1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "cxgb4_debugfs.h" 78 #include "clip_tbl.h" 79 #include "l2t.h" 80 #include "sched.h" 81 #include "cxgb4_tc_u32.h" 82 83 char cxgb4_driver_name[] = KBUILD_MODNAME; 84 85 #ifdef DRV_VERSION 86 #undef DRV_VERSION 87 #endif 88 #define DRV_VERSION "2.0.0-ko" 89 const char cxgb4_driver_version[] = DRV_VERSION; 90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 91 92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 93 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 94 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 95 96 /* Macros needed to support the PCI Device ID Table ... 97 */ 98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 99 static const struct pci_device_id cxgb4_pci_tbl[] = { 100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 101 102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 103 * called for both. 104 */ 105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 106 107 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 108 {PCI_VDEVICE(CHELSIO, (devid)), 4} 109 110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 111 { 0, } \ 112 } 113 114 #include "t4_pci_id_tbl.h" 115 116 #define FW4_FNAME "cxgb4/t4fw.bin" 117 #define FW5_FNAME "cxgb4/t5fw.bin" 118 #define FW6_FNAME "cxgb4/t6fw.bin" 119 #define FW4_CFNAME "cxgb4/t4-config.txt" 120 #define FW5_CFNAME "cxgb4/t5-config.txt" 121 #define FW6_CFNAME "cxgb4/t6-config.txt" 122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 124 #define PHY_AQ1202_DEVICEID 0x4409 125 #define PHY_BCM84834_DEVICEID 0x4486 126 127 MODULE_DESCRIPTION(DRV_DESC); 128 MODULE_AUTHOR("Chelsio Communications"); 129 MODULE_LICENSE("Dual BSD/GPL"); 130 MODULE_VERSION(DRV_VERSION); 131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 132 MODULE_FIRMWARE(FW4_FNAME); 133 MODULE_FIRMWARE(FW5_FNAME); 134 MODULE_FIRMWARE(FW6_FNAME); 135 136 /* 137 * The driver uses the best interrupt scheme available on a platform in the 138 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 139 * of these schemes the driver may consider as follows: 140 * 141 * msi = 2: choose from among all three options 142 * msi = 1: only consider MSI and INTx interrupts 143 * msi = 0: force INTx interrupts 144 */ 145 static int msi = 2; 146 147 module_param(msi, int, 0644); 148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 149 150 /* 151 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 152 * offset by 2 bytes in order to have the IP headers line up on 4-byte 153 * boundaries. This is a requirement for many architectures which will throw 154 * a machine check fault if an attempt is made to access one of the 4-byte IP 155 * header fields on a non-4-byte boundary. And it's a major performance issue 156 * even on some architectures which allow it like some implementations of the 157 * x86 ISA. However, some architectures don't mind this and for some very 158 * edge-case performance sensitive applications (like forwarding large volumes 159 * of small packets), setting this DMA offset to 0 will decrease the number of 160 * PCI-E Bus transfers enough to measurably affect performance. 161 */ 162 static int rx_dma_offset = 2; 163 164 /* TX Queue select used to determine what algorithm to use for selecting TX 165 * queue. Select between the kernel provided function (select_queue=0) or user 166 * cxgb_select_queue function (select_queue=1) 167 * 168 * Default: select_queue=0 169 */ 170 static int select_queue; 171 module_param(select_queue, int, 0644); 172 MODULE_PARM_DESC(select_queue, 173 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 174 175 static struct dentry *cxgb4_debugfs_root; 176 177 LIST_HEAD(adapter_list); 178 DEFINE_MUTEX(uld_mutex); 179 180 static void link_report(struct net_device *dev) 181 { 182 if (!netif_carrier_ok(dev)) 183 netdev_info(dev, "link down\n"); 184 else { 185 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 186 187 const char *s; 188 const struct port_info *p = netdev_priv(dev); 189 190 switch (p->link_cfg.speed) { 191 case 100: 192 s = "100Mbps"; 193 break; 194 case 1000: 195 s = "1Gbps"; 196 break; 197 case 10000: 198 s = "10Gbps"; 199 break; 200 case 25000: 201 s = "25Gbps"; 202 break; 203 case 40000: 204 s = "40Gbps"; 205 break; 206 case 100000: 207 s = "100Gbps"; 208 break; 209 default: 210 pr_info("%s: unsupported speed: %d\n", 211 dev->name, p->link_cfg.speed); 212 return; 213 } 214 215 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 216 fc[p->link_cfg.fc]); 217 } 218 } 219 220 #ifdef CONFIG_CHELSIO_T4_DCB 221 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 222 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 223 { 224 struct port_info *pi = netdev_priv(dev); 225 struct adapter *adap = pi->adapter; 226 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 227 int i; 228 229 /* We use a simple mapping of Port TX Queue Index to DCB 230 * Priority when we're enabling DCB. 231 */ 232 for (i = 0; i < pi->nqsets; i++, txq++) { 233 u32 name, value; 234 int err; 235 236 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 237 FW_PARAMS_PARAM_X_V( 238 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 239 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 240 value = enable ? i : 0xffffffff; 241 242 /* Since we can be called while atomic (from "interrupt 243 * level") we need to issue the Set Parameters Commannd 244 * without sleeping (timeout < 0). 245 */ 246 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 247 &name, &value, 248 -FW_CMD_MAX_TIMEOUT); 249 250 if (err) 251 dev_err(adap->pdev_dev, 252 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 253 enable ? "set" : "unset", pi->port_id, i, -err); 254 else 255 txq->dcb_prio = value; 256 } 257 } 258 259 static int cxgb4_dcb_enabled(const struct net_device *dev) 260 { 261 struct port_info *pi = netdev_priv(dev); 262 263 if (!pi->dcb.enabled) 264 return 0; 265 266 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 267 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 268 } 269 #endif /* CONFIG_CHELSIO_T4_DCB */ 270 271 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 272 { 273 struct net_device *dev = adapter->port[port_id]; 274 275 /* Skip changes from disabled ports. */ 276 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 277 if (link_stat) 278 netif_carrier_on(dev); 279 else { 280 #ifdef CONFIG_CHELSIO_T4_DCB 281 if (cxgb4_dcb_enabled(dev)) { 282 cxgb4_dcb_state_init(dev); 283 dcb_tx_queue_prio_enable(dev, false); 284 } 285 #endif /* CONFIG_CHELSIO_T4_DCB */ 286 netif_carrier_off(dev); 287 } 288 289 link_report(dev); 290 } 291 } 292 293 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 294 { 295 static const char *mod_str[] = { 296 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 297 }; 298 299 const struct net_device *dev = adap->port[port_id]; 300 const struct port_info *pi = netdev_priv(dev); 301 302 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 303 netdev_info(dev, "port module