xref: /linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c (revision 151ebcf0797b1a3ba53c8843dc21748c80e098c7)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <net/addrconf.h>
63 #include <net/bonding.h>
64 #include <linux/uaccess.h>
65 #include <linux/crash_dump.h>
66 #include <net/udp_tunnel.h>
67 #include <net/xfrm.h>
68 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
69 #include <net/tls.h>
70 #endif
71 
72 #include "cxgb4.h"
73 #include "cxgb4_filter.h"
74 #include "t4_regs.h"
75 #include "t4_values.h"
76 #include "t4_msg.h"
77 #include "t4fw_api.h"
78 #include "t4fw_version.h"
79 #include "cxgb4_dcb.h"
80 #include "srq.h"
81 #include "cxgb4_debugfs.h"
82 #include "clip_tbl.h"
83 #include "l2t.h"
84 #include "smt.h"
85 #include "sched.h"
86 #include "cxgb4_tc_u32.h"
87 #include "cxgb4_tc_flower.h"
88 #include "cxgb4_tc_mqprio.h"
89 #include "cxgb4_tc_matchall.h"
90 #include "cxgb4_ptp.h"
91 #include "cxgb4_cudbg.h"
92 
93 char cxgb4_driver_name[] = KBUILD_MODNAME;
94 
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96 
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100 
101 /* Macros needed to support the PCI Device ID Table ...
102  */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 	static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106 
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108 
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110  * called for both.
111  */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113 
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116 
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 		{ 0, } \
119 	}
120 
121 #include "t4_pci_id_tbl.h"
122 
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133 
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
138 MODULE_FIRMWARE(FW4_FNAME);
139 MODULE_FIRMWARE(FW5_FNAME);
140 MODULE_FIRMWARE(FW6_FNAME);
141 
142 /*
143  * The driver uses the best interrupt scheme available on a platform in the
144  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
145  * of these schemes the driver may consider as follows:
146  *
147  * msi = 2: choose from among all three options
148  * msi = 1: only consider MSI and INTx interrupts
149  * msi = 0: force INTx interrupts
150  */
151 static int msi = 2;
152 
153 module_param(msi, int, 0644);
154 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
155 
156 /*
157  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
158  * offset by 2 bytes in order to have the IP headers line up on 4-byte
159  * boundaries.  This is a requirement for many architectures which will throw
160  * a machine check fault if an attempt is made to access one of the 4-byte IP
161  * header fields on a non-4-byte boundary.  And it's a major performance issue
162  * even on some architectures which allow it like some implementations of the
163  * x86 ISA.  However, some architectures don't mind this and for some very
164  * edge-case performance sensitive applications (like forwarding large volumes
165  * of small packets), setting this DMA offset to 0 will decrease the number of
166  * PCI-E Bus transfers enough to measurably affect performance.
167  */
168 static int rx_dma_offset = 2;
169 
170 /* TX Queue select used to determine what algorithm to use for selecting TX
171  * queue. Select between the kernel provided function (select_queue=0) or user
172  * cxgb_select_queue function (select_queue=1)
173  *
174  * Default: select_queue=0
175  */
176 static int select_queue;
177 module_param(select_queue, int, 0644);
178 MODULE_PARM_DESC(select_queue,
179 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
180 
181 static struct dentry *cxgb4_debugfs_root;
182 
183 LIST_HEAD(adapter_list);
184 DEFINE_MUTEX(uld_mutex);
185 LIST_HEAD(uld_list);
186 
187 static int cfg_queues(struct adapter *adap);
188 
189 static void link_report(struct net_device *dev)
190 {
191 	if (!netif_carrier_ok(dev))
192 		netdev_info(dev, "link down\n");
193 	else {
194 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
195 
196 		const char *s;
197 		const struct port_info *p = netdev_priv(dev);
198 
199 		switch (p->link_cfg.speed) {
200 		case 100:
201 			s = "100Mbps";
202 			break;
203 		case 1000:
204 			s = "1Gbps";
205 			break;
206 		case 10000:
207 			s = "10Gbps";
208 			break;
209 		case 25000:
210 			s = "25Gbps";
211 			break;
212 		case 40000:
213 			s = "40Gbps";
214 			break;
215 		case 50000:
216 			s = "50Gbps";
217 			break;
218 		case 100000:
219 			s = "100Gbps";
220 			break;
221 		default:
222 			pr_info("%s: unsupported speed: %d\n",
223 				dev->name, p->link_cfg.speed);
224 			return;
225 		}
226 
227 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
228 			    fc[p->link_cfg.fc]);
229 	}
230 }
231 
232 #ifdef CONFIG_CHELSIO_T4_DCB
233 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
234 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
235 {
236 	struct port_info *pi = netdev_priv(dev);
237 	struct adapter *adap = pi->adapter;
238 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
239 	int i;
240 
241 	/* We use a simple mapping of Port TX Queue Index to DCB
242 	 * Priority when we're enabling DCB.
243 	 */
244 	for (i = 0; i < pi->nqsets; i++, txq++) {
245 		u32 name, value;
246 		int err;
247 
248 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
249 			FW_PARAMS_PARAM_X_V(
250 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
251 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
252 		value = enable ? i : 0xffffffff;
253 
254 		/* Since we can be called while atomic (from "interrupt
255 		 * level") we need to issue the Set Parameters Commannd
256 		 * without sleeping (timeout < 0).
257 		 */
258 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
259 					    &name, &value,
260 					    -FW_CMD_MAX_TIMEOUT);
261 
262 		if (err)
263 			dev_err(adap->pdev_dev,
264 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
265 				enable ? "set" : "unset", pi->port_id, i, -err);
266 		else
267 			txq->dcb_prio = enable ? value : 0;
268 	}
269 }
270 
271 int cxgb4_dcb_enabled(const struct net_device *dev)
272 {
273 	struct port_info *pi = netdev_priv(dev);
274 
275 	if (!pi->dcb.enabled)
276 		return 0;
277 
278 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
279 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
280 }
281 #endif /* CONFIG_CHELSIO_T4_DCB */
282 
283 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
284 {
285 	struct net_device *dev = adapter->port[port_id];
286 
287 	/* Skip changes from disabled ports. */
288 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
289 		if (link_stat)
290 			netif_carrier_on(dev);
291 		else {
292 #ifdef CONFIG_CHELSIO_T4_DCB
293 			if (cxgb4_dcb_enabled(dev)) {
294 				cxgb4_dcb_reset(dev);
295 				dcb_tx_queue_prio_enable(dev, false);
296 			}
297 #endif /* CONFIG_CHELSIO_T4_DCB */
298 			netif_carrier_off(dev);
299 		}
300 
301 		link_report(dev);
302 	}
303 }
304 
305 void t4_os_portmod_changed(struct adapter *adap, int port_id)
306 {
307 	static const char *mod_str[] = {
308 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
309 	};
310 
311 	struct net_device *dev = adap->port[port_id];
312 	struct port_info *pi = netdev_priv(dev);
313 
314 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
315 		netdev_info(dev, "port module unplugged\n");
316 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
317 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
318 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
319 		netdev_info(dev, "%s: unsupported port module inserted\n",
320 			    dev->name);
321 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
322 		netdev_info(dev, "%s: unknown port module inserted\n",
323 			    dev->name);
324 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
325 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
326 	else
327 		netdev_info(dev, "%s: unknown module type %d inserted\n",
328 			    dev->name, pi->mod_type);
329 
330 	/* If the interface is running, then we'll need any "sticky" Link
331 	 * Parameters redone with a new Transceiver Module.
332 	 */
333 	pi->link_cfg.redo_l1cfg = netif_running(dev);
334 }
335 
336 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
337 module_param(dbfifo_int_thresh, int, 0644);
338 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
339 
340 /*
341  * usecs to sleep while draining the dbfifo
342  */
343 static int dbfifo_drain_delay = 1000;
344 module_param(dbfifo_drain_delay, int, 0644);
345 MODULE_PARM_DESC(dbfifo_drain_delay,
346 		 "usecs to sleep while draining the dbfifo");
347 
348 static inline int cxgb4_set_addr_hash(struct port_info *pi)
349 {
350 	struct adapter *adap = pi->adapter;
351 	u64 vec = 0;
352 	bool ucast = false;
353 	struct hash_mac_addr *entry;
354 
355 	/* Calculate the hash vector for the updated list and program it */
356 	list_for_each_entry(entry, &adap->mac_hlist, list) {
357 		ucast |= is_unicast_ether_addr(entry->addr);
358 		vec |= (1ULL << hash_mac_addr(entry->addr));
359 	}
360 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
361 				vec, false);
362 }
363 
364 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
365 {
366 	struct port_info *pi = netdev_priv(netdev);
367 	struct adapter *adap = pi->adapter;
368 	int ret;
369 	u64 mhash = 0;
370 	u64 uhash = 0;
371 	/* idx stores the index of allocated filters,
372 	 * its size should be modified based on the number of
373 	 * MAC addresses that we allocate filters for
374 	 */
375 
376 	u16 idx[1] = {};
377 	bool free = false;
378 	bool ucast = is_unicast_ether_addr(mac_addr);
379 	const u8 *maclist[1] = {mac_addr};
380 	struct hash_mac_addr *new_entry;
381 
382 	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
383 				   idx, ucast ? &uhash : &mhash, false);
384 	if (ret < 0)
385 		goto out;
386 	/* if hash != 0, then add the addr to hash addr list
387 	 * so on the end we will calculate the hash for the
388 	 * list and program it
389 	 */
390 	if (uhash || mhash) {
391 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
392 		if (!new_entry)
393 			return -ENOMEM;
394 		ether_addr_copy(new_entry->addr, mac_addr);
395 		list_add_tail(&new_entry->list, &adap->mac_hlist);
396 		ret = cxgb4_set_addr_hash(pi);
397 	}
398 out:
399 	return ret < 0 ? ret : 0;
400 }
401 
402 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
403 {
404 	struct port_info *pi = netdev_priv(netdev);
405 	struct adapter *adap = pi->adapter;
406 	int ret;
407 	const u8 *maclist[1] = {mac_addr};
408 	struct hash_mac_addr *entry, *tmp;
409 
410 	/* If the MAC address to be removed is in the hash addr
411 	 * list, delete it from the list and update hash vector
412 	 */
413 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
414 		if (ether_addr_equal(entry->addr, mac_addr)) {
415 			list_del(&entry->list);
416 			kfree(entry);
417 			return cxgb4_set_addr_hash(pi);
418 		}
419 	}
420 
421 	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
422 	return ret < 0 ? -EINVAL : 0;
423 }
424 
425 /*
426  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
427  * If @mtu is -1 it is left unchanged.
428  */
429 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
430 {
431 	struct port_info *pi = netdev_priv(dev);
432 	struct adapter *adapter = pi->adapter;
433 
434 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436 
437 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
438 			     mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
439 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
440 			     sleep_ok);
441 }
442 
443 /**
444  *	cxgb4_change_mac - Update match filter for a MAC address.
445  *	@pi: the port_info
446  *	@viid: the VI id
447  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
448  *		   or -1
449  *	@addr: the new MAC address value
450  *	@persist: whether a new MAC allocation should be persistent
451  *	@smt_idx: the destination to store the new SMT index.
452  *
453  *	Modifies an MPS filter and sets it to the new MAC address if
454  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
455  *	@tcam_idx < 0. In the latter case the address is added persistently
456  *	if @persist is %true.
457  *	Addresses are programmed to hash region, if tcam runs out of entries.
458  *
459  */
460 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
461 		     int *tcam_idx, const u8 *addr, bool persist,
462 		     u8 *smt_idx)
463 {
464 	struct adapter *adapter = pi->adapter;
465 	struct hash_mac_addr *entry, *new_entry;
466 	int ret;
467 
468 	ret = t4_change_mac(adapter, adapter->mbox, viid,
469 			    *tcam_idx, addr, persist, smt_idx);
470 	/* We ran out of TCAM entries. try programming hash region. */
471 	if (ret == -ENOMEM) {
472 		/* If the MAC address to be updated is in the hash addr
473 		 * list, update it from the list
474 		 */
475 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
476 			if (entry->iface_mac) {
477 				ether_addr_copy(entry->addr, addr);
478 				goto set_hash;
479 			}
480 		}
481 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
482 		if (!new_entry)
483 			return -ENOMEM;
484 		ether_addr_copy(new_entry->addr, addr);
485 		new_entry->iface_mac = true;
486 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
487 set_hash:
488 		ret = cxgb4_set_addr_hash(pi);
489 	} else if (ret >= 0) {
490 		*tcam_idx = ret;
491 		ret = 0;
492 	}
493 
494 	return ret;
495 }
496 
497 /*
498  *	link_start - enable a port
499  *	@dev: the port to enable
500  *
501  *	Performs the MAC and PHY actions needed to enable a port.
502  */
503 static int link_start(struct net_device *dev)
504 {
505 	struct port_info *pi = netdev_priv(dev);
506 	unsigned int mb = pi->adapter->mbox;
507 	int ret;
508 
509 	/*
510 	 * We do not set address filters and promiscuity here, the stack does
511 	 * that step explicitly.
512 	 */
513 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
514 			    dev->mtu, -1, -1, -1,
515 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
516 	if (ret == 0)
517 		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
518 					    dev->dev_addr, true, &pi->smt_idx);
519 	if (ret == 0)
520 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
521 				    &pi->link_cfg);
522 	if (ret == 0) {
523 		local_bh_disable();
524 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
525 					  true, CXGB4_DCB_ENABLED);
526 		local_bh_enable();
527 	}
528 
529 	return ret;
530 }
531 
532 #ifdef CONFIG_CHELSIO_T4_DCB
533 /* Handle a Data Center Bridging update message from the firmware. */
534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
535 {
536 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
537 	struct net_device *dev = adap->port[adap->chan_map[port]];
538 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
539 	int new_dcb_enabled;
540 
541 	cxgb4_dcb_handle_fw_update(adap, pcmd);
542 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
543 
544 	/* If the DCB has become enabled or disabled on the port then we're
545 	 * going to need to set up/tear down DCB Priority parameters for the
546 	 * TX Queues associated with the port.
547 	 */
548 	if (new_dcb_enabled != old_dcb_enabled)
549 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
550 }
551 #endif /* CONFIG_CHELSIO_T4_DCB */
552 
553 /* Response queue handler for the FW event queue.
554  */
555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
556 			  const struct pkt_gl *gl)
557 {
558 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
559 
560 	rsp++;                                          /* skip RSS header */
561 
562 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
563 	 */
564 	if (unlikely(opcode == CPL_FW4_MSG &&
565 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
566 		rsp++;
567 		opcode = ((const struct rss_header *)rsp)->opcode;
568 		rsp++;
569 		if (opcode != CPL_SGE_EGR_UPDATE) {
570 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
571 				, opcode);
572 			goto out;
573 		}
574 	}
575 
576 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
577 		const struct cpl_sge_egr_update *p = (void *)rsp;
578 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
579 		struct sge_txq *txq;
580 
581 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
582 		txq->restarts++;
583 		if (txq->q_type == CXGB4_TXQ_ETH) {
584 			struct sge_eth_txq *eq;
585 
586 			eq = container_of(txq, struct sge_eth_txq, q);
587 			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
588 		} else {
589 			struct sge_uld_txq *oq;
590 
591 			oq = container_of(txq, struct sge_uld_txq, q);
592 			tasklet_schedule(&oq->qresume_tsk);
593 		}
594 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
595 		const struct cpl_fw6_msg *p = (void *)rsp;
596 
597 #ifdef CONFIG_CHELSIO_T4_DCB
598 		const struct fw_port_cmd *pcmd = (const void *)p->data;
599 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
600 		unsigned int action =
601 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
602 
603 		if (cmd == FW_PORT_CMD &&
604 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
605 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
606 			int port = FW_PORT_CMD_PORTID_G(
607 					be32_to_cpu(pcmd->op_to_portid));
608 			struct net_device *dev;
609 			int dcbxdis, state_input;
610 
611 			dev = q->adap->port[q->adap->chan_map[port]];
612 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
613 			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
614 			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
615 			       & FW_PORT_CMD_DCBXDIS32_F));
616 			state_input = (dcbxdis
617 				       ? CXGB4_DCB_INPUT_FW_DISABLED
618 				       : CXGB4_DCB_INPUT_FW_ENABLED);
619 
620 			cxgb4_dcb_state_fsm(dev, state_input);
621 		}
622 
623 		if (cmd == FW_PORT_CMD &&
624 		    action == FW_PORT_ACTION_L2_DCB_CFG)
625 			dcb_rpl(q->adap, pcmd);
626 		else
627 #endif
628 			if (p->type == 0)
629 				t4_handle_fw_rpl(q->adap, p->data);
630 	} else if (opcode == CPL_L2T_WRITE_RPL) {
631 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
632 
633 		do_l2t_write_rpl(q->adap, p);
634 	} else if (opcode == CPL_SMT_WRITE_RPL) {
635 		const struct cpl_smt_write_rpl *p = (void *)rsp;
636 
637 		do_smt_write_rpl(q->adap, p);
638 	} else if (opcode == CPL_SET_TCB_RPL) {
639 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
640 
641 		filter_rpl(q->adap, p);
642 	} else if (opcode == CPL_ACT_OPEN_RPL) {
643 		const struct cpl_act_open_rpl *p = (void *)rsp;
644 
645 		hash_filter_rpl(q->adap, p);
646 	} else if (opcode == CPL_ABORT_RPL_RSS) {
647 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
648 
649 		hash_del_filter_rpl(q->adap, p);
650 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
651 		const struct cpl_srq_table_rpl *p = (void *)rsp;
652 
653 		do_srq_table_rpl(q->adap, p);
654 	} else
655 		dev_err(q->adap->pdev_dev,
656 			"unexpected CPL %#x on FW event queue\n", opcode);
657 out:
658 	return 0;
659 }
660 
661 static void disable_msi(struct adapter *adapter)
662 {
663 	if (adapter->flags & CXGB4_USING_MSIX) {
664 		pci_disable_msix(adapter->pdev);
665 		adapter->flags &= ~CXGB4_USING_MSIX;
666 	} else if (adapter->flags & CXGB4_USING_MSI) {
667 		pci_disable_msi(adapter->pdev);
668 		adapter->flags &= ~CXGB4_USING_MSI;
669 	}
670 }
671 
672 /*
673  * Interrupt handler for non-data events used with MSI-X.
674  */
675 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
676 {
677 	struct adapter *adap = cookie;
678 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
679 
680 	if (v & PFSW_F) {
681 		adap->swintr = 1;
682 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
683 	}
684 	if (adap->flags & CXGB4_MASTER_PF)
685 		t4_slow_intr_handler(adap);
686 	return IRQ_HANDLED;
687 }
688 
689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
690 		       cpumask_var_t *aff_mask, int idx)
691 {
692 	int rv;
693 
694 	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
695 		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
696 		return -ENOMEM;
697 	}
698 
699 	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
700 			*aff_mask);
701 
702 	rv = irq_set_affinity_hint(vec, *aff_mask);
703 	if (rv)
704 		dev_warn(adap->pdev_dev,
705 			 "irq_set_affinity_hint %u failed %d\n",
706 			 vec, rv);
707 
708 	return 0;
709 }
710 
711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
712 {
713 	irq_set_affinity_hint(vec, NULL);
714 	free_cpumask_var(aff_mask);
715 }
716 
717 static int request_msix_queue_irqs(struct adapter *adap)
718 {
719 	struct sge *s = &adap->sge;
720 	struct msix_info *minfo;
721 	int err, ethqidx;
722 
723 	if (s->fwevtq_msix_idx < 0)
724 		return -ENOMEM;
725 
726 	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
727 			  t4_sge_intr_msix, 0,
728 			  adap->msix_info[s->fwevtq_msix_idx].desc,
729 			  &s->fw_evtq);
730 	if (err)
731 		return err;
732 
733 	for_each_ethrxq(s, ethqidx) {
734 		minfo = s->ethrxq[ethqidx].msix;
735 		err = request_irq(minfo->vec,
736 				  t4_sge_intr_msix, 0,
737 				  minfo->desc,
738 				  &s->ethrxq[ethqidx].rspq);
739 		if (err)
740 			goto unwind;
741 
742 		cxgb4_set_msix_aff(adap, minfo->vec,
743 				   &minfo->aff_mask, ethqidx);
744 	}
745 	return 0;
746 
747 unwind:
748 	while (--ethqidx >= 0) {
749 		minfo = s->ethrxq[ethqidx].msix;
750 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
751 		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
752 	}
753 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
754 	return err;
755 }
756 
757 static void free_msix_queue_irqs(struct adapter *adap)
758 {
759 	struct sge *s = &adap->sge;
760 	struct msix_info *minfo;
761 	int i;
762 
763 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
764 	for_each_ethrxq(s, i) {
765 		minfo = s->ethrxq[i].msix;
766 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
767 		free_irq(minfo->vec, &s->ethrxq[i].rspq);
768 	}
769 }
770 
771 static int setup_ppod_edram(struct adapter *adap)
772 {
773 	unsigned int param, val;
774 	int ret;
775 
776 	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
777 	 * if firmware supports ppod edram feature or not. If firmware
778 	 * returns 1, then driver can enable this feature by sending
779 	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
780 	 * enable ppod edram feature.
781 	 */
782 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
783 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
784 
785 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
786 	if (ret < 0) {
787 		dev_warn(adap->pdev_dev,
788 			 "querying PPOD_EDRAM support failed: %d\n",
789 			 ret);
790 		return -1;
791 	}
792 
793 	if (val != 1)
794 		return -1;
795 
796 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
797 	if (ret < 0) {
798 		dev_err(adap->pdev_dev,
799 			"setting PPOD_EDRAM failed: %d\n", ret);
800 		return -1;
801 	}
802 	return 0;
803 }
804 
805 static void adap_config_hpfilter(struct adapter *adapter)
806 {
807 	u32 param, val = 0;
808 	int ret;
809 
810 	/* Enable HP filter region. Older fw will fail this request and
811 	 * it is fine.
812 	 */
813 	param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
814 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
815 			    1, &param, &val);
816 
817 	/* An error means FW doesn't know about HP filter support,
818 	 * it's not a problem, don't return an error.
819 	 */
820 	if (ret < 0)
821 		dev_err(adapter->pdev_dev,
822 			"HP filter region isn't supported by FW\n");
823 }
824 
825 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
826 			    u16 rss_size, u16 viid)
827 {
828 	struct adapter *adap = pi->adapter;
829 	int ret;
830 
831 	ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
832 				  rss_size);
833 	if (ret)
834 		return ret;
835 
836 	/* If Tunnel All Lookup isn't specified in the global RSS
837 	 * Configuration, then we need to specify a default Ingress
838 	 * Queue for any ingress packets which aren't hashed.  We'll
839 	 * use our first ingress queue ...
840 	 */
841 	return t4_config_vi_rss(adap, adap->mbox, viid,
842 				FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
843 				FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
844 				FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
845 				FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
846 				FW_RSS_VI_CONFIG_CMD_UDPEN_F,
847 				rss[0]);
848 }
849 
850 /**
851  *	cxgb4_write_rss - write the RSS table for a given port
852  *	@pi: the port
853  *	@queues: array of queue indices for RSS
854  *
855  *	Sets up the portion of the HW RSS table for the port's VI to distribute
856  *	packets to the Rx queues in @queues.
857  *	Should never be called before setting up sge eth rx queues
858  */
859 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
860 {
861 	struct adapter *adapter = pi->adapter;
862 	const struct sge_eth_rxq *rxq;
863 	int i, err;
864 	u16 *rss;
865 
866 	rxq = &adapter->sge.ethrxq[pi->first_qset];
867 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
868 	if (!rss)
869 		return -ENOMEM;
870 
871 	/* map the queue indices to queue ids */
872 	for (i = 0; i < pi->rss_size; i++, queues++)
873 		rss[i] = rxq[*queues].rspq.abs_id;
874 
875 	err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
876 	kfree(rss);
877 	return err;
878 }
879 
880 /**
881  *	setup_rss - configure RSS
882  *	@adap: the adapter
883  *
884  *	Sets up RSS for each port.
885  */
886 static int setup_rss(struct adapter *adap)
887 {
888 	int i, j, err;
889 
890 	for_each_port(adap, i) {
891 		const struct port_info *pi = adap2pinfo(adap, i);
892 
893 		/* Fill default values with equal distribution */
894 		for (j = 0; j < pi->rss_size; j++)
895 			pi->rss[j] = j % pi->nqsets;
896 
897 		err = cxgb4_write_rss(pi, pi->rss);
898 		if (err)
899 			return err;
900 	}
901 	return 0;
902 }
903 
904 /*
905  * Return the channel of the ingress queue with the given qid.
906  */
907 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
908 {
909 	qid -= p->ingr_start;
910 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
911 }
912 
913 void cxgb4_quiesce_rx(struct sge_rspq *q)
914 {
915 	if (q->handler)
916 		napi_disable(&q->napi);
917 }
918 
919 /*
920  * Wait until all NAPI handlers are descheduled.
921  */
922 static void quiesce_rx(struct adapter *adap)
923 {
924 	int i;
925 
926 	for (i = 0; i < adap->sge.ingr_sz; i++) {
927 		struct sge_rspq *q = adap->sge.ingr_map[i];
928 
929 		if (!q)
930 			continue;
931 
932 		cxgb4_quiesce_rx(q);
933 	}
934 }
935 
936 /* Disable interrupt and napi handler */
937 static void disable_interrupts(struct adapter *adap)
938 {
939 	struct sge *s = &adap->sge;
940 
941 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
942 		t4_intr_disable(adap);
943 		if (adap->flags & CXGB4_USING_MSIX) {
944 			free_msix_queue_irqs(adap);
945 			free_irq(adap->msix_info[s->nd_msix_idx].vec,
946 				 adap);
947 		} else {
948 			free_irq(adap->pdev->irq, adap);
949 		}
950 		quiesce_rx(adap);
951 	}
952 }
953 
954 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
955 {
956 	if (q->handler)
957 		napi_enable(&q->napi);
958 
959 	/* 0-increment GTS to start the timer and enable interrupts */
960 	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
961 		     SEINTARM_V(q->intr_params) |
962 		     INGRESSQID_V(q->cntxt_id));
963 }
964 
965 /*
966  * Enable NAPI scheduling and interrupt generation for all Rx queues.
967  */
968 static void enable_rx(struct adapter *adap)
969 {
970 	int i;
971 
972 	for (i = 0; i < adap->sge.ingr_sz; i++) {
973 		struct sge_rspq *q = adap->sge.ingr_map[i];
974 
975 		if (!q)
976 			continue;
977 
978 		cxgb4_enable_rx(adap, q);
979 	}
980 }
981 
982 static int setup_non_data_intr(struct adapter *adap)
983 {
984 	int msix;
985 
986 	adap->sge.nd_msix_idx = -1;
987 	if (!(adap->flags & CXGB4_USING_MSIX))
988 		return 0;
989 
990 	/* Request MSI-X vector for non-data interrupt */
991 	msix = cxgb4_get_msix_idx_from_bmap(adap);
992 	if (msix < 0)
993 		return -ENOMEM;
994 
995 	snprintf(adap->msix_info[msix].desc,
996 		 sizeof(adap->msix_info[msix].desc),
997 		 "%s", adap->port[0]->name);
998 
999 	adap->sge.nd_msix_idx = msix;
1000 	return 0;
1001 }
1002 
1003 static int setup_fw_sge_queues(struct adapter *adap)
1004 {
1005 	struct sge *s = &adap->sge;
1006 	int msix, err = 0;
1007 
1008 	bitmap_zero(s->starving_fl, s->egr_sz);
1009 	bitmap_zero(s->txq_maperr, s->egr_sz);
1010 
1011 	if (adap->flags & CXGB4_USING_MSIX) {
1012 		s->fwevtq_msix_idx = -1;
1013 		msix = cxgb4_get_msix_idx_from_bmap(adap);
1014 		if (msix < 0)
1015 			return -ENOMEM;
1016 
1017 		snprintf(adap->msix_info[msix].desc,
1018 			 sizeof(adap->msix_info[msix].desc),
1019 			 "%s-FWeventq", adap->port[0]->name);
1020 	} else {
1021 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1022 				       NULL, NULL, NULL, -1);
1023 		if (err)
1024 			return err;
1025 		msix = -((int)s->intrq.abs_id + 1);
1026 	}
1027 
1028 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029 			       msix, NULL, fwevtq_handler, NULL, -1);
1030 	if (err && msix >= 0)
1031 		cxgb4_free_msix_idx_in_bmap(adap, msix);
1032 
1033 	s->fwevtq_msix_idx = msix;
1034 	return err;
1035 }
1036 
1037 /**
1038  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1039  *	@adap: the adapter
1040  *
1041  *	Determines how many sets of SGE queues to use and initializes them.
