1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/rtnetlink.h> 55 #include <linux/sched.h> 56 #include <linux/seq_file.h> 57 #include <linux/sockios.h> 58 #include <linux/vmalloc.h> 59 #include <linux/workqueue.h> 60 #include <net/neighbour.h> 61 #include <net/netevent.h> 62 #include <net/addrconf.h> 63 #include <net/bonding.h> 64 #include <linux/uaccess.h> 65 #include <linux/crash_dump.h> 66 #include <net/udp_tunnel.h> 67 #include <net/xfrm.h> 68 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 69 #include <net/tls.h> 70 #endif 71 72 #include "cxgb4.h" 73 #include "cxgb4_filter.h" 74 #include "t4_regs.h" 75 #include "t4_values.h" 76 #include "t4_msg.h" 77 #include "t4fw_api.h" 78 #include "t4fw_version.h" 79 #include "cxgb4_dcb.h" 80 #include "srq.h" 81 #include "cxgb4_debugfs.h" 82 #include "clip_tbl.h" 83 #include "l2t.h" 84 #include "smt.h" 85 #include "sched.h" 86 #include "cxgb4_tc_u32.h" 87 #include "cxgb4_tc_flower.h" 88 #include "cxgb4_tc_mqprio.h" 89 #include "cxgb4_tc_matchall.h" 90 #include "cxgb4_ptp.h" 91 #include "cxgb4_cudbg.h" 92 93 char cxgb4_driver_name[] = KBUILD_MODNAME; 94 95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 96 97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 100 101 /* Macros needed to support the PCI Device ID Table ... 102 */ 103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 104 static const struct pci_device_id cxgb4_pci_tbl[] = { 105 #define CXGB4_UNIFIED_PF 0x4 106 107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 108 109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 110 * called for both. 111 */ 112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 113 114 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 116 117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 118 { 0, } \ 119 } 120 121 #include "t4_pci_id_tbl.h" 122 123 #define FW4_FNAME "cxgb4/t4fw.bin" 124 #define FW5_FNAME "cxgb4/t5fw.bin" 125 #define FW6_FNAME "cxgb4/t6fw.bin" 126 #define FW4_CFNAME "cxgb4/t4-config.txt" 127 #define FW5_CFNAME "cxgb4/t5-config.txt" 128 #define FW6_CFNAME "cxgb4/t6-config.txt" 129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 131 #define PHY_AQ1202_DEVICEID 0x4409 132 #define PHY_BCM84834_DEVICEID 0x4486 133 134 MODULE_DESCRIPTION(DRV_DESC); 135 MODULE_AUTHOR("Chelsio Communications"); 136 MODULE_LICENSE("Dual BSD/GPL"); 137 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 138 MODULE_FIRMWARE(FW4_FNAME); 139 MODULE_FIRMWARE(FW5_FNAME); 140 MODULE_FIRMWARE(FW6_FNAME); 141 142 /* 143 * The driver uses the best interrupt scheme available on a platform in the 144 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 145 * of these schemes the driver may consider as follows: 146 * 147 * msi = 2: choose from among all three options 148 * msi = 1: only consider MSI and INTx interrupts 149 * msi = 0: force INTx interrupts 150 */ 151 static int msi = 2; 152 153 module_param(msi, int, 0644); 154 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 155 156 /* 157 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 158 * offset by 2 bytes in order to have the IP headers line up on 4-byte 159 * boundaries. This is a requirement for many architectures which will throw 160 * a machine check fault if an attempt is made to access one of the 4-byte IP 161 * header fields on a non-4-byte boundary. And it's a major performance issue 162 * even on some architectures which allow it like some implementations of the 163 * x86 ISA. However, some architectures don't mind this and for some very 164 * edge-case performance sensitive applications (like forwarding large volumes 165 * of small packets), setting this DMA offset to 0 will decrease the number of 166 * PCI-E Bus transfers enough to measurably affect performance. 167 */ 168 static int rx_dma_offset = 2; 169 170 /* TX Queue select used to determine what algorithm to use for selecting TX 171 * queue. Select between the kernel provided function (select_queue=0) or user 172 * cxgb_select_queue function (select_queue=1) 173 * 174 * Default: select_queue=0 175 */ 176 static int select_queue; 177 module_param(select_queue, int, 0644); 178 MODULE_PARM_DESC(select_queue, 179 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 180 181 static struct dentry *cxgb4_debugfs_root; 182 183 LIST_HEAD(adapter_list); 184 DEFINE_MUTEX(uld_mutex); 185 LIST_HEAD(uld_list); 186 187 static int cfg_queues(struct adapter *adap); 188 189 static void link_report(struct net_device *dev) 190 { 191 if (!netif_carrier_ok(dev)) 192 netdev_info(dev, "link down\n"); 193 else { 194 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 195 196 const char *s; 197 const struct port_info *p = netdev_priv(dev); 198 199 switch (p->link_cfg.speed) { 200 case 100: 201 s = "100Mbps"; 202 break; 203 case 1000: 204 s = "1Gbps"; 205 break; 206 case 10000: 207 s = "10Gbps"; 208 break; 209 case 25000: 210 s = "25Gbps"; 211 break; 212 case 40000: 213 s = "40Gbps"; 214 break; 215 case 50000: 216 s = "50Gbps"; 217 break; 218 case 100000: 219 s = "100Gbps"; 220 break; 221 default: 222 pr_info("%s: unsupported speed: %d\n", 223 dev->name, p->link_cfg.speed); 224 return; 225 } 226 227 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 228 fc[p->link_cfg.fc]); 229 } 230 } 231 232 #ifdef CONFIG_CHELSIO_T4_DCB 233 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 234 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 235 { 236 struct port_info *pi = netdev_priv(dev); 237 struct adapter *adap = pi->adapter; 238 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 239 int i; 240 241 /* We use a simple mapping of Port TX Queue Index to DCB 242 * Priority when we're enabling DCB. 243 */ 244 for (i = 0; i < pi->nqsets; i++, txq++) { 245 u32 name, value; 246 int err; 247 248 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 249 FW_PARAMS_PARAM_X_V( 250 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 251 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 252 value = enable ? i : 0xffffffff; 253 254 /* Since we can be called while atomic (from "interrupt 255 * level") we need to issue the Set Parameters Commannd 256 * without sleeping (timeout < 0). 257 */ 258 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 259 &name, &value, 260 -FW_CMD_MAX_TIMEOUT); 261 262 if (err) 263 dev_err(adap->pdev_dev, 264 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 265 enable ? "set" : "unset", pi->port_id, i, -err); 266 else 267 txq->dcb_prio = enable ? value : 0; 268 } 269 } 270 271 int cxgb4_dcb_enabled(const struct net_device *dev) 272 { 273 struct port_info *pi = netdev_priv(dev); 274 275 if (!pi->dcb.enabled) 276 return 0; 277 278 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 279 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 280 } 281 #endif /* CONFIG_CHELSIO_T4_DCB */ 282 283 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 284 { 285 struct net_device *dev = adapter->port[port_id]; 286 287 /* Skip changes from disabled ports. */ 288 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 289 if (link_stat) 290 netif_carrier_on(dev); 291 else { 292 #ifdef CONFIG_CHELSIO_T4_DCB 293 if (cxgb4_dcb_enabled(dev)) { 294 cxgb4_dcb_reset(dev); 295 dcb_tx_queue_prio_enable(dev, false); 296 } 297 #endif /* CONFIG_CHELSIO_T4_DCB */ 298 netif_carrier_off(dev); 299 } 300 301 link_report(dev); 302 } 303 } 304 305 void t4_os_portmod_changed(struct adapter *adap, int port_id) 306 { 307 static const char *mod_str[] = { 308 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 309 }; 310 311 struct net_device *dev = adap->port[port_id]; 312 struct port_info *pi = netdev_priv(dev); 313 314 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 315 netdev_info(dev, "port module unplugged\n"); 316 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 317 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 318 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 319 netdev_info(dev, "%s: unsupported port module inserted\n", 320 dev->name); 321 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 322 netdev_info(dev, "%s: unknown port module inserted\n", 323 dev->name); 324 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 325 netdev_info(dev, "%s: transceiver module error\n", dev->name); 326 else 327 netdev_info(dev, "%s: unknown module type %d inserted\n", 328 dev->name, pi->mod_type); 329 330 /* If the interface is running, then we'll need any "sticky" Link 331 * Parameters redone with a new Transceiver Module. 332 */ 333 pi->link_cfg.redo_l1cfg = netif_running(dev); 334 } 335 336 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 337 module_param(dbfifo_int_thresh, int, 0644); 338 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 339 340 /* 341 * usecs to sleep while draining the dbfifo 342 */ 343 static int dbfifo_drain_delay = 1000; 344 module_param(dbfifo_drain_delay, int, 0644); 345 MODULE_PARM_DESC(dbfifo_drain_delay, 346 "usecs to sleep while draining the dbfifo"); 347 348 static inline int cxgb4_set_addr_hash(struct port_info *pi) 349 { 350 struct adapter *adap = pi->adapter; 351 u64 vec = 0; 352 bool ucast = false; 353 struct hash_mac_addr *entry; 354 355 /* Calculate the hash vector for the updated list and program it */ 356 list_for_each_entry(entry, &adap->mac_hlist, list) { 357 ucast |= is_unicast_ether_addr(entry->addr); 358 vec |= (1ULL << hash_mac_addr(entry->addr)); 359 } 360 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 361 vec, false); 362 } 363 364 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 365 { 366 struct port_info *pi = netdev_priv(netdev); 367 struct adapter *adap = pi->adapter; 368 int ret; 369 u64 mhash = 0; 370 u64 uhash = 0; 371 /* idx stores the index of allocated filters, 372 * its size should be modified based on the number of 373 * MAC addresses that we allocate filters for 374 */ 375 376 u16 idx[1] = {}; 377 bool free = false; 378 bool ucast = is_unicast_ether_addr(mac_addr); 379 const u8 *maclist[1] = {mac_addr}; 380 struct hash_mac_addr *new_entry; 381 382 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 383 idx, ucast ? &uhash : &mhash, false); 384 if (ret < 0) 385 goto out; 386 /* if hash != 0, then add the addr to hash addr list 387 * so on the end we will calculate the hash for the 388 * list and program it 389 */ 390 if (uhash || mhash) { 391 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 392 if (!new_entry) 393 return -ENOMEM; 394 ether_addr_copy(new_entry->addr, mac_addr); 395 list_add_tail(&new_entry->list, &adap->mac_hlist); 396 ret = cxgb4_set_addr_hash(pi); 397 } 398 out: 399 return ret < 0 ? ret : 0; 400 } 401 402 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 403 { 404 struct port_info *pi = netdev_priv(netdev); 405 struct adapter *adap = pi->adapter; 406 int ret; 407 const u8 *maclist[1] = {mac_addr}; 408 struct hash_mac_addr *entry, *tmp; 409 410 /* If the MAC address to be removed is in the hash addr 411 * list, delete it from the list and update hash vector 412 */ 413 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 414 if (ether_addr_equal(entry->addr, mac_addr)) { 415 list_del(&entry->list); 416 kfree(entry); 417 return cxgb4_set_addr_hash(pi); 418 } 419 } 420 421 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 422 return ret < 0 ? -EINVAL : 0; 423 } 424 425 /* 426 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 427 * If @mtu is -1 it is left unchanged. 428 */ 429 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 430 { 431 struct port_info *pi = netdev_priv(dev); 432 struct adapter *adapter = pi->adapter; 433 434 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 435 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 436 437 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror, 438 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, 439 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 440 sleep_ok); 441 } 442 443 /** 444 * cxgb4_change_mac - Update match filter for a MAC address. 445 * @pi: the port_info 446 * @viid: the VI id 447 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 448 * or -1 449 * @addr: the new MAC address value 450 * @persist: whether a new MAC allocation should be persistent 451 * @smt_idx: the destination to store the new SMT index. 452 * 453 * Modifies an MPS filter and sets it to the new MAC address if 454 * @tcam_idx >= 0, or adds the MAC address to a new filter if 455 * @tcam_idx < 0. In the latter case the address is added persistently 456 * if @persist is %true. 457 * Addresses are programmed to hash region, if tcam runs out of entries. 458 * 459 */ 460 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 461 int *tcam_idx, const u8 *addr, bool persist, 462 u8 *smt_idx) 463 { 464 struct adapter *adapter = pi->adapter; 465 struct hash_mac_addr *entry, *new_entry; 466 int ret; 467 468 ret = t4_change_mac(adapter, adapter->mbox, viid, 469 *tcam_idx, addr, persist, smt_idx); 470 /* We ran out of TCAM entries. try programming hash region. */ 471 if (ret == -ENOMEM) { 472 /* If the MAC address to be updated is in the hash addr 473 * list, update it from the list 474 */ 475 list_for_each_entry(entry, &adapter->mac_hlist, list) { 476 if (entry->iface_mac) { 477 ether_addr_copy(entry->addr, addr); 478 goto set_hash; 479 } 480 } 481 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 482 if (!new_entry) 483 return -ENOMEM; 484 ether_addr_copy(new_entry->addr, addr); 485 new_entry->iface_mac = true; 486 list_add_tail(&new_entry->list, &adapter->mac_hlist); 487 set_hash: 488 ret = cxgb4_set_addr_hash(pi); 489 } else if (ret >= 0) { 490 *tcam_idx = ret; 491 ret = 0; 492 } 493 494 return ret; 495 } 496 497 /* 498 * link_start - enable a port 499 * @dev: the port to enable 500 * 501 * Performs the MAC and PHY actions needed to enable a port. 502 */ 503 static int link_start(struct net_device *dev) 504 { 505 struct port_info *pi = netdev_priv(dev); 506 unsigned int mb = pi->adapter->mbox; 507 int ret; 508 509 /* 510 * We do not set address filters and promiscuity here, the stack does 511 * that step explicitly. 512 */ 513 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror, 514 dev->mtu, -1, -1, -1, 515 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 516 if (ret == 0) 517 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 518 dev->dev_addr, true, &pi->smt_idx); 519 if (ret == 0) 520 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 521 &pi->link_cfg); 522 if (ret == 0) { 523 local_bh_disable(); 524 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 525 true, CXGB4_DCB_ENABLED); 526 local_bh_enable(); 527 } 528 529 return ret; 530 } 531 532 #ifdef CONFIG_CHELSIO_T4_DCB 533 /* Handle a Data Center Bridging update message from the firmware. */ 534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 535 { 536 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 537 struct net_device *dev = adap->port[adap->chan_map[port]]; 538 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 539 int new_dcb_enabled; 540 541 cxgb4_dcb_handle_fw_update(adap, pcmd); 542 new_dcb_enabled = cxgb4_dcb_enabled(dev); 543 544 /* If the DCB has become enabled or disabled on the port then we're 545 * going to need to set up/tear down DCB Priority parameters for the 546 * TX Queues associated with the port. 547 */ 548 if (new_dcb_enabled != old_dcb_enabled) 549 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 550 } 551 #endif /* CONFIG_CHELSIO_T4_DCB */ 552 553 /* Response queue handler for the FW event queue. 554 */ 555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 556 const struct pkt_gl *gl) 557 { 558 u8 opcode = ((const struct rss_header *)rsp)->opcode; 559 560 rsp++; /* skip RSS header */ 561 562 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 563 */ 564 if (unlikely(opcode == CPL_FW4_MSG && 565 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 566 rsp++; 567 opcode = ((const struct rss_header *)rsp)->opcode; 568 rsp++; 569 if (opcode != CPL_SGE_EGR_UPDATE) { 570 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 571 , opcode); 572 goto out; 573 } 574 } 575 576 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 577 const struct cpl_sge_egr_update *p = (void *)rsp; 578 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 579 struct sge_txq *txq; 580 581 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 582 txq->restarts++; 583 if (txq->q_type == CXGB4_TXQ_ETH) { 584 struct sge_eth_txq *eq; 585 586 eq = container_of(txq, struct sge_eth_txq, q); 587 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 588 } else { 589 struct sge_uld_txq *oq; 590 591 oq = container_of(txq, struct sge_uld_txq, q); 592 tasklet_schedule(&oq->qresume_tsk); 593 } 594 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 595 const struct cpl_fw6_msg *p = (void *)rsp; 596 597 #ifdef CONFIG_CHELSIO_T4_DCB 598 const struct fw_port_cmd *pcmd = (const void *)p->data; 599 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 600 unsigned int action = 601 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 602 603 if (cmd == FW_PORT_CMD && 604 (action == FW_PORT_ACTION_GET_PORT_INFO || 605 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 606 int port = FW_PORT_CMD_PORTID_G( 607 be32_to_cpu(pcmd->op_to_portid)); 608 struct net_device *dev; 609 int dcbxdis, state_input; 610 611 dev = q->adap->port[q->adap->chan_map[port]]; 612 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 613 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 614 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 615 & FW_PORT_CMD_DCBXDIS32_F)); 616 state_input = (dcbxdis 617 ? CXGB4_DCB_INPUT_FW_DISABLED 618 : CXGB4_DCB_INPUT_FW_ENABLED); 619 620 cxgb4_dcb_state_fsm(dev, state_input); 621 } 622 623 if (cmd == FW_PORT_CMD && 624 action == FW_PORT_ACTION_L2_DCB_CFG) 625 dcb_rpl(q->adap, pcmd); 626 else 627 #endif 628 if (p->type == 0) 629 t4_handle_fw_rpl(q->adap, p->data); 630 } else if (opcode == CPL_L2T_WRITE_RPL) { 631 const struct cpl_l2t_write_rpl *p = (void *)rsp; 632 633 do_l2t_write_rpl(q->adap, p); 634 } else if (opcode == CPL_SMT_WRITE_RPL) { 635 const struct cpl_smt_write_rpl *p = (void *)rsp; 636 637 do_smt_write_rpl(q->adap, p); 638 } else if (opcode == CPL_SET_TCB_RPL) { 639 const struct cpl_set_tcb_rpl *p = (void *)rsp; 640 641 filter_rpl(q->adap, p); 642 } else if (opcode == CPL_ACT_OPEN_RPL) { 643 const struct cpl_act_open_rpl *p = (void *)rsp; 644 645 hash_filter_rpl(q->adap, p); 646 } else if (opcode == CPL_ABORT_RPL_RSS) { 647 const struct cpl_abort_rpl_rss *p = (void *)rsp; 648 649 hash_del_filter_rpl(q->adap, p); 650 } else if (opcode == CPL_SRQ_TABLE_RPL) { 651 const struct cpl_srq_table_rpl *p = (void *)rsp; 652 653 do_srq_table_rpl(q->adap, p); 654 } else 655 dev_err(q->adap->pdev_dev, 656 "unexpected CPL %#x on FW event queue\n", opcode); 657 out: 658 return 0; 659 } 660 661 static void disable_msi(struct adapter *adapter) 662 { 663 if (adapter->flags & CXGB4_USING_MSIX) { 664 pci_disable_msix(adapter->pdev); 665 adapter->flags &= ~CXGB4_USING_MSIX; 666 } else if (adapter->flags & CXGB4_USING_MSI) { 667 pci_disable_msi(adapter->pdev); 668 adapter->flags &= ~CXGB4_USING_MSI; 669 } 670 } 671 672 /* 673 * Interrupt handler for non-data events used with MSI-X. 674 */ 675 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 676 { 677 struct adapter *adap = cookie; 678 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 679 680 if (v & PFSW_F) { 681 adap->swintr = 1; 682 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 683 } 684 if (adap->flags & CXGB4_MASTER_PF) 685 t4_slow_intr_handler(adap); 686 return IRQ_HANDLED; 687 } 688 689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 690 cpumask_var_t *aff_mask, int idx) 691 { 692 int rv; 693 694 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 695 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 696 return -ENOMEM; 697 } 698 699 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 700 *aff_mask); 701 702 rv = irq_set_affinity_hint(vec, *aff_mask); 703 if (rv) 704 dev_warn(adap->pdev_dev, 705 "irq_set_affinity_hint %u failed %d\n", 706 vec, rv); 707 708 return 0; 709 } 710 711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 712 { 713 irq_set_affinity_hint(vec, NULL); 714 free_cpumask_var(aff_mask); 715 } 716 717 static int request_msix_queue_irqs(struct adapter *adap) 718 { 719 struct sge *s = &adap->sge; 720 struct msix_info *minfo; 721 int err, ethqidx; 722 723 if (s->fwevtq_msix_idx < 0) 724 return -ENOMEM; 725 726 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, 727 t4_sge_intr_msix, 0, 728 adap->msix_info[s->fwevtq_msix_idx].desc, 729 &s->fw_evtq); 730 if (err) 731 return err; 732 733 for_each_ethrxq(s, ethqidx) { 734 minfo = s->ethrxq[ethqidx].msix; 735 err = request_irq(minfo->vec, 736 t4_sge_intr_msix, 0, 737 minfo->desc, 738 &s->ethrxq[ethqidx].rspq); 739 if (err) 740 goto unwind; 741 742 cxgb4_set_msix_aff(adap, minfo->vec, 743 &minfo->aff_mask, ethqidx); 744 } 745 return 0; 746 747 unwind: 748 while (--ethqidx >= 0) { 749 minfo = s->ethrxq[ethqidx].msix; 750 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 751 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 752 } 753 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 754 return err; 755 } 756 757 static void free_msix_queue_irqs(struct adapter *adap) 758 { 759 struct sge *s = &adap->sge; 760 struct msix_info *minfo; 761 int i; 762 763 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 764 for_each_ethrxq(s, i) { 765 minfo = s->ethrxq[i].msix; 766 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 767 free_irq(minfo->vec, &s->ethrxq[i].rspq); 768 } 769 } 770 771 static int setup_ppod_edram(struct adapter *adap) 772 { 773 unsigned int param, val; 774 int ret; 775 776 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 777 * if firmware supports ppod edram feature or not. If firmware 778 * returns 1, then driver can enable this feature by sending 779 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 780 * enable ppod edram feature. 781 */ 782 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 784 785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 786 if (ret < 0) { 787 dev_warn(adap->pdev_dev, 788 "querying PPOD_EDRAM support failed: %d\n", 789 ret); 790 return -1; 791 } 792 793 if (val != 1) 794 return -1; 795 796 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 797 if (ret < 0) { 798 dev_err(adap->pdev_dev, 799 "setting PPOD_EDRAM failed: %d\n", ret); 800 return -1; 801 } 802 return 0; 803 } 804 805 static void adap_config_hpfilter(struct adapter *adapter) 806 { 807 u32 param, val = 0; 808 int ret; 809 810 /* Enable HP filter region. Older fw will fail this request and 811 * it is fine. 812 */ 813 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 814 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 815 1, ¶m, &val); 816 817 /* An error means FW doesn't know about HP filter support, 818 * it's not a problem, don't return an error. 819 */ 820 if (ret < 0) 821 dev_err(adapter->pdev_dev, 822 "HP filter region isn't supported by FW\n"); 823 } 824 825 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss, 826 u16 rss_size, u16 viid) 827 { 828 struct adapter *adap = pi->adapter; 829 int ret; 830 831 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss, 832 rss_size); 833 if (ret) 834 return ret; 835 836 /* If Tunnel All Lookup isn't specified in the global RSS 837 * Configuration, then we need to specify a default Ingress 838 * Queue for any ingress packets which aren't hashed. We'll 839 * use our first ingress queue ... 840 */ 841 return t4_config_vi_rss(adap, adap->mbox, viid, 842 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 843 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 844 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 845 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 846 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 847 rss[0]); 848 } 849 850 /** 851 * cxgb4_write_rss - write the RSS table for a given port 852 * @pi: the port 853 * @queues: array of queue indices for RSS 854 * 855 * Sets up the portion of the HW RSS table for the port's VI to distribute 856 * packets to the Rx queues in @queues. 857 * Should never be called before setting up sge eth rx queues 858 */ 859 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 860 { 861 struct adapter *adapter = pi->adapter; 862 const struct sge_eth_rxq *rxq; 863 int i, err; 864 u16 *rss; 865 866 rxq = &adapter->sge.ethrxq[pi->first_qset]; 867 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 868 if (!rss) 869 return -ENOMEM; 870 871 /* map the queue indices to queue ids */ 872 for (i = 0; i < pi->rss_size; i++, queues++) 873 rss[i] = rxq[*queues].rspq.abs_id; 874 875 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid); 876 kfree(rss); 877 return err; 878 } 879 880 /** 881 * setup_rss - configure RSS 882 * @adap: the adapter 883 * 884 * Sets up RSS for each port. 885 */ 886 static int setup_rss(struct adapter *adap) 887 { 888 int i, j, err; 889 890 for_each_port(adap, i) { 891 const struct port_info *pi = adap2pinfo(adap, i); 892 893 /* Fill default values with equal distribution */ 894 for (j = 0; j < pi->rss_size; j++) 895 pi->rss[j] = j % pi->nqsets; 896 897 err = cxgb4_write_rss(pi, pi->rss); 898 if (err) 899 return err; 900 } 901 return 0; 902 } 903 904 /* 905 * Return the channel of the ingress queue with the given qid. 906 */ 907 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 908 { 909 qid -= p->ingr_start; 910 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 911 } 912 913 void cxgb4_quiesce_rx(struct sge_rspq *q) 914 { 915 if (q->handler) 916 napi_disable(&q->napi); 917 } 918 919 /* 920 * Wait until all NAPI handlers are descheduled. 921 */ 922 static void quiesce_rx(struct adapter *adap) 923 { 924 int i; 925 926 for (i = 0; i < adap->sge.ingr_sz; i++) { 927 struct sge_rspq *q = adap->sge.ingr_map[i]; 928 929 if (!q) 930 continue; 931 932 cxgb4_quiesce_rx(q); 933 } 934 } 935 936 /* Disable interrupt and napi handler */ 937 static void disable_interrupts(struct adapter *adap) 938 { 939 struct sge *s = &adap->sge; 940 941 if (adap->flags & CXGB4_FULL_INIT_DONE) { 942 t4_intr_disable(adap); 943 if (adap->flags & CXGB4_USING_MSIX) { 944 free_msix_queue_irqs(adap); 945 free_irq(adap->msix_info[s->nd_msix_idx].vec, 946 adap); 947 } else { 948 free_irq(adap->pdev->irq, adap); 949 } 950 quiesce_rx(adap); 951 } 952 } 953 954 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) 955 { 956 if (q->handler) 957 napi_enable(&q->napi); 958 959 /* 0-increment GTS to start the timer and enable interrupts */ 960 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 961 SEINTARM_V(q->intr_params) | 962 INGRESSQID_V(q->cntxt_id)); 963 } 964 965 /* 966 * Enable NAPI scheduling and interrupt generation for all Rx queues. 