adap->sge.rdmaqs; 2405 lli.nciq = adap->sge.rdmaciqs; 2406 } else if (uld == CXGB4_ULD_ISCSI) { 2407 lli.rxq_ids = adap->sge.iscsi_rxq; 2408 lli.nrxq = adap->sge.iscsiqsets; 2409 } 2410 lli.ntxq = adap->sge.iscsiqsets; 2411 lli.nchan = adap->params.nports; 2412 lli.nports = adap->params.nports; 2413 lli.wr_cred = adap->params.ofldq_wr_cred; 2414 lli.adapter_type = adap->params.chip; 2415 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A)); 2416 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk; 2417 lli.udb_density = 1 << adap->params.sge.eq_qpp; 2418 lli.ucq_density = 1 << adap->params.sge.iq_qpp; 2419 lli.filt_mode = adap->params.tp.vlan_pri_map; 2420 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 2421 for (i = 0; i < NCHAN; i++) 2422 lli.tx_modq[i] = i; 2423 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A); 2424 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A); 2425 lli.fw_vers = adap->params.fw_vers; 2426 lli.dbfifo_int_thresh = dbfifo_int_thresh; 2427 lli.sge_ingpadboundary = adap->sge.fl_align; 2428 lli.sge_egrstatuspagesize = adap->sge.stat_len; 2429 lli.sge_pktshift = adap->sge.pktshift; 2430 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 2431 lli.max_ordird_qp = adap->params.max_ordird_qp; 2432 lli.max_ird_adapter = adap->params.max_ird_adapter; 2433 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl; 2434 lli.nodeid = dev_to_node(adap->pdev_dev); 2435 2436 handle = ulds[uld].add(&lli); 2437 if (IS_ERR(handle)) { 2438 dev_warn(adap->pdev_dev, 2439 "could not attach to the %s driver, error %ld\n", 2440 uld_str[uld], PTR_ERR(handle)); 2441 return; 2442 } 2443 2444 adap->uld_handle[uld] = handle; 2445 2446 if (!netevent_registered) { 2447 register_netevent_notifier(&cxgb4_netevent_nb); 2448 netevent_registered = true; 2449 } 2450 2451 if (adap->flags & FULL_INIT_DONE) 2452 ulds[uld].state_change(handle, CXGB4_STATE_UP); 2453 } 2454 2455 static void attach_ulds(struct adapter *adap) 2456 { 2457 unsigned int i; 2458 2459 spin_lock(&adap_rcu_lock); 2460 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 2461 spin_unlock(&adap_rcu_lock); 2462 2463 mutex_lock(&uld_mutex); 2464 list_add_tail(&adap->list_node, &adapter_list); 2465 for (i = 0; i < CXGB4_ULD_MAX; i++) 2466 if (ulds[i].add) 2467 uld_attach(adap, i); 2468 mutex_unlock(&uld_mutex); 2469 } 2470 2471 static void detach_ulds(struct adapter *adap) 2472 { 2473 unsigned int i; 2474 2475 mutex_lock(&uld_mutex); 2476 list_del(&adap->list_node); 2477 for (i = 0; i < CXGB4_ULD_MAX; i++) 2478 if (adap->uld_handle[i]) { 2479 ulds[i].state_change(adap->uld_handle[i], 2480 CXGB4_STATE_DETACH); 2481 adap->uld_handle[i] = NULL; 2482 } 2483 if (netevent_registered && list_empty(&adapter_list)) { 2484 unregister_netevent_notifier(&cxgb4_netevent_nb); 2485 netevent_registered = false; 2486 } 2487 mutex_unlock(&uld_mutex); 2488 2489 spin_lock(&adap_rcu_lock); 2490 list_del_rcu(&adap->rcu_node); 2491 spin_unlock(&adap_rcu_lock); 2492 } 2493 2494 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2495 { 2496 unsigned int i; 2497 2498 mutex_lock(&uld_mutex); 2499 for (i = 0; i < CXGB4_ULD_MAX; i++) 2500 if (adap->uld_handle[i]) 2501 ulds[i].state_change(adap->uld_handle[i], new_state); 2502 mutex_unlock(&uld_mutex); 2503 } 2504 2505 /** 2506 * cxgb4_register_uld - register an upper-layer driver 2507 * @type: the ULD type 2508 * @p: the ULD methods 2509 * 2510 * Registers an upper-layer driver with this driver and notifies the ULD 2511 * about any presently available devices that support its type. Returns 2512 * %-EBUSY if a ULD of the same type is already registered. 2513 */ 2514 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 2515 { 2516 int ret = 0; 2517 struct adapter *adap; 2518 2519 if (type >= CXGB4_ULD_MAX) 2520 return -EINVAL; 2521 mutex_lock(&uld_mutex); 2522 if (ulds[type].add) { 2523 ret = -EBUSY; 2524 goto out; 2525 } 2526 ulds[type] = *p; 2527 list_for_each_entry(adap, &adapter_list, list_node) 2528 uld_attach(adap, type); 2529 out: mutex_unlock(&uld_mutex); 2530 return ret; 2531 } 2532 EXPORT_SYMBOL(cxgb4_register_uld); 2533 2534 /** 2535 * cxgb4_unregister_uld - unregister an upper-layer driver 2536 * @type: the ULD type 2537 * 2538 * Unregisters an existing upper-layer driver. 2539 */ 2540 int cxgb4_unregister_uld(enum cxgb4_uld type) 2541 { 2542 struct adapter *adap; 2543 2544 if (type >= CXGB4_ULD_MAX) 2545 return -EINVAL; 2546 mutex_lock(&uld_mutex); 2547 list_for_each_entry(adap, &adapter_list, list_node) 2548 adap->uld_handle[type] = NULL; 2549 ulds[type].add = NULL; 2550 mutex_unlock(&uld_mutex); 2551 return 0; 2552 } 2553 EXPORT_SYMBOL(cxgb4_unregister_uld); 2554 2555 #if IS_ENABLED(CONFIG_IPV6) 2556 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2557 unsigned long event, void *data) 2558 { 2559 struct inet6_ifaddr *ifa = data; 2560 struct net_device *event_dev = ifa->idev->dev; 2561 const struct device *parent = NULL; 2562 #if IS_ENABLED(CONFIG_BONDING) 2563 struct adapter *adap; 2564 #endif 2565 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2566 event_dev = vlan_dev_real_dev(event_dev); 2567 #if IS_ENABLED(CONFIG_BONDING) 2568 if (event_dev->flags & IFF_MASTER) { 2569 list_for_each_entry(adap, &adapter_list, list_node) { 2570 switch (event) { 2571 case NETDEV_UP: 2572 cxgb4_clip_get(adap->port[0], 2573 (const u32 *)ifa, 1); 2574 break; 2575 case NETDEV_DOWN: 2576 cxgb4_clip_release(adap->port[0], 2577 (const u32 *)ifa, 1); 2578 break; 2579 default: 2580 break; 2581 } 2582 } 2583 return NOTIFY_OK; 2584 } 2585 #endif 2586 2587 if (event_dev) 2588 parent = event_dev->dev.parent; 2589 2590 if (parent && parent->driver == &cxgb4_driver.driver) { 2591 switch (event) { 2592 case NETDEV_UP: 2593 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2594 break; 2595 case NETDEV_DOWN: 2596 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2597 break; 2598 default: 2599 break; 2600 } 2601 } 2602 return NOTIFY_OK; 2603 } 2604 2605 static bool inet6addr_registered; 2606 static struct notifier_block cxgb4_inet6addr_notifier = { 2607 .notifier_call = cxgb4_inet6addr_handler 2608 }; 2609 2610 static void update_clip(const struct adapter *adap) 2611 { 2612 int i; 2613 struct net_device *dev; 2614 int ret; 2615 2616 rcu_read_lock(); 2617 2618 for (i = 0; i < MAX_NPORTS; i++) { 2619 dev = adap->port[i]; 2620 ret = 0; 2621 2622 if (dev) 2623 ret = cxgb4_update_root_dev_clip(dev); 2624 2625 if (ret < 0) 2626 break; 2627 } 2628 rcu_read_unlock(); 2629 } 2630 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2631 2632 /** 2633 * cxgb_up - enable the adapter 2634 * @adap: adapter being enabled 2635 * 2636 * Called when the first port is enabled, this function performs the 2637 * actions necessary to make an adapter operational, such as completing 2638 * the initialization of HW modules, and enabling interrupts. 2639 * 2640 * Must be called with the rtnl lock held. 2641 */ 2642 static int cxgb_up(struct adapter *adap) 2643 { 2644 int err; 2645 2646 err = setup_sge_queues(adap); 2647 if (err) 2648 goto out; 2649 err = setup_rss(adap); 2650 if (err) 2651 goto freeq; 2652 2653 if (adap->flags & USING_MSIX) { 2654 name_msix_vecs(adap); 2655 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2656 adap->msix_info[0].desc, adap); 2657 if (err) 2658 goto irq_err; 2659 2660 err = request_msix_queue_irqs(adap); 2661 if (err) { 2662 free_irq(adap->msix_info[0].vec, adap); 2663 goto irq_err; 2664 } 2665 } else { 2666 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2667 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2668 adap->port[0]->name, adap); 2669 if (err) 2670 goto irq_err; 2671 } 2672 enable_rx(adap); 2673 t4_sge_start(adap); 2674 t4_intr_enable(adap); 2675 adap->flags |= FULL_INIT_DONE; 2676 notify_ulds(adap, CXGB4_STATE_UP); 2677 #if IS_ENABLED(CONFIG_IPV6) 2678 update_clip(adap); 2679 #endif 2680 out: 2681 return err; 2682 irq_err: 2683 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2684 freeq: 2685 t4_free_sge_resources(adap); 2686 goto out; 2687 } 2688 2689 static void cxgb_down(struct adapter *adapter) 2690 { 2691 cancel_work_sync(&adapter->tid_release_task); 2692 cancel_work_sync(&adapter->db_full_task); 2693 cancel_work_sync(&adapter->db_drop_task); 2694 adapter->tid_release_task_busy = false; 2695 adapter->tid_release_head = NULL; 2696 2697 t4_sge_stop(adapter); 2698 t4_free_sge_resources(adapter); 2699 adapter->flags &= ~FULL_INIT_DONE; 2700 } 2701 2702 /* 2703 * net_device operations 2704 */ 2705 static int cxgb_open(struct net_device *dev) 2706 { 2707 int err; 2708 struct port_info *pi = netdev_priv(dev); 2709 struct adapter *adapter = pi->adapter; 2710 2711 netif_carrier_off(dev); 2712 2713 if (!(adapter->flags & FULL_INIT_DONE)) { 2714 err = cxgb_up(adapter); 2715 if (err < 0) 2716 return err; 2717 } 2718 2719 err = link_start(dev); 2720 if (!err) 2721 netif_tx_start_all_queues(dev); 2722 return err; 2723 } 2724 2725 static int cxgb_close(struct net_device *dev) 2726 { 2727 struct port_info *pi = netdev_priv(dev); 2728 struct adapter *adapter = pi->adapter; 2729 2730 netif_tx_stop_all_queues(dev); 2731 netif_carrier_off(dev); 2732 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2733 } 2734 2735 /* Return an error number if the indicated filter isn't writable ... 2736 */ 2737 static int writable_filter(struct filter_entry *f) 2738 { 2739 if (f->locked) 2740 return -EPERM; 2741 if (f->pending) 2742 return -EBUSY; 2743 2744 return 0; 2745 } 2746 2747 /* Delete the filter at the specified index (if valid). The checks for all 2748 * the common problems with doing this like the filter being locked, currently 2749 * pending in another operation, etc. 2750 */ 2751 static int delete_filter(struct adapter *adapter, unsigned int fidx) 2752 { 2753 struct filter_entry *f; 2754 int ret; 2755 2756 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 2757 return -EINVAL; 2758 2759 f = &adapter->tids.ftid_tab[fidx]; 2760 ret = writable_filter(f); 2761 if (ret) 2762 return ret; 2763 if (f->valid) 2764 return del_filter_wr(adapter, fidx); 2765 2766 return 0; 2767 } 2768 2769 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2770 __be32 sip, __be16 sport, __be16 vlan, 2771 unsigned int queue, unsigned char port, unsigned char mask) 2772 { 2773 int ret; 2774 struct filter_entry *f; 2775 struct adapter *adap; 2776 int i; 2777 u8 *val; 2778 2779 adap = netdev2adap(dev); 2780 2781 /* Adjust stid to correct filter index */ 2782 stid -= adap->tids.sftid_base; 2783 stid += adap->tids.nftids; 2784 2785 /* Check to make sure the filter requested is writable ... 