1042  *	We support multiple queue sets per port if we have MSI-X, otherwise
1043  *	just one queue set per port.
1044  */
1045 static int setup_sge_queues(struct adapter *adap)
1046 {
1047 	struct sge_uld_rxq_info *rxq_info = NULL;
1048 	struct sge *s = &adap->sge;
1049 	unsigned int cmplqid = 0;
1050 	int err, i, j, msix = 0;
1051 
1052 	if (is_uld(adap))
1053 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1054 
1055 	if (!(adap->flags & CXGB4_USING_MSIX))
1056 		msix = -((int)s->intrq.abs_id + 1);
1057 
1058 	for_each_port(adap, i) {
1059 		struct net_device *dev = adap->port[i];
1060 		struct port_info *pi = netdev_priv(dev);
1061 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1062 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1063 
1064 		for (j = 0; j < pi->nqsets; j++, q++) {
1065 			if (msix >= 0) {
1066 				msix = cxgb4_get_msix_idx_from_bmap(adap);
1067 				if (msix < 0) {
1068 					err = msix;
1069 					goto freeout;
1070 				}
1071 
1072 				snprintf(adap->msix_info[msix].desc,
1073 					 sizeof(adap->msix_info[msix].desc),
1074 					 "%s-Rx%d", dev->name, j);
1075 				q->msix = &adap->msix_info[msix];
1076 			}
1077 
1078 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1079 					       msix, &q->fl,
1080 					       t4_ethrx_handler,
1081 					       NULL,
1082 					       t4_get_tp_ch_map(adap,
1083 								pi->tx_chan));
1084 			if (err)
1085 				goto freeout;
1086 			q->rspq.idx = j;
1087 			memset(&q->stats, 0, sizeof(q->stats));
1088 		}
1089 
1090 		q = &s->ethrxq[pi->first_qset];
1091 		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1092 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1093 					netdev_get_tx_queue(dev, j),
1094 					q->rspq.cntxt_id,
1095 					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1096 			if (err)
1097 				goto freeout;
1098 		}
1099 	}
1100 
1101 	for_each_port(adap, i) {
1102 		/* Note that cmplqid below is 0 if we don't
1103 		 * have RDMA queues, and that's the right value.
1104 		 */
1105 		if (rxq_info)
1106 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1107 
1108 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1109 					    s->fw_evtq.cntxt_id, cmplqid);
1110 		if (err)
1111 			goto freeout;
1112 	}
1113 
1114 	if (!is_t4(adap->params.chip)) {
1115 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1116 					   netdev_get_tx_queue(adap->port[0], 0)
1117 					   , s->fw_evtq.cntxt_id, false);
1118 		if (err)
1119 			goto freeout;
1120 	}
1121 
1122 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1123 				MPS_TRC_RSS_CONTROL_A :
1124 				MPS_T5_TRC_RSS_CONTROL_A,
1125 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1126 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1127 	return 0;
1128 freeout:
1129 	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1130 	t4_free_sge_resources(adap);
1131 	return err;
1132 }
1133 
1134 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1135 			     struct net_device *sb_dev)
1136 {
1137 	int txq;
1138 
1139 #ifdef CONFIG_CHELSIO_T4_DCB
1140 	/* If a Data Center Bridging has been successfully negotiated on this
1141 	 * link then we'll use the skb's priority to map it to a TX Queue.
1142 	 * The skb's priority is determined via the VLAN Tag Priority Code
1143 	 * Point field.
1144 	 */
1145 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1146 		u16 vlan_tci;
1147 		int err;
1148 
1149 		err = vlan_get_tag(skb, &vlan_tci);
1150 		if (unlikely(err)) {
1151 			if (net_ratelimit())
1152 				netdev_warn(dev,
1153 					    "TX Packet without VLAN Tag on DCB Link\n");
1154 			txq = 0;
1155 		} else {
1156 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1157 #ifdef CONFIG_CHELSIO_T4_FCOE
1158 			if (skb->protocol == htons(ETH_P_FCOE))
1159 				txq = skb->priority & 0x7;
1160 #endif /* CONFIG_CHELSIO_T4_FCOE */
1161 		}
1162 		return txq;
1163 	}
1164 #endif /* CONFIG_CHELSIO_T4_DCB */
1165 
1166 	if (dev->num_tc) {
1167 		struct port_info *pi = netdev2pinfo(dev);
1168 		u8 ver, proto;
1169 
1170 		ver = ip_hdr(skb)->version;
1171 		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1172 				     ip_hdr(skb)->protocol;
1173 
1174 		/* Send unsupported traffic pattern to normal NIC queues. */
1175 		txq = netdev_pick_tx(dev, skb, sb_dev);
1176 		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1177 		    skb->encapsulation ||
1178 		    tls_is_skb_tx_device_offloaded(skb) ||
1179 		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180 			txq = txq % pi->nqsets;
1181 
1182 		return txq;
1183 	}
1184 
1185 	if (select_queue) {
1186 		txq = (skb_rx_queue_recorded(skb)
1187 			? skb_get_rx_queue(skb)
1188 			: smp_processor_id());
1189 
1190 		while (unlikely(txq >= dev->real_num_tx_queues))
1191 			txq -= dev->real_num_tx_queues;
1192 
1193 		return txq;
1194 	}
1195 
1196 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197 }
1198 
1199 static int closest_timer(const struct sge *s, int time)
1200 {
1201 	int i, delta, match = 0, min_delta = INT_MAX;
1202 
1203 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204 		delta = time - s->timer_val[i];
1205 		if (delta < 0)
1206 			delta = -delta;
1207 		if (delta < min_delta) {
1208 			min_delta = delta;
1209 			match = i;
1210 		}
1211 	}
1212 	return match;
1213 }
1214 
1215 static int closest_thres(const struct sge *s, int thres)
1216 {
1217 	int i, delta, match = 0, min_delta = INT_MAX;
1218 
1219 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220 		delta = thres - s->counter_val[i];
1221 		if (delta < 0)
1222 			delta = -delta;
1223 		if (delta < min_delta) {
1224 			min_delta = delta;
1225 			match = i;
1226 		}
1227 	}
1228 	return match;
1229 }
1230 
1231 /**
1232  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233  *	@q: the Rx queue
1234  *	@us: the hold-off time in us, or 0 to disable timer
1235  *	@cnt: the hold-off packet count, or 0 to disable counter
1236  *
1237  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1238  *	one of the two needs to be enabled for the queue to generate interrupts.
1239  */
1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241 			       unsigned int us, unsigned int cnt)
1242 {
1243 	struct adapter *adap = q->adap;
1244 
1245 	if ((us | cnt) == 0)
1246 		cnt = 1;
1247 
1248 	if (cnt) {
1249 		int err;
1250 		u32 v, new_idx;
1251 
1252 		new_idx = closest_thres(&adap->sge, cnt);
1253 		if (q->desc && q->pktcnt_idx != new_idx) {
1254 			/* the queue has already been created, update it */
1255 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256 			    FW_PARAMS_PARAM_X_V(
1257 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260 					    &v, &new_idx);
1261 			if (err)
1262 				return err;
1263 		}
1264 		q->pktcnt_idx = new_idx;
1265 	}
1266 
1267 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269 	return 0;
1270 }
1271 
1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273 {
1274 	netdev_features_t changed = dev->features ^ features;
1275 	const struct port_info *pi = netdev_priv(dev);
1276 	int err;
1277 
1278 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279 		return 0;
1280 
1281 	err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282 			    pi->viid_mirror, -1, -1, -1, -1,
1283 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284 	if (unlikely(err))
1285 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286 	return err;
1287 }
1288 
1289 static int setup_debugfs(struct adapter *adap)
1290 {
1291 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1292 		return -1;
1293 
1294 #ifdef CONFIG_DEBUG_FS
1295 	t4_setup_debugfs(adap);
1296 #endif
1297 	return 0;
1298 }
1299 
1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301 				       struct sge_eth_rxq *mirror_rxq)
1302 {
1303 	if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304 	    !(adap->flags & CXGB4_SHUTTING_DOWN))
1305 		cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306 
1307 	if (adap->flags & CXGB4_USING_MSIX) {
1308 		cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309 				     mirror_rxq->msix->aff_mask);
1310 		free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311 		cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312 	}
1313 
1314 	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315 }
1316 
1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318 {
1319 	struct port_info *pi = netdev2pinfo(dev);
1320 	struct adapter *adap = netdev2adap(dev);
1321 	struct sge_eth_rxq *mirror_rxq;
1322 	struct sge *s = &adap->sge;
1323 	int ret = 0, msix = 0;
1324 	u16 i, rxqid;
1325 	u16 *rss;
1326 
1327 	if (!pi->vi_mirror_count)
1328 		return 0;
1329 
1330 	if (s->mirror_rxq[pi->port_id])
1331 		return 0;
1332 
1333 	mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334 	if (!mirror_rxq)
1335 		return -ENOMEM;
1336 
1337 	s->mirror_rxq[pi->port_id] = mirror_rxq;
1338 
1339 	if (!(adap->flags & CXGB4_USING_MSIX))
1340 		msix = -((int)adap->sge.intrq.abs_id + 1);
1341 
1342 	for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343 		mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344 
1345 		/* Allocate Mirror Rxqs */
1346 		if (msix >= 0) {
1347 			msix = cxgb4_get_msix_idx_from_bmap(adap);
1348 			if (msix < 0) {
1349 				ret = msix;
1350 				goto out_free_queues;
1351 			}
1352 
1353 			mirror_rxq->msix = &adap->msix_info[msix];
1354 			snprintf(mirror_rxq->msix->desc,
1355 				 sizeof(mirror_rxq->msix->desc),
1356 				 "%s-mirrorrxq%d", dev->name, i);
1357 		}
1358 
1359 		init_rspq(adap, &mirror_rxq->rspq,
1360 			  CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361 			  CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362 			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363 			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364 
1365 		mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366 
1367 		ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368 				       dev, msix, &mirror_rxq->fl,
1369 				       t4_ethrx_handler, NULL, 0);
1370 		if (ret)
1371 			goto out_free_msix_idx;
1372 
1373 		/* Setup MSI-X vectors for Mirror Rxqs */
1374 		if (adap->flags & CXGB4_USING_MSIX) {
1375 			ret = request_irq(mirror_rxq->msix->vec,
1376 					  t4_sge_intr_msix, 0,
1377 					  mirror_rxq->msix->desc,
1378 					  &mirror_rxq->rspq);
1379 			if (ret)
1380 				goto out_free_rxq;
1381 
1382 			cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383 					   &mirror_rxq->msix->aff_mask, i);
1384 		}
1385 
1386 		/* Start NAPI for Mirror Rxqs */
1387 		cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388 	}
1389 
1390 	/* Setup RSS for Mirror Rxqs */
1391 	rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392 	if (!rss) {
1393 		ret = -ENOMEM;
1394 		goto out_free_queues;
1395 	}
1396 
1397 	mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398 	for (i = 0; i < pi->rss_size; i++)
1399 		rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400 
1401 	ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402 	kfree(rss);
1403 	if (ret)
1404 		goto out_free_queues;
1405 
1406 	return 0;
1407 
1408 out_free_rxq:
1409 	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410 
1411 out_free_msix_idx:
1412 	cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413 
1414 out_free_queues:
1415 	while (rxqid-- > 0)
1416 		cxgb4_port_mirror_free_rxq(adap,
1417 					   &s->mirror_rxq[pi->port_id][rxqid]);
1418 
1419 	kfree(s->mirror_rxq[pi->port_id]);
1420 	s->mirror_rxq[pi->port_id] = NULL;
1421 	return ret;
1422 }
1423 
1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425 {
1426 	struct port_info *pi = netdev2pinfo(dev);
1427 	struct adapter *adap = netdev2adap(dev);
1428 	struct sge *s = &adap->sge;
1429 	u16 i;
1430 
1431 	if (!pi->vi_mirror_count)
1432 		return;
1433 
1434 	if (!s->mirror_rxq[pi->port_id])
1435 		return;
1436 
1437 	for (i = 0; i < pi->nmirrorqsets; i++)
1438 		cxgb4_port_mirror_free_rxq(adap,
1439 					   &s->mirror_rxq[pi->port_id][i]);
1440 
1441 	kfree(s->mirror_rxq[pi->port_id]);
1442 	s->mirror_rxq[pi->port_id] = NULL;
1443 }
1444 
1445 static int cxgb4_port_mirror_start(struct net_device *dev)
1446 {
1447 	struct port_info *pi = netdev2pinfo(dev);
1448 	struct adapter *adap = netdev2adap(dev);
1449 	int ret, idx = -1;
1450 
1451 	if (!pi->vi_mirror_count)
1452 		return 0;
1453 
1454 	/* Mirror VIs can be created dynamically after stack had
1455 	 * already setup Rx modes like MTU, promisc, allmulti, etc.
1456 	 * on main VI. So, parse what the stack had setup on the
1457 	 * main VI and update the same on the mirror VI.
1458 	 */
1459 	ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460 			    dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461 			    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463 	if (ret) {
1464 		dev_err(adap->pdev_dev,
1465 			"Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466 			pi->viid_mirror, ret);
1467 		return ret;
1468 	}
1469 
1470 	/* Enable replication bit for the device's MAC address
1471 	 * in MPS TCAM, so that the packets for the main VI are
1472 	 * replicated to mirror VI.
1473 	 */
1474 	ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475 				    dev->dev_addr, true, NULL);
1476 	if (ret) {
1477 		dev_err(adap->pdev_dev,
1478 			"Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479 			pi->viid_mirror, ret);
1480 		return ret;
1481 	}
1482 
1483 	/* Enabling a Virtual Interface can result in an interrupt
1484 	 * during the processing of the VI Enable command and, in some
1485 	 * paths, result in an attempt to issue another command in the
1486 	 * interrupt context. Thus, we disable interrupts during the
1487 	 * course of the VI Enable command ...
1488 	 */
1489 	local_bh_disable();
1490 	ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491 				  false);
1492 	local_bh_enable();
1493 	if (ret)
1494 		dev_err(adap->pdev_dev,
1495 			"Failed starting Mirror VI 0x%x, ret: %d\n",
1496 			pi->viid_mirror, ret);
1497 
1498 	return ret;
1499 }
1500 
1501 static void cxgb4_port_mirror_stop(struct net_device *dev)
1502 {
1503 	struct port_info *pi = netdev2pinfo(dev);
1504 	struct adapter *adap = netdev2adap(dev);
1505 
1506 	if (!pi->vi_mirror_count)
1507 		return;
1508 
1509 	t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510 			    false);
1511 }
1512 
1513 int cxgb4_port_mirror_alloc(struct net_device *dev)
1514 {
1515 	struct port_info *pi = netdev2pinfo(dev);
1516 	struct adapter *adap = netdev2adap(dev);
1517 	int ret = 0;
1518 
1519 	if (!pi->nmirrorqsets)
1520 		return -EOPNOTSUPP;
1521 
1522 	mutex_lock(&pi->vi_mirror_mutex);
1523 	if (pi->viid_mirror) {
1524 		pi->vi_mirror_count++;
1525 		goto out_unlock;
1526 	}
1527 
1528 	ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529 				  &pi->viid_mirror);
1530 	if (ret)
1531 		goto out_unlock;
1532 
1533 	pi->vi_mirror_count = 1;
1534 
1535 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536 		ret = cxgb4_port_mirror_alloc_queues(dev);
1537 		if (ret)
1538 			goto out_free_vi;
1539 
1540 		ret = cxgb4_port_mirror_start(dev);
1541 		if (ret)
1542 			goto out_free_queues;
1543 	}
1544 
1545 	mutex_unlock(&pi->vi_mirror_mutex);
1546 	return 0;
1547 
1548 out_free_queues:
1549 	cxgb4_port_mirror_free_queues(dev);
1550 
1551 out_free_vi:
1552 	pi->vi_mirror_count = 0;
1553 	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554 	pi->viid_mirror = 0;
1555 
1556 out_unlock:
1557 	mutex_unlock(&pi->vi_mirror_mutex);
1558 	return ret;
1559 }
1560 
1561 void cxgb4_port_mirror_free(struct net_device *dev)
1562 {
1563 	struct port_info *pi = netdev2pinfo(dev);
1564 	struct adapter *adap = netdev2adap(dev);
1565 
1566 	mutex_lock(&pi->vi_mirror_mutex);
1567 	if (!pi->viid_mirror)
1568 		goto out_unlock;
1569 
1570 	if (pi->vi_mirror_count > 1) {
1571 		pi->vi_mirror_count--;
1572 		goto out_unlock;
1573 	}
1574 
1575 	cxgb4_port_mirror_stop(dev);
1576 	cxgb4_port_mirror_free_queues(dev);
1577 
1578 	pi->vi_mirror_count = 0;
1579 	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580 	pi->viid_mirror = 0;
1581 
1582 out_unlock:
1583 	mutex_unlock(&pi->vi_mirror_mutex);
1584 }
1585 
1586 /*
1587  * upper-layer driver support
1588  */
1589 
1590 /*
1591  * Allocate an active-open TID and set it to the supplied value.
1592  */
1593 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594 {
1595 	int atid = -1;
1596 
1597 	spin_lock_bh(&t->atid_lock);
1598 	if (t->afree) {
1599 		union aopen_entry *p = t->afree;
1600 
1601 		atid = (p - t->atid_tab) + t->atid_base;
1602 		t->afree = p->next;
1603 		p->data = data;
1604 		t->atids_in_use++;
1605 	}
1606 	spin_unlock_bh(&t->atid_lock);
1607 	return atid;
1608 }
1609 EXPORT_SYMBOL(cxgb4_alloc_atid);
1610 
1611 /*
1612  * Release an active-open TID.
1613  */
1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615 {
1616 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617 
1618 	spin_lock_bh(&t->atid_lock);
1619 	p->next = t->afree;
1620 	t->afree = p;
1621 	t->atids_in_use--;
1622 	spin_unlock_bh(&t->atid_lock);
1623 }
1624 EXPORT_SYMBOL(cxgb4_free_atid);
1625 
1626 /*
1627  * Allocate a server TID and set it to the supplied value.
1628  */
1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630 {
1631 	int stid;
1632 
1633 	spin_lock_bh(&t->stid_lock);
1634 	if (family == PF_INET) {
1635 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636 		if (stid < t->nstids)
1637 			__set_bit(stid, t->stid_bmap);
1638 		else
1639 			stid = -1;
1640 	} else {
1641 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642 		if (stid < 0)
1643 			stid = -1;
1644 	}
1645 	if (stid >= 0) {
1646 		t->stid_tab[stid].data = data;
1647 		stid += t->stid_base;
1648 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1649 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1650 		 * needs 2 TIDs.
1651 		 */
1652 		if (family == PF_INET6) {
1653 			t->stids_in_use += 2;
1654 			t->v6_stids_in_use += 2;
1655 		} else {
1656 			t->stids_in_use++;
1657 		}
1658 	}
1659 	spin_unlock_bh(&t->stid_lock);
1660 	return stid;
1661 }
1662 EXPORT_SYMBOL(cxgb4_alloc_stid);
1663 
1664 /* Allocate a server filter TID and set it to the supplied value.
1665  */
1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667 {
1668 	int stid;
1669 
1670 	spin_lock_bh(&t->stid_lock);
1671 	if (family == PF_INET) {
1672 		stid = find_next_zero_bit(t->stid_bmap,
1673 				t->nstids + t->nsftids, t->nstids);
1674 		if (stid < (t->nstids + t->nsftids))
1675 			__set_bit(stid, t->stid_bmap);
1676 		else
1677 			stid = -1;
1678 	} else {
1679 		stid = -1;
1680 	}
1681 	if (stid >= 0) {
1682 		t->stid_tab[stid].data = data;
1683 		stid -= t->nstids;
1684 		stid += t->sftid_base;
1685 		t->sftids_in_use++;
1686 	}
1687 	spin_unlock_bh(&t->stid_lock);
1688 	return stid;
1689 }
1690 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691 
1692 /* Release a server TID.
1693  */
1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695 {
1696 	/* Is it a server filter TID? */
1697 	if (t->nsftids && (stid >= t->sftid_base)) {
1698 		stid -= t->sftid_base;
1699 		stid += t->nstids;
1700 	} else {
1701 		stid -= t->stid_base;
1702 	}
1703 
1704 	spin_lock_bh(&t->stid_lock);
1705 	if (family == PF_INET)
1706 		__clear_bit(stid, t->stid_bmap);
1707 	else
1708 		bitmap_release_region(t->stid_bmap, stid, 1);
1709 	t->stid_tab[stid].data = NULL;
1710 	if (stid < t->nstids) {
1711 		if (family == PF_INET6) {
1712 			t->stids_in_use -= 2;
1713 			t->v6_stids_in_use -= 2;
1714 		} else {
1715 			t->stids_in_use--;
1716 		}
1717 	} else {
1718 		t->sftids_in_use--;
1719 	}
1720 
1721 	spin_unlock_bh(&t->stid_lock);
1722 }
1723 EXPORT_SYMBOL(cxgb4_free_stid);
1724 
1725 /*
1726  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1727  */
1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729 			   unsigned int tid)
1730 {
1731 	struct cpl_tid_release *req;
1732 
1733 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734 	req = __skb_put(skb, sizeof(*req));
1735 	INIT_TP_WR(req, tid);
1736 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737 }
1738 
1739 /*
1740  * Queue a TID release request and if necessary schedule a work queue to
1741  * process it.
1742  */
1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744 				    unsigned int tid)
1745 {
1746 	struct adapter *adap = container_of(t, struct adapter, tids);
1747 	void **p = &t->tid_tab[tid - t->tid_base];
1748 
1749 	spin_lock_bh(&adap->tid_release_lock);
1750 	*p = adap->tid_release_head;
1751 	/* Low 2 bits encode the Tx channel number */
1752 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753 	if (!adap->tid_release_task_busy) {
1754 		adap->tid_release_task_busy = true;
1755 		queue_work(adap->workq, &adap->tid_release_task);
1756 	}
1757 	spin_unlock_bh(&adap->tid_release_lock);
1758 }
1759 
1760 /*
1761  * Process the list of pending TID release requests.
1762  */
1763 static void process_tid_release_list(struct work_struct *work)
1764 {
1765 	struct sk_buff *skb;
1766 	struct adapter *adap;
1767 
1768 	adap = container_of(work, struct adapter, tid_release_task);
1769 
1770 	spin_lock_bh(&adap->tid_release_lock);
1771 	while (adap->tid_release_head) {
1772 		void **p = adap->tid_release_head;
1773 		unsigned int chan = (uintptr_t)p & 3;
1774 		p = (void *)p - chan;
1775 
1776 		adap->tid_release_head = *p;
1777 		*p = NULL;
1778 		spin_unlock_bh(&adap->tid_release_lock);
1779 
1780 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781 					 GFP_KERNEL)))
1782 			schedule_timeout_uninterruptible(1);
1783 
1784 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785 		t4_ofld_send(adap, skb);
1786 		spin_lock_bh(&adap->tid_release_lock);
1787 	}
1788 	adap->tid_release_task_busy = false;
1789 	spin_unlock_bh(&adap->tid_release_lock);
1790 }
1791 
1792 /*
1793  * Release a TID and inform HW.  If we are unable to allocate the release
1794  * message we defer to a work queue.
1795  */
1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797 		      unsigned short family)
1798 {
1799 	struct adapter *adap = container_of(t, struct adapter, tids);
1800 	struct sk_buff *skb;
1801 
1802 	WARN_ON(tid_out_of_range(&adap->tids, tid));
1803 
1804 	if (t->tid_tab[tid - adap->tids.tid_base]) {
1805 		t->tid_tab[tid - adap->tids.tid_base] = NULL;
1806 		atomic_dec(&t->conns_in_use);
1807 		if (t->hash_base && (tid >= t->hash_base)) {
1808 			if (family == AF_INET6)
1809 				atomic_sub(2, &t->hash_tids_in_use);
1810 			else
1811 				atomic_dec(&t->hash_tids_in_use);
1812 		} else {
1813 			if (family == AF_INET6)
1814 				atomic_sub(2, &t->tids_in_use);
1815 			else
1816 				atomic_dec(&t->tids_in_use);
1817 		}
1818 	}
1819 
1820 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1821 	if (likely(skb)) {
1822 		mk_tid_release(skb, chan, tid);
1823 		t4_ofld_send(adap, skb);
1824 	} else
1825 		cxgb4_queue_tid_release(t, chan, tid);
1826 }
1827 EXPORT_SYMBOL(cxgb4_remove_tid);
1828 
1829 /*
1830  * Allocate and initialize the TID tables.  Returns 0 on success.
1831  */
1832 static int tid_init(struct tid_info *t)
1833 {
1834 	struct adapter *adap = container_of(t, struct adapter, tids);
1835 	unsigned int max_ftids = t->nftids + t->nsftids;
1836 	unsigned int natids = t->natids;
1837 	unsigned int hpftid_bmap_size;
1838 	unsigned int eotid_bmap_size;
1839 	unsigned int stid_bmap_size;
1840 	unsigned int ftid_bmap_size;
1841 	size_t size;
1842 
1843 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1844 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1845 	hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1846 	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1847 	size = t->ntids * sizeof(*t->tid_tab) +
1848 	       natids * sizeof(*t->atid_tab) +
1849 	       t->nstids * sizeof(*t->stid_tab) +
1850 	       t->nsftids * sizeof(*t->stid_tab) +
1851 	       stid_bmap_size * sizeof(long) +
1852 	       t->nhpftids * sizeof(*t->hpftid_tab) +
1853 	       hpftid_bmap_size * sizeof(long) +
1854 	       max_ftids * sizeof(*t->ftid_tab) +
1855 	       ftid_bmap_size * sizeof(long) +
1856 	       t->neotids * sizeof(*t->eotid_tab) +
1857 	       eotid_bmap_size * sizeof(long);
1858 
1859 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1860 	if (!t->tid_tab)
1861 		return -ENOMEM;
1862 
1863 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1864 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1865 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1866 	t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1867 	t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1868 	t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1869 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1870 	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1871 	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1872 	spin_lock_init(&t->stid_lock);
1873 	spin_lock_init(&t->atid_lock);
1874 	spin_lock_init(&t->ftid_lock);
1875 
1876 	t->stids_in_use = 0;
1877 	t->v6_stids_in_use = 0;
1878 	t->sftids_in_use = 0;
1879 	t->afree = NULL;
1880 	t->atids_in_use = 0;
1881 	atomic_set(&t->tids_in_use, 0);
1882 	atomic_set(&t->conns_in_use, 0);
1883 	atomic_set(&t->hash_tids_in_use, 0);
1884 	atomic_set(&t->eotids_in_use, 0);
1885 
1886 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1887 	if (natids) {
1888 		while (--natids)
1889 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1890 		t->afree = t->atid_tab;
1891 	}
1892 
1893 	if (is_offload(adap)) {
1894 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1895 		/* Reserve stid 0 for T4/T5 adapters */
1896 		if (!t->stid_base &&
1897 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1898 			__set_bit(0, t->stid_bmap);
1899 
1900 		if (t->neotids)
1901 			bitmap_zero(t->eotid_bmap, t->neotids);
1902 	}
1903 
1904 	if (t->nhpftids)
1905 		bitmap_zero(t->hpftid_bmap, t->nhpftids);
1906 	bitmap_zero(t->ftid_bmap, t->nftids);
1907 	return 0;
1908 }
1909 
1910 /**
1911  *	cxgb4_create_server - create an IP server
1912  *	@dev: the device
1913  *	@stid: the server TID
1914  *	@sip: local IP address to bind server to
1915  *	@sport: the server's TCP port
1916  *	@vlan: the VLAN header information
1917  *	@queue: queue to direct messages from this server to
1918  *
1919  *	Create an IP server for the given port and address.
1920  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1921  */
1922 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1923 			__be32 sip, __be16 sport, __be16 vlan,
1924 			unsigned int queue)
1925 {
1926 	unsigned int chan;
1927 	struct sk_buff *skb;
1928 	struct adapter *adap;
1929 	struct cpl_pass_open_req *req;
1930 	int ret;
1931 
1932 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1933 	if (!skb)
1934 		return -ENOMEM;
1935 
1936 	adap = netdev2adap(dev);
1937 	req = __skb_put(skb, sizeof(*req));
1938 	INIT_TP_WR(req, 0);
1939 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1940 	req->local_port = sport;
1941 	req->peer_port = htons(0);
1942 	req->local_ip = sip;
1943 	req->peer_ip = htonl(0);
1944 	chan = rxq_to_chan(&adap->sge, queue);
1945 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1946 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1947 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1948 	ret = t4_mgmt_tx(adap, skb);
1949 	return net_xmit_eval(ret);
1950 }
1951 EXPORT_SYMBOL(cxgb4_create_server);
1952 
1953 /*	cxgb4_create_server6 - create an IPv6 server
1954  *	@dev: the device
1955  *	@stid: the server TID
1956  *	@sip: local IPv6 address to bind server to
1957  *	@sport: the server's TCP port
1958  *	@queue: queue to direct messages from this server to
1959  *
1960  *	Create an IPv6 server for the given port and address.