unplugged\n"); 304 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 305 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 306 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 307 netdev_info(dev, "%s: unsupported port module inserted\n", 308 dev->name); 309 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 310 netdev_info(dev, "%s: unknown port module inserted\n", 311 dev->name); 312 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 313 netdev_info(dev, "%s: transceiver module error\n", dev->name); 314 else 315 netdev_info(dev, "%s: unknown module type %d inserted\n", 316 dev->name, pi->mod_type); 317 } 318 319 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 320 module_param(dbfifo_int_thresh, int, 0644); 321 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 322 323 /* 324 * usecs to sleep while draining the dbfifo 325 */ 326 static int dbfifo_drain_delay = 1000; 327 module_param(dbfifo_drain_delay, int, 0644); 328 MODULE_PARM_DESC(dbfifo_drain_delay, 329 "usecs to sleep while draining the dbfifo"); 330 331 static inline int cxgb4_set_addr_hash(struct port_info *pi) 332 { 333 struct adapter *adap = pi->adapter; 334 u64 vec = 0; 335 bool ucast = false; 336 struct hash_mac_addr *entry; 337 338 /* Calculate the hash vector for the updated list and program it */ 339 list_for_each_entry(entry, &adap->mac_hlist, list) { 340 ucast |= is_unicast_ether_addr(entry->addr); 341 vec |= (1ULL << hash_mac_addr(entry->addr)); 342 } 343 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 344 vec, false); 345 } 346 347 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 348 { 349 struct port_info *pi = netdev_priv(netdev); 350 struct adapter *adap = pi->adapter; 351 int ret; 352 u64 mhash = 0; 353 u64 uhash = 0; 354 bool free = false; 355 bool ucast = is_unicast_ether_addr(mac_addr); 356 const u8 *maclist[1] = {mac_addr}; 357 struct hash_mac_addr *new_entry; 358 359 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 360 NULL, ucast ? &uhash : &mhash, false); 361 if (ret < 0) 362 goto out; 363 /* if hash != 0, then add the addr to hash addr list 364 * so on the end we will calculate the hash for the 365 * list and program it 366 */ 367 if (uhash || mhash) { 368 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 369 if (!new_entry) 370 return -ENOMEM; 371 ether_addr_copy(new_entry->addr, mac_addr); 372 list_add_tail(&new_entry->list, &adap->mac_hlist); 373 ret = cxgb4_set_addr_hash(pi); 374 } 375 out: 376 return ret < 0 ? ret : 0; 377 } 378 379 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 380 { 381 struct port_info *pi = netdev_priv(netdev); 382 struct adapter *adap = pi->adapter; 383 int ret; 384 const u8 *maclist[1] = {mac_addr}; 385 struct hash_mac_addr *entry, *tmp; 386 387 /* If the MAC address to be removed is in the hash addr 388 * list, delete it from the list and update hash vector 389 */ 390 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 391 if (ether_addr_equal(entry->addr, mac_addr)) { 392 list_del(&entry->list); 393 kfree(entry); 394 return cxgb4_set_addr_hash(pi); 395 } 396 } 397 398 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 399 return ret < 0 ? -EINVAL : 0; 400 } 401 402 /* 403 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 404 * If @mtu is -1 it is left unchanged. 405 */ 406 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 407 { 408 struct port_info *pi = netdev_priv(dev); 409 struct adapter *adapter = pi->adapter; 410 411 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 412 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 413 414 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 415 (dev->flags & IFF_PROMISC) ? 1 : 0, 416 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 417 sleep_ok); 418 } 419 420 /** 421 * link_start - enable a port 422 * @dev: the port to enable 423 * 424 * Performs the MAC and PHY actions needed to enable a port. 425 */ 426 static int link_start(struct net_device *dev) 427 { 428 int ret; 429 struct port_info *pi = netdev_priv(dev); 430 unsigned int mb = pi->adapter->pf; 431 432 /* 433 * We do not set address filters and promiscuity here, the stack does 434 * that step explicitly. 435 */ 436 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 437 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 438 if (ret == 0) { 439 ret = t4_change_mac(pi->adapter, mb, pi->viid, 440 pi->xact_addr_filt, dev->dev_addr, true, 441 true); 442 if (ret >= 0) { 443 pi->xact_addr_filt = ret; 444 ret = 0; 445 } 446 } 447 if (ret == 0) 448 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 449 &pi->link_cfg); 450 if (ret == 0) { 451 local_bh_disable(); 452 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 453 true, CXGB4_DCB_ENABLED); 454 local_bh_enable(); 455 } 456 457 return ret; 458 } 459 460 #ifdef CONFIG_CHELSIO_T4_DCB 461 /* Handle a Data Center Bridging update message from the firmware. */ 462 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 463 { 464 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 465 struct net_device *dev = adap->port[adap->chan_map[port]]; 466 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 467 int new_dcb_enabled; 468 469 cxgb4_dcb_handle_fw_update(adap, pcmd); 470 new_dcb_enabled = cxgb4_dcb_enabled(dev); 471 472 /* If the DCB has become enabled or disabled on the port then we're 473 * going to need to set up/tear down DCB Priority parameters for the 474 * TX Queues associated with the port. 475 */ 476 if (new_dcb_enabled != old_dcb_enabled) 477 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 478 } 479 #endif /* CONFIG_CHELSIO_T4_DCB */ 480 481 /* Response queue handler for the FW event queue. 482 */ 483 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 484 const struct pkt_gl *gl) 485 { 486 u8 opcode = ((const struct rss_header *)rsp)->opcode; 487 488 rsp++; /* skip RSS header */ 489 490 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 491 */ 492 if (unlikely(opcode == CPL_FW4_MSG && 493 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 494 rsp++; 495 opcode = ((const struct rss_header *)rsp)->opcode; 496 rsp++; 497 if (opcode != CPL_SGE_EGR_UPDATE) { 498 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 499 , opcode); 500 goto out; 501 } 502 } 503 504 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 505 const struct cpl_sge_egr_update *p = (void *)rsp; 506 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 507 struct sge_txq *txq; 508 509 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 510 txq->restarts++; 511 if (txq->q_type == CXGB4_TXQ_ETH) { 512 struct sge_eth_txq *eq; 513 514 eq = container_of(txq, struct sge_eth_txq, q); 515 netif_tx_wake_queue(eq->txq); 516 } else { 517 struct sge_uld_txq *oq; 518 519 oq = container_of(txq, struct sge_uld_txq, q); 520 tasklet_schedule(&oq->qresume_tsk); 521 } 522 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 523 const struct cpl_fw6_msg *p = (void *)rsp; 524 525 #ifdef CONFIG_CHELSIO_T4_DCB 526 const