2786 */ 2787 f = &adap->tids.ftid_tab[stid]; 2788 ret = writable_filter(f); 2789 if (ret) 2790 return ret; 2791 2792 /* Clear out any old resources being used by the filter before 2793 * we start constructing the new filter. 2794 */ 2795 if (f->valid) 2796 clear_filter(adap, f); 2797 2798 /* Clear out filter specifications */ 2799 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2800 f->fs.val.lport = cpu_to_be16(sport); 2801 f->fs.mask.lport = ~0; 2802 val = (u8 *)&sip; 2803 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2804 for (i = 0; i < 4; i++) { 2805 f->fs.val.lip[i] = val[i]; 2806 f->fs.mask.lip[i] = ~0; 2807 } 2808 if (adap->params.tp.vlan_pri_map & PORT_F) { 2809 f->fs.val.iport = port; 2810 f->fs.mask.iport = mask; 2811 } 2812 } 2813 2814 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2815 f->fs.val.proto = IPPROTO_TCP; 2816 f->fs.mask.proto = ~0; 2817 } 2818 2819 f->fs.dirsteer = 1; 2820 f->fs.iq = queue; 2821 /* Mark filter as locked */ 2822 f->locked = 1; 2823 f->fs.rpttid = 1; 2824 2825 ret = set_filter_wr(adap, stid); 2826 if (ret) { 2827 clear_filter(adap, f); 2828 return ret; 2829 } 2830 2831 return 0; 2832 } 2833 EXPORT_SYMBOL(cxgb4_create_server_filter); 2834 2835 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2836 unsigned int queue, bool ipv6) 2837 { 2838 int ret; 2839 struct filter_entry *f; 2840 struct adapter *adap; 2841 2842 adap = netdev2adap(dev); 2843 2844 /* Adjust stid to correct filter index */ 2845 stid -= adap->tids.sftid_base; 2846 stid += adap->tids.nftids; 2847 2848 f = &adap->tids.ftid_tab[stid]; 2849 /* Unlock the filter */ 2850 f->locked = 0; 2851 2852 ret = delete_filter(adap, stid); 2853 if (ret) 2854 return ret; 2855 2856 return 0; 2857 } 2858 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2859 2860 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2861 struct rtnl_link_stats64 *ns) 2862 { 2863 struct port_stats stats; 2864 struct port_info *p = netdev_priv(dev); 2865 struct adapter *adapter = p->adapter; 2866 2867 /* Block retrieving statistics during EEH error 2868 * recovery. Otherwise, the recovery might fail 2869 * and the PCI device will be removed permanently 2870 */ 2871 spin_lock(&adapter->stats_lock); 2872 if (!netif_device_present(dev)) { 2873 spin_unlock(&adapter->stats_lock); 2874 return ns; 2875 } 2876 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2877 &p->stats_base); 2878 spin_unlock(&adapter->stats_lock); 2879 2880 ns->tx_bytes = stats.tx_octets; 2881 ns->tx_packets = stats.tx_frames; 2882 ns->rx_bytes = stats.rx_octets; 2883 ns->rx_packets = stats.rx_frames; 2884 ns->multicast = stats.rx_mcast_frames; 2885 2886 /* detailed rx_errors */ 2887 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2888 stats.rx_runt; 2889 ns->rx_over_errors = 0; 2890 ns->rx_crc_errors = stats.rx_fcs_err; 2891 ns->rx_frame_errors = stats.rx_symbol_err; 2892 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2893 stats.rx_ovflow2 + stats.rx_ovflow3 + 2894 stats.rx_trunc0 + stats.rx_trunc1 + 2895 stats.rx_trunc2 + stats.rx_trunc3; 2896 ns->rx_missed_errors = 0; 2897 2898 /* detailed tx_errors */ 2899 ns->tx_aborted_errors = 0; 2900 ns->tx_carrier_errors = 0; 2901 ns->tx_fifo_errors = 0; 2902 ns->tx_heartbeat_errors = 0; 2903 ns->tx_window_errors = 0; 2904 2905 ns->tx_errors = stats.tx_error_frames; 2906 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2907 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2908 return ns; 2909 } 2910 2911 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2912 { 2913 unsigned int mbox; 2914 int ret = 0, prtad, devad; 2915 struct port_info *pi = netdev_priv(dev); 2916 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2917 2918 switch (cmd) { 2919 case SIOCGMIIPHY: 2920 if (pi->mdio_addr < 0) 2921 return -EOPNOTSUPP; 2922 data->phy_id = pi->mdio_addr; 2923 break; 2924 case SIOCGMIIREG: 2925 case SIOCSMIIREG: 2926 if (mdio_phy_id_is_c45(data->phy_id)) { 2927 prtad = mdio_phy_id_prtad(data->phy_id); 2928 devad = mdio_phy_id_devad(data->phy_id); 2929 } else if (data->phy_id < 32) { 2930 prtad = data->phy_id; 2931 devad = 0; 2932 data->reg_num &= 0x1f; 2933 } else 2934 return -EINVAL; 2935 2936 mbox = pi->adapter->pf; 2937 if (cmd == SIOCGMIIREG) 2938 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2939 data->reg_num, &data->val_out); 2940 else 2941 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2942 data->reg_num, data->val_in); 2943 break; 2944 case SIOCGHWTSTAMP: 2945 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2946 sizeof(pi->tstamp_config)) ? 2947 -EFAULT : 0; 2948 case SIOCSHWTSTAMP: 2949 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2950 sizeof(pi->tstamp_config))) 2951 return -EFAULT; 2952 2953 switch (pi->tstamp_config.rx_filter) { 2954 case HWTSTAMP_FILTER_NONE: 2955 pi->rxtstamp = false; 2956 break; 2957 case HWTSTAMP_FILTER_ALL: 2958 pi->rxtstamp = true; 2959 break; 2960 default: 2961 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2962 return -ERANGE; 2963 } 2964 2965 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2966 sizeof(pi->tstamp_config)) ? 2967 -EFAULT : 0; 2968 default: 2969 return -EOPNOTSUPP; 2970 } 2971 return ret; 2972 } 2973 2974 static void cxgb_set_rxmode(struct net_device *dev) 2975 { 2976 /* unfortunately we can't return errors to the stack */ 2977 set_rxmode(dev, -1, false); 2978 } 2979 2980 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2981 { 2982 int ret; 2983 struct port_info *pi = netdev_priv(dev); 2984 2985 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 2986 return -EINVAL; 2987 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2988 -1, -1, -1, true); 2989 if (!ret) 2990 dev->mtu = new_mtu; 2991 return ret; 2992 } 2993 2994 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2995 { 2996 int ret; 2997 struct sockaddr *addr = p; 2998 struct port_info *pi = netdev_priv(dev); 2999 3000 if (!is_valid_ether_addr(addr->sa_data)) 3001 return -EADDRNOTAVAIL; 3002 3003 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 3004 pi->xact_addr_filt, addr->sa_data, true, true); 3005 if (ret < 0) 3006 return ret; 3007 3008 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3009 pi->xact_addr_filt = ret; 3010 return 0; 3011 } 3012 3013 #ifdef CONFIG_NET_POLL_CONTROLLER 3014 static void cxgb_netpoll(struct net_device *dev) 3015 { 3016 struct port_info *pi = netdev_priv(dev); 3017 struct adapter *adap = pi->adapter; 3018 3019 if (adap->flags & USING_MSIX) { 3020 int i; 3021 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3022 3023 for (i = pi->nqsets; i; i--, rx++) 3024 t4_sge_intr_msix(0, &rx->rspq); 3025 } else 3026 t4_intr_handler(adap)(0, adap); 3027 } 3028 #endif 3029 3030 static const struct net_device_ops cxgb4_netdev_ops = { 3031 .ndo_open = cxgb_open, 3032 .ndo_stop = cxgb_close, 3033 .ndo_start_xmit = t4_eth_xmit, 3034 .ndo_select_queue = cxgb_select_queue, 3035 .ndo_get_stats64 = cxgb_get_stats, 3036 .ndo_set_rx_mode = cxgb_set_rxmode, 3037 .ndo_set_mac_address = cxgb_set_mac_addr, 3038 .ndo_set_features = cxgb_set_features, 3039 .ndo_validate_addr = eth_validate_addr, 3040 .ndo_do_ioctl = cxgb_ioctl, 3041 .ndo_change_mtu = cxgb_change_mtu, 3042 #ifdef CONFIG_NET_POLL_CONTROLLER 3043 .ndo_poll_controller = cxgb_netpoll, 3044 #endif 3045 #ifdef CONFIG_CHELSIO_T4_FCOE 3046 .ndo_fcoe_enable = cxgb_fcoe_enable, 3047 .ndo_fcoe_disable = cxgb_fcoe_disable, 3048 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3049 #ifdef CONFIG_NET_RX_BUSY_POLL 3050 .ndo_busy_poll = cxgb_busy_poll, 3051 #endif 3052 3053 }; 3054 3055 void t4_fatal_err(struct adapter *adap) 3056 { 3057 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 3058 t4_intr_disable(adap); 3059 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3060 } 3061 3062 static void setup_memwin(struct adapter *adap) 3063 { 3064 u32 nic_win_base = t4_get_util_window(adap); 3065 3066 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3067 } 3068 3069 static void setup_memwin_rdma(struct adapter *adap) 3070 { 3071 if (adap->vres.ocq.size) { 3072 u32 start; 3073 unsigned int sz_kb; 3074 3075 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3076 start &= PCI_BASE_ADDRESS_MEM_MASK; 3077 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3078 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3079 t4_write_reg(adap, 3080 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3081 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3082 t4_write_reg(adap, 3083 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3084 adap->vres.ocq.start); 3085 t4_read_reg(adap, 3086 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3087 } 3088 } 3089 3090 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3091 { 3092 u32 v; 3093 int ret; 3094 3095 /* get device capabilities */ 3096 memset(c, 0, sizeof(*c)); 3097 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3098 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3099 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3100 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3101 if (ret < 0) 3102 return ret; 3103 3104 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3105 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3106 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3107 if (ret < 0) 3108 return ret; 3109 3110 ret = t4_config_glbl_rss(adap, adap->pf, 3111 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3112 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3113 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3114 if (ret < 0) 3115 return ret; 3116 3117 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3118 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3119 FW_CMD_CAP_PF); 3120 if (ret < 0) 3121 return ret; 3122 3123 t4_sge_init(adap); 3124 3125 /* tweak some settings */ 3126 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3127 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3128 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3129 v = t4_read_reg(adap, TP_PIO_DATA_A); 3130 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3131 3132 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3133 adap->params.tp.tx_modq_map = 0xE4; 