1961  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1962  */
1963 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1964 			 const struct in6_addr *sip, __be16 sport,
1965 			 unsigned int queue)
1966 {
1967 	unsigned int chan;
1968 	struct sk_buff *skb;
1969 	struct adapter *adap;
1970 	struct cpl_pass_open_req6 *req;
1971 	int ret;
1972 
1973 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1974 	if (!skb)
1975 		return -ENOMEM;
1976 
1977 	adap = netdev2adap(dev);
1978 	req = __skb_put(skb, sizeof(*req));
1979 	INIT_TP_WR(req, 0);
1980 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1981 	req->local_port = sport;
1982 	req->peer_port = htons(0);
1983 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1984 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1985 	req->peer_ip_hi = cpu_to_be64(0);
1986 	req->peer_ip_lo = cpu_to_be64(0);
1987 	chan = rxq_to_chan(&adap->sge, queue);
1988 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1989 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1990 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1991 	ret = t4_mgmt_tx(adap, skb);
1992 	return net_xmit_eval(ret);
1993 }
1994 EXPORT_SYMBOL(cxgb4_create_server6);
1995 
1996 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1997 			unsigned int queue, bool ipv6)
1998 {
1999 	struct sk_buff *skb;
2000 	struct adapter *adap;
2001 	struct cpl_close_listsvr_req *req;
2002 	int ret;
2003 
2004 	adap = netdev2adap(dev);
2005 
2006 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2007 	if (!skb)
2008 		return -ENOMEM;
2009 
2010 	req = __skb_put(skb, sizeof(*req));
2011 	INIT_TP_WR(req, 0);
2012 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2013 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2014 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2015 	ret = t4_mgmt_tx(adap, skb);
2016 	return net_xmit_eval(ret);
2017 }
2018 EXPORT_SYMBOL(cxgb4_remove_server);
2019 
2020 /**
2021  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2022  *	@mtus: the HW MTU table
2023  *	@mtu: the target MTU
2024  *	@idx: index of selected entry in the MTU table
2025  *
2026  *	Returns the index and the value in the HW MTU table that is closest to
2027  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
2028  *	table, in which case that smallest available value is selected.
2029  */
2030 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2031 			    unsigned int *idx)
2032 {
2033 	unsigned int i = 0;
2034 
2035 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2036 		++i;
2037 	if (idx)
2038 		*idx = i;
2039 	return mtus[i];
2040 }
2041 EXPORT_SYMBOL(cxgb4_best_mtu);
2042 
2043 /**
2044  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2045  *     @mtus: the HW MTU table
2046  *     @header_size: Header Size
2047  *     @data_size_max: maximum Data Segment Size
2048  *     @data_size_align: desired Data Segment Size Alignment (2^N)
2049  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2050  *
2051  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
2052  *     MTU Table based solely on a Maximum MTU parameter, we break that
2053  *     parameter up into a Header Size and Maximum Data Segment Size, and
2054  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
2055  *     the Hardware MTU Table which will result in a Data Segment Size with
2056  *     the requested alignment _and_ that MTU isn't "too far" from the
2057  *     closest MTU, then we'll return that rather than the closest MTU.
2058  */
2059 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2060 				    unsigned short header_size,
2061 				    unsigned short data_size_max,
2062 				    unsigned short data_size_align,
2063 				    unsigned int *mtu_idxp)
2064 {
2065 	unsigned short max_mtu = header_size + data_size_max;
2066 	unsigned short data_size_align_mask = data_size_align - 1;
2067 	int mtu_idx, aligned_mtu_idx;
2068 
2069 	/* Scan the MTU Table till we find an MTU which is larger than our
2070 	 * Maximum MTU or we reach the end of the table.  Along the way,
2071 	 * record the last MTU found, if any, which will result in a Data
2072 	 * Segment Length matching the requested alignment.
2073 	 */
2074 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2075 		unsigned short data_size = mtus[mtu_idx] - header_size;
2076 
2077 		/* If this MTU minus the Header Size would result in a
2078 		 * Data Segment Size of the desired alignment, remember it.
2079 		 */
2080 		if ((data_size & data_size_align_mask) == 0)
2081 			aligned_mtu_idx = mtu_idx;
2082 
2083 		/* If we're not at the end of the Hardware MTU Table and the
2084 		 * next element is larger than our Maximum MTU, drop out of
2085 		 * the loop.
2086 		 */
2087 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2088 			break;
2089 	}
2090 
2091 	/* If we fell out of the loop because we ran to the end of the table,
2092 	 * then we just have to use the last [largest] entry.
2093 	 */
2094 	if (mtu_idx == NMTUS)
2095 		mtu_idx--;
2096 
2097 	/* If we found an MTU which resulted in the requested Data Segment
2098 	 * Length alignment and that's "not far" from the largest MTU which is
2099 	 * less than or equal to the maximum MTU, then use that.
2100 	 */
2101 	if (aligned_mtu_idx >= 0 &&
2102 	    mtu_idx - aligned_mtu_idx <= 1)
2103 		mtu_idx = aligned_mtu_idx;
2104 
2105 	/* If the caller has passed in an MTU Index pointer, pass the
2106 	 * MTU Index back.  Return the MTU value.
2107 	 */
2108 	if (mtu_idxp)
2109 		*mtu_idxp = mtu_idx;
2110 	return mtus[mtu_idx];
2111 }
2112 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2113 
2114 /**
2115  *	cxgb4_port_chan - get the HW channel of a port
2116  *	@dev: the net device for the port
2117  *
2118  *	Return the HW Tx channel of the given port.
2119  */
2120 unsigned int cxgb4_port_chan(const struct net_device *dev)
2121 {
2122 	return netdev2pinfo(dev)->tx_chan;
2123 }
2124 EXPORT_SYMBOL(cxgb4_port_chan);
2125 
2126 /**
2127  *      cxgb4_port_e2cchan - get the HW c-channel of a port
2128  *      @dev: the net device for the port
2129  *
2130  *      Return the HW RX c-channel of the given port.
2131  */
2132 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2133 {
2134 	return netdev2pinfo(dev)->rx_cchan;
2135 }
2136 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2137 
2138 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2139 {
2140 	struct adapter *adap = netdev2adap(dev);
2141 	u32 v1, v2, lp_count, hp_count;
2142 
2143 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2144 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2145 	if (is_t4(adap->params.chip)) {
2146 		lp_count = LP_COUNT_G(v1);
2147 		hp_count = HP_COUNT_G(v1);
2148 	} else {
2149 		lp_count = LP_COUNT_T5_G(v1);
2150 		hp_count = HP_COUNT_T5_G(v2);
2151 	}
2152 	return lpfifo ? lp_count : hp_count;
2153 }
2154 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2155 
2156 /**
2157  *	cxgb4_port_viid - get the VI id of a port
2158  *	@dev: the net device for the port
2159  *
2160  *	Return the VI id of the given port.
2161  */
2162 unsigned int cxgb4_port_viid(const struct net_device *dev)
2163 {
2164 	return netdev2pinfo(dev)->viid;
2165 }
2166 EXPORT_SYMBOL(cxgb4_port_viid);
2167 
2168 /**
2169  *	cxgb4_port_idx - get the index of a port
2170  *	@dev: the net device for the port
2171  *
2172  *	Return the index of the given port.
2173  */
2174 unsigned int cxgb4_port_idx(const struct net_device *dev)
2175 {
2176 	return netdev2pinfo(dev)->port_id;
2177 }
2178 EXPORT_SYMBOL(cxgb4_port_idx);
2179 
2180 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2181 			 struct tp_tcp_stats *v6)
2182 {
2183 	struct adapter *adap = pci_get_drvdata(pdev);
2184 
2185 	spin_lock(&adap->stats_lock);
2186 	t4_tp_get_tcp_stats(adap, v4, v6, false);
2187 	spin_unlock(&adap->stats_lock);
2188 }
2189 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2190 
2191 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2192 		      const unsigned int *pgsz_order)
2193 {
2194 	struct adapter *adap = netdev2adap(dev);
2195 
2196 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2197 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2198 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2199 		     HPZ3_V(pgsz_order[3]));
2200 }
2201 EXPORT_SYMBOL(cxgb4_iscsi_init);
2202 
2203 int cxgb4_flush_eq_cache(struct net_device *dev)
2204 {
2205 	struct adapter *adap = netdev2adap(dev);
2206 
2207 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2208 }
2209 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2210 
2211 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2212 {
2213 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2214 	__be64 indices;
2215 	int ret;
2216 
2217 	spin_lock(&adap->win0_lock);
2218 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2219 			   sizeof(indices), (__be32 *)&indices,
2220 			   T4_MEMORY_READ);
2221 	spin_unlock(&adap->win0_lock);
2222 	if (!ret) {
2223 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2224 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2225 	}
2226 	return ret;
2227 }
2228 
2229 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2230 			u16 size)
2231 {
2232 	struct adapter *adap = netdev2adap(dev);
2233 	u16 hw_pidx, hw_cidx;
2234 	int ret;
2235 
2236 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2237 	if (ret)
2238 		goto out;
2239 
2240 	if (pidx != hw_pidx) {
2241 		u16 delta;
2242 		u32 val;
2243 
2244 		if (pidx >= hw_pidx)
2245 			delta = pidx - hw_pidx;
2246 		else
2247 			delta = size - hw_pidx + pidx;
2248 
2249 		if (is_t4(adap->params.chip))
2250 			val = PIDX_V(delta);
2251 		else
2252 			val = PIDX_T5_V(delta);
2253 		wmb();
2254 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2255 			     QID_V(qid) | val);
2256 	}
2257 out:
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2261 
2262 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2263 {
2264 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2265 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2266 	u32 offset, memtype, memaddr;
2267 	struct adapter *adap;
2268 	u32 hma_size = 0;
2269 	int ret;
2270 
2271 	adap = netdev2adap(dev);
2272 
2273 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2274 
2275 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2276 	 * This code assumes that the memory is laid out starting at offset 0
2277 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2278 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2279 	 * MC0, and some have both MC0 and MC1.
2280 	 */
2281 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2282 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2283 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2284 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2285 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2286 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2287 
2288 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2289 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2290 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
2291 	}
2292 	edc0_end = edc0_size;
2293 	edc1_end = edc0_end + edc1_size;
2294 	mc0_end = edc1_end + mc0_size;
2295 
2296 	if (offset < edc0_end) {
2297 		memtype = MEM_EDC0;
2298 		memaddr = offset;
2299 	} else if (offset < edc1_end) {
2300 		memtype = MEM_EDC1;
2301 		memaddr = offset - edc0_end;
2302 	} else {
2303 		if (hma_size && (offset < (edc1_end + hma_size))) {
2304 			memtype = MEM_HMA;
2305 			memaddr = offset - edc1_end;
2306 		} else if (offset < mc0_end) {
2307 			memtype = MEM_MC0;
2308 			memaddr = offset - edc1_end;
2309 		} else if (is_t5(adap->params.chip)) {
2310 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2311 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2312 			mc1_end = mc0_end + mc1_size;
2313 			if (offset < mc1_end) {
2314 				memtype = MEM_MC1;
2315 				memaddr = offset - mc0_end;
2316 			} else {
2317 				/* offset beyond the end of any memory */
2318 				goto err;
2319 			}
2320 		} else {
2321 			/* T4/T6 only has a single memory channel */
2322 			goto err;
2323 		}
2324 	}
2325 
2326 	spin_lock(&adap->win0_lock);
2327 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2328 	spin_unlock(&adap->win0_lock);
2329 	return ret;
2330 
2331 err:
2332 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2333 		stag, offset);
2334 	return -EINVAL;
2335 }
2336 EXPORT_SYMBOL(cxgb4_read_tpte);
2337 
2338 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2339 {
2340 	u32 hi, lo;
2341 	struct adapter *adap;
2342 
2343 	adap = netdev2adap(dev);
2344 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2345 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2346 
2347 	return ((u64)hi << 32) | (u64)lo;
2348 }
2349 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2350 
2351 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2352 			 unsigned int qid,
2353 			 enum cxgb4_bar2_qtype qtype,
2354 			 int user,
2355 			 u64 *pbar2_qoffset,
2356 			 unsigned int *pbar2_qid)
2357 {
2358 	return t4_bar2_sge_qregs(netdev2adap(dev),
2359 				 qid,
2360 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2361 				  ? T4_BAR2_QTYPE_EGRESS
2362 				  : T4_BAR2_QTYPE_INGRESS),
2363 				 user,
2364 				 pbar2_qoffset,
2365 				 pbar2_qid);
2366 }
2367 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2368 
2369 static struct pci_driver cxgb4_driver;
2370 
2371 static void check_neigh_update(struct neighbour *neigh)
2372 {
2373 	const struct device *parent;
2374 	const struct net_device *netdev = neigh->dev;
2375 
2376 	if (is_vlan_dev(netdev))
2377 		netdev = vlan_dev_real_dev(netdev);
2378 	parent = netdev->dev.parent;
2379 	if (parent && parent->driver == &cxgb4_driver.driver)
2380 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2381 }
2382 
2383 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2384 		       void *data)
2385 {
2386 	switch (event) {
2387 	case NETEVENT_NEIGH_UPDATE:
2388 		check_neigh_update(data);
2389 		break;
2390 	case NETEVENT_REDIRECT:
2391 	default:
2392 		break;
2393 	}
2394 	return 0;
2395 }
2396 
2397 static bool netevent_registered;
2398 static struct notifier_block cxgb4_netevent_nb = {
2399 	.notifier_call = netevent_cb
2400 };
2401 
2402 static void drain_db_fifo(struct adapter *adap, int usecs)
2403 {
2404 	u32 v1, v2, lp_count, hp_count;
2405 
2406 	do {
2407 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2408 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2409 		if (is_t4(adap->params.chip)) {
2410 			lp_count = LP_COUNT_G(v1);
2411 			hp_count = HP_COUNT_G(v1);
2412 		} else {
2413 			lp_count = LP_COUNT_T5_G(v1);
2414 			hp_count = HP_COUNT_T5_G(v2);
2415 		}
2416 
2417 		if (lp_count == 0 && hp_count == 0)
2418 			break;
2419 		set_current_state(TASK_UNINTERRUPTIBLE);
2420 		schedule_timeout(usecs_to_jiffies(usecs));
2421 	} while (1);
2422 }
2423 
2424 static void disable_txq_db(struct sge_txq *q)
2425 {
2426 	unsigned long flags;
2427 
2428 	spin_lock_irqsave(&q->db_lock, flags);
2429 	q->db_disabled = 1;
2430 	spin_unlock_irqrestore(&q->db_lock, flags);
2431 }
2432 
2433 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2434 {
2435 	spin_lock_irq(&q->db_lock);
2436 	if (q->db_pidx_inc) {
2437 		/* Make sure that all writes to the TX descriptors
2438 		 * are committed before we tell HW about them.
2439 		 */
2440 		wmb();
2441 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2442 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2443 		q->db_pidx_inc = 0;
2444 	}
2445 	q->db_disabled = 0;
2446 	spin_unlock_irq(&q->db_lock);
2447 }
2448 
2449 static void disable_dbs(struct adapter *adap)
2450 {
2451 	int i;
2452 
2453 	for_each_ethrxq(&adap->sge, i)
2454 		disable_txq_db(&adap->sge.ethtxq[i].q);
2455 	if (is_offload(adap)) {
2456 		struct sge_uld_txq_info *txq_info =
2457 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2458 
2459 		if (txq_info) {
2460 			for_each_ofldtxq(&adap->sge, i) {
2461 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2462 
2463 				disable_txq_db(&txq->q);
2464 			}
2465 		}
2466 	}
2467 	for_each_port(adap, i)
2468 		disable_txq_db(&adap->sge.ctrlq[i].q);
2469 }
2470 
2471 static void enable_dbs(struct adapter *adap)
2472 {
2473 	int i;
2474 
2475 	for_each_ethrxq(&adap->sge, i)
2476 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2477 	if (is_offload(adap)) {
2478 		struct sge_uld_txq_info *txq_info =
2479 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2480 
2481 		if (txq_info) {
2482 			for_each_ofldtxq(&adap->sge, i) {
2483 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2484 
2485 				enable_txq_db(adap, &txq->q);
2486 			}
2487 		}
2488 	}
2489 	for_each_port(adap, i)
2490 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2491 }
2492 
2493 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2494 {
2495 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2496 
2497 	if (adap->uld && adap->uld[type].handle)
2498 		adap->uld[type].control(adap->uld[type].handle, cmd);
2499 }
2500 
2501 static void process_db_full(struct work_struct *work)
2502 {
2503 	struct adapter *adap;
2504 
2505 	adap = container_of(work, struct adapter, db_full_task);
2506 
2507 	drain_db_fifo(adap, dbfifo_drain_delay);
2508 	enable_dbs(adap);
2509 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2510 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2511 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2512 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2513 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2514 	else
2515 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2516 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2517 }
2518 
2519 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2520 {
2521 	u16 hw_pidx, hw_cidx;
2522 	int ret;
2523 
2524 	spin_lock_irq(&q->db_lock);
2525 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2526 	if (ret)
2527 		goto out;
2528 	if (q->db_pidx != hw_pidx) {
2529 		u16 delta;
2530 		u32 val;
2531 
2532 		if (q->db_pidx >= hw_pidx)
2533 			delta = q->db_pidx - hw_pidx;
2534 		else
2535 			delta = q->size - hw_pidx + q->db_pidx;
2536 
2537 		if (is_t4(adap->params.chip))
2538 			val = PIDX_V(delta);
2539 		else
2540 			val = PIDX_T5_V(delta);
2541 		wmb();
2542 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2543 			     QID_V(q->cntxt_id) | val);
2544 	}
2545 out:
2546 	q->db_disabled = 0;
2547 	q->db_pidx_inc = 0;
2548 	spin_unlock_irq(&q->db_lock);
2549 	if (ret)
2550 		CH_WARN(adap, "DB drop recovery failed.\n");
2551 }
2552 
2553 static void recover_all_queues(struct adapter *adap)
2554 {
2555 	int i;
2556 
2557 	for_each_ethrxq(&adap->sge, i)
2558 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2559 	if (is_offload(adap)) {
2560 		struct sge_uld_txq_info *txq_info =
2561 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2562 		if (txq_info) {
2563 			for_each_ofldtxq(&adap->sge, i) {
2564 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2565 
2566 				sync_txq_pidx(adap, &txq->q);
2567 			}
2568 		}
2569 	}
2570 	for_each_port(adap, i)
2571 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2572 }
2573 
2574 static void process_db_drop(struct work_struct *work)
2575 {
2576 	struct adapter *adap;
2577 
2578 	adap = container_of(work, struct adapter, db_drop_task);
2579 
2580 	if (is_t4(adap->params.chip)) {
2581 		drain_db_fifo(adap, dbfifo_drain_delay);
2582 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2583 		drain_db_fifo(adap, dbfifo_drain_delay);
2584 		recover_all_queues(adap);
2585 		drain_db_fifo(adap, dbfifo_drain_delay);
2586 		enable_dbs(adap);
2587 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2588 	} else if (is_t5(adap->params.chip)) {
2589 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2590 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2591 		u16 pidx_inc = dropped_db & 0x1fff;
2592 		u64 bar2_qoffset;
2593 		unsigned int bar2_qid;
2594 		int ret;
2595 
2596 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2597 					0, &bar2_qoffset, &bar2_qid);
2598 		if (ret)
2599 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2600 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2601 		else
2602 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2603 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2604 
2605 		/* Re-enable BAR2 WC */
2606 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2607 	}
2608 
2609 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2610 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2611 }
2612 
2613 void t4_db_full(struct adapter *adap)
2614 {
2615 	if (is_t4(adap->params.chip)) {
2616 		disable_dbs(adap);
2617 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2618 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2619 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2620 		queue_work(adap->workq, &adap->db_full_task);
2621 	}
2622 }
2623 
2624 void t4_db_dropped(struct adapter *adap)
2625 {
2626 	if (is_t4(adap->params.chip)) {
2627 		disable_dbs(adap);
2628 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2629 	}
2630 	queue_work(adap->workq, &adap->db_drop_task);
2631 }
2632 
2633 void t4_register_netevent_notifier(void)
2634 {
2635 	if (!netevent_registered) {
2636 		register_netevent_notifier(&cxgb4_netevent_nb);
2637 		netevent_registered = true;
2638 	}
2639 }
2640 
2641 static void detach_ulds(struct adapter *adap)
2642 {
2643 	unsigned int i;
2644 
2645 	if (!is_uld(adap))
2646 		return;
2647 
2648 	mutex_lock(&uld_mutex);
2649 	list_del(&adap->list_node);
2650 
2651 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2652 		if (adap->uld && adap->uld[i].handle)
2653 			adap->uld[i].state_change(adap->uld[i].handle,
2654 					     CXGB4_STATE_DETACH);
2655 
2656 	if (netevent_registered && list_empty(&adapter_list)) {
2657 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2658 		netevent_registered = false;
2659 	}
2660 	mutex_unlock(&uld_mutex);
2661 }
2662 
2663 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2664 {
2665 	unsigned int i;
2666 
2667 	mutex_lock(&uld_mutex);
2668 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2669 		if (adap->uld && adap->uld[i].handle)
2670 			adap->uld[i].state_change(adap->uld[i].handle,
2671 						  new_state);
2672 	mutex_unlock(&uld_mutex);
2673 }
2674 
2675 #if IS_ENABLED(CONFIG_IPV6)
2676 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2677 				   unsigned long event, void *data)
2678 {
2679 	struct inet6_ifaddr *ifa = data;
2680 	struct net_device *event_dev = ifa->idev->dev;
2681 	const struct device *parent = NULL;
2682 #if IS_ENABLED(CONFIG_BONDING)
2683 	struct adapter *adap;
2684 #endif
2685 	if (is_vlan_dev(event_dev))
2686 		event_dev = vlan_dev_real_dev(event_dev);
2687 #if IS_ENABLED(CONFIG_BONDING)
2688 	if (event_dev->flags & IFF_MASTER) {
2689 		list_for_each_entry(adap, &adapter_list, list_node) {
2690 			switch (event) {
2691 			case NETDEV_UP:
2692 				cxgb4_clip_get(adap->port[0],
2693 					       (const u32 *)ifa, 1);
2694 				break;
2695 			case NETDEV_DOWN:
2696 				cxgb4_clip_release(adap->port[0],
2697 						   (const u32 *)ifa, 1);
2698 				break;
2699 			default:
2700 				break;
2701 			}
2702 		}
2703 		return NOTIFY_OK;
2704 	}
2705 #endif
2706 
2707 	if (event_dev)
2708 		parent = event_dev->dev.parent;
2709 
2710 	if (parent && parent->driver == &cxgb4_driver.driver) {
2711 		switch (event) {
2712 		case NETDEV_UP:
2713 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2714 			break;
2715 		case NETDEV_DOWN:
2716 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2717 			break;
2718 		default:
2719 			break;
2720 		}
2721 	}
2722 	return NOTIFY_OK;
2723 }
2724 
2725 static bool inet6addr_registered;
2726 static struct notifier_block cxgb4_inet6addr_notifier = {
2727 	.notifier_call = cxgb4_inet6addr_handler
2728 };
2729 
2730 static void update_clip(const struct adapter *adap)
2731 {
2732 	int i;
2733 	struct net_device *dev;
2734 	int ret;
2735 
2736 	rcu_read_lock();
2737 
2738 	for (i = 0; i < MAX_NPORTS; i++) {
2739 		dev = adap->port[i];
2740 		ret = 0;
2741 
2742 		if (dev)
2743 			ret = cxgb4_update_root_dev_clip(dev);
2744 
2745 		if (ret < 0)
2746 			break;
2747 	}
2748 	rcu_read_unlock();
2749 }
2750 #endif /* IS_ENABLED(CONFIG_IPV6) */
2751 
2752 /**
2753  *	cxgb_up - enable the adapter
2754  *	@adap: adapter being enabled
2755  *
2756  *	Called when the first port is enabled, this function performs the
2757  *	actions necessary to make an adapter operational, such as completing
2758  *	the initialization of HW modules, and enabling interrupts.
2759  *
2760  *	Must be called with the rtnl lock held.
2761  */
2762 static int cxgb_up(struct adapter *adap)
2763 {
2764 	struct sge *s = &adap->sge;
2765 	int err;
2766 
2767 	mutex_lock(&uld_mutex);
2768 	err = setup_sge_queues(adap);
2769 	if (err)
2770 		goto rel_lock;
2771 	err = setup_rss(adap);
2772 	if (err)
2773 		goto freeq;
2774 
2775 	if (adap->flags & CXGB4_USING_MSIX) {
2776 		if (s->nd_msix_idx < 0) {
2777 			err = -ENOMEM;
2778 			goto irq_err;
2779 		}
2780 
2781 		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2782 				  t4_nondata_intr, 0,
2783 				  adap->msix_info[s->nd_msix_idx].desc, adap);
2784 		if (err)
2785 			goto irq_err;
2786 
2787 		err = request_msix_queue_irqs(adap);
2788 		if (err)
2789 			goto irq_err_free_nd_msix;
2790 	} else {
2791 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2792 				  (adap->flags & CXGB4_USING_MSI) ? 0
2793 								  : IRQF_SHARED,
2794 				  adap->port[0]->name, adap);
2795 		if (err)
2796 			goto irq_err;
2797 	}
2798 
2799 	enable_rx(adap);
2800 	t4_sge_start(adap);
2801 	t4_intr_enable(adap);
2802 	adap->flags |= CXGB4_FULL_INIT_DONE;
2803 	mutex_unlock(&uld_mutex);
2804 
2805 	notify_ulds(adap, CXGB4_STATE_UP);
2806 #if IS_ENABLED(CONFIG_IPV6)
2807 	update_clip(adap);
2808 #endif
2809 	return err;
2810 
2811 irq_err_free_nd_msix:
2812 	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2813 irq_err:
2814 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2815 freeq:
2816 	t4_free_sge_resources(adap);
2817 rel_lock:
2818 	mutex_unlock(&uld_mutex);
2819 	return err;
2820 }
2821 
2822 static void cxgb_down(struct adapter *adapter)
2823 {
2824 	cancel_work_sync(&adapter->tid_release_task);
2825 	cancel_work_sync(&adapter->db_full_task);
2826 	cancel_work_sync(&adapter->db_drop_task);
2827 	adapter->tid_release_task_busy = false;
2828 	adapter->tid_release_head = NULL;
2829 
2830 	t4_sge_stop(adapter);
2831 	t4_free_sge_resources(adapter);
2832 
2833 	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2834 }
2835 
2836 /*
2837  * net_device operations
2838  */
2839 static int cxgb_open(struct net_device *dev)
2840 {
2841 	struct port_info *pi = netdev_priv(dev);
2842 	struct adapter *adapter = pi->adapter;
2843 	int err;
2844 
2845 	netif_carrier_off(dev);
2846 
2847 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2848 		err = cxgb_up(adapter);
2849 		if (err < 0)
2850 			return err;
2851 	}
2852 
2853 	/* It's possible that the basic port information could have
2854 	 * changed since we first read it.
