xref: /linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78 
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80 
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87 
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95 	/* Administrative fields for filter.
96 	 */
97 	u32 valid:1;            /* filter allocated and valid */
98 	u32 locked:1;           /* filter is administratively locked */
99 
100 	u32 pending:1;          /* filter action is pending firmware reply */
101 	u32 smtidx:8;           /* Source MAC Table index for smac */
102 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103 
104 	/* The filter itself.  Most of this is a straight copy of information
105 	 * provided by the extended ioctl().  Some fields are translated to
106 	 * internal forms -- for instance the Ingress Queue ID passed in from
107 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 	 */
109 	struct ch_filter_specification fs;
110 };
111 
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115 
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119 	static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121 
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126 
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
129 
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 		{ 0, } \
132 	}
133 
134 #include "t4_pci_id_tbl.h"
135 
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146 
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155 
156 /*
157  * Normally we're willing to become the firmware's Master PF but will be happy
158  * if another PF has already become the Master and initialized the adapter.
159  * Setting "force_init" will cause this driver to forcibly establish itself as
160  * the Master PF and initialize the adapter.
161  */
162 static uint force_init;
163 
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
166 		 "deprecated parameter");
167 
168 static int dflt_msg_enable = DFLT_MSG_ENABLE;
169 
170 module_param(dflt_msg_enable, int, 0644);
171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
172 		 "deprecated parameter");
173 
174 /*
175  * The driver uses the best interrupt scheme available on a platform in the
176  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
177  * of these schemes the driver may consider as follows:
178  *
179  * msi = 2: choose from among all three options
180  * msi = 1: only consider MSI and INTx interrupts
181  * msi = 0: force INTx interrupts
182  */
183 static int msi = 2;
184 
185 module_param(msi, int, 0644);
186 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
187 
188 /*
189  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
190  * offset by 2 bytes in order to have the IP headers line up on 4-byte
191  * boundaries.  This is a requirement for many architectures which will throw
192  * a machine check fault if an attempt is made to access one of the 4-byte IP
193  * header fields on a non-4-byte boundary.  And it's a major performance issue
194  * even on some architectures which allow it like some implementations of the
195  * x86 ISA.  However, some architectures don't mind this and for some very
196  * edge-case performance sensitive applications (like forwarding large volumes
197  * of small packets), setting this DMA offset to 0 will decrease the number of
198  * PCI-E Bus transfers enough to measurably affect performance.
199  */
200 static int rx_dma_offset = 2;
201 
202 #ifdef CONFIG_PCI_IOV
203 /* Configure the number of PCI-E Virtual Function which are to be instantiated
204  * on SR-IOV Capable Physical Functions.
205  */
206 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
207 
208 module_param_array(num_vf, uint, NULL, 0644);
209 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
210 #endif
211 
212 /* TX Queue select used to determine what algorithm to use for selecting TX
213  * queue. Select between the kernel provided function (select_queue=0) or user
214  * cxgb_select_queue function (select_queue=1)
215  *
216  * Default: select_queue=0
217  */
218 static int select_queue;
219 module_param(select_queue, int, 0644);
220 MODULE_PARM_DESC(select_queue,
221 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
222 
223 static struct dentry *cxgb4_debugfs_root;
224 
225 static LIST_HEAD(adapter_list);
226 static DEFINE_MUTEX(uld_mutex);
227 /* Adapter list to be accessed from atomic context */
228 static LIST_HEAD(adap_rcu_list);
229 static DEFINE_SPINLOCK(adap_rcu_lock);
230 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
231 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
232 
233 static void link_report(struct net_device *dev)
234 {
235 	if (!netif_carrier_ok(dev))
236 		netdev_info(dev, "link down\n");
237 	else {
238 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
239 
240 		const char *s;
241 		const struct port_info *p = netdev_priv(dev);
242 
243 		switch (p->link_cfg.speed) {
244 		case 10000:
245 			s = "10Gbps";
246 			break;
247 		case 1000:
248 			s = "1000Mbps";
249 			break;
250 		case 100:
251 			s = "100Mbps";
252 			break;
253 		case 40000:
254 			s = "40Gbps";
255 			break;
256 		default:
257 			pr_info("%s: unsupported speed: %d\n",
258 				dev->name, p->link_cfg.speed);
259 			return;
260 		}
261 
262 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
263 			    fc[p->link_cfg.fc]);
264 	}
265 }
266 
267 #ifdef CONFIG_CHELSIO_T4_DCB
268 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
269 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
270 {
271 	struct port_info *pi = netdev_priv(dev);
272 	struct adapter *adap = pi->adapter;
273 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
274 	int i;
275 
276 	/* We use a simple mapping of Port TX Queue Index to DCB
277 	 * Priority when we're enabling DCB.
278 	 */
279 	for (i = 0; i < pi->nqsets; i++, txq++) {
280 		u32 name, value;
281 		int err;
282 
283 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
284 			FW_PARAMS_PARAM_X_V(
285 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
286 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
287 		value = enable ? i : 0xffffffff;
288 
289 		/* Since we can be called while atomic (from "interrupt
290 		 * level") we need to issue the Set Parameters Commannd
291 		 * without sleeping (timeout < 0).
292 		 */
293 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
294 					    &name, &value,
295 					    -FW_CMD_MAX_TIMEOUT);
296 
297 		if (err)
298 			dev_err(adap->pdev_dev,
299 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
300 				enable ? "set" : "unset", pi->port_id, i, -err);
301 		else
302 			txq->dcb_prio = value;
303 	}
304 }
305 #endif /* CONFIG_CHELSIO_T4_DCB */
306 
307 int cxgb4_dcb_enabled(const struct net_device *dev)
308 {
309 #ifdef CONFIG_CHELSIO_T4_DCB
310 	struct port_info *pi = netdev_priv(dev);
311 
312 	if (!pi->dcb.enabled)
313 		return 0;
314 
315 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
316 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
317 #else
318 	return 0;
319 #endif
320 }
321 EXPORT_SYMBOL(cxgb4_dcb_enabled);
322 
323 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
324 {
325 	struct net_device *dev = adapter->port[port_id];
326 
327 	/* Skip changes from disabled ports. */
328 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
329 		if (link_stat)
330 			netif_carrier_on(dev);
331 		else {
332 #ifdef CONFIG_CHELSIO_T4_DCB
333 			if (cxgb4_dcb_enabled(dev)) {
334 				cxgb4_dcb_state_init(dev);
335 				dcb_tx_queue_prio_enable(dev, false);
336 			}
337 #endif /* CONFIG_CHELSIO_T4_DCB */
338 			netif_carrier_off(dev);
339 		}
340 
341 		link_report(dev);
342 	}
343 }
344 
345 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
346 {
347 	static const char *mod_str[] = {
348 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
349 	};
350 
351 	const struct net_device *dev = adap->port[port_id];
352 	const struct port_info *pi = netdev_priv(dev);
353 
354 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
355 		netdev_info(dev, "port module unplugged\n");
356 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
357 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
358 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
359 		netdev_info(dev, "%s: unsupported port module inserted\n",
360 			    dev->name);
361 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
362 		netdev_info(dev, "%s: unknown port module inserted\n",
363 			    dev->name);
364 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
365 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
366 	else
367 		netdev_info(dev, "%s: unknown module type %d inserted\n",
368 			    dev->name, pi->mod_type);
369 }
370 
371 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
372 module_param(dbfifo_int_thresh, int, 0644);
373 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
374 
375 /*
376  * usecs to sleep while draining the dbfifo
377  */
378 static int dbfifo_drain_delay = 1000;
379 module_param(dbfifo_drain_delay, int, 0644);
380 MODULE_PARM_DESC(dbfifo_drain_delay,
381 		 "usecs to sleep while draining the dbfifo");
382 
383 static inline int cxgb4_set_addr_hash(struct port_info *pi)
384 {
385 	struct adapter *adap = pi->adapter;
386 	u64 vec = 0;
387 	bool ucast = false;
388 	struct hash_mac_addr *entry;
389 
390 	/* Calculate the hash vector for the updated list and program it */
391 	list_for_each_entry(entry, &adap->mac_hlist, list) {
392 		ucast |= is_unicast_ether_addr(entry->addr);
393 		vec |= (1ULL << hash_mac_addr(entry->addr));
394 	}
395 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
396 				vec, false);
397 }
398 
399 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
400 {
401 	struct port_info *pi = netdev_priv(netdev);
402 	struct adapter *adap = pi->adapter;
403 	int ret;
404 	u64 mhash = 0;
405 	u64 uhash = 0;
406 	bool free = false;
407 	bool ucast = is_unicast_ether_addr(mac_addr);
408 	const u8 *maclist[1] = {mac_addr};
409 	struct hash_mac_addr *new_entry;
410 
411 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
412 				NULL, ucast ? &uhash : &mhash, false);
413 	if (ret < 0)
414 		goto out;
415 	/* if hash != 0, then add the addr to hash addr list
416 	 * so on the end we will calculate the hash for the
417 	 * list and program it
418 	 */
419 	if (uhash || mhash) {
420 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
421 		if (!new_entry)
422 			return -ENOMEM;
423 		ether_addr_copy(new_entry->addr, mac_addr);
424 		list_add_tail(&new_entry->list, &adap->mac_hlist);
425 		ret = cxgb4_set_addr_hash(pi);
426 	}
427 out:
428 	return ret < 0 ? ret : 0;
429 }
430 
431 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
432 {
433 	struct port_info *pi = netdev_priv(netdev);
434 	struct adapter *adap = pi->adapter;
435 	int ret;
436 	const u8 *maclist[1] = {mac_addr};
437 	struct hash_mac_addr *entry, *tmp;
438 
439 	/* If the MAC address to be removed is in the hash addr
440 	 * list, delete it from the list and update hash vector
441 	 */
442 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
443 		if (ether_addr_equal(entry->addr, mac_addr)) {
444 			list_del(&entry->list);
445 			kfree(entry);
446 			return cxgb4_set_addr_hash(pi);
447 		}
448 	}
449 
450 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
451 	return ret < 0 ? -EINVAL : 0;
452 }
453 
454 /*
455  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
456  * If @mtu is -1 it is left unchanged.
457  */
458 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
459 {
460 	struct port_info *pi = netdev_priv(dev);
461 	struct adapter *adapter = pi->adapter;
462 
463 	if (!(dev->flags & IFF_PROMISC)) {
464 		__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
465 		if (!(dev->flags & IFF_ALLMULTI))
466 			__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
467 	}
468 
469 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
470 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
471 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
472 			     sleep_ok);
473 }
474 
475 /**
476  *	link_start - enable a port
477  *	@dev: the port to enable
478  *
479  *	Performs the MAC and PHY actions needed to enable a port.
480  */
481 static int link_start(struct net_device *dev)
482 {
483 	int ret;
484 	struct port_info *pi = netdev_priv(dev);
485 	unsigned int mb = pi->adapter->pf;
486 
487 	/*
488 	 * We do not set address filters and promiscuity here, the stack does
489 	 * that step explicitly.
490 	 */
491 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
492 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
493 	if (ret == 0) {
494 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
495 				    pi->xact_addr_filt, dev->dev_addr, true,
496 				    true);
497 		if (ret >= 0) {
498 			pi->xact_addr_filt = ret;
499 			ret = 0;
500 		}
501 	}
502 	if (ret == 0)
503 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
504 				    &pi->link_cfg);
505 	if (ret == 0) {
506 		local_bh_disable();
507 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
508 					  true, CXGB4_DCB_ENABLED);
509 		local_bh_enable();
510 	}
511 
512 	return ret;
513 }
514 
515 #ifdef CONFIG_CHELSIO_T4_DCB
516 /* Handle a Data Center Bridging update message from the firmware. */
517 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
518 {
519 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
520 	struct net_device *dev = adap->port[adap->chan_map[port]];
521 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
522 	int new_dcb_enabled;
523 
524 	cxgb4_dcb_handle_fw_update(adap, pcmd);
525 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
526 
527 	/* If the DCB has become enabled or disabled on the port then we're
528 	 * going to need to set up/tear down DCB Priority parameters for the
529 	 * TX Queues associated with the port.
530 	 */
531 	if (new_dcb_enabled != old_dcb_enabled)
532 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
533 }
534 #endif /* CONFIG_CHELSIO_T4_DCB */
535 
536 /* Clear a filter and release any of its resources that we own.  This also
537  * clears the filter's "pending" status.
538  */
539 static void clear_filter(struct adapter *adap, struct filter_entry *f)
540 {
541 	/* If the new or old filter have loopback rewriteing rules then we'll
542 	 * need to free any existing Layer Two Table (L2T) entries of the old
543 	 * filter rule.  The firmware will handle freeing up any Source MAC
544 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
545 	 * loopback rules.
546 	 */
547 	if (f->l2t)
548 		cxgb4_l2t_release(f->l2t);
549 
550 	/* The zeroing of the filter rule below clears the filter valid,
551 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
552 	 * this operation.
553 	 */
554 	memset(f, 0, sizeof(*f));
555 }
556 
557 /* Handle a filter write/deletion reply.
558  */
559 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
560 {
561 	unsigned int idx = GET_TID(rpl);
562 	unsigned int nidx = idx - adap->tids.ftid_base;
563 	unsigned int ret;
564 	struct filter_entry *f;
565 
566 	if (idx >= adap->tids.ftid_base && nidx <
567 	   (adap->tids.nftids + adap->tids.nsftids)) {
568 		idx = nidx;
569 		ret = TCB_COOKIE_G(rpl->cookie);
570 		f = &adap->tids.ftid_tab[idx];
571 
572 		if (ret == FW_FILTER_WR_FLT_DELETED) {
573 			/* Clear the filter when we get confirmation from the
574 			 * hardware that the filter has been deleted.
575 			 */
576 			clear_filter(adap, f);
577 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
578 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
579 				idx);
580 			clear_filter(adap, f);
581 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
582 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
583 			f->pending = 0;  /* asynchronous setup completed */
584 			f->valid = 1;
585 		} else {
586 			/* Something went wrong.  Issue a warning about the
587 			 * problem and clear everything out.
588 			 */
589 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
590 				idx, ret);
591 			clear_filter(adap, f);
592 		}
593 	}
594 }
595 
596 /* Response queue handler for the FW event queue.
597  */
598 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
599 			  const struct pkt_gl *gl)
600 {
601 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
602 
603 	rsp++;                                          /* skip RSS header */
604 
605 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
606 	 */
607 	if (unlikely(opcode == CPL_FW4_MSG &&
608 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
609 		rsp++;
610 		opcode = ((const struct rss_header *)rsp)->opcode;
611 		rsp++;
612 		if (opcode != CPL_SGE_EGR_UPDATE) {
613 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
614 				, opcode);
615 			goto out;
616 		}
617 	}
618 
619 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
620 		const struct cpl_sge_egr_update *p = (void *)rsp;
621 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
622 		struct sge_txq *txq;
623 
624 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
625 		txq->restarts++;
626 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
627 			struct sge_eth_txq *eq;
628 
629 			eq = container_of(txq, struct sge_eth_txq, q);
630 			netif_tx_wake_queue(eq->txq);
631 		} else {
632 			struct sge_ofld_txq *oq;
633 
634 			oq = container_of(txq, struct sge_ofld_txq, q);
635 			tasklet_schedule(&oq->qresume_tsk);
636 		}
637 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
638 		const struct cpl_fw6_msg *p = (void *)rsp;
639 
640 #ifdef CONFIG_CHELSIO_T4_DCB
641 		const struct fw_port_cmd *pcmd = (const void *)p->data;
642 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
643 		unsigned int action =
644 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
645 
646 		if (cmd == FW_PORT_CMD &&
647 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
648 			int port = FW_PORT_CMD_PORTID_G(
649 					be32_to_cpu(pcmd->op_to_portid));
650 			struct net_device *dev =
651 				q->adap->port[q->adap->chan_map[port]];
652 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
653 					    FW_PORT_CMD_DCBXDIS_F)
654 					   ? CXGB4_DCB_INPUT_FW_DISABLED
655 					   : CXGB4_DCB_INPUT_FW_ENABLED);
656 
657 			cxgb4_dcb_state_fsm(dev, state_input);
658 		}
659 
660 		if (cmd == FW_PORT_CMD &&
661 		    action == FW_PORT_ACTION_L2_DCB_CFG)
662 			dcb_rpl(q->adap, pcmd);
663 		else
664 #endif
665 			if (p->type == 0)
666 				t4_handle_fw_rpl(q->adap, p->data);
667 	} else if (opcode == CPL_L2T_WRITE_RPL) {
668 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
669 
670 		do_l2t_write_rpl(q->adap, p);
671 	} else if (opcode == CPL_SET_TCB_RPL) {
672 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
673 
674 		filter_rpl(q->adap, p);
675 	} else
676 		dev_err(q->adap->pdev_dev,
677 			"unexpected CPL %#x on FW event queue\n", opcode);
678 out:
679 	return 0;
680 }
681 
682 /* Flush the aggregated lro sessions */
683 static void uldrx_flush_handler(struct sge_rspq *q)
684 {
685 	if (ulds[q->uld].lro_flush)
686 		ulds[q->uld].lro_flush(&q->lro_mgr);
687 }
688 
689 /**
690  *	uldrx_handler - response queue handler for ULD queues
691  *	@q: the response queue that received the packet
692  *	@rsp: the response queue descriptor holding the offload message
693  *	@gl: the gather list of packet fragments
694  *
695  *	Deliver an ingress offload packet to a ULD.  All processing is done by
696  *	the ULD, we just maintain statistics.
697  */
698 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
699 			 const struct pkt_gl *gl)
700 {
701 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
702 	int ret;
703 
704 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
705 	 */
706 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
707 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
708 		rsp += 2;
709 
710 	if (q->flush_handler)
711 		ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
712 						  rsp, gl, &q->lro_mgr,
713 						  &q->napi);
714 	else
715 		ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
716 					      rsp, gl);
717 
718 	if (ret) {
719 		rxq->stats.nomem++;
720 		return -1;
721 	}
722 
723 	if (gl == NULL)
724 		rxq->stats.imm++;
725 	else if (gl == CXGB4_MSG_AN)
726 		rxq->stats.an++;
727 	else
728 		rxq->stats.pkts++;
729 	return 0;
730 }
731 
732 static void disable_msi(struct adapter *adapter)
733 {
734 	if (adapter->flags & USING_MSIX) {
735 		pci_disable_msix(adapter->pdev);
736 		adapter->flags &= ~USING_MSIX;
737 	} else if (adapter->flags & USING_MSI) {
738 		pci_disable_msi(adapter->pdev);
739 		adapter->flags &= ~USING_MSI;
740 	}
741 }
742 
743 /*
744  * Interrupt handler for non-data events used with MSI-X.
745  */
746 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
747 {
748 	struct adapter *adap = cookie;
749 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
750 
751 	if (v & PFSW_F) {
752 		adap->swintr = 1;
753 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
754 	}
755 	if (adap->flags & MASTER_PF)
756 		t4_slow_intr_handler(adap);
757 	return IRQ_HANDLED;
758 }
759 
760 /*
761  * Name the MSI-X interrupts.