3134 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3135 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3136 3137 /* associate each Tx modulation queue with consecutive Tx channels */ 3138 v = 0x84218421; 3139 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3140 &v, 1, TP_TX_SCHED_HDR_A); 3141 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3142 &v, 1, TP_TX_SCHED_FIFO_A); 3143 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3144 &v, 1, TP_TX_SCHED_PCMD_A); 3145 3146 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3147 if (is_offload(adap)) { 3148 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3149 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3150 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3151 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3152 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3153 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3154 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3155 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3156 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3157 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3158 } 3159 3160 /* get basic stuff going */ 3161 return t4_early_init(adap, adap->pf); 3162 } 3163 3164 /* 3165 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3166 */ 3167 #define MAX_ATIDS 8192U 3168 3169 /* 3170 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3171 * 3172 * If the firmware we're dealing with has Configuration File support, then 3173 * we use that to perform all configuration 3174 */ 3175 3176 /* 3177 * Tweak configuration based on module parameters, etc. Most of these have 3178 * defaults assigned to them by Firmware Configuration Files (if we're using 3179 * them) but need to be explicitly set if we're using hard-coded 3180 * initialization. But even in the case of using Firmware Configuration 3181 * Files, we'd like to expose the ability to change these via module 3182 * parameters so these are essentially common tweaks/settings for 3183 * Configuration Files and hard-coded initialization ... 3184 */ 3185 static int adap_init0_tweaks(struct adapter *adapter) 3186 { 3187 /* 3188 * Fix up various Host-Dependent Parameters like Page Size, Cache 3189 * Line Size, etc. The firmware default is for a 4KB Page Size and 3190 * 64B Cache Line Size ... 3191 */ 3192 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3193 3194 /* 3195 * Process module parameters which affect early initialization. 3196 */ 3197 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3198 dev_err(&adapter->pdev->dev, 3199 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3200 rx_dma_offset); 3201 rx_dma_offset = 2; 3202 } 3203 t4_set_reg_field(adapter, SGE_CONTROL_A, 3204 PKTSHIFT_V(PKTSHIFT_M), 3205 PKTSHIFT_V(rx_dma_offset)); 3206 3207 /* 3208 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3209 * adds the pseudo header itself. 3210 */ 3211 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3212 CSUM_HAS_PSEUDO_HDR_F, 0); 3213 3214 return 0; 3215 } 3216 3217 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3218 * unto themselves and they contain their own firmware to perform their 3219 * tasks ... 3220 */ 3221 static int phy_aq1202_version(const u8 *phy_fw_data, 3222 size_t phy_fw_size) 3223 { 3224 int offset; 3225 3226 /* At offset 0x8 you're looking for the primary image's 3227 * starting offset which is 3 Bytes wide 3228 * 3229 * At offset 0xa of the primary image, you look for the offset 3230 * of the DRAM segment which is 3 Bytes wide. 3231 * 3232 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3233 * wide 3234 */ 3235 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3236 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3237 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3238 3239 offset = le24(phy_fw_data + 0x8) << 12; 3240 offset = le24(phy_fw_data + offset + 0xa); 3241 return be16(phy_fw_data + offset + 0x27e); 3242 3243 #undef be16 3244 #undef le16 3245 #undef le24 3246 } 3247 3248 static struct info_10gbt_phy_fw { 3249 unsigned int phy_fw_id; /* PCI Device ID */ 3250 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3251 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3252 int phy_flash; /* Has FLASH for PHY Firmware */ 3253 } phy_info_array[] = { 3254 { 3255 PHY_AQ1202_DEVICEID, 3256 PHY_AQ1202_FIRMWARE, 3257 phy_aq1202_version, 3258 1, 3259 }, 3260 { 3261 PHY_BCM84834_DEVICEID, 3262 PHY_BCM84834_FIRMWARE, 3263 NULL, 3264 0, 3265 }, 3266 { 0, NULL, NULL }, 3267 }; 3268 3269 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3270 { 3271 int i; 3272 3273 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3274 if (phy_info_array[i].phy_fw_id == devid) 3275 return &phy_info_array[i]; 3276 } 3277 return NULL; 3278 } 3279 3280 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3281 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3282 * we return a negative error number. If we transfer new firmware we return 1 3283 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3284 */ 3285 static int adap_init0_phy(struct adapter *adap) 3286 { 3287 const struct firmware *phyf; 3288 int ret; 3289 struct info_10gbt_phy_fw *phy_info; 3290 3291 /* Use the device ID to determine which PHY file to flash. 3292 */ 3293 phy_info = find_phy_info(adap->pdev->device); 3294 if (!phy_info) { 3295 dev_warn(adap->pdev_dev, 3296 "No PHY Firmware file found for this PHY\n"); 3297 return -EOPNOTSUPP; 3298 } 3299 3300 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3301 * use that. The adapter firmware provides us with a memory buffer 3302 * where we can load a PHY firmware file from the host if we want to 3303 * override the PHY firmware File in flash. 3304 */ 3305 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3306 adap->pdev_dev); 3307 if (ret < 0) { 3308 /* For adapters without FLASH attached to PHY for their 3309 * firmware, it's obviously a fatal error if we can't get the 3310 * firmware to the adapter. For adapters with PHY firmware 3311 * FLASH storage, it's worth a warning if we can't find the 3312 * PHY Firmware but we'll neuter the error ... 3313 */ 3314 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3315 "/lib/firmware/%s, error %d\n", 3316 phy_info->phy_fw_file, -ret); 3317 if (phy_info->phy_flash) { 3318 int cur_phy_fw_ver = 0; 3319 3320 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3321 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3322 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3323 ret = 0; 3324 } 3325 3326 return ret; 3327 } 3328 3329 /* Load PHY Firmware onto adapter. 3330 */ 3331 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3332 phy_info->phy_fw_version, 3333 (u8 *)phyf->data, phyf->size); 3334 if (ret < 0) 3335 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3336 -ret); 3337 else if (ret > 0) { 3338 int new_phy_fw_ver = 0; 3339 3340 if (phy_info->phy_fw_version) 3341 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3342 phyf->size); 3343 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3344 "Firmware /lib/firmware/%s, version %#x\n", 3345 phy_info->phy_fw_file, new_phy_fw_ver); 3346 } 3347 3348 release_firmware(phyf); 3349 3350 return ret; 3351 } 3352 3353 /* 3354 * Attempt to initialize the adapter via a Firmware Configuration File. 3355 */ 3356 static int adap_init0_config(struct adapter *adapter, int reset) 3357 { 3358 struct fw_caps_config_cmd caps_cmd; 3359 const struct firmware *cf; 3360 unsigned long mtype = 0, maddr = 0; 3361 u32 finiver, finicsum, cfcsum; 3362 int ret; 3363 int config_issued = 0; 3364 char *fw_config_file, fw_config_file_path[256]; 3365 char *config_name = NULL; 3366 3367 /* 3368 * Reset device if necessary. 3369 */ 3370 if (reset) { 3371 ret = t4_fw_reset(adapter, adapter->mbox, 3372 PIORSTMODE_F | PIORST_F); 3373 if (ret < 0) 3374 goto bye; 3375 } 3376 3377 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3378 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3379 * to be performed after any global adapter RESET above since some 3380 * PHYs only have local RAM copies of the PHY firmware. 3381 */ 3382 if (is_10gbt_device(adapter->pdev->device)) { 3383 ret = adap_init0_phy(adapter); 3384 if (ret < 0) 3385 goto bye; 3386 } 3387 /* 3388 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3389 * then use that. Otherwise, use the configuration file stored 3390 * in the adapter flash ... 3391 */ 3392 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3393 case CHELSIO_T4: 3394 fw_config_file = FW4_CFNAME; 3395 break; 3396 case CHELSIO_T5: 3397 fw_config_file = FW5_CFNAME; 3398 break; 3399 case CHELSIO_T6: 3400 fw_config_file = FW6_CFNAME; 3401 break; 3402 default: 3403 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3404 adapter->pdev->device); 3405 ret = -EINVAL; 3406 goto bye; 3407 } 3408 3409 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3410 if (ret < 0) { 3411 config_name = "On FLASH"; 3412 mtype = FW_MEMTYPE_CF_FLASH; 3413 maddr = t4_flash_cfg_addr(adapter); 3414 } else { 3415 u32 params[7], val[7]; 3416 3417 sprintf(fw_config_file_path, 3418 "/lib/firmware/%s", fw_config_file); 3419 config_name = fw_config_file_path; 3420 3421 if (cf->size >= FLASH_CFG_MAX_SIZE) 3422 ret = -ENOMEM; 3423 else { 3424 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3425 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3426 ret = t4_query_params(adapter, adapter->mbox, 3427 adapter->pf, 0, 1, params, val); 3428 if (ret == 0) { 3429 /* 3430 * For t4_memory_rw() below addresses and 3431 * sizes have to be in terms of multiples of 4 3432 * bytes. So, if the Configuration File isn't 3433 * a multiple of 4 bytes in length we'll have 3434 * to write that out separately since we can't 3435 * guarantee that the bytes following the 3436 * residual byte in the buffer returned by 3437 * request_firmware() are zeroed out ... 