struct fw_port_cmd *pcmd = (const void *)p->data; 527 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 528 unsigned int action = 529 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 530 531 if (cmd == FW_PORT_CMD && 532 action == FW_PORT_ACTION_GET_PORT_INFO) { 533 int port = FW_PORT_CMD_PORTID_G( 534 be32_to_cpu(pcmd->op_to_portid)); 535 struct net_device *dev = 536 q->adap->port[q->adap->chan_map[port]]; 537 int state_input = ((pcmd->u.info.dcbxdis_pkd & 538 FW_PORT_CMD_DCBXDIS_F) 539 ? CXGB4_DCB_INPUT_FW_DISABLED 540 : CXGB4_DCB_INPUT_FW_ENABLED); 541 542 cxgb4_dcb_state_fsm(dev, state_input); 543 } 544 545 if (cmd == FW_PORT_CMD && 546 action == FW_PORT_ACTION_L2_DCB_CFG) 547 dcb_rpl(q->adap, pcmd); 548 else 549 #endif 550 if (p->type == 0) 551 t4_handle_fw_rpl(q->adap, p->data); 552 } else if (opcode == CPL_L2T_WRITE_RPL) { 553 const struct cpl_l2t_write_rpl *p = (void *)rsp; 554 555 do_l2t_write_rpl(q->adap, p); 556 } else if (opcode == CPL_SET_TCB_RPL) { 557 const struct cpl_set_tcb_rpl *p = (void *)rsp; 558 559 filter_rpl(q->adap, p); 560 } else 561 dev_err(q->adap->pdev_dev, 562 "unexpected CPL %#x on FW event queue\n", opcode); 563 out: 564 return 0; 565 } 566 567 static void disable_msi(struct adapter *adapter) 568 { 569 if (adapter->flags & USING_MSIX) { 570 pci_disable_msix(adapter->pdev); 571 adapter->flags &= ~USING_MSIX; 572 } else if (adapter->flags & USING_MSI) { 573 pci_disable_msi(adapter->pdev); 574 adapter->flags &= ~USING_MSI; 575 } 576 } 577 578 /* 579 * Interrupt handler for non-data events used with MSI-X. 580 */ 581 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 582 { 583 struct adapter *adap = cookie; 584 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 585 586 if (v & PFSW_F) { 587 adap->swintr = 1; 588 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 589 } 590 if (adap->flags & MASTER_PF) 591 t4_slow_intr_handler(adap); 592 return IRQ_HANDLED; 593 } 594 595 /* 596 * Name the MSI-X interrupts. 597 */ 598 static void name_msix_vecs(struct adapter *adap) 599 { 600 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 601 602 /* non-data interrupts */ 603 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 604 605 /* FW events */ 606 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 607 adap->port[0]->name); 608 609 /* Ethernet queues */ 610 for_each_port(adap, j) { 611 struct net_device *d = adap->port[j]; 612 const struct port_info *pi = netdev_priv(d); 613 614 for (i = 0; i < pi->nqsets; i++, msi_idx++) 615 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 616 d->name, i); 617 } 618 } 619 620 static int request_msix_queue_irqs(struct adapter *adap) 621 { 622 struct sge *s = &adap->sge; 623 int err, ethqidx; 624 int msi_index = 2; 625 626 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 627 adap->msix_info[1].desc, &s->fw_evtq); 628 if (err) 629 return err; 630 631 for_each_ethrxq(s, ethqidx) { 632 err = request_irq(adap->msix_info[msi_index].vec, 633 t4_sge_intr_msix, 0, 634 adap->msix_info[msi_index].desc, 635 &s->ethrxq[ethqidx].rspq); 636 if (err) 637 goto unwind; 638 msi_index++; 639 } 640 return 0; 641 642 unwind: 643 while (--ethqidx >= 0) 644 free_irq(adap->msix_info[--msi_index].vec, 645 &s->ethrxq[ethqidx].rspq); 646 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 647 return err; 648 } 649 650 static void free_msix_queue_irqs(struct adapter *adap) 651 { 652 int i, msi_index = 2; 653 struct sge *s = &adap->sge; 654 655 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 656 for_each_ethrxq(s, i) 657 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 658 } 659 660 /** 661 * cxgb4_write_rss - write the RSS table for a given port 662 * @pi: the port 663 * @queues: array of queue indices for RSS 664 * 665 * Sets up the portion of the HW RSS table for the port's VI to distribute 666 * packets to the Rx queues in @queues. 667 * Should never be called before setting up sge eth rx queues 668 */ 669 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 670 { 671 u16 *rss; 672 int i, err; 673 struct adapter *adapter = pi->adapter; 674 const struct sge_eth_rxq *rxq; 675 676 rxq = &adapter->sge.ethrxq[pi->first_qset]; 677 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 678 if (!rss) 679 return -ENOMEM; 680 681 /* map the queue indices to queue ids */ 682 for (i = 0; i < pi->rss_size; i++, queues++) 683 rss[i] = rxq[*queues].rspq.abs_id; 684 685 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 686 pi->rss_size, rss, pi->rss_size); 687 /* If Tunnel All Lookup isn't specified in the global RSS 688 * Configuration, then we need to specify a default Ingress 689 * Queue for any ingress packets which aren't hashed. We'll 690 * use our first ingress queue ... 691 */ 692 if (!err) 693 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 694 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 695 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 696 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 697 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 698 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 699 rss[0]); 700 kfree(rss); 701 return err; 702 } 703 704 /** 705 * setup_rss - configure RSS 706 * @adap: the adapter 707 * 708 * Sets up RSS for each port. 709 */ 710 static int setup_rss(struct adapter *adap) 711 { 712 int i, j, err; 713 714 for_each_port(adap, i) { 715 const struct port_info *pi = adap2pinfo(adap, i); 716 717 /* Fill default values with equal distribution */ 718 for (j = 0; j < pi->rss_size; j++) 719 pi->rss[j] = j % pi->nqsets; 720 721 err = cxgb4_write_rss(pi, pi->rss); 722 if (err) 723 return err; 724 } 725 return 0; 726 } 727 728 /* 729 * Return the channel of the ingress queue with the given qid. 730 */ 731 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 732 { 733 qid -= p->ingr_start; 734 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 735 } 736 737 /* 738 * Wait until all NAPI handlers are descheduled. 739 */ 740 static void quiesce_rx(struct adapter *adap) 741 { 742 int i; 743 744 for (i = 0; i < adap->sge.ingr_sz; i++) { 745 struct sge_rspq *q = adap->sge.ingr_map[i]; 746 747 if (q && q->handler) 748 napi_disable(&q->napi); 749 } 750 } 751 752 /* Disable interrupt and napi handler */ 753 static void disable_interrupts(struct adapter *adap) 754 { 755 if (adap->flags & FULL_INIT_DONE) { 756 t4_intr_disable(adap); 757 if (adap->flags & USING_MSIX) { 758 free_msix_queue_irqs(adap); 759 free_irq(adap->msix_info[0].vec, adap); 760 } else { 761 free_irq(adap->pdev->irq, adap); 762 } 763 quiesce_rx(adap); 764 } 765 } 766 767 /* 768 * Enable NAPI scheduling and interrupt generation for all Rx queues. 