2855 	 */
2856 	err = t4_update_port_info(pi);
2857 	if (err < 0)
2858 		return err;
2859 
2860 	err = link_start(dev);
2861 	if (err)
2862 		return err;
2863 
2864 	if (pi->nmirrorqsets) {
2865 		mutex_lock(&pi->vi_mirror_mutex);
2866 		err = cxgb4_port_mirror_alloc_queues(dev);
2867 		if (err)
2868 			goto out_unlock;
2869 
2870 		err = cxgb4_port_mirror_start(dev);
2871 		if (err)
2872 			goto out_free_queues;
2873 		mutex_unlock(&pi->vi_mirror_mutex);
2874 	}
2875 
2876 	netif_tx_start_all_queues(dev);
2877 	return 0;
2878 
2879 out_free_queues:
2880 	cxgb4_port_mirror_free_queues(dev);
2881 
2882 out_unlock:
2883 	mutex_unlock(&pi->vi_mirror_mutex);
2884 	return err;
2885 }
2886 
2887 static int cxgb_close(struct net_device *dev)
2888 {
2889 	struct port_info *pi = netdev_priv(dev);
2890 	struct adapter *adapter = pi->adapter;
2891 	int ret;
2892 
2893 	netif_tx_stop_all_queues(dev);
2894 	netif_carrier_off(dev);
2895 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2896 				  false, false, false);
2897 #ifdef CONFIG_CHELSIO_T4_DCB
2898 	cxgb4_dcb_reset(dev);
2899 	dcb_tx_queue_prio_enable(dev, false);
2900 #endif
2901 	if (ret)
2902 		return ret;
2903 
2904 	if (pi->nmirrorqsets) {
2905 		mutex_lock(&pi->vi_mirror_mutex);
2906 		cxgb4_port_mirror_stop(dev);
2907 		cxgb4_port_mirror_free_queues(dev);
2908 		mutex_unlock(&pi->vi_mirror_mutex);
2909 	}
2910 
2911 	return 0;
2912 }
2913 
2914 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2915 		__be32 sip, __be16 sport, __be16 vlan,
2916 		unsigned int queue, unsigned char port, unsigned char mask)
2917 {
2918 	int ret;
2919 	struct filter_entry *f;
2920 	struct adapter *adap;
2921 	int i;
2922 	u8 *val;
2923 
2924 	adap = netdev2adap(dev);
2925 
2926 	/* Adjust stid to correct filter index */
2927 	stid -= adap->tids.sftid_base;
2928 	stid += adap->tids.nftids;
2929 
2930 	/* Check to make sure the filter requested is writable ...
2931 	 */
2932 	f = &adap->tids.ftid_tab[stid];
2933 	ret = writable_filter(f);
2934 	if (ret)
2935 		return ret;
2936 
2937 	/* Clear out any old resources being used by the filter before
2938 	 * we start constructing the new filter.
2939 	 */
2940 	if (f->valid)
2941 		clear_filter(adap, f);
2942 
2943 	/* Clear out filter specifications */
2944 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2945 	f->fs.val.lport = be16_to_cpu(sport);
2946 	f->fs.mask.lport  = ~0;
2947 	val = (u8 *)&sip;
2948 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2949 		for (i = 0; i < 4; i++) {
2950 			f->fs.val.lip[i] = val[i];
2951 			f->fs.mask.lip[i] = ~0;
2952 		}
2953 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2954 			f->fs.val.iport = port;
2955 			f->fs.mask.iport = mask;
2956 		}
2957 	}
2958 
2959 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2960 		f->fs.val.proto = IPPROTO_TCP;
2961 		f->fs.mask.proto = ~0;
2962 	}
2963 
2964 	f->fs.dirsteer = 1;
2965 	f->fs.iq = queue;
2966 	/* Mark filter as locked */
2967 	f->locked = 1;
2968 	f->fs.rpttid = 1;
2969 
2970 	/* Save the actual tid. We need this to get the corresponding
2971 	 * filter entry structure in filter_rpl.
2972 	 */
2973 	f->tid = stid + adap->tids.ftid_base;
2974 	ret = set_filter_wr(adap, stid);
2975 	if (ret) {
2976 		clear_filter(adap, f);
2977 		return ret;
2978 	}
2979 
2980 	return 0;
2981 }
2982 EXPORT_SYMBOL(cxgb4_create_server_filter);
2983 
2984 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2985 		unsigned int queue, bool ipv6)
2986 {
2987 	struct filter_entry *f;
2988 	struct adapter *adap;
2989 
2990 	adap = netdev2adap(dev);
2991 
2992 	/* Adjust stid to correct filter index */
2993 	stid -= adap->tids.sftid_base;
2994 	stid += adap->tids.nftids;
2995 
2996 	f = &adap->tids.ftid_tab[stid];
2997 	/* Unlock the filter */
2998 	f->locked = 0;
2999 
3000 	return delete_filter(adap, stid);
3001 }
3002 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3003 
3004 static void cxgb_get_stats(struct net_device *dev,
3005 			   struct rtnl_link_stats64 *ns)
3006 {
3007 	struct port_stats stats;
3008 	struct port_info *p = netdev_priv(dev);
3009 	struct adapter *adapter = p->adapter;
3010 
3011 	/* Block retrieving statistics during EEH error
3012 	 * recovery. Otherwise, the recovery might fail
3013 	 * and the PCI device will be removed permanently
3014 	 */
3015 	spin_lock(&adapter->stats_lock);
3016 	if (!netif_device_present(dev)) {
3017 		spin_unlock(&adapter->stats_lock);
3018 		return;
3019 	}
3020 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3021 				 &p->stats_base);
3022 	spin_unlock(&adapter->stats_lock);
3023 
3024 	ns->tx_bytes   = stats.tx_octets;
3025 	ns->tx_packets = stats.tx_frames;
3026 	ns->rx_bytes   = stats.rx_octets;
3027 	ns->rx_packets = stats.rx_frames;
3028 	ns->multicast  = stats.rx_mcast_frames;
3029 
3030 	/* detailed rx_errors */
3031 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3032 			       stats.rx_runt;
3033 	ns->rx_over_errors   = 0;
3034 	ns->rx_crc_errors    = stats.rx_fcs_err;
3035 	ns->rx_frame_errors  = stats.rx_symbol_err;
3036 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
3037 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
3038 			       stats.rx_trunc0 + stats.rx_trunc1 +
3039 			       stats.rx_trunc2 + stats.rx_trunc3;
3040 	ns->rx_missed_errors = 0;
3041 
3042 	/* detailed tx_errors */
3043 	ns->tx_aborted_errors   = 0;
3044 	ns->tx_carrier_errors   = 0;
3045 	ns->tx_fifo_errors      = 0;
3046 	ns->tx_heartbeat_errors = 0;
3047 	ns->tx_window_errors    = 0;
3048 
3049 	ns->tx_errors = stats.tx_error_frames;
3050 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3051 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3052 }
3053 
3054 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3055 {
3056 	unsigned int mbox;
3057 	int ret = 0, prtad, devad;
3058 	struct port_info *pi = netdev_priv(dev);
3059 	struct adapter *adapter = pi->adapter;
3060 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3061 
3062 	switch (cmd) {
3063 	case SIOCGMIIPHY:
3064 		if (pi->mdio_addr < 0)
3065 			return -EOPNOTSUPP;
3066 		data->phy_id = pi->mdio_addr;
3067 		break;
3068 	case SIOCGMIIREG:
3069 	case SIOCSMIIREG:
3070 		if (mdio_phy_id_is_c45(data->phy_id)) {
3071 			prtad = mdio_phy_id_prtad(data->phy_id);
3072 			devad = mdio_phy_id_devad(data->phy_id);
3073 		} else if (data->phy_id < 32) {
3074 			prtad = data->phy_id;
3075 			devad = 0;
3076 			data->reg_num &= 0x1f;
3077 		} else
3078 			return -EINVAL;
3079 
3080 		mbox = pi->adapter->pf;
3081 		if (cmd == SIOCGMIIREG)
3082 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3083 					 data->reg_num, &data->val_out);
3084 		else
3085 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3086 					 data->reg_num, data->val_in);
3087 		break;
3088 	case SIOCGHWTSTAMP:
3089 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3090 				    sizeof(pi->tstamp_config)) ?
3091 			-EFAULT : 0;
3092 	case SIOCSHWTSTAMP:
3093 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3094 				   sizeof(pi->tstamp_config)))
3095 			return -EFAULT;
3096 
3097 		if (!is_t4(adapter->params.chip)) {
3098 			switch (pi->tstamp_config.tx_type) {
3099 			case HWTSTAMP_TX_OFF:
3100 			case HWTSTAMP_TX_ON:
3101 				break;
3102 			default:
3103 				return -ERANGE;
3104 			}
3105 
3106 			switch (pi->tstamp_config.rx_filter) {
3107 			case HWTSTAMP_FILTER_NONE:
3108 				pi->rxtstamp = false;
3109 				break;
3110 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3111 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3112 				cxgb4_ptprx_timestamping(pi, pi->port_id,
3113 							 PTP_TS_L4);
3114 				break;
3115 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
3116 				cxgb4_ptprx_timestamping(pi, pi->port_id,
3117 							 PTP_TS_L2_L4);
3118 				break;
3119 			case HWTSTAMP_FILTER_ALL:
3120 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3121 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3122 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3123 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3124 				pi->rxtstamp = true;
3125 				break;
3126 			default:
3127 				pi->tstamp_config.rx_filter =
3128 					HWTSTAMP_FILTER_NONE;
3129 				return -ERANGE;
3130 			}
3131 
3132 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3133 			    (pi->tstamp_config.rx_filter ==
3134 				HWTSTAMP_FILTER_NONE)) {
3135 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3136 					pi->ptp_enable = false;
3137 			}
3138 
3139 			if (pi->tstamp_config.rx_filter !=
3140 				HWTSTAMP_FILTER_NONE) {
3141 				if (cxgb4_ptp_redirect_rx_packet(adapter,
3142 								 pi) >= 0)
3143 					pi->ptp_enable = true;
3144 			}
3145 		} else {
3146 			/* For T4 Adapters */
3147 			switch (pi->tstamp_config.rx_filter) {
3148 			case HWTSTAMP_FILTER_NONE:
3149 			pi->rxtstamp = false;
3150 			break;
3151 			case HWTSTAMP_FILTER_ALL:
3152 			pi->rxtstamp = true;
3153 			break;
3154 			default:
3155 			pi->tstamp_config.rx_filter =
3156 			HWTSTAMP_FILTER_NONE;
3157 			return -ERANGE;
3158 			}
3159 		}
3160 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3161 				    sizeof(pi->tstamp_config)) ?
3162 			-EFAULT : 0;
3163 	default:
3164 		return -EOPNOTSUPP;
3165 	}
3166 	return ret;
3167 }
3168 
3169 static void cxgb_set_rxmode(struct net_device *dev)
3170 {
3171 	/* unfortunately we can't return errors to the stack */
3172 	set_rxmode(dev, -1, false);
3173 }
3174 
3175 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3176 {
3177 	struct port_info *pi = netdev_priv(dev);
3178 	int ret;
3179 
3180 	ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3181 			    pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3182 	if (!ret)
3183 		WRITE_ONCE(dev->mtu, new_mtu);
3184 	return ret;
3185 }
3186 
3187 #ifdef CONFIG_PCI_IOV
3188 static int cxgb4_mgmt_open(struct net_device *dev)
3189 {
3190 	/* Turn carrier off since we don't have to transmit anything on this
3191 	 * interface.
3192 	 */
3193 	netif_carrier_off(dev);
3194 	return 0;
3195 }
3196 
3197 /* Fill MAC address that will be assigned by the FW */
3198 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3199 {
3200 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3201 	unsigned int i, vf, nvfs;
3202 	u16 a, b;
3203 	int err;
3204 	u8 *na;
3205 
3206 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3207 	if (err)
3208 		return;
3209 
3210 	na = adap->params.vpd.na;
3211 	for (i = 0; i < ETH_ALEN; i++)
3212 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3213 			      hex2val(na[2 * i + 1]));
3214 
3215 	a = (hw_addr[0] << 8) | hw_addr[1];
3216 	b = (hw_addr[1] << 8) | hw_addr[2];
3217 	a ^= b;
3218 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
3219 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3220 	macaddr[0] = a >> 8;
3221 	macaddr[1] = a & 0xff;
3222 
3223 	for (i = 2; i < 5; i++)
3224 		macaddr[i] = hw_addr[i + 1];
3225 
3226 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3227 		vf < nvfs; vf++) {
3228 		macaddr[5] = adap->pf * nvfs + vf;
3229 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3230 	}
3231 }
3232 
3233 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3234 {
3235 	struct port_info *pi = netdev_priv(dev);
3236 	struct adapter *adap = pi->adapter;
3237 	int ret;
3238 
3239 	/* verify MAC addr is valid */
3240 	if (!is_valid_ether_addr(mac)) {
3241 		dev_err(pi->adapter->pdev_dev,
3242 			"Invalid Ethernet address %pM for VF %d\n",
3243 			mac, vf);
3244 		return -EINVAL;
3245 	}
3246 
3247 	dev_info(pi->adapter->pdev_dev,
3248 		 "Setting MAC %pM on VF %d\n", mac, vf);
3249 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3250 	if (!ret)
3251 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3252 	return ret;
3253 }
3254 
3255 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3256 				    int vf, struct ifla_vf_info *ivi)
3257 {
3258 	struct port_info *pi = netdev_priv(dev);
3259 	struct adapter *adap = pi->adapter;
3260 	struct vf_info *vfinfo;
3261 
3262 	if (vf >= adap->num_vfs)
3263 		return -EINVAL;
3264 	vfinfo = &adap->vfinfo[vf];
3265 
3266 	ivi->vf = vf;
3267 	ivi->max_tx_rate = vfinfo->tx_rate;
3268 	ivi->min_tx_rate = 0;
3269 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3270 	ivi->vlan = vfinfo->vlan;
3271 	ivi->linkstate = vfinfo->link_state;
3272 	return 0;
3273 }
3274 
3275 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3276 				       struct netdev_phys_item_id *ppid)
3277 {
3278 	struct port_info *pi = netdev_priv(dev);
3279 	unsigned int phy_port_id;
3280 
3281 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3282 	ppid->id_len = sizeof(phy_port_id);
3283 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
3284 	return 0;
3285 }
3286 
3287 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3288 				  int min_tx_rate, int max_tx_rate)
3289 {
3290 	struct port_info *pi = netdev_priv(dev);
3291 	struct adapter *adap = pi->adapter;
3292 	unsigned int link_ok, speed, mtu;
3293 	u32 fw_pfvf, fw_class;
3294 	int class_id = vf;
3295 	int ret;
3296 	u16 pktsize;
3297 
3298 	if (vf >= adap->num_vfs)
3299 		return -EINVAL;
3300 
3301 	if (min_tx_rate) {
3302 		dev_err(adap->pdev_dev,
3303 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3304 			min_tx_rate, vf);
3305 		return -EINVAL;
3306 	}
3307 
3308 	if (max_tx_rate == 0) {
3309 		/* unbind VF to to any Traffic Class */
3310 		fw_pfvf =
3311 		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3312 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3313 		fw_class = 0xffffffff;
3314 		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3315 				    &fw_pfvf, &fw_class);
3316 		if (ret) {
3317 			dev_err(adap->pdev_dev,
3318 				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3319 				ret, adap->pf, vf);
3320 			return -EINVAL;
3321 		}
3322 		dev_info(adap->pdev_dev,
3323 			 "PF %d VF %d is unbound from TX Rate Limiting\n",
3324 			 adap->pf, vf);
3325 		adap->vfinfo[vf].tx_rate = 0;
3326 		return 0;
3327 	}
3328 
3329 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3330 	if (ret != FW_SUCCESS) {
3331 		dev_err(adap->pdev_dev,
3332 			"Failed to get link information for VF %d\n", vf);
3333 		return -EINVAL;
3334 	}
3335 
3336 	if (!link_ok) {
3337 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3338 		return -EINVAL;
3339 	}
3340 
3341 	if (max_tx_rate > speed) {
3342 		dev_err(adap->pdev_dev,
3343 			"Max tx rate %d for VF %d can't be > link-speed %u",
3344 			max_tx_rate, vf, speed);
3345 		return -EINVAL;
3346 	}
3347 
3348 	pktsize = mtu;
3349 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3350 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
3351 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3352 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3353 	/* configure Traffic Class for rate-limiting */
3354 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3355 			      SCHED_CLASS_LEVEL_CL_RL,
3356 			      SCHED_CLASS_MODE_CLASS,
3357 			      SCHED_CLASS_RATEUNIT_BITS,
3358 			      SCHED_CLASS_RATEMODE_ABS,
3359 			      pi->tx_chan, class_id, 0,
3360 			      max_tx_rate * 1000, 0, pktsize, 0);
3361 	if (ret) {
3362 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3363 			ret);
3364 		return -EINVAL;
3365 	}
3366 	dev_info(adap->pdev_dev,
3367 		 "Class %d with MSS %u configured with rate %u\n",
3368 		 class_id, pktsize, max_tx_rate);
3369 
3370 	/* bind VF to configured Traffic Class */
3371 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3372 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3373 	fw_class = class_id;
3374 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3375 			    &fw_class);
3376 	if (ret) {
3377 		dev_err(adap->pdev_dev,
3378 			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
3379 			ret, adap->pf, vf, class_id);
3380 		return -EINVAL;
3381 	}
3382 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3383 		 adap->pf, vf, class_id);
3384 	adap->vfinfo[vf].tx_rate = max_tx_rate;
3385 	return 0;
3386 }
3387 
3388 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3389 				  u16 vlan, u8 qos, __be16 vlan_proto)
3390 {
3391 	struct port_info *pi = netdev_priv(dev);
3392 	struct adapter *adap = pi->adapter;
3393 	int ret;
3394 
3395 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3396 		return -EINVAL;
3397 
3398 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3399 		return -EPROTONOSUPPORT;
3400 
3401 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3402 	if (!ret) {
3403 		adap->vfinfo[vf].vlan = vlan;
3404 		return 0;
3405 	}
3406 
3407 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3408 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3409 	return ret;
3410 }
3411 
3412 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3413 					int link)
3414 {
3415 	struct port_info *pi = netdev_priv(dev);
3416 	struct adapter *adap = pi->adapter;
3417 	u32 param, val;
3418 	int ret = 0;
3419 
3420 	if (vf >= adap->num_vfs)
3421 		return -EINVAL;
3422 
3423 	switch (link) {
3424 	case IFLA_VF_LINK_STATE_AUTO:
3425 		val = FW_VF_LINK_STATE_AUTO;
3426 		break;
3427 
3428 	case IFLA_VF_LINK_STATE_ENABLE:
3429 		val = FW_VF_LINK_STATE_ENABLE;
3430 		break;
3431 
3432 	case IFLA_VF_LINK_STATE_DISABLE:
3433 		val = FW_VF_LINK_STATE_DISABLE;
3434 		break;
3435 
3436 	default:
3437 		return -EINVAL;
3438 	}
3439 
3440 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3441 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3442 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3443 			    &param, &val);
3444 	if (ret) {
3445 		dev_err(adap->pdev_dev,
3446 			"Error %d in setting PF %d VF %d link state\n",
3447 			ret, adap->pf, vf);
3448 		return -EINVAL;
3449 	}
3450 
3451 	adap->vfinfo[vf].link_state = link;
3452 	return ret;
3453 }
3454 #endif /* CONFIG_PCI_IOV */
3455 
3456 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3457 {
3458 	int ret;
3459 	struct sockaddr *addr = p;
3460 	struct port_info *pi = netdev_priv(dev);
3461 
3462 	if (!is_valid_ether_addr(addr->sa_data))
3463 		return -EADDRNOTAVAIL;
3464 
3465 	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3466 				    addr->sa_data, true, &pi->smt_idx);
3467 	if (ret < 0)
3468 		return ret;
3469 
3470 	eth_hw_addr_set(dev, addr->sa_data);
3471 	return 0;
3472 }
3473 
3474 #ifdef CONFIG_NET_POLL_CONTROLLER
3475 static void cxgb_netpoll(struct net_device *dev)
3476 {
3477 	struct port_info *pi = netdev_priv(dev);
3478 	struct adapter *adap = pi->adapter;
3479 
3480 	if (adap->flags & CXGB4_USING_MSIX) {
3481 		int i;
3482 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3483 
3484 		for (i = pi->nqsets; i; i--, rx++)
3485 			t4_sge_intr_msix(0, &rx->rspq);
3486 	} else
3487 		t4_intr_handler(adap)(0, adap);
3488 }
3489 #endif
3490 
3491 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3492 {
3493 	struct port_info *pi = netdev_priv(dev);
3494 	struct adapter *adap = pi->adapter;
3495 	struct ch_sched_queue qe = { 0 };
3496 	struct ch_sched_params p = { 0 };
3497 	struct sched_class *e;
3498 	u32 req_rate;
3499 	int err = 0;
3500 
3501 	if (!can_sched(dev))
3502 		return -ENOTSUPP;
3503 
3504 	if (index < 0 || index > pi->nqsets - 1)
3505 		return -EINVAL;
3506 
3507 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3508 		dev_err(adap->pdev_dev,
3509 			"Failed to rate limit on queue %d. Link Down?\n",
3510 			index);
3511 		return -EINVAL;
3512 	}
3513 
3514 	qe.queue = index;
3515 	e = cxgb4_sched_queue_lookup(dev, &qe);
3516 	if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3517 		dev_err(adap->pdev_dev,
3518 			"Queue %u already bound to class %u of type: %u\n",
3519 			index, e->idx, e->info.u.params.level);
3520 		return -EBUSY;
3521 	}
3522 
3523 	/* Convert from Mbps to Kbps */
3524 	req_rate = rate * 1000;
3525 
3526 	/* Max rate is 100 Gbps */
3527 	if (req_rate > SCHED_MAX_RATE_KBPS) {
3528 		dev_err(adap->pdev_dev,
3529 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3530 			rate, SCHED_MAX_RATE_KBPS / 1000);
3531 		return -ERANGE;
3532 	}
3533 
3534 	/* First unbind the queue from any existing class */
3535 	memset(&qe, 0, sizeof(qe));
3536 	qe.queue = index;
3537 	qe.class = SCHED_CLS_NONE;
3538 
3539 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3540 	if (err) {
3541 		dev_err(adap->pdev_dev,
3542 			"Unbinding Queue %d on port %d fail. Err: %d\n",
3543 			index, pi->port_id, err);
3544 		return err;
3545 	}
3546 
3547 	/* Queue already unbound */
3548 	if (!req_rate)
3549 		return 0;
3550 
3551 	/* Fetch any available unused or matching scheduling class */
3552 	p.type = SCHED_CLASS_TYPE_PACKET;
3553 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3554 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3555 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3556 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3557 	p.u.params.channel  = pi->tx_chan;
3558 	p.u.params.class    = SCHED_CLS_NONE;
3559 	p.u.params.minrate  = 0;
3560 	p.u.params.maxrate  = req_rate;
3561 	p.u.params.weight   = 0;
3562 	p.u.params.pktsize  = dev->mtu;
3563 
3564 	e = cxgb4_sched_class_alloc(dev, &p);
3565 	if (!e)
3566 		return -ENOMEM;
3567 
3568 	/* Bind the queue to a scheduling class */
3569 	memset(&qe, 0, sizeof(qe));
3570 	qe.queue = index;
3571 	qe.class = e->idx;
3572 
3573 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3574 	if (err)
3575 		dev_err(adap->pdev_dev,
3576 			"Queue rate limiting failed. Err: %d\n", err);
3577 	return err;
3578 }
3579 
3580 static int cxgb_setup_tc_flower(struct net_device *dev,
3581 				struct flow_cls_offload *cls_flower)
3582 {
3583 	switch (cls_flower->command) {
3584 	case FLOW_CLS_REPLACE:
3585 		return cxgb4_tc_flower_replace(dev, cls_flower);
3586 	case FLOW_CLS_DESTROY:
3587 		return cxgb4_tc_flower_destroy(dev, cls_flower);
3588 	case FLOW_CLS_STATS:
3589 		return cxgb4_tc_flower_stats(dev, cls_flower);
3590 	default:
3591 		return -EOPNOTSUPP;
3592 	}
3593 }
3594 
3595 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3596 				 struct tc_cls_u32_offload *cls_u32)
3597 {
3598 	switch (cls_u32->command) {
3599 	case TC_CLSU32_NEW_KNODE:
3600 	case TC_CLSU32_REPLACE_KNODE:
3601 		return cxgb4_config_knode(dev, cls_u32);
3602 	case TC_CLSU32_DELETE_KNODE:
3603 		return cxgb4_delete_knode(dev, cls_u32);
3604 	default:
3605 		return -EOPNOTSUPP;
3606 	}
3607 }
3608 
3609 static int cxgb_setup_tc_matchall(struct net_device *dev,
3610 				  struct tc_cls_matchall_offload *cls_matchall,
3611 				  bool ingress)
3612 {
3613 	struct adapter *adap = netdev2adap(dev);
3614 
3615 	if (!adap->tc_matchall)
3616 		return -ENOMEM;
3617 
3618 	switch (cls_matchall->command) {
3619 	case TC_CLSMATCHALL_REPLACE:
3620 		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3621 	case TC_CLSMATCHALL_DESTROY:
3622 		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3623 	case TC_CLSMATCHALL_STATS:
3624 		if (ingress)
3625 			return cxgb4_tc_matchall_stats(dev, cls_matchall);
3626 		break;
3627 	default:
3628 		break;
3629 	}
3630 
3631 	return -EOPNOTSUPP;
3632 }
3633 
3634 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3635 					  void *type_data, void *cb_priv)
3636 {
3637 	struct net_device *dev = cb_priv;
3638 	struct port_info *pi = netdev2pinfo(dev);
3639 	struct adapter *adap = netdev2adap(dev);
3640 
3641 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3642 		dev_err(adap->pdev_dev,
3643 			"Failed to setup tc on port %d. Link Down?\n",
3644 			pi->port_id);
3645 		return -EINVAL;
3646 	}
3647 
3648 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3649 		return -EOPNOTSUPP;
3650 
3651 	switch (type) {
3652 	case TC_SETUP_CLSU32:
3653 		return cxgb_setup_tc_cls_u32(dev, type_data);
3654 	case TC_SETUP_CLSFLOWER:
3655 		return cxgb_setup_tc_flower(dev, type_data);
3656 	case TC_SETUP_CLSMATCHALL:
3657 		return cxgb_setup_tc_matchall(dev, type_data, true);
3658 	default:
3659 		return -EOPNOTSUPP;
3660 	}
3661 }
3662 
3663 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3664 					 void *type_data, void *cb_priv)
3665 {
3666 	struct net_device *dev = cb_priv;
3667 	struct port_info *pi = netdev2pinfo(dev);
3668 	struct adapter *adap = netdev2adap(dev);
3669 
3670 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3671 		dev_err(adap->pdev_dev,
3672 			"Failed to setup tc on port %d. Link Down?\n",
3673 			pi->port_id);
3674 		return -EINVAL;
3675 	}
3676 
3677 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3678 		return -EOPNOTSUPP;
3679 
3680 	switch (type) {
3681 	case TC_SETUP_CLSMATCHALL:
3682 		return cxgb_setup_tc_matchall(dev, type_data, false);
3683 	default:
3684 		break;
3685 	}
3686 
3687 	return -EOPNOTSUPP;
3688 }
3689 
3690 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3691 				struct tc_mqprio_qopt_offload *mqprio)
3692 {
3693 	struct adapter *adap = netdev2adap(dev);
3694 
3695 	if (!is_ethofld(adap) || !adap->tc_mqprio)
3696 		return -ENOMEM;
3697 
3698 	return cxgb4_setup_tc_mqprio(dev, mqprio);
3699 }
3700 
3701 static LIST_HEAD(cxgb_block_cb_list);
3702 
3703 static int cxgb_setup_tc_block(struct net_device *dev,
3704 			       struct flow_block_offload *f)
3705 {
3706 	struct port_info *pi = netdev_priv(dev);
3707 	flow_setup_cb_t *cb;
3708 	bool ingress_only;
3709 
3710 	pi->tc_block_shared = f->block_shared;
3711 	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3712 		cb = cxgb_setup_tc_block_egress_cb;
3713 		ingress_only = false;
3714 	} else {
3715 		cb = cxgb_setup_tc_block_ingress_cb;
3716 		ingress_only = true;
3717 	}
3718 
3719 	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3720 					  cb, pi, dev, ingress_only);
3721 }
3722 
3723 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3724 			 void *type_data)
3725 {
3726 	switch (type) {
3727 	case TC_SETUP_QDISC_MQPRIO:
3728 		return cxgb_setup_tc_mqprio(dev, type_data);
3729 	case TC_SETUP_BLOCK:
3730 		return cxgb_setup_tc_block(dev, type_data);
3731 	default:
3732 		return -EOPNOTSUPP;
3733 	}
3734 }
3735 
3736 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3737 				      unsigned int table, unsigned int entry,
3738 				      struct udp_tunnel_info *ti)
3739 {
3740 	struct port_info *pi = netdev_priv(netdev);
3741 	struct adapter *adapter = pi->adapter;
3742 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3743 	int ret = 0, i;
3744 
3745 	switch (ti->type) {
3746 	case UDP_TUNNEL_TYPE_VXLAN:
3747 		adapter->vxlan_port = 0;
3748 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3749 		break;
3750 	case UDP_TUNNEL_TYPE_GENEVE:
3751 		adapter->geneve_port = 0;
3752 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3753 		break;
3754 	default:
3755 		return -EINVAL;
3756 	}
3757 
3758 	/* Matchall mac entries can be deleted only after all tunnel ports
3759 	 * are brought down or removed.