3438 */ 3439 size_t resid = cf->size & 0x3; 3440 size_t size = cf->size & ~0x3; 3441 __be32 *data = (__be32 *)cf->data; 3442 3443 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3444 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3445 3446 spin_lock(&adapter->win0_lock); 3447 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3448 size, data, T4_MEMORY_WRITE); 3449 if (ret == 0 && resid != 0) { 3450 union { 3451 __be32 word; 3452 char buf[4]; 3453 } last; 3454 int i; 3455 3456 last.word = data[size >> 2]; 3457 for (i = resid; i < 4; i++) 3458 last.buf[i] = 0; 3459 ret = t4_memory_rw(adapter, 0, mtype, 3460 maddr + size, 3461 4, &last.word, 3462 T4_MEMORY_WRITE); 3463 } 3464 spin_unlock(&adapter->win0_lock); 3465 } 3466 } 3467 3468 release_firmware(cf); 3469 if (ret) 3470 goto bye; 3471 } 3472 3473 /* 3474 * Issue a Capability Configuration command to the firmware to get it 3475 * to parse the Configuration File. We don't use t4_fw_config_file() 3476 * because we want the ability to modify various features after we've 3477 * processed the configuration file ... 3478 */ 3479 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3480 caps_cmd.op_to_write = 3481 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3482 FW_CMD_REQUEST_F | 3483 FW_CMD_READ_F); 3484 caps_cmd.cfvalid_to_len16 = 3485 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3486 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3487 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3488 FW_LEN16(caps_cmd)); 3489 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3490 &caps_cmd); 3491 3492 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3493 * Configuration File in FLASH), our last gasp effort is to use the 3494 * Firmware Configuration File which is embedded in the firmware. A 3495 * very few early versions of the firmware didn't have one embedded 3496 * but we can ignore those. 3497 */ 3498 if (ret == -ENOENT) { 3499 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3500 caps_cmd.op_to_write = 3501 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3502 FW_CMD_REQUEST_F | 3503 FW_CMD_READ_F); 3504 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3505 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3506 sizeof(caps_cmd), &caps_cmd); 3507 config_name = "Firmware Default"; 3508 } 3509 3510 config_issued = 1; 3511 if (ret < 0) 3512 goto bye; 3513 3514 finiver = ntohl(caps_cmd.finiver); 3515 finicsum = ntohl(caps_cmd.finicsum); 3516 cfcsum = ntohl(caps_cmd.cfcsum); 3517 if (finicsum != cfcsum) 3518 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3519 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3520 finicsum, cfcsum); 3521 3522 /* 3523 * And now tell the firmware to use the configuration we just loaded. 3524 */ 3525 caps_cmd.op_to_write = 3526 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3527 FW_CMD_REQUEST_F | 3528 FW_CMD_WRITE_F); 3529 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3530 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3531 NULL); 3532 if (ret < 0) 3533 goto bye; 3534 3535 /* 3536 * Tweak configuration based on system architecture, module 3537 * parameters, etc. 3538 */ 3539 ret = adap_init0_tweaks(adapter); 3540 if (ret < 0) 3541 goto bye; 3542 3543 /* 3544 * And finally tell the firmware to initialize itself using the 3545 * parameters from the Configuration File. 3546 */ 3547 ret = t4_fw_initialize(adapter, adapter->mbox); 3548 if (ret < 0) 3549 goto bye; 3550 3551 /* Emit Firmware Configuration File information and return 3552 * successfully. 3553 */ 3554 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3555 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3556 config_name, finiver, cfcsum); 3557 return 0; 3558 3559 /* 3560 * Something bad happened. Return the error ... (If the "error" 3561 * is that there's no Configuration File on the adapter we don't 3562 * want to issue a warning since this is fairly common.) 3563 */ 3564 bye: 3565 if (config_issued && ret != -ENOENT) 3566 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3567 config_name, -ret); 3568 return ret; 3569 } 3570 3571 static struct fw_info fw_info_array[] = { 3572 { 3573 .chip = CHELSIO_T4, 3574 .fs_name = FW4_CFNAME, 3575 .fw_mod_name = FW4_FNAME, 3576 .fw_hdr = { 3577 .chip = FW_HDR_CHIP_T4, 3578 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3579 .intfver_nic = FW_INTFVER(T4, NIC), 3580 .intfver_vnic = FW_INTFVER(T4, VNIC), 3581 .intfver_ri = FW_INTFVER(T4, RI), 3582 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3583 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3584 }, 3585 }, { 3586 .chip = CHELSIO_T5, 3587 .fs_name = FW5_CFNAME, 3588 .fw_mod_name = FW5_FNAME, 3589 .fw_hdr = { 3590 .chip = FW_HDR_CHIP_T5, 3591 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3592 .intfver_nic = FW_INTFVER(T5, NIC), 3593 .intfver_vnic = FW_INTFVER(T5, VNIC), 3594 .intfver_ri = FW_INTFVER(T5, RI), 3595 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3596 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3597 }, 3598 }, { 3599 .chip = CHELSIO_T6, 3600 .fs_name = FW6_CFNAME, 3601 .fw_mod_name = FW6_FNAME, 3602 .fw_hdr = { 3603 .chip = FW_HDR_CHIP_T6, 3604 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3605 .intfver_nic = FW_INTFVER(T6, NIC), 3606 .intfver_vnic = FW_INTFVER(T6, VNIC), 3607 .intfver_ofld = FW_INTFVER(T6, OFLD), 3608 .intfver_ri = FW_INTFVER(T6, RI), 3609 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3610 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3611 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3612 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3613 }, 3614 } 3615 3616 }; 3617 3618 static struct fw_info *find_fw_info(int chip) 3619 { 3620 int i; 3621 3622 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3623 if (fw_info_array[i].chip == chip) 3624 return &fw_info_array[i]; 3625 } 3626 return NULL; 3627 } 3628 3629 /* 3630 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3631 */ 3632 static int adap_init0(struct adapter *adap) 3633 { 3634 int ret; 3635 u32 v, port_vec; 3636 enum dev_state state; 3637 u32 params[7], val[7]; 3638 struct fw_caps_config_cmd caps_cmd; 3639 int reset = 1; 3640 3641 /* Grab Firmware Device Log parameters as early as possible so we have 3642 * access to it for debugging, etc. 3643 */ 3644 ret = t4_init_devlog_params(adap); 3645 if (ret < 0) 3646 return ret; 3647 3648 /* Contact FW, advertising Master capability */ 3649 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state); 3650 if (ret < 0) { 3651 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3652 ret); 3653 return ret; 3654 } 3655 if (ret == adap->mbox) 3656 adap->flags |= MASTER_PF; 3657 3658 /* 3659 * If we're the Master PF Driver and the device is uninitialized, 3660 * then let's consider upgrading the firmware ... (We always want 3661 * to check the firmware version number in order to A. get it for 3662 * later reporting and B. to warn if the currently loaded firmware 3663 * is excessively mismatched relative to the driver.) 3664 */ 3665 t4_get_fw_version(adap, &adap->params.fw_vers); 3666 t4_get_tp_version(adap, &adap->params.tp_vers); 3667 ret = t4_check_fw_version(adap); 3668 /* If firmware is too old (not supported by driver) force an update. */ 3669 if (ret) 3670 state = DEV_STATE_UNINIT; 3671 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3672 struct fw_info *fw_info; 3673 struct fw_hdr *card_fw; 3674 const struct firmware *fw; 3675 const u8 *fw_data = NULL; 3676 unsigned int fw_size = 0; 3677 3678 /* This is the firmware whose headers the driver was compiled 3679 * against 3680 */ 3681 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3682 if (fw_info == NULL) { 3683 dev_err(adap->pdev_dev, 3684 "unable to get firmware info for chip %d.\n", 3685 CHELSIO_CHIP_VERSION(adap->params.chip)); 3686 return -EINVAL; 3687 } 3688 3689 /* allocate memory to read the header of the firmware on the 3690 * card 3691 */ 3692 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3693 3694 /* Get FW from from /lib/firmware/ */ 3695 ret = request_firmware(&fw, fw_info->fw_mod_name, 3696 adap->pdev_dev); 3697 if (ret < 0) { 3698 dev_err(adap->pdev_dev, 3699 "unable to load firmware image %s, error %d\n", 3700 fw_info->fw_mod_name, ret); 3701 } else { 3702 fw_data = fw->data; 3703 fw_size = fw->size; 3704 } 3705 3706 /* upgrade FW logic */ 3707 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3708 state, &reset); 3709 3710 /* Cleaning up */ 3711 release_firmware(fw); 3712 t4_free_mem(card_fw); 3713 3714 if (ret < 0) 3715 goto bye; 3716 } 3717 3718 /* 3719 * Grab VPD parameters. This should be done after we establish a 3720 * connection to the firmware since some of the VPD parameters 3721 * (notably the Core Clock frequency) are retrieved via requests to 3722 * the firmware. On the other hand, we need these fairly early on 3723 * so we do this right after getting ahold of the firmware. 3724 */ 3725 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3726 if (ret < 0) 3727 goto bye; 3728 3729 /* 3730 * Find out what ports are available to us. Note that we need to do 3731 * this before calling adap_init0_no_config() since it needs nports 3732 * and portvec ... 3733 */ 3734 v = 3735 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3736 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3737 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3738 if (ret < 0) 3739 goto bye; 3740 3741 adap->params.nports = hweight32(port_vec); 3742 adap->params.portvec = port_vec; 3743 3744 /* If the firmware is initialized already, emit a simply note to that 3745 * effect. Otherwise, it's time to try initializing the adapter. 3746 */ 3747 if (state == DEV_STATE_INIT) { 3748 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3749 "Adapter already initialized\n", 3750 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3751 } else { 3752 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3753 "Initializing adapter\n"); 3754 3755 /* Find out whether we're dealing with a version of the 3756 * firmware which has configuration file support. 3757 */ 3758 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3759 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3760 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3761 params, val); 3762 3763 /* If the firmware doesn't support Configuration Files, 3764 * return an error. 3765 */ 3766 if (ret < 0) { 3767 dev_err(adap->pdev_dev, "firmware doesn't support " 3768 "Firmware Configuration Files\n"); 3769 goto bye; 3770 } 3771 3772 /* The firmware provides us with a memory buffer where we can 3773 * load a Configuration File from the host if we want to 3774 * override the Configuration File in flash. 3775 */ 3776 ret = adap_init0_config(adap, reset); 3777 if (ret == -ENOENT) { 3778 dev_err(adap->pdev_dev, "no Configuration File " 3779 "present on adapter.