769 */ 770 static void enable_rx(struct adapter *adap) 771 { 772 int i; 773 774 for (i = 0; i < adap->sge.ingr_sz; i++) { 775 struct sge_rspq *q = adap->sge.ingr_map[i]; 776 777 if (!q) 778 continue; 779 if (q->handler) 780 napi_enable(&q->napi); 781 782 /* 0-increment GTS to start the timer and enable interrupts */ 783 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 784 SEINTARM_V(q->intr_params) | 785 INGRESSQID_V(q->cntxt_id)); 786 } 787 } 788 789 790 static int setup_fw_sge_queues(struct adapter *adap) 791 { 792 struct sge *s = &adap->sge; 793 int err = 0; 794 795 bitmap_zero(s->starving_fl, s->egr_sz); 796 bitmap_zero(s->txq_maperr, s->egr_sz); 797 798 if (adap->flags & USING_MSIX) 799 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 800 else { 801 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 802 NULL, NULL, NULL, -1); 803 if (err) 804 return err; 805 adap->msi_idx = -((int)s->intrq.abs_id + 1); 806 } 807 808 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 809 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 810 if (err) 811 t4_free_sge_resources(adap); 812 return err; 813 } 814 815 /** 816 * setup_sge_queues - configure SGE Tx/Rx/response queues 817 * @adap: the adapter 818 * 819 * Determines how many sets of SGE queues to use and initializes them. 820 * We support multiple queue sets per port if we have MSI-X, otherwise 821 * just one queue set per port. 822 */ 823 static int setup_sge_queues(struct adapter *adap) 824 { 825 int err, i, j; 826 struct sge *s = &adap->sge; 827 struct sge_uld_rxq_info *rxq_info = NULL; 828 unsigned int cmplqid = 0; 829 830 if (is_uld(adap)) 831 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 832 833 for_each_port(adap, i) { 834 struct net_device *dev = adap->port[i]; 835 struct port_info *pi = netdev_priv(dev); 836 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 837 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 838 839 for (j = 0; j < pi->nqsets; j++, q++) { 840 if (adap->msi_idx > 0) 841 adap->msi_idx++; 842 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 843 adap->msi_idx, &q->fl, 844 t4_ethrx_handler, 845 NULL, 846 t4_get_tp_ch_map(adap, 847 pi->tx_chan)); 848 if (err) 849 goto freeout; 850 q->rspq.idx = j; 851 memset(&q->stats, 0, sizeof(q->stats)); 852 } 853 for (j = 0; j < pi->nqsets; j++, t++) { 854 err = t4_sge_alloc_eth_txq(adap, t, dev, 855 netdev_get_tx_queue(dev, j), 856 s->fw_evtq.cntxt_id); 857 if (err) 858 goto freeout; 859 } 860 } 861 862 for_each_port(adap, i) { 863 /* Note that cmplqid below is 0 if we don't 864 * have RDMA queues, and that's the right value. 865 */ 866 if (rxq_info) 867 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 868 869 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 870 s->fw_evtq.cntxt_id, cmplqid); 871 if (err) 872 goto freeout; 873 } 874 875 t4_write_reg(adap, is_t4(adap->params.chip) ? 876 MPS_TRC_RSS_CONTROL_A : 877 MPS_T5_TRC_RSS_CONTROL_A, 878 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 879 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 880 return 0; 881 freeout: 882 t4_free_sge_resources(adap); 883 return err; 884 } 885 886 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 887 void *accel_priv, select_queue_fallback_t fallback) 888 { 889 int txq; 890 891 #ifdef CONFIG_CHELSIO_T4_DCB 892 /* If a Data Center Bridging has been successfully negotiated on this 893 * link then we'll use the skb's priority to map it to a TX Queue. 894 * The skb's priority is determined via the VLAN Tag Priority Code 895 * Point field. 896 */ 897 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 898 u16 vlan_tci; 899 int err; 900 901 err = vlan_get_tag(skb, &vlan_tci); 902 if (unlikely(err)) { 903 if (net_ratelimit()) 904 netdev_warn(dev, 905 "TX Packet without VLAN Tag on DCB Link\n"); 906 txq = 0; 907 } else { 908 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 909 #ifdef CONFIG_CHELSIO_T4_FCOE 910 if (skb->protocol == htons(ETH_P_FCOE)) 911 txq = skb->priority & 0x7; 912 #endif /* CONFIG_CHELSIO_T4_FCOE */ 913 } 914 return txq; 915 } 916 #endif /* CONFIG_CHELSIO_T4_DCB */ 917 918 if (select_queue) { 919 txq = (skb_rx_queue_recorded(skb) 920 ? skb_get_rx_queue(skb) 921 : smp_processor_id()); 922 923 while (unlikely(txq >= dev->real_num_tx_queues)) 924 txq -= dev->real_num_tx_queues; 925 926 return txq; 927 } 928 929 return fallback(dev, skb) % dev->real_num_tx_queues; 930 } 931 932 static int closest_timer(const struct sge *s, int time) 933 { 934 int i, delta, match = 0, min_delta = INT_MAX; 935 936 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 937 delta = time - s->timer_val[i]; 938 if (delta < 0) 939 delta = -delta; 940 if (delta < min_delta) { 941 min_delta = delta; 942 match = i; 943 } 944 } 945 return match; 946 } 947 948 static int closest_thres(const struct sge *s, int thres) 949 { 950 int i, delta, match = 0, min_delta = INT_MAX; 951 952 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 953 delta = thres - s->counter_val[i]; 954 if (delta < 0) 955 delta = -delta; 956 if (delta < min_delta) { 957 min_delta = delta; 958 match = i; 959 } 960 } 961 return match; 962 } 963 964 /** 965 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 966 * @q: the Rx queue 967 * @us: the hold-off time in us, or 0 to disable timer 968 * @cnt: the hold-off packet count, or 0 to disable counter 969 * 970 * Sets an Rx queue's interrupt hold-off time and packet count. At least 971 * one of the two needs to be enabled for the queue to generate interrupts. 972 */ 973 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 974 unsigned int us, unsigned int cnt) 975 { 976 struct adapter *adap = q->adap; 977 978 if ((us | cnt) == 0) 979 cnt = 1; 980 981 if (cnt) { 982 int err; 983 u32 v, new_idx; 984 985 new_idx = closest_thres(&adap->sge, cnt); 986 if (q->desc && q->pktcnt_idx != new_idx) { 987 /* the queue has already been created, update it */ 988 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 989 FW_PARAMS_PARAM_X_V( 990 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 991 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 992 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 993 &v, &new_idx); 994 if (err) 995 return err; 996 } 997 q->pktcnt_idx = new_idx; 998 } 999 1000 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1001 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1002 return 0; 1003 } 1004 1005 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1006 { 1007 const struct port_info *pi = netdev_priv(dev); 1008 netdev_features_t changed = dev->features ^ features; 1009 int err; 1010 1011 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1012 return 0; 1013 1014 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1015 -1, -1, -1, 1016 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1017 if (unlikely(err)) 1018 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1019 return err; 1020 } 1021 1022 static int setup_debugfs(struct adapter *adap) 1023 { 1024 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1025 return -1; 1026 1027 #ifdef CONFIG_DEBUG_FS 1028 t4_setup_debugfs(adap); 1029 #endif 1030 return 0; 1031 } 1032 1033 /* 1034 * upper-layer driver support 1035 */ 1036 1037 /* 1038 * Allocate an active-open TID and set it to the supplied value. 