3760 	 */
3761 	if (!adapter->rawf_cnt)
3762 		return 0;
3763 	for_each_port(adapter, i) {
3764 		pi = adap2pinfo(adapter, i);
3765 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3766 					   match_all_mac, match_all_mac,
3767 					   adapter->rawf_start + pi->port_id,
3768 					   1, pi->port_id, false);
3769 		if (ret < 0) {
3770 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3771 				    i);
3772 			return ret;
3773 		}
3774 	}
3775 
3776 	return 0;
3777 }
3778 
3779 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3780 				    unsigned int table, unsigned int entry,
3781 				    struct udp_tunnel_info *ti)
3782 {
3783 	struct port_info *pi = netdev_priv(netdev);
3784 	struct adapter *adapter = pi->adapter;
3785 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3786 	int i, ret;
3787 
3788 	switch (ti->type) {
3789 	case UDP_TUNNEL_TYPE_VXLAN:
3790 		adapter->vxlan_port = ti->port;
3791 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3792 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3793 		break;
3794 	case UDP_TUNNEL_TYPE_GENEVE:
3795 		adapter->geneve_port = ti->port;
3796 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3797 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3798 		break;
3799 	default:
3800 		return -EINVAL;
3801 	}
3802 
3803 	/* Create a 'match all' mac filter entry for inner mac,
3804 	 * if raw mac interface is supported. Once the linux kernel provides
3805 	 * driver entry points for adding/deleting the inner mac addresses,
3806 	 * we will remove this 'match all' entry and fallback to adding
3807 	 * exact match filters.
3808 	 */
3809 	for_each_port(adapter, i) {
3810 		pi = adap2pinfo(adapter, i);
3811 
3812 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3813 					    match_all_mac,
3814 					    match_all_mac,
3815 					    adapter->rawf_start + pi->port_id,
3816 					    1, pi->port_id, false);
3817 		if (ret < 0) {
3818 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3819 				    be16_to_cpu(ti->port));
3820 			return ret;
3821 		}
3822 	}
3823 
3824 	return 0;
3825 }
3826 
3827 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3828 	.set_port	= cxgb_udp_tunnel_set_port,
3829 	.unset_port	= cxgb_udp_tunnel_unset_port,
3830 	.tables		= {
3831 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
3832 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3833 	},
3834 };
3835 
3836 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3837 					     struct net_device *dev,
3838 					     netdev_features_t features)
3839 {
3840 	struct port_info *pi = netdev_priv(dev);
3841 	struct adapter *adapter = pi->adapter;
3842 
3843 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3844 		return features;
3845 
3846 	/* Check if hw supports offload for this packet */
3847 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3848 		return features;
3849 
3850 	/* Offload is not supported for this encapsulated packet */
3851 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3852 }
3853 
3854 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3855 					   netdev_features_t features)
3856 {
3857 	/* Disable GRO, if RX_CSUM is disabled */
3858 	if (!(features & NETIF_F_RXCSUM))
3859 		features &= ~NETIF_F_GRO;
3860 
3861 	return features;
3862 }
3863 
3864 static const struct net_device_ops cxgb4_netdev_ops = {
3865 	.ndo_open             = cxgb_open,
3866 	.ndo_stop             = cxgb_close,
3867 	.ndo_start_xmit       = t4_start_xmit,
3868 	.ndo_select_queue     =	cxgb_select_queue,
3869 	.ndo_get_stats64      = cxgb_get_stats,
3870 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3871 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3872 	.ndo_set_features     = cxgb_set_features,
3873 	.ndo_validate_addr    = eth_validate_addr,
3874 	.ndo_eth_ioctl         = cxgb_ioctl,
3875 	.ndo_change_mtu       = cxgb_change_mtu,
3876 #ifdef CONFIG_NET_POLL_CONTROLLER
3877 	.ndo_poll_controller  = cxgb_netpoll,
3878 #endif
3879 #ifdef CONFIG_CHELSIO_T4_FCOE
3880 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3881 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3882 #endif /* CONFIG_CHELSIO_T4_FCOE */
3883 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3884 	.ndo_setup_tc         = cxgb_setup_tc,
3885 	.ndo_features_check   = cxgb_features_check,
3886 	.ndo_fix_features     = cxgb_fix_features,
3887 };
3888 
3889 #ifdef CONFIG_PCI_IOV
3890 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3891 	.ndo_open               = cxgb4_mgmt_open,
3892 	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3893 	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3894 	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3895 	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3896 	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3897 	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3898 };
3899 
3900 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3901 				   struct ethtool_drvinfo *info)
3902 {
3903 	struct adapter *adapter = netdev2adap(dev);
3904 
3905 	strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3906 	strscpy(info->bus_info, pci_name(adapter->pdev),
3907 		sizeof(info->bus_info));
3908 }
3909 
3910 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3911 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3912 };
3913 #endif
3914 
3915 static void notify_fatal_err(struct work_struct *work)
3916 {
3917 	struct adapter *adap;
3918 
3919 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3920 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3921 }
3922 
3923 void t4_fatal_err(struct adapter *adap)
3924 {
3925 	int port;
3926 
3927 	if (pci_channel_offline(adap->pdev))
3928 		return;
3929 
3930 	/* Disable the SGE since ULDs are going to free resources that
3931 	 * could be exposed to the adapter.  RDMA MWs for example...
3932 	 */
3933 	t4_shutdown_adapter(adap);
3934 	for_each_port(adap, port) {
3935 		struct net_device *dev = adap->port[port];
3936 
3937 		/* If we get here in very early initialization the network
3938 		 * devices may not have been set up yet.
3939 		 */
3940 		if (!dev)
3941 			continue;
3942 
3943 		netif_tx_stop_all_queues(dev);
3944 		netif_carrier_off(dev);
3945 	}
3946 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3947 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3948 }
3949 
3950 static void setup_memwin(struct adapter *adap)
3951 {
3952 	u32 nic_win_base = t4_get_util_window(adap);
3953 
3954 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3955 }
3956 
3957 static void setup_memwin_rdma(struct adapter *adap)
3958 {
3959 	if (adap->vres.ocq.size) {
3960 		u32 start;
3961 		unsigned int sz_kb;
3962 
3963 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3964 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3965 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3966 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3967 		t4_write_reg(adap,
3968 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3969 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3970 		t4_write_reg(adap,
3971 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3972 			     adap->vres.ocq.start);
3973 		t4_read_reg(adap,
3974 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3975 	}
3976 }
3977 
3978 /* HMA Definitions */
3979 
3980 /* The maximum number of address that can be send in a single FW cmd */
3981 #define HMA_MAX_ADDR_IN_CMD	5
3982 
3983 #define HMA_PAGE_SIZE		PAGE_SIZE
3984 
3985 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3986 
3987 #define HMA_PAGE_ORDER					\
3988 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3989 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3990 
3991 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3992  * configuration(in units of MB).
3993  */
3994 #define HMA_MIN_TOTAL_SIZE	1
3995 #define HMA_MAX_TOTAL_SIZE				\
3996 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3997 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3998 
3999 static void adap_free_hma_mem(struct adapter *adapter)
4000 {
4001 	struct scatterlist *iter;
4002 	struct page *page;
4003 	int i;
4004 
4005 	if (!adapter->hma.sgt)
4006 		return;
4007 
4008 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4009 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4010 			     adapter->hma.sgt->nents, DMA_BIDIRECTIONAL);
4011 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4012 	}
4013 
4014 	for_each_sg(adapter->hma.sgt->sgl, iter,
4015 		    adapter->hma.sgt->orig_nents, i) {
4016 		page = sg_page(iter);
4017 		if (page)
4018 			__free_pages(page, HMA_PAGE_ORDER);
4019 	}
4020 
4021 	kfree(adapter->hma.phy_addr);
4022 	sg_free_table(adapter->hma.sgt);
4023 	kfree(adapter->hma.sgt);
4024 	adapter->hma.sgt = NULL;
4025 }
4026 
4027 static int adap_config_hma(struct adapter *adapter)
4028 {
4029 	struct scatterlist *sgl, *iter;
4030 	struct sg_table *sgt;
4031 	struct page *newpage;
4032 	unsigned int i, j, k;
4033 	u32 param, hma_size;
4034 	unsigned int ncmds;
4035 	size_t page_size;
4036 	u32 page_order;
4037 	int node, ret;
4038 
4039 	/* HMA is supported only for T6+ cards.
4040 	 * Avoid initializing HMA in kdump kernels.
4041 	 */
4042 	if (is_kdump_kernel() ||
4043 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4044 		return 0;
4045 
4046 	/* Get the HMA region size required by fw */
4047 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4048 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4049 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4050 			      1, &param, &hma_size);
4051 	/* An error means card has its own memory or HMA is not supported by
4052 	 * the firmware. Return without any errors.
4053 	 */
4054 	if (ret || !hma_size)
4055 		return 0;
4056 
4057 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
4058 	    hma_size > HMA_MAX_TOTAL_SIZE) {
4059 		dev_err(adapter->pdev_dev,
4060 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
4061 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4062 		return -EINVAL;
4063 	}
4064 
4065 	page_size = HMA_PAGE_SIZE;
4066 	page_order = HMA_PAGE_ORDER;
4067 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4068 	if (unlikely(!adapter->hma.sgt)) {
4069 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4070 		return -ENOMEM;
4071 	}
4072 	sgt = adapter->hma.sgt;
4073 	/* FW returned value will be in MB's
4074 	 */
4075 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4076 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4077 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4078 		kfree(adapter->hma.sgt);
4079 		adapter->hma.sgt = NULL;
4080 		return -ENOMEM;
4081 	}
4082 
4083 	sgl = adapter->hma.sgt->sgl;
4084 	node = dev_to_node(adapter->pdev_dev);
4085 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
4086 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4087 					   __GFP_ZERO, page_order);
4088 		if (!newpage) {
4089 			dev_err(adapter->pdev_dev,
4090 				"Not enough memory for HMA page allocation\n");
4091 			ret = -ENOMEM;
4092 			goto free_hma;
4093 		}
4094 		sg_set_page(iter, newpage, page_size << page_order, 0);
4095 	}
4096 
4097 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4098 				DMA_BIDIRECTIONAL);
4099 	if (!sgt->nents) {
4100 		dev_err(adapter->pdev_dev,
4101 			"Not enough memory for HMA DMA mapping");
4102 		ret = -ENOMEM;
4103 		goto free_hma;
4104 	}
4105 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4106 
4107 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4108 					GFP_KERNEL);
4109 	if (unlikely(!adapter->hma.phy_addr))
4110 		goto free_hma;
4111 
4112 	for_each_sg(sgl, iter, sgt->nents, i) {
4113 		newpage = sg_page(iter);
4114 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
4115 	}
4116 
4117 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4118 	/* Pass on the addresses to firmware */
4119 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4120 		struct fw_hma_cmd hma_cmd;
4121 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
4122 		u8 soc = 0, eoc = 0;
4123 		u8 hma_mode = 1; /* Presently we support only Page table mode */
4124 
4125 		soc = (i == 0) ? 1 : 0;
4126 		eoc = (i == ncmds - 1) ? 1 : 0;
4127 
4128 		/* For last cmd, set naddr corresponding to remaining
4129 		 * addresses
4130 		 */
4131 		if (i == ncmds - 1) {
4132 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4133 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4134 		}
4135 		memset(&hma_cmd, 0, sizeof(hma_cmd));
4136 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4137 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4138 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4139 
4140 		hma_cmd.mode_to_pcie_params =
4141 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4142 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4143 
4144 		/* HMA cmd size specified in MB's */
4145 		hma_cmd.naddr_size =
4146 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4147 			      FW_HMA_CMD_NADDR_V(naddr));
4148 
4149 		/* Total Page size specified in units of 4K */
4150 		hma_cmd.addr_size_pkd =
4151 			htonl(FW_HMA_CMD_ADDR_SIZE_V
4152 				((page_size << page_order) >> 12));
4153 
4154 		/* Fill the 5 addresses */
4155 		for (j = 0; j < naddr; j++) {
4156 			hma_cmd.phy_address[j] =
4157 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
4158 		}
4159 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4160 				 sizeof(hma_cmd), &hma_cmd);
4161 		if (ret) {
4162 			dev_err(adapter->pdev_dev,
4163 				"HMA FW command failed with err %d\n", ret);
4164 			goto free_hma;
4165 		}
4166 	}
4167 
4168 	if (!ret)
4169 		dev_info(adapter->pdev_dev,
4170 			 "Reserved %uMB host memory for HMA\n", hma_size);
4171 	return ret;
4172 
4173 free_hma:
4174 	adap_free_hma_mem(adapter);
4175 	return ret;
4176 }
4177 
4178 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4179 {
4180 	u32 v;
4181 	int ret;
4182 
4183 	/* Now that we've successfully configured and initialized the adapter
4184 	 * can ask the Firmware what resources it has provisioned for us.
4185 	 */
4186 	ret = t4_get_pfres(adap);
4187 	if (ret) {
4188 		dev_err(adap->pdev_dev,
4189 			"Unable to retrieve resource provisioning information\n");
4190 		return ret;
4191 	}
4192 
4193 	/* get device capabilities */
4194 	memset(c, 0, sizeof(*c));
4195 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4196 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
4197 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4198 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4199 	if (ret < 0)
4200 		return ret;
4201 
4202 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4203 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4204 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4205 	if (ret < 0)
4206 		return ret;
4207 
4208 	ret = t4_config_glbl_rss(adap, adap->pf,
4209 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4210 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4211 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4212 	if (ret < 0)
4213 		return ret;
4214 
4215 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4216 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4217 			  FW_CMD_CAP_PF);
4218 	if (ret < 0)
4219 		return ret;
4220 
4221 	t4_sge_init(adap);
4222 
4223 	/* tweak some settings */
4224 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4225 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4226 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4227 	v = t4_read_reg(adap, TP_PIO_DATA_A);
4228 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4229 
4230 	/* first 4 Tx modulation queues point to consecutive Tx channels */
4231 	adap->params.tp.tx_modq_map = 0xE4;
4232 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4233 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4234 
4235 	/* associate each Tx modulation queue with consecutive Tx channels */
4236 	v = 0x84218421;
4237 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4238 			  &v, 1, TP_TX_SCHED_HDR_A);
4239 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4240 			  &v, 1, TP_TX_SCHED_FIFO_A);
4241 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4242 			  &v, 1, TP_TX_SCHED_PCMD_A);
4243 
4244 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4245 	if (is_offload(adap)) {
4246 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4247 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4248 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4249 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4250 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4251 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4252 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4253 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4254 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4255 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4256 	}
4257 
4258 	/* get basic stuff going */
4259 	return t4_early_init(adap, adap->pf);
4260 }
4261 
4262 /*
4263  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4264  */
4265 #define MAX_ATIDS 8192U
4266 
4267 /*
4268  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4269  *
4270  * If the firmware we're dealing with has Configuration File support, then
4271  * we use that to perform all configuration
4272  */
4273 
4274 /*
4275  * Tweak configuration based on module parameters, etc.  Most of these have
4276  * defaults assigned to them by Firmware Configuration Files (if we're using
4277  * them) but need to be explicitly set if we're using hard-coded
4278  * initialization.  But even in the case of using Firmware Configuration
4279  * Files, we'd like to expose the ability to change these via module
4280  * parameters so these are essentially common tweaks/settings for
4281  * Configuration Files and hard-coded initialization ...
4282  */
4283 static int adap_init0_tweaks(struct adapter *adapter)
4284 {
4285 	/*
4286 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4287 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4288 	 * 64B Cache Line Size ...
4289 	 */
4290 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4291 
4292 	/*
4293 	 * Process module parameters which affect early initialization.
4294 	 */
4295 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4296 		dev_err(&adapter->pdev->dev,
4297 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4298 			rx_dma_offset);
4299 		rx_dma_offset = 2;
4300 	}
4301 	t4_set_reg_field(adapter, SGE_CONTROL_A,
4302 			 PKTSHIFT_V(PKTSHIFT_M),
4303 			 PKTSHIFT_V(rx_dma_offset));
4304 
4305 	/*
4306 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4307 	 * adds the pseudo header itself.
4308 	 */
4309 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4310 			       CSUM_HAS_PSEUDO_HDR_F, 0);
4311 
4312 	return 0;
4313 }
4314 
4315 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4316  * unto themselves and they contain their own firmware to perform their
4317  * tasks ...
4318  */
4319 static int phy_aq1202_version(const u8 *phy_fw_data,
4320 			      size_t phy_fw_size)
4321 {
4322 	int offset;
4323 
4324 	/* At offset 0x8 you're looking for the primary image's
4325 	 * starting offset which is 3 Bytes wide
4326 	 *
4327 	 * At offset 0xa of the primary image, you look for the offset
4328 	 * of the DRAM segment which is 3 Bytes wide.
4329 	 *
4330 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4331 	 * wide
4332 	 */
4333 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
4334 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4335 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
4336 
4337 	offset = le24(phy_fw_data + 0x8) << 12;
4338 	offset = le24(phy_fw_data + offset + 0xa);
4339 	return be16(phy_fw_data + offset + 0x27e);
4340 
4341 	#undef be16
4342 	#undef le16
4343 	#undef le24
4344 }
4345 
4346 static struct info_10gbt_phy_fw {
4347 	unsigned int phy_fw_id;		/* PCI Device ID */
4348 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
4349 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4350 	int phy_flash;			/* Has FLASH for PHY Firmware */
4351 } phy_info_array[] = {
4352 	{
4353 		PHY_AQ1202_DEVICEID,
4354 		PHY_AQ1202_FIRMWARE,
4355 		phy_aq1202_version,
4356 		1,
4357 	},
4358 	{
4359 		PHY_BCM84834_DEVICEID,
4360 		PHY_BCM84834_FIRMWARE,
4361 		NULL,
4362 		0,
4363 	},
4364 	{ 0, NULL, NULL },
4365 };
4366 
4367 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4368 {
4369 	int i;
4370 
4371 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4372 		if (phy_info_array[i].phy_fw_id == devid)
4373 			return &phy_info_array[i];
4374 	}
4375 	return NULL;
4376 }
4377 
4378 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4379  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4380  * we return a negative error number.  If we transfer new firmware we return 1
4381  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4382  */
4383 static int adap_init0_phy(struct adapter *adap)
4384 {
4385 	const struct firmware *phyf;
4386 	int ret;
4387 	struct info_10gbt_phy_fw *phy_info;
4388 
4389 	/* Use the device ID to determine which PHY file to flash.
4390 	 */
4391 	phy_info = find_phy_info(adap->pdev->device);
4392 	if (!phy_info) {
4393 		dev_warn(adap->pdev_dev,
4394 			 "No PHY Firmware file found for this PHY\n");
4395 		return -EOPNOTSUPP;
4396 	}
4397 
4398 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4399 	 * use that. The adapter firmware provides us with a memory buffer
4400 	 * where we can load a PHY firmware file from the host if we want to
4401 	 * override the PHY firmware File in flash.
4402 	 */
4403 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4404 				      adap->pdev_dev);
4405 	if (ret < 0) {
4406 		/* For adapters without FLASH attached to PHY for their
4407 		 * firmware, it's obviously a fatal error if we can't get the
4408 		 * firmware to the adapter.  For adapters with PHY firmware
4409 		 * FLASH storage, it's worth a warning if we can't find the
4410 		 * PHY Firmware but we'll neuter the error ...
4411 		 */
4412 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4413 			"/lib/firmware/%s, error %d\n",
4414 			phy_info->phy_fw_file, -ret);
4415 		if (phy_info->phy_flash) {
4416 			int cur_phy_fw_ver = 0;
4417 
4418 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4419 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4420 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4421 			ret = 0;
4422 		}
4423 
4424 		return ret;
4425 	}
4426 
4427 	/* Load PHY Firmware onto adapter.
4428 	 */
4429 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4430 			     (u8 *)phyf->data, phyf->size);
4431 	if (ret < 0)
4432 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4433 			-ret);
4434 	else if (ret > 0) {
4435 		int new_phy_fw_ver = 0;
4436 
4437 		if (phy_info->phy_fw_version)
4438 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4439 								  phyf->size);
4440 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
4441 			 "Firmware /lib/firmware/%s, version %#x\n",
4442 			 phy_info->phy_fw_file, new_phy_fw_ver);
4443 	}
4444 
4445 	release_firmware(phyf);
4446 
4447 	return ret;
4448 }
4449 
4450 /*
4451  * Attempt to initialize the adapter via a Firmware Configuration File.
4452  */
4453 static int adap_init0_config(struct adapter *adapter, int reset)
4454 {
4455 	char *fw_config_file, fw_config_file_path[256];
4456 	u32 finiver, finicsum, cfcsum, param, val;
4457 	struct fw_caps_config_cmd caps_cmd;
4458 	unsigned long mtype = 0, maddr = 0;
4459 	const struct firmware *cf;
4460 	char *config_name = NULL;
4461 	int config_issued = 0;
4462 	int ret;
4463 
4464 	/*
4465 	 * Reset device if necessary.
4466 	 */
4467 	if (reset) {
4468 		ret = t4_fw_reset(adapter, adapter->mbox,
4469 				  PIORSTMODE_F | PIORST_F);
4470 		if (ret < 0)
4471 			goto bye;
4472 	}
4473 
4474 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4475 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4476 	 * to be performed after any global adapter RESET above since some
4477 	 * PHYs only have local RAM copies of the PHY firmware.
4478 	 */
4479 	if (is_10gbt_device(adapter->pdev->device)) {
4480 		ret = adap_init0_phy(adapter);
4481 		if (ret < 0)
4482 			goto bye;
4483 	}
4484 	/*
4485 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4486 	 * then use that.  Otherwise, use the configuration file stored
4487 	 * in the adapter flash ...
4488 	 */
4489 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4490 	case CHELSIO_T4:
4491 		fw_config_file = FW4_CFNAME;
4492 		break;
4493 	case CHELSIO_T5:
4494 		fw_config_file = FW5_CFNAME;
4495 		break;
4496 	case CHELSIO_T6:
4497 		fw_config_file = FW6_CFNAME;
4498 		break;
4499 	default:
4500 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4501 		       adapter->pdev->device);
4502 		ret = -EINVAL;
4503 		goto bye;
4504 	}
4505 
4506 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4507 	if (ret < 0) {
4508 		config_name = "On FLASH";
4509 		mtype = FW_MEMTYPE_CF_FLASH;
4510 		maddr = t4_flash_cfg_addr(adapter);
4511 	} else {
4512 		u32 params[7], val[7];
4513 
4514 		sprintf(fw_config_file_path,
4515 			"/lib/firmware/%s", fw_config_file);
4516 		config_name = fw_config_file_path;
4517 
4518 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4519 			ret = -ENOMEM;
4520 		else {
4521 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4522 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4523 			ret = t4_query_params(adapter, adapter->mbox,
4524 					      adapter->pf, 0, 1, params, val);
4525 			if (ret == 0) {
4526 				/*
4527 				 * For t4_memory_rw() below addresses and
4528 				 * sizes have to be in terms of multiples of 4
4529 				 * bytes.  So, if the Configuration File isn't
4530 				 * a multiple of 4 bytes in length we'll have
4531 				 * to write that out separately since we can't
4532 				 * guarantee that the bytes following the
4533 				 * residual byte in the buffer returned by
4534 				 * request_firmware() are zeroed out ...
4535 				 */
4536 				size_t resid = cf->size & 0x3;
4537 				size_t size = cf->size & ~0x3;
4538 				__be32 *data = (__be32 *)cf->data;
4539 
4540 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4541 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4542 
4543 				spin_lock(&adapter->win0_lock);
4544 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4545 						   size, data, T4_MEMORY_WRITE);
4546 				if (ret == 0 && resid != 0) {
4547 					union {
4548 						__be32 word;
4549 						char buf[4];
4550 					} last;
4551 					int i;
4552 
4553 					last.word = data[size >> 2];
4554 					for (i = resid; i < 4; i++)
4555 						last.buf[i] = 0;
4556 					ret = t4_memory_rw(adapter, 0, mtype,
4557 							   maddr + size,
4558 							   4, &last.word,
4559 							   T4_MEMORY_WRITE);
4560 				}
4561 				spin_unlock(&adapter->win0_lock);
4562 			}
4563 		}
4564 
4565 		release_firmware(cf);
4566 		if (ret)
4567 			goto bye;
4568 	}
4569 
4570 	val = 0;
4571 
4572 	/* Ofld + Hash filter is supported. Older fw will fail this request and
4573 	 * it is fine.
4574 	 */
4575 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4576 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4577 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4578 			    1, &param, &val);
4579 
4580 	/* FW doesn't know about Hash filter + ofld support,
4581 	 * it's not a problem, don't return an error.
4582 	 */
4583 	if (ret < 0) {
4584 		dev_warn(adapter->pdev_dev,
4585 			 "Hash filter with ofld is not supported by FW\n");
4586 	}
4587 
4588 	/*
4589 	 * Issue a Capability Configuration command to the firmware to get it
4590 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4591 	 * because we want the ability to modify various features after we've
4592 	 * processed the configuration file ...
4593 	 */
4594 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4595 	caps_cmd.op_to_write =
4596 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4597 		      FW_CMD_REQUEST_F |
4598 		      FW_CMD_READ_F);
4599 	caps_cmd.cfvalid_to_len16 =
4600 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4601 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4602 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4603 		      FW_LEN16(caps_cmd));
4604 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4605 			 &caps_cmd);
4606 
4607 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4608 	 * Configuration File in FLASH), our last gasp effort is to use the
4609 	 * Firmware Configuration File which is embedded in the firmware.  A
4610 	 * very few early versions of the firmware didn't have one embedded
4611 	 * but we can ignore those.
4612 	 */
4613 	if (ret == -ENOENT) {
4614 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4615 		caps_cmd.op_to_write =
4616 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4617 					FW_CMD_REQUEST_F |
4618 					FW_CMD_READ_F);
4619 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4620 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4621 				sizeof(caps_cmd), &caps_cmd);
4622 		config_name = "Firmware Default";
4623 	}
4624 
4625 	config_issued = 1;
4626 	if (ret < 0)
4627 		goto bye;
4628 
4629 	finiver = ntohl(caps_cmd.finiver);
4630 	finicsum = ntohl(caps_cmd.finicsum);
4631 	cfcsum = ntohl(caps_cmd.cfcsum);
4632 	if (finicsum != cfcsum)
4633 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4634 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4635 			 finicsum, cfcsum);
4636 
4637 	/*
4638 	 * And now tell the firmware to use the configuration we just loaded.
4639 	 */
4640 	caps_cmd.op_to_write =
4641 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4642 		      FW_CMD_REQUEST_F |
4643 		      FW_CMD_WRITE_F);
4644 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4645 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4646 			 NULL);
4647 	if (ret < 0)
4648 		goto bye;
4649 
4650 	/*
4651 	 * Tweak configuration based on system architecture, module
4652 	 * parameters, etc.
4653 	 */
4654 	ret = adap_init0_tweaks(adapter);
4655 	if (ret < 0)
4656 		goto bye;
4657 
4658 	/* We will proceed even if HMA init fails. */
4659 	ret = adap_config_hma(adapter);
4660 	if (ret)
4661 		dev_err(adapter->pdev_dev,
4662 			"HMA configuration failed with error %d\n", ret);
4663 
4664 	if (is_t6(adapter->params.chip)) {
4665 		adap_config_hpfilter(adapter);
4666 		ret = setup_ppod_edram(adapter);
4667 		if (!ret)
4668 			dev_info(adapter->pdev_dev, "Successfully enabled "
4669 				 "ppod edram feature\n");
4670 	}
4671 
4672 	/*
4673 	 * And finally tell the firmware to initialize itself using the
4674 	 * parameters from the Configuration File.
4675 	 */
4676 	ret = t4_fw_initialize(adapter, adapter->mbox);
4677 	if (ret < 0)
4678 		goto bye;
4679 
4680 	/* Emit Firmware Configuration File information and return
4681 	 * successfully.
4682 	 */
4683 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4684 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4685 		 config_name, finiver, cfcsum);
4686 	return 0;
4687 
4688 	/*
4689 	 * Something bad happened.  Return the error ...  (If the "error"
4690 	 * is that there's no Configuration File on the adapter we don't
4691 	 * want to issue a warning since this is fairly common.)