\n"); 3780 goto bye; 3781 } 3782 if (ret < 0) { 3783 dev_err(adap->pdev_dev, "could not initialize " 3784 "adapter, error %d\n", -ret); 3785 goto bye; 3786 } 3787 } 3788 3789 /* Give the SGE code a chance to pull in anything that it needs ... 3790 * Note that this must be called after we retrieve our VPD parameters 3791 * in order to know how to convert core ticks to seconds, etc. 3792 */ 3793 ret = t4_sge_init(adap); 3794 if (ret < 0) 3795 goto bye; 3796 3797 if (is_bypass_device(adap->pdev->device)) 3798 adap->params.bypass = 1; 3799 3800 /* 3801 * Grab some of our basic fundamental operating parameters. 3802 */ 3803 #define FW_PARAM_DEV(param) \ 3804 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3805 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3806 3807 #define FW_PARAM_PFVF(param) \ 3808 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3809 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3810 FW_PARAMS_PARAM_Y_V(0) | \ 3811 FW_PARAMS_PARAM_Z_V(0) 3812 3813 params[0] = FW_PARAM_PFVF(EQ_START); 3814 params[1] = FW_PARAM_PFVF(L2T_START); 3815 params[2] = FW_PARAM_PFVF(L2T_END); 3816 params[3] = FW_PARAM_PFVF(FILTER_START); 3817 params[4] = FW_PARAM_PFVF(FILTER_END); 3818 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3819 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3820 if (ret < 0) 3821 goto bye; 3822 adap->sge.egr_start = val[0]; 3823 adap->l2t_start = val[1]; 3824 adap->l2t_end = val[2]; 3825 adap->tids.ftid_base = val[3]; 3826 adap->tids.nftids = val[4] - val[3] + 1; 3827 adap->sge.ingr_start = val[5]; 3828 3829 /* qids (ingress/egress) returned from firmware can be anywhere 3830 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3831 * Hence driver needs to allocate memory for this range to 3832 * store the queue info. Get the highest IQFLINT/EQ index returned 3833 * in FW_EQ_*_CMD.alloc command. 3834 */ 3835 params[0] = FW_PARAM_PFVF(EQ_END); 3836 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3837 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3838 if (ret < 0) 3839 goto bye; 3840 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3841 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3842 3843 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3844 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3845 if (!adap->sge.egr_map) { 3846 ret = -ENOMEM; 3847 goto bye; 3848 } 3849 3850 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3851 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3852 if (!adap->sge.ingr_map) { 3853 ret = -ENOMEM; 3854 goto bye; 3855 } 3856 3857 /* Allocate the memory for the vaious egress queue bitmaps 3858 * ie starving_fl, txq_maperr and blocked_fl. 3859 */ 3860 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3861 sizeof(long), GFP_KERNEL); 3862 if (!adap->sge.starving_fl) { 3863 ret = -ENOMEM; 3864 goto bye; 3865 } 3866 3867 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3868 sizeof(long), GFP_KERNEL); 3869 if (!adap->sge.txq_maperr) { 3870 ret = -ENOMEM; 3871 goto bye; 3872 } 3873 3874 #ifdef CONFIG_DEBUG_FS 3875 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3876 sizeof(long), GFP_KERNEL); 3877 if (!adap->sge.blocked_fl) { 3878 ret = -ENOMEM; 3879 goto bye; 3880 } 3881 #endif 3882 3883 params[0] = FW_PARAM_PFVF(CLIP_START); 3884 params[1] = FW_PARAM_PFVF(CLIP_END); 3885 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3886 if (ret < 0) 3887 goto bye; 3888 adap->clipt_start = val[0]; 3889 adap->clipt_end = val[1]; 3890 3891 /* query params related to active filter region */ 3892 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3893 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3894 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3895 /* If Active filter size is set we enable establishing 3896 * offload connection through firmware work request 3897 */ 3898 if ((val[0] != val[1]) && (ret >= 0)) { 3899 adap->flags |= FW_OFLD_CONN; 3900 adap->tids.aftid_base = val[0]; 3901 adap->tids.aftid_end = val[1]; 3902 } 3903 3904 /* If we're running on newer firmware, let it know that we're 3905 * prepared to deal with encapsulated CPL messages. Older 3906 * firmware won't understand this and we'll just get 3907 * unencapsulated messages ... 3908 */ 3909 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3910 val[0] = 1; 3911 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3912 3913 /* 3914 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3915 * capability. Earlier versions of the firmware didn't have the 3916 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3917 * permission to use ULPTX MEMWRITE DSGL. 3918 */ 3919 if (is_t4(adap->params.chip)) { 3920 adap->params.ulptx_memwrite_dsgl = false; 3921 } else { 3922 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3923 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3924 1, params, val); 3925 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3926 } 3927 3928 /* 3929 * Get device capabilities so we can determine what resources we need 3930 * to manage. 3931 */ 3932 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3933 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3934 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3935 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3936 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3937 &caps_cmd); 3938 if (ret < 0) 3939 goto bye; 3940 3941 if (caps_cmd.ofldcaps) { 3942 /* query offload-related parameters */ 3943 params[0] = FW_PARAM_DEV(NTID); 3944 params[1] = FW_PARAM_PFVF(SERVER_START); 3945 params[2] = FW_PARAM_PFVF(SERVER_END); 3946 params[3] = FW_PARAM_PFVF(TDDP_START); 3947 params[4] = FW_PARAM_PFVF(TDDP_END); 3948 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3949 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3950 params, val); 3951 if (ret < 0) 3952 goto bye; 3953 adap->tids.ntids = val[0]; 3954 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3955 adap->tids.stid_base = val[1]; 3956 adap->tids.nstids = val[2] - val[1] + 1; 3957 /* 3958 * Setup server filter region. Divide the available filter 3959 * region into two parts. Regular filters get 1/3rd and server 3960 * filters get 2/3rd part. This is only enabled if workarond 3961 * path is enabled. 3962 * 1. For regular filters. 3963 * 2. Server filter: This are special filters which are used 3964 * to redirect SYN packets to offload queue. 3965 */ 3966 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3967 adap->tids.sftid_base = adap->tids.ftid_base + 3968 DIV_ROUND_UP(adap->tids.nftids, 3); 3969 adap->tids.nsftids = adap->tids.nftids - 3970 DIV_ROUND_UP(adap->tids.nftids, 3); 3971 adap->tids.nftids = adap->tids.sftid_base - 3972 adap->tids.ftid_base; 3973 } 3974 adap->vres.ddp.start = val[3]; 3975 adap->vres.ddp.size = val[4] - val[3] + 1; 3976 adap->params.ofldq_wr_cred = val[5]; 3977 3978 adap->params.offload = 1; 3979 } 3980 if (caps_cmd.rdmacaps) { 3981 params[0] = FW_PARAM_PFVF(STAG_START); 3982 params[1] = FW_PARAM_PFVF(STAG_END); 3983 params[2] = FW_PARAM_PFVF(RQ_START); 3984 params[3] = FW_PARAM_PFVF(RQ_END); 3985 params[4] = FW_PARAM_PFVF(PBL_START); 3986 params[5] = FW_PARAM_PFVF(PBL_END); 3987 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3988 params, val); 3989 if (ret < 0) 3990 goto bye; 3991 adap->vres.stag.start = val[0]; 3992 adap->vres.stag.size = val[1] - val[0] + 1; 3993 adap->vres.rq.start = val[2]; 3994 adap->vres.rq.size = val[3] - val[2] + 1; 3995 adap->vres.pbl.start = val[4]; 3996 adap->vres.pbl.size = val[5] - val[4] + 1; 3997 3998 params[0] = FW_PARAM_PFVF(SQRQ_START); 3999 params[1] = FW_PARAM_PFVF(SQRQ_END); 4000 params[2] = FW_PARAM_PFVF(CQ_START); 4001 params[3] = FW_PARAM_PFVF(CQ_END); 4002 params[4] = FW_PARAM_PFVF(OCQ_START); 4003 params[5] = FW_PARAM_PFVF(OCQ_END); 4004 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4005 val); 4006 if (ret < 0) 4007 goto bye; 4008 adap->vres.qp.start = val[0]; 4009 adap->vres.qp.size = val[1] - val[0] + 1; 4010 adap->vres.cq.start = val[2]; 4011 adap->vres.cq.size = val[3] - val[2] + 1; 4012 adap->vres.ocq.start = val[4]; 4013 adap->vres.ocq.size = val[5] - val[4] + 1; 4014 4015 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4016 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4017 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4018 val); 4019 if (ret < 0) { 4020 adap->params.max_ordird_qp = 8; 4021 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4022 ret = 0; 4023 } else { 4024 adap->params.max_ordird_qp = val[0]; 4025 adap->params.max_ird_adapter = val[1]; 4026 } 4027 dev_info(adap->pdev_dev, 4028 "max_ordird_qp %d max_ird_adapter %d\n", 4029 adap->params.max_ordird_qp, 4030 adap->params.max_ird_adapter); 4031 } 4032 if (caps_cmd.iscsicaps) { 4033 params[0] = FW_PARAM_PFVF(ISCSI_START); 4034 params[1] = FW_PARAM_PFVF(ISCSI_END); 4035 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4036 params, val); 4037 if (ret < 0) 4038 goto bye; 4039 adap->vres.iscsi.start = val[0]; 4040 adap->vres.iscsi.size = val[1] - val[0] + 1; 4041 } 4042 #undef FW_PARAM_PFVF 4043 #undef FW_PARAM_DEV 4044 4045 /* The MTU/MSS Table is initialized by now, so load their values. If 4046 * we're initializing the adapter, then we'll make any modifications 4047 * we want to the MTU/MSS Table and also initialize the congestion 4048 * parameters. 4049 */ 4050 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4051 if (state != DEV_STATE_INIT) { 4052 int i; 4053 4054 /* The default MTU Table contains values 1492 and 1500. 4055 * However, for TCP, it's better to have two values which are 4056 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4057 * This allows us to have a TCP Data Payload which is a 4058 * multiple of 8 regardless of what combination of TCP Options 4059 * are in use (always a multiple of 4 bytes) which is 4060 * important for performance reasons. For instance, if no 4061 * options are in use, then we have a 20-byte IP header and a 4062 * 20-byte TCP header. In this case, a 1500-byte MSS would 4063 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4064 * which is not a multiple of 8. So using an MSS of 1488 in 4065 * this case results in a TCP Data Payload of 1448 bytes which 4066 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4067 * Stamps have been negotiated, then an MTU of 1500 bytes 4068 * results in a TCP Data Payload of 1448 bytes which, as 4069 * above, is a multiple of 8 bytes ... 