762  */
763 static void name_msix_vecs(struct adapter *adap)
764 {
765 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
766 
767 	/* non-data interrupts */
768 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
769 
770 	/* FW events */
771 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
772 		 adap->port[0]->name);
773 
774 	/* Ethernet queues */
775 	for_each_port(adap, j) {
776 		struct net_device *d = adap->port[j];
777 		const struct port_info *pi = netdev_priv(d);
778 
779 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
780 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
781 				 d->name, i);
782 	}
783 
784 	/* offload queues */
785 	for_each_iscsirxq(&adap->sge, i)
786 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
787 			 adap->port[0]->name, i);
788 
789 	for_each_iscsitrxq(&adap->sge, i)
790 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
791 			 adap->port[0]->name, i);
792 
793 	for_each_rdmarxq(&adap->sge, i)
794 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
795 			 adap->port[0]->name, i);
796 
797 	for_each_rdmaciq(&adap->sge, i)
798 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
799 			 adap->port[0]->name, i);
800 }
801 
802 static int request_msix_queue_irqs(struct adapter *adap)
803 {
804 	struct sge *s = &adap->sge;
805 	int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
806 	int iscsitqidx = 0;
807 	int msi_index = 2;
808 
809 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
810 			  adap->msix_info[1].desc, &s->fw_evtq);
811 	if (err)
812 		return err;
813 
814 	for_each_ethrxq(s, ethqidx) {
815 		err = request_irq(adap->msix_info[msi_index].vec,
816 				  t4_sge_intr_msix, 0,
817 				  adap->msix_info[msi_index].desc,
818 				  &s->ethrxq[ethqidx].rspq);
819 		if (err)
820 			goto unwind;
821 		msi_index++;
822 	}
823 	for_each_iscsirxq(s, iscsiqidx) {
824 		err = request_irq(adap->msix_info[msi_index].vec,
825 				  t4_sge_intr_msix, 0,
826 				  adap->msix_info[msi_index].desc,
827 				  &s->iscsirxq[iscsiqidx].rspq);
828 		if (err)
829 			goto unwind;
830 		msi_index++;
831 	}
832 	for_each_iscsitrxq(s, iscsitqidx) {
833 		err = request_irq(adap->msix_info[msi_index].vec,
834 				  t4_sge_intr_msix, 0,
835 				  adap->msix_info[msi_index].desc,
836 				  &s->iscsitrxq[iscsitqidx].rspq);
837 		if (err)
838 			goto unwind;
839 		msi_index++;
840 	}
841 	for_each_rdmarxq(s, rdmaqidx) {
842 		err = request_irq(adap->msix_info[msi_index].vec,
843 				  t4_sge_intr_msix, 0,
844 				  adap->msix_info[msi_index].desc,
845 				  &s->rdmarxq[rdmaqidx].rspq);
846 		if (err)
847 			goto unwind;
848 		msi_index++;
849 	}
850 	for_each_rdmaciq(s, rdmaciqqidx) {
851 		err = request_irq(adap->msix_info[msi_index].vec,
852 				  t4_sge_intr_msix, 0,
853 				  adap->msix_info[msi_index].desc,
854 				  &s->rdmaciq[rdmaciqqidx].rspq);
855 		if (err)
856 			goto unwind;
857 		msi_index++;
858 	}
859 	return 0;
860 
861 unwind:
862 	while (--rdmaciqqidx >= 0)
863 		free_irq(adap->msix_info[--msi_index].vec,
864 			 &s->rdmaciq[rdmaciqqidx].rspq);
865 	while (--rdmaqidx >= 0)
866 		free_irq(adap->msix_info[--msi_index].vec,
867 			 &s->rdmarxq[rdmaqidx].rspq);
868 	while (--iscsitqidx >= 0)
869 		free_irq(adap->msix_info[--msi_index].vec,
870 			 &s->iscsitrxq[iscsitqidx].rspq);
871 	while (--iscsiqidx >= 0)
872 		free_irq(adap->msix_info[--msi_index].vec,
873 			 &s->iscsirxq[iscsiqidx].rspq);
874 	while (--ethqidx >= 0)
875 		free_irq(adap->msix_info[--msi_index].vec,
876 			 &s->ethrxq[ethqidx].rspq);
877 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
878 	return err;
879 }
880 
881 static void free_msix_queue_irqs(struct adapter *adap)
882 {
883 	int i, msi_index = 2;
884 	struct sge *s = &adap->sge;
885 
886 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
887 	for_each_ethrxq(s, i)
888 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
889 	for_each_iscsirxq(s, i)
890 		free_irq(adap->msix_info[msi_index++].vec,
891 			 &s->iscsirxq[i].rspq);
892 	for_each_iscsitrxq(s, i)
893 		free_irq(adap->msix_info[msi_index++].vec,
894 			 &s->iscsitrxq[i].rspq);
895 	for_each_rdmarxq(s, i)
896 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
897 	for_each_rdmaciq(s, i)
898 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
899 }
900 
901 /**
902  *	cxgb4_write_rss - write the RSS table for a given port
903  *	@pi: the port
904  *	@queues: array of queue indices for RSS
905  *
906  *	Sets up the portion of the HW RSS table for the port's VI to distribute
907  *	packets to the Rx queues in @queues.
908  *	Should never be called before setting up sge eth rx queues
909  */
910 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
911 {
912 	u16 *rss;
913 	int i, err;
914 	struct adapter *adapter = pi->adapter;
915 	const struct sge_eth_rxq *rxq;
916 
917 	rxq = &adapter->sge.ethrxq[pi->first_qset];
918 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
919 	if (!rss)
920 		return -ENOMEM;
921 
922 	/* map the queue indices to queue ids */
923 	for (i = 0; i < pi->rss_size; i++, queues++)
924 		rss[i] = rxq[*queues].rspq.abs_id;
925 
926 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
927 				  pi->rss_size, rss, pi->rss_size);
928 	/* If Tunnel All Lookup isn't specified in the global RSS
929 	 * Configuration, then we need to specify a default Ingress
930 	 * Queue for any ingress packets which aren't hashed.  We'll
931 	 * use our first ingress queue ...
932 	 */
933 	if (!err)
934 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
935 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
936 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
937 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
938 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
939 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
940 				       rss[0]);
941 	kfree(rss);
942 	return err;
943 }
944 
945 /**
946  *	setup_rss - configure RSS
947  *	@adap: the adapter
948  *
949  *	Sets up RSS for each port.
950  */
951 static int setup_rss(struct adapter *adap)
952 {
953 	int i, j, err;
954 
955 	for_each_port(adap, i) {
956 		const struct port_info *pi = adap2pinfo(adap, i);
957 
958 		/* Fill default values with equal distribution */
959 		for (j = 0; j < pi->rss_size; j++)
960 			pi->rss[j] = j % pi->nqsets;
961 
962 		err = cxgb4_write_rss(pi, pi->rss);
963 		if (err)
964 			return err;
965 	}
966 	return 0;
967 }
968 
969 /*
970  * Return the channel of the ingress queue with the given qid.
971  */
972 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
973 {
974 	qid -= p->ingr_start;
975 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
976 }
977 
978 /*
979  * Wait until all NAPI handlers are descheduled.
980  */
981 static void quiesce_rx(struct adapter *adap)
982 {
983 	int i;
984 
985 	for (i = 0; i < adap->sge.ingr_sz; i++) {
986 		struct sge_rspq *q = adap->sge.ingr_map[i];
987 
988 		if (q && q->handler) {
989 			napi_disable(&q->napi);
990 			local_bh_disable();
991 			while (!cxgb_poll_lock_napi(q))
992 				mdelay(1);
993 			local_bh_enable();
994 		}
995 
996 	}
997 }
998 
999 /* Disable interrupt and napi handler */
1000 static void disable_interrupts(struct adapter *adap)
1001 {
1002 	if (adap->flags & FULL_INIT_DONE) {
1003 		t4_intr_disable(adap);
1004 		if (adap->flags & USING_MSIX) {
1005 			free_msix_queue_irqs(adap);
1006 			free_irq(adap->msix_info[0].vec, adap);
1007 		} else {
1008 			free_irq(adap->pdev->irq, adap);
1009 		}
1010 		quiesce_rx(adap);
1011 	}
1012 }
1013 
1014 /*
1015  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1016  */
1017 static void enable_rx(struct adapter *adap)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < adap->sge.ingr_sz; i++) {
1022 		struct sge_rspq *q = adap->sge.ingr_map[i];
1023 
1024 		if (!q)
1025 			continue;
1026 		if (q->handler) {
1027 			cxgb_busy_poll_init_lock(q);
1028 			napi_enable(&q->napi);
1029 		}
1030 		/* 0-increment GTS to start the timer and enable interrupts */
1031 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1032 			     SEINTARM_V(q->intr_params) |
1033 			     INGRESSQID_V(q->cntxt_id));
1034 	}
1035 }
1036 
1037 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1038 			   unsigned int nq, unsigned int per_chan, int msi_idx,
1039 			   u16 *ids, bool lro)
1040 {
1041 	int i, err;
1042 
1043 	for (i = 0; i < nq; i++, q++) {
1044 		if (msi_idx > 0)
1045 			msi_idx++;
1046 		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1047 				       adap->port[i / per_chan],
1048 				       msi_idx, q->fl.size ? &q->fl : NULL,
1049 				       uldrx_handler,
1050 				       lro ? uldrx_flush_handler : NULL,
1051 				       0);
1052 		if (err)
1053 			return err;
1054 		memset(&q->stats, 0, sizeof(q->stats));
1055 		if (ids)
1056 			ids[i] = q->rspq.abs_id;
1057 	}
1058 	return 0;
1059 }
1060 
1061 /**
1062  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1063  *	@adap: the adapter
1064  *
1065  *	Determines how many sets of SGE queues to use and initializes them.
1066  *	We support multiple queue sets per port if we have MSI-X, otherwise
1067  *	just one queue set per port.
1068  */
1069 static int setup_sge_queues(struct adapter *adap)
1070 {
1071 	int err, msi_idx, i, j;
1072 	struct sge *s = &adap->sge;
1073 
1074 	bitmap_zero(s->starving_fl, s->egr_sz);
1075 	bitmap_zero(s->txq_maperr, s->egr_sz);
1076 
1077 	if (adap->flags & USING_MSIX)
1078 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1079 	else {
1080 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1081 				       NULL, NULL, NULL, -1);
1082 		if (err)
1083 			return err;
1084 		msi_idx = -((int)s->intrq.abs_id + 1);
1085 	}
1086 
1087 	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1088 	 * don't forget to update the following which need to be
1089 	 * synchronized to and changes here.
1090 	 *
1091 	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1092 	 *
1093 	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1094 	 *    to accommodate any new/deleted Ingress Queues
1095 	 *    which need MSI-X Vectors.
1096 	 *
1097 	 * 3. Update sge_qinfo_show() to include information on the
1098 	 *    new/deleted queues.
1099 	 */
1100 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1101 			       msi_idx, NULL, fwevtq_handler, NULL, -1);
1102 	if (err) {
1103 freeout:	t4_free_sge_resources(adap);
1104 		return err;
1105 	}
1106 
1107 	for_each_port(adap, i) {
1108 		struct net_device *dev = adap->port[i];
1109 		struct port_info *pi = netdev_priv(dev);
1110 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1111 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1112 
1113 		for (j = 0; j < pi->nqsets; j++, q++) {
1114 			if (msi_idx > 0)
1115 				msi_idx++;
1116 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1117 					       msi_idx, &q->fl,
1118 					       t4_ethrx_handler,
1119 					       NULL,
1120 					       t4_get_mps_bg_map(adap,
1121 								 pi->tx_chan));
1122 			if (err)
1123 				goto freeout;
1124 			q->rspq.idx = j;
1125 			memset(&q->stats, 0, sizeof(q->stats));
1126 		}
1127 		for (j = 0; j < pi->nqsets; j++, t++) {
1128 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1129 					netdev_get_tx_queue(dev, j),
1130 					s->fw_evtq.cntxt_id);
1131 			if (err)
1132 				goto freeout;
1133 		}
1134 	}
1135 
1136 	j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1137 	for_each_iscsirxq(s, i) {
1138 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1139 					    adap->port[i / j],
1140 					    s->fw_evtq.cntxt_id);
1141 		if (err)
1142 			goto freeout;
1143 	}
1144 
1145 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1146 	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \
1147 	if (err) \
1148 		goto freeout; \
1149 	if (msi_idx > 0) \
1150 		msi_idx += nq; \
1151 } while (0)
1152 
1153 	ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1154 	ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1155 	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1156 	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1157 	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1158 
1159 #undef ALLOC_OFLD_RXQS
1160 
1161 	for_each_port(adap, i) {
1162 		/*
1163 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1164 		 * have RDMA queues, and that's the right value.
1165 		 */
1166 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1167 					    s->fw_evtq.cntxt_id,
1168 					    s->rdmarxq[i].rspq.cntxt_id);
1169 		if (err)
1170 			goto freeout;
1171 	}
1172 
1173 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1174 				MPS_TRC_RSS_CONTROL_A :
1175 				MPS_T5_TRC_RSS_CONTROL_A,
1176 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1177 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1178 	return 0;
1179 }
1180 
1181 /*
1182  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1183  * The allocated memory is cleared.
1184  */
1185 void *t4_alloc_mem(size_t size)
1186 {
1187 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1188 
1189 	if (!p)
1190 		p = vzalloc(size);
1191 	return p;
1192 }
1193 
1194 /*
1195  * Free memory allocated through alloc_mem().
1196  */
1197 void t4_free_mem(void *addr)
1198 {
1199 	kvfree(addr);
1200 }
1201 
1202 /* Send a Work Request to write the filter at a specified index.  We construct
1203  * a Firmware Filter Work Request to have the work done and put the indicated
1204  * filter into "pending" mode which will prevent any further actions against
1205  * it till we get a reply from the firmware on the completion status of the
1206  * request.
1207  */
1208 static int set_filter_wr(struct adapter *adapter, int fidx)
1209 {
1210 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1211 	struct sk_buff *skb;
1212 	struct fw_filter_wr *fwr;
1213 	unsigned int ftid;
1214 
1215 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1216 	if (!skb)
1217 		return -ENOMEM;
1218 
1219 	/* If the new filter requires loopback Destination MAC and/or VLAN
1220 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1221 	 * the filter.
1222 	 */
1223 	if (f->fs.newdmac || f->fs.newvlan) {
1224 		/* allocate L2T entry for new filter */
1225 		f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1226 						f->fs.eport, f->fs.dmac);
1227 		if (f->l2t == NULL) {
1228 			kfree_skb(skb);
1229 			return -ENOMEM;
1230 		}
1231 	}
1232 
1233 	ftid = adapter->tids.ftid_base + fidx;
1234 
1235 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1236 	memset(fwr, 0, sizeof(*fwr));
1237 
1238 	/* It would be nice to put most of the following in t4_hw.c but most
1239 	 * of the work is translating the cxgbtool ch_filter_specification
1240 	 * into the Work Request and the definition of that structure is
1241 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1242 	 * common code.  We may eventually try to come up with a more neutral
1243 	 * filter specification structure but for now it's easiest to simply
1244 	 * put this fairly direct code in line ...
1245 	 */
1246 	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1247 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1248 	fwr->tid_to_iq =
1249 		htonl(FW_FILTER_WR_TID_V(ftid) |
1250 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1251 		      FW_FILTER_WR_NOREPLY_V(0) |
1252 		      FW_FILTER_WR_IQ_V(f->fs.iq));
1253 	fwr->del_filter_to_l2tix =
1254 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1255 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1256 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1257 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1258 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1259 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1260 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1261 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1262 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1263 					     f->fs.newvlan == VLAN_REWRITE) |
1264 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1265 					    f->fs.newvlan == VLAN_REWRITE) |
1266 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1267 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1268 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1269 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1270 	fwr->ethtype = htons(f->fs.val.ethtype);
1271 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1272 	fwr->frag_to_ovlan_vldm =
1273 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1274 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1275 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1276 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1277 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1278 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1279 	fwr->smac_sel = 0;
1280 	fwr->rx_chan_rx_rpl_iq =
1281 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1282 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1283 	fwr->maci_to_matchtypem =
1284 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1285 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1286 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1287 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1288 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1289 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1290 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1291 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1292 	fwr->ptcl = f->fs.val.proto;
1293 	fwr->ptclm = f->fs.mask.proto;
1294 	fwr->ttyp = f->fs.val.tos;
1295 	fwr->ttypm = f->fs.mask.tos;
1296 	fwr->ivlan = htons(f->fs.val.ivlan);
1297 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1298 	fwr->ovlan = htons(f->fs.val.ovlan);
1299 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1300 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1301 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1302 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1303 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1304 	fwr->lp = htons(f->fs.val.lport);
1305 	fwr->lpm = htons(f->fs.mask.lport);
1306 	fwr->fp = htons(f->fs.val.fport);
1307 	fwr->fpm = htons(f->fs.mask.fport);
1308 	if (f->fs.newsmac)
1309 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1310 
1311 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1312 	 * When we get the Work Request Reply we'll clear the pending status.
1313 	 */
1314 	f->pending = 1;
1315 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1316 	t4_ofld_send(adapter, skb);
1317 	return 0;
1318 }
1319 
1320 /* Delete the filter at a specified index.
1321  */
1322 static int del_filter_wr(struct adapter *adapter, int fidx)
1323 {
1324 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1325 	struct sk_buff *skb;
1326 	struct fw_filter_wr *fwr;
1327 	unsigned int len, ftid;
1328 
1329 	len = sizeof(*fwr);
1330 	ftid = adapter->tids.ftid_base + fidx;
1331 
1332 	skb = alloc_skb(len, GFP_KERNEL);
1333 	if (!skb)
1334 		return -ENOMEM;
1335 
1336 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1337 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1338 
1339 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1340 	 * When we get the Work Request Reply we'll clear the pending status.
1341 	 */
1342 	f->pending = 1;
1343 	t4_mgmt_tx(adapter, skb);
1344 	return 0;
1345 }
1346 
1347 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1348 			     void *accel_priv, select_queue_fallback_t fallback)
1349 {
1350 	int txq;
1351 
1352 #ifdef CONFIG_CHELSIO_T4_DCB
1353 	/* If a Data Center Bridging has been successfully negotiated on this
1354 	 * link then we'll use the skb's priority to map it to a TX Queue.
1355 	 * The skb's priority is determined via the VLAN Tag Priority Code
1356 	 * Point field.
1357 	 */
1358 	if (cxgb4_dcb_enabled(dev)) {
1359 		u16 vlan_tci;
1360 		int err;
1361 
1362 		err = vlan_get_tag(skb, &vlan_tci);
1363 		if (unlikely(err)) {
1364 			if (net_ratelimit())
1365 				netdev_warn(dev,
1366 					    "TX Packet without VLAN Tag on DCB Link\n");
1367 			txq = 0;
1368 		} else {
1369 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1370 #ifdef CONFIG_CHELSIO_T4_FCOE
1371 			if (skb->protocol == htons(ETH_P_FCOE))
1372 				txq = skb->priority & 0x7;
1373 #endif /* CONFIG_CHELSIO_T4_FCOE */
1374 		}
1375 		return txq;
1376 	}
1377 #endif /* CONFIG_CHELSIO_T4_DCB */
1378 
1379 	if (select_queue) {
1380 		txq = (skb_rx_queue_recorded(skb)
1381 			? skb_get_rx_queue(skb)
1382 			: smp_processor_id());
1383 
1384 		while (unlikely(txq >= dev->real_num_tx_queues))
1385 			txq -= dev->real_num_tx_queues;
1386 
1387 		return txq;
1388 	}
1389 
1390 	return fallback(dev, skb) % dev->real_num_tx_queues;
1391 }
1392 
1393 static int closest_timer(const struct sge *s, int time)
1394 {
1395 	int i, delta, match = 0, min_delta = INT_MAX;
1396 
1397 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1398 		delta = time - s->timer_val[i];
1399 		if (delta < 0)
1400 			delta = -delta;
1401 		if (delta < min_delta) {
1402 			min_delta = delta;
1403 			match = i;
1404 		}
1405 	}
1406 	return match;
1407 }
1408 
1409 static int closest_thres(const struct sge *s, int thres)
1410 {
1411 	int i, delta, match = 0, min_delta = INT_MAX;
1412 
1413 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1414 		delta = thres - s->counter_val[i];
1415 		if (delta < 0)
1416 			delta = -delta;
1417 		if (delta < min_delta) {
1418 			min_delta = delta;
1419 			match = i;
1420 		}
1421 	}
1422 	return match;
1423 }
1424 
1425 /**
1426  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1427  *	@q: the Rx queue
1428  *	@us: the hold-off time in us, or 0 to disable timer
1429  *	@cnt: the hold-off packet count, or 0 to disable counter
1430  *
1431  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1432  *	one of the two needs to be enabled for the queue to generate interrupts.