4692 	 */
4693 bye:
4694 	if (config_issued && ret != -ENOENT)
4695 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4696 			 config_name, -ret);
4697 	return ret;
4698 }
4699 
4700 static struct fw_info fw_info_array[] = {
4701 	{
4702 		.chip = CHELSIO_T4,
4703 		.fs_name = FW4_CFNAME,
4704 		.fw_mod_name = FW4_FNAME,
4705 		.fw_hdr = {
4706 			.chip = FW_HDR_CHIP_T4,
4707 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4708 			.intfver_nic = FW_INTFVER(T4, NIC),
4709 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4710 			.intfver_ri = FW_INTFVER(T4, RI),
4711 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4712 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4713 		},
4714 	}, {
4715 		.chip = CHELSIO_T5,
4716 		.fs_name = FW5_CFNAME,
4717 		.fw_mod_name = FW5_FNAME,
4718 		.fw_hdr = {
4719 			.chip = FW_HDR_CHIP_T5,
4720 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4721 			.intfver_nic = FW_INTFVER(T5, NIC),
4722 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4723 			.intfver_ri = FW_INTFVER(T5, RI),
4724 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4725 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4726 		},
4727 	}, {
4728 		.chip = CHELSIO_T6,
4729 		.fs_name = FW6_CFNAME,
4730 		.fw_mod_name = FW6_FNAME,
4731 		.fw_hdr = {
4732 			.chip = FW_HDR_CHIP_T6,
4733 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4734 			.intfver_nic = FW_INTFVER(T6, NIC),
4735 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4736 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4737 			.intfver_ri = FW_INTFVER(T6, RI),
4738 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4739 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4740 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4741 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4742 		},
4743 	}
4744 
4745 };
4746 
4747 static struct fw_info *find_fw_info(int chip)
4748 {
4749 	int i;
4750 
4751 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4752 		if (fw_info_array[i].chip == chip)
4753 			return &fw_info_array[i];
4754 	}
4755 	return NULL;
4756 }
4757 
4758 /*
4759  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4760  */
4761 static int adap_init0(struct adapter *adap, int vpd_skip)
4762 {
4763 	struct fw_caps_config_cmd caps_cmd;
4764 	u32 params[7], val[7];
4765 	enum dev_state state;
4766 	u32 v, port_vec;
4767 	int reset = 1;
4768 	int ret;
4769 
4770 	/* Grab Firmware Device Log parameters as early as possible so we have
4771 	 * access to it for debugging, etc.
4772 	 */
4773 	ret = t4_init_devlog_params(adap);
4774 	if (ret < 0)
4775 		return ret;
4776 
4777 	/* Contact FW, advertising Master capability */
4778 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4779 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4780 	if (ret < 0) {
4781 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4782 			ret);
4783 		return ret;
4784 	}
4785 	if (ret == adap->mbox)
4786 		adap->flags |= CXGB4_MASTER_PF;
4787 
4788 	/*
4789 	 * If we're the Master PF Driver and the device is uninitialized,
4790 	 * then let's consider upgrading the firmware ...  (We always want
4791 	 * to check the firmware version number in order to A. get it for
4792 	 * later reporting and B. to warn if the currently loaded firmware
4793 	 * is excessively mismatched relative to the driver.)
4794 	 */
4795 
4796 	t4_get_version_info(adap);
4797 	ret = t4_check_fw_version(adap);
4798 	/* If firmware is too old (not supported by driver) force an update. */
4799 	if (ret)
4800 		state = DEV_STATE_UNINIT;
4801 	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4802 		struct fw_info *fw_info;
4803 		struct fw_hdr *card_fw;
4804 		const struct firmware *fw;
4805 		const u8 *fw_data = NULL;
4806 		unsigned int fw_size = 0;
4807 
4808 		/* This is the firmware whose headers the driver was compiled
4809 		 * against
4810 		 */
4811 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4812 		if (fw_info == NULL) {
4813 			dev_err(adap->pdev_dev,
4814 				"unable to get firmware info for chip %d.\n",
4815 				CHELSIO_CHIP_VERSION(adap->params.chip));
4816 			return -EINVAL;
4817 		}
4818 
4819 		/* allocate memory to read the header of the firmware on the
4820 		 * card
4821 		 */
4822 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4823 		if (!card_fw) {
4824 			ret = -ENOMEM;
4825 			goto bye;
4826 		}
4827 
4828 		/* Get FW from from /lib/firmware/ */
4829 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4830 				       adap->pdev_dev);
4831 		if (ret < 0) {
4832 			dev_err(adap->pdev_dev,
4833 				"unable to load firmware image %s, error %d\n",
4834 				fw_info->fw_mod_name, ret);
4835 		} else {
4836 			fw_data = fw->data;
4837 			fw_size = fw->size;
4838 		}
4839 
4840 		/* upgrade FW logic */
4841 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4842 				 state, &reset);
4843 
4844 		/* Cleaning up */
4845 		release_firmware(fw);
4846 		kvfree(card_fw);
4847 
4848 		if (ret < 0)
4849 			goto bye;
4850 	}
4851 
4852 	/* If the firmware is initialized already, emit a simply note to that
4853 	 * effect. Otherwise, it's time to try initializing the adapter.
4854 	 */
4855 	if (state == DEV_STATE_INIT) {
4856 		ret = adap_config_hma(adap);
4857 		if (ret)
4858 			dev_err(adap->pdev_dev,
4859 				"HMA configuration failed with error %d\n",
4860 				ret);
4861 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4862 			 "Adapter already initialized\n",
4863 			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4864 	} else {
4865 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4866 			 "Initializing adapter\n");
4867 
4868 		/* Find out whether we're dealing with a version of the
4869 		 * firmware which has configuration file support.
4870 		 */
4871 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4872 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4873 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4874 				      params, val);
4875 
4876 		/* If the firmware doesn't support Configuration Files,
4877 		 * return an error.
4878 		 */
4879 		if (ret < 0) {
4880 			dev_err(adap->pdev_dev, "firmware doesn't support "
4881 				"Firmware Configuration Files\n");
4882 			goto bye;
4883 		}
4884 
4885 		/* The firmware provides us with a memory buffer where we can
4886 		 * load a Configuration File from the host if we want to
4887 		 * override the Configuration File in flash.
4888 		 */
4889 		ret = adap_init0_config(adap, reset);
4890 		if (ret == -ENOENT) {
4891 			dev_err(adap->pdev_dev, "no Configuration File "
4892 				"present on adapter.\n");
4893 			goto bye;
4894 		}
4895 		if (ret < 0) {
4896 			dev_err(adap->pdev_dev, "could not initialize "
4897 				"adapter, error %d\n", -ret);
4898 			goto bye;
4899 		}
4900 	}
4901 
4902 	/* Now that we've successfully configured and initialized the adapter
4903 	 * (or found it already initialized), we can ask the Firmware what
4904 	 * resources it has provisioned for us.
4905 	 */
4906 	ret = t4_get_pfres(adap);
4907 	if (ret) {
4908 		dev_err(adap->pdev_dev,
4909 			"Unable to retrieve resource provisioning information\n");
4910 		goto bye;
4911 	}
4912 
4913 	/* Grab VPD parameters.  This should be done after we establish a
4914 	 * connection to the firmware since some of the VPD parameters
4915 	 * (notably the Core Clock frequency) are retrieved via requests to
4916 	 * the firmware.  On the other hand, we need these fairly early on
4917 	 * so we do this right after getting ahold of the firmware.
4918 	 *
4919 	 * We need to do this after initializing the adapter because someone
4920 	 * could have FLASHed a new VPD which won't be read by the firmware
4921 	 * until we do the RESET ...
4922 	 */
4923 	if (!vpd_skip) {
4924 		ret = t4_get_vpd_params(adap, &adap->params.vpd);
4925 		if (ret < 0)
4926 			goto bye;
4927 	}
4928 
4929 	/* Find out what ports are available to us.  Note that we need to do
4930 	 * this before calling adap_init0_no_config() since it needs nports
4931 	 * and portvec ...
4932 	 */
4933 	v =
4934 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4935 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4936 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4937 	if (ret < 0)
4938 		goto bye;
4939 
4940 	adap->params.nports = hweight32(port_vec);
4941 	adap->params.portvec = port_vec;
4942 
4943 	/* Give the SGE code a chance to pull in anything that it needs ...
4944 	 * Note that this must be called after we retrieve our VPD parameters
4945 	 * in order to know how to convert core ticks to seconds, etc.
4946 	 */
4947 	ret = t4_sge_init(adap);
4948 	if (ret < 0)
4949 		goto bye;
4950 
4951 	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4952 	 * indicates that the Firmware and Hardware support this.
4953 	 */
4954 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4955 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4956 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4957 			      1, params, val);
4958 
4959 	if (!ret) {
4960 		adap->sge.dbqtimer_tick = val[0];
4961 		ret = t4_read_sge_dbqtimers(adap,
4962 					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4963 					    adap->sge.dbqtimer_val);
4964 	}
4965 
4966 	if (!ret)
4967 		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4968 
4969 	if (is_bypass_device(adap->pdev->device))
4970 		adap->params.bypass = 1;
4971 
4972 	/*
4973 	 * Grab some of our basic fundamental operating parameters.
4974 	 */
4975 	params[0] = FW_PARAM_PFVF(EQ_START);
4976 	params[1] = FW_PARAM_PFVF(L2T_START);
4977 	params[2] = FW_PARAM_PFVF(L2T_END);
4978 	params[3] = FW_PARAM_PFVF(FILTER_START);
4979 	params[4] = FW_PARAM_PFVF(FILTER_END);
4980 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4981 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4982 	if (ret < 0)
4983 		goto bye;
4984 	adap->sge.egr_start = val[0];
4985 	adap->l2t_start = val[1];
4986 	adap->l2t_end = val[2];
4987 	adap->tids.ftid_base = val[3];
4988 	adap->tids.nftids = val[4] - val[3] + 1;
4989 	adap->sge.ingr_start = val[5];
4990 
4991 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4992 		params[0] = FW_PARAM_PFVF(HPFILTER_START);
4993 		params[1] = FW_PARAM_PFVF(HPFILTER_END);
4994 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4995 				      params, val);
4996 		if (ret < 0)
4997 			goto bye;
4998 
4999 		adap->tids.hpftid_base = val[0];
5000 		adap->tids.nhpftids = val[1] - val[0] + 1;
5001 
5002 		/* Read the raw mps entries. In T6, the last 2 tcam entries
5003 		 * are reserved for raw mac addresses (rawf = 2, one per port).
5004 		 */
5005 		params[0] = FW_PARAM_PFVF(RAWF_START);
5006 		params[1] = FW_PARAM_PFVF(RAWF_END);
5007 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5008 				      params, val);
5009 		if (ret == 0) {
5010 			adap->rawf_start = val[0];
5011 			adap->rawf_cnt = val[1] - val[0] + 1;
5012 		}
5013 
5014 		adap->tids.tid_base =
5015 			t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5016 	}
5017 
5018 	/* qids (ingress/egress) returned from firmware can be anywhere
5019 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5020 	 * Hence driver needs to allocate memory for this range to
5021 	 * store the queue info. Get the highest IQFLINT/EQ index returned
5022 	 * in FW_EQ_*_CMD.alloc command.
5023 	 */
5024 	params[0] = FW_PARAM_PFVF(EQ_END);
5025 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
5026 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5027 	if (ret < 0)
5028 		goto bye;
5029 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5030 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5031 
5032 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5033 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
5034 	if (!adap->sge.egr_map) {
5035 		ret = -ENOMEM;
5036 		goto bye;
5037 	}
5038 
5039 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5040 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5041 	if (!adap->sge.ingr_map) {
5042 		ret = -ENOMEM;
5043 		goto bye;
5044 	}
5045 
5046 	/* Allocate the memory for the vaious egress queue bitmaps
5047 	 * ie starving_fl, txq_maperr and blocked_fl.
5048 	 */
5049 	adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5050 	if (!adap->sge.starving_fl) {
5051 		ret = -ENOMEM;
5052 		goto bye;
5053 	}
5054 
5055 	adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5056 	if (!adap->sge.txq_maperr) {
5057 		ret = -ENOMEM;
5058 		goto bye;
5059 	}
5060 
5061 #ifdef CONFIG_DEBUG_FS
5062 	adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5063 	if (!adap->sge.blocked_fl) {
5064 		ret = -ENOMEM;
5065 		goto bye;
5066 	}
5067 #endif
5068 
5069 	params[0] = FW_PARAM_PFVF(CLIP_START);
5070 	params[1] = FW_PARAM_PFVF(CLIP_END);
5071 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5072 	if (ret < 0)
5073 		goto bye;
5074 	adap->clipt_start = val[0];
5075 	adap->clipt_end = val[1];
5076 
5077 	/* Get the supported number of traffic classes */
5078 	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5079 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5080 	if (ret < 0) {
5081 		/* We couldn't retrieve the number of Traffic Classes
5082 		 * supported by the hardware/firmware. So we hard
5083 		 * code it here.
5084 		 */
5085 		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5086 	} else {
5087 		adap->params.nsched_cls = val[0];
5088 	}
5089 
5090 	/* query params related to active filter region */
5091 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5092 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5093 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5094 	/* If Active filter size is set we enable establishing
5095 	 * offload connection through firmware work request
5096 	 */
5097 	if ((val[0] != val[1]) && (ret >= 0)) {
5098 		adap->flags |= CXGB4_FW_OFLD_CONN;
5099 		adap->tids.aftid_base = val[0];
5100 		adap->tids.aftid_end = val[1];
5101 	}
5102 
5103 	/* If we're running on newer firmware, let it know that we're
5104 	 * prepared to deal with encapsulated CPL messages.  Older
5105 	 * firmware won't understand this and we'll just get
5106 	 * unencapsulated messages ...
5107 	 */
5108 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5109 	val[0] = 1;
5110 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5111 
5112 	/*
5113 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5114 	 * capability.  Earlier versions of the firmware didn't have the
5115 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5116 	 * permission to use ULPTX MEMWRITE DSGL.
5117 	 */
5118 	if (is_t4(adap->params.chip)) {
5119 		adap->params.ulptx_memwrite_dsgl = false;
5120 	} else {
5121 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5122 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5123 				      1, params, val);
5124 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5125 	}
5126 
5127 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5128 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5129 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5130 			      1, params, val);
5131 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5132 
5133 	/* See if FW supports FW_FILTER2 work request */
5134 	if (is_t4(adap->params.chip)) {
5135 		adap->params.filter2_wr_support = false;
5136 	} else {
5137 		params[0] = FW_PARAM_DEV(FILTER2_WR);
5138 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5139 				      1, params, val);
5140 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5141 	}
5142 
5143 	/* Check if FW supports returning vin and smt index.
5144 	 * If this is not supported, driver will interpret
5145 	 * these values from viid.
5146 	 */
5147 	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5148 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5149 			      1, params, val);
5150 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5151 
5152 	/*
5153 	 * Get device capabilities so we can determine what resources we need
5154 	 * to manage.
5155 	 */
5156 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5157 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5158 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
5159 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5160 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5161 			 &caps_cmd);
5162 	if (ret < 0)
5163 		goto bye;
5164 
5165 	/* hash filter has some mandatory register settings to be tested and for
5166 	 * that it needs to test whether offload is enabled or not, hence
5167 	 * checking and setting it here.
5168 	 */
5169 	if (caps_cmd.ofldcaps)
5170 		adap->params.offload = 1;
5171 
5172 	if (caps_cmd.ofldcaps ||
5173 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5174 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5175 		/* query offload-related parameters */
5176 		params[0] = FW_PARAM_DEV(NTID);
5177 		params[1] = FW_PARAM_PFVF(SERVER_START);
5178 		params[2] = FW_PARAM_PFVF(SERVER_END);
5179 		params[3] = FW_PARAM_PFVF(TDDP_START);
5180 		params[4] = FW_PARAM_PFVF(TDDP_END);
5181 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5182 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5183 				      params, val);
5184 		if (ret < 0)
5185 			goto bye;
5186 		adap->tids.ntids = val[0];
5187 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5188 		adap->tids.stid_base = val[1];
5189 		adap->tids.nstids = val[2] - val[1] + 1;
5190 		/*
5191 		 * Setup server filter region. Divide the available filter
5192 		 * region into two parts. Regular filters get 1/3rd and server
5193 		 * filters get 2/3rd part. This is only enabled if workarond
5194 		 * path is enabled.
5195 		 * 1. For regular filters.
5196 		 * 2. Server filter: This are special filters which are used
5197 		 * to redirect SYN packets to offload queue.
5198 		 */
5199 		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5200 			adap->tids.sftid_base = adap->tids.ftid_base +
5201 					DIV_ROUND_UP(adap->tids.nftids, 3);
5202 			adap->tids.nsftids = adap->tids.nftids -
5203 					 DIV_ROUND_UP(adap->tids.nftids, 3);
5204 			adap->tids.nftids = adap->tids.sftid_base -
5205 						adap->tids.ftid_base;
5206 		}
5207 		adap->vres.ddp.start = val[3];
5208 		adap->vres.ddp.size = val[4] - val[3] + 1;
5209 		adap->params.ofldq_wr_cred = val[5];
5210 
5211 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5212 			init_hash_filter(adap);
5213 		} else {
5214 			adap->num_ofld_uld += 1;
5215 		}
5216 
5217 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5218 			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5219 			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5220 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5221 					      params, val);
5222 			if (!ret) {
5223 				adap->tids.eotid_base = val[0];
5224 				adap->tids.neotids = min_t(u32, MAX_ATIDS,
5225 							   val[1] - val[0] + 1);
5226 				adap->params.ethofld = 1;
5227 			}
5228 		}
5229 	}
5230 	if (caps_cmd.rdmacaps) {
5231 		params[0] = FW_PARAM_PFVF(STAG_START);
5232 		params[1] = FW_PARAM_PFVF(STAG_END);
5233 		params[2] = FW_PARAM_PFVF(RQ_START);
5234 		params[3] = FW_PARAM_PFVF(RQ_END);
5235 		params[4] = FW_PARAM_PFVF(PBL_START);
5236 		params[5] = FW_PARAM_PFVF(PBL_END);
5237 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5238 				      params, val);
5239 		if (ret < 0)
5240 			goto bye;
5241 		adap->vres.stag.start = val[0];
5242 		adap->vres.stag.size = val[1] - val[0] + 1;
5243 		adap->vres.rq.start = val[2];
5244 		adap->vres.rq.size = val[3] - val[2] + 1;
5245 		adap->vres.pbl.start = val[4];
5246 		adap->vres.pbl.size = val[5] - val[4] + 1;
5247 
5248 		params[0] = FW_PARAM_PFVF(SRQ_START);
5249 		params[1] = FW_PARAM_PFVF(SRQ_END);
5250 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5251 				      params, val);
5252 		if (!ret) {
5253 			adap->vres.srq.start = val[0];
5254 			adap->vres.srq.size = val[1] - val[0] + 1;
5255 		}
5256 		if (adap->vres.srq.size) {
5257 			adap->srq = t4_init_srq(adap->vres.srq.size);
5258 			if (!adap->srq)
5259 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5260 		}
5261 
5262 		params[0] = FW_PARAM_PFVF(SQRQ_START);
5263 		params[1] = FW_PARAM_PFVF(SQRQ_END);
5264 		params[2] = FW_PARAM_PFVF(CQ_START);
5265 		params[3] = FW_PARAM_PFVF(CQ_END);
5266 		params[4] = FW_PARAM_PFVF(OCQ_START);
5267 		params[5] = FW_PARAM_PFVF(OCQ_END);
5268 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5269 				      val);
5270 		if (ret < 0)
5271 			goto bye;
5272 		adap->vres.qp.start = val[0];
5273 		adap->vres.qp.size = val[1] - val[0] + 1;
5274 		adap->vres.cq.start = val[2];
5275 		adap->vres.cq.size = val[3] - val[2] + 1;
5276 		adap->vres.ocq.start = val[4];
5277 		adap->vres.ocq.size = val[5] - val[4] + 1;
5278 
5279 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5280 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5281 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5282 				      val);
5283 		if (ret < 0) {
5284 			adap->params.max_ordird_qp = 8;
5285 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5286 			ret = 0;
5287 		} else {
5288 			adap->params.max_ordird_qp = val[0];
5289 			adap->params.max_ird_adapter = val[1];
5290 		}
5291 		dev_info(adap->pdev_dev,
5292 			 "max_ordird_qp %d max_ird_adapter %d\n",
5293 			 adap->params.max_ordird_qp,
5294 			 adap->params.max_ird_adapter);
5295 
5296 		/* Enable write_with_immediate if FW supports it */
5297 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5298 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5299 				      val);
5300 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5301 
5302 		/* Enable write_cmpl if FW supports it */
5303 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5304 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5305 				      val);
5306 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5307 		adap->num_ofld_uld += 2;
5308 	}
5309 	if (caps_cmd.iscsicaps) {
5310 		params[0] = FW_PARAM_PFVF(ISCSI_START);
5311 		params[1] = FW_PARAM_PFVF(ISCSI_END);
5312 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5313 				      params, val);
5314 		if (ret < 0)
5315 			goto bye;
5316 		adap->vres.iscsi.start = val[0];
5317 		adap->vres.iscsi.size = val[1] - val[0] + 1;
5318 		if (is_t6(adap->params.chip)) {
5319 			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5320 			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5321 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5322 					      params, val);
5323 			if (!ret) {
5324 				adap->vres.ppod_edram.start = val[0];
5325 				adap->vres.ppod_edram.size =
5326 					val[1] - val[0] + 1;
5327 
5328 				dev_info(adap->pdev_dev,
5329 					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5330 					 val[0], val[1],
5331 					 adap->vres.ppod_edram.size);
5332 			}
5333 		}
5334 		/* LIO target and cxgb4i initiaitor */
5335 		adap->num_ofld_uld += 2;
5336 	}
5337 	if (caps_cmd.cryptocaps) {
5338 		if (ntohs(caps_cmd.cryptocaps) &
5339 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5340 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5341 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5342 					      2, params, val);
5343 			if (ret < 0) {
5344 				if (ret != -EINVAL)
5345 					goto bye;
5346 			} else {
5347 				adap->vres.ncrypto_fc = val[0];
5348 			}
5349 			adap->num_ofld_uld += 1;
5350 		}
5351 		if (ntohs(caps_cmd.cryptocaps) &
5352 		    FW_CAPS_CONFIG_TLS_INLINE) {
5353 			params[0] = FW_PARAM_PFVF(TLS_START);
5354 			params[1] = FW_PARAM_PFVF(TLS_END);
5355 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5356 					      2, params, val);
5357 			if (ret < 0)
5358 				goto bye;
5359 			adap->vres.key.start = val[0];
5360 			adap->vres.key.size = val[1] - val[0] + 1;
5361 			adap->num_uld += 1;
5362 		}
5363 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5364 	}
5365 
5366 	/* The MTU/MSS Table is initialized by now, so load their values.  If
5367 	 * we're initializing the adapter, then we'll make any modifications
5368 	 * we want to the MTU/MSS Table and also initialize the congestion
5369 	 * parameters.
5370 	 */
5371 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5372 	if (state != DEV_STATE_INIT) {
5373 		int i;
5374 
5375 		/* The default MTU Table contains values 1492 and 1500.
5376 		 * However, for TCP, it's better to have two values which are
5377 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5378 		 * This allows us to have a TCP Data Payload which is a
5379 		 * multiple of 8 regardless of what combination of TCP Options
5380 		 * are in use (always a multiple of 4 bytes) which is
5381 		 * important for performance reasons.  For instance, if no
5382 		 * options are in use, then we have a 20-byte IP header and a
5383 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5384 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5385 		 * which is not a multiple of 8.  So using an MSS of 1488 in
5386 		 * this case results in a TCP Data Payload of 1448 bytes which
5387 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5388 		 * Stamps have been negotiated, then an MTU of 1500 bytes
5389 		 * results in a TCP Data Payload of 1448 bytes which, as
5390 		 * above, is a multiple of 8 bytes ...
5391 		 */
5392 		for (i = 0; i < NMTUS; i++)
5393 			if (adap->params.mtus[i] == 1492) {
5394 				adap->params.mtus[i] = 1488;
5395 				break;
5396 			}
5397 
5398 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5399 			     adap->params.b_wnd);
5400 	}
5401 	t4_init_sge_params(adap);
5402 	adap->flags |= CXGB4_FW_OK;
5403 	t4_init_tp_params(adap, true);
5404 	return 0;
5405 
5406 	/*
5407 	 * Something bad happened.  If a command timed out or failed with EIO
5408 	 * FW does not operate within its spec or something catastrophic
5409 	 * happened to HW/FW, stop issuing commands.
5410 	 */
5411 bye:
5412 	adap_free_hma_mem(adap);
5413 	kfree(adap->sge.egr_map);
5414 	kfree(adap->sge.ingr_map);
5415 	bitmap_free(adap->sge.starving_fl);
5416 	bitmap_free(adap->sge.txq_maperr);
5417 #ifdef CONFIG_DEBUG_FS
5418 	bitmap_free(adap->sge.blocked_fl);
5419 #endif
5420 	if (ret != -ETIMEDOUT && ret != -EIO)
5421 		t4_fw_bye(adap, adap->mbox);
5422 	return ret;
5423 }
5424 
5425 /* EEH callbacks */
5426 
5427 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5428 					 pci_channel_state_t state)
5429 {
5430 	int i;
5431 	struct adapter *adap = pci_get_drvdata(pdev);
5432 
5433 	if (!adap)
5434 		goto out;
5435 
5436 	rtnl_lock();
5437 	adap->flags &= ~CXGB4_FW_OK;
5438 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5439 	spin_lock(&adap->stats_lock);
5440 	for_each_port(adap, i) {
5441 		struct net_device *dev = adap->port[i];
5442 		if (dev) {
5443 			netif_device_detach(dev);
5444 			netif_carrier_off(dev);
5445 		}
5446 	}
5447 	spin_unlock(&adap->stats_lock);
5448 	disable_interrupts(adap);
5449 	if (adap->flags & CXGB4_FULL_INIT_DONE)
5450 		cxgb_down(adap);
5451 	rtnl_unlock();
5452 	if ((adap->flags & CXGB4_DEV_ENABLED)) {
5453 		pci_disable_device(pdev);
5454 		adap->flags &= ~CXGB4_DEV_ENABLED;
5455 	}
5456 out:	return state == pci_channel_io_perm_failure ?
5457 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5458 }
5459 
5460 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5461 {
5462 	int i, ret;
5463 	struct fw_caps_config_cmd c;
5464 	struct adapter *adap = pci_get_drvdata(pdev);
5465 
5466 	if (!adap) {
5467 		pci_restore_state(pdev);
5468 		pci_save_state(pdev);
5469 		return PCI_ERS_RESULT_RECOVERED;
5470 	}
5471 
5472 	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5473 		if (pci_enable_device(pdev)) {
5474 			dev_err(&pdev->dev, "Cannot reenable PCI "
5475 					    "device after reset\n");
5476 			return PCI_ERS_RESULT_DISCONNECT;
5477 		}
5478 		adap->flags |= CXGB4_DEV_ENABLED;
5479 	}
5480 
5481 	pci_set_master(pdev);
5482 	pci_restore_state(pdev);
5483 	pci_save_state(pdev);
5484 
5485 	if (t4_wait_dev_ready(adap->regs) < 0)
5486 		return PCI_ERS_RESULT_DISCONNECT;
5487 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5488 		return PCI_ERS_RESULT_DISCONNECT;
5489 	adap->flags |= CXGB4_FW_OK;
5490 	if (adap_init1(adap, &c))
5491 		return PCI_ERS_RESULT_DISCONNECT;
5492 
5493 	for_each_port(adap, i) {
5494 		struct port_info *pi = adap2pinfo(adap, i);
5495 		u8 vivld = 0, vin = 0;
5496 
5497 		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5498 				  NULL, NULL, &vivld, &vin);
5499 		if (ret < 0)
5500 			return PCI_ERS_RESULT_DISCONNECT;
5501 		pi->viid = ret;
5502 		pi->xact_addr_filt = -1;
5503 		/* If fw supports returning the VIN as part of FW_VI_CMD,
5504 		 * save the returned values.