4070 */ 4071 for (i = 0; i < NMTUS; i++) 4072 if (adap->params.mtus[i] == 1492) { 4073 adap->params.mtus[i] = 1488; 4074 break; 4075 } 4076 4077 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4078 adap->params.b_wnd); 4079 } 4080 t4_init_sge_params(adap); 4081 adap->flags |= FW_OK; 4082 t4_init_tp_params(adap); 4083 return 0; 4084 4085 /* 4086 * Something bad happened. If a command timed out or failed with EIO 4087 * FW does not operate within its spec or something catastrophic 4088 * happened to HW/FW, stop issuing commands. 4089 */ 4090 bye: 4091 kfree(adap->sge.egr_map); 4092 kfree(adap->sge.ingr_map); 4093 kfree(adap->sge.starving_fl); 4094 kfree(adap->sge.txq_maperr); 4095 #ifdef CONFIG_DEBUG_FS 4096 kfree(adap->sge.blocked_fl); 4097 #endif 4098 if (ret != -ETIMEDOUT && ret != -EIO) 4099 t4_fw_bye(adap, adap->mbox); 4100 return ret; 4101 } 4102 4103 /* EEH callbacks */ 4104 4105 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4106 pci_channel_state_t state) 4107 { 4108 int i; 4109 struct adapter *adap = pci_get_drvdata(pdev); 4110 4111 if (!adap) 4112 goto out; 4113 4114 rtnl_lock(); 4115 adap->flags &= ~FW_OK; 4116 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4117 spin_lock(&adap->stats_lock); 4118 for_each_port(adap, i) { 4119 struct net_device *dev = adap->port[i]; 4120 4121 netif_device_detach(dev); 4122 netif_carrier_off(dev); 4123 } 4124 spin_unlock(&adap->stats_lock); 4125 disable_interrupts(adap); 4126 if (adap->flags & FULL_INIT_DONE) 4127 cxgb_down(adap); 4128 rtnl_unlock(); 4129 if ((adap->flags & DEV_ENABLED)) { 4130 pci_disable_device(pdev); 4131 adap->flags &= ~DEV_ENABLED; 4132 } 4133 out: return state == pci_channel_io_perm_failure ? 4134 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4135 } 4136 4137 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4138 { 4139 int i, ret; 4140 struct fw_caps_config_cmd c; 4141 struct adapter *adap = pci_get_drvdata(pdev); 4142 4143 if (!adap) { 4144 pci_restore_state(pdev); 4145 pci_save_state(pdev); 4146 return PCI_ERS_RESULT_RECOVERED; 4147 } 4148 4149 if (!(adap->flags & DEV_ENABLED)) { 4150 if (pci_enable_device(pdev)) { 4151 dev_err(&pdev->dev, "Cannot reenable PCI " 4152 "device after reset\n"); 4153 return PCI_ERS_RESULT_DISCONNECT; 4154 } 4155 adap->flags |= DEV_ENABLED; 4156 } 4157 4158 pci_set_master(pdev); 4159 pci_restore_state(pdev); 4160 pci_save_state(pdev); 4161 pci_cleanup_aer_uncorrect_error_status(pdev); 4162 4163 if (t4_wait_dev_ready(adap->regs) < 0) 4164 return PCI_ERS_RESULT_DISCONNECT; 4165 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4166 return PCI_ERS_RESULT_DISCONNECT; 4167 adap->flags |= FW_OK; 4168 if (adap_init1(adap, &c)) 4169 return PCI_ERS_RESULT_DISCONNECT; 4170 4171 for_each_port(adap, i) { 4172 struct port_info *p = adap2pinfo(adap, i); 4173 4174 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4175 NULL, NULL); 4176 if (ret < 0) 4177 return PCI_ERS_RESULT_DISCONNECT; 4178 p->viid = ret; 4179 p->xact_addr_filt = -1; 4180 } 4181 4182 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4183 adap->params.b_wnd); 4184 setup_memwin(adap); 4185 if (cxgb_up(adap)) 4186 return PCI_ERS_RESULT_DISCONNECT; 4187 return PCI_ERS_RESULT_RECOVERED; 4188 } 4189 4190 static void eeh_resume(struct pci_dev *pdev) 4191 { 4192 int i; 4193 struct adapter *adap = pci_get_drvdata(pdev); 4194 4195 if (!adap) 4196 return; 4197 4198 rtnl_lock(); 4199 for_each_port(adap, i) { 4200 struct net_device *dev = adap->port[i]; 4201 4202 if (netif_running(dev)) { 4203 link_start(dev); 4204 cxgb_set_rxmode(dev); 4205 } 4206 netif_device_attach(dev); 4207 } 4208 rtnl_unlock(); 4209 } 4210 4211 static const struct pci_error_handlers cxgb4_eeh = { 4212 .error_detected = eeh_err_detected, 4213 .slot_reset = eeh_slot_reset, 4214 .resume = eeh_resume, 4215 }; 4216 4217 static inline bool is_x_10g_port(const struct link_config *lc) 4218 { 4219 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 || 4220 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0; 4221 } 4222 4223 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, 4224 unsigned int us, unsigned int cnt, 4225 unsigned int size, unsigned int iqe_size) 4226 { 4227 q->adap = adap; 4228 cxgb4_set_rspq_intr_params(q, us, cnt); 4229 q->iqe_len = iqe_size; 4230 q->size = size; 4231 } 4232 4233 /* 4234 * Perform default configuration of DMA queues depending on the number and type 4235 * of ports we found and the number of available CPUs. Most settings can be 4236 * modified by the admin prior to actual use. 4237 */ 4238 static void cfg_queues(struct adapter *adap) 4239 { 4240 struct sge *s = &adap->sge; 4241 int i, n10g = 0, qidx = 0; 4242 #ifndef CONFIG_CHELSIO_T4_DCB 4243 int q10g = 0; 4244 #endif 4245 int ciq_size; 4246 4247 for_each_port(adap, i) 4248 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4249 #ifdef CONFIG_CHELSIO_T4_DCB 4250 /* For Data Center Bridging support we need to be able to support up 4251 * to 8 Traffic Priorities; each of which will be assigned to its 4252 * own TX Queue in order to prevent Head-Of-Line Blocking. 4253 */ 4254 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4255 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4256 MAX_ETH_QSETS, adap->params.nports * 8); 4257 BUG_ON(1); 4258 } 4259 4260 for_each_port(adap, i) { 4261 struct port_info *pi = adap2pinfo(adap, i); 4262 4263 pi->first_qset = qidx; 4264 pi->nqsets = 8; 4265 qidx += pi->nqsets; 4266 } 4267 #else /* !CONFIG_CHELSIO_T4_DCB */ 4268 /* 4269 * We default to 1 queue per non-10G port and up to # of cores queues 4270 * per 10G port. 4271 */ 4272 if (n10g) 4273 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4274 if (q10g > netif_get_num_default_rss_queues()) 4275 q10g = netif_get_num_default_rss_queues(); 4276 4277 for_each_port(adap, i) { 4278 struct port_info *pi = adap2pinfo(adap, i); 4279 4280 pi->first_qset = qidx; 4281 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4282 qidx += pi->nqsets; 4283 } 4284 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4285 4286 s->ethqsets = qidx; 4287 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4288 4289 if (is_offload(adap)) { 4290 /* 4291 * For offload we use 1 queue/channel if all ports are up to 1G, 4292 * otherwise we divide all available queues amongst the channels 4293 * capped by the number of available cores. 4294 */ 4295 if (n10g) { 4296 i = min_t(int, ARRAY_SIZE(s->iscsirxq), 4297 num_online_cpus()); 4298 s->iscsiqsets = roundup(i, adap->params.nports); 4299 } else 4300 s->iscsiqsets = adap->params.nports; 4301 /* For RDMA one Rx queue per channel suffices */ 4302 s->rdmaqs = adap->params.nports; 4303 /* Try and allow at least 1 CIQ per cpu rounding down 4304 * to the number of ports, with a minimum of 1 per port. 4305 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port. 4306 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port. 4307 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port. 4308 */ 4309 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus()); 4310 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) * 4311 adap->params.nports; 4312 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports); 4313 } 4314 4315 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4316 struct sge_eth_rxq *r = &s->ethrxq[i]; 4317 4318 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4319 r->fl.size = 72; 4320 } 4321 4322 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4323 s->ethtxq[i].q.size = 1024; 4324 4325 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4326 s->ctrlq[i].q.size = 512; 4327 4328 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 4329 s->ofldtxq[i].q.size = 1024; 4330 4331 for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) { 4332 struct sge_ofld_rxq *r = &s->iscsirxq[i]; 4333 4334 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 4335 r->rspq.uld = CXGB4_ULD_ISCSI; 4336 r->fl.size = 72; 4337 } 4338 4339 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 4340 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 4341 4342 init_rspq(adap, &r->rspq, 5, 1, 511, 64); 4343 r->rspq.uld = CXGB4_ULD_RDMA; 4344 r->fl.size = 72; 4345 } 4346 4347 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids; 4348 if (ciq_size > SGE_MAX_IQ_SIZE) { 4349 CH_WARN(adap, "CIQ size too small for available IQs\n"); 4350 ciq_size = SGE_MAX_IQ_SIZE; 4351 } 4352 4353 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) { 4354 struct sge_ofld_rxq *r = &s->rdmaciq[i]; 4355 4356 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64); 4357 r->rspq.uld = CXGB4_ULD_RDMA; 4358 } 4359 4360 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4361 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64); 4362 } 4363 4364 /* 4365 * Reduce the number of Ethernet queues across all ports to at most n. 4366 * n provides at least one queue per port. 4367 */ 4368 static void reduce_ethqs(struct adapter *adap, int n) 4369 { 4370 int i; 4371 struct port_info *pi; 4372 4373 while (n < adap->sge.ethqsets) 4374 for_each_port(adap, i) { 4375 pi = adap2pinfo(adap, i); 4376 if (pi->nqsets > 1) { 4377 pi->nqsets--; 4378 adap->sge.ethqsets--; 4379 if (adap->sge.ethqsets <= n) 4380 break; 4381 } 4382 } 4383 4384 n = 0; 4385 for_each_port(adap, i) { 4386 pi = adap2pinfo(adap, i); 4387 pi->first_qset = n; 4388 n += pi->nqsets; 4389 } 4390 } 4391 4392 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4393 #define EXTRA_VECS 2 4394 4395 static int enable_msix(struct adapter *adap) 4396 { 4397 int ofld_need = 0; 4398 int i, want, need, allocated; 4399 struct sge *s = &adap->sge; 4400 unsigned int nchan = adap->params.nports; 4401 struct msix_entry *entries; 4402 4403 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1), 4404 GFP_KERNEL); 4405 if (!entries) 4406 return -ENOMEM; 4407 4408 for (i = 0; i < MAX_INGQ + 1; ++i) 4409 entries[i].entry = i; 4410 4411 want = s->max_ethqsets + EXTRA_VECS; 4412 if (is_offload(adap)) { 4413 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets; 4414 /* need nchan for each possible ULD */ 4415 ofld_need = 3 * nchan; 4416 } 4417 #ifdef CONFIG_CHELSIO_T4_DCB 4418 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4419 * each port. 4420 */ 4421 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need; 4422 #else 4423 need = adap->params.nports + EXTRA_VECS + ofld_need; 4424 #endif 4425 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4426 if (allocated < 0) { 4427 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4428 " not using MSI-X\n"); 4429 kfree(entries); 4430 return allocated; 4431 } 4432 4433 /* Distribute available vectors to the various queue groups. 