1433  */
1434 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1435 			       unsigned int us, unsigned int cnt)
1436 {
1437 	struct adapter *adap = q->adap;
1438 
1439 	if ((us | cnt) == 0)
1440 		cnt = 1;
1441 
1442 	if (cnt) {
1443 		int err;
1444 		u32 v, new_idx;
1445 
1446 		new_idx = closest_thres(&adap->sge, cnt);
1447 		if (q->desc && q->pktcnt_idx != new_idx) {
1448 			/* the queue has already been created, update it */
1449 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1450 			    FW_PARAMS_PARAM_X_V(
1451 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1452 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1453 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1454 					    &v, &new_idx);
1455 			if (err)
1456 				return err;
1457 		}
1458 		q->pktcnt_idx = new_idx;
1459 	}
1460 
1461 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1462 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1463 	return 0;
1464 }
1465 
1466 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1467 {
1468 	const struct port_info *pi = netdev_priv(dev);
1469 	netdev_features_t changed = dev->features ^ features;
1470 	int err;
1471 
1472 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1473 		return 0;
1474 
1475 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1476 			    -1, -1, -1,
1477 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1478 	if (unlikely(err))
1479 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1480 	return err;
1481 }
1482 
1483 static int setup_debugfs(struct adapter *adap)
1484 {
1485 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1486 		return -1;
1487 
1488 #ifdef CONFIG_DEBUG_FS
1489 	t4_setup_debugfs(adap);
1490 #endif
1491 	return 0;
1492 }
1493 
1494 /*
1495  * upper-layer driver support
1496  */
1497 
1498 /*
1499  * Allocate an active-open TID and set it to the supplied value.
1500  */
1501 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1502 {
1503 	int atid = -1;
1504 
1505 	spin_lock_bh(&t->atid_lock);
1506 	if (t->afree) {
1507 		union aopen_entry *p = t->afree;
1508 
1509 		atid = (p - t->atid_tab) + t->atid_base;
1510 		t->afree = p->next;
1511 		p->data = data;
1512 		t->atids_in_use++;
1513 	}
1514 	spin_unlock_bh(&t->atid_lock);
1515 	return atid;
1516 }
1517 EXPORT_SYMBOL(cxgb4_alloc_atid);
1518 
1519 /*
1520  * Release an active-open TID.
1521  */
1522 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1523 {
1524 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1525 
1526 	spin_lock_bh(&t->atid_lock);
1527 	p->next = t->afree;
1528 	t->afree = p;
1529 	t->atids_in_use--;
1530 	spin_unlock_bh(&t->atid_lock);
1531 }
1532 EXPORT_SYMBOL(cxgb4_free_atid);
1533 
1534 /*
1535  * Allocate a server TID and set it to the supplied value.
1536  */
1537 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1538 {
1539 	int stid;
1540 
1541 	spin_lock_bh(&t->stid_lock);
1542 	if (family == PF_INET) {
1543 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1544 		if (stid < t->nstids)
1545 			__set_bit(stid, t->stid_bmap);
1546 		else
1547 			stid = -1;
1548 	} else {
1549 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1550 		if (stid < 0)
1551 			stid = -1;
1552 	}
1553 	if (stid >= 0) {
1554 		t->stid_tab[stid].data = data;
1555 		stid += t->stid_base;
1556 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1557 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1558 		 * needs 2 TIDs.
1559 		 */
1560 		if (family == PF_INET)
1561 			t->stids_in_use++;
1562 		else
1563 			t->stids_in_use += 2;
1564 	}
1565 	spin_unlock_bh(&t->stid_lock);
1566 	return stid;
1567 }
1568 EXPORT_SYMBOL(cxgb4_alloc_stid);
1569 
1570 /* Allocate a server filter TID and set it to the supplied value.
1571  */
1572 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1573 {
1574 	int stid;
1575 
1576 	spin_lock_bh(&t->stid_lock);
1577 	if (family == PF_INET) {
1578 		stid = find_next_zero_bit(t->stid_bmap,
1579 				t->nstids + t->nsftids, t->nstids);
1580 		if (stid < (t->nstids + t->nsftids))
1581 			__set_bit(stid, t->stid_bmap);
1582 		else
1583 			stid = -1;
1584 	} else {
1585 		stid = -1;
1586 	}
1587 	if (stid >= 0) {
1588 		t->stid_tab[stid].data = data;
1589 		stid -= t->nstids;
1590 		stid += t->sftid_base;
1591 		t->sftids_in_use++;
1592 	}
1593 	spin_unlock_bh(&t->stid_lock);
1594 	return stid;
1595 }
1596 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1597 
1598 /* Release a server TID.
1599  */
1600 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1601 {
1602 	/* Is it a server filter TID? */
1603 	if (t->nsftids && (stid >= t->sftid_base)) {
1604 		stid -= t->sftid_base;
1605 		stid += t->nstids;
1606 	} else {
1607 		stid -= t->stid_base;
1608 	}
1609 
1610 	spin_lock_bh(&t->stid_lock);
1611 	if (family == PF_INET)
1612 		__clear_bit(stid, t->stid_bmap);
1613 	else
1614 		bitmap_release_region(t->stid_bmap, stid, 1);
1615 	t->stid_tab[stid].data = NULL;
1616 	if (stid < t->nstids) {
1617 		if (family == PF_INET)
1618 			t->stids_in_use--;
1619 		else
1620 			t->stids_in_use -= 2;
1621 	} else {
1622 		t->sftids_in_use--;
1623 	}
1624 	spin_unlock_bh(&t->stid_lock);
1625 }
1626 EXPORT_SYMBOL(cxgb4_free_stid);
1627 
1628 /*
1629  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1630  */
1631 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1632 			   unsigned int tid)
1633 {
1634 	struct cpl_tid_release *req;
1635 
1636 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1637 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1638 	INIT_TP_WR(req, tid);
1639 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1640 }
1641 
1642 /*
1643  * Queue a TID release request and if necessary schedule a work queue to
1644  * process it.
1645  */
1646 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1647 				    unsigned int tid)
1648 {
1649 	void **p = &t->tid_tab[tid];
1650 	struct adapter *adap = container_of(t, struct adapter, tids);
1651 
1652 	spin_lock_bh(&adap->tid_release_lock);
1653 	*p = adap->tid_release_head;
1654 	/* Low 2 bits encode the Tx channel number */
1655 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1656 	if (!adap->tid_release_task_busy) {
1657 		adap->tid_release_task_busy = true;
1658 		queue_work(adap->workq, &adap->tid_release_task);
1659 	}
1660 	spin_unlock_bh(&adap->tid_release_lock);
1661 }
1662 
1663 /*
1664  * Process the list of pending TID release requests.
1665  */
1666 static void process_tid_release_list(struct work_struct *work)
1667 {
1668 	struct sk_buff *skb;
1669 	struct adapter *adap;
1670 
1671 	adap = container_of(work, struct adapter, tid_release_task);
1672 
1673 	spin_lock_bh(&adap->tid_release_lock);
1674 	while (adap->tid_release_head) {
1675 		void **p = adap->tid_release_head;
1676 		unsigned int chan = (uintptr_t)p & 3;
1677 		p = (void *)p - chan;
1678 
1679 		adap->tid_release_head = *p;
1680 		*p = NULL;
1681 		spin_unlock_bh(&adap->tid_release_lock);
1682 
1683 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1684 					 GFP_KERNEL)))
1685 			schedule_timeout_uninterruptible(1);
1686 
1687 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1688 		t4_ofld_send(adap, skb);
1689 		spin_lock_bh(&adap->tid_release_lock);
1690 	}
1691 	adap->tid_release_task_busy = false;
1692 	spin_unlock_bh(&adap->tid_release_lock);
1693 }
1694 
1695 /*
1696  * Release a TID and inform HW.  If we are unable to allocate the release
1697  * message we defer to a work queue.
1698  */
1699 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1700 {
1701 	struct sk_buff *skb;
1702 	struct adapter *adap = container_of(t, struct adapter, tids);
1703 
1704 	WARN_ON(tid >= t->ntids);
1705 
1706 	if (t->tid_tab[tid]) {
1707 		t->tid_tab[tid] = NULL;
1708 		if (t->hash_base && (tid >= t->hash_base))
1709 			atomic_dec(&t->hash_tids_in_use);
1710 		else
1711 			atomic_dec(&t->tids_in_use);
1712 	}
1713 
1714 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1715 	if (likely(skb)) {
1716 		mk_tid_release(skb, chan, tid);
1717 		t4_ofld_send(adap, skb);
1718 	} else
1719 		cxgb4_queue_tid_release(t, chan, tid);
1720 }
1721 EXPORT_SYMBOL(cxgb4_remove_tid);
1722 
1723 /*
1724  * Allocate and initialize the TID tables.  Returns 0 on success.
1725  */
1726 static int tid_init(struct tid_info *t)
1727 {
1728 	size_t size;
1729 	unsigned int stid_bmap_size;
1730 	unsigned int natids = t->natids;
1731 	struct adapter *adap = container_of(t, struct adapter, tids);
1732 
1733 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1734 	size = t->ntids * sizeof(*t->tid_tab) +
1735 	       natids * sizeof(*t->atid_tab) +
1736 	       t->nstids * sizeof(*t->stid_tab) +
1737 	       t->nsftids * sizeof(*t->stid_tab) +
1738 	       stid_bmap_size * sizeof(long) +
1739 	       t->nftids * sizeof(*t->ftid_tab) +
1740 	       t->nsftids * sizeof(*t->ftid_tab);
1741 
1742 	t->tid_tab = t4_alloc_mem(size);
1743 	if (!t->tid_tab)
1744 		return -ENOMEM;
1745 
1746 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1747 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1748 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1749 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1750 	spin_lock_init(&t->stid_lock);
1751 	spin_lock_init(&t->atid_lock);
1752 
1753 	t->stids_in_use = 0;
1754 	t->sftids_in_use = 0;
1755 	t->afree = NULL;
1756 	t->atids_in_use = 0;
1757 	atomic_set(&t->tids_in_use, 0);
1758 	atomic_set(&t->hash_tids_in_use, 0);
1759 
1760 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1761 	if (natids) {
1762 		while (--natids)
1763 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1764 		t->afree = t->atid_tab;
1765 	}
1766 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1767 	/* Reserve stid 0 for T4/T5 adapters */
1768 	if (!t->stid_base &&
1769 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1770 		__set_bit(0, t->stid_bmap);
1771 
1772 	return 0;
1773 }
1774 
1775 /**
1776  *	cxgb4_create_server - create an IP server
1777  *	@dev: the device
1778  *	@stid: the server TID
1779  *	@sip: local IP address to bind server to
1780  *	@sport: the server's TCP port
1781  *	@queue: queue to direct messages from this server to
1782  *
1783  *	Create an IP server for the given port and address.
1784  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1785  */
1786 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1787 			__be32 sip, __be16 sport, __be16 vlan,
1788 			unsigned int queue)
1789 {
1790 	unsigned int chan;
1791 	struct sk_buff *skb;
1792 	struct adapter *adap;
1793 	struct cpl_pass_open_req *req;
1794 	int ret;
1795 
1796 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1797 	if (!skb)
1798 		return -ENOMEM;
1799 
1800 	adap = netdev2adap(dev);
1801 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1802 	INIT_TP_WR(req, 0);
1803 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1804 	req->local_port = sport;
1805 	req->peer_port = htons(0);
1806 	req->local_ip = sip;
1807 	req->peer_ip = htonl(0);
1808 	chan = rxq_to_chan(&adap->sge, queue);
1809 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1810 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1811 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1812 	ret = t4_mgmt_tx(adap, skb);
1813 	return net_xmit_eval(ret);
1814 }
1815 EXPORT_SYMBOL(cxgb4_create_server);
1816 
1817 /*	cxgb4_create_server6 - create an IPv6 server
1818  *	@dev: the device
1819  *	@stid: the server TID
1820  *	@sip: local IPv6 address to bind server to
1821  *	@sport: the server's TCP port
1822  *	@queue: queue to direct messages from this server to
1823  *
1824  *	Create an IPv6 server for the given port and address.
1825  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1826  */
1827 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1828 			 const struct in6_addr *sip, __be16 sport,
1829 			 unsigned int queue)
1830 {
1831 	unsigned int chan;
1832 	struct sk_buff *skb;
1833 	struct adapter *adap;
1834 	struct cpl_pass_open_req6 *req;
1835 	int ret;
1836 
1837 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1838 	if (!skb)
1839 		return -ENOMEM;
1840 
1841 	adap = netdev2adap(dev);
1842 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1843 	INIT_TP_WR(req, 0);
1844 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1845 	req->local_port = sport;
1846 	req->peer_port = htons(0);
1847 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1848 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1849 	req->peer_ip_hi = cpu_to_be64(0);
1850 	req->peer_ip_lo = cpu_to_be64(0);
1851 	chan = rxq_to_chan(&adap->sge, queue);
1852 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1853 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1854 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1855 	ret = t4_mgmt_tx(adap, skb);
1856 	return net_xmit_eval(ret);
1857 }
1858 EXPORT_SYMBOL(cxgb4_create_server6);
1859 
1860 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1861 			unsigned int queue, bool ipv6)
1862 {
1863 	struct sk_buff *skb;
1864 	struct adapter *adap;
1865 	struct cpl_close_listsvr_req *req;
1866 	int ret;
1867 
1868 	adap = netdev2adap(dev);
1869 
1870 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1871 	if (!skb)
1872 		return -ENOMEM;
1873 
1874 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1875 	INIT_TP_WR(req, 0);
1876 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1877 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1878 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1879 	ret = t4_mgmt_tx(adap, skb);
1880 	return net_xmit_eval(ret);
1881 }
1882 EXPORT_SYMBOL(cxgb4_remove_server);
1883 
1884 /**
1885  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1886  *	@mtus: the HW MTU table
1887  *	@mtu: the target MTU
1888  *	@idx: index of selected entry in the MTU table
1889  *
1890  *	Returns the index and the value in the HW MTU table that is closest to
1891  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1892  *	table, in which case that smallest available value is selected.
1893  */
1894 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1895 			    unsigned int *idx)
1896 {
1897 	unsigned int i = 0;
1898 
1899 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1900 		++i;
1901 	if (idx)
1902 		*idx = i;
1903 	return mtus[i];
1904 }
1905 EXPORT_SYMBOL(cxgb4_best_mtu);
1906 
1907 /**
1908  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1909  *     @mtus: the HW MTU table
1910  *     @header_size: Header Size
1911  *     @data_size_max: maximum Data Segment Size
1912  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1913  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1914  *
1915  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1916  *     MTU Table based solely on a Maximum MTU parameter, we break that
1917  *     parameter up into a Header Size and Maximum Data Segment Size, and
1918  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1919  *     the Hardware MTU Table which will result in a Data Segment Size with
1920  *     the requested alignment _and_ that MTU isn't "too far" from the
1921  *     closest MTU, then we'll return that rather than the closest MTU.
1922  */
1923 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1924 				    unsigned short header_size,
1925 				    unsigned short data_size_max,
1926 				    unsigned short data_size_align,
1927 				    unsigned int *mtu_idxp)
1928 {
1929 	unsigned short max_mtu = header_size + data_size_max;
1930 	unsigned short data_size_align_mask = data_size_align - 1;
1931 	int mtu_idx, aligned_mtu_idx;
1932 
1933 	/* Scan the MTU Table till we find an MTU which is larger than our
1934 	 * Maximum MTU or we reach the end of the table.  Along the way,
1935 	 * record the last MTU found, if any, which will result in a Data
1936 	 * Segment Length matching the requested alignment.
1937 	 */
1938 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1939 		unsigned short data_size = mtus[mtu_idx] - header_size;
1940 
1941 		/* If this MTU minus the Header Size would result in a
1942 		 * Data Segment Size of the desired alignment, remember it.
1943 		 */
1944 		if ((data_size & data_size_align_mask) == 0)
1945 			aligned_mtu_idx = mtu_idx;
1946 
1947 		/* If we're not at the end of the Hardware MTU Table and the
1948 		 * next element is larger than our Maximum MTU, drop out of
1949 		 * the loop.
1950 		 */
1951 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1952 			break;
1953 	}
1954 
1955 	/* If we fell out of the loop because we ran to the end of the table,
1956 	 * then we just have to use the last [largest] entry.
1957 	 */
1958 	if (mtu_idx == NMTUS)
1959 		mtu_idx--;
1960 
1961 	/* If we found an MTU which resulted in the requested Data Segment
1962 	 * Length alignment and that's "not far" from the largest MTU which is
1963 	 * less than or equal to the maximum MTU, then use that.
1964 	 */
1965 	if (aligned_mtu_idx >= 0 &&
1966 	    mtu_idx - aligned_mtu_idx <= 1)
1967 		mtu_idx = aligned_mtu_idx;
1968 
1969 	/* If the caller has passed in an MTU Index pointer, pass the
1970 	 * MTU Index back.  Return the MTU value.
1971 	 */
1972 	if (mtu_idxp)
1973 		*mtu_idxp = mtu_idx;
1974 	return mtus[mtu_idx];
1975 }
1976 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1977 
1978 /**
1979  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1980  *	@chip: chip type
1981  *	@viid: VI id of the given port
1982  *
1983  *	Return the SMT index for this VI.
1984  */
1985 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1986 {
1987 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1988 	 * 128 rows of 2 entries each.
1989 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1990 	 * TODO: The below code needs to be updated when we add support
1991 	 * for 256 VFs.
1992 	 */
1993 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1994 		return ((viid & 0x7f) << 1);
1995 	else
1996 		return (viid & 0x7f);
1997 }
1998 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1999 
2000 /**
2001  *	cxgb4_port_chan - get the HW channel of a port
2002  *	@dev: the net device for the port
2003  *
2004  *	Return the HW Tx channel of the given port.
2005  */
2006 unsigned int cxgb4_port_chan(const struct net_device *dev)
2007 {
2008 	return netdev2pinfo(dev)->tx_chan;
2009 }
2010 EXPORT_SYMBOL(cxgb4_port_chan);
2011 
2012 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2013 {
2014 	struct adapter *adap = netdev2adap(dev);
2015 	u32 v1, v2, lp_count, hp_count;
2016 
2017 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2018 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2019 	if (is_t4(adap->params.chip)) {
2020 		lp_count = LP_COUNT_G(v1);
2021 		hp_count = HP_COUNT_G(v1);
2022 	} else {
2023 		lp_count = LP_COUNT_T5_G(v1);
2024 		hp_count = HP_COUNT_T5_G(v2);
2025 	}
2026 	return lpfifo ? lp_count : hp_count;
2027 }
2028 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2029 
2030 /**
2031  *	cxgb4_port_viid - get the VI id of a port
2032  *	@dev: the net device for the port
2033  *
2034  *	Return the VI id of the given port.
2035  */
2036 unsigned int cxgb4_port_viid(const struct net_device *dev)
2037 {
2038 	return netdev2pinfo(dev)->viid;
2039 }
2040 EXPORT_SYMBOL(cxgb4_port_viid);
2041 
2042 /**
2043  *	cxgb4_port_idx - get the index of a port
2044  *	@dev: the net device for the port
2045  *
2046  *	Return the index of the given port.
2047  */
2048 unsigned int cxgb4_port_idx(const struct net_device *dev)
2049 {
2050 	return netdev2pinfo(dev)->port_id;
2051 }
2052 EXPORT_SYMBOL(cxgb4_port_idx);
2053 
2054 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2055 			 struct tp_tcp_stats *v6)
2056 {
2057 	struct adapter *adap = pci_get_drvdata(pdev);
2058 
2059 	spin_lock(&adap->stats_lock);
2060 	t4_tp_get_tcp_stats(adap, v4, v6);
2061 	spin_unlock(&adap->stats_lock);
2062 }
2063 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2064 
2065 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2066 		      const unsigned int *pgsz_order)
2067 {
2068 	struct adapter *adap = netdev2adap(dev);
2069 
2070 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2071 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2072 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2073 		     HPZ3_V(pgsz_order[3]));
2074 }
2075 EXPORT_SYMBOL(cxgb4_iscsi_init);
2076 
2077 int cxgb4_flush_eq_cache(struct net_device *dev)
2078 {
2079 	struct adapter *adap = netdev2adap(dev);
2080 
2081 	return t4_sge_ctxt_flush(adap, adap->mbox);
2082 }
2083 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2084 
2085 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2086 {
2087 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2088 	__be64 indices;
2089 	int ret;
2090 
2091 	spin_lock(&adap->win0_lock);
2092 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2093 			   sizeof(indices), (__be32 *)&indices,
2094 			   T4_MEMORY_READ);
2095 	spin_unlock(&adap->win0_lock);
2096 	if (!ret) {
2097 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2098 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2099 	}
2100 	return ret;
2101 }
2102 
2103 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2104 			u16 size)
2105 {
2106 	struct adapter *adap = netdev2adap(dev);
2107 	u16 hw_pidx, hw_cidx;
2108 	int ret;
2109 
2110 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2111 	if (ret)
2112 		goto out;
2113 
2114 	if (pidx != hw_pidx) {
2115 		u16 delta;
2116 		u32 val;
2117 
2118 		if (pidx >= hw_pidx)
2119 			delta = pidx - hw_pidx;
2120 		else
2121 			delta = size - hw_pidx + pidx;
2122 
2123 		if (is_t4(adap->params.chip))
2124 			val = PIDX_V(delta);
2125 		else
2126 			val = PIDX_T5_V(delta);
2127 		wmb();
2128 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2129 			     QID_V(qid) | val);
2130 	}
2131 out:
2132 	return ret;
2133 }
2134 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2135 
2136 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2137 {
2138 	struct adapter *adap;
2139 	u32 offset, memtype, memaddr;
2140 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2141 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2142 	int ret;
2143 
2144 	adap = netdev2adap(dev);
2145 
2146 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2147 
2148 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2149 	 * This code assumes that the memory is laid out starting at offset 0
2150 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2151 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2152 	 * MC0, and some have both MC0 and MC1.