5505 		 */
5506 		if (adap->params.viid_smt_extn_support) {
5507 			pi->vivld = vivld;
5508 			pi->vin = vin;
5509 		} else {
5510 			/* Retrieve the values from VIID */
5511 			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5512 			pi->vin = FW_VIID_VIN_G(pi->viid);
5513 		}
5514 	}
5515 
5516 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5517 		     adap->params.b_wnd);
5518 	setup_memwin(adap);
5519 	if (cxgb_up(adap))
5520 		return PCI_ERS_RESULT_DISCONNECT;
5521 	return PCI_ERS_RESULT_RECOVERED;
5522 }
5523 
5524 static void eeh_resume(struct pci_dev *pdev)
5525 {
5526 	int i;
5527 	struct adapter *adap = pci_get_drvdata(pdev);
5528 
5529 	if (!adap)
5530 		return;
5531 
5532 	rtnl_lock();
5533 	for_each_port(adap, i) {
5534 		struct net_device *dev = adap->port[i];
5535 		if (dev) {
5536 			if (netif_running(dev)) {
5537 				link_start(dev);
5538 				cxgb_set_rxmode(dev);
5539 			}
5540 			netif_device_attach(dev);
5541 		}
5542 	}
5543 	rtnl_unlock();
5544 }
5545 
5546 static void eeh_reset_prepare(struct pci_dev *pdev)
5547 {
5548 	struct adapter *adapter = pci_get_drvdata(pdev);
5549 	int i;
5550 
5551 	if (adapter->pf != 4)
5552 		return;
5553 
5554 	adapter->flags &= ~CXGB4_FW_OK;
5555 
5556 	notify_ulds(adapter, CXGB4_STATE_DOWN);
5557 
5558 	for_each_port(adapter, i)
5559 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5560 			cxgb_close(adapter->port[i]);
5561 
5562 	disable_interrupts(adapter);
5563 	cxgb4_free_mps_ref_entries(adapter);
5564 
5565 	adap_free_hma_mem(adapter);
5566 
5567 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
5568 		cxgb_down(adapter);
5569 }
5570 
5571 static void eeh_reset_done(struct pci_dev *pdev)
5572 {
5573 	struct adapter *adapter = pci_get_drvdata(pdev);
5574 	int err, i;
5575 
5576 	if (adapter->pf != 4)
5577 		return;
5578 
5579 	err = t4_wait_dev_ready(adapter->regs);
5580 	if (err < 0) {
5581 		dev_err(adapter->pdev_dev,
5582 			"Device not ready, err %d", err);
5583 		return;
5584 	}
5585 
5586 	setup_memwin(adapter);
5587 
5588 	err = adap_init0(adapter, 1);
5589 	if (err) {
5590 		dev_err(adapter->pdev_dev,
5591 			"Adapter init failed, err %d", err);
5592 		return;
5593 	}
5594 
5595 	setup_memwin_rdma(adapter);
5596 
5597 	if (adapter->flags & CXGB4_FW_OK) {
5598 		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5599 		if (err) {
5600 			dev_err(adapter->pdev_dev,
5601 				"Port init failed, err %d", err);
5602 			return;
5603 		}
5604 	}
5605 
5606 	err = cfg_queues(adapter);
5607 	if (err) {
5608 		dev_err(adapter->pdev_dev,
5609 			"Config queues failed, err %d", err);
5610 		return;
5611 	}
5612 
5613 	cxgb4_init_mps_ref_entries(adapter);
5614 
5615 	err = setup_fw_sge_queues(adapter);
5616 	if (err) {
5617 		dev_err(adapter->pdev_dev,
5618 			"FW sge queue allocation failed, err %d", err);
5619 		return;
5620 	}
5621 
5622 	for_each_port(adapter, i)
5623 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5624 			cxgb_open(adapter->port[i]);
5625 }
5626 
5627 static const struct pci_error_handlers cxgb4_eeh = {
5628 	.error_detected = eeh_err_detected,
5629 	.slot_reset     = eeh_slot_reset,
5630 	.resume         = eeh_resume,
5631 	.reset_prepare  = eeh_reset_prepare,
5632 	.reset_done     = eeh_reset_done,
5633 };
5634 
5635 /* Return true if the Link Configuration supports "High Speeds" (those greater
5636  * than 1Gb/s).
5637  */
5638 static inline bool is_x_10g_port(const struct link_config *lc)
5639 {
5640 	unsigned int speeds, high_speeds;
5641 
5642 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5643 	high_speeds = speeds &
5644 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5645 
5646 	return high_speeds != 0;
5647 }
5648 
5649 /* Perform default configuration of DMA queues depending on the number and type
5650  * of ports we found and the number of available CPUs.  Most settings can be
5651  * modified by the admin prior to actual use.
5652  */
5653 static int cfg_queues(struct adapter *adap)
5654 {
5655 	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5656 	u32 ncpus = num_online_cpus();
5657 	u32 niqflint, neq, num_ulds;
5658 	struct sge *s = &adap->sge;
5659 	u32 i, n10g = 0, qidx = 0;
5660 	u32 q10g = 0, q1g;
5661 
5662 	/* Reduce memory usage in kdump environment, disable all offload. */
5663 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5664 		adap->params.offload = 0;
5665 		adap->params.crypto = 0;
5666 		adap->params.ethofld = 0;
5667 	}
5668 
5669 	/* Calculate the number of Ethernet Queue Sets available based on
5670 	 * resources provisioned for us.  We always have an Asynchronous
5671 	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5672 	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5673 	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5674 	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5675 	 *
5676 	 * Note that we should also take into account all of the various
5677 	 * Offload Queues.  But, in any situation where we're operating in
5678 	 * a Resource Constrained Provisioning environment, doing any Offload
5679 	 * at all is problematic ...
5680 	 */
5681 	niqflint = adap->params.pfres.niqflint - 1;
5682 	if (!(adap->flags & CXGB4_USING_MSIX))
5683 		niqflint--;
5684 	neq = adap->params.pfres.neq / 2;
5685 	avail_qsets = min(niqflint, neq);
5686 
5687 	if (avail_qsets < adap->params.nports) {
5688 		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5689 			avail_qsets, adap->params.nports);
5690 		return -ENOMEM;
5691 	}
5692 
5693 	/* Count the number of 10Gb/s or better ports */
5694 	for_each_port(adap, i)
5695 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5696 
5697 	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5698 
5699 	/* We default to 1 queue per non-10G port and up to # of cores queues
5700 	 * per 10G port.
5701 	 */
5702 	if (n10g)
5703 		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5704 
5705 #ifdef CONFIG_CHELSIO_T4_DCB
5706 	/* For Data Center Bridging support we need to be able to support up
5707 	 * to 8 Traffic Priorities; each of which will be assigned to its
5708 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5709 	 */
5710 	q1g = 8;
5711 	if (adap->params.nports * 8 > avail_eth_qsets) {
5712 		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5713 			avail_eth_qsets, adap->params.nports * 8);
5714 		return -ENOMEM;
5715 	}
5716 
5717 	if (adap->params.nports * ncpus < avail_eth_qsets)
5718 		q10g = max(8U, ncpus);
5719 	else
5720 		q10g = max(8U, q10g);
5721 
5722 	while ((q10g * n10g) >
5723 	       (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5724 		q10g--;
5725 
5726 #else /* !CONFIG_CHELSIO_T4_DCB */
5727 	q1g = 1;
5728 	q10g = min(q10g, ncpus);
5729 #endif /* !CONFIG_CHELSIO_T4_DCB */
5730 	if (is_kdump_kernel()) {
5731 		q10g = 1;
5732 		q1g = 1;
5733 	}
5734 
5735 	for_each_port(adap, i) {
5736 		struct port_info *pi = adap2pinfo(adap, i);
5737 
5738 		pi->first_qset = qidx;
5739 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5740 		qidx += pi->nqsets;
5741 	}
5742 
5743 	s->ethqsets = qidx;
5744 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5745 	avail_qsets -= qidx;
5746 
5747 	if (is_uld(adap)) {
5748 		/* For offload we use 1 queue/channel if all ports are up to 1G,
5749 		 * otherwise we divide all available queues amongst the channels
5750 		 * capped by the number of available cores.
5751 		 */
5752 		num_ulds = adap->num_uld + adap->num_ofld_uld;
5753 		i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5754 		avail_uld_qsets = roundup(i, adap->params.nports);
5755 		if (avail_qsets < num_ulds * adap->params.nports) {
5756 			adap->params.offload = 0;
5757 			adap->params.crypto = 0;
5758 			s->ofldqsets = 0;
5759 		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5760 			s->ofldqsets = adap->params.nports;
5761 		} else {
5762 			s->ofldqsets = avail_uld_qsets;
5763 		}
5764 
5765 		avail_qsets -= num_ulds * s->ofldqsets;
5766 	}
5767 
5768 	/* ETHOFLD Queues used for QoS offload should follow same
5769 	 * allocation scheme as normal Ethernet Queues.
5770 	 */
5771 	if (is_ethofld(adap)) {
5772 		if (avail_qsets < s->max_ethqsets) {
5773 			adap->params.ethofld = 0;
5774 			s->eoqsets = 0;
5775 		} else {
5776 			s->eoqsets = s->max_ethqsets;
5777 		}
5778 		avail_qsets -= s->eoqsets;
5779 	}
5780 
5781 	/* Mirror queues must follow same scheme as normal Ethernet
5782 	 * Queues, when there are enough queues available. Otherwise,
5783 	 * allocate at least 1 queue per port. If even 1 queue is not
5784 	 * available, then disable mirror queues support.
5785 	 */
5786 	if (avail_qsets >= s->max_ethqsets)
5787 		s->mirrorqsets = s->max_ethqsets;
5788 	else if (avail_qsets >= adap->params.nports)
5789 		s->mirrorqsets = adap->params.nports;
5790 	else
5791 		s->mirrorqsets = 0;
5792 	avail_qsets -= s->mirrorqsets;
5793 
5794 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5795 		struct sge_eth_rxq *r = &s->ethrxq[i];
5796 
5797 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5798 		r->fl.size = 72;
5799 	}
5800 
5801 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5802 		s->ethtxq[i].q.size = 1024;
5803 
5804 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5805 		s->ctrlq[i].q.size = 512;
5806 
5807 	if (!is_t4(adap->params.chip))
5808 		s->ptptxq.q.size = 8;
5809 
5810 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5811 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5812 
5813 	return 0;
5814 }
5815 
5816 /*
5817  * Reduce the number of Ethernet queues across all ports to at most n.
5818  * n provides at least one queue per port.
5819  */
5820 static void reduce_ethqs(struct adapter *adap, int n)
5821 {
5822 	int i;
5823 	struct port_info *pi;
5824 
5825 	while (n < adap->sge.ethqsets)
5826 		for_each_port(adap, i) {
5827 			pi = adap2pinfo(adap, i);
5828 			if (pi->nqsets > 1) {
5829 				pi->nqsets--;
5830 				adap->sge.ethqsets--;
5831 				if (adap->sge.ethqsets <= n)
5832 					break;
5833 			}
5834 		}
5835 
5836 	n = 0;
5837 	for_each_port(adap, i) {
5838 		pi = adap2pinfo(adap, i);
5839 		pi->first_qset = n;
5840 		n += pi->nqsets;
5841 	}
5842 }
5843 
5844 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5845 {
5846 	struct msix_info *msix_info;
5847 
5848 	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5849 	if (!msix_info)
5850 		return -ENOMEM;
5851 
5852 	adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL);
5853 	if (!adap->msix_bmap.msix_bmap) {
5854 		kfree(msix_info);
5855 		return -ENOMEM;
5856 	}
5857 
5858 	spin_lock_init(&adap->msix_bmap.lock);
5859 	adap->msix_bmap.mapsize = num_vec;
5860 
5861 	adap->msix_info = msix_info;
5862 	return 0;
5863 }
5864 
5865 static void free_msix_info(struct adapter *adap)
5866 {
5867 	bitmap_free(adap->msix_bmap.msix_bmap);
5868 	kfree(adap->msix_info);
5869 }
5870 
5871 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5872 {
5873 	struct msix_bmap *bmap = &adap->msix_bmap;
5874 	unsigned int msix_idx;
5875 	unsigned long flags;
5876 
5877 	spin_lock_irqsave(&bmap->lock, flags);
5878 	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5879 	if (msix_idx < bmap->mapsize) {
5880 		__set_bit(msix_idx, bmap->msix_bmap);
5881 	} else {
5882 		spin_unlock_irqrestore(&bmap->lock, flags);
5883 		return -ENOSPC;
5884 	}
5885 
5886 	spin_unlock_irqrestore(&bmap->lock, flags);
5887 	return msix_idx;
5888 }
5889 
5890 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5891 				 unsigned int msix_idx)
5892 {
5893 	struct msix_bmap *bmap = &adap->msix_bmap;
5894 	unsigned long flags;
5895 
5896 	spin_lock_irqsave(&bmap->lock, flags);
5897 	__clear_bit(msix_idx, bmap->msix_bmap);
5898 	spin_unlock_irqrestore(&bmap->lock, flags);
5899 }
5900 
5901 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5902 #define EXTRA_VECS 2
5903 
5904 static int enable_msix(struct adapter *adap)
5905 {
5906 	u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5907 	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5908 	u8 num_uld = 0, nchan = adap->params.nports;
5909 	u32 i, want, need, num_vec;
5910 	struct sge *s = &adap->sge;
5911 	struct msix_entry *entries;
5912 	struct port_info *pi;
5913 	int allocated, ret;
5914 
5915 	want = s->max_ethqsets;
5916 #ifdef CONFIG_CHELSIO_T4_DCB
5917 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5918 	 * each port.
5919 	 */
5920 	need = 8 * nchan;
5921 #else
5922 	need = nchan;
5923 #endif
5924 	eth_need = need;
5925 	if (is_uld(adap)) {
5926 		num_uld = adap->num_ofld_uld + adap->num_uld;
5927 		want += num_uld * s->ofldqsets;
5928 		uld_need = num_uld * nchan;
5929 		need += uld_need;
5930 	}
5931 
5932 	if (is_ethofld(adap)) {
5933 		want += s->eoqsets;
5934 		ethofld_need = eth_need;
5935 		need += ethofld_need;
5936 	}
5937 
5938 	if (s->mirrorqsets) {
5939 		want += s->mirrorqsets;
5940 		mirror_need = nchan;
5941 		need += mirror_need;
5942 	}
5943 
5944 	want += EXTRA_VECS;
5945 	need += EXTRA_VECS;
5946 
5947 	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5948 	if (!entries)
5949 		return -ENOMEM;
5950 
5951 	for (i = 0; i < want; i++)
5952 		entries[i].entry = i;
5953 
5954 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5955 	if (allocated < 0) {
5956 		/* Disable offload and attempt to get vectors for NIC
5957 		 * only mode.
5958 		 */
5959 		want = s->max_ethqsets + EXTRA_VECS;
5960 		need = eth_need + EXTRA_VECS;
5961 		allocated = pci_enable_msix_range(adap->pdev, entries,
5962 						  need, want);
5963 		if (allocated < 0) {
5964 			dev_info(adap->pdev_dev,
5965 				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5966 			ret = allocated;
5967 			goto out_free;
5968 		}
5969 
5970 		dev_info(adap->pdev_dev,
5971 			 "Disabling offload due to insufficient MSI-X vectors\n");
5972 		adap->params.offload = 0;
5973 		adap->params.crypto = 0;
5974 		adap->params.ethofld = 0;
5975 		s->ofldqsets = 0;
5976 		s->eoqsets = 0;
5977 		s->mirrorqsets = 0;
5978 		uld_need = 0;
5979 		ethofld_need = 0;
5980 		mirror_need = 0;
5981 	}
5982 
5983 	num_vec = allocated;
5984 	if (num_vec < want) {
5985 		/* Distribute available vectors to the various queue groups.
5986 		 * Every group gets its minimum requirement and NIC gets top
5987 		 * priority for leftovers.
5988 		 */
5989 		ethqsets = eth_need;
5990 		if (is_uld(adap))
5991 			ofldqsets = nchan;
5992 		if (is_ethofld(adap))
5993 			eoqsets = ethofld_need;
5994 		if (s->mirrorqsets)
5995 			mirrorqsets = mirror_need;
5996 
5997 		num_vec -= need;
5998 		while (num_vec) {
5999 			if (num_vec < eth_need + ethofld_need ||
6000 			    ethqsets > s->max_ethqsets)
6001 				break;
6002 
6003 			for_each_port(adap, i) {
6004 				pi = adap2pinfo(adap, i);
6005 				if (pi->nqsets < 2)
6006 					continue;
6007 
6008 				ethqsets++;
6009 				num_vec--;
6010 				if (ethofld_need) {
6011 					eoqsets++;
6012 					num_vec--;
6013 				}
6014 			}
6015 		}
6016 
6017 		if (is_uld(adap)) {
6018 			while (num_vec) {
6019 				if (num_vec < uld_need ||
6020 				    ofldqsets > s->ofldqsets)
6021 					break;
6022 
6023 				ofldqsets++;
6024 				num_vec -= uld_need;
6025 			}
6026 		}
6027 
6028 		if (s->mirrorqsets) {
6029 			while (num_vec) {
6030 				if (num_vec < mirror_need ||
6031 				    mirrorqsets > s->mirrorqsets)
6032 					break;
6033 
6034 				mirrorqsets++;
6035 				num_vec -= mirror_need;
6036 			}
6037 		}
6038 	} else {
6039 		ethqsets = s->max_ethqsets;
6040 		if (is_uld(adap))
6041 			ofldqsets = s->ofldqsets;
6042 		if (is_ethofld(adap))
6043 			eoqsets = s->eoqsets;
6044 		if (s->mirrorqsets)
6045 			mirrorqsets = s->mirrorqsets;
6046 	}
6047 
6048 	if (ethqsets < s->max_ethqsets) {
6049 		s->max_ethqsets = ethqsets;
6050 		reduce_ethqs(adap, ethqsets);
6051 	}
6052 
6053 	if (is_uld(adap)) {
6054 		s->ofldqsets = ofldqsets;
6055 		s->nqs_per_uld = s->ofldqsets;
6056 	}
6057 
6058 	if (is_ethofld(adap))
6059 		s->eoqsets = eoqsets;
6060 
6061 	if (s->mirrorqsets) {
6062 		s->mirrorqsets = mirrorqsets;
6063 		for_each_port(adap, i) {
6064 			pi = adap2pinfo(adap, i);
6065 			pi->nmirrorqsets = s->mirrorqsets / nchan;
6066 			mutex_init(&pi->vi_mirror_mutex);
6067 		}
6068 	}
6069 
6070 	/* map for msix */
6071 	ret = alloc_msix_info(adap, allocated);
6072 	if (ret)
6073 		goto out_disable_msix;
6074 
6075 	for (i = 0; i < allocated; i++) {
6076 		adap->msix_info[i].vec = entries[i].vector;
6077 		adap->msix_info[i].idx = i;
6078 	}
6079 
6080 	dev_info(adap->pdev_dev,
6081 		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6082 		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6083 		 s->mirrorqsets);
6084 
6085 	kfree(entries);
6086 	return 0;
6087 
6088 out_disable_msix:
6089 	pci_disable_msix(adap->pdev);
6090 
6091 out_free:
6092 	kfree(entries);
6093 	return ret;
6094 }
6095 
6096 #undef EXTRA_VECS
6097 
6098 static int init_rss(struct adapter *adap)
6099 {
6100 	unsigned int i;
6101 	int err;
6102 
6103 	err = t4_init_rss_mode(adap, adap->mbox);
6104 	if (err)
6105 		return err;
6106 
6107 	for_each_port(adap, i) {
6108 		struct port_info *pi = adap2pinfo(adap, i);
6109 
6110 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6111 		if (!pi->rss)
6112 			return -ENOMEM;
6113 	}
6114 	return 0;
6115 }
6116 
6117 /* Dump basic information about the adapter */
6118 static void print_adapter_info(struct adapter *adapter)
6119 {
6120 	/* Hardware/Firmware/etc. Version/Revision IDs */
6121 	t4_dump_version_info(adapter);
6122 
6123 	/* Software/Hardware configuration */
6124 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6125 		 is_offload(adapter) ? "R" : "",
6126 		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6127 		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6128 		 is_offload(adapter) ? "Offload" : "non-Offload");
6129 }
6130 
6131 static void print_port_info(const struct net_device *dev)
6132 {
6133 	char buf[80];
6134 	char *bufp = buf;
6135 	const struct port_info *pi = netdev_priv(dev);
6136 	const struct adapter *adap = pi->adapter;
6137 
6138 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6139 		bufp += sprintf(bufp, "100M/");
6140 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6141 		bufp += sprintf(bufp, "1G/");
6142 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6143 		bufp += sprintf(bufp, "10G/");
6144 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6145 		bufp += sprintf(bufp, "25G/");
6146 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6147 		bufp += sprintf(bufp, "40G/");
6148 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6149 		bufp += sprintf(bufp, "50G/");
6150 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6151 		bufp += sprintf(bufp, "100G/");
6152 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6153 		bufp += sprintf(bufp, "200G/");
6154 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6155 		bufp += sprintf(bufp, "400G/");
6156 	if (bufp != buf)
6157 		--bufp;
6158 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6159 
6160 	netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf);
6161 }
6162 
6163 /*
6164  * Free the following resources:
6165  * - memory used for tables
6166  * - MSI/MSI-X
6167  * - net devices
6168  * - resources FW is holding for us
6169  */
6170 static void free_some_resources(struct adapter *adapter)
6171 {
6172 	unsigned int i;
6173 
6174 	kvfree(adapter->smt);
6175 	kvfree(adapter->l2t);
6176 	kvfree(adapter->srq);
6177 	t4_cleanup_sched(adapter);
6178 	kvfree(adapter->tids.tid_tab);
6179 	cxgb4_cleanup_tc_matchall(adapter);
6180 	cxgb4_cleanup_tc_mqprio(adapter);
6181 	cxgb4_cleanup_tc_flower(adapter);
6182 	cxgb4_cleanup_tc_u32(adapter);
6183 	cxgb4_cleanup_ethtool_filters(adapter);
6184 	kfree(adapter->sge.egr_map);
6185 	kfree(adapter->sge.ingr_map);
6186 	bitmap_free(adapter->sge.starving_fl);
6187 	bitmap_free(adapter->sge.txq_maperr);
6188 #ifdef CONFIG_DEBUG_FS
6189 	bitmap_free(adapter->sge.blocked_fl);
6190 #endif
6191 	disable_msi(adapter);
6192 
6193 	for_each_port(adapter, i)
6194 		if (adapter->port[i]) {
6195 			struct port_info *pi = adap2pinfo(adapter, i);
6196 
6197 			if (pi->viid != 0)
6198 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
6199 					   0, pi->viid);
6200 			kfree(adap2pinfo(adapter, i)->rss);
6201 			free_netdev(adapter->port[i]);
6202 		}
6203 	if (adapter->flags & CXGB4_FW_OK)
6204 		t4_fw_bye(adapter, adapter->pf);
6205 }
6206 
6207 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6208 		   NETIF_F_GSO_UDP_L4)
6209 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6210 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6211 #define SEGMENT_SIZE 128
6212 
6213 static int t4_get_chip_type(struct adapter *adap, int ver)
6214 {
6215 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6216 
6217 	switch (ver) {
6218 	case CHELSIO_T4:
6219 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6220 	case CHELSIO_T5:
6221 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6222 	case CHELSIO_T6:
6223 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6224 	default:
6225 		break;
6226 	}
6227 	return -EINVAL;
6228 }
6229 
6230 #ifdef CONFIG_PCI_IOV
6231 static void cxgb4_mgmt_setup(struct net_device *dev)
6232 {
6233 	dev->type = ARPHRD_NONE;
6234 	dev->mtu = 0;
6235 	dev->hard_header_len = 0;
6236 	dev->addr_len = 0;
6237 	dev->tx_queue_len = 0;
6238 	dev->flags |= IFF_NOARP;
6239 	dev->priv_flags |= IFF_NO_QUEUE;
6240 
6241 	/* Initialize the device structure. */
6242 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6243 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6244 }
6245 
6246 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6247 {
6248 	struct adapter *adap = pci_get_drvdata(pdev);
6249 	int err = 0;
6250 	int current_vfs = pci_num_vf(pdev);
6251 	u32 pcie_fw;
6252 
6253 	pcie_fw = readl(adap->regs + PCIE_FW_A);
6254 	/* Check if fw is initialized */
6255 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
6256 		dev_warn(&pdev->dev, "Device not initialized\n");
6257 		return -EOPNOTSUPP;
6258 	}
6259 
6260 	/* If any of the VF's is already assigned to Guest OS, then
6261 	 * SRIOV for the same cannot be modified
6262 	 */
6263 	if (current_vfs && pci_vfs_assigned(pdev)) {
6264 		dev_err(&pdev->dev,
6265 			"Cannot modify SR-IOV while VFs are assigned\n");
6266 		return current_vfs;
6267 	}
6268 	/* Note that the upper-level code ensures that we're never called with
6269 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
6270 	 * it never hurts to code defensively.
6271 	 */
6272 	if (num_vfs != 0 && current_vfs != 0)
6273 		return -EBUSY;
6274 
6275 	/* Nothing to do for no change. */
6276 	if (num_vfs == current_vfs)
6277 		return num_vfs;
6278 
6279 	/* Disable SRIOV when zero is passed. */
6280 	if (!num_vfs) {
6281 		pci_disable_sriov(pdev);
6282 		/* free VF Management Interface */
6283 		unregister_netdev(adap->port[0]);
6284 		free_netdev(adap->port[0]);
6285 		adap->port[0] = NULL;
6286 
6287 		/* free VF resources */
6288 		adap->num_vfs = 0;
6289 		kfree(adap->vfinfo);
6290 		adap->vfinfo = NULL;
6291 		return 0;
6292 	}
6293 
6294 	if (!current_vfs) {
6295 		struct fw_pfvf_cmd port_cmd, port_rpl;
6296 		struct net_device *netdev;
6297 		unsigned int pmask, port;
6298 		struct pci_dev *pbridge;
6299 		struct port_info *pi;
6300 		char name[IFNAMSIZ];
6301 		u32 devcap2;
6302 		u16 flags;
6303 
6304 		/* If we want to instantiate Virtual Functions, then our
6305 		 * parent bridge's PCI-E needs to support Alternative Routing
6306 		 * ID (ARI) because our VFs will show up at function offset 8
6307 		 * and above.
6308 		 */
6309 		pbridge = pdev->bus->self;
6310 		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6311 		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6312 
6313 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6314 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6315 			/* Our parent bridge does not support ARI so issue a
6316 			 * warning and skip instantiating the VFs.  They
6317 			 * won't be reachable.