967 */ 968 static void enable_rx(struct adapter *adap) 969 { 970 int i; 971 972 for (i = 0; i < adap->sge.ingr_sz; i++) { 973 struct sge_rspq *q = adap->sge.ingr_map[i]; 974 975 if (!q) 976 continue; 977 978 cxgb4_enable_rx(adap, q); 979 } 980 } 981 982 static int setup_non_data_intr(struct adapter *adap) 983 { 984 int msix; 985 986 adap->sge.nd_msix_idx = -1; 987 if (!(adap->flags & CXGB4_USING_MSIX)) 988 return 0; 989 990 /* Request MSI-X vector for non-data interrupt */ 991 msix = cxgb4_get_msix_idx_from_bmap(adap); 992 if (msix < 0) 993 return -ENOMEM; 994 995 snprintf(adap->msix_info[msix].desc, 996 sizeof(adap->msix_info[msix].desc), 997 "%s", adap->port[0]->name); 998 999 adap->sge.nd_msix_idx = msix; 1000 return 0; 1001 } 1002 1003 static int setup_fw_sge_queues(struct adapter *adap) 1004 { 1005 struct sge *s = &adap->sge; 1006 int msix, err = 0; 1007 1008 bitmap_zero(s->starving_fl, s->egr_sz); 1009 bitmap_zero(s->txq_maperr, s->egr_sz); 1010 1011 if (adap->flags & CXGB4_USING_MSIX) { 1012 s->fwevtq_msix_idx = -1; 1013 msix = cxgb4_get_msix_idx_from_bmap(adap); 1014 if (msix < 0) 1015 return -ENOMEM; 1016 1017 snprintf(adap->msix_info[msix].desc, 1018 sizeof(adap->msix_info[msix].desc), 1019 "%s-FWeventq", adap->port[0]->name); 1020 } else { 1021 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1022 NULL, NULL, NULL, -1); 1023 if (err) 1024 return err; 1025 msix = -((int)s->intrq.abs_id + 1); 1026 } 1027 1028 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1029 msix, NULL, fwevtq_handler, NULL, -1); 1030 if (err && msix >= 0) 1031 cxgb4_free_msix_idx_in_bmap(adap, msix); 1032 1033 s->fwevtq_msix_idx = msix; 1034 return err; 1035 } 1036 1037 /** 1038 * setup_sge_queues - configure SGE Tx/Rx/response queues 1039 * @adap: the adapter 1040 * 1041 * Determines how many sets of SGE queues to use and initializes them. 1042 * We support multiple queue sets per port if we have MSI-X, otherwise 1043 * just one queue set per port. 1044 */ 1045 static int setup_sge_queues(struct adapter *adap) 1046 { 1047 struct sge_uld_rxq_info *rxq_info = NULL; 1048 struct sge *s = &adap->sge; 1049 unsigned int cmplqid = 0; 1050 int err, i, j, msix = 0; 1051 1052 if (is_uld(adap)) 1053 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 1054 1055 if (!(adap->flags & CXGB4_USING_MSIX)) 1056 msix = -((int)s->intrq.abs_id + 1); 1057 1058 for_each_port(adap, i) { 1059 struct net_device *dev = adap->port[i]; 1060 struct port_info *pi = netdev_priv(dev); 1061 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1062 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1063 1064 for (j = 0; j < pi->nqsets; j++, q++) { 1065 if (msix >= 0) { 1066 msix = cxgb4_get_msix_idx_from_bmap(adap); 1067 if (msix < 0) { 1068 err = msix; 1069 goto freeout; 1070 } 1071 1072 snprintf(adap->msix_info[msix].desc, 1073 sizeof(adap->msix_info[msix].desc), 1074 "%s-Rx%d", dev->name, j); 1075 q->msix = &adap->msix_info[msix]; 1076 } 1077 1078 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1079 msix, &q->fl, 1080 t4_ethrx_handler, 1081 NULL, 1082 t4_get_tp_ch_map(adap, 1083 pi->tx_chan)); 1084 if (err) 1085 goto freeout; 1086 q->rspq.idx = j; 1087 memset(&q->stats, 0, sizeof(q->stats)); 1088 } 1089 1090 q = &s->ethrxq[pi->first_qset]; 1091 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1092 err = t4_sge_alloc_eth_txq(adap, t, dev, 1093 netdev_get_tx_queue(dev, j), 1094 q->rspq.cntxt_id, 1095 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1096 if (err) 1097 goto freeout; 1098 } 1099 } 1100 1101 for_each_port(adap, i) { 1102 /* Note that cmplqid below is 0 if we don't 1103 * have RDMA queues, and that's the right value. 1104 */ 1105 if (rxq_info) 1106 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1107 1108 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1109 s->fw_evtq.cntxt_id, cmplqid); 1110 if (err) 1111 goto freeout; 1112 } 1113 1114 if (!is_t4(adap->params.chip)) { 1115 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1116 netdev_get_tx_queue(adap->port[0], 0) 1117 , s->fw_evtq.cntxt_id, false); 1118 if (err) 1119 goto freeout; 1120 } 1121 1122 t4_write_reg(adap, is_t4(adap->params.chip) ? 1123 MPS_TRC_RSS_CONTROL_A : 1124 MPS_T5_TRC_RSS_CONTROL_A, 1125 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1126 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1127 return 0; 1128 freeout: 1129 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1130 t4_free_sge_resources(adap); 1131 return err; 1132 } 1133 1134 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1135 struct net_device *sb_dev) 1136 { 1137 int txq; 1138 1139 #ifdef CONFIG_CHELSIO_T4_DCB 1140 /* If a Data Center Bridging has been successfully negotiated on this 1141 * link then we'll use the skb's priority to map it to a TX Queue. 1142 * The skb's priority is determined via the VLAN Tag Priority Code 1143 * Point field. 1144 */ 1145 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1146 u16 vlan_tci; 1147 int err; 1148 1149 err = vlan_get_tag(skb, &vlan_tci); 1150 if (unlikely(err)) { 1151 if (net_ratelimit()) 1152 netdev_warn(dev, 1153 "TX Packet without VLAN Tag on DCB Link\n"); 1154 txq = 0; 1155 } else { 1156 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1157 #ifdef CONFIG_CHELSIO_T4_FCOE 1158 if (skb->protocol == htons(ETH_P_FCOE)) 1159 txq = skb->priority & 0x7; 1160 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1161 } 1162 return txq; 1163 } 1164 #endif /* CONFIG_CHELSIO_T4_DCB */ 1165 1166 if (dev->num_tc) { 1167 struct port_info *pi = netdev2pinfo(dev); 1168 u8 ver, proto; 1169 1170 ver = ip_hdr(skb)->version; 1171 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : 1172 ip_hdr(skb)->protocol; 1173 1174 /* Send unsupported traffic pattern to normal NIC queues. */ 1175 txq = netdev_pick_tx(dev, skb, sb_dev); 1176 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || 1177 skb->encapsulation || 1178 tls_is_skb_tx_device_offloaded(skb) || 1179 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) 1180 txq = txq % pi->nqsets; 1181 1182 return txq; 1183 } 1184 1185 if (select_queue) { 1186 txq = (skb_rx_queue_recorded(skb) 1187 ? skb_get_rx_queue(skb) 1188 : smp_processor_id()); 1189 1190 while (unlikely(txq >= dev->real_num_tx_queues)) 1191 txq -= dev->real_num_tx_queues; 1192 1193 return txq; 1194 } 1195 1196 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1197 } 1198 1199 static int closest_timer(const struct sge *s, int time) 1200 { 1201 int i, delta, match = 0, min_delta = INT_MAX; 1202 1203 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1204 delta = time - s->timer_val[i]; 1205 if (delta < 0) 1206 delta = -delta; 1207 if (delta < min_delta) { 1208 min_delta = delta; 1209 match = i; 1210 } 1211 } 1212 return match; 1213 } 1214 1215 static int closest_thres(const struct sge *s, int thres) 1216 { 1217 int i, delta, match = 0, min_delta = INT_MAX; 1218 1219 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1220 delta = thres - s->counter_val[i]; 1221 if (delta < 0) 1222 delta = -delta; 1223 if (delta < min_delta) { 1224 min_delta = delta; 1225 match = i; 1226 } 1227 } 1228 return match; 1229 } 1230 1231 /** 1232 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1233 * @q: the Rx queue 1234 * @us: the hold-off time in us, or 0 to disable timer 1235 * @cnt: the hold-off packet count, or 0 to disable counter 1236 * 1237 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1238 * one of the two needs to be enabled for the queue to generate interrupts. 1239 */ 1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1241 unsigned int us, unsigned int cnt) 1242 { 1243 struct adapter *adap = q->adap; 1244 1245 if ((us | cnt) == 0) 1246 cnt = 1; 1247 1248 if (cnt) { 1249 int err; 1250 u32 v, new_idx; 1251 1252 new_idx = closest_thres(&adap->sge, cnt); 1253 if (q->desc && q->pktcnt_idx != new_idx) { 1254 /* the queue has already been created, update it */ 1255 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1256 FW_PARAMS_PARAM_X_V( 1257 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1258 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1259 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1260 &v, &new_idx); 1261 if (err) 1262 return err; 1263 } 1264 q->pktcnt_idx = new_idx; 1265 } 1266 1267 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1268 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1269 return 0; 1270 } 1271 1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1273 { 1274 netdev_features_t changed = dev->features ^ features; 1275 const struct port_info *pi = netdev_priv(dev); 1276 int err; 1277 1278 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1279 return 0; 1280 1281 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid, 1282 pi->viid_mirror, -1, -1, -1, -1, 1283 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1284 if (unlikely(err)) 1285 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1286 return err; 1287 } 1288 1289 static int setup_debugfs(struct adapter *adap) 1290 { 1291 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1292 return -1; 1293 1294 #ifdef CONFIG_DEBUG_FS 1295 t4_setup_debugfs(adap); 1296 #endif 1297 return 0; 1298 } 1299 1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap, 1301 struct sge_eth_rxq *mirror_rxq) 1302 { 1303 if ((adap->flags & CXGB4_FULL_INIT_DONE) && 1304 !(adap->flags & CXGB4_SHUTTING_DOWN)) 1305 cxgb4_quiesce_rx(&mirror_rxq->rspq); 1306 1307 if (adap->flags & CXGB4_USING_MSIX) { 1308 cxgb4_clear_msix_aff(mirror_rxq->msix->vec, 1309 mirror_rxq->msix->aff_mask); 1310 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq); 1311 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx); 1312 } 1313 1314 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl); 1315 } 1316 1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev) 1318 { 1319 struct port_info *pi = netdev2pinfo(dev); 1320 struct adapter *adap = netdev2adap(dev); 1321 struct sge_eth_rxq *mirror_rxq; 1322 struct sge *s = &adap->sge; 1323 int ret = 0, msix = 0; 1324 u16 i, rxqid; 1325 u16 *rss; 1326 1327 if (!pi->vi_mirror_count) 1328 return 0; 1329 1330 if (s->mirror_rxq[pi->port_id]) 1331 return 0; 1332 1333 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL); 1334 if (!mirror_rxq) 1335 return -ENOMEM; 1336 1337 s->mirror_rxq[pi->port_id] = mirror_rxq; 1338 1339 if (!(adap->flags & CXGB4_USING_MSIX)) 1340 msix = -((int)adap->sge.intrq.abs_id + 1); 1341 1342 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) { 1343 mirror_rxq = &s->mirror_rxq[pi->port_id][i]; 1344 1345 /* Allocate Mirror Rxqs */ 1346 if (msix >= 0) { 1347 msix = cxgb4_get_msix_idx_from_bmap(adap); 1348 if (msix < 0) { 1349 ret = msix; 1350 goto out_free_queues; 1351 } 1352 1353 mirror_rxq->msix = &adap->msix_info[msix]; 1354 snprintf(mirror_rxq->msix->desc, 1355 sizeof(mirror_rxq->msix->desc), 1356 "%s-mirrorrxq%d", dev->name, i); 1357 } 1358 1359 init_rspq(adap, &mirror_rxq->rspq, 1360 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC, 1361 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT, 1362 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM, 1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE); 1364 1365 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM; 1366 1367 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false, 1368 dev, msix, &mirror_rxq->fl, 1369 t4_ethrx_handler, NULL, 0); 1370 if (ret) 1371 goto out_free_msix_idx; 1372 1373 /* Setup MSI-X vectors for Mirror Rxqs */ 1374 if (adap->flags & CXGB4_USING_MSIX) { 1375 ret = request_irq(mirror_rxq->msix->vec, 1376 t4_sge_intr_msix, 0, 1377 mirror_rxq->msix->desc, 1378 &mirror_rxq->rspq); 1379 if (ret) 1380 goto out_free_rxq; 1381 1382 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec, 1383 &mirror_rxq->msix->aff_mask, i); 1384 } 1385 1386 /* Start NAPI for Mirror Rxqs */ 1387 cxgb4_enable_rx(adap, &mirror_rxq->rspq); 1388 } 1389 1390 /* Setup RSS for Mirror Rxqs */ 1391 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 1392 if (!rss) { 1393 ret = -ENOMEM; 1394 goto out_free_queues; 1395 } 1396 1397 mirror_rxq = &s->mirror_rxq[pi->port_id][0]; 1398 for (i = 0; i < pi->rss_size; i++) 1399 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id; 1400 1401 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror); 1402 kfree(rss); 1403 if (ret) 1404 goto out_free_queues; 1405 1406 return 0; 1407 1408 out_free_rxq: 1409 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl); 1410 1411 out_free_msix_idx: 1412 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx); 1413 1414 out_free_queues: 1415 while (rxqid-- > 0) 1416 cxgb4_port_mirror_free_rxq(adap, 1417 &s->mirror_rxq[pi->port_id][rxqid]); 1418 1419 kfree(s->mirror_rxq[pi->port_id]); 1420 s->mirror_rxq[pi->port_id] = NULL; 1421 return ret; 1422 } 1423 1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev) 1425 { 1426 struct port_info *pi = netdev2pinfo(dev); 1427 struct adapter *adap = netdev2adap(dev); 1428 struct sge *s = &adap->sge; 1429 u16 i; 1430 1431 if (!pi->vi_mirror_count) 1432 return; 1433 1434 if (!s->mirror_rxq[pi->port_id]) 1435 return; 1436 1437 for (i = 0; i < pi->nmirrorqsets; i++) 1438 cxgb4_port_mirror_free_rxq(adap, 1439 &s->mirror_rxq[pi->port_id][i]); 1440 1441 kfree(s->mirror_rxq[pi->port_id]); 1442 s->mirror_rxq[pi->port_id] = NULL; 1443 } 1444 1445 static int cxgb4_port_mirror_start(struct net_device *dev) 1446 { 1447 struct port_info *pi = netdev2pinfo(dev); 1448 struct adapter *adap = netdev2adap(dev); 1449 int ret, idx = -1; 1450 1451 if (!pi->vi_mirror_count) 1452 return 0; 1453 1454 /* Mirror VIs can be created dynamically after stack had 1455 * already setup Rx modes like MTU, promisc, allmulti, etc. 1456 * on main VI. So, parse what the stack had setup on the 1457 * main VI and update the same on the mirror VI. 1458 */ 1459 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror, 1460 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, 1461 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, 1462 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 1463 if (ret) { 1464 dev_err(adap->pdev_dev, 1465 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n", 1466 pi->viid_mirror, ret); 1467 return ret; 1468 } 1469 1470 /* Enable replication bit for the device's MAC address 1471 * in MPS TCAM, so that the packets for the main VI are 1472 * replicated to mirror VI. 1473 */ 1474 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx, 1475 dev->dev_addr, true, NULL); 1476 if (ret) { 1477 dev_err(adap->pdev_dev, 1478 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n", 1479 pi->viid_mirror, ret); 1480 return ret; 1481 } 1482 1483 /* Enabling a Virtual Interface can result in an interrupt 1484 * during the processing of the VI Enable command and, in some 1485 * paths, result in an attempt to issue another command in the 1486 * interrupt context. Thus, we disable interrupts during the 1487 * course of the VI Enable command ... 1488 */ 1489 local_bh_disable(); 1490 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true, 1491 false); 1492 local_bh_enable(); 1493 if (ret) 1494 dev_err(adap->pdev_dev, 1495 "Failed starting Mirror VI 0x%x, ret: %d\n", 1496 pi->viid_mirror, ret); 1497 1498 return ret; 1499 } 1500 1501 static void cxgb4_port_mirror_stop(struct net_device *dev) 1502 { 1503 struct port_info *pi = netdev2pinfo(dev); 1504 struct adapter *adap = netdev2adap(dev); 1505 1506 if (!pi->vi_mirror_count) 1507 return; 1508 1509 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false, 1510 false); 1511 } 1512 1513 int cxgb4_port_mirror_alloc(struct net_device *dev) 1514 { 1515 struct port_info *pi = netdev2pinfo(dev); 1516 struct adapter *adap = netdev2adap(dev); 1517 int ret = 0; 1518 1519 if (!pi->nmirrorqsets) 1520 return -EOPNOTSUPP; 1521 1522 mutex_lock(&pi->vi_mirror_mutex); 1523 if (pi->viid_mirror) { 1524 pi->vi_mirror_count++; 1525 goto out_unlock; 1526 } 1527 1528 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0, 1529 &pi->viid_mirror); 1530 if (ret) 1531 goto out_unlock; 1532 1533 pi->vi_mirror_count = 1; 1534 1535 if (adap->flags & CXGB4_FULL_INIT_DONE) { 1536 ret = cxgb4_port_mirror_alloc_queues(dev); 1537 if (ret) 1538 goto out_free_vi; 1539 1540 ret = cxgb4_port_mirror_start(dev); 1541 if (ret) 1542 goto out_free_queues; 1543 } 1544 1545 mutex_unlock(&pi->vi_mirror_mutex); 1546 return 0; 1547 1548 out_free_queues: 1549 cxgb4_port_mirror_free_queues(dev); 1550 1551 out_free_vi: 1552 pi->vi_mirror_count = 0; 1553 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror); 1554 pi->viid_mirror = 0; 1555 1556 out_unlock: 1557 mutex_unlock(&pi->vi_mirror_mutex); 1558 return ret; 1559 } 1560 1561 void cxgb4_port_mirror_free(struct net_device *dev) 1562 { 1563 struct port_info *pi = netdev2pinfo(dev); 1564 struct adapter *adap = netdev2adap(dev); 1565 1566 mutex_lock(&pi->vi_mirror_mutex); 1567 if (!pi->viid_mirror) 1568 goto out_unlock; 1569 1570 if (pi->vi_mirror_count > 1) { 1571 pi->vi_mirror_count--; 1572 goto out_unlock; 1573 } 1574 1575 cxgb4_port_mirror_stop(dev); 1576 cxgb4_port_mirror_free_queues(dev); 1577 1578 pi->vi_mirror_count = 0; 1579 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror); 1580 pi->viid_mirror = 0; 1581 1582 out_unlock: 1583 mutex_unlock(&pi->vi_mirror_mutex); 1584 } 1585 1586 /* 1587 * upper-layer driver support 1588 */ 1589 1590 /* 1591 * Allocate an active-open TID and set it to the supplied value. 1592 */ 1593 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1594 { 1595 int atid = -1; 1596 1597 spin_lock_bh(&t->atid_lock); 1598 if (t->afree) { 1599 union aopen_entry *p = t->afree; 1600 1601 atid = (p - t->atid_tab) + t->atid_base; 1602 t->afree = p->next; 1603 p->data = data; 1604 t->atids_in_use++; 1605 } 1606 spin_unlock_bh(&t->atid_lock); 1607 return atid; 1608 } 1609 EXPORT_SYMBOL(cxgb4_alloc_atid); 1610 1611 /* 1612 * Release an active-open TID. 1613 */ 1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1615 { 1616 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1617 1618 spin_lock_bh(&t->atid_lock); 1619 p->next = t->afree; 1620 t->afree = p; 1621 t->atids_in_use--; 1622 spin_unlock_bh(&t->atid_lock); 1623 } 1624 EXPORT_SYMBOL(cxgb4_free_atid); 1625 1626 /* 1627 * Allocate a server TID and set it to the supplied value. 1628 */ 1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1630 { 1631 int stid; 1632 1633 spin_lock_bh(&t->stid_lock); 1634 if (family == PF_INET) { 1635 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1636 if (stid < t->nstids) 1637 __set_bit(stid, t->stid_bmap); 1638 else 1639 stid = -1; 1640 } else { 1641 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1642 if (stid < 0) 1643 stid = -1; 1644 } 1645 if (stid >= 0) { 1646 t->stid_tab[stid].data = data; 1647 stid += t->stid_base; 1648 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1649 * This is equivalent to 4 TIDs. With CLIP enabled it 1650 * needs 2 TIDs. 1651 */ 1652 if (family == PF_INET6) { 1653 t->stids_in_use += 2; 1654 t->v6_stids_in_use += 2; 1655 } else { 1656 t->stids_in_use++; 1657 } 1658 } 1659 spin_unlock_bh(&t->stid_lock); 1660 return stid; 1661 } 1662 EXPORT_SYMBOL(cxgb4_alloc_stid); 1663 1664 /* Allocate a server filter TID and set it to the supplied value. 1665 */ 1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1667 { 1668 int stid; 1669 1670 spin_lock_bh(&t->stid_lock); 1671 if (family == PF_INET) { 1672 stid = find_next_zero_bit(t->stid_bmap, 1673 t->nstids + t->nsftids, t->nstids); 1674 if (stid < (t->nstids + t->nsftids)) 1675 __set_bit(stid, t->stid_bmap); 1676 else 1677 stid = -1; 1678 } else { 1679 stid = -1; 1680 } 1681 if (stid >= 0) { 1682 t->stid_tab[stid].data = data; 1683 stid -= t->nstids; 1684 stid += t->sftid_base; 1685 t->sftids_in_use++; 1686 } 1687 spin_unlock_bh(&t->stid_lock); 1688 return stid; 1689 } 1690 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1691 1692 /* Release a server TID. 1693 */ 1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1695 { 1696 /* Is it a server filter TID? */ 1697 if (t->nsftids && (stid >= t->sftid_base)) { 1698 stid -= t->sftid_base; 1699 stid += t->nstids; 1700 } else { 1701 stid -= t->stid_base; 1702 } 1703 1704 spin_lock_bh(&t->stid_lock); 1705 if (family == PF_INET) 1706 __clear_bit(stid, t->stid_bmap); 1707 else 1708 bitmap_release_region(t->stid_bmap, stid, 1); 1709 t->stid_tab[stid].data = NULL; 1710 if (stid < t->nstids) { 1711 if (family == PF_INET6) { 1712 t->stids_in_use -= 2; 1713 t->v6_stids_in_use -= 2; 1714 } else { 1715 t->stids_in_use--; 1716 } 1717 } else { 1718 t->sftids_in_use--; 1719 } 1720 1721 spin_unlock_bh(&t->stid_lock); 1722 } 1723 EXPORT_SYMBOL(cxgb4_free_stid); 1724 1725 /* 1726 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1727 */ 1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1729 unsigned int tid) 1730 { 1731 struct cpl_tid_release *req; 1732 1733 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1734 req = __skb_put(skb, sizeof(*req)); 1735 INIT_TP_WR(req, tid); 1736 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1737 } 1738 1739 /* 1740 * Queue a TID release request and if necessary schedule a work queue to 1741 * process it. 1742 */ 1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1744 unsigned int tid) 1745 { 1746 struct adapter *adap = container_of(t, struct adapter, tids); 1747 void **p = &t->tid_tab[tid - t->tid_base]; 1748 1749 spin_lock_bh(&adap->tid_release_lock); 1750 *p = adap->tid_release_head; 1751 /* Low 2 bits encode the Tx channel number */ 1752 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1753 if (!adap->tid_release_task_busy) { 1754 adap->tid_release_task_busy = true; 1755 queue_work(adap->workq, &adap->tid_release_task); 1756 } 1757 spin_unlock_bh(&adap->tid_release_lock); 1758 } 1759 1760 /* 1761 * Process the list of pending TID release requests. 1762 */ 1763 static void process_tid_release_list(struct work_struct *work) 1764 { 1765 struct sk_buff *skb; 1766 struct adapter *adap; 1767 1768 adap = container_of(work, struct adapter, tid_release_task); 1769 1770 spin_lock_bh(&adap->tid_release_lock); 1771 while (adap->tid_release_head) { 1772 void **p = adap->tid_release_head; 1773 unsigned int chan = (uintptr_t)p & 3; 1774 p = (void *)p - chan; 1775 1776 adap->tid_release_head = *p; 1777 *p = NULL; 1778 spin_unlock_bh(&adap->tid_release_lock); 1779 1780 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1781 GFP_KERNEL))) 1782 schedule_timeout_uninterruptible(1); 1783 1784 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1785 t4_ofld_send(adap, skb); 1786 spin_lock_bh(&adap->tid_release_lock); 1787 } 1788 adap->tid_release_task_busy = false; 1789 spin_unlock_bh(&adap->tid_release_lock); 1790 } 1791 1792 /* 1793 * Release a TID and inform HW. If we are unable to allocate the release 1794 * message we defer to a work queue. 1795 */ 1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1797 unsigned short family) 1798 { 1799 struct adapter *adap = container_of(t, struct adapter, tids); 1800 struct sk_buff *skb; 1801 1802 WARN_ON(tid_out_of_range(&adap->tids, tid)); 1803 1804 if (t->tid_tab[tid - adap->tids.tid_base]) { 1805 t->tid_tab[tid - adap->tids.tid_base] = NULL; 1806 atomic_dec(&t->conns_in_use); 1807 if (t->hash_base && (tid >= t->hash_base)) { 1808 if (family == AF_INET6) 1809 atomic_sub(2, &t->hash_tids_in_use); 1810 else 1811 atomic_dec(&t->hash_tids_in_use); 1812 } else { 1813 if (family == AF_INET6) 1814 atomic_sub(2, &t->tids_in_use); 1815 else 1816 atomic_dec(&t->tids_in_use); 1817 } 1818 } 1819 1820 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1821 if (likely(skb)) { 1822 mk_tid_release(skb, chan, tid); 1823 t4_ofld_send(adap, skb); 1824 } else 1825 cxgb4_queue_tid_release(t, chan, tid); 1826 } 1827 EXPORT_SYMBOL(cxgb4_remove_tid); 1828 1829 /* 1830 * Allocate and initialize the TID tables. Returns 0 on success. 1831 */ 1832 static int tid_init(struct tid_info *t) 1833 { 1834 struct adapter *adap = container_of(t, struct adapter, tids); 1835 unsigned int max_ftids = t->nftids + t->nsftids; 1836 unsigned int natids = t->natids; 1837 unsigned int hpftid_bmap_size; 1838 unsigned int eotid_bmap_size; 1839 unsigned int stid_bmap_size; 1840 unsigned int ftid_bmap_size; 1841 size_t size; 1842 1843 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1844 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1845 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); 1846 eotid_bmap_size = BITS_TO_LONGS(t->neotids); 1847 size = t->ntids * sizeof(*t->tid_tab) + 1848 natids * sizeof(*t->atid_tab) + 1849 t->nstids * sizeof(*t->stid_tab) + 1850 t->nsftids * sizeof(*t->stid_tab) + 1851 stid_bmap_size * sizeof(long) + 1852 t->nhpftids * sizeof(*t->hpftid_tab) + 1853 hpftid_bmap_size * sizeof(long) + 1854 max_ftids * sizeof(*t->ftid_tab) + 1855 ftid_bmap_size * sizeof(long) + 1856 t->neotids * sizeof(*t->eotid_tab) + 1857 eotid_bmap_size * sizeof(long); 1858 1859 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1860 if (!t->tid_tab) 1861 return -ENOMEM; 1862 1863 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1864 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1865 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1866 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1867 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; 1868 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; 1869 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1870 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; 1871 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; 1872 spin_lock_init(&t->stid_lock); 1873 spin_lock_init(&t->atid_lock); 1874 spin_lock_init(&t->ftid_lock); 1875 1876 t->stids_in_use = 0; 1877 t->v6_stids_in_use = 0; 1878 t->sftids_in_use = 0; 1879 t->afree = NULL; 1880 t->atids_in_use = 0; 1881 atomic_set(&t->tids_in_use, 0); 1882 atomic_set(&t->conns_in_use, 0); 1883 atomic_set(&t->hash_tids_in_use, 0); 1884 atomic_set(&t->eotids_in_use, 0); 1885 1886 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1887 if (natids) { 1888 while (--natids) 1889 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1890 t->afree = t->atid_tab; 1891 } 1892 1893 if (is_offload(adap)) { 1894 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1895 /* Reserve stid 0 for T4/T5 adapters */ 1896 if (!t->stid_base && 1897 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1898 __set_bit(0, t->stid_bmap); 1899 1900 if (t->neotids) 1901 bitmap_zero(t->eotid_bmap, t->neotids); 1902 } 1903 1904 if (t->nhpftids) 1905 bitmap_zero(t->hpftid_bmap, t->nhpftids); 1906 bitmap_zero(t->ftid_bmap, t->nftids); 1907 return 0; 1908 } 1909 1910 /** 1911 * cxgb4_create_server - create an IP server 1912 * @dev: the device 1913 * @stid: the server TID 1914 * @sip: local IP address to bind server to 1915 * @sport: the server's TCP port 1916 * @vlan: the VLAN header information 1917 * @queue: queue to direct messages from this server to 1918 * 1919 * Create an IP server for the given port and address. 