1039 */ 1040 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1041 { 1042 int atid = -1; 1043 1044 spin_lock_bh(&t->atid_lock); 1045 if (t->afree) { 1046 union aopen_entry *p = t->afree; 1047 1048 atid = (p - t->atid_tab) + t->atid_base; 1049 t->afree = p->next; 1050 p->data = data; 1051 t->atids_in_use++; 1052 } 1053 spin_unlock_bh(&t->atid_lock); 1054 return atid; 1055 } 1056 EXPORT_SYMBOL(cxgb4_alloc_atid); 1057 1058 /* 1059 * Release an active-open TID. 1060 */ 1061 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1062 { 1063 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1064 1065 spin_lock_bh(&t->atid_lock); 1066 p->next = t->afree; 1067 t->afree = p; 1068 t->atids_in_use--; 1069 spin_unlock_bh(&t->atid_lock); 1070 } 1071 EXPORT_SYMBOL(cxgb4_free_atid); 1072 1073 /* 1074 * Allocate a server TID and set it to the supplied value. 1075 */ 1076 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1077 { 1078 int stid; 1079 1080 spin_lock_bh(&t->stid_lock); 1081 if (family == PF_INET) { 1082 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1083 if (stid < t->nstids) 1084 __set_bit(stid, t->stid_bmap); 1085 else 1086 stid = -1; 1087 } else { 1088 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1089 if (stid < 0) 1090 stid = -1; 1091 } 1092 if (stid >= 0) { 1093 t->stid_tab[stid].data = data; 1094 stid += t->stid_base; 1095 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1096 * This is equivalent to 4 TIDs. With CLIP enabled it 1097 * needs 2 TIDs. 1098 */ 1099 if (family == PF_INET6) { 1100 t->stids_in_use += 2; 1101 t->v6_stids_in_use += 2; 1102 } else { 1103 t->stids_in_use++; 1104 } 1105 } 1106 spin_unlock_bh(&t->stid_lock); 1107 return stid; 1108 } 1109 EXPORT_SYMBOL(cxgb4_alloc_stid); 1110 1111 /* Allocate a server filter TID and set it to the supplied value. 1112 */ 1113 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1114 { 1115 int stid; 1116 1117 spin_lock_bh(&t->stid_lock); 1118 if (family == PF_INET) { 1119 stid = find_next_zero_bit(t->stid_bmap, 1120 t->nstids + t->nsftids, t->nstids); 1121 if (stid < (t->nstids + t->nsftids)) 1122 __set_bit(stid, t->stid_bmap); 1123 else 1124 stid = -1; 1125 } else { 1126 stid = -1; 1127 } 1128 if (stid >= 0) { 1129 t->stid_tab[stid].data = data; 1130 stid -= t->nstids; 1131 stid += t->sftid_base; 1132 t->sftids_in_use++; 1133 } 1134 spin_unlock_bh(&t->stid_lock); 1135 return stid; 1136 } 1137 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1138 1139 /* Release a server TID. 1140 */ 1141 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1142 { 1143 /* Is it a server filter TID? */ 1144 if (t->nsftids && (stid >= t->sftid_base)) { 1145 stid -= t->sftid_base; 1146 stid += t->nstids; 1147 } else { 1148 stid -= t->stid_base; 1149 } 1150 1151 spin_lock_bh(&t->stid_lock); 1152 if (family == PF_INET) 1153 __clear_bit(stid, t->stid_bmap); 1154 else 1155 bitmap_release_region(t->stid_bmap, stid, 1); 1156 t->stid_tab[stid].data = NULL; 1157 if (stid < t->nstids) { 1158 if (family == PF_INET6) { 1159 t->stids_in_use -= 2; 1160 t->v6_stids_in_use -= 2; 1161 } else { 1162 t->stids_in_use--; 1163 } 1164 } else { 1165 t->sftids_in_use--; 1166 } 1167 1168 spin_unlock_bh(&t->stid_lock); 1169 } 1170 EXPORT_SYMBOL(cxgb4_free_stid); 1171 1172 /* 1173 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1174 */ 1175 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1176 unsigned int tid) 1177 { 1178 struct cpl_tid_release *req; 1179 1180 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1181 req = __skb_put(skb, sizeof(*req)); 1182 INIT_TP_WR(req, tid); 1183 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1184 } 1185 1186 /* 1187 * Queue a TID release request and if necessary schedule a work queue to 1188 * process it. 1189 */ 1190 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1191 unsigned int tid) 1192 { 1193 void **p = &t->tid_tab[tid]; 1194 struct adapter *adap = container_of(t, struct adapter, tids); 1195 1196 spin_lock_bh(&adap->tid_release_lock); 1197 *p = adap->tid_release_head; 1198 /* Low 2 bits encode the Tx channel number */ 1199 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1200 if (!adap->tid_release_task_busy) { 1201 adap->tid_release_task_busy = true; 1202 queue_work(adap->workq, &adap->tid_release_task); 1203 } 1204 spin_unlock_bh(&adap->tid_release_lock); 1205 } 1206 1207 /* 1208 * Process the list of pending TID release requests. 1209 */ 1210 static void process_tid_release_list(struct work_struct *work) 1211 { 1212 struct sk_buff *skb; 1213 struct adapter *adap; 1214 1215 adap = container_of(work, struct adapter, tid_release_task); 1216 1217 spin_lock_bh(&adap->tid_release_lock); 1218 while (adap->tid_release_head) { 1219 void **p = adap->tid_release_head; 1220 unsigned int chan = (uintptr_t)p & 3; 1221 p = (void *)p - chan; 1222 1223 adap->tid_release_head = *p; 1224 *p = NULL; 1225 spin_unlock_bh(&adap->tid_release_lock); 1226 1227 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1228 GFP_KERNEL))) 1229 schedule_timeout_uninterruptible(1); 1230 1231 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1232 t4_ofld_send(adap, skb); 1233 spin_lock_bh(&adap->tid_release_lock); 1234 } 1235 adap->tid_release_task_busy = false; 1236 spin_unlock_bh(&adap->tid_release_lock); 1237 } 1238 1239 /* 1240 * Release a TID and inform HW. If we are unable to allocate the release 1241 * message we defer to a work queue. 1242 */ 1243 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1244 unsigned short family) 1245 { 1246 struct sk_buff *skb; 1247 struct adapter *adap = container_of(t, struct adapter, tids); 1248 1249 WARN_ON(tid >= t->ntids); 1250 1251 if (t->tid_tab[tid]) { 1252 t->tid_tab[tid] = NULL; 1253 atomic_dec(&t->conns_in_use); 1254 if (t->hash_base && (tid >= t->hash_base)) { 1255 if (family == AF_INET6) 1256 atomic_sub(2, &t->hash_tids_in_use); 1257 else 1258 atomic_dec(&t->hash_tids_in_use); 1259 } else { 1260 if (family == AF_INET6) 1261 atomic_sub(2, &t->tids_in_use); 1262 else 1263 atomic_dec(&t->tids_in_use); 1264 } 1265 } 1266 1267 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1268 if (likely(skb)) { 1269 mk_tid_release(skb, chan, tid); 1270 t4_ofld_send(adap, skb); 1271 } else 1272 cxgb4_queue_tid_release(t, chan, tid); 1273 } 1274 EXPORT_SYMBOL(cxgb4_remove_tid); 1275 1276 /* 1277 * Allocate and initialize the TID tables. Returns 0 on success. 