6318 			 */
6319 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6320 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6321 				 PCI_FUNC(pbridge->devfn));
6322 			return -ENOTSUPP;
6323 		}
6324 		memset(&port_cmd, 0, sizeof(port_cmd));
6325 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6326 						 FW_CMD_REQUEST_F |
6327 						 FW_CMD_READ_F |
6328 						 FW_PFVF_CMD_PFN_V(adap->pf) |
6329 						 FW_PFVF_CMD_VFN_V(0));
6330 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6331 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6332 				 &port_rpl);
6333 		if (err)
6334 			return err;
6335 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6336 		port = ffs(pmask) - 1;
6337 		/* Allocate VF Management Interface. */
6338 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6339 			 adap->pf);
6340 		netdev = alloc_netdev(sizeof(struct port_info),
6341 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6342 		if (!netdev)
6343 			return -ENOMEM;
6344 
6345 		pi = netdev_priv(netdev);
6346 		pi->adapter = adap;
6347 		pi->lport = port;
6348 		pi->tx_chan = port;
6349 		SET_NETDEV_DEV(netdev, &pdev->dev);
6350 
6351 		adap->port[0] = netdev;
6352 		pi->port_id = 0;
6353 
6354 		err = register_netdev(adap->port[0]);
6355 		if (err) {
6356 			pr_info("Unable to register VF mgmt netdev %s\n", name);
6357 			free_netdev(adap->port[0]);
6358 			adap->port[0] = NULL;
6359 			return err;
6360 		}
6361 		/* Allocate and set up VF Information. */
6362 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6363 				       sizeof(struct vf_info), GFP_KERNEL);
6364 		if (!adap->vfinfo) {
6365 			unregister_netdev(adap->port[0]);
6366 			free_netdev(adap->port[0]);
6367 			adap->port[0] = NULL;
6368 			return -ENOMEM;
6369 		}
6370 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6371 	}
6372 	/* Instantiate the requested number of VFs. */
6373 	err = pci_enable_sriov(pdev, num_vfs);
6374 	if (err) {
6375 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
6376 		if (!current_vfs) {
6377 			unregister_netdev(adap->port[0]);
6378 			free_netdev(adap->port[0]);
6379 			adap->port[0] = NULL;
6380 			kfree(adap->vfinfo);
6381 			adap->vfinfo = NULL;
6382 		}
6383 		return err;
6384 	}
6385 
6386 	adap->num_vfs = num_vfs;
6387 	return num_vfs;
6388 }
6389 #endif /* CONFIG_PCI_IOV */
6390 
6391 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6392 
6393 static int chcr_offload_state(struct adapter *adap,
6394 			      enum cxgb4_netdev_tls_ops op_val)
6395 {
6396 	switch (op_val) {
6397 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6398 	case CXGB4_TLSDEV_OPS:
6399 		if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6400 			dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6401 			return -EOPNOTSUPP;
6402 		}
6403 		if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6404 			dev_dbg(adap->pdev_dev,
6405 				"ch_ktls driver has no registered tlsdev_ops\n");
6406 			return -EOPNOTSUPP;
6407 		}
6408 		break;
6409 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6410 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6411 	case CXGB4_XFRMDEV_OPS:
6412 		if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6413 			dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6414 			return -EOPNOTSUPP;
6415 		}
6416 		if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6417 			dev_dbg(adap->pdev_dev,
6418 				"chipsec driver has no registered xfrmdev_ops\n");
6419 			return -EOPNOTSUPP;
6420 		}
6421 		break;
6422 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6423 	default:
6424 		dev_dbg(adap->pdev_dev,
6425 			"driver has no support for offload %d\n", op_val);
6426 		return -EOPNOTSUPP;
6427 	}
6428 
6429 	return 0;
6430 }
6431 
6432 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6433 
6434 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6435 
6436 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6437 			      enum tls_offload_ctx_dir direction,
6438 			      struct tls_crypto_info *crypto_info,
6439 			      u32 tcp_sn)
6440 {
6441 	struct adapter *adap = netdev2adap(netdev);
6442 	int ret;
6443 
6444 	mutex_lock(&uld_mutex);
6445 	ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6446 	if (ret)
6447 		goto out_unlock;
6448 
6449 	ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6450 	if (ret)
6451 		goto out_unlock;
6452 
6453 	ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6454 								direction,
6455 								crypto_info,
6456 								tcp_sn);
6457 	/* if there is a failure, clear the refcount */
6458 	if (ret)
6459 		cxgb4_set_ktls_feature(adap,
6460 				       FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6461 out_unlock:
6462 	mutex_unlock(&uld_mutex);
6463 	return ret;
6464 }
6465 
6466 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6467 			       struct tls_context *tls_ctx,
6468 			       enum tls_offload_ctx_dir direction)
6469 {
6470 	struct adapter *adap = netdev2adap(netdev);
6471 
6472 	mutex_lock(&uld_mutex);
6473 	if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6474 		goto out_unlock;
6475 
6476 	adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6477 							  direction);
6478 
6479 out_unlock:
6480 	cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6481 	mutex_unlock(&uld_mutex);
6482 }
6483 
6484 static const struct tlsdev_ops cxgb4_ktls_ops = {
6485 	.tls_dev_add = cxgb4_ktls_dev_add,
6486 	.tls_dev_del = cxgb4_ktls_dev_del,
6487 };
6488 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6489 
6490 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6491 
6492 static int cxgb4_xfrm_add_state(struct xfrm_state *x,
6493 				struct netlink_ext_ack *extack)
6494 {
6495 	struct adapter *adap = netdev2adap(x->xso.dev);
6496 	int ret;
6497 
6498 	if (!mutex_trylock(&uld_mutex)) {
6499 		NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use");
6500 		return -EBUSY;
6501 	}
6502 	ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6503 	if (ret)
6504 		goto out_unlock;
6505 
6506 	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack);
6507 
6508 out_unlock:
6509 	mutex_unlock(&uld_mutex);
6510 
6511 	return ret;
6512 }
6513 
6514 static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6515 {
6516 	struct adapter *adap = netdev2adap(x->xso.dev);
6517 
6518 	if (!mutex_trylock(&uld_mutex)) {
6519 		dev_dbg(adap->pdev_dev,
6520 			"crypto uld critical resource is under use\n");
6521 		return;
6522 	}
6523 	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6524 		goto out_unlock;
6525 
6526 	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6527 
6528 out_unlock:
6529 	mutex_unlock(&uld_mutex);
6530 }
6531 
6532 static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6533 {
6534 	struct adapter *adap = netdev2adap(x->xso.dev);
6535 
6536 	if (!mutex_trylock(&uld_mutex)) {
6537 		dev_dbg(adap->pdev_dev,
6538 			"crypto uld critical resource is under use\n");
6539 		return;
6540 	}
6541 	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6542 		goto out_unlock;
6543 
6544 	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6545 
6546 out_unlock:
6547 	mutex_unlock(&uld_mutex);
6548 }
6549 
6550 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6551 {
6552 	struct adapter *adap = netdev2adap(x->xso.dev);
6553 	bool ret = false;
6554 
6555 	if (!mutex_trylock(&uld_mutex)) {
6556 		dev_dbg(adap->pdev_dev,
6557 			"crypto uld critical resource is under use\n");
6558 		return ret;
6559 	}
6560 	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6561 		goto out_unlock;
6562 
6563 	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6564 
6565 out_unlock:
6566 	mutex_unlock(&uld_mutex);
6567 	return ret;
6568 }
6569 
6570 static void cxgb4_advance_esn_state(struct xfrm_state *x)
6571 {
6572 	struct adapter *adap = netdev2adap(x->xso.dev);
6573 
6574 	if (!mutex_trylock(&uld_mutex)) {
6575 		dev_dbg(adap->pdev_dev,
6576 			"crypto uld critical resource is under use\n");
6577 		return;
6578 	}
6579 	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6580 		goto out_unlock;
6581 
6582 	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6583 
6584 out_unlock:
6585 	mutex_unlock(&uld_mutex);
6586 }
6587 
6588 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6589 	.xdo_dev_state_add      = cxgb4_xfrm_add_state,
6590 	.xdo_dev_state_delete   = cxgb4_xfrm_del_state,
6591 	.xdo_dev_state_free     = cxgb4_xfrm_free_state,
6592 	.xdo_dev_offload_ok     = cxgb4_ipsec_offload_ok,
6593 	.xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6594 };
6595 
6596 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6597 
6598 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6599 {
6600 	struct net_device *netdev;
6601 	struct adapter *adapter;
6602 	static int adap_idx = 1;
6603 	int s_qpp, qpp, num_seg;
6604 	struct port_info *pi;
6605 	enum chip_type chip;
6606 	void __iomem *regs;
6607 	int func, chip_ver;
6608 	u16 device_id;
6609 	int i, err;
6610 	u32 whoami;
6611 
6612 	err = pci_request_regions(pdev, KBUILD_MODNAME);
6613 	if (err) {
6614 		/* Just info, some other driver may have claimed the device. */
6615 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6616 		return err;
6617 	}
6618 
6619 	err = pci_enable_device(pdev);
6620 	if (err) {
6621 		dev_err(&pdev->dev, "cannot enable PCI device\n");
6622 		goto out_release_regions;
6623 	}
6624 
6625 	regs = pci_ioremap_bar(pdev, 0);
6626 	if (!regs) {
6627 		dev_err(&pdev->dev, "cannot map device registers\n");
6628 		err = -ENOMEM;
6629 		goto out_disable_device;
6630 	}
6631 
6632 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6633 	if (!adapter) {
6634 		err = -ENOMEM;
6635 		goto out_unmap_bar0;
6636 	}
6637 
6638 	adapter->regs = regs;
6639 	err = t4_wait_dev_ready(regs);
6640 	if (err < 0)
6641 		goto out_free_adapter;
6642 
6643 	/* We control everything through one PF */
6644 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6645 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6646 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6647 	if ((int)chip < 0) {
6648 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6649 		err = chip;
6650 		goto out_free_adapter;
6651 	}
6652 	chip_ver = CHELSIO_CHIP_VERSION(chip);
6653 	func = chip_ver <= CHELSIO_T5 ?
6654 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6655 
6656 	adapter->pdev = pdev;
6657 	adapter->pdev_dev = &pdev->dev;
6658 	adapter->name = pci_name(pdev);
6659 	adapter->mbox = func;
6660 	adapter->pf = func;
6661 	adapter->params.chip = chip;
6662 	adapter->adap_idx = adap_idx;
6663 	adapter->msg_enable = DFLT_MSG_ENABLE;
6664 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6665 				    (sizeof(struct mbox_cmd) *
6666 				     T4_OS_LOG_MBOX_CMDS),
6667 				    GFP_KERNEL);
6668 	if (!adapter->mbox_log) {
6669 		err = -ENOMEM;
6670 		goto out_free_adapter;
6671 	}
6672 	spin_lock_init(&adapter->mbox_lock);
6673 	INIT_LIST_HEAD(&adapter->mlist.list);
6674 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6675 	pci_set_drvdata(pdev, adapter);
6676 
6677 	if (func != ent->driver_data) {
6678 		pci_disable_device(pdev);
6679 		pci_save_state(pdev);        /* to restore SR-IOV later */
6680 		return 0;
6681 	}
6682 
6683 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6684 	if (err) {
6685 		dev_err(&pdev->dev, "no usable DMA configuration\n");
6686 		goto out_free_adapter;
6687 	}
6688 
6689 	pci_set_master(pdev);
6690 	pci_save_state(pdev);
6691 	adap_idx++;
6692 	adapter->workq = create_singlethread_workqueue("cxgb4");
6693 	if (!adapter->workq) {
6694 		err = -ENOMEM;
6695 		goto out_free_adapter;
6696 	}
6697 
6698 	/* PCI device has been enabled */
6699 	adapter->flags |= CXGB4_DEV_ENABLED;
6700 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6701 
6702 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6703 	 * Ingress Packet Data to Free List Buffers in order to allow for
6704 	 * chipset performance optimizations between the Root Complex and
6705 	 * Memory Controllers.  (Messages to the associated Ingress Queue
6706 	 * notifying new Packet Placement in the Free Lists Buffers will be
6707 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
6708 	 * all preceding PCIe Transaction Layer Packets will be processed
6709 	 * first.)  But some Root Complexes have various issues with Upstream
6710 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6711 	 * The PCIe devices which under the Root Complexes will be cleared the
6712 	 * Relaxed Ordering bit in the configuration space, So we check our
6713 	 * PCIe configuration space to see if it's flagged with advice against
6714 	 * using Relaxed Ordering.
6715 	 */
6716 	if (!pcie_relaxed_ordering_enabled(pdev))
6717 		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6718 
6719 	spin_lock_init(&adapter->stats_lock);
6720 	spin_lock_init(&adapter->tid_release_lock);
6721 	spin_lock_init(&adapter->win0_lock);
6722 
6723 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6724 	INIT_WORK(&adapter->db_full_task, process_db_full);
6725 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6726 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6727 
6728 	err = t4_prep_adapter(adapter);
6729 	if (err)
6730 		goto out_free_adapter;
6731 
6732 	if (is_kdump_kernel()) {
6733 		/* Collect hardware state and append to /proc/vmcore */
6734 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
6735 		if (err) {
6736 			dev_warn(adapter->pdev_dev,
6737 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6738 				 err);
6739 			err = 0;
6740 		}
6741 	}
6742 
6743 	if (!is_t4(adapter->params.chip)) {
6744 		s_qpp = (QUEUESPERPAGEPF0_S +
6745 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6746 			adapter->pf);
6747 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6748 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6749 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6750 
6751 		/* Each segment size is 128B. Write coalescing is enabled only
6752 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6753 		 * queue is less no of segments that can be accommodated in
6754 		 * a page size.
6755 		 */
6756 		if (qpp > num_seg) {
6757 			dev_err(&pdev->dev,
6758 				"Incorrect number of egress queues per page\n");
6759 			err = -EINVAL;
6760 			goto out_free_adapter;
6761 		}
6762 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6763 		pci_resource_len(pdev, 2));
6764 		if (!adapter->bar2) {
6765 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6766 			err = -ENOMEM;
6767 			goto out_free_adapter;
6768 		}
6769 	}
6770 
6771 	setup_memwin(adapter);
6772 	err = adap_init0(adapter, 0);
6773 	if (err)
6774 		goto out_unmap_bar;
6775 
6776 	setup_memwin_rdma(adapter);
6777 
6778 	/* configure SGE_STAT_CFG_A to read WC stats */
6779 	if (!is_t4(adapter->params.chip))
6780 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6781 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6782 			      T6_STATMODE_V(0)));
6783 
6784 	/* Initialize hash mac addr list */
6785 	INIT_LIST_HEAD(&adapter->mac_hlist);
6786 
6787 	for_each_port(adapter, i) {
6788 		/* For supporting MQPRIO Offload, need some extra
6789 		 * queues for each ETHOFLD TIDs. Keep it equal to
6790 		 * MAX_ATIDs for now. Once we connect to firmware
6791 		 * later and query the EOTID params, we'll come to
6792 		 * know the actual # of EOTIDs supported.
6793 		 */
6794 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6795 					   MAX_ETH_QSETS + MAX_ATIDS);
6796 		if (!netdev) {
6797 			err = -ENOMEM;
6798 			goto out_free_dev;
6799 		}
6800 
6801 		SET_NETDEV_DEV(netdev, &pdev->dev);
6802 
6803 		adapter->port[i] = netdev;
6804 		pi = netdev_priv(netdev);
6805 		pi->adapter = adapter;
6806 		pi->xact_addr_filt = -1;
6807 		pi->port_id = i;
6808 		netdev->irq = pdev->irq;
6809 
6810 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6811 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6812 			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6813 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6814 			NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA;
6815 
6816 		if (chip_ver > CHELSIO_T5) {
6817 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6818 						   NETIF_F_IPV6_CSUM |
6819 						   NETIF_F_RXCSUM |
6820 						   NETIF_F_GSO_UDP_TUNNEL |
6821 						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6822 						   NETIF_F_TSO | NETIF_F_TSO6;
6823 
6824 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6825 					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
6826 					       NETIF_F_HW_TLS_RECORD;
6827 
6828 			if (adapter->rawf_cnt)
6829 				netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6830 		}
6831 
6832 		netdev->features |= netdev->hw_features;
6833 		netdev->vlan_features = netdev->features & VLAN_FEAT;
6834 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6835 		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6836 			netdev->hw_features |= NETIF_F_HW_TLS_TX;
6837 			netdev->tlsdev_ops = &cxgb4_ktls_ops;
6838 			/* initialize the refcount */
6839 			refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6840 		}
6841 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6842 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6843 		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6844 			netdev->hw_enc_features |= NETIF_F_HW_ESP;
6845 			netdev->features |= NETIF_F_HW_ESP;
6846 			netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6847 		}
6848 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6849 
6850 		netdev->priv_flags |= IFF_UNICAST_FLT;
6851 
6852 		/* MTU range: 81 - 9600 */
6853 		netdev->min_mtu = 81;              /* accommodate SACK */
6854 		netdev->max_mtu = MAX_MTU;
6855 
6856 		netdev->netdev_ops = &cxgb4_netdev_ops;
6857 #ifdef CONFIG_CHELSIO_T4_DCB
6858 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6859 		cxgb4_dcb_state_init(netdev);
6860 		cxgb4_dcb_version_init(netdev);
6861 #endif
6862 		cxgb4_set_ethtool_ops(netdev);
6863 	}
6864 
6865 	cxgb4_init_ethtool_dump(adapter);
6866 
6867 	pci_set_drvdata(pdev, adapter);
6868 
6869 	if (adapter->flags & CXGB4_FW_OK) {
6870 		err = t4_port_init(adapter, func, func, 0);
6871 		if (err)
6872 			goto out_free_dev;
6873 	} else if (adapter->params.nports == 1) {
6874 		/* If we don't have a connection to the firmware -- possibly
6875 		 * because of an error -- grab the raw VPD parameters so we
6876 		 * can set the proper MAC Address on the debug network
6877 		 * interface that we've created.
6878 		 */
6879 		u8 hw_addr[ETH_ALEN];
6880 		u8 *na = adapter->params.vpd.na;
6881 
6882 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6883 		if (!err) {
6884 			for (i = 0; i < ETH_ALEN; i++)
6885 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6886 					      hex2val(na[2 * i + 1]));
6887 			t4_set_hw_addr(adapter, 0, hw_addr);
6888 		}
6889 	}
6890 
6891 	if (!(adapter->flags & CXGB4_FW_OK))
6892 		goto fw_attach_fail;
6893 
6894 	/* Configure queues and allocate tables now, they can be needed as
6895 	 * soon as the first register_netdev completes.
6896 	 */
6897 	err = cfg_queues(adapter);
6898 	if (err)
6899 		goto out_free_dev;
6900 
6901 	adapter->smt = t4_init_smt();
6902 	if (!adapter->smt) {
6903 		/* We tolerate a lack of SMT, giving up some functionality */
6904 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6905 	}
6906 
6907 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6908 	if (!adapter->l2t) {
6909 		/* We tolerate a lack of L2T, giving up some functionality */
6910 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6911 		adapter->params.offload = 0;
6912 	}
6913 
6914 #if IS_ENABLED(CONFIG_IPV6)
6915 	if (chip_ver <= CHELSIO_T5 &&
6916 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6917 		/* CLIP functionality is not present in hardware,
6918 		 * hence disable all offload features
6919 		 */
6920 		dev_warn(&pdev->dev,
6921 			 "CLIP not enabled in hardware, continuing\n");
6922 		adapter->params.offload = 0;
6923 	} else {
6924 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6925 						  adapter->clipt_end);
6926 		if (!adapter->clipt) {
6927 			/* We tolerate a lack of clip_table, giving up
6928 			 * some functionality
6929 			 */
6930 			dev_warn(&pdev->dev,
6931 				 "could not allocate Clip table, continuing\n");
6932 			adapter->params.offload = 0;
6933 		}
6934 	}
6935 #endif
6936 
6937 	for_each_port(adapter, i) {
6938 		pi = adap2pinfo(adapter, i);
6939 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6940 		if (!pi->sched_tbl)
6941 			dev_warn(&pdev->dev,
6942 				 "could not activate scheduling on port %d\n",
6943 				 i);
6944 	}
6945 
6946 	if (is_offload(adapter) || is_hashfilter(adapter)) {
6947 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6948 			u32 v;
6949 
6950 			v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6951 			if (chip_ver <= CHELSIO_T5) {
6952 				adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6953 				v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6954 				adapter->tids.hash_base = v / 4;
6955 			} else {
6956 				adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6957 				v = t4_read_reg(adapter,
6958 						T6_LE_DB_HASH_TID_BASE_A);
6959 				adapter->tids.hash_base = v;
6960 			}
6961 		}
6962 	}
6963 
6964 	if (tid_init(&adapter->tids) < 0) {
6965 		dev_warn(&pdev->dev, "could not allocate TID table, "
6966 			 "continuing\n");
6967 		adapter->params.offload = 0;
6968 	} else {
6969 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6970 		if (!adapter->tc_u32)
6971 			dev_warn(&pdev->dev,
6972 				 "could not offload tc u32, continuing\n");
6973 
6974 		if (cxgb4_init_tc_flower(adapter))
6975 			dev_warn(&pdev->dev,
6976 				 "could not offload tc flower, continuing\n");
6977 
6978 		if (cxgb4_init_tc_mqprio(adapter))
6979 			dev_warn(&pdev->dev,
6980 				 "could not offload tc mqprio, continuing\n");
6981 
6982 		if (cxgb4_init_tc_matchall(adapter))
6983 			dev_warn(&pdev->dev,
6984 				 "could not offload tc matchall, continuing\n");
6985 		if (cxgb4_init_ethtool_filters(adapter))
6986 			dev_warn(&pdev->dev,
6987 				 "could not initialize ethtool filters, continuing\n");
6988 	}
6989 
6990 	/* See what interrupts we'll be using */
6991 	if (msi > 1 && enable_msix(adapter) == 0)
6992 		adapter->flags |= CXGB4_USING_MSIX;
6993 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6994 		adapter->flags |= CXGB4_USING_MSI;
6995 		if (msi > 1)
6996 			free_msix_info(adapter);
6997 	}
6998 
6999 	/* check for PCI Express bandwidth capabiltites */
7000 	pcie_print_link_status(pdev);
7001 
7002 	cxgb4_init_mps_ref_entries(adapter);
7003 
7004 	err = init_rss(adapter);
7005 	if (err)
7006 		goto out_free_dev;
7007 
7008 	err = setup_non_data_intr(adapter);
7009 	if (err) {
7010 		dev_err(adapter->pdev_dev,
7011 			"Non Data interrupt allocation failed, err: %d\n", err);
7012 		goto out_free_dev;
7013 	}
7014 
7015 	err = setup_fw_sge_queues(adapter);
7016 	if (err) {
7017 		dev_err(adapter->pdev_dev,
7018 			"FW sge queue allocation failed, err %d", err);
7019 		goto out_free_dev;
7020 	}
7021 
7022 fw_attach_fail:
7023 	/*
7024 	 * The card is now ready to go.  If any errors occur during device
7025 	 * registration we do not fail the whole card but rather proceed only
7026 	 * with the ports we manage to register successfully.  However we must
7027 	 * register at least one net device.
7028 	 */
7029 	for_each_port(adapter, i) {
7030 		pi = adap2pinfo(adapter, i);
7031 		adapter->port[i]->dev_port = pi->lport;
7032 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7033 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7034 
7035 		netif_carrier_off(adapter->port[i]);
7036 
7037 		err = register_netdev(adapter->port[i]);
7038 		if (err)
7039 			break;
7040 		adapter->chan_map[pi->tx_chan] = i;
7041 		print_port_info(adapter->port[i]);
7042 	}
7043 	if (i == 0) {
7044 		dev_err(&pdev->dev, "could not register any net devices\n");
7045 		goto out_free_dev;
7046 	}
7047 	if (err) {
7048 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7049 		err = 0;
7050 	}
7051 
7052 	if (cxgb4_debugfs_root) {
7053 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7054 							   cxgb4_debugfs_root);
7055 		setup_debugfs(adapter);
7056 	}
7057 
7058 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7059 	pdev->needs_freset = 1;
7060 
7061 	if (is_uld(adapter))
7062 		cxgb4_uld_enable(adapter);
7063 
7064 	if (!is_t4(adapter->params.chip))
7065 		cxgb4_ptp_init(adapter);
7066 
7067 	if (IS_REACHABLE(CONFIG_THERMAL) &&
7068 	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7069 		cxgb4_thermal_init(adapter);
7070 
7071 	print_adapter_info(adapter);
7072 	return 0;
7073 
7074  out_free_dev:
7075 	t4_free_sge_resources(adapter);
7076 	free_some_resources(adapter);
7077 	if (adapter->flags & CXGB4_USING_MSIX)
7078 		free_msix_info(adapter);
7079 	if (adapter->num_uld || adapter->num_ofld_uld)
7080 		t4_uld_mem_free(adapter);
7081  out_unmap_bar:
7082 	if (!is_t4(adapter->params.chip))
7083 		iounmap(adapter->bar2);
7084  out_free_adapter:
7085 	if (adapter->workq)
7086 		destroy_workqueue(adapter->workq);
7087 
7088 	kfree(adapter->mbox_log);
7089 	kfree(adapter);
7090  out_unmap_bar0:
7091 	iounmap(regs);
7092  out_disable_device:
7093 	pci_disable_device(pdev);
7094  out_release_regions:
7095 	pci_release_regions(pdev);
7096 	return err;
7097 }
7098 
7099 static void remove_one(struct pci_dev *pdev)
7100 {
7101 	struct adapter *adapter = pci_get_drvdata(pdev);
7102 	struct hash_mac_addr *entry, *tmp;
7103 
7104 	if (!adapter) {
7105 		pci_release_regions(pdev);
7106 		return;
7107 	}
7108 
7109 	/* If we allocated filters, free up state associated with any
7110 	 * valid filters ...
7111 	 */
7112 	clear_all_filters(adapter);
7113 
7114 	adapter->flags |= CXGB4_SHUTTING_DOWN;
7115 
7116 	if (adapter->pf == 4) {
7117 		int i;
7118 
7119 		/* Tear down per-adapter Work Queue first since it can contain
7120 		 * references to our adapter data structure.
7121 		 */
7122 		destroy_workqueue(adapter->workq);
7123 
7124 		detach_ulds(adapter);
7125 
7126 		for_each_port(adapter, i)
7127 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7128 				unregister_netdev(adapter->port[i]);
7129 
7130 		t4_uld_clean_up(adapter);
7131 
7132 		adap_free_hma_mem(adapter);
7133 
7134 		disable_interrupts(adapter);
7135 
7136 		cxgb4_free_mps_ref_entries(adapter);
7137 
7138 		debugfs_remove_recursive(adapter->debugfs_root);
7139 
7140 		if (!is_t4(adapter->params.chip))
7141 			cxgb4_ptp_stop(adapter);
7142 		if (IS_REACHABLE(CONFIG_THERMAL))
7143 			cxgb4_thermal_remove(adapter);
7144 
7145 		if (adapter->flags & CXGB4_FULL_INIT_DONE)
7146 			cxgb_down(adapter);
7147 
7148 		if (adapter->flags & CXGB4_USING_MSIX)
7149 			free_msix_info(adapter);
7150 		if (adapter->num_uld || adapter->num_ofld_uld)
7151 			t4_uld_mem_free(adapter);
7152 		free_some_resources(adapter);
7153 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7154 					 list) {
7155 			list_del(&entry->list);
7156 			kfree(entry);
7157 		}
7158 
7159 #if IS_ENABLED(CONFIG_IPV6)
7160 		t4_cleanup_clip_tbl(adapter);
7161 #endif
7162 		if (!is_t4(adapter->params.chip))
7163 			iounmap(adapter->bar2);
7164 	}
7165 #ifdef CONFIG_PCI_IOV
7166 	else {
7167 		cxgb4_iov_configure(adapter->pdev, 0);
7168 	}
7169 #endif
7170 	iounmap(adapter->regs);
7171 	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7172 		pci_disable_device(pdev);
7173 		adapter->flags &= ~CXGB4_DEV_ENABLED;
7174 	}
7175 	pci_release_regions(pdev);
7176 	kfree(adapter->mbox_log);
7177 	synchronize_rcu();
7178 	kfree(adapter);
7179 }
7180 
7181 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7182  * delivery.  This is essentially a stripped down version of the PCI remove()
7183  * function where we do the minimal amount of work necessary to shutdown any
7184  * further activity.
7185  */
7186 static void shutdown_one(struct pci_dev *pdev)
7187 {
7188 	struct adapter *adapter = pci_get_drvdata(pdev);
7189 
7190 	/* As with remove_one() above (see extended comment), we only want do
7191 	 * do cleanup on PCI Devices which went all the way through init_one()
7192 	 * ...
7193 	 */
7194 	if (!adapter) {
7195 		pci_release_regions(pdev);
7196 		return;
7197 	}
7198 
7199 	adapter->flags |= CXGB4_SHUTTING_DOWN;
7200 
7201 	if (adapter->pf == 4) {
7202 		int i;
7203 
7204 		for_each_port(adapter, i)
7205 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7206 				cxgb_close(adapter->port[i]);
7207 
7208 		rtnl_lock();
7209 		cxgb4_mqprio_stop_offload(adapter);
7210 		rtnl_unlock();
7211 
7212 		if (is_uld(adapter)) {
7213 			detach_ulds(adapter);
7214 			t4_uld_clean_up(adapter);
7215 		}
7216 
7217 		disable_interrupts(adapter);
7218 		disable_msi(adapter);
7219 
7220 		t4_sge_stop(adapter);
7221 		if (adapter->flags & CXGB4_FW_OK)
7222 			t4_fw_bye(adapter, adapter->mbox);
7223 	}
7224 }
7225 
7226 static struct pci_driver cxgb4_driver = {
7227 	.name     = KBUILD_MODNAME,
7228 	.id_table = cxgb4_pci_tbl,
7229 	.probe    = init_one,
7230 	.remove   = remove_one,
7231 	.shutdown = shutdown_one,
7232 #ifdef CONFIG_PCI_IOV
7233 	.sriov_configure = cxgb4_iov_configure,
7234 #endif
7235 	.err_handler = &cxgb4_eeh,
7236 };
7237 
7238 static int __init cxgb4_init_module(void)
7239 {
7240 	int ret;
7241 
7242 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7243 
7244 	ret = pci_register_driver(&cxgb4_driver);
7245 	if (ret < 0)
7246 		goto err_pci;
7247 
7248 #if IS_ENABLED(CONFIG_IPV6)
7249 	if (!inet6addr_registered) {
7250 		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7251 		if (ret)
7252 			pci_unregister_driver(&cxgb4_driver);
7253 		else
7254 			inet6addr_registered = true;
7255 	}
7256 #endif
7257 
7258 	if (ret == 0)
7259 		return ret;
7260 
7261 err_pci:
7262 	debugfs_remove(cxgb4_debugfs_root);
7263 
7264 	return ret;
7265 }
7266 
7267 static void __exit cxgb4_cleanup_module(void)
7268 {
7269 #if IS_ENABLED(CONFIG_IPV6)
7270 	if (inet6addr_registered) {
7271 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7272 		inet6addr_registered = false;
7273 	}
7274 #endif
7275 	pci_unregister_driver(&cxgb4_driver);
7276 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
7277 }
7278 
7279 module_init(cxgb4_init_module);
7280 module_exit(cxgb4_cleanup_module);
7281