1920 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1921 */ 1922 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1923 __be32 sip, __be16 sport, __be16 vlan, 1924 unsigned int queue) 1925 { 1926 unsigned int chan; 1927 struct sk_buff *skb; 1928 struct adapter *adap; 1929 struct cpl_pass_open_req *req; 1930 int ret; 1931 1932 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1933 if (!skb) 1934 return -ENOMEM; 1935 1936 adap = netdev2adap(dev); 1937 req = __skb_put(skb, sizeof(*req)); 1938 INIT_TP_WR(req, 0); 1939 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1940 req->local_port = sport; 1941 req->peer_port = htons(0); 1942 req->local_ip = sip; 1943 req->peer_ip = htonl(0); 1944 chan = rxq_to_chan(&adap->sge, queue); 1945 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1946 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1947 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1948 ret = t4_mgmt_tx(adap, skb); 1949 return net_xmit_eval(ret); 1950 } 1951 EXPORT_SYMBOL(cxgb4_create_server); 1952 1953 /* cxgb4_create_server6 - create an IPv6 server 1954 * @dev: the device 1955 * @stid: the server TID 1956 * @sip: local IPv6 address to bind server to 1957 * @sport: the server's TCP port 1958 * @queue: queue to direct messages from this server to 1959 * 1960 * Create an IPv6 server for the given port and address. 1961 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1962 */ 1963 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1964 const struct in6_addr *sip, __be16 sport, 1965 unsigned int queue) 1966 { 1967 unsigned int chan; 1968 struct sk_buff *skb; 1969 struct adapter *adap; 1970 struct cpl_pass_open_req6 *req; 1971 int ret; 1972 1973 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1974 if (!skb) 1975 return -ENOMEM; 1976 1977 adap = netdev2adap(dev); 1978 req = __skb_put(skb, sizeof(*req)); 1979 INIT_TP_WR(req, 0); 1980 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1981 req->local_port = sport; 1982 req->peer_port = htons(0); 1983 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1984 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1985 req->peer_ip_hi = cpu_to_be64(0); 1986 req->peer_ip_lo = cpu_to_be64(0); 1987 chan = rxq_to_chan(&adap->sge, queue); 1988 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1989 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1990 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1991 ret = t4_mgmt_tx(adap, skb); 1992 return net_xmit_eval(ret); 1993 } 1994 EXPORT_SYMBOL(cxgb4_create_server6); 1995 1996 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1997 unsigned int queue, bool ipv6) 1998 { 1999 struct sk_buff *skb; 2000 struct adapter *adap; 2001 struct cpl_close_listsvr_req *req; 2002 int ret; 2003 2004 adap = netdev2adap(dev); 2005 2006 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 2007 if (!skb) 2008 return -ENOMEM; 2009 2010 req = __skb_put(skb, sizeof(*req)); 2011 INIT_TP_WR(req, 0); 2012 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 2013 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 2014 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 2015 ret = t4_mgmt_tx(adap, skb); 2016 return net_xmit_eval(ret); 2017 } 2018 EXPORT_SYMBOL(cxgb4_remove_server); 2019 2020 /** 2021 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 2022 * @mtus: the HW MTU table 2023 * @mtu: the target MTU 2024 * @idx: index of selected entry in the MTU table 2025 * 2026 * Returns the index and the value in the HW MTU table that is closest to 2027 * but does not exceed @mtu, unless @mtu is smaller than any value in the 2028 * table, in which case that smallest available value is selected. 2029 */ 2030 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 2031 unsigned int *idx) 2032 { 2033 unsigned int i = 0; 2034 2035 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 2036 ++i; 2037 if (idx) 2038 *idx = i; 2039 return mtus[i]; 2040 } 2041 EXPORT_SYMBOL(cxgb4_best_mtu); 2042 2043 /** 2044 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 2045 * @mtus: the HW MTU table 2046 * @header_size: Header Size 2047 * @data_size_max: maximum Data Segment Size 2048 * @data_size_align: desired Data Segment Size Alignment (2^N) 2049 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 2050 * 2051 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 2052 * MTU Table based solely on a Maximum MTU parameter, we break that 2053 * parameter up into a Header Size and Maximum Data Segment Size, and 2054 * provide a desired Data Segment Size Alignment. If we find an MTU in 2055 * the Hardware MTU Table which will result in a Data Segment Size with 2056 * the requested alignment _and_ that MTU isn't "too far" from the 2057 * closest MTU, then we'll return that rather than the closest MTU. 2058 */ 2059 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 2060 unsigned short header_size, 2061 unsigned short data_size_max, 2062 unsigned short data_size_align, 2063 unsigned int *mtu_idxp) 2064 { 2065 unsigned short max_mtu = header_size + data_size_max; 2066 unsigned short data_size_align_mask = data_size_align - 1; 2067 int mtu_idx, aligned_mtu_idx; 2068 2069 /* Scan the MTU Table till we find an MTU which is larger than our 2070 * Maximum MTU or we reach the end of the table. Along the way, 2071 * record the last MTU found, if any, which will result in a Data 2072 * Segment Length matching the requested alignment. 2073 */ 2074 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 2075 unsigned short data_size = mtus[mtu_idx] - header_size; 2076 2077 /* If this MTU minus the Header Size would result in a 2078 * Data Segment Size of the desired alignment, remember it. 2079 */ 2080 if ((data_size & data_size_align_mask) == 0) 2081 aligned_mtu_idx = mtu_idx; 2082 2083 /* If we're not at the end of the Hardware MTU Table and the 2084 * next element is larger than our Maximum MTU, drop out of 2085 * the loop. 2086 */ 2087 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 2088 break; 2089 } 2090 2091 /* If we fell out of the loop because we ran to the end of the table, 2092 * then we just have to use the last [largest] entry. 2093 */ 2094 if (mtu_idx == NMTUS) 2095 mtu_idx--; 2096 2097 /* If we found an MTU which resulted in the requested Data Segment 2098 * Length alignment and that's "not far" from the largest MTU which is 2099 * less than or equal to the maximum MTU, then use that. 2100 */ 2101 if (aligned_mtu_idx >= 0 && 2102 mtu_idx - aligned_mtu_idx <= 1) 2103 mtu_idx = aligned_mtu_idx; 2104 2105 /* If the caller has passed in an MTU Index pointer, pass the 2106 * MTU Index back. Return the MTU value. 2107 */ 2108 if (mtu_idxp) 2109 *mtu_idxp = mtu_idx; 2110 return mtus[mtu_idx]; 2111 } 2112 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 2113 2114 /** 2115 * cxgb4_port_chan - get the HW channel of a port 2116 * @dev: the net device for the port 2117 * 2118 * Return the HW Tx channel of the given port. 2119 */ 2120 unsigned int cxgb4_port_chan(const struct net_device *dev) 2121 { 2122 return netdev2pinfo(dev)->tx_chan; 2123 } 2124 EXPORT_SYMBOL(cxgb4_port_chan); 2125 2126 /** 2127 * cxgb4_port_e2cchan - get the HW c-channel of a port 2128 * @dev: the net device for the port 2129 * 2130 * Return the HW RX c-channel of the given port. 2131 */ 2132 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 2133 { 2134 return netdev2pinfo(dev)->rx_cchan; 2135 } 2136 EXPORT_SYMBOL(cxgb4_port_e2cchan); 2137 2138 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 2139 { 2140 struct adapter *adap = netdev2adap(dev); 2141 u32 v1, v2, lp_count, hp_count; 2142 2143 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2144 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2145 if (is_t4(adap->params.chip)) { 2146 lp_count = LP_COUNT_G(v1); 2147 hp_count = HP_COUNT_G(v1); 2148 } else { 2149 lp_count = LP_COUNT_T5_G(v1); 2150 hp_count = HP_COUNT_T5_G(v2); 2151 } 2152 return lpfifo ? lp_count : hp_count; 2153 } 2154 EXPORT_SYMBOL(cxgb4_dbfifo_count); 2155 2156 /** 2157 * cxgb4_port_viid - get the VI id of a port 2158 * @dev: the net device for the port 2159 * 2160 * Return the VI id of the given port. 2161 */ 2162 unsigned int cxgb4_port_viid(const struct net_device *dev) 2163 { 2164 return netdev2pinfo(dev)->viid; 2165 } 2166 EXPORT_SYMBOL(cxgb4_port_viid); 2167 2168 /** 2169 * cxgb4_port_idx - get the index of a port 2170 * @dev: the net device for the port 2171 * 2172 * Return the index of the given port. 2173 */ 2174 unsigned int cxgb4_port_idx(const struct net_device *dev) 2175 { 2176 return netdev2pinfo(dev)->port_id; 2177 } 2178 EXPORT_SYMBOL(cxgb4_port_idx); 2179 2180 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2181 struct tp_tcp_stats *v6) 2182 { 2183 struct adapter *adap = pci_get_drvdata(pdev); 2184 2185 spin_lock(&adap->stats_lock); 2186 t4_tp_get_tcp_stats(adap, v4, v6, false); 2187 spin_unlock(&adap->stats_lock); 2188 } 2189 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2190 2191 int cxgb4_flush_eq_cache(struct net_device *dev) 2192 { 2193 struct adapter *adap = netdev2adap(dev); 2194 2195 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 2196 } 2197 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2198 2199 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2200 { 2201 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 2202 __be64 indices; 2203 int ret; 2204 2205 spin_lock(&adap->win0_lock); 2206 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2207 sizeof(indices), (__be32 *)&indices, 2208 T4_MEMORY_READ); 2209 spin_unlock(&adap->win0_lock); 2210 if (!ret) { 2211 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2212 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2213 } 2214 return ret; 2215 } 2216 2217 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2218 u16 size) 2219 { 2220 struct adapter *adap = netdev2adap(dev); 2221 u16 hw_pidx, hw_cidx; 2222 int ret; 2223 2224 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2225 if (ret) 2226 goto out; 2227 2228 if (pidx != hw_pidx) { 2229 u16 delta; 2230 u32 val; 2231 2232 if (pidx >= hw_pidx) 2233 delta = pidx - hw_pidx; 2234 else 2235 delta = size - hw_pidx + pidx; 2236 2237 if (is_t4(adap->params.chip)) 2238 val = PIDX_V(delta); 2239 else 2240 val = PIDX_T5_V(delta); 2241 wmb(); 2242 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2243 QID_V(qid) | val); 2244 } 2245 out: 2246 return ret; 2247 } 2248 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2249 2250 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2251 { 2252 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2253 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2254 u32 offset, memtype, memaddr; 2255 struct adapter *adap; 2256 u32 hma_size = 0; 2257 int ret; 2258 2259 adap = netdev2adap(dev); 2260 2261 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2262 2263 /* Figure out where the offset lands in the Memory Type/Address scheme. 2264 * This code assumes that the memory is laid out starting at offset 0 2265 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2266 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2267 * MC0, and some have both MC0 and MC1. 2268 */ 2269 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2270 edc0_size = EDRAM0_SIZE_G(size) << 20; 2271 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2272 edc1_size = EDRAM1_SIZE_G(size) << 20; 2273 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2274 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2275 2276 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 2277 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2278 hma_size = EXT_MEM1_SIZE_G(size) << 20; 2279 } 2280 edc0_end = edc0_size; 2281 edc1_end = edc0_end + edc1_size; 2282 mc0_end = edc1_end + mc0_size; 2283 2284 if (offset < edc0_end) { 2285 memtype = MEM_EDC0; 2286 memaddr = offset; 2287 } else if (offset < edc1_end) { 2288 memtype = MEM_EDC1; 2289 memaddr = offset - edc0_end; 2290 } else { 2291 if (hma_size && (offset < (edc1_end + hma_size))) { 2292 memtype = MEM_HMA; 2293 memaddr = offset - edc1_end; 2294 } else if (offset < mc0_end) { 2295 memtype = MEM_MC0; 2296 memaddr = offset - edc1_end; 2297 } else if (is_t5(adap->params.chip)) { 2298 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2299 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2300 mc1_end = mc0_end + mc1_size; 2301 if (offset < mc1_end) { 2302 memtype = MEM_MC1; 2303 memaddr = offset - mc0_end; 2304 } else { 2305 /* offset beyond the end of any memory */ 2306 goto err; 2307 } 2308 } else { 2309 /* T4/T6 only has a single memory channel */ 2310 goto err; 2311 } 2312 } 2313 2314 spin_lock(&adap->win0_lock); 2315 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2316 spin_unlock(&adap->win0_lock); 2317 return ret; 2318 2319 err: 2320 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2321 stag, offset); 2322 return -EINVAL; 2323 } 2324 EXPORT_SYMBOL(cxgb4_read_tpte); 2325 2326 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2327 { 2328 u32 hi, lo; 2329 struct adapter *adap; 2330 2331 adap = netdev2adap(dev); 2332 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2333 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2334 2335 return ((u64)hi << 32) | (u64)lo; 2336 } 2337 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2338 2339 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2340 unsigned int qid, 2341 enum cxgb4_bar2_qtype qtype, 2342 int user, 2343 u64 *pbar2_qoffset, 2344 unsigned int *pbar2_qid) 2345 { 2346 return t4_bar2_sge_qregs(netdev2adap(dev), 2347 qid, 2348 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2349 ? T4_BAR2_QTYPE_EGRESS 2350 : T4_BAR2_QTYPE_INGRESS), 2351 user, 2352 pbar2_qoffset, 2353 pbar2_qid); 2354 } 2355 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2356 2357 static struct pci_driver cxgb4_driver; 2358 2359 static void check_neigh_update(struct neighbour *neigh) 2360 { 2361 const struct device *parent; 2362 const struct net_device *netdev = neigh->dev; 2363 2364 if (is_vlan_dev(netdev)) 2365 netdev = vlan_dev_real_dev(netdev); 2366 parent = netdev->dev.parent; 2367 if (parent && parent->driver == &cxgb4_driver.driver) 2368 t4_l2t_update(dev_get_drvdata(parent), neigh); 2369 } 2370 2371 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2372 void *data) 2373 { 2374 switch (event) { 2375 case NETEVENT_NEIGH_UPDATE: 2376 check_neigh_update(data); 2377 break; 2378 case NETEVENT_REDIRECT: 2379 default: 2380 break; 2381 } 2382 return 0; 2383 } 2384 2385 static bool netevent_registered; 2386 static struct notifier_block cxgb4_netevent_nb = { 2387 .notifier_call = netevent_cb 2388 }; 2389 2390 static void drain_db_fifo(struct adapter *adap, int usecs) 2391 { 2392 u32 v1, v2, lp_count, hp_count; 2393 2394 do { 2395 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2396 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2397 if (is_t4(adap->params.chip)) { 2398 lp_count = LP_COUNT_G(v1); 2399 hp_count = HP_COUNT_G(v1); 2400 } else { 2401 lp_count = LP_COUNT_T5_G(v1); 2402 hp_count = HP_COUNT_T5_G(v2); 2403 } 2404 2405 if (lp_count == 0 && hp_count == 0) 2406 break; 2407 set_current_state(TASK_UNINTERRUPTIBLE); 2408 schedule_timeout(usecs_to_jiffies(usecs)); 2409 } while (1); 2410 } 2411 2412 static void disable_txq_db(struct sge_txq *q) 2413 { 2414 unsigned long flags; 2415 2416 spin_lock_irqsave(&q->db_lock, flags); 2417 q->db_disabled = 1; 2418 spin_unlock_irqrestore(&q->db_lock, flags); 2419 } 2420 2421 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2422 { 2423 spin_lock_irq(&q->db_lock); 2424 if (q->db_pidx_inc) { 2425 /* Make sure that all writes to the TX descriptors 2426 * are committed before we tell HW about them. 2427 */ 2428 wmb(); 2429 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2430 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2431 q->db_pidx_inc = 0; 2432 } 2433 q->db_disabled = 0; 2434 spin_unlock_irq(&q->db_lock); 2435 } 2436 2437 static void disable_dbs(struct adapter *adap) 2438 { 2439 int i; 2440 2441 for_each_ethrxq(&adap->sge, i) 2442 disable_txq_db(&adap->sge.ethtxq[i].q); 2443 if (is_offload(adap)) { 2444 struct sge_uld_txq_info *txq_info = 2445 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2446 2447 if (txq_info) { 2448 for_each_ofldtxq(&adap->sge, i) { 2449 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2450 2451 disable_txq_db(&txq->q); 2452 } 2453 } 2454 } 2455 for_each_port(adap, i) 2456 disable_txq_db(&adap->sge.ctrlq[i].q); 2457 } 2458 2459 static void enable_dbs(struct adapter *adap) 2460 { 2461 int i; 2462 2463 for_each_ethrxq(&adap->sge, i) 2464 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2465 if (is_offload(adap)) { 2466 struct sge_uld_txq_info *txq_info = 2467 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2468 2469 if (txq_info) { 2470 for_each_ofldtxq(&adap->sge, i) { 2471 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2472 2473 enable_txq_db(adap, &txq->q); 2474 } 2475 } 2476 } 2477 for_each_port(adap, i) 2478 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2479 } 2480 2481 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2482 { 2483 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2484 2485 if (adap->uld && adap->uld[type].handle) 2486 adap->uld[type].control(adap->uld[type].handle, cmd); 2487 } 2488 2489 static void process_db_full(struct work_struct *work) 2490 { 2491 struct adapter *adap; 2492 2493 adap = container_of(work, struct adapter, db_full_task); 2494 2495 drain_db_fifo(adap, dbfifo_drain_delay); 2496 enable_dbs(adap); 2497 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2498 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2499 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2500 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2501 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2502 else 2503 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2504 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2505 } 2506 2507 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2508 { 2509 u16 hw_pidx, hw_cidx; 2510 int ret; 2511 2512 spin_lock_irq(&q->db_lock); 2513 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2514 if (ret) 2515 goto out; 2516 if (q->db_pidx != hw_pidx) { 2517 u16 delta; 2518 u32 val; 2519 2520 if (q->db_pidx >= hw_pidx) 2521 delta = q->db_pidx - hw_pidx; 2522 else 2523 delta = q->size - hw_pidx + q->db_pidx; 2524 2525 if (is_t4(adap->params.chip)) 2526 val = PIDX_V(delta); 2527 else 2528 val = PIDX_T5_V(delta); 2529 wmb(); 2530 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2531 QID_V(q->cntxt_id) | val); 2532 } 2533 out: 2534 q->db_disabled = 0; 2535 q->db_pidx_inc = 0; 2536 spin_unlock_irq(&q->db_lock); 2537 if (ret) 2538 CH_WARN(adap, "DB drop recovery failed.\n"); 2539 } 2540 2541 static void recover_all_queues(struct adapter *adap) 2542 { 2543 int i; 2544 2545 for_each_ethrxq(&adap->sge, i) 2546 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2547 if (is_offload(adap)) { 2548 struct sge_uld_txq_info *txq_info = 2549 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2550 if (txq_info) { 2551 for_each_ofldtxq(&adap->sge, i) { 2552 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2553 2554 sync_txq_pidx(adap, &txq->q); 2555 } 2556 } 2557 } 2558 for_each_port(adap, i) 2559 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2560 } 2561 2562 static void process_db_drop(struct work_struct *work) 2563 { 2564 struct adapter *adap; 2565 2566 adap = container_of(work, struct adapter, db_drop_task); 2567 2568 if (is_t4(adap->params.chip)) { 2569 drain_db_fifo(adap, dbfifo_drain_delay); 2570 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2571 drain_db_fifo(adap, dbfifo_drain_delay); 2572 recover_all_queues(adap); 2573 drain_db_fifo(adap, dbfifo_drain_delay); 2574 enable_dbs(adap); 2575 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2576 } else if (is_t5(adap->params.chip)) { 2577 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2578 u16 qid = (dropped_db >> 15) & 0x1ffff; 2579 u16 pidx_inc = dropped_db & 0x1fff; 2580 u64 bar2_qoffset; 2581 unsigned int bar2_qid; 2582 int ret; 2583 2584 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2585 0, &bar2_qoffset, &bar2_qid); 2586 if (ret) 2587 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2588 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2589 else 2590 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2591 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2592 2593 /* Re-enable BAR2 WC */ 2594 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2595 } 2596 2597 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2598 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2599 } 2600 2601 void t4_db_full(struct adapter *adap) 2602 { 2603 if (is_t4(adap->params.chip)) { 2604 disable_dbs(adap); 2605 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2606 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2607 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2608 queue_work(adap->workq, &adap->db_full_task); 2609 } 2610 } 2611 2612 void t4_db_dropped(struct adapter *adap) 2613 { 2614 if (is_t4(adap->params.chip)) { 2615 disable_dbs(adap); 2616 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2617 } 2618 queue_work(adap->workq, &adap->db_drop_task); 2619 } 2620 2621 void t4_register_netevent_notifier(void) 2622 { 2623 if (!netevent_registered) { 2624 register_netevent_notifier(&cxgb4_netevent_nb); 2625 netevent_registered = true; 2626 } 2627 } 2628 2629 static void detach_ulds(struct adapter *adap) 2630 { 2631 unsigned int i; 2632 2633 if (!is_uld(adap)) 2634 return; 2635 2636 mutex_lock(&uld_mutex); 2637 list_del(&adap->list_node); 2638 2639 for (i = 0; i < CXGB4_ULD_MAX; i++) 2640 if (adap->uld && adap->uld[i].handle) 2641 adap->uld[i].state_change(adap->uld[i].handle, 2642 CXGB4_STATE_DETACH); 2643 2644 if (netevent_registered && list_empty(&adapter_list)) { 2645 unregister_netevent_notifier(&cxgb4_netevent_nb); 2646 netevent_registered = false; 2647 } 2648 mutex_unlock(&uld_mutex); 2649 } 2650 2651 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2652 { 2653 unsigned int i; 2654 2655 mutex_lock(&uld_mutex); 2656 for (i = 0; i < CXGB4_ULD_MAX; i++) 2657 if (adap->uld && adap->uld[i].handle) 2658 adap->uld[i].state_change(adap->uld[i].handle, 2659 new_state); 2660 mutex_unlock(&uld_mutex); 2661 } 2662 2663 #if IS_ENABLED(CONFIG_IPV6) 2664 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2665 unsigned long event, void *data) 2666 { 2667 struct inet6_ifaddr *ifa = data; 2668 struct net_device *event_dev = ifa->idev->dev; 2669 const struct device *parent = NULL; 2670 #if IS_ENABLED(CONFIG_BONDING) 2671 struct adapter *adap; 2672 #endif 2673 if (is_vlan_dev(event_dev)) 2674 event_dev = vlan_dev_real_dev(event_dev); 2675 #if IS_ENABLED(CONFIG_BONDING) 2676 if (event_dev->flags & IFF_MASTER) { 2677 list_for_each_entry(adap, &adapter_list, list_node) { 2678 switch (event) { 2679 case NETDEV_UP: 2680 cxgb4_clip_get(adap->port[0], 2681 (const u32 *)ifa, 1); 2682 break; 2683 case NETDEV_DOWN: 2684 cxgb4_clip_release(adap->port[0], 2685 (const u32 *)ifa, 1); 2686 break; 2687 default: 2688 break; 2689 } 2690 } 2691 return NOTIFY_OK; 2692 } 2693 #endif 2694 2695 if (event_dev) 2696 parent = event_dev->dev.parent; 2697 2698 if (parent && parent->driver == &cxgb4_driver.driver) { 2699 switch (event) { 2700 case NETDEV_UP: 2701 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2702 break; 2703 case NETDEV_DOWN: 2704 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2705 break; 2706 default: 2707 break; 2708 } 2709 } 2710 return NOTIFY_OK; 2711 } 2712 2713 static bool inet6addr_registered; 2714 static struct notifier_block cxgb4_inet6addr_notifier = { 2715 .notifier_call = cxgb4_inet6addr_handler 2716 }; 2717 2718 static void update_clip(const struct adapter *adap) 2719 { 2720 int i; 2721 struct net_device *dev; 2722 int ret; 2723 2724 rcu_read_lock(); 2725 2726 for (i = 0; i < MAX_NPORTS; i++) { 2727 dev = adap->port[i]; 2728 ret = 0; 2729 2730 if (dev) 2731 ret = cxgb4_update_root_dev_clip(dev); 2732 2733 if (ret < 0) 2734 break; 2735 } 2736 rcu_read_unlock(); 2737 } 2738 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2739 2740 /** 2741 * cxgb_up - enable the adapter 2742 * @adap: adapter being enabled 2743 * 2744 * Called when the first port is enabled, this function performs the 2745 * actions necessary to make an adapter operational, such as completing 2746 * the initialization of HW modules, and enabling interrupts. 2747 * 2748 * Must be called with the rtnl lock held. 2749 */ 2750 static int cxgb_up(struct adapter *adap) 2751 { 2752 struct sge *s = &adap->sge; 2753 int err; 2754 2755 mutex_lock(&uld_mutex); 2756 err = setup_sge_queues(adap); 2757 if (err) 2758 goto rel_lock; 2759 err = setup_rss(adap); 2760 if (err) 2761 goto freeq; 2762 2763 if (adap->flags & CXGB4_USING_MSIX) { 2764 if (s->nd_msix_idx < 0) { 2765 err = -ENOMEM; 2766 goto irq_err; 2767 } 2768 2769 err = request_irq(adap->msix_info[s->nd_msix_idx].vec, 2770 t4_nondata_intr, 0, 2771 adap->msix_info[s->nd_msix_idx].desc, adap); 2772 if (err) 2773 goto irq_err; 2774 2775 err = request_msix_queue_irqs(adap); 2776 if (err) 2777 goto irq_err_free_nd_msix; 2778 } else { 2779 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2780 (adap->flags & CXGB4_USING_MSI) ? 