2153 	 */
2154 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2155 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2156 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2157 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2158 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2159 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2160 
2161 	edc0_end = edc0_size;
2162 	edc1_end = edc0_end + edc1_size;
2163 	mc0_end = edc1_end + mc0_size;
2164 
2165 	if (offset < edc0_end) {
2166 		memtype = MEM_EDC0;
2167 		memaddr = offset;
2168 	} else if (offset < edc1_end) {
2169 		memtype = MEM_EDC1;
2170 		memaddr = offset - edc0_end;
2171 	} else {
2172 		if (offset < mc0_end) {
2173 			memtype = MEM_MC0;
2174 			memaddr = offset - edc1_end;
2175 		} else if (is_t5(adap->params.chip)) {
2176 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2177 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2178 			mc1_end = mc0_end + mc1_size;
2179 			if (offset < mc1_end) {
2180 				memtype = MEM_MC1;
2181 				memaddr = offset - mc0_end;
2182 			} else {
2183 				/* offset beyond the end of any memory */
2184 				goto err;
2185 			}
2186 		} else {
2187 			/* T4/T6 only has a single memory channel */
2188 			goto err;
2189 		}
2190 	}
2191 
2192 	spin_lock(&adap->win0_lock);
2193 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2194 	spin_unlock(&adap->win0_lock);
2195 	return ret;
2196 
2197 err:
2198 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2199 		stag, offset);
2200 	return -EINVAL;
2201 }
2202 EXPORT_SYMBOL(cxgb4_read_tpte);
2203 
2204 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2205 {
2206 	u32 hi, lo;
2207 	struct adapter *adap;
2208 
2209 	adap = netdev2adap(dev);
2210 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2211 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2212 
2213 	return ((u64)hi << 32) | (u64)lo;
2214 }
2215 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2216 
2217 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2218 			 unsigned int qid,
2219 			 enum cxgb4_bar2_qtype qtype,
2220 			 int user,
2221 			 u64 *pbar2_qoffset,
2222 			 unsigned int *pbar2_qid)
2223 {
2224 	return t4_bar2_sge_qregs(netdev2adap(dev),
2225 				 qid,
2226 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2227 				  ? T4_BAR2_QTYPE_EGRESS
2228 				  : T4_BAR2_QTYPE_INGRESS),
2229 				 user,
2230 				 pbar2_qoffset,
2231 				 pbar2_qid);
2232 }
2233 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2234 
2235 static struct pci_driver cxgb4_driver;
2236 
2237 static void check_neigh_update(struct neighbour *neigh)
2238 {
2239 	const struct device *parent;
2240 	const struct net_device *netdev = neigh->dev;
2241 
2242 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2243 		netdev = vlan_dev_real_dev(netdev);
2244 	parent = netdev->dev.parent;
2245 	if (parent && parent->driver == &cxgb4_driver.driver)
2246 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2247 }
2248 
2249 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2250 		       void *data)
2251 {
2252 	switch (event) {
2253 	case NETEVENT_NEIGH_UPDATE:
2254 		check_neigh_update(data);
2255 		break;
2256 	case NETEVENT_REDIRECT:
2257 	default:
2258 		break;
2259 	}
2260 	return 0;
2261 }
2262 
2263 static bool netevent_registered;
2264 static struct notifier_block cxgb4_netevent_nb = {
2265 	.notifier_call = netevent_cb
2266 };
2267 
2268 static void drain_db_fifo(struct adapter *adap, int usecs)
2269 {
2270 	u32 v1, v2, lp_count, hp_count;
2271 
2272 	do {
2273 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2274 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2275 		if (is_t4(adap->params.chip)) {
2276 			lp_count = LP_COUNT_G(v1);
2277 			hp_count = HP_COUNT_G(v1);
2278 		} else {
2279 			lp_count = LP_COUNT_T5_G(v1);
2280 			hp_count = HP_COUNT_T5_G(v2);
2281 		}
2282 
2283 		if (lp_count == 0 && hp_count == 0)
2284 			break;
2285 		set_current_state(TASK_UNINTERRUPTIBLE);
2286 		schedule_timeout(usecs_to_jiffies(usecs));
2287 	} while (1);
2288 }
2289 
2290 static void disable_txq_db(struct sge_txq *q)
2291 {
2292 	unsigned long flags;
2293 
2294 	spin_lock_irqsave(&q->db_lock, flags);
2295 	q->db_disabled = 1;
2296 	spin_unlock_irqrestore(&q->db_lock, flags);
2297 }
2298 
2299 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2300 {
2301 	spin_lock_irq(&q->db_lock);
2302 	if (q->db_pidx_inc) {
2303 		/* Make sure that all writes to the TX descriptors
2304 		 * are committed before we tell HW about them.
2305 		 */
2306 		wmb();
2307 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2308 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2309 		q->db_pidx_inc = 0;
2310 	}
2311 	q->db_disabled = 0;
2312 	spin_unlock_irq(&q->db_lock);
2313 }
2314 
2315 static void disable_dbs(struct adapter *adap)
2316 {
2317 	int i;
2318 
2319 	for_each_ethrxq(&adap->sge, i)
2320 		disable_txq_db(&adap->sge.ethtxq[i].q);
2321 	for_each_iscsirxq(&adap->sge, i)
2322 		disable_txq_db(&adap->sge.ofldtxq[i].q);
2323 	for_each_port(adap, i)
2324 		disable_txq_db(&adap->sge.ctrlq[i].q);
2325 }
2326 
2327 static void enable_dbs(struct adapter *adap)
2328 {
2329 	int i;
2330 
2331 	for_each_ethrxq(&adap->sge, i)
2332 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2333 	for_each_iscsirxq(&adap->sge, i)
2334 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2335 	for_each_port(adap, i)
2336 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2337 }
2338 
2339 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2340 {
2341 	if (adap->uld_handle[CXGB4_ULD_RDMA])
2342 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2343 				cmd);
2344 }
2345 
2346 static void process_db_full(struct work_struct *work)
2347 {
2348 	struct adapter *adap;
2349 
2350 	adap = container_of(work, struct adapter, db_full_task);
2351 
2352 	drain_db_fifo(adap, dbfifo_drain_delay);
2353 	enable_dbs(adap);
2354 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2355 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2356 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2357 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2358 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2359 	else
2360 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2361 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2362 }
2363 
2364 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2365 {
2366 	u16 hw_pidx, hw_cidx;
2367 	int ret;
2368 
2369 	spin_lock_irq(&q->db_lock);
2370 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2371 	if (ret)
2372 		goto out;
2373 	if (q->db_pidx != hw_pidx) {
2374 		u16 delta;
2375 		u32 val;
2376 
2377 		if (q->db_pidx >= hw_pidx)
2378 			delta = q->db_pidx - hw_pidx;
2379 		else
2380 			delta = q->size - hw_pidx + q->db_pidx;
2381 
2382 		if (is_t4(adap->params.chip))
2383 			val = PIDX_V(delta);
2384 		else
2385 			val = PIDX_T5_V(delta);
2386 		wmb();
2387 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2388 			     QID_V(q->cntxt_id) | val);
2389 	}
2390 out:
2391 	q->db_disabled = 0;
2392 	q->db_pidx_inc = 0;
2393 	spin_unlock_irq(&q->db_lock);
2394 	if (ret)
2395 		CH_WARN(adap, "DB drop recovery failed.\n");
2396 }
2397 static void recover_all_queues(struct adapter *adap)
2398 {
2399 	int i;
2400 
2401 	for_each_ethrxq(&adap->sge, i)
2402 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2403 	for_each_iscsirxq(&adap->sge, i)
2404 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2405 	for_each_port(adap, i)
2406 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2407 }
2408 
2409 static void process_db_drop(struct work_struct *work)
2410 {
2411 	struct adapter *adap;
2412 
2413 	adap = container_of(work, struct adapter, db_drop_task);
2414 
2415 	if (is_t4(adap->params.chip)) {
2416 		drain_db_fifo(adap, dbfifo_drain_delay);
2417 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2418 		drain_db_fifo(adap, dbfifo_drain_delay);
2419 		recover_all_queues(adap);
2420 		drain_db_fifo(adap, dbfifo_drain_delay);
2421 		enable_dbs(adap);
2422 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2423 	} else if (is_t5(adap->params.chip)) {
2424 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2425 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2426 		u16 pidx_inc = dropped_db & 0x1fff;
2427 		u64 bar2_qoffset;
2428 		unsigned int bar2_qid;
2429 		int ret;
2430 
2431 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2432 					0, &bar2_qoffset, &bar2_qid);
2433 		if (ret)
2434 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2435 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2436 		else
2437 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2438 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2439 
2440 		/* Re-enable BAR2 WC */
2441 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2442 	}
2443 
2444 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2445 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2446 }
2447 
2448 void t4_db_full(struct adapter *adap)
2449 {
2450 	if (is_t4(adap->params.chip)) {
2451 		disable_dbs(adap);
2452 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2453 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2454 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2455 		queue_work(adap->workq, &adap->db_full_task);
2456 	}
2457 }
2458 
2459 void t4_db_dropped(struct adapter *adap)
2460 {
2461 	if (is_t4(adap->params.chip)) {
2462 		disable_dbs(adap);
2463 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2464 	}
2465 	queue_work(adap->workq, &adap->db_drop_task);
2466 }
2467 
2468 static void uld_attach(struct adapter *adap, unsigned int uld)
2469 {
2470 	void *handle;
2471 	struct cxgb4_lld_info lli;
2472 	unsigned short i;
2473 
2474 	lli.pdev = adap->pdev;
2475 	lli.pf = adap->pf;
2476 	lli.l2t = adap->l2t;
2477 	lli.tids = &adap->tids;
2478 	lli.ports = adap->port;
2479 	lli.vr = &adap->vres;
2480 	lli.mtus = adap->params.mtus;
2481 	if (uld == CXGB4_ULD_RDMA) {
2482 		lli.rxq_ids = adap->sge.rdma_rxq;
2483 		lli.ciq_ids = adap->sge.rdma_ciq;
2484 		lli.nrxq = adap->sge.rdmaqs;
2485 		lli.nciq = adap->sge.rdmaciqs;
2486 	} else if (uld == CXGB4_ULD_ISCSI) {
2487 		lli.rxq_ids = adap->sge.iscsi_rxq;
2488 		lli.nrxq = adap->sge.iscsiqsets;
2489 	} else if (uld == CXGB4_ULD_ISCSIT) {
2490 		lli.rxq_ids = adap->sge.iscsit_rxq;
2491 		lli.nrxq = adap->sge.niscsitq;
2492 	}
2493 	lli.ntxq = adap->sge.iscsiqsets;
2494 	lli.nchan = adap->params.nports;
2495 	lli.nports = adap->params.nports;
2496 	lli.wr_cred = adap->params.ofldq_wr_cred;
2497 	lli.adapter_type = adap->params.chip;
2498 	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2499 	lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2500 	lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2501 	lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2502 	lli.iscsi_ppm = &adap->iscsi_ppm;
2503 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2504 	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2505 	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2506 	lli.filt_mode = adap->params.tp.vlan_pri_map;
2507 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2508 	for (i = 0; i < NCHAN; i++)
2509 		lli.tx_modq[i] = i;
2510 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2511 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2512 	lli.fw_vers = adap->params.fw_vers;
2513 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2514 	lli.sge_ingpadboundary = adap->sge.fl_align;
2515 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2516 	lli.sge_pktshift = adap->sge.pktshift;
2517 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2518 	lli.max_ordird_qp = adap->params.max_ordird_qp;
2519 	lli.max_ird_adapter = adap->params.max_ird_adapter;
2520 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2521 	lli.nodeid = dev_to_node(adap->pdev_dev);
2522 
2523 	handle = ulds[uld].add(&lli);
2524 	if (IS_ERR(handle)) {
2525 		dev_warn(adap->pdev_dev,
2526 			 "could not attach to the %s driver, error %ld\n",
2527 			 uld_str[uld], PTR_ERR(handle));
2528 		return;
2529 	}
2530 
2531 	adap->uld_handle[uld] = handle;
2532 
2533 	if (!netevent_registered) {
2534 		register_netevent_notifier(&cxgb4_netevent_nb);
2535 		netevent_registered = true;
2536 	}
2537 
2538 	if (adap->flags & FULL_INIT_DONE)
2539 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2540 }
2541 
2542 static void attach_ulds(struct adapter *adap)
2543 {
2544 	unsigned int i;
2545 
2546 	spin_lock(&adap_rcu_lock);
2547 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2548 	spin_unlock(&adap_rcu_lock);
2549 
2550 	mutex_lock(&uld_mutex);
2551 	list_add_tail(&adap->list_node, &adapter_list);
2552 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2553 		if (ulds[i].add)
2554 			uld_attach(adap, i);
2555 	mutex_unlock(&uld_mutex);
2556 }
2557 
2558 static void detach_ulds(struct adapter *adap)
2559 {
2560 	unsigned int i;
2561 
2562 	mutex_lock(&uld_mutex);
2563 	list_del(&adap->list_node);
2564 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2565 		if (adap->uld_handle[i]) {
2566 			ulds[i].state_change(adap->uld_handle[i],
2567 					     CXGB4_STATE_DETACH);
2568 			adap->uld_handle[i] = NULL;
2569 		}
2570 	if (netevent_registered && list_empty(&adapter_list)) {
2571 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2572 		netevent_registered = false;
2573 	}
2574 	mutex_unlock(&uld_mutex);
2575 
2576 	spin_lock(&adap_rcu_lock);
2577 	list_del_rcu(&adap->rcu_node);
2578 	spin_unlock(&adap_rcu_lock);
2579 }
2580 
2581 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2582 {
2583 	unsigned int i;
2584 
2585 	mutex_lock(&uld_mutex);
2586 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2587 		if (adap->uld_handle[i])
2588 			ulds[i].state_change(adap->uld_handle[i], new_state);
2589 	mutex_unlock(&uld_mutex);
2590 }
2591 
2592 /**
2593  *	cxgb4_register_uld - register an upper-layer driver
2594  *	@type: the ULD type
2595  *	@p: the ULD methods
2596  *
2597  *	Registers an upper-layer driver with this driver and notifies the ULD
2598  *	about any presently available devices that support its type.  Returns
2599  *	%-EBUSY if a ULD of the same type is already registered.
2600  */
2601 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2602 {
2603 	int ret = 0;
2604 	struct adapter *adap;
2605 
2606 	if (type >= CXGB4_ULD_MAX)
2607 		return -EINVAL;
2608 	mutex_lock(&uld_mutex);
2609 	if (ulds[type].add) {
2610 		ret = -EBUSY;
2611 		goto out;
2612 	}
2613 	ulds[type] = *p;
2614 	list_for_each_entry(adap, &adapter_list, list_node)
2615 		uld_attach(adap, type);
2616 out:	mutex_unlock(&uld_mutex);
2617 	return ret;
2618 }
2619 EXPORT_SYMBOL(cxgb4_register_uld);
2620 
2621 /**
2622  *	cxgb4_unregister_uld - unregister an upper-layer driver
2623  *	@type: the ULD type
2624  *
2625  *	Unregisters an existing upper-layer driver.
2626  */
2627 int cxgb4_unregister_uld(enum cxgb4_uld type)
2628 {
2629 	struct adapter *adap;
2630 
2631 	if (type >= CXGB4_ULD_MAX)
2632 		return -EINVAL;
2633 	mutex_lock(&uld_mutex);
2634 	list_for_each_entry(adap, &adapter_list, list_node)
2635 		adap->uld_handle[type] = NULL;
2636 	ulds[type].add = NULL;
2637 	mutex_unlock(&uld_mutex);
2638 	return 0;
2639 }
2640 EXPORT_SYMBOL(cxgb4_unregister_uld);
2641 
2642 #if IS_ENABLED(CONFIG_IPV6)
2643 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2644 				   unsigned long event, void *data)
2645 {
2646 	struct inet6_ifaddr *ifa = data;
2647 	struct net_device *event_dev = ifa->idev->dev;
2648 	const struct device *parent = NULL;
2649 #if IS_ENABLED(CONFIG_BONDING)
2650 	struct adapter *adap;
2651 #endif
2652 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2653 		event_dev = vlan_dev_real_dev(event_dev);
2654 #if IS_ENABLED(CONFIG_BONDING)
2655 	if (event_dev->flags & IFF_MASTER) {
2656 		list_for_each_entry(adap, &adapter_list, list_node) {
2657 			switch (event) {
2658 			case NETDEV_UP:
2659 				cxgb4_clip_get(adap->port[0],
2660 					       (const u32 *)ifa, 1);
2661 				break;
2662 			case NETDEV_DOWN:
2663 				cxgb4_clip_release(adap->port[0],
2664 						   (const u32 *)ifa, 1);
2665 				break;
2666 			default:
2667 				break;
2668 			}
2669 		}
2670 		return NOTIFY_OK;
2671 	}
2672 #endif
2673 
2674 	if (event_dev)
2675 		parent = event_dev->dev.parent;
2676 
2677 	if (parent && parent->driver == &cxgb4_driver.driver) {
2678 		switch (event) {
2679 		case NETDEV_UP:
2680 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2681 			break;
2682 		case NETDEV_DOWN:
2683 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2684 			break;
2685 		default:
2686 			break;
2687 		}
2688 	}
2689 	return NOTIFY_OK;
2690 }
2691 
2692 static bool inet6addr_registered;
2693 static struct notifier_block cxgb4_inet6addr_notifier = {
2694 	.notifier_call = cxgb4_inet6addr_handler
2695 };
2696 
2697 static void update_clip(const struct adapter *adap)
2698 {
2699 	int i;
2700 	struct net_device *dev;
2701 	int ret;
2702 
2703 	rcu_read_lock();
2704 
2705 	for (i = 0; i < MAX_NPORTS; i++) {
2706 		dev = adap->port[i];
2707 		ret = 0;
2708 
2709 		if (dev)
2710 			ret = cxgb4_update_root_dev_clip(dev);
2711 
2712 		if (ret < 0)
2713 			break;
2714 	}
2715 	rcu_read_unlock();
2716 }
2717 #endif /* IS_ENABLED(CONFIG_IPV6) */
2718 
2719 /**
2720  *	cxgb_up - enable the adapter
2721  *	@adap: adapter being enabled
2722  *
2723  *	Called when the first port is enabled, this function performs the
2724  *	actions necessary to make an adapter operational, such as completing
2725  *	the initialization of HW modules, and enabling interrupts.
2726  *
2727  *	Must be called with the rtnl lock held.