4434 * Every group gets its minimum requirement and NIC gets top 4435 * priority for leftovers. 4436 */ 4437 i = allocated - EXTRA_VECS - ofld_need; 4438 if (i < s->max_ethqsets) { 4439 s->max_ethqsets = i; 4440 if (i < s->ethqsets) 4441 reduce_ethqs(adap, i); 4442 } 4443 if (is_offload(adap)) { 4444 if (allocated < want) { 4445 s->rdmaqs = nchan; 4446 s->rdmaciqs = nchan; 4447 } 4448 4449 /* leftovers go to OFLD */ 4450 i = allocated - EXTRA_VECS - s->max_ethqsets - 4451 s->rdmaqs - s->rdmaciqs; 4452 s->iscsiqsets = (i / nchan) * nchan; /* round down */ 4453 } 4454 for (i = 0; i < allocated; ++i) 4455 adap->msix_info[i].vec = entries[i].vector; 4456 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4457 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n", 4458 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs, 4459 s->rdmaciqs); 4460 4461 kfree(entries); 4462 return 0; 4463 } 4464 4465 #undef EXTRA_VECS 4466 4467 static int init_rss(struct adapter *adap) 4468 { 4469 unsigned int i; 4470 int err; 4471 4472 err = t4_init_rss_mode(adap, adap->mbox); 4473 if (err) 4474 return err; 4475 4476 for_each_port(adap, i) { 4477 struct port_info *pi = adap2pinfo(adap, i); 4478 4479 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4480 if (!pi->rss) 4481 return -ENOMEM; 4482 } 4483 return 0; 4484 } 4485 4486 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4487 enum pci_bus_speed *speed, 4488 enum pcie_link_width *width) 4489 { 4490 u32 lnkcap1, lnkcap2; 4491 int err1, err2; 4492 4493 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4494 4495 *speed = PCI_SPEED_UNKNOWN; 4496 *width = PCIE_LNK_WIDTH_UNKNOWN; 4497 4498 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4499 &lnkcap1); 4500 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4501 &lnkcap2); 4502 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4503 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4504 *speed = PCIE_SPEED_8_0GT; 4505 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4506 *speed = PCIE_SPEED_5_0GT; 4507 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4508 *speed = PCIE_SPEED_2_5GT; 4509 } 4510 if (!err1) { 4511 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4512 if (!lnkcap2) { /* pre-r3.0 */ 4513 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4514 *speed = PCIE_SPEED_5_0GT; 4515 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4516 *speed = PCIE_SPEED_2_5GT; 4517 } 4518 } 4519 4520 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4521 return err1 ? err1 : err2 ? err2 : -EINVAL; 4522 return 0; 4523 } 4524 4525 static void cxgb4_check_pcie_caps(struct adapter *adap) 4526 { 4527 enum pcie_link_width width, width_cap; 4528 enum pci_bus_speed speed, speed_cap; 4529 4530 #define PCIE_SPEED_STR(speed) \ 4531 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4532 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4533 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4534 "Unknown") 4535 4536 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4537 dev_warn(adap->pdev_dev, 4538 "Unable to determine PCIe device BW capabilities\n"); 4539 return; 4540 } 4541 4542 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4543 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4544 dev_warn(adap->pdev_dev, 4545 "Unable to determine PCI Express bandwidth.\n"); 4546 return; 4547 } 4548 4549 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4550 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4551 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4552 width, width_cap); 4553 if (speed < speed_cap || width < width_cap) 4554 dev_info(adap->pdev_dev, 4555 "A slot with more lanes and/or higher speed is " 4556 "suggested for optimal performance.\n"); 4557 } 4558 4559 static void print_port_info(const struct net_device *dev) 4560 { 4561 char buf[80]; 4562 char *bufp = buf; 4563 const char *spd = ""; 4564 const struct port_info *pi = netdev_priv(dev); 4565 const struct adapter *adap = pi->adapter; 4566 4567 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4568 spd = " 2.5 GT/s"; 4569 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4570 spd = " 5 GT/s"; 4571 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4572 spd = " 8 GT/s"; 4573 4574 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4575 bufp += sprintf(bufp, "100/"); 4576 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4577 bufp += sprintf(bufp, "1000/"); 4578 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4579 bufp += sprintf(bufp, "10G/"); 4580 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4581 bufp += sprintf(bufp, "40G/"); 4582 if (bufp != buf) 4583 --bufp; 4584 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4585 4586 netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n", 4587 adap->params.vpd.id, 4588 CHELSIO_CHIP_RELEASE(adap->params.chip), buf, 4589 is_offload(adap) ? "R" : "", 4590 (adap->flags & USING_MSIX) ? " MSI-X" : 4591 (adap->flags & USING_MSI) ? " MSI" : ""); 4592 netdev_info(dev, "S/N: %s, P/N: %s\n", 4593 adap->params.vpd.sn, adap->params.vpd.pn); 4594 } 4595 4596 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4597 { 4598 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4599 } 4600 4601 /* 4602 * Free the following resources: 4603 * - memory used for tables 4604 * - MSI/MSI-X 4605 * - net devices 4606 * - resources FW is holding for us 4607 */ 4608 static void free_some_resources(struct adapter *adapter) 4609 { 4610 unsigned int i; 4611 4612 t4_free_mem(adapter->l2t); 4613 t4_free_mem(adapter->tids.tid_tab); 4614 kfree(adapter->sge.egr_map); 4615 kfree(adapter->sge.ingr_map); 4616 kfree(adapter->sge.starving_fl); 4617 kfree(adapter->sge.txq_maperr); 4618 #ifdef CONFIG_DEBUG_FS 4619 kfree(adapter->sge.blocked_fl); 4620 #endif 4621 disable_msi(adapter); 4622 4623 for_each_port(adapter, i) 4624 if (adapter->port[i]) { 4625 struct port_info *pi = adap2pinfo(adapter, i); 4626 4627 if (pi->viid != 0) 4628 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4629 0, pi->viid); 4630 kfree(adap2pinfo(adapter, i)->rss); 4631 free_netdev(adapter->port[i]); 4632 } 4633 if (adapter->flags & FW_OK) 4634 t4_fw_bye(adapter, adapter->pf); 4635 } 4636 4637 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4638 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4639 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4640 #define SEGMENT_SIZE 128 4641 4642 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4643 { 4644 u16 device_id; 4645 4646 /* Retrieve adapter's device ID */ 4647 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4648 4649 switch (device_id >> 12) { 4650 case CHELSIO_T4: 4651 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4652 case CHELSIO_T5: 4653 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4654 case CHELSIO_T6: 4655 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4656 default: 4657 dev_err(&pdev->dev, "Device %d is not supported\n", 4658 device_id); 4659 } 4660 return -EINVAL; 4661 } 4662 4663 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4664 { 4665 int func, i, err, s_qpp, qpp, num_seg; 4666 struct port_info *pi; 4667 bool highdma = false; 4668 struct adapter *adapter = NULL; 4669 void __iomem *regs; 4670 u32 whoami, pl_rev; 4671 enum chip_type chip; 4672 4673 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4674 4675 err = pci_request_regions(pdev, KBUILD_MODNAME); 4676 if (err) { 4677 /* Just info, some other driver may have claimed the device. */ 4678 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4679 return err; 4680 } 4681 4682 err = pci_enable_device(pdev); 4683 if (err) { 4684 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4685 goto out_release_regions; 4686 } 4687 4688 regs = pci_ioremap_bar(pdev, 0); 4689 if (!regs) { 4690 dev_err(&pdev->dev, "cannot map device registers\n"); 4691 err = -ENOMEM; 4692 goto out_disable_device; 4693 } 4694 4695 err = t4_wait_dev_ready(regs); 4696 if (err < 0) 4697 goto out_unmap_bar0; 4698 4699 /* We control everything through one PF */ 4700 whoami = readl(regs + PL_WHOAMI_A); 4701 pl_rev = REV_G(readl(regs + PL_REV_A)); 4702 chip = get_chip_type(pdev, pl_rev); 4703 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4704 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4705 if (func != ent->driver_data) { 4706 iounmap(regs); 4707 pci_disable_device(pdev); 4708 pci_save_state(pdev); /* to restore SR-IOV later */ 4709 goto sriov; 4710 } 4711 4712 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4713 highdma = true; 4714 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4715 if (err) { 4716 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4717 "coherent allocations\n"); 4718 goto out_unmap_bar0; 4719 } 4720 } else { 4721 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4722 if (err) { 4723 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4724 goto out_unmap_bar0; 4725 } 4726 } 4727 4728 pci_enable_pcie_error_reporting(pdev); 4729 enable_pcie_relaxed_ordering(pdev); 4730 pci_set_master(pdev); 4731 pci_save_state(pdev); 4732 4733 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4734 if (!adapter) { 4735 err = -ENOMEM; 4736 goto out_unmap_bar0; 4737 } 4738 4739 adapter->workq = create_singlethread_workqueue("cxgb4"); 4740 if (!adapter->workq) { 4741 err = -ENOMEM; 4742 goto out_free_adapter; 4743 } 4744 4745 /* PCI device has been enabled */ 4746 adapter->flags |= DEV_ENABLED; 4747 4748 adapter->regs = regs; 4749 adapter->pdev = pdev; 4750 adapter->pdev_dev = &pdev->dev; 4751 adapter->mbox = func; 4752 adapter->pf = func; 4753 adapter->msg_enable = dflt_msg_enable; 4754 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4755 4756 spin_lock_init(&adapter->stats_lock); 4757 spin_lock_init(&adapter->tid_release_lock); 4758 spin_lock_init(&adapter->win0_lock); 4759 4760 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4761 INIT_WORK(&adapter->db_full_task, process_db_full); 4762 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4763 4764 err = t4_prep_adapter(adapter); 4765 if (err) 