0 2781 : IRQF_SHARED, 2782 adap->port[0]->name, adap); 2783 if (err) 2784 goto irq_err; 2785 } 2786 2787 enable_rx(adap); 2788 t4_sge_start(adap); 2789 t4_intr_enable(adap); 2790 adap->flags |= CXGB4_FULL_INIT_DONE; 2791 mutex_unlock(&uld_mutex); 2792 2793 notify_ulds(adap, CXGB4_STATE_UP); 2794 #if IS_ENABLED(CONFIG_IPV6) 2795 update_clip(adap); 2796 #endif 2797 return err; 2798 2799 irq_err_free_nd_msix: 2800 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); 2801 irq_err: 2802 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2803 freeq: 2804 t4_free_sge_resources(adap); 2805 rel_lock: 2806 mutex_unlock(&uld_mutex); 2807 return err; 2808 } 2809 2810 static void cxgb_down(struct adapter *adapter) 2811 { 2812 cancel_work_sync(&adapter->tid_release_task); 2813 cancel_work_sync(&adapter->db_full_task); 2814 cancel_work_sync(&adapter->db_drop_task); 2815 adapter->tid_release_task_busy = false; 2816 adapter->tid_release_head = NULL; 2817 2818 t4_sge_stop(adapter); 2819 t4_free_sge_resources(adapter); 2820 2821 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2822 } 2823 2824 /* 2825 * net_device operations 2826 */ 2827 static int cxgb_open(struct net_device *dev) 2828 { 2829 struct port_info *pi = netdev_priv(dev); 2830 struct adapter *adapter = pi->adapter; 2831 int err; 2832 2833 netif_carrier_off(dev); 2834 2835 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2836 err = cxgb_up(adapter); 2837 if (err < 0) 2838 return err; 2839 } 2840 2841 /* It's possible that the basic port information could have 2842 * changed since we first read it. 2843 */ 2844 err = t4_update_port_info(pi); 2845 if (err < 0) 2846 return err; 2847 2848 err = link_start(dev); 2849 if (err) 2850 return err; 2851 2852 if (pi->nmirrorqsets) { 2853 mutex_lock(&pi->vi_mirror_mutex); 2854 err = cxgb4_port_mirror_alloc_queues(dev); 2855 if (err) 2856 goto out_unlock; 2857 2858 err = cxgb4_port_mirror_start(dev); 2859 if (err) 2860 goto out_free_queues; 2861 mutex_unlock(&pi->vi_mirror_mutex); 2862 } 2863 2864 netif_tx_start_all_queues(dev); 2865 return 0; 2866 2867 out_free_queues: 2868 cxgb4_port_mirror_free_queues(dev); 2869 2870 out_unlock: 2871 mutex_unlock(&pi->vi_mirror_mutex); 2872 return err; 2873 } 2874 2875 static int cxgb_close(struct net_device *dev) 2876 { 2877 struct port_info *pi = netdev_priv(dev); 2878 struct adapter *adapter = pi->adapter; 2879 int ret; 2880 2881 netif_tx_stop_all_queues(dev); 2882 netif_carrier_off(dev); 2883 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2884 false, false, false); 2885 #ifdef CONFIG_CHELSIO_T4_DCB 2886 cxgb4_dcb_reset(dev); 2887 dcb_tx_queue_prio_enable(dev, false); 2888 #endif 2889 if (ret) 2890 return ret; 2891 2892 if (pi->nmirrorqsets) { 2893 mutex_lock(&pi->vi_mirror_mutex); 2894 cxgb4_port_mirror_stop(dev); 2895 cxgb4_port_mirror_free_queues(dev); 2896 mutex_unlock(&pi->vi_mirror_mutex); 2897 } 2898 2899 return 0; 2900 } 2901 2902 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2903 __be32 sip, __be16 sport, __be16 vlan, 2904 unsigned int queue, unsigned char port, unsigned char mask) 2905 { 2906 int ret; 2907 struct filter_entry *f; 2908 struct adapter *adap; 2909 int i; 2910 u8 *val; 2911 2912 adap = netdev2adap(dev); 2913 2914 /* Adjust stid to correct filter index */ 2915 stid -= adap->tids.sftid_base; 2916 stid += adap->tids.nftids; 2917 2918 /* Check to make sure the filter requested is writable ... 2919 */ 2920 f = &adap->tids.ftid_tab[stid]; 2921 ret = writable_filter(f); 2922 if (ret) 2923 return ret; 2924 2925 /* Clear out any old resources being used by the filter before 2926 * we start constructing the new filter. 2927 */ 2928 if (f->valid) 2929 clear_filter(adap, f); 2930 2931 /* Clear out filter specifications */ 2932 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2933 f->fs.val.lport = be16_to_cpu(sport); 2934 f->fs.mask.lport = ~0; 2935 val = (u8 *)&sip; 2936 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2937 for (i = 0; i < 4; i++) { 2938 f->fs.val.lip[i] = val[i]; 2939 f->fs.mask.lip[i] = ~0; 2940 } 2941 if (adap->params.tp.vlan_pri_map & PORT_F) { 2942 f->fs.val.iport = port; 2943 f->fs.mask.iport = mask; 2944 } 2945 } 2946 2947 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2948 f->fs.val.proto = IPPROTO_TCP; 2949 f->fs.mask.proto = ~0; 2950 } 2951 2952 f->fs.dirsteer = 1; 2953 f->fs.iq = queue; 2954 /* Mark filter as locked */ 2955 f->locked = 1; 2956 f->fs.rpttid = 1; 2957 2958 /* Save the actual tid. We need this to get the corresponding 2959 * filter entry structure in filter_rpl. 2960 */ 2961 f->tid = stid + adap->tids.ftid_base; 2962 ret = set_filter_wr(adap, stid); 2963 if (ret) { 2964 clear_filter(adap, f); 2965 return ret; 2966 } 2967 2968 return 0; 2969 } 2970 EXPORT_SYMBOL(cxgb4_create_server_filter); 2971 2972 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2973 unsigned int queue, bool ipv6) 2974 { 2975 struct filter_entry *f; 2976 struct adapter *adap; 2977 2978 adap = netdev2adap(dev); 2979 2980 /* Adjust stid to correct filter index */ 2981 stid -= adap->tids.sftid_base; 2982 stid += adap->tids.nftids; 2983 2984 f = &adap->tids.ftid_tab[stid]; 2985 /* Unlock the filter */ 2986 f->locked = 0; 2987 2988 return delete_filter(adap, stid); 2989 } 2990 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2991 2992 static void cxgb_get_stats(struct net_device *dev, 2993 struct rtnl_link_stats64 *ns) 2994 { 2995 struct port_stats stats; 2996 struct port_info *p = netdev_priv(dev); 2997 struct adapter *adapter = p->adapter; 2998 2999 /* Block retrieving statistics during EEH error 3000 * recovery. Otherwise, the recovery might fail 3001 * and the PCI device will be removed permanently 3002 */ 3003 spin_lock(&adapter->stats_lock); 3004 if (!netif_device_present(dev)) { 3005 spin_unlock(&adapter->stats_lock); 3006 return; 3007 } 3008 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 3009 &p->stats_base); 3010 spin_unlock(&adapter->stats_lock); 3011 3012 ns->tx_bytes = stats.tx_octets; 3013 ns->tx_packets = stats.tx_frames; 3014 ns->rx_bytes = stats.rx_octets; 3015 ns->rx_packets = stats.rx_frames; 3016 ns->multicast = stats.rx_mcast_frames; 3017 3018 /* detailed rx_errors */ 3019 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 3020 stats.rx_runt; 3021 ns->rx_over_errors = 0; 3022 ns->rx_crc_errors = stats.rx_fcs_err; 3023 ns->rx_frame_errors = stats.rx_symbol_err; 3024 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 3025 stats.rx_ovflow2 + stats.rx_ovflow3 + 3026 stats.rx_trunc0 + stats.rx_trunc1 + 3027 stats.rx_trunc2 + stats.rx_trunc3; 3028 ns->rx_missed_errors = 0; 3029 3030 /* detailed tx_errors */ 3031 ns->tx_aborted_errors = 0; 3032 ns->tx_carrier_errors = 0; 3033 ns->tx_fifo_errors = 0; 3034 ns->tx_heartbeat_errors = 0; 3035 ns->tx_window_errors = 0; 3036 3037 ns->tx_errors = stats.tx_error_frames; 3038 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 3039 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 3040 } 3041 3042 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 3043 { 3044 unsigned int mbox; 3045 int ret = 0, prtad, devad; 3046 struct port_info *pi = netdev_priv(dev); 3047 struct adapter *adapter = pi->adapter; 3048 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 3049 3050 switch (cmd) { 3051 case SIOCGMIIPHY: 3052 if (pi->mdio_addr < 0) 3053 return -EOPNOTSUPP; 3054 data->phy_id = pi->mdio_addr; 3055 break; 3056 case SIOCGMIIREG: 3057 case SIOCSMIIREG: 3058 if (mdio_phy_id_is_c45(data->phy_id)) { 3059 prtad = mdio_phy_id_prtad(data->phy_id); 3060 devad = mdio_phy_id_devad(data->phy_id); 3061 } else if (data->phy_id < 32) { 3062 prtad = data->phy_id; 3063 devad = 0; 3064 data->reg_num &= 0x1f; 3065 } else 3066 return -EINVAL; 3067 3068 mbox = pi->adapter->pf; 3069 if (cmd == SIOCGMIIREG) 3070 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 3071 data->reg_num, &data->val_out); 3072 else 3073 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 3074 data->reg_num, data->val_in); 3075 break; 3076 case SIOCGHWTSTAMP: 3077 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3078 sizeof(pi->tstamp_config)) ? 3079 -EFAULT : 0; 3080 case SIOCSHWTSTAMP: 3081 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 3082 sizeof(pi->tstamp_config))) 3083 return -EFAULT; 3084 3085 if (!is_t4(adapter->params.chip)) { 3086 switch (pi->tstamp_config.tx_type) { 3087 case HWTSTAMP_TX_OFF: 3088 case HWTSTAMP_TX_ON: 3089 break; 3090 default: 3091 return -ERANGE; 3092 } 3093 3094 switch (pi->tstamp_config.rx_filter) { 3095 case HWTSTAMP_FILTER_NONE: 3096 pi->rxtstamp = false; 3097 break; 3098 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3099 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3100 cxgb4_ptprx_timestamping(pi, pi->port_id, 3101 PTP_TS_L4); 3102 break; 3103 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3104 cxgb4_ptprx_timestamping(pi, pi->port_id, 3105 PTP_TS_L2_L4); 3106 break; 3107 case HWTSTAMP_FILTER_ALL: 3108 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3109 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3110 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3111 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3112 pi->rxtstamp = true; 3113 break; 3114 default: 3115 pi->tstamp_config.rx_filter = 3116 HWTSTAMP_FILTER_NONE; 3117 return -ERANGE; 3118 } 3119 3120 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 3121 (pi->tstamp_config.rx_filter == 3122 HWTSTAMP_FILTER_NONE)) { 3123 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 3124 pi->ptp_enable = false; 3125 } 3126 3127 if (pi->tstamp_config.rx_filter != 3128 HWTSTAMP_FILTER_NONE) { 3129 if (cxgb4_ptp_redirect_rx_packet(adapter, 3130 pi) >= 0) 3131 pi->ptp_enable = true; 3132 } 3133 } else { 3134 /* For T4 Adapters */ 3135 switch (pi->tstamp_config.rx_filter) { 3136 case HWTSTAMP_FILTER_NONE: 3137 pi->rxtstamp = false; 3138 break; 3139 case HWTSTAMP_FILTER_ALL: 3140 pi->rxtstamp = true; 3141 break; 3142 default: 3143 pi->tstamp_config.rx_filter = 3144 HWTSTAMP_FILTER_NONE; 3145 return -ERANGE; 3146 } 3147 } 3148 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3149 sizeof(pi->tstamp_config)) ? 3150 -EFAULT : 0; 3151 default: 3152 return -EOPNOTSUPP; 3153 } 3154 return ret; 3155 } 3156 3157 static void cxgb_set_rxmode(struct net_device *dev) 3158 { 3159 /* unfortunately we can't return errors to the stack */ 3160 set_rxmode(dev, -1, false); 3161 } 3162 3163 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 3164 { 3165 struct port_info *pi = netdev_priv(dev); 3166 int ret; 3167 3168 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid, 3169 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true); 3170 if (!ret) 3171 WRITE_ONCE(dev->mtu, new_mtu); 3172 return ret; 3173 } 3174 3175 #ifdef CONFIG_PCI_IOV 3176 static int cxgb4_mgmt_open(struct net_device *dev) 3177 { 3178 /* Turn carrier off since we don't have to transmit anything on this 3179 * interface. 3180 */ 3181 netif_carrier_off(dev); 3182 return 0; 3183 } 3184 3185 /* Fill MAC address that will be assigned by the FW */ 3186 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 3187 { 3188 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 3189 unsigned int i, vf, nvfs; 3190 u16 a, b; 3191 int err; 3192 u8 *na; 3193 3194 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 3195 if (err) 3196 return; 3197 3198 na = adap->params.vpd.na; 3199 for (i = 0; i < ETH_ALEN; i++) 3200 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 3201 hex2val(na[2 * i + 1])); 3202 3203 a = (hw_addr[0] << 8) | hw_addr[1]; 3204 b = (hw_addr[1] << 8) | hw_addr[2]; 3205 a ^= b; 3206 a |= 0x0200; /* locally assigned Ethernet MAC address */ 3207 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 3208 macaddr[0] = a >> 8; 3209 macaddr[1] = a & 0xff; 3210 3211 for (i = 2; i < 5; i++) 3212 macaddr[i] = hw_addr[i + 1]; 3213 3214 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 3215 vf < nvfs; vf++) { 3216 macaddr[5] = adap->pf * nvfs + vf; 3217 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 3218 } 3219 } 3220 3221 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 3222 { 3223 struct port_info *pi = netdev_priv(dev); 3224 struct adapter *adap = pi->adapter; 3225 int ret; 3226 3227 /* verify MAC addr is valid */ 3228 if (!is_valid_ether_addr(mac)) { 3229 dev_err(pi->adapter->pdev_dev, 3230 "Invalid Ethernet address %pM for VF %d\n", 3231 mac, vf); 3232 return -EINVAL; 3233 } 3234 3235 dev_info(pi->adapter->pdev_dev, 3236 "Setting MAC %pM on VF %d\n", mac, vf); 3237 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 3238 if (!ret) 3239 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 3240 return ret; 3241 } 3242 3243 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 3244 int vf, struct ifla_vf_info *ivi) 3245 { 3246 struct port_info *pi = netdev_priv(dev); 3247 struct adapter *adap = pi->adapter; 3248 struct vf_info *vfinfo; 3249 3250 if (vf >= adap->num_vfs) 3251 return -EINVAL; 3252 vfinfo = &adap->vfinfo[vf]; 3253 3254 ivi->vf = vf; 3255 ivi->max_tx_rate = vfinfo->tx_rate; 3256 ivi->min_tx_rate = 0; 3257 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 3258 ivi->vlan = vfinfo->vlan; 3259 ivi->linkstate = vfinfo->link_state; 3260 return 0; 3261 } 3262 3263 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 3264 struct netdev_phys_item_id *ppid) 3265 { 3266 struct port_info *pi = netdev_priv(dev); 3267 unsigned int phy_port_id; 3268 3269 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 3270 ppid->id_len = sizeof(phy_port_id); 3271 memcpy(ppid->id, &phy_port_id, ppid->id_len); 3272 return 0; 3273 } 3274 3275 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 3276 int min_tx_rate, int max_tx_rate) 3277 { 3278 struct port_info *pi = netdev_priv(dev); 3279 struct adapter *adap = pi->adapter; 3280 unsigned int link_ok, speed, mtu; 3281 u32 fw_pfvf, fw_class; 3282 int class_id = vf; 3283 int ret; 3284 u16 pktsize; 3285 3286 if (vf >= adap->num_vfs) 3287 return -EINVAL; 3288 3289 if (min_tx_rate) { 3290 dev_err(adap->pdev_dev, 3291 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 3292 min_tx_rate, vf); 3293 return -EINVAL; 3294 } 3295 3296 if (max_tx_rate == 0) { 3297 /* unbind VF to to any Traffic Class */ 3298 fw_pfvf = 3299 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3300 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3301 fw_class = 0xffffffff; 3302 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3303 &fw_pfvf, &fw_class); 3304 if (ret) { 3305 dev_err(adap->pdev_dev, 3306 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 3307 ret, adap->pf, vf); 3308 return -EINVAL; 3309 } 3310 dev_info(adap->pdev_dev, 3311 "PF %d VF %d is unbound from TX Rate Limiting\n", 3312 adap->pf, vf); 3313 adap->vfinfo[vf].tx_rate = 0; 3314 return 0; 3315 } 3316 3317 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 3318 if (ret != FW_SUCCESS) { 3319 dev_err(adap->pdev_dev, 3320 "Failed to get link information for VF %d\n", vf); 3321 return -EINVAL; 3322 } 3323 3324 if (!link_ok) { 3325 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 3326 return -EINVAL; 3327 } 3328 3329 if (max_tx_rate > speed) { 3330 dev_err(adap->pdev_dev, 3331 "Max tx rate %d for VF %d can't be > link-speed %u", 3332 max_tx_rate, vf, speed); 3333 return -EINVAL; 3334 } 3335 3336 pktsize = mtu; 3337 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 3338 pktsize = pktsize - sizeof(struct ethhdr) - 4; 3339 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 3340 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 3341 /* configure Traffic Class for rate-limiting */ 3342 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 3343 SCHED_CLASS_LEVEL_CL_RL, 3344 SCHED_CLASS_MODE_CLASS, 3345 SCHED_CLASS_RATEUNIT_BITS, 3346 SCHED_CLASS_RATEMODE_ABS, 3347 pi->tx_chan, class_id, 0, 3348 max_tx_rate * 1000, 0, pktsize, 0); 3349 if (ret) { 3350 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 3351 ret); 3352 return -EINVAL; 3353 } 3354 dev_info(adap->pdev_dev, 3355 "Class %d with MSS %u configured with rate %u\n", 3356 class_id, pktsize, max_tx_rate); 3357 3358 /* bind VF to configured Traffic Class */ 3359 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3360 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3361 fw_class = class_id; 3362 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 3363 &fw_class); 3364 if (ret) { 3365 dev_err(adap->pdev_dev, 3366 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 3367 ret, adap->pf, vf, class_id); 3368 return -EINVAL; 3369 } 3370 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 3371 adap->pf, vf, class_id); 3372 adap->vfinfo[vf].tx_rate = max_tx_rate; 3373 return 0; 3374 } 3375 3376 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 3377 u16 vlan, u8 qos, __be16 vlan_proto) 3378 { 3379 struct port_info *pi = netdev_priv(dev); 3380 struct adapter *adap = pi->adapter; 3381 int ret; 3382 3383 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 3384 return -EINVAL; 3385 3386 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 3387 return -EPROTONOSUPPORT; 3388 3389 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 3390 if (!ret) { 3391 adap->vfinfo[vf].vlan = vlan; 3392 return 0; 3393 } 3394 3395 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 3396 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 3397 return ret; 3398 } 3399 3400 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 3401 int link) 3402 { 3403 struct port_info *pi = netdev_priv(dev); 3404 struct adapter *adap = pi->adapter; 3405 u32 param, val; 3406 int ret = 0; 3407 3408 if (vf >= adap->num_vfs) 3409 return -EINVAL; 3410 3411 switch (link) { 3412 case IFLA_VF_LINK_STATE_AUTO: 3413 val = FW_VF_LINK_STATE_AUTO; 3414 break; 3415 3416 case IFLA_VF_LINK_STATE_ENABLE: 3417 val = FW_VF_LINK_STATE_ENABLE; 3418 break; 3419 3420 case IFLA_VF_LINK_STATE_DISABLE: 3421 val = FW_VF_LINK_STATE_DISABLE; 3422 break; 3423 3424 default: 3425 return -EINVAL; 3426 } 3427 3428 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3429 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3430 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3431 ¶m, &val); 3432 if (ret) { 3433 dev_err(adap->pdev_dev, 3434 "Error %d in setting PF %d VF %d link state\n", 3435 ret, adap->pf, vf); 3436 return -EINVAL; 3437 } 3438 3439 adap->vfinfo[vf].link_state = link; 3440 return ret; 3441 } 3442 #endif /* CONFIG_PCI_IOV */ 3443 3444 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3445 { 3446 int ret; 3447 struct sockaddr *addr = p; 3448 struct port_info *pi = netdev_priv(dev); 3449 3450 if (!is_valid_ether_addr(addr->sa_data)) 3451 return -EADDRNOTAVAIL; 3452 3453 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3454 addr->sa_data, true, &pi->smt_idx); 3455 if (ret < 0) 3456 return ret; 3457 3458 eth_hw_addr_set(dev, addr->sa_data); 3459 return 0; 3460 } 3461 3462 #ifdef CONFIG_NET_POLL_CONTROLLER 3463 static void cxgb_netpoll(struct net_device *dev) 3464 { 3465 struct port_info *pi = netdev_priv(dev); 3466 struct adapter *adap = pi->adapter; 3467 3468 if (adap->flags & CXGB4_USING_MSIX) { 3469 int i; 3470 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3471 3472 for (i = pi->nqsets; i; i--, rx++) 3473 t4_sge_intr_msix(0, &rx->rspq); 3474 } else 3475 t4_intr_handler(adap)(0, adap); 3476 } 3477 #endif 3478 3479 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3480 { 3481 struct port_info *pi = netdev_priv(dev); 3482 struct adapter *adap = pi->adapter; 3483 struct ch_sched_queue qe = { 0 }; 3484 struct ch_sched_params p = { 0 }; 3485 struct sched_class *e; 3486 u32 req_rate; 3487 int err = 0; 3488 3489 if (!can_sched(dev)) 3490 return -ENOTSUPP; 3491 3492 if (index < 0 || index > pi->nqsets - 1) 3493 return -EINVAL; 3494 3495 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3496 dev_err(adap->pdev_dev, 3497 "Failed to rate limit on queue %d. Link Down?\n", 3498 index); 3499 return -EINVAL; 3500 } 3501 3502 qe.queue = index; 3503 e = cxgb4_sched_queue_lookup(dev, &qe); 3504 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { 3505 dev_err(adap->pdev_dev, 3506 "Queue %u already bound to class %u of type: %u\n", 3507 index, e->idx, e->info.u.params.level); 3508 return -EBUSY; 3509 } 3510 3511 /* Convert from Mbps to Kbps */ 3512 req_rate = rate * 1000; 3513 3514 /* Max rate is 100 Gbps */ 3515 if (req_rate > SCHED_MAX_RATE_KBPS) { 3516 dev_err(adap->pdev_dev, 3517 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3518 rate, SCHED_MAX_RATE_KBPS / 1000); 3519 return -ERANGE; 3520 } 3521 3522 /* First unbind the queue from any existing class */ 3523 memset(&qe, 0, sizeof(qe)); 3524 qe.queue = index; 3525 qe.class = SCHED_CLS_NONE; 3526 3527 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3528 if (err) { 3529 dev_err(adap->pdev_dev, 3530 "Unbinding Queue %d on port %d fail. Err: %d\n", 3531 index, pi->port_id, err); 3532 return err; 3533 } 3534 3535 /* Queue already unbound */ 3536 if (!req_rate) 3537 return 0; 3538 3539 /* Fetch any available unused or matching scheduling class */ 3540 p.type = SCHED_CLASS_TYPE_PACKET; 3541 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3542 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3543 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3544 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3545 p.u.params.channel = pi->tx_chan; 3546 p.u.params.class = SCHED_CLS_NONE; 3547 p.u.params.minrate = 0; 3548 p.u.params.maxrate = req_rate; 3549 p.u.params.weight = 0; 3550 p.u.params.pktsize = dev->mtu; 3551 3552 e = cxgb4_sched_class_alloc(dev, &p); 3553 if (!e) 3554 return -ENOMEM; 3555 3556 /* Bind the queue to a scheduling class */ 3557 memset(&qe, 0, sizeof(qe)); 3558 qe.queue = index; 3559 qe.class = e->idx; 3560 3561 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3562 if (err) 3563 dev_err(adap->pdev_dev, 3564 "Queue rate limiting failed. Err: %d\n", err); 3565 return err; 3566 } 3567 3568 static int cxgb_setup_tc_flower(struct net_device *dev, 3569 struct flow_cls_offload *cls_flower) 3570 { 3571 switch (cls_flower->command) { 3572 case FLOW_CLS_REPLACE: 3573 return cxgb4_tc_flower_replace(dev, cls_flower); 3574 case FLOW_CLS_DESTROY: 3575 return cxgb4_tc_flower_destroy(dev, cls_flower); 3576 case FLOW_CLS_STATS: 3577 return cxgb4_tc_flower_stats(dev, cls_flower); 3578 default: 3579 return -EOPNOTSUPP; 3580 } 3581 } 3582 3583 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3584 struct tc_cls_u32_offload *cls_u32) 3585 { 3586 switch (cls_u32->command) { 3587 case TC_CLSU32_NEW_KNODE: 3588 case TC_CLSU32_REPLACE_KNODE: 3589 return cxgb4_config_knode(dev, cls_u32); 3590 case TC_CLSU32_DELETE_KNODE: 3591 return cxgb4_delete_knode(dev, cls_u32); 3592 default: 3593 return -EOPNOTSUPP; 3594 } 3595 } 3596 3597 static int cxgb_setup_tc_matchall(struct net_device *dev, 3598 struct tc_cls_matchall_offload *cls_matchall, 3599 bool ingress) 3600 { 3601 struct adapter *adap = netdev2adap(dev); 3602 3603 if (!adap->tc_matchall) 3604 return -ENOMEM; 3605 3606 switch (cls_matchall->command) { 3607 case TC_CLSMATCHALL_REPLACE: 3608 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); 3609 case TC_CLSMATCHALL_DESTROY: 3610 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); 3611 case TC_CLSMATCHALL_STATS: 3612 if (ingress) 3613 return cxgb4_tc_matchall_stats(dev, cls_matchall); 3614 break; 3615 default: 3616 break; 3617 } 3618 3619 return -EOPNOTSUPP; 3620 } 3621 3622 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, 3623 void *type_data, void *cb_priv) 3624 { 3625 struct net_device *dev = cb_priv; 3626 struct port_info *pi = netdev2pinfo(dev); 3627 struct adapter *adap = netdev2adap(dev); 3628 3629 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3630 dev_err(adap->pdev_dev, 3631 "Failed to setup tc on port %d. Link Down?\n", 3632 pi->port_id); 3633 return -EINVAL; 3634 } 3635 3636 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3637 return -EOPNOTSUPP; 3638 3639 switch (type) { 3640 case TC_SETUP_CLSU32: 3641 return cxgb_setup_tc_cls_u32(dev, type_data); 3642 case TC_SETUP_CLSFLOWER: 3643 return cxgb_setup_tc_flower(dev, type_data); 3644 case TC_SETUP_CLSMATCHALL: 3645 return cxgb_setup_tc_matchall(dev, type_data, true); 3646 default: 3647 return -EOPNOTSUPP; 3648 } 3649 } 3650 3651 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, 3652 void *type_data, void *cb_priv) 3653 { 3654 struct net_device *dev = cb_priv; 3655 struct port_info *pi = netdev2pinfo(dev); 3656 struct adapter *adap = netdev2adap(dev); 3657 3658 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3659 dev_err(adap->pdev_dev, 3660 "Failed to setup tc on port %d. Link Down?\n", 3661 pi->port_id); 3662 return -EINVAL; 3663 } 3664 3665 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3666 return -EOPNOTSUPP; 3667 3668 switch (type) { 3669 case TC_SETUP_CLSMATCHALL: 3670 return cxgb_setup_tc_matchall(dev, type_data, false); 3671 default: 3672 break; 3673 } 3674 3675 return -EOPNOTSUPP; 3676 } 3677 3678 static int cxgb_setup_tc_mqprio(struct net_device *dev, 3679 struct tc_mqprio_qopt_offload *mqprio) 3680 { 3681 struct adapter *adap = netdev2adap(dev); 3682 3683 if (!is_ethofld(adap) || !adap->tc_mqprio) 3684 return -ENOMEM; 3685 3686 return cxgb4_setup_tc_mqprio(dev, mqprio); 3687 } 3688 3689 static LIST_HEAD(cxgb_block_cb_list); 3690 3691 static int cxgb_setup_tc_block(struct net_device *dev, 3692 struct flow_block_offload *f) 3693 { 3694 struct port_info *pi = netdev_priv(dev); 3695 flow_setup_cb_t *cb; 3696 bool ingress_only; 3697 3698 pi->tc_block_shared = f->block_shared; 3699 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { 3700 cb = cxgb_setup_tc_block_egress_cb; 3701 ingress_only = false; 3702 } else { 3703 cb = cxgb_setup_tc_block_ingress_cb; 3704 ingress_only = true; 3705 } 3706 3707 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, 3708 cb, pi, dev, ingress_only); 3709 } 3710 3711 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3712 void *type_data) 3713 { 3714 switch (type) { 3715 case TC_SETUP_QDISC_MQPRIO: 3716 return cxgb_setup_tc_mqprio(dev, type_data); 3717 case TC_SETUP_BLOCK: 3718 return cxgb_setup_tc_block(dev, type_data); 3719 default: 3720 return -EOPNOTSUPP; 3721 } 3722 } 3723 3724 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev, 3725 unsigned int table, unsigned int entry, 3726 struct udp_tunnel_info *ti) 3727 { 3728 struct port_info *pi = netdev_priv(netdev); 3729 struct adapter *adapter = pi->adapter; 3730 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3731 int ret = 0, i; 3732 3733 switch (ti->type) { 3734 case UDP_TUNNEL_TYPE_VXLAN: 3735 adapter->vxlan_port = 0; 3736 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3737 break; 3738 case UDP_TUNNEL_TYPE_GENEVE: 3739 adapter->geneve_port = 0; 3740 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3741 break; 3742 default: 3743 return -EINVAL; 3744 } 3745 3746 /* Matchall mac entries can be deleted only after all tunnel ports 3747 * are brought down or removed. 3748 */ 3749 if (!adapter->rawf_cnt) 3750 return 0; 3751 for_each_port(adapter, i) { 3752 pi = adap2pinfo(adapter, i); 3753 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3754 match_all_mac, match_all_mac, 3755 adapter->rawf_start + pi->port_id, 3756 1, pi->port_id, false); 3757 if (ret < 0) { 3758 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3759 i); 3760 return ret; 3761 } 3762 } 3763 3764 return 0; 3765 } 3766 3767 static int cxgb_udp_tunnel_set_port(struct net_device *netdev, 3768 unsigned int table, unsigned int entry, 3769 struct udp_tunnel_info *ti) 3770 { 3771 struct port_info *pi = netdev_priv(netdev); 3772 struct adapter *adapter = pi->adapter; 3773 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3774 int i, ret; 3775 3776 switch (ti->type) { 3777 case UDP_TUNNEL_TYPE_VXLAN: 3778 adapter->vxlan_port = ti->port; 3779 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3780 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3781 break; 3782 case UDP_TUNNEL_TYPE_GENEVE: 3783 adapter->geneve_port = ti->port; 3784 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3785 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3786 break; 3787 default: 3788 return -EINVAL; 3789 } 3790 3791 /* Create a 'match all' mac filter entry for inner mac, 3792 * if raw mac interface is supported. Once the linux kernel provides 3793 * driver entry points for adding/deleting the inner mac addresses, 3794 * we will remove this 'match all' entry and fallback to adding 3795 * exact match filters. 