2728  */
2729 static int cxgb_up(struct adapter *adap)
2730 {
2731 	int err;
2732 
2733 	err = setup_sge_queues(adap);
2734 	if (err)
2735 		goto out;
2736 	err = setup_rss(adap);
2737 	if (err)
2738 		goto freeq;
2739 
2740 	if (adap->flags & USING_MSIX) {
2741 		name_msix_vecs(adap);
2742 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2743 				  adap->msix_info[0].desc, adap);
2744 		if (err)
2745 			goto irq_err;
2746 
2747 		err = request_msix_queue_irqs(adap);
2748 		if (err) {
2749 			free_irq(adap->msix_info[0].vec, adap);
2750 			goto irq_err;
2751 		}
2752 	} else {
2753 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2754 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2755 				  adap->port[0]->name, adap);
2756 		if (err)
2757 			goto irq_err;
2758 	}
2759 	enable_rx(adap);
2760 	t4_sge_start(adap);
2761 	t4_intr_enable(adap);
2762 	adap->flags |= FULL_INIT_DONE;
2763 	notify_ulds(adap, CXGB4_STATE_UP);
2764 #if IS_ENABLED(CONFIG_IPV6)
2765 	update_clip(adap);
2766 #endif
2767 	/* Initialize hash mac addr list*/
2768 	INIT_LIST_HEAD(&adap->mac_hlist);
2769  out:
2770 	return err;
2771  irq_err:
2772 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2773  freeq:
2774 	t4_free_sge_resources(adap);
2775 	goto out;
2776 }
2777 
2778 static void cxgb_down(struct adapter *adapter)
2779 {
2780 	cancel_work_sync(&adapter->tid_release_task);
2781 	cancel_work_sync(&adapter->db_full_task);
2782 	cancel_work_sync(&adapter->db_drop_task);
2783 	adapter->tid_release_task_busy = false;
2784 	adapter->tid_release_head = NULL;
2785 
2786 	t4_sge_stop(adapter);
2787 	t4_free_sge_resources(adapter);
2788 	adapter->flags &= ~FULL_INIT_DONE;
2789 }
2790 
2791 /*
2792  * net_device operations
2793  */
2794 static int cxgb_open(struct net_device *dev)
2795 {
2796 	int err;
2797 	struct port_info *pi = netdev_priv(dev);
2798 	struct adapter *adapter = pi->adapter;
2799 
2800 	netif_carrier_off(dev);
2801 
2802 	if (!(adapter->flags & FULL_INIT_DONE)) {
2803 		err = cxgb_up(adapter);
2804 		if (err < 0)
2805 			return err;
2806 	}
2807 
2808 	err = link_start(dev);
2809 	if (!err)
2810 		netif_tx_start_all_queues(dev);
2811 	return err;
2812 }
2813 
2814 static int cxgb_close(struct net_device *dev)
2815 {
2816 	struct port_info *pi = netdev_priv(dev);
2817 	struct adapter *adapter = pi->adapter;
2818 
2819 	netif_tx_stop_all_queues(dev);
2820 	netif_carrier_off(dev);
2821 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2822 }
2823 
2824 /* Return an error number if the indicated filter isn't writable ...
2825  */
2826 static int writable_filter(struct filter_entry *f)
2827 {
2828 	if (f->locked)
2829 		return -EPERM;
2830 	if (f->pending)
2831 		return -EBUSY;
2832 
2833 	return 0;
2834 }
2835 
2836 /* Delete the filter at the specified index (if valid).  The checks for all
2837  * the common problems with doing this like the filter being locked, currently
2838  * pending in another operation, etc.
2839  */
2840 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2841 {
2842 	struct filter_entry *f;
2843 	int ret;
2844 
2845 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2846 		return -EINVAL;
2847 
2848 	f = &adapter->tids.ftid_tab[fidx];
2849 	ret = writable_filter(f);
2850 	if (ret)
2851 		return ret;
2852 	if (f->valid)
2853 		return del_filter_wr(adapter, fidx);
2854 
2855 	return 0;
2856 }
2857 
2858 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2859 		__be32 sip, __be16 sport, __be16 vlan,
2860 		unsigned int queue, unsigned char port, unsigned char mask)
2861 {
2862 	int ret;
2863 	struct filter_entry *f;
2864 	struct adapter *adap;
2865 	int i;
2866 	u8 *val;
2867 
2868 	adap = netdev2adap(dev);
2869 
2870 	/* Adjust stid to correct filter index */
2871 	stid -= adap->tids.sftid_base;
2872 	stid += adap->tids.nftids;
2873 
2874 	/* Check to make sure the filter requested is writable ...
2875 	 */
2876 	f = &adap->tids.ftid_tab[stid];
2877 	ret = writable_filter(f);
2878 	if (ret)
2879 		return ret;
2880 
2881 	/* Clear out any old resources being used by the filter before
2882 	 * we start constructing the new filter.
2883 	 */
2884 	if (f->valid)
2885 		clear_filter(adap, f);
2886 
2887 	/* Clear out filter specifications */
2888 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2889 	f->fs.val.lport = cpu_to_be16(sport);
2890 	f->fs.mask.lport  = ~0;
2891 	val = (u8 *)&sip;
2892 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2893 		for (i = 0; i < 4; i++) {
2894 			f->fs.val.lip[i] = val[i];
2895 			f->fs.mask.lip[i] = ~0;
2896 		}
2897 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2898 			f->fs.val.iport = port;
2899 			f->fs.mask.iport = mask;
2900 		}
2901 	}
2902 
2903 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2904 		f->fs.val.proto = IPPROTO_TCP;
2905 		f->fs.mask.proto = ~0;
2906 	}
2907 
2908 	f->fs.dirsteer = 1;
2909 	f->fs.iq = queue;
2910 	/* Mark filter as locked */
2911 	f->locked = 1;
2912 	f->fs.rpttid = 1;
2913 
2914 	ret = set_filter_wr(adap, stid);
2915 	if (ret) {
2916 		clear_filter(adap, f);
2917 		return ret;
2918 	}
2919 
2920 	return 0;
2921 }
2922 EXPORT_SYMBOL(cxgb4_create_server_filter);
2923 
2924 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2925 		unsigned int queue, bool ipv6)
2926 {
2927 	int ret;
2928 	struct filter_entry *f;
2929 	struct adapter *adap;
2930 
2931 	adap = netdev2adap(dev);
2932 
2933 	/* Adjust stid to correct filter index */
2934 	stid -= adap->tids.sftid_base;
2935 	stid += adap->tids.nftids;
2936 
2937 	f = &adap->tids.ftid_tab[stid];
2938 	/* Unlock the filter */
2939 	f->locked = 0;
2940 
2941 	ret = delete_filter(adap, stid);
2942 	if (ret)
2943 		return ret;
2944 
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2948 
2949 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2950 						struct rtnl_link_stats64 *ns)
2951 {
2952 	struct port_stats stats;
2953 	struct port_info *p = netdev_priv(dev);
2954 	struct adapter *adapter = p->adapter;
2955 
2956 	/* Block retrieving statistics during EEH error
2957 	 * recovery. Otherwise, the recovery might fail
2958 	 * and the PCI device will be removed permanently
2959 	 */
2960 	spin_lock(&adapter->stats_lock);
2961 	if (!netif_device_present(dev)) {
2962 		spin_unlock(&adapter->stats_lock);
2963 		return ns;
2964 	}
2965 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2966 				 &p->stats_base);
2967 	spin_unlock(&adapter->stats_lock);
2968 
2969 	ns->tx_bytes   = stats.tx_octets;
2970 	ns->tx_packets = stats.tx_frames;
2971 	ns->rx_bytes   = stats.rx_octets;
2972 	ns->rx_packets = stats.rx_frames;
2973 	ns->multicast  = stats.rx_mcast_frames;
2974 
2975 	/* detailed rx_errors */
2976 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2977 			       stats.rx_runt;
2978 	ns->rx_over_errors   = 0;
2979 	ns->rx_crc_errors    = stats.rx_fcs_err;
2980 	ns->rx_frame_errors  = stats.rx_symbol_err;
2981 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2982 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2983 			       stats.rx_trunc0 + stats.rx_trunc1 +
2984 			       stats.rx_trunc2 + stats.rx_trunc3;
2985 	ns->rx_missed_errors = 0;
2986 
2987 	/* detailed tx_errors */
2988 	ns->tx_aborted_errors   = 0;
2989 	ns->tx_carrier_errors   = 0;
2990 	ns->tx_fifo_errors      = 0;
2991 	ns->tx_heartbeat_errors = 0;
2992 	ns->tx_window_errors    = 0;
2993 
2994 	ns->tx_errors = stats.tx_error_frames;
2995 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2996 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2997 	return ns;
2998 }
2999 
3000 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3001 {
3002 	unsigned int mbox;
3003 	int ret = 0, prtad, devad;
3004 	struct port_info *pi = netdev_priv(dev);
3005 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3006 
3007 	switch (cmd) {
3008 	case SIOCGMIIPHY:
3009 		if (pi->mdio_addr < 0)
3010 			return -EOPNOTSUPP;
3011 		data->phy_id = pi->mdio_addr;
3012 		break;
3013 	case SIOCGMIIREG:
3014 	case SIOCSMIIREG:
3015 		if (mdio_phy_id_is_c45(data->phy_id)) {
3016 			prtad = mdio_phy_id_prtad(data->phy_id);
3017 			devad = mdio_phy_id_devad(data->phy_id);
3018 		} else if (data->phy_id < 32) {
3019 			prtad = data->phy_id;
3020 			devad = 0;
3021 			data->reg_num &= 0x1f;
3022 		} else
3023 			return -EINVAL;
3024 
3025 		mbox = pi->adapter->pf;
3026 		if (cmd == SIOCGMIIREG)
3027 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3028 					 data->reg_num, &data->val_out);
3029 		else
3030 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3031 					 data->reg_num, data->val_in);
3032 		break;
3033 	case SIOCGHWTSTAMP:
3034 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3035 				    sizeof(pi->tstamp_config)) ?
3036 			-EFAULT : 0;
3037 	case SIOCSHWTSTAMP:
3038 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3039 				   sizeof(pi->tstamp_config)))
3040 			return -EFAULT;
3041 
3042 		switch (pi->tstamp_config.rx_filter) {
3043 		case HWTSTAMP_FILTER_NONE:
3044 			pi->rxtstamp = false;
3045 			break;
3046 		case HWTSTAMP_FILTER_ALL:
3047 			pi->rxtstamp = true;
3048 			break;
3049 		default:
3050 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3051 			return -ERANGE;
3052 		}
3053 
3054 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3055 				    sizeof(pi->tstamp_config)) ?
3056 			-EFAULT : 0;
3057 	default:
3058 		return -EOPNOTSUPP;
3059 	}
3060 	return ret;
3061 }
3062 
3063 static void cxgb_set_rxmode(struct net_device *dev)
3064 {
3065 	/* unfortunately we can't return errors to the stack */
3066 	set_rxmode(dev, -1, false);
3067 }
3068 
3069 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3070 {
3071 	int ret;
3072 	struct port_info *pi = netdev_priv(dev);
3073 
3074 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3075 		return -EINVAL;
3076 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3077 			    -1, -1, -1, true);
3078 	if (!ret)
3079 		dev->mtu = new_mtu;
3080 	return ret;
3081 }
3082 
3083 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3084 {
3085 	int ret;
3086 	struct sockaddr *addr = p;
3087 	struct port_info *pi = netdev_priv(dev);
3088 
3089 	if (!is_valid_ether_addr(addr->sa_data))
3090 		return -EADDRNOTAVAIL;
3091 
3092 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3093 			    pi->xact_addr_filt, addr->sa_data, true, true);
3094 	if (ret < 0)
3095 		return ret;
3096 
3097 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3098 	pi->xact_addr_filt = ret;
3099 	return 0;
3100 }
3101 
3102 #ifdef CONFIG_NET_POLL_CONTROLLER
3103 static void cxgb_netpoll(struct net_device *dev)
3104 {
3105 	struct port_info *pi = netdev_priv(dev);
3106 	struct adapter *adap = pi->adapter;
3107 
3108 	if (adap->flags & USING_MSIX) {
3109 		int i;
3110 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3111 
3112 		for (i = pi->nqsets; i; i--, rx++)
3113 			t4_sge_intr_msix(0, &rx->rspq);
3114 	} else
3115 		t4_intr_handler(adap)(0, adap);
3116 }
3117 #endif
3118 
3119 static const struct net_device_ops cxgb4_netdev_ops = {
3120 	.ndo_open             = cxgb_open,
3121 	.ndo_stop             = cxgb_close,
3122 	.ndo_start_xmit       = t4_eth_xmit,
3123 	.ndo_select_queue     =	cxgb_select_queue,
3124 	.ndo_get_stats64      = cxgb_get_stats,
3125 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3126 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3127 	.ndo_set_features     = cxgb_set_features,
3128 	.ndo_validate_addr    = eth_validate_addr,
3129 	.ndo_do_ioctl         = cxgb_ioctl,
3130 	.ndo_change_mtu       = cxgb_change_mtu,
3131 #ifdef CONFIG_NET_POLL_CONTROLLER
3132 	.ndo_poll_controller  = cxgb_netpoll,
3133 #endif
3134 #ifdef CONFIG_CHELSIO_T4_FCOE
3135 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3136 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3137 #endif /* CONFIG_CHELSIO_T4_FCOE */
3138 #ifdef CONFIG_NET_RX_BUSY_POLL
3139 	.ndo_busy_poll        = cxgb_busy_poll,
3140 #endif
3141 
3142 };
3143 
3144 void t4_fatal_err(struct adapter *adap)
3145 {
3146 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3147 	t4_intr_disable(adap);
3148 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3149 }
3150 
3151 static void setup_memwin(struct adapter *adap)
3152 {
3153 	u32 nic_win_base = t4_get_util_window(adap);
3154 
3155 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3156 }
3157 
3158 static void setup_memwin_rdma(struct adapter *adap)
3159 {
3160 	if (adap->vres.ocq.size) {
3161 		u32 start;
3162 		unsigned int sz_kb;
3163 
3164 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3165 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3166 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3167 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3168 		t4_write_reg(adap,
3169 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3170 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3171 		t4_write_reg(adap,
3172 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3173 			     adap->vres.ocq.start);
3174 		t4_read_reg(adap,
3175 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3176 	}
3177 }
3178 
3179 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3180 {
3181 	u32 v;
3182 	int ret;
3183 
3184 	/* get device capabilities */
3185 	memset(c, 0, sizeof(*c));
3186 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3187 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3188 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3189 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3190 	if (ret < 0)
3191 		return ret;
3192 
3193 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3194 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3195 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3196 	if (ret < 0)
3197 		return ret;
3198 
3199 	ret = t4_config_glbl_rss(adap, adap->pf,
3200 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3201 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3202 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3203 	if (ret < 0)
3204 		return ret;
3205 
3206 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3207 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3208 			  FW_CMD_CAP_PF);
3209 	if (ret < 0)
3210 		return ret;
3211 
3212 	t4_sge_init(adap);
3213 
3214 	/* tweak some settings */
3215 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3216 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3217 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3218 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3219 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3220 
3221 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3222 	adap->params.tp.tx_modq_map = 0xE4;
3223 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3224 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3225 
3226 	/* associate each Tx modulation queue with consecutive Tx channels */
3227 	v = 0x84218421;
3228 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3229 			  &v, 1, TP_TX_SCHED_HDR_A);
3230 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3231 			  &v, 1, TP_TX_SCHED_FIFO_A);
3232 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3233 			  &v, 1, TP_TX_SCHED_PCMD_A);
3234 
3235 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3236 	if (is_offload(adap)) {
3237 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3238 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3239 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3240 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3241 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3242 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3243 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3244 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3245 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3246 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3247 	}
3248 
3249 	/* get basic stuff going */
3250 	return t4_early_init(adap, adap->pf);
3251 }
3252 
3253 /*
3254  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3255  */
3256 #define MAX_ATIDS 8192U
3257 
3258 /*
3259  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3260  *
3261  * If the firmware we're dealing with has Configuration File support, then
3262  * we use that to perform all configuration
3263  */
3264 
3265 /*
3266  * Tweak configuration based on module parameters, etc.  Most of these have
3267  * defaults assigned to them by Firmware Configuration Files (if we're using
3268  * them) but need to be explicitly set if we're using hard-coded
3269  * initialization.  But even in the case of using Firmware Configuration
3270  * Files, we'd like to expose the ability to change these via module
3271  * parameters so these are essentially common tweaks/settings for
3272  * Configuration Files and hard-coded initialization ...
3273  */
3274 static int adap_init0_tweaks(struct adapter *adapter)
3275 {
3276 	/*
3277 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3278 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3279 	 * 64B Cache Line Size ...
3280 	 */
3281 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3282 
3283 	/*
3284 	 * Process module parameters which affect early initialization.
3285 	 */
3286 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3287 		dev_err(&adapter->pdev->dev,
3288 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3289 			rx_dma_offset);
3290 		rx_dma_offset = 2;
3291 	}
3292 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3293 			 PKTSHIFT_V(PKTSHIFT_M),
3294 			 PKTSHIFT_V(rx_dma_offset));
3295 
3296 	/*
3297 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3298 	 * adds the pseudo header itself.
3299 	 */
3300 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3301 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3302 
3303 	return 0;
3304 }
3305 
3306 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3307  * unto themselves and they contain their own firmware to perform their
3308  * tasks ...
3309  */
3310 static int phy_aq1202_version(const u8 *phy_fw_data,
3311 			      size_t phy_fw_size)
3312 {
3313 	int offset;
3314 
3315 	/* At offset 0x8 you're looking for the primary image's
3316 	 * starting offset which is 3 Bytes wide
3317 	 *
3318 	 * At offset 0xa of the primary image, you look for the offset
3319 	 * of the DRAM segment which is 3 Bytes wide.
3320 	 *
3321 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3322 	 * wide
3323 	 */
3324 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3325 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3326 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3327 
3328 	offset = le24(phy_fw_data + 0x8) << 12;
3329 	offset = le24(phy_fw_data + offset + 0xa);
3330 	return be16(phy_fw_data + offset + 0x27e);
3331 
3332 	#undef be16
3333 	#undef le16
3334 	#undef le24
3335 }
3336 
3337 static struct info_10gbt_phy_fw {
3338 	unsigned int phy_fw_id;		/* PCI Device ID */
3339 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3340 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3341 	int phy_flash;			/* Has FLASH for PHY Firmware */
3342 } phy_info_array[] = {
3343 	{
3344 		PHY_AQ1202_DEVICEID,
3345 		PHY_AQ1202_FIRMWARE,
3346 		phy_aq1202_version,
3347 		1,
3348 	},
3349 	{
3350 		PHY_BCM84834_DEVICEID,
3351 		PHY_BCM84834_FIRMWARE,
3352 		NULL,
3353 		0,
3354 	},
3355 	{ 0, NULL, NULL },
3356 };
3357 
3358 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3359 {
3360 	int i;
3361 
3362 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3363 		if (phy_info_array[i].phy_fw_id == devid)
3364 			return &phy_info_array[i];
3365 	}
3366 	return NULL;
3367 }
3368 
3369 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3370  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3371  * we return a negative error number.  If we transfer new firmware we return 1
3372  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3373  */
3374 static int adap_init0_phy(struct adapter *adap)
3375 {
3376 	const struct firmware *phyf;
3377 	int ret;
3378 	struct info_10gbt_phy_fw *phy_info;
3379 
3380 	/* Use the device ID to determine which PHY file to flash.
3381 	 */
3382 	phy_info = find_phy_info(adap->pdev->device);
3383 	if (!phy_info) {
3384 		dev_warn(adap->pdev_dev,
3385 			 "No PHY Firmware file found for this PHY\n");
3386 		return -EOPNOTSUPP;
3387 	}
3388 
3389 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3390 	 * use that. The adapter firmware provides us with a memory buffer
3391 	 * where we can load a PHY firmware file from the host if we want to
3392 	 * override the PHY firmware File in flash.
3393 	 */
3394 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3395 				      adap->pdev_dev);
3396 	if (ret < 0) {
3397 		/* For adapters without FLASH attached to PHY for their
3398 		 * firmware, it's obviously a fatal error if we can't get the
3399 		 * firmware to the adapter.  For adapters with PHY firmware
3400 		 * FLASH storage, it's worth a warning if we can't find the
3401 		 * PHY Firmware but we'll neuter the error ...