1278 */ 1279 static int tid_init(struct tid_info *t) 1280 { 1281 struct adapter *adap = container_of(t, struct adapter, tids); 1282 unsigned int max_ftids = t->nftids + t->nsftids; 1283 unsigned int natids = t->natids; 1284 unsigned int stid_bmap_size; 1285 unsigned int ftid_bmap_size; 1286 size_t size; 1287 1288 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1289 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1290 size = t->ntids * sizeof(*t->tid_tab) + 1291 natids * sizeof(*t->atid_tab) + 1292 t->nstids * sizeof(*t->stid_tab) + 1293 t->nsftids * sizeof(*t->stid_tab) + 1294 stid_bmap_size * sizeof(long) + 1295 max_ftids * sizeof(*t->ftid_tab) + 1296 ftid_bmap_size * sizeof(long); 1297 1298 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1299 if (!t->tid_tab) 1300 return -ENOMEM; 1301 1302 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1303 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1304 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1305 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1306 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1307 spin_lock_init(&t->stid_lock); 1308 spin_lock_init(&t->atid_lock); 1309 spin_lock_init(&t->ftid_lock); 1310 1311 t->stids_in_use = 0; 1312 t->v6_stids_in_use = 0; 1313 t->sftids_in_use = 0; 1314 t->afree = NULL; 1315 t->atids_in_use = 0; 1316 atomic_set(&t->tids_in_use, 0); 1317 atomic_set(&t->conns_in_use, 0); 1318 atomic_set(&t->hash_tids_in_use, 0); 1319 1320 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1321 if (natids) { 1322 while (--natids) 1323 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1324 t->afree = t->atid_tab; 1325 } 1326 1327 if (is_offload(adap)) { 1328 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1329 /* Reserve stid 0 for T4/T5 adapters */ 1330 if (!t->stid_base && 1331 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1332 __set_bit(0, t->stid_bmap); 1333 } 1334 1335 bitmap_zero(t->ftid_bmap, t->nftids); 1336 return 0; 1337 } 1338 1339 /** 1340 * cxgb4_create_server - create an IP server 1341 * @dev: the device 1342 * @stid: the server TID 1343 * @sip: local IP address to bind server to 1344 * @sport: the server's TCP port 1345 * @queue: queue to direct messages from this server to 1346 * 1347 * Create an IP server for the given port and address. 1348 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1349 */ 1350 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1351 __be32 sip, __be16 sport, __be16 vlan, 1352 unsigned int queue) 1353 { 1354 unsigned int chan; 1355 struct sk_buff *skb; 1356 struct adapter *adap; 1357 struct cpl_pass_open_req *req; 1358 int ret; 1359 1360 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1361 if (!skb) 1362 return -ENOMEM; 1363 1364 adap = netdev2adap(dev); 1365 req = __skb_put(skb, sizeof(*req)); 1366 INIT_TP_WR(req, 0); 1367 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1368 req->local_port = sport; 1369 req->peer_port = htons(0); 1370 req->local_ip = sip; 1371 req->peer_ip = htonl(0); 1372 chan = rxq_to_chan(&adap->sge, queue); 1373 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1374 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1375 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1376 ret = t4_mgmt_tx(adap, skb); 1377 return net_xmit_eval(ret); 1378 } 1379 EXPORT_SYMBOL(cxgb4_create_server); 1380 1381 /* cxgb4_create_server6 - create an IPv6 server 1382 * @dev: the device 1383 * @stid: the server TID 1384 * @sip: local IPv6 address to bind server to 1385 * @sport: the server's TCP port 1386 * @queue: queue to direct messages from this server to 1387 * 1388 * Create an IPv6 server for the given port and address. 1389 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1390 */ 1391 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1392 const struct in6_addr *sip, __be16 sport, 1393 unsigned int queue) 1394 { 1395 unsigned int chan; 1396 struct sk_buff *skb; 1397 struct adapter *adap; 1398 struct cpl_pass_open_req6 *req; 1399 int ret; 1400 1401 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1402 if (!skb) 1403 return -ENOMEM; 1404 1405 adap = netdev2adap(dev); 1406 req = __skb_put(skb, sizeof(*req)); 1407 INIT_TP_WR(req, 0); 1408 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1409 req->local_port = sport; 1410 req->peer_port = htons(0); 1411 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1412 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1413 req->peer_ip_hi = cpu_to_be64(0); 1414 req->peer_ip_lo = cpu_to_be64(0); 1415 chan = rxq_to_chan(&adap->sge, queue); 1416 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1417 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1418 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1419 ret = t4_mgmt_tx(adap, skb); 1420 return net_xmit_eval(ret); 1421 } 1422 EXPORT_SYMBOL(cxgb4_create_server6); 1423 1424 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1425 unsigned int queue, bool ipv6) 1426 { 1427 struct sk_buff *skb; 1428 struct adapter *adap; 1429 struct cpl_close_listsvr_req *req; 1430 int ret; 1431 1432 adap = netdev2adap(dev); 1433 1434 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1435 if (!skb) 1436 return -ENOMEM; 1437 1438 req = __skb_put(skb, sizeof(*req)); 1439 INIT_TP_WR(req, 0); 1440 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1441 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1442 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1443 ret = t4_mgmt_tx(adap, skb); 1444 return net_xmit_eval(ret); 1445 } 1446 EXPORT_SYMBOL(cxgb4_remove_server); 1447 1448 /** 1449 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1450 * @mtus: the HW MTU table 1451 * @mtu: the target MTU 1452 * @idx: index of selected entry in the MTU table 1453 * 1454 * Returns the index and the value in the HW MTU table that is closest to 1455 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1456 * table, in which case that smallest available value is selected. 1457 */ 1458 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1459 unsigned int *idx) 1460 { 1461 unsigned int i = 0; 1462 1463 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1464 ++i; 1465 if (idx) 1466 *idx = i; 1467 return mtus[i]; 1468 } 1469 EXPORT_SYMBOL(cxgb4_best_mtu); 1470 1471 /** 1472 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1473 * @mtus: the HW MTU table 1474 * @header_size: Header Size 1475 * @data_size_max: maximum Data Segment Size 1476 * @data_size_align: desired Data Segment Size Alignment (2^N) 1477 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1478 * 1479 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1480 * MTU Table based solely on a Maximum MTU parameter, we break that 1481 * parameter up into a Header Size and Maximum Data Segment Size, and 1482 * provide a desired Data Segment Size Alignment. If we find an MTU in 1483 * the Hardware MTU Table which will result in a Data Segment Size with 1484 * the requested alignment _and_ that MTU isn't "too far" from the 1485 * closest MTU, then we'll return that rather than the closest MTU. 1486 */ 1487 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1488 unsigned short header_size, 1489 unsigned short data_size_max, 1490 unsigned short data_size_align, 1491 unsigned int *mtu_idxp) 1492 { 1493 unsigned short max_mtu = header_size + data_size_max; 1494 unsigned short data_size_align_mask = data_size_align - 1; 1495 int mtu_idx, aligned_mtu_idx; 1496 1497 /* Scan the MTU Table till we find an MTU which is larger than our 1498 * Maximum MTU or we reach the end of the table. Along the way, 1499 * record the last MTU found, if any, which will result in a Data 1500 * Segment Length matching the requested alignment. 