3796 */ 3797 for_each_port(adapter, i) { 3798 pi = adap2pinfo(adapter, i); 3799 3800 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3801 match_all_mac, 3802 match_all_mac, 3803 adapter->rawf_start + pi->port_id, 3804 1, pi->port_id, false); 3805 if (ret < 0) { 3806 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3807 be16_to_cpu(ti->port)); 3808 return ret; 3809 } 3810 } 3811 3812 return 0; 3813 } 3814 3815 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = { 3816 .set_port = cxgb_udp_tunnel_set_port, 3817 .unset_port = cxgb_udp_tunnel_unset_port, 3818 .tables = { 3819 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 3820 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 3821 }, 3822 }; 3823 3824 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3825 struct net_device *dev, 3826 netdev_features_t features) 3827 { 3828 struct port_info *pi = netdev_priv(dev); 3829 struct adapter *adapter = pi->adapter; 3830 3831 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3832 return features; 3833 3834 /* Check if hw supports offload for this packet */ 3835 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3836 return features; 3837 3838 /* Offload is not supported for this encapsulated packet */ 3839 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3840 } 3841 3842 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3843 netdev_features_t features) 3844 { 3845 /* Disable GRO, if RX_CSUM is disabled */ 3846 if (!(features & NETIF_F_RXCSUM)) 3847 features &= ~NETIF_F_GRO; 3848 3849 return features; 3850 } 3851 3852 static const struct net_device_ops cxgb4_netdev_ops = { 3853 .ndo_open = cxgb_open, 3854 .ndo_stop = cxgb_close, 3855 .ndo_start_xmit = t4_start_xmit, 3856 .ndo_select_queue = cxgb_select_queue, 3857 .ndo_get_stats64 = cxgb_get_stats, 3858 .ndo_set_rx_mode = cxgb_set_rxmode, 3859 .ndo_set_mac_address = cxgb_set_mac_addr, 3860 .ndo_set_features = cxgb_set_features, 3861 .ndo_validate_addr = eth_validate_addr, 3862 .ndo_eth_ioctl = cxgb_ioctl, 3863 .ndo_change_mtu = cxgb_change_mtu, 3864 #ifdef CONFIG_NET_POLL_CONTROLLER 3865 .ndo_poll_controller = cxgb_netpoll, 3866 #endif 3867 #ifdef CONFIG_CHELSIO_T4_FCOE 3868 .ndo_fcoe_enable = cxgb_fcoe_enable, 3869 .ndo_fcoe_disable = cxgb_fcoe_disable, 3870 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3871 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3872 .ndo_setup_tc = cxgb_setup_tc, 3873 .ndo_features_check = cxgb_features_check, 3874 .ndo_fix_features = cxgb_fix_features, 3875 }; 3876 3877 #ifdef CONFIG_PCI_IOV 3878 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3879 .ndo_open = cxgb4_mgmt_open, 3880 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3881 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3882 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3883 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3884 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3885 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3886 }; 3887 3888 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3889 struct ethtool_drvinfo *info) 3890 { 3891 struct adapter *adapter = netdev2adap(dev); 3892 3893 strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3894 strscpy(info->bus_info, pci_name(adapter->pdev), 3895 sizeof(info->bus_info)); 3896 } 3897 3898 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3899 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3900 }; 3901 #endif 3902 3903 static void notify_fatal_err(struct work_struct *work) 3904 { 3905 struct adapter *adap; 3906 3907 adap = container_of(work, struct adapter, fatal_err_notify_task); 3908 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3909 } 3910 3911 void t4_fatal_err(struct adapter *adap) 3912 { 3913 int port; 3914 3915 if (pci_channel_offline(adap->pdev)) 3916 return; 3917 3918 /* Disable the SGE since ULDs are going to free resources that 3919 * could be exposed to the adapter. RDMA MWs for example... 3920 */ 3921 t4_shutdown_adapter(adap); 3922 for_each_port(adap, port) { 3923 struct net_device *dev = adap->port[port]; 3924 3925 /* If we get here in very early initialization the network 3926 * devices may not have been set up yet. 3927 */ 3928 if (!dev) 3929 continue; 3930 3931 netif_tx_stop_all_queues(dev); 3932 netif_carrier_off(dev); 3933 } 3934 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3935 queue_work(adap->workq, &adap->fatal_err_notify_task); 3936 } 3937 3938 static void setup_memwin(struct adapter *adap) 3939 { 3940 u32 nic_win_base = t4_get_util_window(adap); 3941 3942 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3943 } 3944 3945 static void setup_memwin_rdma(struct adapter *adap) 3946 { 3947 if (adap->vres.ocq.size) { 3948 u32 start; 3949 unsigned int sz_kb; 3950 3951 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3952 start &= PCI_BASE_ADDRESS_MEM_MASK; 3953 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3954 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3955 t4_write_reg(adap, 3956 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3957 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3958 t4_write_reg(adap, 3959 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3960 adap->vres.ocq.start); 3961 t4_read_reg(adap, 3962 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3963 } 3964 } 3965 3966 /* HMA Definitions */ 3967 3968 /* The maximum number of address that can be send in a single FW cmd */ 3969 #define HMA_MAX_ADDR_IN_CMD 5 3970 3971 #define HMA_PAGE_SIZE PAGE_SIZE 3972 3973 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3974 3975 #define HMA_PAGE_ORDER \ 3976 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3977 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3978 3979 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3980 * configuration(in units of MB). 3981 */ 3982 #define HMA_MIN_TOTAL_SIZE 1 3983 #define HMA_MAX_TOTAL_SIZE \ 3984 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3985 HMA_MAX_NO_FW_ADDRESS) >> 20) 3986 3987 static void adap_free_hma_mem(struct adapter *adapter) 3988 { 3989 struct scatterlist *iter; 3990 struct page *page; 3991 int i; 3992 3993 if (!adapter->hma.sgt) 3994 return; 3995 3996 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3997 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3998 adapter->hma.sgt->nents, DMA_BIDIRECTIONAL); 3999 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 4000 } 4001 4002 for_each_sg(adapter->hma.sgt->sgl, iter, 4003 adapter->hma.sgt->orig_nents, i) { 4004 page = sg_page(iter); 4005 if (page) 4006 __free_pages(page, HMA_PAGE_ORDER); 4007 } 4008 4009 kfree(adapter->hma.phy_addr); 4010 sg_free_table(adapter->hma.sgt); 4011 kfree(adapter->hma.sgt); 4012 adapter->hma.sgt = NULL; 4013 } 4014 4015 static int adap_config_hma(struct adapter *adapter) 4016 { 4017 struct scatterlist *sgl, *iter; 4018 struct sg_table *sgt; 4019 struct page *newpage; 4020 unsigned int i, j, k; 4021 u32 param, hma_size; 4022 unsigned int ncmds; 4023 size_t page_size; 4024 u32 page_order; 4025 int node, ret; 4026 4027 /* HMA is supported only for T6+ cards. 4028 * Avoid initializing HMA in kdump kernels. 4029 */ 4030 if (is_kdump_kernel() || 4031 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 4032 return 0; 4033 4034 /* Get the HMA region size required by fw */ 4035 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4036 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 4037 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 4038 1, ¶m, &hma_size); 4039 /* An error means card has its own memory or HMA is not supported by 4040 * the firmware. Return without any errors. 4041 */ 4042 if (ret || !hma_size) 4043 return 0; 4044 4045 if (hma_size < HMA_MIN_TOTAL_SIZE || 4046 hma_size > HMA_MAX_TOTAL_SIZE) { 4047 dev_err(adapter->pdev_dev, 4048 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 4049 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 4050 return -EINVAL; 4051 } 4052 4053 page_size = HMA_PAGE_SIZE; 4054 page_order = HMA_PAGE_ORDER; 4055 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 4056 if (unlikely(!adapter->hma.sgt)) { 4057 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 4058 return -ENOMEM; 4059 } 4060 sgt = adapter->hma.sgt; 4061 /* FW returned value will be in MB's 4062 */ 4063 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 4064 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 4065 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 4066 kfree(adapter->hma.sgt); 4067 adapter->hma.sgt = NULL; 4068 return -ENOMEM; 4069 } 4070 4071 sgl = adapter->hma.sgt->sgl; 4072 node = dev_to_node(adapter->pdev_dev); 4073 for_each_sg(sgl, iter, sgt->orig_nents, i) { 4074 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 4075 __GFP_ZERO, page_order); 4076 if (!newpage) { 4077 dev_err(adapter->pdev_dev, 4078 "Not enough memory for HMA page allocation\n"); 4079 ret = -ENOMEM; 4080 goto free_hma; 4081 } 4082 sg_set_page(iter, newpage, page_size << page_order, 0); 4083 } 4084 4085 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 4086 DMA_BIDIRECTIONAL); 4087 if (!sgt->nents) { 4088 dev_err(adapter->pdev_dev, 4089 "Not enough memory for HMA DMA mapping"); 4090 ret = -ENOMEM; 4091 goto free_hma; 4092 } 4093 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 4094 4095 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 4096 GFP_KERNEL); 4097 if (unlikely(!adapter->hma.phy_addr)) 4098 goto free_hma; 4099 4100 for_each_sg(sgl, iter, sgt->nents, i) { 4101 newpage = sg_page(iter); 4102 adapter->hma.phy_addr[i] = sg_dma_address(iter); 4103 } 4104 4105 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 4106 /* Pass on the addresses to firmware */ 4107 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 4108 struct fw_hma_cmd hma_cmd; 4109 u8 naddr = HMA_MAX_ADDR_IN_CMD; 4110 u8 soc = 0, eoc = 0; 4111 u8 hma_mode = 1; /* Presently we support only Page table mode */ 4112 4113 soc = (i == 0) ? 1 : 0; 4114 eoc = (i == ncmds - 1) ? 1 : 0; 4115 4116 /* For last cmd, set naddr corresponding to remaining 4117 * addresses 4118 */ 4119 if (i == ncmds - 1) { 4120 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 4121 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 4122 } 4123 memset(&hma_cmd, 0, sizeof(hma_cmd)); 4124 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 4125 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4126 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 4127 4128 hma_cmd.mode_to_pcie_params = 4129 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 4130 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 4131 4132 /* HMA cmd size specified in MB's */ 4133 hma_cmd.naddr_size = 4134 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 4135 FW_HMA_CMD_NADDR_V(naddr)); 4136 4137 /* Total Page size specified in units of 4K */ 4138 hma_cmd.addr_size_pkd = 4139 htonl(FW_HMA_CMD_ADDR_SIZE_V 4140 ((page_size << page_order) >> 12)); 4141 4142 /* Fill the 5 addresses */ 4143 for (j = 0; j < naddr; j++) { 4144 hma_cmd.phy_address[j] = 4145 cpu_to_be64(adapter->hma.phy_addr[j + k]); 4146 } 4147 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 4148 sizeof(hma_cmd), &hma_cmd); 4149 if (ret) { 4150 dev_err(adapter->pdev_dev, 4151 "HMA FW command failed with err %d\n", ret); 4152 goto free_hma; 4153 } 4154 } 4155 4156 if (!ret) 4157 dev_info(adapter->pdev_dev, 4158 "Reserved %uMB host memory for HMA\n", hma_size); 4159 return ret; 4160 4161 free_hma: 4162 adap_free_hma_mem(adapter); 4163 return ret; 4164 } 4165 4166 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 4167 { 4168 u32 v; 4169 int ret; 4170 4171 /* Now that we've successfully configured and initialized the adapter 4172 * can ask the Firmware what resources it has provisioned for us. 4173 */ 4174 ret = t4_get_pfres(adap); 4175 if (ret) { 4176 dev_err(adap->pdev_dev, 4177 "Unable to retrieve resource provisioning information\n"); 4178 return ret; 4179 } 4180 4181 /* get device capabilities */ 4182 memset(c, 0, sizeof(*c)); 4183 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4184 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4185 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 4186 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 4187 if (ret < 0) 4188 return ret; 4189 4190 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4191 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4192 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 4193 if (ret < 0) 4194 return ret; 4195 4196 ret = t4_config_glbl_rss(adap, adap->pf, 4197 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4198 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 4199 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 4200 if (ret < 0) 4201 return ret; 4202 4203 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 4204 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 4205 FW_CMD_CAP_PF); 4206 if (ret < 0) 4207 return ret; 4208 4209 t4_sge_init(adap); 4210 4211 /* tweak some settings */ 4212 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 4213 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 4214 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 4215 v = t4_read_reg(adap, TP_PIO_DATA_A); 4216 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 4217 4218 /* first 4 Tx modulation queues point to consecutive Tx channels */ 4219 adap->params.tp.tx_modq_map = 0xE4; 4220 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 4221 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 4222 4223 /* associate each Tx modulation queue with consecutive Tx channels */ 4224 v = 0x84218421; 4225 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4226 &v, 1, TP_TX_SCHED_HDR_A); 4227 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4228 &v, 1, TP_TX_SCHED_FIFO_A); 4229 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4230 &v, 1, TP_TX_SCHED_PCMD_A); 4231 4232 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 4233 if (is_offload(adap)) { 4234 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 4235 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4236 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4237 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4238 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4239 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 4240 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4241 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4242 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4243 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4244 } 4245 4246 /* get basic stuff going */ 4247 return t4_early_init(adap, adap->pf); 4248 } 4249 4250 /* 4251 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 4252 */ 4253 #define MAX_ATIDS 8192U 4254 4255 /* 4256 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4257 * 4258 * If the firmware we're dealing with has Configuration File support, then 4259 * we use that to perform all configuration 4260 */ 4261 4262 /* 4263 * Tweak configuration based on module parameters, etc. Most of these have 4264 * defaults assigned to them by Firmware Configuration Files (if we're using 4265 * them) but need to be explicitly set if we're using hard-coded 4266 * initialization. But even in the case of using Firmware Configuration 4267 * Files, we'd like to expose the ability to change these via module 4268 * parameters so these are essentially common tweaks/settings for 4269 * Configuration Files and hard-coded initialization ... 4270 */ 4271 static int adap_init0_tweaks(struct adapter *adapter) 4272 { 4273 /* 4274 * Fix up various Host-Dependent Parameters like Page Size, Cache 4275 * Line Size, etc. The firmware default is for a 4KB Page Size and 4276 * 64B Cache Line Size ... 4277 */ 4278 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4279 4280 /* 4281 * Process module parameters which affect early initialization. 4282 */ 4283 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4284 dev_err(&adapter->pdev->dev, 4285 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4286 rx_dma_offset); 4287 rx_dma_offset = 2; 4288 } 4289 t4_set_reg_field(adapter, SGE_CONTROL_A, 4290 PKTSHIFT_V(PKTSHIFT_M), 4291 PKTSHIFT_V(rx_dma_offset)); 4292 4293 /* 4294 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4295 * adds the pseudo header itself. 4296 */ 4297 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 4298 CSUM_HAS_PSEUDO_HDR_F, 0); 4299 4300 return 0; 4301 } 4302 4303 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 4304 * unto themselves and they contain their own firmware to perform their 4305 * tasks ... 4306 */ 4307 static int phy_aq1202_version(const u8 *phy_fw_data, 4308 size_t phy_fw_size) 4309 { 4310 int offset; 4311 4312 /* At offset 0x8 you're looking for the primary image's 4313 * starting offset which is 3 Bytes wide 4314 * 4315 * At offset 0xa of the primary image, you look for the offset 4316 * of the DRAM segment which is 3 Bytes wide. 4317 * 4318 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 4319 * wide 4320 */ 4321 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 4322 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 4323 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 4324 4325 offset = le24(phy_fw_data + 0x8) << 12; 4326 offset = le24(phy_fw_data + offset + 0xa); 4327 return be16(phy_fw_data + offset + 0x27e); 4328 4329 #undef be16 4330 #undef le16 4331 #undef le24 4332 } 4333 4334 static struct info_10gbt_phy_fw { 4335 unsigned int phy_fw_id; /* PCI Device ID */ 4336 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 4337 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 4338 int phy_flash; /* Has FLASH for PHY Firmware */ 4339 } phy_info_array[] = { 4340 { 4341 PHY_AQ1202_DEVICEID, 4342 PHY_AQ1202_FIRMWARE, 4343 phy_aq1202_version, 4344 1, 4345 }, 4346 { 4347 PHY_BCM84834_DEVICEID, 4348 PHY_BCM84834_FIRMWARE, 4349 NULL, 4350 0, 4351 }, 4352 { 0, NULL, NULL }, 4353 }; 4354 4355 static struct info_10gbt_phy_fw *find_phy_info(int devid) 4356 { 4357 int i; 4358 4359 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 4360 if (phy_info_array[i].phy_fw_id == devid) 4361 return &phy_info_array[i]; 4362 } 4363 return NULL; 4364 } 4365 4366 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 4367 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 4368 * we return a negative error number. If we transfer new firmware we return 1 4369 * (from t4_load_phy_fw()). If we don't do anything we return 0. 4370 */ 4371 static int adap_init0_phy(struct adapter *adap) 4372 { 4373 const struct firmware *phyf; 4374 int ret; 4375 struct info_10gbt_phy_fw *phy_info; 4376 4377 /* Use the device ID to determine which PHY file to flash. 4378 */ 4379 phy_info = find_phy_info(adap->pdev->device); 4380 if (!phy_info) { 4381 dev_warn(adap->pdev_dev, 4382 "No PHY Firmware file found for this PHY\n"); 4383 return -EOPNOTSUPP; 4384 } 4385 4386 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 4387 * use that. The adapter firmware provides us with a memory buffer 4388 * where we can load a PHY firmware file from the host if we want to 4389 * override the PHY firmware File in flash. 4390 */ 4391 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 4392 adap->pdev_dev); 4393 if (ret < 0) { 4394 /* For adapters without FLASH attached to PHY for their 4395 * firmware, it's obviously a fatal error if we can't get the 4396 * firmware to the adapter. For adapters with PHY firmware 4397 * FLASH storage, it's worth a warning if we can't find the 4398 * PHY Firmware but we'll neuter the error ... 4399 */ 4400 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 4401 "/lib/firmware/%s, error %d\n", 4402 phy_info->phy_fw_file, -ret); 4403 if (phy_info->phy_flash) { 4404 int cur_phy_fw_ver = 0; 4405 4406 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 4407 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 4408 "FLASH copy, version %#x\n", cur_phy_fw_ver); 4409 ret = 0; 4410 } 4411 4412 return ret; 4413 } 4414 4415 /* Load PHY Firmware onto adapter. 4416 */ 4417 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version, 4418 (u8 *)phyf->data, phyf->size); 4419 if (ret < 0) 4420 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 4421 -ret); 4422 else if (ret > 0) { 4423 int new_phy_fw_ver = 0; 4424 4425 if (phy_info->phy_fw_version) 4426 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 4427 phyf->size); 4428 dev_info(adap->pdev_dev, "Successfully transferred PHY " 4429 "Firmware /lib/firmware/%s, version %#x\n", 4430 phy_info->phy_fw_file, new_phy_fw_ver); 4431 } 4432 4433 release_firmware(phyf); 4434 4435 return ret; 4436 } 4437 4438 /* 4439 * Attempt to initialize the adapter via a Firmware Configuration File. 4440 */ 4441 static int adap_init0_config(struct adapter *adapter, int reset) 4442 { 4443 char *fw_config_file, fw_config_file_path[256]; 4444 u32 finiver, finicsum, cfcsum, param, val; 4445 struct fw_caps_config_cmd caps_cmd; 4446 unsigned long mtype = 0, maddr = 0; 4447 const struct firmware *cf; 4448 char *config_name = NULL; 4449 int config_issued = 0; 4450 int ret; 4451 4452 /* 4453 * Reset device if necessary. 4454 */ 4455 if (reset) { 4456 ret = t4_fw_reset(adapter, adapter->mbox, 4457 PIORSTMODE_F | PIORST_F); 4458 if (ret < 0) 4459 goto bye; 4460 } 4461 4462 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4463 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4464 * to be performed after any global adapter RESET above since some 4465 * PHYs only have local RAM copies of the PHY firmware. 4466 */ 4467 if (is_10gbt_device(adapter->pdev->device)) { 4468 ret = adap_init0_phy(adapter); 4469 if (ret < 0) 4470 goto bye; 4471 } 4472 /* 4473 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4474 * then use that. Otherwise, use the configuration file stored 4475 * in the adapter flash ... 4476 */ 4477 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4478 case CHELSIO_T4: 4479 fw_config_file = FW4_CFNAME; 4480 break; 4481 case CHELSIO_T5: 4482 fw_config_file = FW5_CFNAME; 4483 break; 4484 case CHELSIO_T6: 4485 fw_config_file = FW6_CFNAME; 4486 break; 4487 default: 4488 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4489 adapter->pdev->device); 4490 ret = -EINVAL; 4491 goto bye; 4492 } 4493 4494 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4495 if (ret < 0) { 4496 config_name = "On FLASH"; 4497 mtype = FW_MEMTYPE_CF_FLASH; 4498 maddr = t4_flash_cfg_addr(adapter); 4499 } else { 4500 u32 params[7], val[7]; 4501 4502 sprintf(fw_config_file_path, 4503 "/lib/firmware/%s", fw_config_file); 4504 config_name = fw_config_file_path; 4505 4506 if (cf->size >= FLASH_CFG_MAX_SIZE) 4507 ret = -ENOMEM; 4508 else { 4509 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4510 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4511 ret = t4_query_params(adapter, adapter->mbox, 4512 adapter->pf, 0, 1, params, val); 4513 if (ret == 0) { 4514 /* 4515 * For t4_memory_rw() below addresses and 4516 * sizes have to be in terms of multiples of 4 4517 * bytes. So, if the Configuration File isn't 4518 * a multiple of 4 bytes in length we'll have 4519 * to write that out separately since we can't 4520 * guarantee that the bytes following the 4521 * residual byte in the buffer returned by 4522 * request_firmware() are zeroed out ... 4523 */ 4524 size_t resid = cf->size & 0x3; 4525 size_t size = cf->size & ~0x3; 4526 __be32 *data = (__be32 *)cf->data; 4527 4528 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4529 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4530 4531 spin_lock(&adapter->win0_lock); 4532 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4533 size, data, T4_MEMORY_WRITE); 4534 if (ret == 0 && resid != 0) { 4535 union { 4536 __be32 word; 4537 char buf[4]; 4538 } last; 4539 int i; 4540 4541 last.word = data[size >> 2]; 4542 for (i = resid; i < 4; i++) 4543 last.buf[i] = 0; 4544 ret = t4_memory_rw(adapter, 0, mtype, 4545 maddr + size, 4546 4, &last.word, 4547 T4_MEMORY_WRITE); 4548 } 4549 spin_unlock(&adapter->win0_lock); 4550 } 4551 } 4552 4553 release_firmware(cf); 4554 if (ret) 4555 goto bye; 4556 } 4557 4558 val = 0; 4559 4560 /* Ofld + Hash filter is supported. Older fw will fail this request and 4561 * it is fine. 4562 */ 4563 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4564 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4565 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4566 1, ¶m, &val); 4567 4568 /* FW doesn't know about Hash filter + ofld support, 4569 * it's not a problem, don't return an error. 4570 */ 4571 if (ret < 0) { 4572 dev_warn(adapter->pdev_dev, 4573 "Hash filter with ofld is not supported by FW\n"); 4574 } 4575 4576 /* 4577 * Issue a Capability Configuration command to the firmware to get it 4578 * to parse the Configuration File. We don't use t4_fw_config_file() 4579 * because we want the ability to modify various features after we've 4580 * processed the configuration file ... 4581 */ 4582 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4583 caps_cmd.op_to_write = 4584 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4585 FW_CMD_REQUEST_F | 4586 FW_CMD_READ_F); 4587 caps_cmd.cfvalid_to_len16 = 4588 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4589 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4590 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4591 FW_LEN16(caps_cmd)); 4592 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4593 &caps_cmd); 4594 4595 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4596 * Configuration File in FLASH), our last gasp effort is to use the 4597 * Firmware Configuration File which is embedded in the firmware. A 4598 * very few early versions of the firmware didn't have one embedded 4599 * but we can ignore those. 4600 */ 4601 if (ret == -ENOENT) { 4602 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4603 caps_cmd.op_to_write = 4604 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4605 FW_CMD_REQUEST_F | 4606 FW_CMD_READ_F); 4607 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4608 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4609 sizeof(caps_cmd), &caps_cmd); 4610 config_name = "Firmware Default"; 4611 } 4612 4613 config_issued = 1; 4614 if (ret < 0) 4615 goto bye; 4616 4617 finiver = ntohl(caps_cmd.finiver); 4618 finicsum = ntohl(caps_cmd.finicsum); 4619 cfcsum = ntohl(caps_cmd.cfcsum); 4620 if (finicsum != cfcsum) 4621 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4622 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4623 finicsum, cfcsum); 4624 4625 /* 4626 * And now tell the firmware to use the configuration we just loaded. 