3402 		 */
3403 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3404 			"/lib/firmware/%s, error %d\n",
3405 			phy_info->phy_fw_file, -ret);
3406 		if (phy_info->phy_flash) {
3407 			int cur_phy_fw_ver = 0;
3408 
3409 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3410 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3411 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3412 			ret = 0;
3413 		}
3414 
3415 		return ret;
3416 	}
3417 
3418 	/* Load PHY Firmware onto adapter.
3419 	 */
3420 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3421 			     phy_info->phy_fw_version,
3422 			     (u8 *)phyf->data, phyf->size);
3423 	if (ret < 0)
3424 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3425 			-ret);
3426 	else if (ret > 0) {
3427 		int new_phy_fw_ver = 0;
3428 
3429 		if (phy_info->phy_fw_version)
3430 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3431 								  phyf->size);
3432 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3433 			 "Firmware /lib/firmware/%s, version %#x\n",
3434 			 phy_info->phy_fw_file, new_phy_fw_ver);
3435 	}
3436 
3437 	release_firmware(phyf);
3438 
3439 	return ret;
3440 }
3441 
3442 /*
3443  * Attempt to initialize the adapter via a Firmware Configuration File.
3444  */
3445 static int adap_init0_config(struct adapter *adapter, int reset)
3446 {
3447 	struct fw_caps_config_cmd caps_cmd;
3448 	const struct firmware *cf;
3449 	unsigned long mtype = 0, maddr = 0;
3450 	u32 finiver, finicsum, cfcsum;
3451 	int ret;
3452 	int config_issued = 0;
3453 	char *fw_config_file, fw_config_file_path[256];
3454 	char *config_name = NULL;
3455 
3456 	/*
3457 	 * Reset device if necessary.
3458 	 */
3459 	if (reset) {
3460 		ret = t4_fw_reset(adapter, adapter->mbox,
3461 				  PIORSTMODE_F | PIORST_F);
3462 		if (ret < 0)
3463 			goto bye;
3464 	}
3465 
3466 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3467 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3468 	 * to be performed after any global adapter RESET above since some
3469 	 * PHYs only have local RAM copies of the PHY firmware.
3470 	 */
3471 	if (is_10gbt_device(adapter->pdev->device)) {
3472 		ret = adap_init0_phy(adapter);
3473 		if (ret < 0)
3474 			goto bye;
3475 	}
3476 	/*
3477 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3478 	 * then use that.  Otherwise, use the configuration file stored
3479 	 * in the adapter flash ...
3480 	 */
3481 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3482 	case CHELSIO_T4:
3483 		fw_config_file = FW4_CFNAME;
3484 		break;
3485 	case CHELSIO_T5:
3486 		fw_config_file = FW5_CFNAME;
3487 		break;
3488 	case CHELSIO_T6:
3489 		fw_config_file = FW6_CFNAME;
3490 		break;
3491 	default:
3492 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3493 		       adapter->pdev->device);
3494 		ret = -EINVAL;
3495 		goto bye;
3496 	}
3497 
3498 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3499 	if (ret < 0) {
3500 		config_name = "On FLASH";
3501 		mtype = FW_MEMTYPE_CF_FLASH;
3502 		maddr = t4_flash_cfg_addr(adapter);
3503 	} else {
3504 		u32 params[7], val[7];
3505 
3506 		sprintf(fw_config_file_path,
3507 			"/lib/firmware/%s", fw_config_file);
3508 		config_name = fw_config_file_path;
3509 
3510 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3511 			ret = -ENOMEM;
3512 		else {
3513 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3514 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3515 			ret = t4_query_params(adapter, adapter->mbox,
3516 					      adapter->pf, 0, 1, params, val);
3517 			if (ret == 0) {
3518 				/*
3519 				 * For t4_memory_rw() below addresses and
3520 				 * sizes have to be in terms of multiples of 4
3521 				 * bytes.  So, if the Configuration File isn't
3522 				 * a multiple of 4 bytes in length we'll have
3523 				 * to write that out separately since we can't
3524 				 * guarantee that the bytes following the
3525 				 * residual byte in the buffer returned by
3526 				 * request_firmware() are zeroed out ...
3527 				 */
3528 				size_t resid = cf->size & 0x3;
3529 				size_t size = cf->size & ~0x3;
3530 				__be32 *data = (__be32 *)cf->data;
3531 
3532 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3533 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3534 
3535 				spin_lock(&adapter->win0_lock);
3536 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3537 						   size, data, T4_MEMORY_WRITE);
3538 				if (ret == 0 && resid != 0) {
3539 					union {
3540 						__be32 word;
3541 						char buf[4];
3542 					} last;
3543 					int i;
3544 
3545 					last.word = data[size >> 2];
3546 					for (i = resid; i < 4; i++)
3547 						last.buf[i] = 0;
3548 					ret = t4_memory_rw(adapter, 0, mtype,
3549 							   maddr + size,
3550 							   4, &last.word,
3551 							   T4_MEMORY_WRITE);
3552 				}
3553 				spin_unlock(&adapter->win0_lock);
3554 			}
3555 		}
3556 
3557 		release_firmware(cf);
3558 		if (ret)
3559 			goto bye;
3560 	}
3561 
3562 	/*
3563 	 * Issue a Capability Configuration command to the firmware to get it
3564 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3565 	 * because we want the ability to modify various features after we've
3566 	 * processed the configuration file ...
3567 	 */
3568 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3569 	caps_cmd.op_to_write =
3570 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3571 		      FW_CMD_REQUEST_F |
3572 		      FW_CMD_READ_F);
3573 	caps_cmd.cfvalid_to_len16 =
3574 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3575 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3576 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3577 		      FW_LEN16(caps_cmd));
3578 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3579 			 &caps_cmd);
3580 
3581 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3582 	 * Configuration File in FLASH), our last gasp effort is to use the
3583 	 * Firmware Configuration File which is embedded in the firmware.  A
3584 	 * very few early versions of the firmware didn't have one embedded
3585 	 * but we can ignore those.
3586 	 */
3587 	if (ret == -ENOENT) {
3588 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3589 		caps_cmd.op_to_write =
3590 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3591 					FW_CMD_REQUEST_F |
3592 					FW_CMD_READ_F);
3593 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3594 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3595 				sizeof(caps_cmd), &caps_cmd);
3596 		config_name = "Firmware Default";
3597 	}
3598 
3599 	config_issued = 1;
3600 	if (ret < 0)
3601 		goto bye;
3602 
3603 	finiver = ntohl(caps_cmd.finiver);
3604 	finicsum = ntohl(caps_cmd.finicsum);
3605 	cfcsum = ntohl(caps_cmd.cfcsum);
3606 	if (finicsum != cfcsum)
3607 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3608 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3609 			 finicsum, cfcsum);
3610 
3611 	/*
3612 	 * And now tell the firmware to use the configuration we just loaded.
3613 	 */
3614 	caps_cmd.op_to_write =
3615 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3616 		      FW_CMD_REQUEST_F |
3617 		      FW_CMD_WRITE_F);
3618 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3619 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3620 			 NULL);
3621 	if (ret < 0)
3622 		goto bye;
3623 
3624 	/*
3625 	 * Tweak configuration based on system architecture, module
3626 	 * parameters, etc.
3627 	 */
3628 	ret = adap_init0_tweaks(adapter);
3629 	if (ret < 0)
3630 		goto bye;
3631 
3632 	/*
3633 	 * And finally tell the firmware to initialize itself using the
3634 	 * parameters from the Configuration File.
3635 	 */
3636 	ret = t4_fw_initialize(adapter, adapter->mbox);
3637 	if (ret < 0)
3638 		goto bye;
3639 
3640 	/* Emit Firmware Configuration File information and return
3641 	 * successfully.
3642 	 */
3643 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3644 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3645 		 config_name, finiver, cfcsum);
3646 	return 0;
3647 
3648 	/*
3649 	 * Something bad happened.  Return the error ...  (If the "error"
3650 	 * is that there's no Configuration File on the adapter we don't
3651 	 * want to issue a warning since this is fairly common.)
3652 	 */
3653 bye:
3654 	if (config_issued && ret != -ENOENT)
3655 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3656 			 config_name, -ret);
3657 	return ret;
3658 }
3659 
3660 static struct fw_info fw_info_array[] = {
3661 	{
3662 		.chip = CHELSIO_T4,
3663 		.fs_name = FW4_CFNAME,
3664 		.fw_mod_name = FW4_FNAME,
3665 		.fw_hdr = {
3666 			.chip = FW_HDR_CHIP_T4,
3667 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3668 			.intfver_nic = FW_INTFVER(T4, NIC),
3669 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3670 			.intfver_ri = FW_INTFVER(T4, RI),
3671 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3672 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3673 		},
3674 	}, {
3675 		.chip = CHELSIO_T5,
3676 		.fs_name = FW5_CFNAME,
3677 		.fw_mod_name = FW5_FNAME,
3678 		.fw_hdr = {
3679 			.chip = FW_HDR_CHIP_T5,
3680 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3681 			.intfver_nic = FW_INTFVER(T5, NIC),
3682 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3683 			.intfver_ri = FW_INTFVER(T5, RI),
3684 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3685 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3686 		},
3687 	}, {
3688 		.chip = CHELSIO_T6,
3689 		.fs_name = FW6_CFNAME,
3690 		.fw_mod_name = FW6_FNAME,
3691 		.fw_hdr = {
3692 			.chip = FW_HDR_CHIP_T6,
3693 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3694 			.intfver_nic = FW_INTFVER(T6, NIC),
3695 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3696 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3697 			.intfver_ri = FW_INTFVER(T6, RI),
3698 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3699 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3700 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3701 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3702 		},
3703 	}
3704 
3705 };
3706 
3707 static struct fw_info *find_fw_info(int chip)
3708 {
3709 	int i;
3710 
3711 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3712 		if (fw_info_array[i].chip == chip)
3713 			return &fw_info_array[i];
3714 	}
3715 	return NULL;
3716 }
3717 
3718 /*
3719  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3720  */
3721 static int adap_init0(struct adapter *adap)
3722 {
3723 	int ret;
3724 	u32 v, port_vec;
3725 	enum dev_state state;
3726 	u32 params[7], val[7];
3727 	struct fw_caps_config_cmd caps_cmd;
3728 	int reset = 1;
3729 
3730 	/* Grab Firmware Device Log parameters as early as possible so we have
3731 	 * access to it for debugging, etc.
3732 	 */
3733 	ret = t4_init_devlog_params(adap);
3734 	if (ret < 0)
3735 		return ret;
3736 
3737 	/* Contact FW, advertising Master capability */
3738 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3739 	if (ret < 0) {
3740 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3741 			ret);
3742 		return ret;
3743 	}
3744 	if (ret == adap->mbox)
3745 		adap->flags |= MASTER_PF;
3746 
3747 	/*
3748 	 * If we're the Master PF Driver and the device is uninitialized,
3749 	 * then let's consider upgrading the firmware ...  (We always want
3750 	 * to check the firmware version number in order to A. get it for
3751 	 * later reporting and B. to warn if the currently loaded firmware
3752 	 * is excessively mismatched relative to the driver.)
3753 	 */
3754 	t4_get_fw_version(adap, &adap->params.fw_vers);
3755 	t4_get_bs_version(adap, &adap->params.bs_vers);
3756 	t4_get_tp_version(adap, &adap->params.tp_vers);
3757 	t4_get_exprom_version(adap, &adap->params.er_vers);
3758 
3759 	ret = t4_check_fw_version(adap);
3760 	/* If firmware is too old (not supported by driver) force an update. */
3761 	if (ret)
3762 		state = DEV_STATE_UNINIT;
3763 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3764 		struct fw_info *fw_info;
3765 		struct fw_hdr *card_fw;
3766 		const struct firmware *fw;
3767 		const u8 *fw_data = NULL;
3768 		unsigned int fw_size = 0;
3769 
3770 		/* This is the firmware whose headers the driver was compiled
3771 		 * against
3772 		 */
3773 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3774 		if (fw_info == NULL) {
3775 			dev_err(adap->pdev_dev,
3776 				"unable to get firmware info for chip %d.\n",
3777 				CHELSIO_CHIP_VERSION(adap->params.chip));
3778 			return -EINVAL;
3779 		}
3780 
3781 		/* allocate memory to read the header of the firmware on the
3782 		 * card
3783 		 */
3784 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3785 
3786 		/* Get FW from from /lib/firmware/ */
3787 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3788 				       adap->pdev_dev);
3789 		if (ret < 0) {
3790 			dev_err(adap->pdev_dev,
3791 				"unable to load firmware image %s, error %d\n",
3792 				fw_info->fw_mod_name, ret);
3793 		} else {
3794 			fw_data = fw->data;
3795 			fw_size = fw->size;
3796 		}
3797 
3798 		/* upgrade FW logic */
3799 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3800 				 state, &reset);
3801 
3802 		/* Cleaning up */
3803 		release_firmware(fw);
3804 		t4_free_mem(card_fw);
3805 
3806 		if (ret < 0)
3807 			goto bye;
3808 	}
3809 
3810 	/*
3811 	 * Grab VPD parameters.  This should be done after we establish a
3812 	 * connection to the firmware since some of the VPD parameters
3813 	 * (notably the Core Clock frequency) are retrieved via requests to
3814 	 * the firmware.  On the other hand, we need these fairly early on
3815 	 * so we do this right after getting ahold of the firmware.
3816 	 */
3817 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3818 	if (ret < 0)
3819 		goto bye;
3820 
3821 	/*
3822 	 * Find out what ports are available to us.  Note that we need to do
3823 	 * this before calling adap_init0_no_config() since it needs nports
3824 	 * and portvec ...
3825 	 */
3826 	v =
3827 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3828 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3829 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3830 	if (ret < 0)
3831 		goto bye;
3832 
3833 	adap->params.nports = hweight32(port_vec);
3834 	adap->params.portvec = port_vec;
3835 
3836 	/* If the firmware is initialized already, emit a simply note to that
3837 	 * effect. Otherwise, it's time to try initializing the adapter.
3838 	 */
3839 	if (state == DEV_STATE_INIT) {
3840 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3841 			 "Adapter already initialized\n",
3842 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3843 	} else {
3844 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3845 			 "Initializing adapter\n");
3846 
3847 		/* Find out whether we're dealing with a version of the
3848 		 * firmware which has configuration file support.
3849 		 */
3850 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3851 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3852 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3853 				      params, val);
3854 
3855 		/* If the firmware doesn't support Configuration Files,
3856 		 * return an error.
3857 		 */
3858 		if (ret < 0) {
3859 			dev_err(adap->pdev_dev, "firmware doesn't support "
3860 				"Firmware Configuration Files\n");
3861 			goto bye;
3862 		}
3863 
3864 		/* The firmware provides us with a memory buffer where we can
3865 		 * load a Configuration File from the host if we want to
3866 		 * override the Configuration File in flash.
3867 		 */
3868 		ret = adap_init0_config(adap, reset);
3869 		if (ret == -ENOENT) {
3870 			dev_err(adap->pdev_dev, "no Configuration File "
3871 				"present on adapter.\n");
3872 			goto bye;
3873 		}
3874 		if (ret < 0) {
3875 			dev_err(adap->pdev_dev, "could not initialize "
3876 				"adapter, error %d\n", -ret);
3877 			goto bye;
3878 		}
3879 	}
3880 
3881 	/* Give the SGE code a chance to pull in anything that it needs ...
3882 	 * Note that this must be called after we retrieve our VPD parameters
3883 	 * in order to know how to convert core ticks to seconds, etc.
3884 	 */
3885 	ret = t4_sge_init(adap);
3886 	if (ret < 0)
3887 		goto bye;
3888 
3889 	if (is_bypass_device(adap->pdev->device))
3890 		adap->params.bypass = 1;
3891 
3892 	/*
3893 	 * Grab some of our basic fundamental operating parameters.
3894 	 */
3895 #define FW_PARAM_DEV(param) \
3896 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3897 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3898 
3899 #define FW_PARAM_PFVF(param) \
3900 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3901 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3902 	FW_PARAMS_PARAM_Y_V(0) | \
3903 	FW_PARAMS_PARAM_Z_V(0)
3904 
3905 	params[0] = FW_PARAM_PFVF(EQ_START);
3906 	params[1] = FW_PARAM_PFVF(L2T_START);
3907 	params[2] = FW_PARAM_PFVF(L2T_END);
3908 	params[3] = FW_PARAM_PFVF(FILTER_START);
3909 	params[4] = FW_PARAM_PFVF(FILTER_END);
3910 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3911 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3912 	if (ret < 0)
3913 		goto bye;
3914 	adap->sge.egr_start = val[0];
3915 	adap->l2t_start = val[1];
3916 	adap->l2t_end = val[2];
3917 	adap->tids.ftid_base = val[3];
3918 	adap->tids.nftids = val[4] - val[3] + 1;
3919 	adap->sge.ingr_start = val[5];
3920 
3921 	/* qids (ingress/egress) returned from firmware can be anywhere
3922 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3923 	 * Hence driver needs to allocate memory for this range to
3924 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3925 	 * in FW_EQ_*_CMD.alloc command.
3926 	 */
3927 	params[0] = FW_PARAM_PFVF(EQ_END);
3928 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3929 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3930 	if (ret < 0)
3931 		goto bye;
3932 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3933 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3934 
3935 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3936 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3937 	if (!adap->sge.egr_map) {
3938 		ret = -ENOMEM;
3939 		goto bye;
3940 	}
3941 
3942 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3943 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3944 	if (!adap->sge.ingr_map) {
3945 		ret = -ENOMEM;
3946 		goto bye;
3947 	}
3948 
3949 	/* Allocate the memory for the vaious egress queue bitmaps
3950 	 * ie starving_fl, txq_maperr and blocked_fl.
3951 	 */
3952 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3953 					sizeof(long), GFP_KERNEL);
3954 	if (!adap->sge.starving_fl) {
3955 		ret = -ENOMEM;
3956 		goto bye;
3957 	}
3958 
3959 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3960 				       sizeof(long), GFP_KERNEL);
3961 	if (!adap->sge.txq_maperr) {
3962 		ret = -ENOMEM;
3963 		goto bye;
3964 	}
3965 
3966 #ifdef CONFIG_DEBUG_FS
3967 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3968 				       sizeof(long), GFP_KERNEL);
3969 	if (!adap->sge.blocked_fl) {
3970 		ret = -ENOMEM;
3971 		goto bye;
3972 	}
3973 #endif
3974 
3975 	params[0] = FW_PARAM_PFVF(CLIP_START);
3976 	params[1] = FW_PARAM_PFVF(CLIP_END);
3977 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3978 	if (ret < 0)
3979 		goto bye;
3980 	adap->clipt_start = val[0];
3981 	adap->clipt_end = val[1];
3982 
3983 	/* query params related to active filter region */
3984 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3985 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3986 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3987 	/* If Active filter size is set we enable establishing
3988 	 * offload connection through firmware work request
3989 	 */
3990 	if ((val[0] != val[1]) && (ret >= 0)) {
3991 		adap->flags |= FW_OFLD_CONN;
3992 		adap->tids.aftid_base = val[0];
3993 		adap->tids.aftid_end = val[1];
3994 	}
3995 
3996 	/* If we're running on newer firmware, let it know that we're
3997 	 * prepared to deal with encapsulated CPL messages.  Older
3998 	 * firmware won't understand this and we'll just get
3999 	 * unencapsulated messages ...
4000 	 */
4001 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4002 	val[0] = 1;
4003 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4004 
4005 	/*
4006 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4007 	 * capability.  Earlier versions of the firmware didn't have the
4008 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4009 	 * permission to use ULPTX MEMWRITE DSGL.
4010 	 */
4011 	if (is_t4(adap->params.chip)) {
4012 		adap->params.ulptx_memwrite_dsgl = false;
4013 	} else {
4014 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4015 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4016 				      1, params, val);
4017 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4018 	}
4019 
4020 	/*
4021 	 * Get device capabilities so we can determine what resources we need
4022 	 * to manage.