1501 */ 1502 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1503 unsigned short data_size = mtus[mtu_idx] - header_size; 1504 1505 /* If this MTU minus the Header Size would result in a 1506 * Data Segment Size of the desired alignment, remember it. 1507 */ 1508 if ((data_size & data_size_align_mask) == 0) 1509 aligned_mtu_idx = mtu_idx; 1510 1511 /* If we're not at the end of the Hardware MTU Table and the 1512 * next element is larger than our Maximum MTU, drop out of 1513 * the loop. 1514 */ 1515 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1516 break; 1517 } 1518 1519 /* If we fell out of the loop because we ran to the end of the table, 1520 * then we just have to use the last [largest] entry. 1521 */ 1522 if (mtu_idx == NMTUS) 1523 mtu_idx--; 1524 1525 /* If we found an MTU which resulted in the requested Data Segment 1526 * Length alignment and that's "not far" from the largest MTU which is 1527 * less than or equal to the maximum MTU, then use that. 1528 */ 1529 if (aligned_mtu_idx >= 0 && 1530 mtu_idx - aligned_mtu_idx <= 1) 1531 mtu_idx = aligned_mtu_idx; 1532 1533 /* If the caller has passed in an MTU Index pointer, pass the 1534 * MTU Index back. Return the MTU value. 1535 */ 1536 if (mtu_idxp) 1537 *mtu_idxp = mtu_idx; 1538 return mtus[mtu_idx]; 1539 } 1540 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1541 1542 /** 1543 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1544 * @chip: chip type 1545 * @viid: VI id of the given port 1546 * 1547 * Return the SMT index for this VI. 1548 */ 1549 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1550 { 1551 /* In T4/T5, SMT contains 256 SMAC entries organized in 1552 * 128 rows of 2 entries each. 1553 * In T6, SMT contains 256 SMAC entries in 256 rows. 1554 * TODO: The below code needs to be updated when we add support 1555 * for 256 VFs. 1556 */ 1557 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1558 return ((viid & 0x7f) << 1); 1559 else 1560 return (viid & 0x7f); 1561 } 1562 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1563 1564 /** 1565 * cxgb4_port_chan - get the HW channel of a port 1566 * @dev: the net device for the port 1567 * 1568 * Return the HW Tx channel of the given port. 1569 */ 1570 unsigned int cxgb4_port_chan(const struct net_device *dev) 1571 { 1572 return netdev2pinfo(dev)->tx_chan; 1573 } 1574 EXPORT_SYMBOL(cxgb4_port_chan); 1575 1576 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1577 { 1578 struct adapter *adap = netdev2adap(dev); 1579 u32 v1, v2, lp_count, hp_count; 1580 1581 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1582 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1583 if (is_t4(adap->params.chip)) { 1584 lp_count = LP_COUNT_G(v1); 1585 hp_count = HP_COUNT_G(v1); 1586 } else { 1587 lp_count = LP_COUNT_T5_G(v1); 1588 hp_count = HP_COUNT_T5_G(v2); 1589 } 1590 return lpfifo ? lp_count : hp_count; 1591 } 1592 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1593 1594 /** 1595 * cxgb4_port_viid - get the VI id of a port 1596 * @dev: the net device for the port 1597 * 1598 * Return the VI id of the given port. 1599 */ 1600 unsigned int cxgb4_port_viid(const struct net_device *dev) 1601 { 1602 return netdev2pinfo(dev)->viid; 1603 } 1604 EXPORT_SYMBOL(cxgb4_port_viid); 1605 1606 /** 1607 * cxgb4_port_idx - get the index of a port 1608 * @dev: the net device for the port 1609 * 1610 * Return the index of the given port. 1611 */ 1612 unsigned int cxgb4_port_idx(const struct net_device *dev) 1613 { 1614 return netdev2pinfo(dev)->port_id; 1615 } 1616 EXPORT_SYMBOL(cxgb4_port_idx); 1617 1618 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1619 struct tp_tcp_stats *v6) 1620 { 1621 struct adapter *adap = pci_get_drvdata(pdev); 1622 1623 spin_lock(&adap->stats_lock); 1624 t4_tp_get_tcp_stats(adap, v4, v6); 1625 spin_unlock(&adap->stats_lock); 1626 } 1627 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1628 1629 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1630 const unsigned int *pgsz_order) 1631 { 1632 struct adapter *adap = netdev2adap(dev); 1633 1634 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1635 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1636 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1637 HPZ3_V(pgsz_order[3])); 1638 } 1639 EXPORT_SYMBOL(cxgb4_iscsi_init); 1640 1641 int cxgb4_flush_eq_cache(struct net_device *dev) 1642 { 1643 struct adapter *adap = netdev2adap(dev); 1644 1645 return t4_sge_ctxt_flush(adap, adap->mbox); 1646 } 1647 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1648 1649 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1650 { 1651 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1652 __be64 indices; 1653 int ret; 1654 1655 spin_lock(&adap->win0_lock); 1656 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1657 sizeof(indices), (__be32 *)&indices, 1658 T4_MEMORY_READ); 1659 spin_unlock(&adap->win0_lock); 1660 if (!ret) { 1661 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1662 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1663 } 1664 return ret; 1665 } 1666 1667 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1668 u16 size) 1669 { 1670 struct adapter *adap = netdev2adap(dev); 1671 u16 hw_pidx, hw_cidx; 1672 int ret; 1673 1674 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1675 if (ret) 1676 goto out; 1677 1678 if (pidx != hw_pidx) { 1679 u16 delta; 1680 u32 val; 1681 1682 if (pidx >= hw_pidx) 1683 delta = pidx - hw_pidx; 1684 else 1685 delta = size - hw_pidx + pidx; 1686 1687 if (is_t4(adap->params.chip)) 1688 val = PIDX_V(delta); 1689 else 1690 val = PIDX_T5_V(delta); 1691 wmb(); 1692 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1693 QID_V(qid) | val); 1694 } 1695 out: 1696 return ret; 1697 } 1698 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1699 1700 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1701 { 1702 struct adapter *adap; 1703 u32 offset, memtype, memaddr; 1704 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1705 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1706 int ret; 1707 1708 adap = netdev2adap(dev); 1709 1710 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1711 1712 /* Figure out where the offset lands in the Memory Type/Address scheme. 1713 * This code assumes that the memory is laid out starting at offset 0 1714 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1715 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1716 * MC0, and some have both MC0 and MC1. 