4627 */ 4628 caps_cmd.op_to_write = 4629 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4630 FW_CMD_REQUEST_F | 4631 FW_CMD_WRITE_F); 4632 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4633 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4634 NULL); 4635 if (ret < 0) 4636 goto bye; 4637 4638 /* 4639 * Tweak configuration based on system architecture, module 4640 * parameters, etc. 4641 */ 4642 ret = adap_init0_tweaks(adapter); 4643 if (ret < 0) 4644 goto bye; 4645 4646 /* We will proceed even if HMA init fails. */ 4647 ret = adap_config_hma(adapter); 4648 if (ret) 4649 dev_err(adapter->pdev_dev, 4650 "HMA configuration failed with error %d\n", ret); 4651 4652 if (is_t6(adapter->params.chip)) { 4653 adap_config_hpfilter(adapter); 4654 ret = setup_ppod_edram(adapter); 4655 if (!ret) 4656 dev_info(adapter->pdev_dev, "Successfully enabled " 4657 "ppod edram feature\n"); 4658 } 4659 4660 /* 4661 * And finally tell the firmware to initialize itself using the 4662 * parameters from the Configuration File. 4663 */ 4664 ret = t4_fw_initialize(adapter, adapter->mbox); 4665 if (ret < 0) 4666 goto bye; 4667 4668 /* Emit Firmware Configuration File information and return 4669 * successfully. 4670 */ 4671 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4672 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4673 config_name, finiver, cfcsum); 4674 return 0; 4675 4676 /* 4677 * Something bad happened. Return the error ... (If the "error" 4678 * is that there's no Configuration File on the adapter we don't 4679 * want to issue a warning since this is fairly common.) 4680 */ 4681 bye: 4682 if (config_issued && ret != -ENOENT) 4683 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4684 config_name, -ret); 4685 return ret; 4686 } 4687 4688 static struct fw_info fw_info_array[] = { 4689 { 4690 .chip = CHELSIO_T4, 4691 .fs_name = FW4_CFNAME, 4692 .fw_mod_name = FW4_FNAME, 4693 .fw_hdr = { 4694 .chip = FW_HDR_CHIP_T4, 4695 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4696 .intfver_nic = FW_INTFVER(T4, NIC), 4697 .intfver_vnic = FW_INTFVER(T4, VNIC), 4698 .intfver_ri = FW_INTFVER(T4, RI), 4699 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4700 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4701 }, 4702 }, { 4703 .chip = CHELSIO_T5, 4704 .fs_name = FW5_CFNAME, 4705 .fw_mod_name = FW5_FNAME, 4706 .fw_hdr = { 4707 .chip = FW_HDR_CHIP_T5, 4708 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4709 .intfver_nic = FW_INTFVER(T5, NIC), 4710 .intfver_vnic = FW_INTFVER(T5, VNIC), 4711 .intfver_ri = FW_INTFVER(T5, RI), 4712 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4713 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4714 }, 4715 }, { 4716 .chip = CHELSIO_T6, 4717 .fs_name = FW6_CFNAME, 4718 .fw_mod_name = FW6_FNAME, 4719 .fw_hdr = { 4720 .chip = FW_HDR_CHIP_T6, 4721 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4722 .intfver_nic = FW_INTFVER(T6, NIC), 4723 .intfver_vnic = FW_INTFVER(T6, VNIC), 4724 .intfver_ofld = FW_INTFVER(T6, OFLD), 4725 .intfver_ri = FW_INTFVER(T6, RI), 4726 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4727 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4728 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4729 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4730 }, 4731 } 4732 4733 }; 4734 4735 static struct fw_info *find_fw_info(int chip) 4736 { 4737 int i; 4738 4739 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4740 if (fw_info_array[i].chip == chip) 4741 return &fw_info_array[i]; 4742 } 4743 return NULL; 4744 } 4745 4746 /* 4747 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4748 */ 4749 static int adap_init0(struct adapter *adap, int vpd_skip) 4750 { 4751 struct fw_caps_config_cmd caps_cmd; 4752 u32 params[7], val[7]; 4753 enum dev_state state; 4754 u32 v, port_vec; 4755 int reset = 1; 4756 int ret; 4757 4758 /* Grab Firmware Device Log parameters as early as possible so we have 4759 * access to it for debugging, etc. 4760 */ 4761 ret = t4_init_devlog_params(adap); 4762 if (ret < 0) 4763 return ret; 4764 4765 /* Contact FW, advertising Master capability */ 4766 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4767 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4768 if (ret < 0) { 4769 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4770 ret); 4771 return ret; 4772 } 4773 if (ret == adap->mbox) 4774 adap->flags |= CXGB4_MASTER_PF; 4775 4776 /* 4777 * If we're the Master PF Driver and the device is uninitialized, 4778 * then let's consider upgrading the firmware ... (We always want 4779 * to check the firmware version number in order to A. get it for 4780 * later reporting and B. to warn if the currently loaded firmware 4781 * is excessively mismatched relative to the driver.) 4782 */ 4783 4784 t4_get_version_info(adap); 4785 ret = t4_check_fw_version(adap); 4786 /* If firmware is too old (not supported by driver) force an update. */ 4787 if (ret) 4788 state = DEV_STATE_UNINIT; 4789 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4790 struct fw_info *fw_info; 4791 struct fw_hdr *card_fw; 4792 const struct firmware *fw; 4793 const u8 *fw_data = NULL; 4794 unsigned int fw_size = 0; 4795 4796 /* This is the firmware whose headers the driver was compiled 4797 * against 4798 */ 4799 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4800 if (fw_info == NULL) { 4801 dev_err(adap->pdev_dev, 4802 "unable to get firmware info for chip %d.\n", 4803 CHELSIO_CHIP_VERSION(adap->params.chip)); 4804 return -EINVAL; 4805 } 4806 4807 /* allocate memory to read the header of the firmware on the 4808 * card 4809 */ 4810 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4811 if (!card_fw) { 4812 ret = -ENOMEM; 4813 goto bye; 4814 } 4815 4816 /* Get FW from from /lib/firmware/ */ 4817 ret = request_firmware(&fw, fw_info->fw_mod_name, 4818 adap->pdev_dev); 4819 if (ret < 0) { 4820 dev_err(adap->pdev_dev, 4821 "unable to load firmware image %s, error %d\n", 4822 fw_info->fw_mod_name, ret); 4823 } else { 4824 fw_data = fw->data; 4825 fw_size = fw->size; 4826 } 4827 4828 /* upgrade FW logic */ 4829 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4830 state, &reset); 4831 4832 /* Cleaning up */ 4833 release_firmware(fw); 4834 kvfree(card_fw); 4835 4836 if (ret < 0) 4837 goto bye; 4838 } 4839 4840 /* If the firmware is initialized already, emit a simply note to that 4841 * effect. Otherwise, it's time to try initializing the adapter. 4842 */ 4843 if (state == DEV_STATE_INIT) { 4844 ret = adap_config_hma(adap); 4845 if (ret) 4846 dev_err(adap->pdev_dev, 4847 "HMA configuration failed with error %d\n", 4848 ret); 4849 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4850 "Adapter already initialized\n", 4851 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4852 } else { 4853 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4854 "Initializing adapter\n"); 4855 4856 /* Find out whether we're dealing with a version of the 4857 * firmware which has configuration file support. 4858 */ 4859 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4860 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4861 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4862 params, val); 4863 4864 /* If the firmware doesn't support Configuration Files, 4865 * return an error. 4866 */ 4867 if (ret < 0) { 4868 dev_err(adap->pdev_dev, "firmware doesn't support " 4869 "Firmware Configuration Files\n"); 4870 goto bye; 4871 } 4872 4873 /* The firmware provides us with a memory buffer where we can 4874 * load a Configuration File from the host if we want to 4875 * override the Configuration File in flash. 4876 */ 4877 ret = adap_init0_config(adap, reset); 4878 if (ret == -ENOENT) { 4879 dev_err(adap->pdev_dev, "no Configuration File " 4880 "present on adapter.\n"); 4881 goto bye; 4882 } 4883 if (ret < 0) { 4884 dev_err(adap->pdev_dev, "could not initialize " 4885 "adapter, error %d\n", -ret); 4886 goto bye; 4887 } 4888 } 4889 4890 /* Now that we've successfully configured and initialized the adapter 4891 * (or found it already initialized), we can ask the Firmware what 4892 * resources it has provisioned for us. 4893 */ 4894 ret = t4_get_pfres(adap); 4895 if (ret) { 4896 dev_err(adap->pdev_dev, 4897 "Unable to retrieve resource provisioning information\n"); 4898 goto bye; 4899 } 4900 4901 /* Grab VPD parameters. This should be done after we establish a 4902 * connection to the firmware since some of the VPD parameters 4903 * (notably the Core Clock frequency) are retrieved via requests to 4904 * the firmware. On the other hand, we need these fairly early on 4905 * so we do this right after getting ahold of the firmware. 4906 * 4907 * We need to do this after initializing the adapter because someone 4908 * could have FLASHed a new VPD which won't be read by the firmware 4909 * until we do the RESET ... 4910 */ 4911 if (!vpd_skip) { 4912 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4913 if (ret < 0) 4914 goto bye; 4915 } 4916 4917 /* Find out what ports are available to us. Note that we need to do 4918 * this before calling adap_init0_no_config() since it needs nports 4919 * and portvec ... 4920 */ 4921 v = 4922 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4923 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4924 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4925 if (ret < 0) 4926 goto bye; 4927 4928 adap->params.nports = hweight32(port_vec); 4929 adap->params.portvec = port_vec; 4930 4931 /* Give the SGE code a chance to pull in anything that it needs ... 4932 * Note that this must be called after we retrieve our VPD parameters 4933 * in order to know how to convert core ticks to seconds, etc. 4934 */ 4935 ret = t4_sge_init(adap); 4936 if (ret < 0) 4937 goto bye; 4938 4939 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4940 * indicates that the Firmware and Hardware support this. 4941 */ 4942 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4943 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4944 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4945 1, params, val); 4946 4947 if (!ret) { 4948 adap->sge.dbqtimer_tick = val[0]; 4949 ret = t4_read_sge_dbqtimers(adap, 4950 ARRAY_SIZE(adap->sge.dbqtimer_val), 4951 adap->sge.dbqtimer_val); 4952 } 4953 4954 if (!ret) 4955 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4956 4957 if (is_bypass_device(adap->pdev->device)) 4958 adap->params.bypass = 1; 4959 4960 /* 4961 * Grab some of our basic fundamental operating parameters. 4962 */ 4963 params[0] = FW_PARAM_PFVF(EQ_START); 4964 params[1] = FW_PARAM_PFVF(L2T_START); 4965 params[2] = FW_PARAM_PFVF(L2T_END); 4966 params[3] = FW_PARAM_PFVF(FILTER_START); 4967 params[4] = FW_PARAM_PFVF(FILTER_END); 4968 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4969 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4970 if (ret < 0) 4971 goto bye; 4972 adap->sge.egr_start = val[0]; 4973 adap->l2t_start = val[1]; 4974 adap->l2t_end = val[2]; 4975 adap->tids.ftid_base = val[3]; 4976 adap->tids.nftids = val[4] - val[3] + 1; 4977 adap->sge.ingr_start = val[5]; 4978 4979 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4980 params[0] = FW_PARAM_PFVF(HPFILTER_START); 4981 params[1] = FW_PARAM_PFVF(HPFILTER_END); 4982 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4983 params, val); 4984 if (ret < 0) 4985 goto bye; 4986 4987 adap->tids.hpftid_base = val[0]; 4988 adap->tids.nhpftids = val[1] - val[0] + 1; 4989 4990 /* Read the raw mps entries. In T6, the last 2 tcam entries 4991 * are reserved for raw mac addresses (rawf = 2, one per port). 4992 */ 4993 params[0] = FW_PARAM_PFVF(RAWF_START); 4994 params[1] = FW_PARAM_PFVF(RAWF_END); 4995 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4996 params, val); 4997 if (ret == 0) { 4998 adap->rawf_start = val[0]; 4999 adap->rawf_cnt = val[1] - val[0] + 1; 5000 } 5001 5002 adap->tids.tid_base = 5003 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 5004 } 5005 5006 /* qids (ingress/egress) returned from firmware can be anywhere 5007 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 5008 * Hence driver needs to allocate memory for this range to 5009 * store the queue info. Get the highest IQFLINT/EQ index returned 5010 * in FW_EQ_*_CMD.alloc command. 5011 */ 5012 params[0] = FW_PARAM_PFVF(EQ_END); 5013 params[1] = FW_PARAM_PFVF(IQFLINT_END); 5014 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5015 if (ret < 0) 5016 goto bye; 5017 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 5018 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 5019 5020 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 5021 sizeof(*adap->sge.egr_map), GFP_KERNEL); 5022 if (!adap->sge.egr_map) { 5023 ret = -ENOMEM; 5024 goto bye; 5025 } 5026 5027 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 5028 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 5029 if (!adap->sge.ingr_map) { 5030 ret = -ENOMEM; 5031 goto bye; 5032 } 5033 5034 /* Allocate the memory for the vaious egress queue bitmaps 5035 * ie starving_fl, txq_maperr and blocked_fl. 5036 */ 5037 adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL); 5038 if (!adap->sge.starving_fl) { 5039 ret = -ENOMEM; 5040 goto bye; 5041 } 5042 5043 adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL); 5044 if (!adap->sge.txq_maperr) { 5045 ret = -ENOMEM; 5046 goto bye; 5047 } 5048 5049 #ifdef CONFIG_DEBUG_FS 5050 adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL); 5051 if (!adap->sge.blocked_fl) { 5052 ret = -ENOMEM; 5053 goto bye; 5054 } 5055 #endif 5056 5057 params[0] = FW_PARAM_PFVF(CLIP_START); 5058 params[1] = FW_PARAM_PFVF(CLIP_END); 5059 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5060 if (ret < 0) 5061 goto bye; 5062 adap->clipt_start = val[0]; 5063 adap->clipt_end = val[1]; 5064 5065 /* Get the supported number of traffic classes */ 5066 params[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5067 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 5068 if (ret < 0) { 5069 /* We couldn't retrieve the number of Traffic Classes 5070 * supported by the hardware/firmware. So we hard 5071 * code it here. 5072 */ 5073 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 5074 } else { 5075 adap->params.nsched_cls = val[0]; 5076 } 5077 5078 /* query params related to active filter region */ 5079 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 5080 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 5081 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5082 /* If Active filter size is set we enable establishing 5083 * offload connection through firmware work request 5084 */ 5085 if ((val[0] != val[1]) && (ret >= 0)) { 5086 adap->flags |= CXGB4_FW_OFLD_CONN; 5087 adap->tids.aftid_base = val[0]; 5088 adap->tids.aftid_end = val[1]; 5089 } 5090 5091 /* If we're running on newer firmware, let it know that we're 5092 * prepared to deal with encapsulated CPL messages. Older 5093 * firmware won't understand this and we'll just get 5094 * unencapsulated messages ... 5095 */ 5096 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5097 val[0] = 1; 5098 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 5099 5100 /* 5101 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 5102 * capability. Earlier versions of the firmware didn't have the 5103 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 5104 * permission to use ULPTX MEMWRITE DSGL. 5105 */ 5106 if (is_t4(adap->params.chip)) { 5107 adap->params.ulptx_memwrite_dsgl = false; 5108 } else { 5109 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5110 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5111 1, params, val); 5112 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 5113 } 5114 5115 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 5116 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5117 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5118 1, params, val); 5119 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 5120 5121 /* See if FW supports FW_FILTER2 work request */ 5122 if (is_t4(adap->params.chip)) { 5123 adap->params.filter2_wr_support = false; 5124 } else { 5125 params[0] = FW_PARAM_DEV(FILTER2_WR); 5126 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5127 1, params, val); 5128 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 5129 } 5130 5131 /* Check if FW supports returning vin and smt index. 5132 * If this is not supported, driver will interpret 5133 * these values from viid. 5134 */ 5135 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5136 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5137 1, params, val); 5138 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 5139 5140 /* 5141 * Get device capabilities so we can determine what resources we need 5142 * to manage. 5143 */ 5144 memset(&caps_cmd, 0, sizeof(caps_cmd)); 5145 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 5146 FW_CMD_REQUEST_F | FW_CMD_READ_F); 5147 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 5148 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 5149 &caps_cmd); 5150 if (ret < 0) 5151 goto bye; 5152 5153 /* hash filter has some mandatory register settings to be tested and for 5154 * that it needs to test whether offload is enabled or not, hence 5155 * checking and setting it here. 5156 */ 5157 if (caps_cmd.ofldcaps) 5158 adap->params.offload = 1; 5159 5160 if (caps_cmd.ofldcaps || 5161 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || 5162 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { 5163 /* query offload-related parameters */ 5164 params[0] = FW_PARAM_DEV(NTID); 5165 params[1] = FW_PARAM_PFVF(SERVER_START); 5166 params[2] = FW_PARAM_PFVF(SERVER_END); 5167 params[3] = FW_PARAM_PFVF(TDDP_START); 5168 params[4] = FW_PARAM_PFVF(TDDP_END); 5169 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5170 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 5171 params, val); 5172 if (ret < 0) 5173 goto bye; 5174 adap->tids.ntids = val[0]; 5175 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 5176 adap->tids.stid_base = val[1]; 5177 adap->tids.nstids = val[2] - val[1] + 1; 5178 /* 5179 * Setup server filter region. Divide the available filter 5180 * region into two parts. Regular filters get 1/3rd and server 5181 * filters get 2/3rd part. This is only enabled if workarond 5182 * path is enabled. 5183 * 1. For regular filters. 5184 * 2. Server filter: This are special filters which are used 5185 * to redirect SYN packets to offload queue. 5186 */ 5187 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 5188 adap->tids.sftid_base = adap->tids.ftid_base + 5189 DIV_ROUND_UP(adap->tids.nftids, 3); 5190 adap->tids.nsftids = adap->tids.nftids - 5191 DIV_ROUND_UP(adap->tids.nftids, 3); 5192 adap->tids.nftids = adap->tids.sftid_base - 5193 adap->tids.ftid_base; 5194 } 5195 adap->vres.ddp.start = val[3]; 5196 adap->vres.ddp.size = val[4] - val[3] + 1; 5197 adap->params.ofldq_wr_cred = val[5]; 5198 5199 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5200 init_hash_filter(adap); 5201 } else { 5202 adap->num_ofld_uld += 1; 5203 } 5204 5205 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { 5206 params[0] = FW_PARAM_PFVF(ETHOFLD_START); 5207 params[1] = FW_PARAM_PFVF(ETHOFLD_END); 5208 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5209 params, val); 5210 if (!ret) { 5211 adap->tids.eotid_base = val[0]; 5212 adap->tids.neotids = min_t(u32, MAX_ATIDS, 5213 val[1] - val[0] + 1); 5214 adap->params.ethofld = 1; 5215 } 5216 } 5217 } 5218 if (caps_cmd.rdmacaps) { 5219 params[0] = FW_PARAM_PFVF(STAG_START); 5220 params[1] = FW_PARAM_PFVF(STAG_END); 5221 params[2] = FW_PARAM_PFVF(RQ_START); 5222 params[3] = FW_PARAM_PFVF(RQ_END); 5223 params[4] = FW_PARAM_PFVF(PBL_START); 5224 params[5] = FW_PARAM_PFVF(PBL_END); 5225 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 5226 params, val); 5227 if (ret < 0) 5228 goto bye; 5229 adap->vres.stag.start = val[0]; 5230 adap->vres.stag.size = val[1] - val[0] + 1; 5231 adap->vres.rq.start = val[2]; 5232 adap->vres.rq.size = val[3] - val[2] + 1; 5233 adap->vres.pbl.start = val[4]; 5234 adap->vres.pbl.size = val[5] - val[4] + 1; 5235 5236 params[0] = FW_PARAM_PFVF(SRQ_START); 5237 params[1] = FW_PARAM_PFVF(SRQ_END); 5238 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5239 params, val); 5240 if (!ret) { 5241 adap->vres.srq.start = val[0]; 5242 adap->vres.srq.size = val[1] - val[0] + 1; 5243 } 5244 if (adap->vres.srq.size) { 5245 adap->srq = t4_init_srq(adap->vres.srq.size); 5246 if (!adap->srq) 5247 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 5248 } 5249 5250 params[0] = FW_PARAM_PFVF(SQRQ_START); 5251 params[1] = FW_PARAM_PFVF(SQRQ_END); 5252 params[2] = FW_PARAM_PFVF(CQ_START); 5253 params[3] = FW_PARAM_PFVF(CQ_END); 5254 params[4] = FW_PARAM_PFVF(OCQ_START); 5255 params[5] = FW_PARAM_PFVF(OCQ_END); 5256 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 5257 val); 5258 if (ret < 0) 5259 goto bye; 5260 adap->vres.qp.start = val[0]; 5261 adap->vres.qp.size = val[1] - val[0] + 1; 5262 adap->vres.cq.start = val[2]; 5263 adap->vres.cq.size = val[3] - val[2] + 1; 5264 adap->vres.ocq.start = val[4]; 5265 adap->vres.ocq.size = val[5] - val[4] + 1; 5266 5267 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 5268 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5269 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 5270 val); 5271 if (ret < 0) { 5272 adap->params.max_ordird_qp = 8; 5273 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 5274 ret = 0; 5275 } else { 5276 adap->params.max_ordird_qp = val[0]; 5277 adap->params.max_ird_adapter = val[1]; 5278 } 5279 dev_info(adap->pdev_dev, 5280 "max_ordird_qp %d max_ird_adapter %d\n", 5281 adap->params.max_ordird_qp, 5282 adap->params.max_ird_adapter); 5283 5284 /* Enable write_with_immediate if FW supports it */ 5285 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 5286 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5287 val); 5288 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 5289 5290 /* Enable write_cmpl if FW supports it */ 5291 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 5292 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5293 val); 5294 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 5295 adap->num_ofld_uld += 2; 5296 } 5297 if (caps_cmd.iscsicaps) { 5298 params[0] = FW_PARAM_PFVF(ISCSI_START); 5299 params[1] = FW_PARAM_PFVF(ISCSI_END); 5300 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5301 params, val); 5302 if (ret < 0) 5303 goto bye; 5304 adap->vres.iscsi.start = val[0]; 5305 adap->vres.iscsi.size = val[1] - val[0] + 1; 5306 if (is_t6(adap->params.chip)) { 5307 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 5308 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 5309 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5310 params, val); 5311 if (!ret) { 5312 adap->vres.ppod_edram.start = val[0]; 5313 adap->vres.ppod_edram.size = 5314 val[1] - val[0] + 1; 5315 5316 dev_info(adap->pdev_dev, 5317 "ppod edram start 0x%x end 0x%x size 0x%x\n", 5318 val[0], val[1], 5319 adap->vres.ppod_edram.size); 5320 } 5321 } 5322 /* LIO target and cxgb4i initiaitor */ 5323 adap->num_ofld_uld += 2; 5324 } 5325 if (caps_cmd.cryptocaps) { 5326 if (ntohs(caps_cmd.cryptocaps) & 5327 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 5328 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 5329 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5330 2, params, val); 5331 if (ret < 0) { 5332 if (ret != -EINVAL) 5333 goto bye; 5334 } else { 5335 adap->vres.ncrypto_fc = val[0]; 5336 } 5337 adap->num_ofld_uld += 1; 5338 } 5339 if (ntohs(caps_cmd.cryptocaps) & 5340 FW_CAPS_CONFIG_TLS_INLINE) { 5341 params[0] = FW_PARAM_PFVF(TLS_START); 5342 params[1] = FW_PARAM_PFVF(TLS_END); 5343 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5344 2, params, val); 5345 if (ret < 0) 5346 goto bye; 5347 adap->vres.key.start = val[0]; 5348 adap->vres.key.size = val[1] - val[0] + 1; 5349 adap->num_uld += 1; 5350 } 5351 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 5352 } 5353 5354 /* The MTU/MSS Table is initialized by now, so load their values. If 5355 * we're initializing the adapter, then we'll make any modifications 5356 * we want to the MTU/MSS Table and also initialize the congestion 5357 * parameters. 5358 */ 5359 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5360 if (state != DEV_STATE_INIT) { 5361 int i; 5362 5363 /* The default MTU Table contains values 1492 and 1500. 5364 * However, for TCP, it's better to have two values which are 5365 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5366 * This allows us to have a TCP Data Payload which is a 5367 * multiple of 8 regardless of what combination of TCP Options 5368 * are in use (always a multiple of 4 bytes) which is 5369 * important for performance reasons. For instance, if no 5370 * options are in use, then we have a 20-byte IP header and a 5371 * 20-byte TCP header. In this case, a 1500-byte MSS would 5372 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5373 * which is not a multiple of 8. So using an MSS of 1488 in 5374 * this case results in a TCP Data Payload of 1448 bytes which 5375 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5376 * Stamps have been negotiated, then an MTU of 1500 bytes 5377 * results in a TCP Data Payload of 1448 bytes which, as 5378 * above, is a multiple of 8 bytes ... 5379 */ 5380 for (i = 0; i < NMTUS; i++) 5381 if (adap->params.mtus[i] == 1492) { 5382 adap->params.mtus[i] = 1488; 5383 break; 5384 } 5385 5386 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5387 adap->params.b_wnd); 5388 } 5389 t4_init_sge_params(adap); 5390 adap->flags |= CXGB4_FW_OK; 5391 t4_init_tp_params(adap, true); 5392 return 0; 5393 5394 /* 5395 * Something bad happened. If a command timed out or failed with EIO 5396 * FW does not operate within its spec or something catastrophic 5397 * happened to HW/FW, stop issuing commands. 5398 */ 5399 bye: 5400 adap_free_hma_mem(adap); 5401 kfree(adap->sge.egr_map); 5402 kfree(adap->sge.ingr_map); 5403 bitmap_free(adap->sge.starving_fl); 5404 bitmap_free(adap->sge.txq_maperr); 5405 #ifdef CONFIG_DEBUG_FS 5406 bitmap_free(adap->sge.blocked_fl); 5407 #endif 5408 if (ret != -ETIMEDOUT && ret != -EIO) 5409 t4_fw_bye(adap, adap->mbox); 5410 return ret; 5411 } 5412 5413 /* EEH callbacks */ 5414 5415 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5416 pci_channel_state_t state) 5417 { 5418 int i; 5419 struct adapter *adap = pci_get_drvdata(pdev); 5420 5421 if (!adap) 5422 goto out; 5423 5424 rtnl_lock(); 5425 adap->flags &= ~CXGB4_FW_OK; 5426 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5427 spin_lock(&adap->stats_lock); 5428 for_each_port(adap, i) { 5429 struct net_device *dev = adap->port[i]; 5430 if (dev) { 5431 netif_device_detach(dev); 5432 netif_carrier_off(dev); 5433 } 5434 } 5435 spin_unlock(&adap->stats_lock); 5436 disable_interrupts(adap); 5437 if (adap->flags & CXGB4_FULL_INIT_DONE) 5438 cxgb_down(adap); 5439 rtnl_unlock(); 5440 if ((adap->flags & CXGB4_DEV_ENABLED)) { 5441 pci_disable_device(pdev); 5442 adap->flags &= ~CXGB4_DEV_ENABLED; 5443 } 5444 out: return state == pci_channel_io_perm_failure ? 