4023 	 */
4024 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4025 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4026 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4027 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4028 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4029 			 &caps_cmd);
4030 	if (ret < 0)
4031 		goto bye;
4032 
4033 	if (caps_cmd.ofldcaps) {
4034 		/* query offload-related parameters */
4035 		params[0] = FW_PARAM_DEV(NTID);
4036 		params[1] = FW_PARAM_PFVF(SERVER_START);
4037 		params[2] = FW_PARAM_PFVF(SERVER_END);
4038 		params[3] = FW_PARAM_PFVF(TDDP_START);
4039 		params[4] = FW_PARAM_PFVF(TDDP_END);
4040 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4041 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4042 				      params, val);
4043 		if (ret < 0)
4044 			goto bye;
4045 		adap->tids.ntids = val[0];
4046 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4047 		adap->tids.stid_base = val[1];
4048 		adap->tids.nstids = val[2] - val[1] + 1;
4049 		/*
4050 		 * Setup server filter region. Divide the available filter
4051 		 * region into two parts. Regular filters get 1/3rd and server
4052 		 * filters get 2/3rd part. This is only enabled if workarond
4053 		 * path is enabled.
4054 		 * 1. For regular filters.
4055 		 * 2. Server filter: This are special filters which are used
4056 		 * to redirect SYN packets to offload queue.
4057 		 */
4058 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4059 			adap->tids.sftid_base = adap->tids.ftid_base +
4060 					DIV_ROUND_UP(adap->tids.nftids, 3);
4061 			adap->tids.nsftids = adap->tids.nftids -
4062 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4063 			adap->tids.nftids = adap->tids.sftid_base -
4064 						adap->tids.ftid_base;
4065 		}
4066 		adap->vres.ddp.start = val[3];
4067 		adap->vres.ddp.size = val[4] - val[3] + 1;
4068 		adap->params.ofldq_wr_cred = val[5];
4069 
4070 		adap->params.offload = 1;
4071 	}
4072 	if (caps_cmd.rdmacaps) {
4073 		params[0] = FW_PARAM_PFVF(STAG_START);
4074 		params[1] = FW_PARAM_PFVF(STAG_END);
4075 		params[2] = FW_PARAM_PFVF(RQ_START);
4076 		params[3] = FW_PARAM_PFVF(RQ_END);
4077 		params[4] = FW_PARAM_PFVF(PBL_START);
4078 		params[5] = FW_PARAM_PFVF(PBL_END);
4079 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4080 				      params, val);
4081 		if (ret < 0)
4082 			goto bye;
4083 		adap->vres.stag.start = val[0];
4084 		adap->vres.stag.size = val[1] - val[0] + 1;
4085 		adap->vres.rq.start = val[2];
4086 		adap->vres.rq.size = val[3] - val[2] + 1;
4087 		adap->vres.pbl.start = val[4];
4088 		adap->vres.pbl.size = val[5] - val[4] + 1;
4089 
4090 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4091 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4092 		params[2] = FW_PARAM_PFVF(CQ_START);
4093 		params[3] = FW_PARAM_PFVF(CQ_END);
4094 		params[4] = FW_PARAM_PFVF(OCQ_START);
4095 		params[5] = FW_PARAM_PFVF(OCQ_END);
4096 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4097 				      val);
4098 		if (ret < 0)
4099 			goto bye;
4100 		adap->vres.qp.start = val[0];
4101 		adap->vres.qp.size = val[1] - val[0] + 1;
4102 		adap->vres.cq.start = val[2];
4103 		adap->vres.cq.size = val[3] - val[2] + 1;
4104 		adap->vres.ocq.start = val[4];
4105 		adap->vres.ocq.size = val[5] - val[4] + 1;
4106 
4107 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4108 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4109 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4110 				      val);
4111 		if (ret < 0) {
4112 			adap->params.max_ordird_qp = 8;
4113 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4114 			ret = 0;
4115 		} else {
4116 			adap->params.max_ordird_qp = val[0];
4117 			adap->params.max_ird_adapter = val[1];
4118 		}
4119 		dev_info(adap->pdev_dev,
4120 			 "max_ordird_qp %d max_ird_adapter %d\n",
4121 			 adap->params.max_ordird_qp,
4122 			 adap->params.max_ird_adapter);
4123 	}
4124 	if (caps_cmd.iscsicaps) {
4125 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4126 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4127 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4128 				      params, val);
4129 		if (ret < 0)
4130 			goto bye;
4131 		adap->vres.iscsi.start = val[0];
4132 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4133 	}
4134 #undef FW_PARAM_PFVF
4135 #undef FW_PARAM_DEV
4136 
4137 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4138 	 * we're initializing the adapter, then we'll make any modifications
4139 	 * we want to the MTU/MSS Table and also initialize the congestion
4140 	 * parameters.
4141 	 */
4142 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4143 	if (state != DEV_STATE_INIT) {
4144 		int i;
4145 
4146 		/* The default MTU Table contains values 1492 and 1500.
4147 		 * However, for TCP, it's better to have two values which are
4148 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4149 		 * This allows us to have a TCP Data Payload which is a
4150 		 * multiple of 8 regardless of what combination of TCP Options
4151 		 * are in use (always a multiple of 4 bytes) which is
4152 		 * important for performance reasons.  For instance, if no
4153 		 * options are in use, then we have a 20-byte IP header and a
4154 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4155 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4156 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4157 		 * this case results in a TCP Data Payload of 1448 bytes which
4158 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4159 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4160 		 * results in a TCP Data Payload of 1448 bytes which, as
4161 		 * above, is a multiple of 8 bytes ...
4162 		 */
4163 		for (i = 0; i < NMTUS; i++)
4164 			if (adap->params.mtus[i] == 1492) {
4165 				adap->params.mtus[i] = 1488;
4166 				break;
4167 			}
4168 
4169 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4170 			     adap->params.b_wnd);
4171 	}
4172 	t4_init_sge_params(adap);
4173 	adap->flags |= FW_OK;
4174 	t4_init_tp_params(adap);
4175 	return 0;
4176 
4177 	/*
4178 	 * Something bad happened.  If a command timed out or failed with EIO
4179 	 * FW does not operate within its spec or something catastrophic
4180 	 * happened to HW/FW, stop issuing commands.
4181 	 */
4182 bye:
4183 	kfree(adap->sge.egr_map);
4184 	kfree(adap->sge.ingr_map);
4185 	kfree(adap->sge.starving_fl);
4186 	kfree(adap->sge.txq_maperr);
4187 #ifdef CONFIG_DEBUG_FS
4188 	kfree(adap->sge.blocked_fl);
4189 #endif
4190 	if (ret != -ETIMEDOUT && ret != -EIO)
4191 		t4_fw_bye(adap, adap->mbox);
4192 	return ret;
4193 }
4194 
4195 /* EEH callbacks */
4196 
4197 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4198 					 pci_channel_state_t state)
4199 {
4200 	int i;
4201 	struct adapter *adap = pci_get_drvdata(pdev);
4202 
4203 	if (!adap)
4204 		goto out;
4205 
4206 	rtnl_lock();
4207 	adap->flags &= ~FW_OK;
4208 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4209 	spin_lock(&adap->stats_lock);
4210 	for_each_port(adap, i) {
4211 		struct net_device *dev = adap->port[i];
4212 
4213 		netif_device_detach(dev);
4214 		netif_carrier_off(dev);
4215 	}
4216 	spin_unlock(&adap->stats_lock);
4217 	disable_interrupts(adap);
4218 	if (adap->flags & FULL_INIT_DONE)
4219 		cxgb_down(adap);
4220 	rtnl_unlock();
4221 	if ((adap->flags & DEV_ENABLED)) {
4222 		pci_disable_device(pdev);
4223 		adap->flags &= ~DEV_ENABLED;
4224 	}
4225 out:	return state == pci_channel_io_perm_failure ?
4226 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4227 }
4228 
4229 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4230 {
4231 	int i, ret;
4232 	struct fw_caps_config_cmd c;
4233 	struct adapter *adap = pci_get_drvdata(pdev);
4234 
4235 	if (!adap) {
4236 		pci_restore_state(pdev);
4237 		pci_save_state(pdev);
4238 		return PCI_ERS_RESULT_RECOVERED;
4239 	}
4240 
4241 	if (!(adap->flags & DEV_ENABLED)) {
4242 		if (pci_enable_device(pdev)) {
4243 			dev_err(&pdev->dev, "Cannot reenable PCI "
4244 					    "device after reset\n");
4245 			return PCI_ERS_RESULT_DISCONNECT;
4246 		}
4247 		adap->flags |= DEV_ENABLED;
4248 	}
4249 
4250 	pci_set_master(pdev);
4251 	pci_restore_state(pdev);
4252 	pci_save_state(pdev);
4253 	pci_cleanup_aer_uncorrect_error_status(pdev);
4254 
4255 	if (t4_wait_dev_ready(adap->regs) < 0)
4256 		return PCI_ERS_RESULT_DISCONNECT;
4257 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4258 		return PCI_ERS_RESULT_DISCONNECT;
4259 	adap->flags |= FW_OK;
4260 	if (adap_init1(adap, &c))
4261 		return PCI_ERS_RESULT_DISCONNECT;
4262 
4263 	for_each_port(adap, i) {
4264 		struct port_info *p = adap2pinfo(adap, i);
4265 
4266 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4267 				  NULL, NULL);
4268 		if (ret < 0)
4269 			return PCI_ERS_RESULT_DISCONNECT;
4270 		p->viid = ret;
4271 		p->xact_addr_filt = -1;
4272 	}
4273 
4274 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4275 		     adap->params.b_wnd);
4276 	setup_memwin(adap);
4277 	if (cxgb_up(adap))
4278 		return PCI_ERS_RESULT_DISCONNECT;
4279 	return PCI_ERS_RESULT_RECOVERED;
4280 }
4281 
4282 static void eeh_resume(struct pci_dev *pdev)
4283 {
4284 	int i;
4285 	struct adapter *adap = pci_get_drvdata(pdev);
4286 
4287 	if (!adap)
4288 		return;
4289 
4290 	rtnl_lock();
4291 	for_each_port(adap, i) {
4292 		struct net_device *dev = adap->port[i];
4293 
4294 		if (netif_running(dev)) {
4295 			link_start(dev);
4296 			cxgb_set_rxmode(dev);
4297 		}
4298 		netif_device_attach(dev);
4299 	}
4300 	rtnl_unlock();
4301 }
4302 
4303 static const struct pci_error_handlers cxgb4_eeh = {
4304 	.error_detected = eeh_err_detected,
4305 	.slot_reset     = eeh_slot_reset,
4306 	.resume         = eeh_resume,
4307 };
4308 
4309 static inline bool is_x_10g_port(const struct link_config *lc)
4310 {
4311 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4312 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4313 }
4314 
4315 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4316 			     unsigned int us, unsigned int cnt,
4317 			     unsigned int size, unsigned int iqe_size)
4318 {
4319 	q->adap = adap;
4320 	cxgb4_set_rspq_intr_params(q, us, cnt);
4321 	q->iqe_len = iqe_size;
4322 	q->size = size;
4323 }
4324 
4325 /*
4326  * Perform default configuration of DMA queues depending on the number and type
4327  * of ports we found and the number of available CPUs.  Most settings can be
4328  * modified by the admin prior to actual use.
4329  */
4330 static void cfg_queues(struct adapter *adap)
4331 {
4332 	struct sge *s = &adap->sge;
4333 	int i, n10g = 0, qidx = 0;
4334 #ifndef CONFIG_CHELSIO_T4_DCB
4335 	int q10g = 0;
4336 #endif
4337 	int ciq_size;
4338 
4339 	for_each_port(adap, i)
4340 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4341 #ifdef CONFIG_CHELSIO_T4_DCB
4342 	/* For Data Center Bridging support we need to be able to support up
4343 	 * to 8 Traffic Priorities; each of which will be assigned to its
4344 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4345 	 */
4346 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4347 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4348 			MAX_ETH_QSETS, adap->params.nports * 8);
4349 		BUG_ON(1);
4350 	}
4351 
4352 	for_each_port(adap, i) {
4353 		struct port_info *pi = adap2pinfo(adap, i);
4354 
4355 		pi->first_qset = qidx;
4356 		pi->nqsets = 8;
4357 		qidx += pi->nqsets;
4358 	}
4359 #else /* !CONFIG_CHELSIO_T4_DCB */
4360 	/*
4361 	 * We default to 1 queue per non-10G port and up to # of cores queues
4362 	 * per 10G port.
4363 	 */
4364 	if (n10g)
4365 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4366 	if (q10g > netif_get_num_default_rss_queues())
4367 		q10g = netif_get_num_default_rss_queues();
4368 
4369 	for_each_port(adap, i) {
4370 		struct port_info *pi = adap2pinfo(adap, i);
4371 
4372 		pi->first_qset = qidx;
4373 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4374 		qidx += pi->nqsets;
4375 	}
4376 #endif /* !CONFIG_CHELSIO_T4_DCB */
4377 
4378 	s->ethqsets = qidx;
4379 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4380 
4381 	if (is_offload(adap)) {
4382 		/*
4383 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4384 		 * otherwise we divide all available queues amongst the channels
4385 		 * capped by the number of available cores.
4386 		 */
4387 		if (n10g) {
4388 			i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4389 				  num_online_cpus());
4390 			s->iscsiqsets = roundup(i, adap->params.nports);
4391 		} else
4392 			s->iscsiqsets = adap->params.nports;
4393 		/* For RDMA one Rx queue per channel suffices */
4394 		s->rdmaqs = adap->params.nports;
4395 		/* Try and allow at least 1 CIQ per cpu rounding down
4396 		 * to the number of ports, with a minimum of 1 per port.
4397 		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4398 		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4399 		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4400 		 */
4401 		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4402 		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4403 				adap->params.nports;
4404 		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4405 
4406 		if (!is_t4(adap->params.chip))
4407 			s->niscsitq = s->iscsiqsets;
4408 	}
4409 
4410 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4411 		struct sge_eth_rxq *r = &s->ethrxq[i];
4412 
4413 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4414 		r->fl.size = 72;
4415 	}
4416 
4417 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4418 		s->ethtxq[i].q.size = 1024;
4419 
4420 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4421 		s->ctrlq[i].q.size = 512;
4422 
4423 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4424 		s->ofldtxq[i].q.size = 1024;
4425 
4426 	for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4427 		struct sge_ofld_rxq *r = &s->iscsirxq[i];
4428 
4429 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4430 		r->rspq.uld = CXGB4_ULD_ISCSI;
4431 		r->fl.size = 72;
4432 	}
4433 
4434 	if (!is_t4(adap->params.chip)) {
4435 		for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4436 			struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4437 
4438 			init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4439 			r->rspq.uld = CXGB4_ULD_ISCSIT;
4440 			r->fl.size = 72;
4441 		}
4442 	}
4443 
4444 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4445 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4446 
4447 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4448 		r->rspq.uld = CXGB4_ULD_RDMA;
4449 		r->fl.size = 72;
4450 	}
4451 
4452 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4453 	if (ciq_size > SGE_MAX_IQ_SIZE) {
4454 		CH_WARN(adap, "CIQ size too small for available IQs\n");
4455 		ciq_size = SGE_MAX_IQ_SIZE;
4456 	}
4457 
4458 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4459 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4460 
4461 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4462 		r->rspq.uld = CXGB4_ULD_RDMA;
4463 	}
4464 
4465 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4466 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4467 }
4468 
4469 /*
4470  * Reduce the number of Ethernet queues across all ports to at most n.
4471  * n provides at least one queue per port.
4472  */
4473 static void reduce_ethqs(struct adapter *adap, int n)
4474 {
4475 	int i;
4476 	struct port_info *pi;
4477 
4478 	while (n < adap->sge.ethqsets)
4479 		for_each_port(adap, i) {
4480 			pi = adap2pinfo(adap, i);
4481 			if (pi->nqsets > 1) {
4482 				pi->nqsets--;
4483 				adap->sge.ethqsets--;
4484 				if (adap->sge.ethqsets <= n)
4485 					break;
4486 			}
4487 		}
4488 
4489 	n = 0;
4490 	for_each_port(adap, i) {
4491 		pi = adap2pinfo(adap, i);
4492 		pi->first_qset = n;
4493 		n += pi->nqsets;
4494 	}
4495 }
4496 
4497 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4498 #define EXTRA_VECS 2
4499 
4500 static int enable_msix(struct adapter *adap)
4501 {
4502 	int ofld_need = 0;
4503 	int i, want, need, allocated;
4504 	struct sge *s = &adap->sge;
4505 	unsigned int nchan = adap->params.nports;
4506 	struct msix_entry *entries;
4507 
4508 	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4509 			  GFP_KERNEL);
4510 	if (!entries)
4511 		return -ENOMEM;
4512 
4513 	for (i = 0; i < MAX_INGQ + 1; ++i)
4514 		entries[i].entry = i;
4515 
4516 	want = s->max_ethqsets + EXTRA_VECS;
4517 	if (is_offload(adap)) {
4518 		want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets	+
4519 			s->niscsitq;
4520 		/* need nchan for each possible ULD */
4521 		if (is_t4(adap->params.chip))
4522 			ofld_need = 3 * nchan;
4523 		else
4524 			ofld_need = 4 * nchan;
4525 	}
4526 #ifdef CONFIG_CHELSIO_T4_DCB
4527 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4528 	 * each port.
4529 	 */
4530 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4531 #else
4532 	need = adap->params.nports + EXTRA_VECS + ofld_need;
4533 #endif
4534 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4535 	if (allocated < 0) {
4536 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4537 			 " not using MSI-X\n");
4538 		kfree(entries);
4539 		return allocated;
4540 	}
4541 
4542 	/* Distribute available vectors to the various queue groups.
4543 	 * Every group gets its minimum requirement and NIC gets top
4544 	 * priority for leftovers.
4545 	 */
4546 	i = allocated - EXTRA_VECS - ofld_need;
4547 	if (i < s->max_ethqsets) {
4548 		s->max_ethqsets = i;
4549 		if (i < s->ethqsets)
4550 			reduce_ethqs(adap, i);
4551 	}
4552 	if (is_offload(adap)) {
4553 		if (allocated < want) {
4554 			s->rdmaqs = nchan;
4555 			s->rdmaciqs = nchan;
4556 
4557 			if (!is_t4(adap->params.chip))
4558 				s->niscsitq = nchan;
4559 		}
4560 
4561 		/* leftovers go to OFLD */
4562 		i = allocated - EXTRA_VECS - s->max_ethqsets -
4563 		    s->rdmaqs - s->rdmaciqs - s->niscsitq;
4564 		s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4565 
4566 	}
4567 	for (i = 0; i < allocated; ++i)
4568 		adap->msix_info[i].vec = entries[i].vector;
4569 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4570 		 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4571 		 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4572 		 s->rdmaciqs);
4573 
4574 	kfree(entries);
4575 	return 0;
4576 }
4577 
4578 #undef EXTRA_VECS
4579 
4580 static int init_rss(struct adapter *adap)
4581 {
4582 	unsigned int i;
4583 	int err;
4584 
4585 	err = t4_init_rss_mode(adap, adap->mbox);
4586 	if (err)
4587 		return err;
4588 
4589 	for_each_port(adap, i) {
4590 		struct port_info *pi = adap2pinfo(adap, i);
4591 
4592 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4593 		if (!pi->rss)
4594 			return -ENOMEM;
4595 	}
4596 	return 0;
4597 }
4598 
4599 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4600 					enum pci_bus_speed *speed,
4601 					enum pcie_link_width *width)
4602 {
4603 	u32 lnkcap1, lnkcap2;
4604 	int err1, err2;
4605 
4606 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4607 
4608 	*speed = PCI_SPEED_UNKNOWN;
4609 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4610 
4611 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4612 					  &lnkcap1);
4613 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4614 					  &lnkcap2);
4615 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4616 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4617 			*speed = PCIE_SPEED_8_0GT;
4618 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4619 			*speed = PCIE_SPEED_5_0GT;
4620 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4621 			*speed = PCIE_SPEED_2_5GT;
4622 	}
4623 	if (!err1) {
4624 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4625 		if (!lnkcap2) { /* pre-r3.0 */
4626 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4627 				*speed = PCIE_SPEED_5_0GT;
4628 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4629 				*speed = PCIE_SPEED_2_5GT;
4630 		}
4631 	}
4632 
4633 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4634 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4635 	return 0;
4636 }
4637 
4638 static void cxgb4_check_pcie_caps(struct adapter *adap)
4639 {
4640 	enum pcie_link_width width, width_cap;
4641 	enum pci_bus_speed speed, speed_cap;
4642 
4643 #define PCIE_SPEED_STR(speed) \
4644 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4645 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4646 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4647 	 "Unknown")
4648 
4649 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4650 		dev_warn(adap->pdev_dev,
4651 			 "Unable to determine PCIe device BW capabilities\n");
4652 		return;
4653 	}
4654 
4655 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4656 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4657 		dev_warn(adap->pdev_dev,
4658 			 "Unable to determine PCI Express bandwidth.\n");
4659 		return;
4660 	}
4661 
4662 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4663 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4664 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4665 		 width, width_cap);
4666 	if (speed < speed_cap || width < width_cap)
4667 		dev_info(adap->pdev_dev,
4668 			 "A slot with more lanes and/or higher speed is "
4669 			 "suggested for optimal performance.\n");
4670 }
4671 
4672 /* Dump basic information about the adapter */
4673 static void print_adapter_info(struct adapter *adapter)
4674 {
4675 	/* Device information */
4676 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4677 		 adapter->params.vpd.id,
4678 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4679 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4680 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4681 
4682 	/* Firmware Version */
4683 	if (!adapter->params.fw_vers)
4684 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4685 	else
4686 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4687 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4688 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4689 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4690 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4691 
4692 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4693 	 * Firmware, so dev_info() is more appropriate here.)