4766 goto out_free_adapter; 4767 4768 4769 if (!is_t4(adapter->params.chip)) { 4770 s_qpp = (QUEUESPERPAGEPF0_S + 4771 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4772 adapter->pf); 4773 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4774 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4775 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4776 4777 /* Each segment size is 128B. Write coalescing is enabled only 4778 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4779 * queue is less no of segments that can be accommodated in 4780 * a page size. 4781 */ 4782 if (qpp > num_seg) { 4783 dev_err(&pdev->dev, 4784 "Incorrect number of egress queues per page\n"); 4785 err = -EINVAL; 4786 goto out_free_adapter; 4787 } 4788 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4789 pci_resource_len(pdev, 2)); 4790 if (!adapter->bar2) { 4791 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4792 err = -ENOMEM; 4793 goto out_free_adapter; 4794 } 4795 } 4796 4797 setup_memwin(adapter); 4798 err = adap_init0(adapter); 4799 #ifdef CONFIG_DEBUG_FS 4800 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4801 #endif 4802 setup_memwin_rdma(adapter); 4803 if (err) 4804 goto out_unmap_bar; 4805 4806 /* configure SGE_STAT_CFG_A to read WC stats */ 4807 if (!is_t4(adapter->params.chip)) 4808 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 4809 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 4810 T6_STATMODE_V(0))); 4811 4812 for_each_port(adapter, i) { 4813 struct net_device *netdev; 4814 4815 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4816 MAX_ETH_QSETS); 4817 if (!netdev) { 4818 err = -ENOMEM; 4819 goto out_free_dev; 4820 } 4821 4822 SET_NETDEV_DEV(netdev, &pdev->dev); 4823 4824 adapter->port[i] = netdev; 4825 pi = netdev_priv(netdev); 4826 pi->adapter = adapter; 4827 pi->xact_addr_filt = -1; 4828 pi->port_id = i; 4829 netdev->irq = pdev->irq; 4830 4831 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4832 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4833 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4834 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 4835 if (highdma) 4836 netdev->hw_features |= NETIF_F_HIGHDMA; 4837 netdev->features |= netdev->hw_features; 4838 netdev->vlan_features = netdev->features & VLAN_FEAT; 4839 4840 netdev->priv_flags |= IFF_UNICAST_FLT; 4841 4842 netdev->netdev_ops = &cxgb4_netdev_ops; 4843 #ifdef CONFIG_CHELSIO_T4_DCB 4844 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4845 cxgb4_dcb_state_init(netdev); 4846 #endif 4847 cxgb4_set_ethtool_ops(netdev); 4848 } 4849 4850 pci_set_drvdata(pdev, adapter); 4851 4852 if (adapter->flags & FW_OK) { 4853 err = t4_port_init(adapter, func, func, 0); 4854 if (err) 4855 goto out_free_dev; 4856 } else if (adapter->params.nports == 1) { 4857 /* If we don't have a connection to the firmware -- possibly 4858 * because of an error -- grab the raw VPD parameters so we 4859 * can set the proper MAC Address on the debug network 4860 * interface that we've created. 4861 */ 4862 u8 hw_addr[ETH_ALEN]; 4863 u8 *na = adapter->params.vpd.na; 4864 4865 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 4866 if (!err) { 4867 for (i = 0; i < ETH_ALEN; i++) 4868 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 4869 hex2val(na[2 * i + 1])); 4870 t4_set_hw_addr(adapter, 0, hw_addr); 4871 } 4872 } 4873 4874 /* Configure queues and allocate tables now, they can be needed as 4875 * soon as the first register_netdev completes. 4876 */ 4877 cfg_queues(adapter); 4878 4879 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 4880 if (!adapter->l2t) { 4881 /* We tolerate a lack of L2T, giving up some functionality */ 4882 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4883 adapter->params.offload = 0; 4884 } 4885 4886 #if IS_ENABLED(CONFIG_IPV6) 4887 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 4888 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 4889 /* CLIP functionality is not present in hardware, 4890 * hence disable all offload features 4891 */ 4892 dev_warn(&pdev->dev, 4893 "CLIP not enabled in hardware, continuing\n"); 4894 adapter->params.offload = 0; 4895 } else { 4896 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4897 adapter->clipt_end); 4898 if (!adapter->clipt) { 4899 /* We tolerate a lack of clip_table, giving up 4900 * some functionality 4901 */ 4902 dev_warn(&pdev->dev, 4903 "could not allocate Clip table, continuing\n"); 4904 adapter->params.offload = 0; 4905 } 4906 } 4907 #endif 4908 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 4909 dev_warn(&pdev->dev, "could not allocate TID table, " 4910 "continuing\n"); 4911 adapter->params.offload = 0; 4912 } 4913 4914 if (is_offload(adapter)) { 4915 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 4916 u32 hash_base, hash_reg; 4917 4918 if (chip <= CHELSIO_T5) { 4919 hash_reg = LE_DB_TID_HASHBASE_A; 4920 hash_base = t4_read_reg(adapter, hash_reg); 4921 adapter->tids.hash_base = hash_base / 4; 4922 } else { 4923 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 4924 hash_base = t4_read_reg(adapter, hash_reg); 4925 adapter->tids.hash_base = hash_base; 4926 } 4927 } 4928 } 4929 4930 /* See what interrupts we'll be using */ 4931 if (msi > 1 && enable_msix(adapter) == 0) 4932 adapter->flags |= USING_MSIX; 4933 else if (msi > 0 && pci_enable_msi(pdev) == 0) 4934 adapter->flags |= USING_MSI; 4935 4936 /* check for PCI Express bandwidth capabiltites */ 4937 cxgb4_check_pcie_caps(adapter); 4938 4939 err = init_rss(adapter); 4940 if (err) 4941 goto out_free_dev; 4942 4943 /* 4944 * The card is now ready to go. If any errors occur during device 4945 * registration we do not fail the whole card but rather proceed only 4946 * with the ports we manage to register successfully. However we must 4947 * register at least one net device. 4948 */ 4949 for_each_port(adapter, i) { 4950 pi = adap2pinfo(adapter, i); 4951 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4952 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4953 4954 err = register_netdev(adapter->port[i]); 4955 if (err) 4956 break; 4957 adapter->chan_map[pi->tx_chan] = i; 4958 print_port_info(adapter->port[i]); 4959 } 4960 if (i == 0) { 4961 dev_err(&pdev->dev, "could not register any net devices\n"); 4962 goto out_free_dev; 4963 } 4964 if (err) { 4965 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4966 err = 0; 4967 } 4968 4969 if (cxgb4_debugfs_root) { 4970 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4971 cxgb4_debugfs_root); 4972 setup_debugfs(adapter); 4973 } 4974 4975 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4976 pdev->needs_freset = 1; 4977 4978 if (is_offload(adapter)) 4979 attach_ulds(adapter); 4980 4981 sriov: 4982 #ifdef CONFIG_PCI_IOV 4983 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 4984 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 4985 dev_info(&pdev->dev, 4986 "instantiated %u virtual functions\n", 4987 num_vf[func]); 4988 #endif 4989 return 0; 4990 4991 out_free_dev: 4992 free_some_resources(adapter); 4993 out_unmap_bar: 4994 if (!is_t4(adapter->params.chip)) 4995 iounmap(adapter->bar2); 4996 out_free_adapter: 4997 if (adapter->workq) 4998 destroy_workqueue(adapter->workq); 4999 5000 kfree(adapter); 5001 out_unmap_bar0: 5002 iounmap(regs); 5003 out_disable_device: 5004 pci_disable_pcie_error_reporting(pdev); 5005 pci_disable_device(pdev); 5006 out_release_regions: 5007 pci_release_regions(pdev); 5008 return err; 5009 } 5010 5011 static void remove_one(struct pci_dev *pdev) 5012 { 5013 struct adapter *adapter = pci_get_drvdata(pdev); 5014 5015 #ifdef CONFIG_PCI_IOV 5016 pci_disable_sriov(pdev); 5017 5018 #endif 5019 5020 if (adapter) { 5021 int i; 5022 5023 /* Tear down per-adapter Work Queue first since it can contain 5024 * references to our adapter data structure. 5025 */ 5026 destroy_workqueue(adapter->workq); 5027 5028 if (is_offload(adapter)) 5029 detach_ulds(adapter); 5030 5031 disable_interrupts(adapter); 5032 5033 for_each_port(adapter, i) 5034 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5035 unregister_netdev(adapter->port[i]); 5036 5037 debugfs_remove_recursive(adapter->debugfs_root); 5038 5039 /* If we allocated filters, free up state associated with any 5040 * valid filters ... 5041 */ 5042 if (adapter->tids.ftid_tab) { 5043 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 5044 for (i = 0; i < (adapter->tids.nftids + 5045 adapter->tids.nsftids); i++, f++) 5046 if (f->valid) 5047 clear_filter(adapter, f); 5048 } 5049 5050 if (adapter->flags & FULL_INIT_DONE) 5051 cxgb_down(adapter); 5052 5053 free_some_resources(adapter); 5054 #if IS_ENABLED(CONFIG_IPV6) 5055 t4_cleanup_clip_tbl(adapter); 5056 #endif 5057 iounmap(adapter->regs); 5058 if (!is_t4(adapter->params.chip)) 5059 iounmap(adapter->bar2); 5060 pci_disable_pcie_error_reporting(pdev); 5061 if ((adapter->flags & DEV_ENABLED)) { 5062 pci_disable_device(pdev); 5063 adapter->flags &= ~DEV_ENABLED; 5064 } 5065 pci_release_regions(pdev); 5066 synchronize_rcu(); 5067 kfree(adapter); 5068 } else 5069 pci_release_regions(pdev); 5070 } 5071 5072 static struct pci_driver cxgb4_driver = { 5073 .name = KBUILD_MODNAME, 5074 .id_table = cxgb4_pci_tbl, 5075 .probe = init_one, 5076 .remove = remove_one, 5077 .shutdown = remove_one, 5078 .err_handler = &cxgb4_eeh, 5079 }; 5080 5081 static int __init cxgb4_init_module(void) 5082 { 5083 int ret; 5084 5085 /* Debugfs support is optional, just warn if this fails */ 5086 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5087 if (!cxgb4_debugfs_root) 5088 pr_warn("could not create debugfs entry, continuing\n"); 5089 5090 ret = pci_register_driver(&cxgb4_driver); 5091 if (ret < 0) 5092 debugfs_remove(cxgb4_debugfs_root); 5093 5094 #if IS_ENABLED(CONFIG_IPV6) 5095 if (!inet6addr_registered) { 5096 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5097 inet6addr_registered = true; 5098 } 5099 #endif 5100 5101 return ret; 5102 } 5103 5104 static void __exit cxgb4_cleanup_module(void) 5105 { 5106 #if IS_ENABLED(CONFIG_IPV6) 5107 if (inet6addr_registered) { 5108 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5109 inet6addr_registered = false; 5110 } 5111 #endif 5112 pci_unregister_driver(&cxgb4_driver); 5113 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5114 } 5115 5116 module_init(cxgb4_init_module); 5117 module_exit(cxgb4_cleanup_module); 5118