5445 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5446 } 5447 5448 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5449 { 5450 int i, ret; 5451 struct fw_caps_config_cmd c; 5452 struct adapter *adap = pci_get_drvdata(pdev); 5453 5454 if (!adap) { 5455 pci_restore_state(pdev); 5456 pci_save_state(pdev); 5457 return PCI_ERS_RESULT_RECOVERED; 5458 } 5459 5460 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 5461 if (pci_enable_device(pdev)) { 5462 dev_err(&pdev->dev, "Cannot reenable PCI " 5463 "device after reset\n"); 5464 return PCI_ERS_RESULT_DISCONNECT; 5465 } 5466 adap->flags |= CXGB4_DEV_ENABLED; 5467 } 5468 5469 pci_set_master(pdev); 5470 pci_restore_state(pdev); 5471 pci_save_state(pdev); 5472 5473 if (t4_wait_dev_ready(adap->regs) < 0) 5474 return PCI_ERS_RESULT_DISCONNECT; 5475 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 5476 return PCI_ERS_RESULT_DISCONNECT; 5477 adap->flags |= CXGB4_FW_OK; 5478 if (adap_init1(adap, &c)) 5479 return PCI_ERS_RESULT_DISCONNECT; 5480 5481 for_each_port(adap, i) { 5482 struct port_info *pi = adap2pinfo(adap, i); 5483 u8 vivld = 0, vin = 0; 5484 5485 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5486 NULL, NULL, &vivld, &vin); 5487 if (ret < 0) 5488 return PCI_ERS_RESULT_DISCONNECT; 5489 pi->viid = ret; 5490 pi->xact_addr_filt = -1; 5491 /* If fw supports returning the VIN as part of FW_VI_CMD, 5492 * save the returned values. 5493 */ 5494 if (adap->params.viid_smt_extn_support) { 5495 pi->vivld = vivld; 5496 pi->vin = vin; 5497 } else { 5498 /* Retrieve the values from VIID */ 5499 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5500 pi->vin = FW_VIID_VIN_G(pi->viid); 5501 } 5502 } 5503 5504 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5505 adap->params.b_wnd); 5506 setup_memwin(adap); 5507 if (cxgb_up(adap)) 5508 return PCI_ERS_RESULT_DISCONNECT; 5509 return PCI_ERS_RESULT_RECOVERED; 5510 } 5511 5512 static void eeh_resume(struct pci_dev *pdev) 5513 { 5514 int i; 5515 struct adapter *adap = pci_get_drvdata(pdev); 5516 5517 if (!adap) 5518 return; 5519 5520 rtnl_lock(); 5521 for_each_port(adap, i) { 5522 struct net_device *dev = adap->port[i]; 5523 if (dev) { 5524 if (netif_running(dev)) { 5525 link_start(dev); 5526 cxgb_set_rxmode(dev); 5527 } 5528 netif_device_attach(dev); 5529 } 5530 } 5531 rtnl_unlock(); 5532 } 5533 5534 static void eeh_reset_prepare(struct pci_dev *pdev) 5535 { 5536 struct adapter *adapter = pci_get_drvdata(pdev); 5537 int i; 5538 5539 if (adapter->pf != 4) 5540 return; 5541 5542 adapter->flags &= ~CXGB4_FW_OK; 5543 5544 notify_ulds(adapter, CXGB4_STATE_DOWN); 5545 5546 for_each_port(adapter, i) 5547 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5548 cxgb_close(adapter->port[i]); 5549 5550 disable_interrupts(adapter); 5551 cxgb4_free_mps_ref_entries(adapter); 5552 5553 adap_free_hma_mem(adapter); 5554 5555 if (adapter->flags & CXGB4_FULL_INIT_DONE) 5556 cxgb_down(adapter); 5557 } 5558 5559 static void eeh_reset_done(struct pci_dev *pdev) 5560 { 5561 struct adapter *adapter = pci_get_drvdata(pdev); 5562 int err, i; 5563 5564 if (adapter->pf != 4) 5565 return; 5566 5567 err = t4_wait_dev_ready(adapter->regs); 5568 if (err < 0) { 5569 dev_err(adapter->pdev_dev, 5570 "Device not ready, err %d", err); 5571 return; 5572 } 5573 5574 setup_memwin(adapter); 5575 5576 err = adap_init0(adapter, 1); 5577 if (err) { 5578 dev_err(adapter->pdev_dev, 5579 "Adapter init failed, err %d", err); 5580 return; 5581 } 5582 5583 setup_memwin_rdma(adapter); 5584 5585 if (adapter->flags & CXGB4_FW_OK) { 5586 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); 5587 if (err) { 5588 dev_err(adapter->pdev_dev, 5589 "Port init failed, err %d", err); 5590 return; 5591 } 5592 } 5593 5594 err = cfg_queues(adapter); 5595 if (err) { 5596 dev_err(adapter->pdev_dev, 5597 "Config queues failed, err %d", err); 5598 return; 5599 } 5600 5601 cxgb4_init_mps_ref_entries(adapter); 5602 5603 err = setup_fw_sge_queues(adapter); 5604 if (err) { 5605 dev_err(adapter->pdev_dev, 5606 "FW sge queue allocation failed, err %d", err); 5607 return; 5608 } 5609 5610 for_each_port(adapter, i) 5611 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5612 cxgb_open(adapter->port[i]); 5613 } 5614 5615 static const struct pci_error_handlers cxgb4_eeh = { 5616 .error_detected = eeh_err_detected, 5617 .slot_reset = eeh_slot_reset, 5618 .resume = eeh_resume, 5619 .reset_prepare = eeh_reset_prepare, 5620 .reset_done = eeh_reset_done, 5621 }; 5622 5623 /* Return true if the Link Configuration supports "High Speeds" (those greater 5624 * than 1Gb/s). 5625 */ 5626 static inline bool is_x_10g_port(const struct link_config *lc) 5627 { 5628 unsigned int speeds, high_speeds; 5629 5630 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5631 high_speeds = speeds & 5632 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5633 5634 return high_speeds != 0; 5635 } 5636 5637 /* Perform default configuration of DMA queues depending on the number and type 5638 * of ports we found and the number of available CPUs. Most settings can be 5639 * modified by the admin prior to actual use. 5640 */ 5641 static int cfg_queues(struct adapter *adap) 5642 { 5643 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; 5644 u32 ncpus = num_online_cpus(); 5645 u32 niqflint, neq, num_ulds; 5646 struct sge *s = &adap->sge; 5647 u32 i, n10g = 0, qidx = 0; 5648 u32 q10g = 0, q1g; 5649 5650 /* Reduce memory usage in kdump environment, disable all offload. */ 5651 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5652 adap->params.offload = 0; 5653 adap->params.crypto = 0; 5654 adap->params.ethofld = 0; 5655 } 5656 5657 /* Calculate the number of Ethernet Queue Sets available based on 5658 * resources provisioned for us. We always have an Asynchronous 5659 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5660 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5661 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5662 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5663 * 5664 * Note that we should also take into account all of the various 5665 * Offload Queues. But, in any situation where we're operating in 5666 * a Resource Constrained Provisioning environment, doing any Offload 5667 * at all is problematic ... 5668 */ 5669 niqflint = adap->params.pfres.niqflint - 1; 5670 if (!(adap->flags & CXGB4_USING_MSIX)) 5671 niqflint--; 5672 neq = adap->params.pfres.neq / 2; 5673 avail_qsets = min(niqflint, neq); 5674 5675 if (avail_qsets < adap->params.nports) { 5676 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5677 avail_qsets, adap->params.nports); 5678 return -ENOMEM; 5679 } 5680 5681 /* Count the number of 10Gb/s or better ports */ 5682 for_each_port(adap, i) 5683 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5684 5685 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); 5686 5687 /* We default to 1 queue per non-10G port and up to # of cores queues 5688 * per 10G port. 5689 */ 5690 if (n10g) 5691 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5692 5693 #ifdef CONFIG_CHELSIO_T4_DCB 5694 /* For Data Center Bridging support we need to be able to support up 5695 * to 8 Traffic Priorities; each of which will be assigned to its 5696 * own TX Queue in order to prevent Head-Of-Line Blocking. 5697 */ 5698 q1g = 8; 5699 if (adap->params.nports * 8 > avail_eth_qsets) { 5700 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5701 avail_eth_qsets, adap->params.nports * 8); 5702 return -ENOMEM; 5703 } 5704 5705 if (adap->params.nports * ncpus < avail_eth_qsets) 5706 q10g = max(8U, ncpus); 5707 else 5708 q10g = max(8U, q10g); 5709 5710 while ((q10g * n10g) > 5711 (avail_eth_qsets - (adap->params.nports - n10g) * q1g)) 5712 q10g--; 5713 5714 #else /* !CONFIG_CHELSIO_T4_DCB */ 5715 q1g = 1; 5716 q10g = min(q10g, ncpus); 5717 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5718 if (is_kdump_kernel()) { 5719 q10g = 1; 5720 q1g = 1; 5721 } 5722 5723 for_each_port(adap, i) { 5724 struct port_info *pi = adap2pinfo(adap, i); 5725 5726 pi->first_qset = qidx; 5727 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g; 5728 qidx += pi->nqsets; 5729 } 5730 5731 s->ethqsets = qidx; 5732 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5733 avail_qsets -= qidx; 5734 5735 if (is_uld(adap)) { 5736 /* For offload we use 1 queue/channel if all ports are up to 1G, 5737 * otherwise we divide all available queues amongst the channels 5738 * capped by the number of available cores. 5739 */ 5740 num_ulds = adap->num_uld + adap->num_ofld_uld; 5741 i = min_t(u32, MAX_OFLD_QSETS, ncpus); 5742 avail_uld_qsets = roundup(i, adap->params.nports); 5743 if (avail_qsets < num_ulds * adap->params.nports) { 5744 adap->params.offload = 0; 5745 adap->params.crypto = 0; 5746 s->ofldqsets = 0; 5747 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { 5748 s->ofldqsets = adap->params.nports; 5749 } else { 5750 s->ofldqsets = avail_uld_qsets; 5751 } 5752 5753 avail_qsets -= num_ulds * s->ofldqsets; 5754 } 5755 5756 /* ETHOFLD Queues used for QoS offload should follow same 5757 * allocation scheme as normal Ethernet Queues. 5758 */ 5759 if (is_ethofld(adap)) { 5760 if (avail_qsets < s->max_ethqsets) { 5761 adap->params.ethofld = 0; 5762 s->eoqsets = 0; 5763 } else { 5764 s->eoqsets = s->max_ethqsets; 5765 } 5766 avail_qsets -= s->eoqsets; 5767 } 5768 5769 /* Mirror queues must follow same scheme as normal Ethernet 5770 * Queues, when there are enough queues available. Otherwise, 5771 * allocate at least 1 queue per port. If even 1 queue is not 5772 * available, then disable mirror queues support. 5773 */ 5774 if (avail_qsets >= s->max_ethqsets) 5775 s->mirrorqsets = s->max_ethqsets; 5776 else if (avail_qsets >= adap->params.nports) 5777 s->mirrorqsets = adap->params.nports; 5778 else 5779 s->mirrorqsets = 0; 5780 avail_qsets -= s->mirrorqsets; 5781 5782 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5783 struct sge_eth_rxq *r = &s->ethrxq[i]; 5784 5785 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5786 r->fl.size = 72; 5787 } 5788 5789 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5790 s->ethtxq[i].q.size = 1024; 5791 5792 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5793 s->ctrlq[i].q.size = 512; 5794 5795 if (!is_t4(adap->params.chip)) 5796 s->ptptxq.q.size = 8; 5797 5798 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5799 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5800 5801 return 0; 5802 } 5803 5804 /* 5805 * Reduce the number of Ethernet queues across all ports to at most n. 5806 * n provides at least one queue per port. 5807 */ 5808 static void reduce_ethqs(struct adapter *adap, int n) 5809 { 5810 int i; 5811 struct port_info *pi; 5812 5813 while (n < adap->sge.ethqsets) 5814 for_each_port(adap, i) { 5815 pi = adap2pinfo(adap, i); 5816 if (pi->nqsets > 1) { 5817 pi->nqsets--; 5818 adap->sge.ethqsets--; 5819 if (adap->sge.ethqsets <= n) 5820 break; 5821 } 5822 } 5823 5824 n = 0; 5825 for_each_port(adap, i) { 5826 pi = adap2pinfo(adap, i); 5827 pi->first_qset = n; 5828 n += pi->nqsets; 5829 } 5830 } 5831 5832 static int alloc_msix_info(struct adapter *adap, u32 num_vec) 5833 { 5834 struct msix_info *msix_info; 5835 5836 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); 5837 if (!msix_info) 5838 return -ENOMEM; 5839 5840 adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL); 5841 if (!adap->msix_bmap.msix_bmap) { 5842 kfree(msix_info); 5843 return -ENOMEM; 5844 } 5845 5846 spin_lock_init(&adap->msix_bmap.lock); 5847 adap->msix_bmap.mapsize = num_vec; 5848 5849 adap->msix_info = msix_info; 5850 return 0; 5851 } 5852 5853 static void free_msix_info(struct adapter *adap) 5854 { 5855 bitmap_free(adap->msix_bmap.msix_bmap); 5856 kfree(adap->msix_info); 5857 } 5858 5859 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) 5860 { 5861 struct msix_bmap *bmap = &adap->msix_bmap; 5862 unsigned int msix_idx; 5863 unsigned long flags; 5864 5865 spin_lock_irqsave(&bmap->lock, flags); 5866 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); 5867 if (msix_idx < bmap->mapsize) { 5868 __set_bit(msix_idx, bmap->msix_bmap); 5869 } else { 5870 spin_unlock_irqrestore(&bmap->lock, flags); 5871 return -ENOSPC; 5872 } 5873 5874 spin_unlock_irqrestore(&bmap->lock, flags); 5875 return msix_idx; 5876 } 5877 5878 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, 5879 unsigned int msix_idx) 5880 { 5881 struct msix_bmap *bmap = &adap->msix_bmap; 5882 unsigned long flags; 5883 5884 spin_lock_irqsave(&bmap->lock, flags); 5885 __clear_bit(msix_idx, bmap->msix_bmap); 5886 spin_unlock_irqrestore(&bmap->lock, flags); 5887 } 5888 5889 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5890 #define EXTRA_VECS 2 5891 5892 static int enable_msix(struct adapter *adap) 5893 { 5894 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0; 5895 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0; 5896 u8 num_uld = 0, nchan = adap->params.nports; 5897 u32 i, want, need, num_vec; 5898 struct sge *s = &adap->sge; 5899 struct msix_entry *entries; 5900 struct port_info *pi; 5901 int allocated, ret; 5902 5903 want = s->max_ethqsets; 5904 #ifdef CONFIG_CHELSIO_T4_DCB 5905 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5906 * each port. 5907 */ 5908 need = 8 * nchan; 5909 #else 5910 need = nchan; 5911 #endif 5912 eth_need = need; 5913 if (is_uld(adap)) { 5914 num_uld = adap->num_ofld_uld + adap->num_uld; 5915 want += num_uld * s->ofldqsets; 5916 uld_need = num_uld * nchan; 5917 need += uld_need; 5918 } 5919 5920 if (is_ethofld(adap)) { 5921 want += s->eoqsets; 5922 ethofld_need = eth_need; 5923 need += ethofld_need; 5924 } 5925 5926 if (s->mirrorqsets) { 5927 want += s->mirrorqsets; 5928 mirror_need = nchan; 5929 need += mirror_need; 5930 } 5931 5932 want += EXTRA_VECS; 5933 need += EXTRA_VECS; 5934 5935 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); 5936 if (!entries) 5937 return -ENOMEM; 5938 5939 for (i = 0; i < want; i++) 5940 entries[i].entry = i; 5941 5942 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5943 if (allocated < 0) { 5944 /* Disable offload and attempt to get vectors for NIC 5945 * only mode. 5946 */ 5947 want = s->max_ethqsets + EXTRA_VECS; 5948 need = eth_need + EXTRA_VECS; 5949 allocated = pci_enable_msix_range(adap->pdev, entries, 5950 need, want); 5951 if (allocated < 0) { 5952 dev_info(adap->pdev_dev, 5953 "Disabling MSI-X due to insufficient MSI-X vectors\n"); 5954 ret = allocated; 5955 goto out_free; 5956 } 5957 5958 dev_info(adap->pdev_dev, 5959 "Disabling offload due to insufficient MSI-X vectors\n"); 5960 adap->params.offload = 0; 5961 adap->params.crypto = 0; 5962 adap->params.ethofld = 0; 5963 s->ofldqsets = 0; 5964 s->eoqsets = 0; 5965 s->mirrorqsets = 0; 5966 uld_need = 0; 5967 ethofld_need = 0; 5968 mirror_need = 0; 5969 } 5970 5971 num_vec = allocated; 5972 if (num_vec < want) { 5973 /* Distribute available vectors to the various queue groups. 5974 * Every group gets its minimum requirement and NIC gets top 5975 * priority for leftovers. 5976 */ 5977 ethqsets = eth_need; 5978 if (is_uld(adap)) 5979 ofldqsets = nchan; 5980 if (is_ethofld(adap)) 5981 eoqsets = ethofld_need; 5982 if (s->mirrorqsets) 5983 mirrorqsets = mirror_need; 5984 5985 num_vec -= need; 5986 while (num_vec) { 5987 if (num_vec < eth_need + ethofld_need || 5988 ethqsets > s->max_ethqsets) 5989 break; 5990 5991 for_each_port(adap, i) { 5992 pi = adap2pinfo(adap, i); 5993 if (pi->nqsets < 2) 5994 continue; 5995 5996 ethqsets++; 5997 num_vec--; 5998 if (ethofld_need) { 5999 eoqsets++; 6000 num_vec--; 6001 } 6002 } 6003 } 6004 6005 if (is_uld(adap)) { 6006 while (num_vec) { 6007 if (num_vec < uld_need || 6008 ofldqsets > s->ofldqsets) 6009 break; 6010 6011 ofldqsets++; 6012 num_vec -= uld_need; 6013 } 6014 } 6015 6016 if (s->mirrorqsets) { 6017 while (num_vec) { 6018 if (num_vec < mirror_need || 6019 mirrorqsets > s->mirrorqsets) 6020 break; 6021 6022 mirrorqsets++; 6023 num_vec -= mirror_need; 6024 } 6025 } 6026 } else { 6027 ethqsets = s->max_ethqsets; 6028 if (is_uld(adap)) 6029 ofldqsets = s->ofldqsets; 6030 if (is_ethofld(adap)) 6031 eoqsets = s->eoqsets; 6032 if (s->mirrorqsets) 6033 mirrorqsets = s->mirrorqsets; 6034 } 6035 6036 if (ethqsets < s->max_ethqsets) { 6037 s->max_ethqsets = ethqsets; 6038 reduce_ethqs(adap, ethqsets); 6039 } 6040 6041 if (is_uld(adap)) { 6042 s->ofldqsets = ofldqsets; 6043 s->nqs_per_uld = s->ofldqsets; 6044 } 6045 6046 if (is_ethofld(adap)) 6047 s->eoqsets = eoqsets; 6048 6049 if (s->mirrorqsets) { 6050 s->mirrorqsets = mirrorqsets; 6051 for_each_port(adap, i) { 6052 pi = adap2pinfo(adap, i); 6053 pi->nmirrorqsets = s->mirrorqsets / nchan; 6054 mutex_init(&pi->vi_mirror_mutex); 6055 } 6056 } 6057 6058 /* map for msix */ 6059 ret = alloc_msix_info(adap, allocated); 6060 if (ret) 6061 goto out_disable_msix; 6062 6063 for (i = 0; i < allocated; i++) { 6064 adap->msix_info[i].vec = entries[i].vector; 6065 adap->msix_info[i].idx = i; 6066 } 6067 6068 dev_info(adap->pdev_dev, 6069 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n", 6070 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld, 6071 s->mirrorqsets); 6072 6073 kfree(entries); 6074 return 0; 6075 6076 out_disable_msix: 6077 pci_disable_msix(adap->pdev); 6078 6079 out_free: 6080 kfree(entries); 6081 return ret; 6082 } 6083 6084 #undef EXTRA_VECS 6085 6086 static int init_rss(struct adapter *adap) 6087 { 6088 unsigned int i; 6089 int err; 6090 6091 err = t4_init_rss_mode(adap, adap->mbox); 6092 if (err) 6093 return err; 6094 6095 for_each_port(adap, i) { 6096 struct port_info *pi = adap2pinfo(adap, i); 6097 6098 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 6099 if (!pi->rss) 6100 return -ENOMEM; 6101 } 6102 return 0; 6103 } 6104 6105 /* Dump basic information about the adapter */ 6106 static void print_adapter_info(struct adapter *adapter) 6107 { 6108 /* Hardware/Firmware/etc. Version/Revision IDs */ 6109 t4_dump_version_info(adapter); 6110 6111 /* Software/Hardware configuration */ 6112 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 6113 is_offload(adapter) ? "R" : "", 6114 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 6115 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 6116 is_offload(adapter) ? "Offload" : "non-Offload"); 6117 } 6118 6119 static void print_port_info(const struct net_device *dev) 6120 { 6121 char buf[80]; 6122 char *bufp = buf; 6123 const struct port_info *pi = netdev_priv(dev); 6124 const struct adapter *adap = pi->adapter; 6125 6126 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 6127 bufp += sprintf(bufp, "100M/"); 6128 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 6129 bufp += sprintf(bufp, "1G/"); 6130 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 6131 bufp += sprintf(bufp, "10G/"); 6132 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 6133 bufp += sprintf(bufp, "25G/"); 6134 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 6135 bufp += sprintf(bufp, "40G/"); 6136 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 6137 bufp += sprintf(bufp, "50G/"); 6138 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 6139 bufp += sprintf(bufp, "100G/"); 6140 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 6141 bufp += sprintf(bufp, "200G/"); 6142 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 6143 bufp += sprintf(bufp, "400G/"); 6144 if (bufp != buf) 6145 --bufp; 6146 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 6147 6148 netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf); 6149 } 6150 6151 /* 6152 * Free the following resources: 6153 * - memory used for tables 6154 * - MSI/MSI-X 6155 * - net devices 6156 * - resources FW is holding for us 6157 */ 6158 static void free_some_resources(struct adapter *adapter) 6159 { 6160 unsigned int i; 6161 6162 kvfree(adapter->smt); 6163 kvfree(adapter->l2t); 6164 kvfree(adapter->srq); 6165 t4_cleanup_sched(adapter); 6166 kvfree(adapter->tids.tid_tab); 6167 cxgb4_cleanup_tc_matchall(adapter); 6168 cxgb4_cleanup_tc_mqprio(adapter); 6169 cxgb4_cleanup_tc_flower(adapter); 6170 cxgb4_cleanup_tc_u32(adapter); 6171 cxgb4_cleanup_ethtool_filters(adapter); 6172 kfree(adapter->sge.egr_map); 6173 kfree(adapter->sge.ingr_map); 6174 bitmap_free(adapter->sge.starving_fl); 6175 bitmap_free(adapter->sge.txq_maperr); 6176 #ifdef CONFIG_DEBUG_FS 6177 bitmap_free(adapter->sge.blocked_fl); 6178 #endif 6179 disable_msi(adapter); 6180 6181 for_each_port(adapter, i) 6182 if (adapter->port[i]) { 6183 struct port_info *pi = adap2pinfo(adapter, i); 6184 6185 if (pi->viid != 0) 6186 t4_free_vi(adapter, adapter->mbox, adapter->pf, 6187 0, pi->viid); 6188 kfree(adap2pinfo(adapter, i)->rss); 6189 free_netdev(adapter->port[i]); 6190 } 6191 if (adapter->flags & CXGB4_FW_OK) 6192 t4_fw_bye(adapter, adapter->pf); 6193 } 6194 6195 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 6196 NETIF_F_GSO_UDP_L4) 6197 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 6198 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 6199 #define SEGMENT_SIZE 128 6200 6201 static int t4_get_chip_type(struct adapter *adap, int ver) 6202 { 6203 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 6204 6205 switch (ver) { 6206 case CHELSIO_T4: 6207 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 6208 case CHELSIO_T5: 6209 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 6210 case CHELSIO_T6: 6211 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 6212 default: 6213 break; 6214 } 6215 return -EINVAL; 6216 } 6217 6218 #ifdef CONFIG_PCI_IOV 6219 static void cxgb4_mgmt_setup(struct net_device *dev) 6220 { 6221 dev->type = ARPHRD_NONE; 6222 dev->mtu = 0; 6223 dev->hard_header_len = 0; 6224 dev->addr_len = 0; 6225 dev->tx_queue_len = 0; 6226 dev->flags |= IFF_NOARP; 6227 dev->priv_flags |= IFF_NO_QUEUE; 6228 6229 /* Initialize the device structure. */ 6230 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 6231 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 6232 } 6233 6234 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 6235 { 6236 struct adapter *adap = pci_get_drvdata(pdev); 6237 int err = 0; 6238 int current_vfs = pci_num_vf(pdev); 6239 u32 pcie_fw; 6240 6241 pcie_fw = readl(adap->regs + PCIE_FW_A); 6242 /* Check if fw is initialized */ 6243 if (!(pcie_fw & PCIE_FW_INIT_F)) { 6244 dev_warn(&pdev->dev, "Device not initialized\n"); 6245 return -EOPNOTSUPP; 6246 } 6247 6248 /* If any of the VF's is already assigned to Guest OS, then 6249 * SRIOV for the same cannot be modified 6250 */ 6251 if (current_vfs && pci_vfs_assigned(pdev)) { 6252 dev_err(&pdev->dev, 6253 "Cannot modify SR-IOV while VFs are assigned\n"); 6254 return current_vfs; 6255 } 6256 /* Note that the upper-level code ensures that we're never called with 6257 * a non-zero "num_vfs" when we already have VFs instantiated. But 6258 * it never hurts to code defensively. 6259 */ 6260 if (num_vfs != 0 && current_vfs != 0) 6261 return -EBUSY; 6262 6263 /* Nothing to do for no change. */ 6264 if (num_vfs == current_vfs) 6265 return num_vfs; 6266 6267 /* Disable SRIOV when zero is passed. */ 6268 if (!num_vfs) { 6269 pci_disable_sriov(pdev); 6270 /* free VF Management Interface */ 6271 unregister_netdev(adap->port[0]); 6272 free_netdev(adap->port[0]); 6273 adap->port[0] = NULL; 6274 6275 /* free VF resources */ 6276 adap->num_vfs = 0; 6277 kfree(adap->vfinfo); 6278 adap->vfinfo = NULL; 6279 return 0; 6280 } 6281 6282 if (!current_vfs) { 6283 struct fw_pfvf_cmd port_cmd, port_rpl; 6284 struct net_device *netdev; 6285 unsigned int pmask, port; 6286 struct pci_dev *pbridge; 6287 struct port_info *pi; 6288 char name[IFNAMSIZ]; 6289 u32 devcap2; 6290 u16 flags; 6291 6292 /* If we want to instantiate Virtual Functions, then our 6293 * parent bridge's PCI-E needs to support Alternative Routing 6294 * ID (ARI) because our VFs will show up at function offset 8 6295 * and above. 6296 */ 6297 pbridge = pdev->bus->self; 6298 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 6299 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 6300 6301 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 6302 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 6303 /* Our parent bridge does not support ARI so issue a 6304 * warning and skip instantiating the VFs. They 6305 * won't be reachable. 