4694 	 */
4695 	if (!adapter->params.bs_vers)
4696 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4697 	else
4698 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4699 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4700 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4701 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4702 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4703 
4704 	/* TP Microcode Version */
4705 	if (!adapter->params.tp_vers)
4706 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4707 	else
4708 		dev_info(adapter->pdev_dev,
4709 			 "TP Microcode version: %u.%u.%u.%u\n",
4710 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4711 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4712 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4713 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4714 
4715 	/* Expansion ROM version */
4716 	if (!adapter->params.er_vers)
4717 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4718 	else
4719 		dev_info(adapter->pdev_dev,
4720 			 "Expansion ROM version: %u.%u.%u.%u\n",
4721 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4722 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4723 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4724 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4725 
4726 	/* Software/Hardware configuration */
4727 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4728 		 is_offload(adapter) ? "R" : "",
4729 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4730 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4731 		 is_offload(adapter) ? "Offload" : "non-Offload");
4732 }
4733 
4734 static void print_port_info(const struct net_device *dev)
4735 {
4736 	char buf[80];
4737 	char *bufp = buf;
4738 	const char *spd = "";
4739 	const struct port_info *pi = netdev_priv(dev);
4740 	const struct adapter *adap = pi->adapter;
4741 
4742 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4743 		spd = " 2.5 GT/s";
4744 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4745 		spd = " 5 GT/s";
4746 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4747 		spd = " 8 GT/s";
4748 
4749 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4750 		bufp += sprintf(bufp, "100/");
4751 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4752 		bufp += sprintf(bufp, "1000/");
4753 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4754 		bufp += sprintf(bufp, "10G/");
4755 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4756 		bufp += sprintf(bufp, "40G/");
4757 	if (bufp != buf)
4758 		--bufp;
4759 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4760 
4761 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4762 		    dev->name, adap->params.vpd.id, adap->name, buf);
4763 }
4764 
4765 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4766 {
4767 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4768 }
4769 
4770 /*
4771  * Free the following resources:
4772  * - memory used for tables
4773  * - MSI/MSI-X
4774  * - net devices
4775  * - resources FW is holding for us
4776  */
4777 static void free_some_resources(struct adapter *adapter)
4778 {
4779 	unsigned int i;
4780 
4781 	t4_free_mem(adapter->l2t);
4782 	t4_free_mem(adapter->tids.tid_tab);
4783 	kfree(adapter->sge.egr_map);
4784 	kfree(adapter->sge.ingr_map);
4785 	kfree(adapter->sge.starving_fl);
4786 	kfree(adapter->sge.txq_maperr);
4787 #ifdef CONFIG_DEBUG_FS
4788 	kfree(adapter->sge.blocked_fl);
4789 #endif
4790 	disable_msi(adapter);
4791 
4792 	for_each_port(adapter, i)
4793 		if (adapter->port[i]) {
4794 			struct port_info *pi = adap2pinfo(adapter, i);
4795 
4796 			if (pi->viid != 0)
4797 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4798 					   0, pi->viid);
4799 			kfree(adap2pinfo(adapter, i)->rss);
4800 			free_netdev(adapter->port[i]);
4801 		}
4802 	if (adapter->flags & FW_OK)
4803 		t4_fw_bye(adapter, adapter->pf);
4804 }
4805 
4806 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4807 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4808 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4809 #define SEGMENT_SIZE 128
4810 
4811 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4812 {
4813 	u16 device_id;
4814 
4815 	/* Retrieve adapter's device ID */
4816 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4817 
4818 	switch (device_id >> 12) {
4819 	case CHELSIO_T4:
4820 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4821 	case CHELSIO_T5:
4822 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4823 	case CHELSIO_T6:
4824 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4825 	default:
4826 		dev_err(&pdev->dev, "Device %d is not supported\n",
4827 			device_id);
4828 	}
4829 	return -EINVAL;
4830 }
4831 
4832 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4833 {
4834 	int func, i, err, s_qpp, qpp, num_seg;
4835 	struct port_info *pi;
4836 	bool highdma = false;
4837 	struct adapter *adapter = NULL;
4838 	void __iomem *regs;
4839 	u32 whoami, pl_rev;
4840 	enum chip_type chip;
4841 
4842 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4843 
4844 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4845 	if (err) {
4846 		/* Just info, some other driver may have claimed the device. */
4847 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4848 		return err;
4849 	}
4850 
4851 	err = pci_enable_device(pdev);
4852 	if (err) {
4853 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4854 		goto out_release_regions;
4855 	}
4856 
4857 	regs = pci_ioremap_bar(pdev, 0);
4858 	if (!regs) {
4859 		dev_err(&pdev->dev, "cannot map device registers\n");
4860 		err = -ENOMEM;
4861 		goto out_disable_device;
4862 	}
4863 
4864 	err = t4_wait_dev_ready(regs);
4865 	if (err < 0)
4866 		goto out_unmap_bar0;
4867 
4868 	/* We control everything through one PF */
4869 	whoami = readl(regs + PL_WHOAMI_A);
4870 	pl_rev = REV_G(readl(regs + PL_REV_A));
4871 	chip = get_chip_type(pdev, pl_rev);
4872 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4873 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4874 	if (func != ent->driver_data) {
4875 		iounmap(regs);
4876 		pci_disable_device(pdev);
4877 		pci_save_state(pdev);        /* to restore SR-IOV later */
4878 		goto sriov;
4879 	}
4880 
4881 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4882 		highdma = true;
4883 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4884 		if (err) {
4885 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4886 				"coherent allocations\n");
4887 			goto out_unmap_bar0;
4888 		}
4889 	} else {
4890 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4891 		if (err) {
4892 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4893 			goto out_unmap_bar0;
4894 		}
4895 	}
4896 
4897 	pci_enable_pcie_error_reporting(pdev);
4898 	enable_pcie_relaxed_ordering(pdev);
4899 	pci_set_master(pdev);
4900 	pci_save_state(pdev);
4901 
4902 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4903 	if (!adapter) {
4904 		err = -ENOMEM;
4905 		goto out_unmap_bar0;
4906 	}
4907 
4908 	adapter->workq = create_singlethread_workqueue("cxgb4");
4909 	if (!adapter->workq) {
4910 		err = -ENOMEM;
4911 		goto out_free_adapter;
4912 	}
4913 
4914 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4915 				    (sizeof(struct mbox_cmd) *
4916 				     T4_OS_LOG_MBOX_CMDS),
4917 				    GFP_KERNEL);
4918 	if (!adapter->mbox_log) {
4919 		err = -ENOMEM;
4920 		goto out_free_adapter;
4921 	}
4922 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4923 
4924 	/* PCI device has been enabled */
4925 	adapter->flags |= DEV_ENABLED;
4926 
4927 	adapter->regs = regs;
4928 	adapter->pdev = pdev;
4929 	adapter->pdev_dev = &pdev->dev;
4930 	adapter->name = pci_name(pdev);
4931 	adapter->mbox = func;
4932 	adapter->pf = func;
4933 	adapter->msg_enable = dflt_msg_enable;
4934 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4935 
4936 	spin_lock_init(&adapter->stats_lock);
4937 	spin_lock_init(&adapter->tid_release_lock);
4938 	spin_lock_init(&adapter->win0_lock);
4939 
4940 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4941 	INIT_WORK(&adapter->db_full_task, process_db_full);
4942 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4943 
4944 	err = t4_prep_adapter(adapter);
4945 	if (err)
4946 		goto out_free_adapter;
4947 
4948 
4949 	if (!is_t4(adapter->params.chip)) {
4950 		s_qpp = (QUEUESPERPAGEPF0_S +
4951 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4952 			adapter->pf);
4953 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4954 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4955 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4956 
4957 		/* Each segment size is 128B. Write coalescing is enabled only
4958 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4959 		 * queue is less no of segments that can be accommodated in
4960 		 * a page size.
4961 		 */
4962 		if (qpp > num_seg) {
4963 			dev_err(&pdev->dev,
4964 				"Incorrect number of egress queues per page\n");
4965 			err = -EINVAL;
4966 			goto out_free_adapter;
4967 		}
4968 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4969 		pci_resource_len(pdev, 2));
4970 		if (!adapter->bar2) {
4971 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4972 			err = -ENOMEM;
4973 			goto out_free_adapter;
4974 		}
4975 	}
4976 
4977 	setup_memwin(adapter);
4978 	err = adap_init0(adapter);
4979 #ifdef CONFIG_DEBUG_FS
4980 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4981 #endif
4982 	setup_memwin_rdma(adapter);
4983 	if (err)
4984 		goto out_unmap_bar;
4985 
4986 	/* configure SGE_STAT_CFG_A to read WC stats */
4987 	if (!is_t4(adapter->params.chip))
4988 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4989 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4990 			      T6_STATMODE_V(0)));
4991 
4992 	for_each_port(adapter, i) {
4993 		struct net_device *netdev;
4994 
4995 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4996 					   MAX_ETH_QSETS);
4997 		if (!netdev) {
4998 			err = -ENOMEM;
4999 			goto out_free_dev;
5000 		}
5001 
5002 		SET_NETDEV_DEV(netdev, &pdev->dev);
5003 
5004 		adapter->port[i] = netdev;
5005 		pi = netdev_priv(netdev);
5006 		pi->adapter = adapter;
5007 		pi->xact_addr_filt = -1;
5008 		pi->port_id = i;
5009 		netdev->irq = pdev->irq;
5010 
5011 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5012 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5013 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5014 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5015 		if (highdma)
5016 			netdev->hw_features |= NETIF_F_HIGHDMA;
5017 		netdev->features |= netdev->hw_features;
5018 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5019 
5020 		netdev->priv_flags |= IFF_UNICAST_FLT;
5021 
5022 		netdev->netdev_ops = &cxgb4_netdev_ops;
5023 #ifdef CONFIG_CHELSIO_T4_DCB
5024 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5025 		cxgb4_dcb_state_init(netdev);
5026 #endif
5027 		cxgb4_set_ethtool_ops(netdev);
5028 	}
5029 
5030 	pci_set_drvdata(pdev, adapter);
5031 
5032 	if (adapter->flags & FW_OK) {
5033 		err = t4_port_init(adapter, func, func, 0);
5034 		if (err)
5035 			goto out_free_dev;
5036 	} else if (adapter->params.nports == 1) {
5037 		/* If we don't have a connection to the firmware -- possibly
5038 		 * because of an error -- grab the raw VPD parameters so we
5039 		 * can set the proper MAC Address on the debug network
5040 		 * interface that we've created.
5041 		 */
5042 		u8 hw_addr[ETH_ALEN];
5043 		u8 *na = adapter->params.vpd.na;
5044 
5045 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5046 		if (!err) {
5047 			for (i = 0; i < ETH_ALEN; i++)
5048 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5049 					      hex2val(na[2 * i + 1]));
5050 			t4_set_hw_addr(adapter, 0, hw_addr);
5051 		}
5052 	}
5053 
5054 	/* Configure queues and allocate tables now, they can be needed as
5055 	 * soon as the first register_netdev completes.
5056 	 */
5057 	cfg_queues(adapter);
5058 
5059 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5060 	if (!adapter->l2t) {
5061 		/* We tolerate a lack of L2T, giving up some functionality */
5062 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5063 		adapter->params.offload = 0;
5064 	}
5065 
5066 #if IS_ENABLED(CONFIG_IPV6)
5067 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5068 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5069 		/* CLIP functionality is not present in hardware,
5070 		 * hence disable all offload features
5071 		 */
5072 		dev_warn(&pdev->dev,
5073 			 "CLIP not enabled in hardware, continuing\n");
5074 		adapter->params.offload = 0;
5075 	} else {
5076 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5077 						  adapter->clipt_end);
5078 		if (!adapter->clipt) {
5079 			/* We tolerate a lack of clip_table, giving up
5080 			 * some functionality
5081 			 */
5082 			dev_warn(&pdev->dev,
5083 				 "could not allocate Clip table, continuing\n");
5084 			adapter->params.offload = 0;
5085 		}
5086 	}
5087 #endif
5088 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5089 		dev_warn(&pdev->dev, "could not allocate TID table, "
5090 			 "continuing\n");
5091 		adapter->params.offload = 0;
5092 	}
5093 
5094 	if (is_offload(adapter)) {
5095 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5096 			u32 hash_base, hash_reg;
5097 
5098 			if (chip <= CHELSIO_T5) {
5099 				hash_reg = LE_DB_TID_HASHBASE_A;
5100 				hash_base = t4_read_reg(adapter, hash_reg);
5101 				adapter->tids.hash_base = hash_base / 4;
5102 			} else {
5103 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5104 				hash_base = t4_read_reg(adapter, hash_reg);
5105 				adapter->tids.hash_base = hash_base;
5106 			}
5107 		}
5108 	}
5109 
5110 	/* See what interrupts we'll be using */
5111 	if (msi > 1 && enable_msix(adapter) == 0)
5112 		adapter->flags |= USING_MSIX;
5113 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
5114 		adapter->flags |= USING_MSI;
5115 
5116 	/* check for PCI Express bandwidth capabiltites */
5117 	cxgb4_check_pcie_caps(adapter);
5118 
5119 	err = init_rss(adapter);
5120 	if (err)
5121 		goto out_free_dev;
5122 
5123 	/*
5124 	 * The card is now ready to go.  If any errors occur during device
5125 	 * registration we do not fail the whole card but rather proceed only
5126 	 * with the ports we manage to register successfully.  However we must
5127 	 * register at least one net device.
5128 	 */
5129 	for_each_port(adapter, i) {
5130 		pi = adap2pinfo(adapter, i);
5131 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5132 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5133 
5134 		err = register_netdev(adapter->port[i]);
5135 		if (err)
5136 			break;
5137 		adapter->chan_map[pi->tx_chan] = i;
5138 		print_port_info(adapter->port[i]);
5139 	}
5140 	if (i == 0) {
5141 		dev_err(&pdev->dev, "could not register any net devices\n");
5142 		goto out_free_dev;
5143 	}
5144 	if (err) {
5145 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5146 		err = 0;
5147 	}
5148 
5149 	if (cxgb4_debugfs_root) {
5150 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5151 							   cxgb4_debugfs_root);
5152 		setup_debugfs(adapter);
5153 	}
5154 
5155 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5156 	pdev->needs_freset = 1;
5157 
5158 	if (is_offload(adapter))
5159 		attach_ulds(adapter);
5160 
5161 	print_adapter_info(adapter);
5162 
5163 sriov:
5164 #ifdef CONFIG_PCI_IOV
5165 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5166 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5167 			dev_info(&pdev->dev,
5168 				 "instantiated %u virtual functions\n",
5169 				 num_vf[func]);
5170 #endif
5171 	return 0;
5172 
5173  out_free_dev:
5174 	free_some_resources(adapter);
5175  out_unmap_bar:
5176 	if (!is_t4(adapter->params.chip))
5177 		iounmap(adapter->bar2);
5178  out_free_adapter:
5179 	if (adapter->workq)
5180 		destroy_workqueue(adapter->workq);
5181 
5182 	kfree(adapter->mbox_log);
5183 	kfree(adapter);
5184  out_unmap_bar0:
5185 	iounmap(regs);
5186  out_disable_device:
5187 	pci_disable_pcie_error_reporting(pdev);
5188 	pci_disable_device(pdev);
5189  out_release_regions:
5190 	pci_release_regions(pdev);
5191 	return err;
5192 }
5193 
5194 static void remove_one(struct pci_dev *pdev)
5195 {
5196 	struct adapter *adapter = pci_get_drvdata(pdev);
5197 
5198 #ifdef CONFIG_PCI_IOV
5199 	pci_disable_sriov(pdev);
5200 
5201 #endif
5202 
5203 	if (adapter) {
5204 		int i;
5205 
5206 		/* Tear down per-adapter Work Queue first since it can contain
5207 		 * references to our adapter data structure.
5208 		 */
5209 		destroy_workqueue(adapter->workq);
5210 
5211 		if (is_offload(adapter))
5212 			detach_ulds(adapter);
5213 
5214 		disable_interrupts(adapter);
5215 
5216 		for_each_port(adapter, i)
5217 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5218 				unregister_netdev(adapter->port[i]);
5219 
5220 		debugfs_remove_recursive(adapter->debugfs_root);
5221 
5222 		/* If we allocated filters, free up state associated with any
5223 		 * valid filters ...
5224 		 */
5225 		if (adapter->tids.ftid_tab) {
5226 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
5227 			for (i = 0; i < (adapter->tids.nftids +
5228 					adapter->tids.nsftids); i++, f++)
5229 				if (f->valid)
5230 					clear_filter(adapter, f);
5231 		}
5232 
5233 		if (adapter->flags & FULL_INIT_DONE)
5234 			cxgb_down(adapter);
5235 
5236 		free_some_resources(adapter);
5237 #if IS_ENABLED(CONFIG_IPV6)
5238 		t4_cleanup_clip_tbl(adapter);
5239 #endif
5240 		iounmap(adapter->regs);
5241 		if (!is_t4(adapter->params.chip))
5242 			iounmap(adapter->bar2);
5243 		pci_disable_pcie_error_reporting(pdev);
5244 		if ((adapter->flags & DEV_ENABLED)) {
5245 			pci_disable_device(pdev);
5246 			adapter->flags &= ~DEV_ENABLED;
5247 		}
5248 		pci_release_regions(pdev);
5249 		kfree(adapter->mbox_log);
5250 		synchronize_rcu();
5251 		kfree(adapter);
5252 	} else
5253 		pci_release_regions(pdev);
5254 }
5255 
5256 static struct pci_driver cxgb4_driver = {
5257 	.name     = KBUILD_MODNAME,
5258 	.id_table = cxgb4_pci_tbl,
5259 	.probe    = init_one,
5260 	.remove   = remove_one,
5261 	.shutdown = remove_one,
5262 	.err_handler = &cxgb4_eeh,
5263 };
5264 
5265 static int __init cxgb4_init_module(void)
5266 {
5267 	int ret;
5268 
5269 	/* Debugfs support is optional, just warn if this fails */
5270 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5271 	if (!cxgb4_debugfs_root)
5272 		pr_warn("could not create debugfs entry, continuing\n");
5273 
5274 	ret = pci_register_driver(&cxgb4_driver);
5275 	if (ret < 0)
5276 		debugfs_remove(cxgb4_debugfs_root);
5277 
5278 #if IS_ENABLED(CONFIG_IPV6)
5279 	if (!inet6addr_registered) {
5280 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5281 		inet6addr_registered = true;
5282 	}
5283 #endif
5284 
5285 	return ret;
5286 }
5287 
5288 static void __exit cxgb4_cleanup_module(void)
5289 {
5290 #if IS_ENABLED(CONFIG_IPV6)
5291 	if (inet6addr_registered) {
5292 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5293 		inet6addr_registered = false;
5294 	}
5295 #endif
5296 	pci_unregister_driver(&cxgb4_driver);
5297 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5298 }
5299 
5300 module_init(cxgb4_init_module);
5301 module_exit(cxgb4_cleanup_module);
5302