6306 */ 6307 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 6308 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 6309 PCI_FUNC(pbridge->devfn)); 6310 return -ENOTSUPP; 6311 } 6312 memset(&port_cmd, 0, sizeof(port_cmd)); 6313 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 6314 FW_CMD_REQUEST_F | 6315 FW_CMD_READ_F | 6316 FW_PFVF_CMD_PFN_V(adap->pf) | 6317 FW_PFVF_CMD_VFN_V(0)); 6318 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 6319 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 6320 &port_rpl); 6321 if (err) 6322 return err; 6323 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 6324 port = ffs(pmask) - 1; 6325 /* Allocate VF Management Interface. */ 6326 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 6327 adap->pf); 6328 netdev = alloc_netdev(sizeof(struct port_info), 6329 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 6330 if (!netdev) 6331 return -ENOMEM; 6332 6333 pi = netdev_priv(netdev); 6334 pi->adapter = adap; 6335 pi->lport = port; 6336 pi->tx_chan = port; 6337 SET_NETDEV_DEV(netdev, &pdev->dev); 6338 6339 adap->port[0] = netdev; 6340 pi->port_id = 0; 6341 6342 err = register_netdev(adap->port[0]); 6343 if (err) { 6344 pr_info("Unable to register VF mgmt netdev %s\n", name); 6345 free_netdev(adap->port[0]); 6346 adap->port[0] = NULL; 6347 return err; 6348 } 6349 /* Allocate and set up VF Information. */ 6350 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 6351 sizeof(struct vf_info), GFP_KERNEL); 6352 if (!adap->vfinfo) { 6353 unregister_netdev(adap->port[0]); 6354 free_netdev(adap->port[0]); 6355 adap->port[0] = NULL; 6356 return -ENOMEM; 6357 } 6358 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 6359 } 6360 /* Instantiate the requested number of VFs. */ 6361 err = pci_enable_sriov(pdev, num_vfs); 6362 if (err) { 6363 pr_info("Unable to instantiate %d VFs\n", num_vfs); 6364 if (!current_vfs) { 6365 unregister_netdev(adap->port[0]); 6366 free_netdev(adap->port[0]); 6367 adap->port[0] = NULL; 6368 kfree(adap->vfinfo); 6369 adap->vfinfo = NULL; 6370 } 6371 return err; 6372 } 6373 6374 adap->num_vfs = num_vfs; 6375 return num_vfs; 6376 } 6377 #endif /* CONFIG_PCI_IOV */ 6378 6379 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6380 6381 static int chcr_offload_state(struct adapter *adap, 6382 enum cxgb4_netdev_tls_ops op_val) 6383 { 6384 switch (op_val) { 6385 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6386 case CXGB4_TLSDEV_OPS: 6387 if (!adap->uld[CXGB4_ULD_KTLS].handle) { 6388 dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n"); 6389 return -EOPNOTSUPP; 6390 } 6391 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) { 6392 dev_dbg(adap->pdev_dev, 6393 "ch_ktls driver has no registered tlsdev_ops\n"); 6394 return -EOPNOTSUPP; 6395 } 6396 break; 6397 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6398 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6399 case CXGB4_XFRMDEV_OPS: 6400 if (!adap->uld[CXGB4_ULD_IPSEC].handle) { 6401 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n"); 6402 return -EOPNOTSUPP; 6403 } 6404 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) { 6405 dev_dbg(adap->pdev_dev, 6406 "chipsec driver has no registered xfrmdev_ops\n"); 6407 return -EOPNOTSUPP; 6408 } 6409 break; 6410 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6411 default: 6412 dev_dbg(adap->pdev_dev, 6413 "driver has no support for offload %d\n", op_val); 6414 return -EOPNOTSUPP; 6415 } 6416 6417 return 0; 6418 } 6419 6420 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */ 6421 6422 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6423 6424 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk, 6425 enum tls_offload_ctx_dir direction, 6426 struct tls_crypto_info *crypto_info, 6427 u32 tcp_sn) 6428 { 6429 struct adapter *adap = netdev2adap(netdev); 6430 int ret; 6431 6432 mutex_lock(&uld_mutex); 6433 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS); 6434 if (ret) 6435 goto out_unlock; 6436 6437 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE); 6438 if (ret) 6439 goto out_unlock; 6440 6441 ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk, 6442 direction, 6443 crypto_info, 6444 tcp_sn); 6445 /* if there is a failure, clear the refcount */ 6446 if (ret) 6447 cxgb4_set_ktls_feature(adap, 6448 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6449 out_unlock: 6450 mutex_unlock(&uld_mutex); 6451 return ret; 6452 } 6453 6454 static void cxgb4_ktls_dev_del(struct net_device *netdev, 6455 struct tls_context *tls_ctx, 6456 enum tls_offload_ctx_dir direction) 6457 { 6458 struct adapter *adap = netdev2adap(netdev); 6459 6460 mutex_lock(&uld_mutex); 6461 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS)) 6462 goto out_unlock; 6463 6464 adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx, 6465 direction); 6466 6467 out_unlock: 6468 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6469 mutex_unlock(&uld_mutex); 6470 } 6471 6472 static const struct tlsdev_ops cxgb4_ktls_ops = { 6473 .tls_dev_add = cxgb4_ktls_dev_add, 6474 .tls_dev_del = cxgb4_ktls_dev_del, 6475 }; 6476 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6477 6478 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6479 6480 static int cxgb4_xfrm_add_state(struct xfrm_state *x, 6481 struct netlink_ext_ack *extack) 6482 { 6483 struct adapter *adap = netdev2adap(x->xso.dev); 6484 int ret; 6485 6486 if (!mutex_trylock(&uld_mutex)) { 6487 NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use"); 6488 return -EBUSY; 6489 } 6490 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS); 6491 if (ret) 6492 goto out_unlock; 6493 6494 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack); 6495 6496 out_unlock: 6497 mutex_unlock(&uld_mutex); 6498 6499 return ret; 6500 } 6501 6502 static void cxgb4_xfrm_del_state(struct xfrm_state *x) 6503 { 6504 struct adapter *adap = netdev2adap(x->xso.dev); 6505 6506 if (!mutex_trylock(&uld_mutex)) { 6507 dev_dbg(adap->pdev_dev, 6508 "crypto uld critical resource is under use\n"); 6509 return; 6510 } 6511 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6512 goto out_unlock; 6513 6514 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x); 6515 6516 out_unlock: 6517 mutex_unlock(&uld_mutex); 6518 } 6519 6520 static void cxgb4_xfrm_free_state(struct xfrm_state *x) 6521 { 6522 struct adapter *adap = netdev2adap(x->xso.dev); 6523 6524 if (!mutex_trylock(&uld_mutex)) { 6525 dev_dbg(adap->pdev_dev, 6526 "crypto uld critical resource is under use\n"); 6527 return; 6528 } 6529 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6530 goto out_unlock; 6531 6532 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x); 6533 6534 out_unlock: 6535 mutex_unlock(&uld_mutex); 6536 } 6537 6538 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x) 6539 { 6540 struct adapter *adap = netdev2adap(x->xso.dev); 6541 bool ret = false; 6542 6543 if (!mutex_trylock(&uld_mutex)) { 6544 dev_dbg(adap->pdev_dev, 6545 "crypto uld critical resource is under use\n"); 6546 return ret; 6547 } 6548 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6549 goto out_unlock; 6550 6551 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x); 6552 6553 out_unlock: 6554 mutex_unlock(&uld_mutex); 6555 return ret; 6556 } 6557 6558 static void cxgb4_advance_esn_state(struct xfrm_state *x) 6559 { 6560 struct adapter *adap = netdev2adap(x->xso.dev); 6561 6562 if (!mutex_trylock(&uld_mutex)) { 6563 dev_dbg(adap->pdev_dev, 6564 "crypto uld critical resource is under use\n"); 6565 return; 6566 } 6567 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6568 goto out_unlock; 6569 6570 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x); 6571 6572 out_unlock: 6573 mutex_unlock(&uld_mutex); 6574 } 6575 6576 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = { 6577 .xdo_dev_state_add = cxgb4_xfrm_add_state, 6578 .xdo_dev_state_delete = cxgb4_xfrm_del_state, 6579 .xdo_dev_state_free = cxgb4_xfrm_free_state, 6580 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok, 6581 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state, 6582 }; 6583 6584 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6585 6586 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6587 { 6588 struct net_device *netdev; 6589 struct adapter *adapter; 6590 static int adap_idx = 1; 6591 int s_qpp, qpp, num_seg; 6592 struct port_info *pi; 6593 enum chip_type chip; 6594 void __iomem *regs; 6595 int func, chip_ver; 6596 u16 device_id; 6597 int i, err; 6598 u32 whoami; 6599 6600 err = pci_request_regions(pdev, KBUILD_MODNAME); 6601 if (err) { 6602 /* Just info, some other driver may have claimed the device. */ 6603 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6604 return err; 6605 } 6606 6607 err = pci_enable_device(pdev); 6608 if (err) { 6609 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6610 goto out_release_regions; 6611 } 6612 6613 regs = pci_ioremap_bar(pdev, 0); 6614 if (!regs) { 6615 dev_err(&pdev->dev, "cannot map device registers\n"); 6616 err = -ENOMEM; 6617 goto out_disable_device; 6618 } 6619 6620 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6621 if (!adapter) { 6622 err = -ENOMEM; 6623 goto out_unmap_bar0; 6624 } 6625 6626 adapter->regs = regs; 6627 err = t4_wait_dev_ready(regs); 6628 if (err < 0) 6629 goto out_free_adapter; 6630 6631 /* We control everything through one PF */ 6632 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 6633 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 6634 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 6635 if ((int)chip < 0) { 6636 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 6637 err = chip; 6638 goto out_free_adapter; 6639 } 6640 chip_ver = CHELSIO_CHIP_VERSION(chip); 6641 func = chip_ver <= CHELSIO_T5 ? 6642 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 6643 6644 adapter->pdev = pdev; 6645 adapter->pdev_dev = &pdev->dev; 6646 adapter->name = pci_name(pdev); 6647 adapter->mbox = func; 6648 adapter->pf = func; 6649 adapter->params.chip = chip; 6650 adapter->adap_idx = adap_idx; 6651 adapter->msg_enable = DFLT_MSG_ENABLE; 6652 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 6653 (sizeof(struct mbox_cmd) * 6654 T4_OS_LOG_MBOX_CMDS), 6655 GFP_KERNEL); 6656 if (!adapter->mbox_log) { 6657 err = -ENOMEM; 6658 goto out_free_adapter; 6659 } 6660 spin_lock_init(&adapter->mbox_lock); 6661 INIT_LIST_HEAD(&adapter->mlist.list); 6662 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 6663 pci_set_drvdata(pdev, adapter); 6664 6665 if (func != ent->driver_data) { 6666 pci_disable_device(pdev); 6667 pci_save_state(pdev); /* to restore SR-IOV later */ 6668 return 0; 6669 } 6670 6671 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6672 if (err) { 6673 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6674 goto out_free_adapter; 6675 } 6676 6677 pci_set_master(pdev); 6678 pci_save_state(pdev); 6679 adap_idx++; 6680 adapter->workq = create_singlethread_workqueue("cxgb4"); 6681 if (!adapter->workq) { 6682 err = -ENOMEM; 6683 goto out_free_adapter; 6684 } 6685 6686 /* PCI device has been enabled */ 6687 adapter->flags |= CXGB4_DEV_ENABLED; 6688 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6689 6690 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 6691 * Ingress Packet Data to Free List Buffers in order to allow for 6692 * chipset performance optimizations between the Root Complex and 6693 * Memory Controllers. (Messages to the associated Ingress Queue 6694 * notifying new Packet Placement in the Free Lists Buffers will be 6695 * send without the Relaxed Ordering Attribute thus guaranteeing that 6696 * all preceding PCIe Transaction Layer Packets will be processed 6697 * first.) But some Root Complexes have various issues with Upstream 6698 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 6699 * The PCIe devices which under the Root Complexes will be cleared the 6700 * Relaxed Ordering bit in the configuration space, So we check our 6701 * PCIe configuration space to see if it's flagged with advice against 6702 * using Relaxed Ordering. 6703 */ 6704 if (!pcie_relaxed_ordering_enabled(pdev)) 6705 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 6706 6707 spin_lock_init(&adapter->stats_lock); 6708 spin_lock_init(&adapter->tid_release_lock); 6709 spin_lock_init(&adapter->win0_lock); 6710 6711 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6712 INIT_WORK(&adapter->db_full_task, process_db_full); 6713 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6714 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 6715 6716 err = t4_prep_adapter(adapter); 6717 if (err) 6718 goto out_free_adapter; 6719 6720 if (is_kdump_kernel()) { 6721 /* Collect hardware state and append to /proc/vmcore */ 6722 err = cxgb4_cudbg_vmcore_add_dump(adapter); 6723 if (err) { 6724 dev_warn(adapter->pdev_dev, 6725 "Fail collecting vmcore device dump, err: %d. Continuing\n", 6726 err); 6727 err = 0; 6728 } 6729 } 6730 6731 if (!is_t4(adapter->params.chip)) { 6732 s_qpp = (QUEUESPERPAGEPF0_S + 6733 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 6734 adapter->pf); 6735 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 6736 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 6737 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6738 6739 /* Each segment size is 128B. Write coalescing is enabled only 6740 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6741 * queue is less no of segments that can be accommodated in 6742 * a page size. 6743 */ 6744 if (qpp > num_seg) { 6745 dev_err(&pdev->dev, 6746 "Incorrect number of egress queues per page\n"); 6747 err = -EINVAL; 6748 goto out_free_adapter; 6749 } 6750 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6751 pci_resource_len(pdev, 2)); 6752 if (!adapter->bar2) { 6753 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6754 err = -ENOMEM; 6755 goto out_free_adapter; 6756 } 6757 } 6758 6759 setup_memwin(adapter); 6760 err = adap_init0(adapter, 0); 6761 if (err) 6762 goto out_unmap_bar; 6763 6764 setup_memwin_rdma(adapter); 6765 6766 /* configure SGE_STAT_CFG_A to read WC stats */ 6767 if (!is_t4(adapter->params.chip)) 6768 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 6769 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 6770 T6_STATMODE_V(0))); 6771 6772 /* Initialize hash mac addr list */ 6773 INIT_LIST_HEAD(&adapter->mac_hlist); 6774 6775 for_each_port(adapter, i) { 6776 /* For supporting MQPRIO Offload, need some extra 6777 * queues for each ETHOFLD TIDs. Keep it equal to 6778 * MAX_ATIDs for now. Once we connect to firmware 6779 * later and query the EOTID params, we'll come to 6780 * know the actual # of EOTIDs supported. 6781 */ 6782 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6783 MAX_ETH_QSETS + MAX_ATIDS); 6784 if (!netdev) { 6785 err = -ENOMEM; 6786 goto out_free_dev; 6787 } 6788 6789 SET_NETDEV_DEV(netdev, &pdev->dev); 6790 6791 adapter->port[i] = netdev; 6792 pi = netdev_priv(netdev); 6793 pi->adapter = adapter; 6794 pi->xact_addr_filt = -1; 6795 pi->port_id = i; 6796 netdev->irq = pdev->irq; 6797 6798 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6799 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6800 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 6801 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 6802 NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA; 6803 6804 if (chip_ver > CHELSIO_T5) { 6805 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 6806 NETIF_F_IPV6_CSUM | 6807 NETIF_F_RXCSUM | 6808 NETIF_F_GSO_UDP_TUNNEL | 6809 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6810 NETIF_F_TSO | NETIF_F_TSO6; 6811 6812 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 6813 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6814 NETIF_F_HW_TLS_RECORD; 6815 6816 if (adapter->rawf_cnt) 6817 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels; 6818 } 6819 6820 netdev->features |= netdev->hw_features; 6821 netdev->vlan_features = netdev->features & VLAN_FEAT; 6822 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6823 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) { 6824 netdev->hw_features |= NETIF_F_HW_TLS_TX; 6825 netdev->tlsdev_ops = &cxgb4_ktls_ops; 6826 /* initialize the refcount */ 6827 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0); 6828 } 6829 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6830 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6831 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) { 6832 netdev->hw_enc_features |= NETIF_F_HW_ESP; 6833 netdev->features |= NETIF_F_HW_ESP; 6834 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops; 6835 } 6836 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6837 6838 netdev->priv_flags |= IFF_UNICAST_FLT; 6839 6840 /* MTU range: 81 - 9600 */ 6841 netdev->min_mtu = 81; /* accommodate SACK */ 6842 netdev->max_mtu = MAX_MTU; 6843 6844 netdev->netdev_ops = &cxgb4_netdev_ops; 6845 #ifdef CONFIG_CHELSIO_T4_DCB 6846 netdev->dcbnl_ops = &cxgb4_dcb_ops; 6847 cxgb4_dcb_state_init(netdev); 6848 cxgb4_dcb_version_init(netdev); 6849 #endif 6850 cxgb4_set_ethtool_ops(netdev); 6851 } 6852 6853 cxgb4_init_ethtool_dump(adapter); 6854 6855 pci_set_drvdata(pdev, adapter); 6856 6857 if (adapter->flags & CXGB4_FW_OK) { 6858 err = t4_port_init(adapter, func, func, 0); 6859 if (err) 6860 goto out_free_dev; 6861 } else if (adapter->params.nports == 1) { 6862 /* If we don't have a connection to the firmware -- possibly 6863 * because of an error -- grab the raw VPD parameters so we 6864 * can set the proper MAC Address on the debug network 6865 * interface that we've created. 6866 */ 6867 u8 hw_addr[ETH_ALEN]; 6868 u8 *na = adapter->params.vpd.na; 6869 6870 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 6871 if (!err) { 6872 for (i = 0; i < ETH_ALEN; i++) 6873 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 6874 hex2val(na[2 * i + 1])); 6875 t4_set_hw_addr(adapter, 0, hw_addr); 6876 } 6877 } 6878 6879 if (!(adapter->flags & CXGB4_FW_OK)) 6880 goto fw_attach_fail; 6881 6882 /* Configure queues and allocate tables now, they can be needed as 6883 * soon as the first register_netdev completes. 6884 */ 6885 err = cfg_queues(adapter); 6886 if (err) 6887 goto out_free_dev; 6888 6889 adapter->smt = t4_init_smt(); 6890 if (!adapter->smt) { 6891 /* We tolerate a lack of SMT, giving up some functionality */ 6892 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 6893 } 6894 6895 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 6896 if (!adapter->l2t) { 6897 /* We tolerate a lack of L2T, giving up some functionality */ 6898 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6899 adapter->params.offload = 0; 6900 } 6901 6902 #if IS_ENABLED(CONFIG_IPV6) 6903 if (chip_ver <= CHELSIO_T5 && 6904 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 6905 /* CLIP functionality is not present in hardware, 6906 * hence disable all offload features 6907 */ 6908 dev_warn(&pdev->dev, 6909 "CLIP not enabled in hardware, continuing\n"); 6910 adapter->params.offload = 0; 6911 } else { 6912 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 6913 adapter->clipt_end); 6914 if (!adapter->clipt) { 6915 /* We tolerate a lack of clip_table, giving up 6916 * some functionality 6917 */ 6918 dev_warn(&pdev->dev, 6919 "could not allocate Clip table, continuing\n"); 6920 adapter->params.offload = 0; 6921 } 6922 } 6923 #endif 6924 6925 for_each_port(adapter, i) { 6926 pi = adap2pinfo(adapter, i); 6927 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 6928 if (!pi->sched_tbl) 6929 dev_warn(&pdev->dev, 6930 "could not activate scheduling on port %d\n", 6931 i); 6932 } 6933 6934 if (is_offload(adapter) || is_hashfilter(adapter)) { 6935 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6936 u32 v; 6937 6938 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A); 6939 if (chip_ver <= CHELSIO_T5) { 6940 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v); 6941 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A); 6942 adapter->tids.hash_base = v / 4; 6943 } else { 6944 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3; 6945 v = t4_read_reg(adapter, 6946 T6_LE_DB_HASH_TID_BASE_A); 6947 adapter->tids.hash_base = v; 6948 } 6949 } 6950 } 6951 6952 if (tid_init(&adapter->tids) < 0) { 6953 dev_warn(&pdev->dev, "could not allocate TID table, " 6954 "continuing\n"); 6955 adapter->params.offload = 0; 6956 } else { 6957 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6958 if (!adapter->tc_u32) 6959 dev_warn(&pdev->dev, 6960 "could not offload tc u32, continuing\n"); 6961 6962 if (cxgb4_init_tc_flower(adapter)) 6963 dev_warn(&pdev->dev, 6964 "could not offload tc flower, continuing\n"); 6965 6966 if (cxgb4_init_tc_mqprio(adapter)) 6967 dev_warn(&pdev->dev, 6968 "could not offload tc mqprio, continuing\n"); 6969 6970 if (cxgb4_init_tc_matchall(adapter)) 6971 dev_warn(&pdev->dev, 6972 "could not offload tc matchall, continuing\n"); 6973 if (cxgb4_init_ethtool_filters(adapter)) 6974 dev_warn(&pdev->dev, 6975 "could not initialize ethtool filters, continuing\n"); 6976 } 6977 6978 /* See what interrupts we'll be using */ 6979 if (msi > 1 && enable_msix(adapter) == 0) 6980 adapter->flags |= CXGB4_USING_MSIX; 6981 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 6982 adapter->flags |= CXGB4_USING_MSI; 6983 if (msi > 1) 6984 free_msix_info(adapter); 6985 } 6986 6987 /* check for PCI Express bandwidth capabiltites */ 6988 pcie_print_link_status(pdev); 6989 6990 cxgb4_init_mps_ref_entries(adapter); 6991 6992 err = init_rss(adapter); 6993 if (err) 6994 goto out_free_dev; 6995 6996 err = setup_non_data_intr(adapter); 6997 if (err) { 6998 dev_err(adapter->pdev_dev, 6999 "Non Data interrupt allocation failed, err: %d\n", err); 7000 goto out_free_dev; 7001 } 7002 7003 err = setup_fw_sge_queues(adapter); 7004 if (err) { 7005 dev_err(adapter->pdev_dev, 7006 "FW sge queue allocation failed, err %d", err); 7007 goto out_free_dev; 7008 } 7009 7010 fw_attach_fail: 7011 /* 7012 * The card is now ready to go. If any errors occur during device 7013 * registration we do not fail the whole card but rather proceed only 7014 * with the ports we manage to register successfully. However we must 7015 * register at least one net device. 7016 */ 7017 for_each_port(adapter, i) { 7018 pi = adap2pinfo(adapter, i); 7019 adapter->port[i]->dev_port = pi->lport; 7020 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 7021 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 7022 7023 netif_carrier_off(adapter->port[i]); 7024 7025 err = register_netdev(adapter->port[i]); 7026 if (err) 7027 break; 7028 adapter->chan_map[pi->tx_chan] = i; 7029 print_port_info(adapter->port[i]); 7030 } 7031 if (i == 0) { 7032 dev_err(&pdev->dev, "could not register any net devices\n"); 7033 goto out_free_dev; 7034 } 7035 if (err) { 7036 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 7037 err = 0; 7038 } 7039 7040 if (cxgb4_debugfs_root) { 7041 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 7042 cxgb4_debugfs_root); 7043 setup_debugfs(adapter); 7044 } 7045 7046 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7047 pdev->needs_freset = 1; 7048 7049 if (is_uld(adapter)) 7050 cxgb4_uld_enable(adapter); 7051 7052 if (!is_t4(adapter->params.chip)) 7053 cxgb4_ptp_init(adapter); 7054 7055 if (IS_REACHABLE(CONFIG_THERMAL) && 7056 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 7057 cxgb4_thermal_init(adapter); 7058 7059 print_adapter_info(adapter); 7060 return 0; 7061 7062 out_free_dev: 7063 t4_free_sge_resources(adapter); 7064 free_some_resources(adapter); 7065 if (adapter->flags & CXGB4_USING_MSIX) 7066 free_msix_info(adapter); 7067 if (adapter->num_uld || adapter->num_ofld_uld) 7068 t4_uld_mem_free(adapter); 7069 out_unmap_bar: 7070 if (!is_t4(adapter->params.chip)) 7071 iounmap(adapter->bar2); 7072 out_free_adapter: 7073 if (adapter->workq) 7074 destroy_workqueue(adapter->workq); 7075 7076 kfree(adapter->mbox_log); 7077 kfree(adapter); 7078 out_unmap_bar0: 7079 iounmap(regs); 7080 out_disable_device: 7081 pci_disable_device(pdev); 7082 out_release_regions: 7083 pci_release_regions(pdev); 7084 return err; 7085 } 7086 7087 static void remove_one(struct pci_dev *pdev) 7088 { 7089 struct adapter *adapter = pci_get_drvdata(pdev); 7090 struct hash_mac_addr *entry, *tmp; 7091 7092 if (!adapter) { 7093 pci_release_regions(pdev); 7094 return; 7095 } 7096 7097 /* If we allocated filters, free up state associated with any 7098 * valid filters ... 7099 */ 7100 clear_all_filters(adapter); 7101 7102 adapter->flags |= CXGB4_SHUTTING_DOWN; 7103 7104 if (adapter->pf == 4) { 7105 int i; 7106 7107 /* Tear down per-adapter Work Queue first since it can contain 7108 * references to our adapter data structure. 7109 */ 7110 destroy_workqueue(adapter->workq); 7111 7112 detach_ulds(adapter); 7113 7114 for_each_port(adapter, i) 7115 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 7116 unregister_netdev(adapter->port[i]); 7117 7118 t4_uld_clean_up(adapter); 7119 7120 adap_free_hma_mem(adapter); 7121 7122 disable_interrupts(adapter); 7123 7124 cxgb4_free_mps_ref_entries(adapter); 7125 7126 debugfs_remove_recursive(adapter->debugfs_root); 7127 7128 if (!is_t4(adapter->params.chip)) 7129 cxgb4_ptp_stop(adapter); 7130 if (IS_REACHABLE(CONFIG_THERMAL)) 7131 cxgb4_thermal_remove(adapter); 7132 7133 if (adapter->flags & CXGB4_FULL_INIT_DONE) 7134 cxgb_down(adapter); 7135 7136 if (adapter->flags & CXGB4_USING_MSIX) 7137 free_msix_info(adapter); 7138 if (adapter->num_uld || adapter->num_ofld_uld) 7139 t4_uld_mem_free(adapter); 7140 free_some_resources(adapter); 7141 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 7142 list) { 7143 list_del(&entry->list); 7144 kfree(entry); 7145 } 7146 7147 #if IS_ENABLED(CONFIG_IPV6) 7148 t4_cleanup_clip_tbl(adapter); 7149 #endif 7150 if (!is_t4(adapter->params.chip)) 7151 iounmap(adapter->bar2); 7152 } 7153 #ifdef CONFIG_PCI_IOV 7154 else { 7155 cxgb4_iov_configure(adapter->pdev, 0); 7156 } 7157 #endif 7158 iounmap(adapter->regs); 7159 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 7160 pci_disable_device(pdev); 7161 adapter->flags &= ~CXGB4_DEV_ENABLED; 7162 } 7163 pci_release_regions(pdev); 7164 kfree(adapter->mbox_log); 7165 synchronize_rcu(); 7166 kfree(adapter); 7167 } 7168 7169 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 7170 * delivery. This is essentially a stripped down version of the PCI remove() 7171 * function where we do the minimal amount of work necessary to shutdown any 7172 * further activity. 7173 */ 7174 static void shutdown_one(struct pci_dev *pdev) 7175 { 7176 struct adapter *adapter = pci_get_drvdata(pdev); 7177 7178 /* As with remove_one() above (see extended comment), we only want do 7179 * do cleanup on PCI Devices which went all the way through init_one() 7180 * ... 7181 */ 7182 if (!adapter) { 7183 pci_release_regions(pdev); 7184 return; 7185 } 7186 7187 adapter->flags |= CXGB4_SHUTTING_DOWN; 7188 7189 if (adapter->pf == 4) { 7190 int i; 7191 7192 for_each_port(adapter, i) 7193 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 7194 cxgb_close(adapter->port[i]); 7195 7196 rtnl_lock(); 7197 cxgb4_mqprio_stop_offload(adapter); 7198 rtnl_unlock(); 7199 7200 if (is_uld(adapter)) { 7201 detach_ulds(adapter); 7202 t4_uld_clean_up(adapter); 7203 } 7204 7205 disable_interrupts(adapter); 7206 disable_msi(adapter); 7207 7208 t4_sge_stop(adapter); 7209 if (adapter->flags & CXGB4_FW_OK) 7210 t4_fw_bye(adapter, adapter->mbox); 7211 } 7212 } 7213 7214 static struct pci_driver cxgb4_driver = { 7215 .name = KBUILD_MODNAME, 7216 .id_table = cxgb4_pci_tbl, 7217 .probe = init_one, 7218 .remove = remove_one, 7219 .shutdown = shutdown_one, 7220 #ifdef CONFIG_PCI_IOV 7221 .sriov_configure = cxgb4_iov_configure, 7222 #endif 7223 .err_handler = &cxgb4_eeh, 7224 }; 7225 7226 static int __init cxgb4_init_module(void) 7227 { 7228 int ret; 7229 7230 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 7231 7232 ret = pci_register_driver(&cxgb4_driver); 7233 if (ret < 0) 7234 goto err_pci; 7235 7236 #if IS_ENABLED(CONFIG_IPV6) 7237 if (!inet6addr_registered) { 7238 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 7239 if (ret) 7240 pci_unregister_driver(&cxgb4_driver); 7241 else 7242 inet6addr_registered = true; 7243 } 7244 #endif 7245 7246 if (ret == 0) 7247 return ret; 7248 7249 err_pci: 7250 debugfs_remove(cxgb4_debugfs_root); 7251 7252 return ret; 7253 } 7254 7255 static void __exit cxgb4_cleanup_module(void) 7256 { 7257 #if IS_ENABLED(CONFIG_IPV6) 7258 if (inet6addr_registered) { 7259 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 7260 inet6addr_registered = false; 7261 } 7262 #endif 7263 pci_unregister_driver(&cxgb4_driver); 7264 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 7265 } 7266 7267 module_init(cxgb4_init_module); 7268 module_exit(cxgb4_cleanup_module); 7269