1717 */ 1718 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1719 edc0_size = EDRAM0_SIZE_G(size) << 20; 1720 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1721 edc1_size = EDRAM1_SIZE_G(size) << 20; 1722 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1723 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1724 1725 edc0_end = edc0_size; 1726 edc1_end = edc0_end + edc1_size; 1727 mc0_end = edc1_end + mc0_size; 1728 1729 if (offset < edc0_end) { 1730 memtype = MEM_EDC0; 1731 memaddr = offset; 1732 } else if (offset < edc1_end) { 1733 memtype = MEM_EDC1; 1734 memaddr = offset - edc0_end; 1735 } else { 1736 if (offset < mc0_end) { 1737 memtype = MEM_MC0; 1738 memaddr = offset - edc1_end; 1739 } else if (is_t5(adap->params.chip)) { 1740 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1741 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1742 mc1_end = mc0_end + mc1_size; 1743 if (offset < mc1_end) { 1744 memtype = MEM_MC1; 1745 memaddr = offset - mc0_end; 1746 } else { 1747 /* offset beyond the end of any memory */ 1748 goto err; 1749 } 1750 } else { 1751 /* T4/T6 only has a single memory channel */ 1752 goto err; 1753 } 1754 } 1755 1756 spin_lock(&adap->win0_lock); 1757 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1758 spin_unlock(&adap->win0_lock); 1759 return ret; 1760 1761 err: 1762 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1763 stag, offset); 1764 return -EINVAL; 1765 } 1766 EXPORT_SYMBOL(cxgb4_read_tpte); 1767 1768 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1769 { 1770 u32 hi, lo; 1771 struct adapter *adap; 1772 1773 adap = netdev2adap(dev); 1774 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1775 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1776 1777 return ((u64)hi << 32) | (u64)lo; 1778 } 1779 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1780 1781 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1782 unsigned int qid, 1783 enum cxgb4_bar2_qtype qtype, 1784 int user, 1785 u64 *pbar2_qoffset, 1786 unsigned int *pbar2_qid) 1787 { 1788 return t4_bar2_sge_qregs(netdev2adap(dev), 1789 qid, 1790 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1791 ? T4_BAR2_QTYPE_EGRESS 1792 : T4_BAR2_QTYPE_INGRESS), 1793 user, 1794 pbar2_qoffset, 1795 pbar2_qid); 1796 } 1797 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1798 1799 static struct pci_driver cxgb4_driver; 1800 1801 static void check_neigh_update(struct neighbour *neigh) 1802 { 1803 const struct device *parent; 1804 const struct net_device *netdev = neigh->dev; 1805 1806 if (is_vlan_dev(netdev)) 1807 netdev = vlan_dev_real_dev(netdev); 1808 parent = netdev->dev.parent; 1809 if (parent && parent->driver == &cxgb4_driver.driver) 1810 t4_l2t_update(dev_get_drvdata(parent), neigh); 1811 } 1812 1813 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1814 void *data) 1815 { 1816 switch (event) { 1817 case NETEVENT_NEIGH_UPDATE: 1818 check_neigh_update(data); 1819 break; 1820 case NETEVENT_REDIRECT: 1821 default: 1822 break; 1823 } 1824 return 0; 1825 } 1826 1827 static bool netevent_registered; 1828 static struct notifier_block cxgb4_netevent_nb = { 1829 .notifier_call = netevent_cb 1830 }; 1831 1832 static void drain_db_fifo(struct adapter *adap, int usecs) 1833 { 1834 u32 v1, v2, lp_count, hp_count; 1835 1836 do { 1837 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1838 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1839 if (is_t4(adap->params.chip)) { 1840 lp_count = LP_COUNT_G(v1); 1841 hp_count = HP_COUNT_G(v1); 1842 } else { 1843 lp_count = LP_COUNT_T5_G(v1); 1844 hp_count = HP_COUNT_T5_G(v2); 1845 } 1846 1847 if (lp_count == 0 && hp_count == 0) 1848 break; 1849 set_current_state(TASK_UNINTERRUPTIBLE); 1850 schedule_timeout(usecs_to_jiffies(usecs)); 1851 } while (1); 1852 } 1853 1854 static void disable_txq_db(struct sge_txq *q) 1855 { 1856 unsigned long flags; 1857 1858 spin_lock_irqsave(&q->db_lock, flags); 1859 q->db_disabled = 1; 1860 spin_unlock_irqrestore(&q->db_lock, flags); 1861 } 1862 1863 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1864 { 1865 spin_lock_irq(&q->db_lock); 1866 if (q->db_pidx_inc) { 1867 /* Make sure that all writes to the TX descriptors 1868 * are committed before we tell HW about them. 1869 */ 1870 wmb(); 1871 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1872 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1873 q->db_pidx_inc = 0; 1874 } 1875 q->db_disabled = 0; 1876 spin_unlock_irq(&q->db_lock); 1877 } 1878 1879 static void disable_dbs(struct adapter *adap) 1880 { 1881 int i; 1882 1883 for_each_ethrxq(&adap->sge, i) 1884 disable_txq_db(&adap->sge.ethtxq[i].q); 1885 if (is_offload(adap)) { 1886 struct sge_uld_txq_info *txq_info = 1887 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1888 1889 if (txq_info) { 1890 for_each_ofldtxq(&adap->sge, i) { 1891 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1892 1893 disable_txq_db(&txq->q); 1894 } 1895 } 1896 } 1897 for_each_port(adap, i) 1898 disable_txq_db(&adap->sge.ctrlq[i].q); 1899 } 1900 1901 static void enable_dbs(struct adapter *adap) 1902 { 1903 int i; 1904 1905 for_each_ethrxq(&adap->sge, i) 1906 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1907 if (is_offload(adap)) { 1908 struct sge_uld_txq_info *txq_info = 1909 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1910 1911 if (txq_info) { 1912 for_each_ofldtxq(&adap->sge, i) { 1913 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1914 1915 enable_txq_db(adap, &txq->q); 1916 } 1917 } 1918 } 1919 for_each_port(adap, i) 1920 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1921 } 1922 1923 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1924 { 1925 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1926 1927 if (adap->uld && adap->uld[type].handle) 1928 adap->uld[type].control(adap->uld[type].handle, cmd); 1929 } 1930 1931 static void process_db_full(struct work_struct *work) 1932 { 1933 struct adapter *adap; 1934 1935 adap = container_of(work, struct adapter, db_full_task); 1936 1937 drain_db_fifo(adap, dbfifo_drain_delay); 1938 enable_dbs(adap); 1939 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1940 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1941 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1942 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1943 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1944 else 1945 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1946 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1947 } 1948 1949 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1950 { 1951 u16 hw_pidx, hw_cidx; 1952 int ret; 1953 1954 spin_lock_irq(&q->db_lock); 1955 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1956 if (ret) 1957 goto out; 1958 if (q->db_pidx != hw_pidx) { 1959 u16 delta; 1960 u32 val; 1961 1962 if (q->db_pidx >= hw_pidx) 1963 delta = q->db_pidx - hw_pidx; 1964 else 1965 delta = q->size - hw_pidx + q->db_pidx; 1966 1967 if (is_t4(adap->params.chip)) 1968 val = PIDX_V(delta); 1969 else 1970 val = PIDX_T5_V(delta); 1971 wmb(); 1972 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1973 QID_V(q->cntxt_id) | val); 1974 } 1975 out: 1976 q->db_disabled = 0; 1977 q->db_pidx_inc = 0; 1978 spin_unlock_irq(&q->db_lock); 1979 if (ret) 1980 CH_WARN(adap, "DB drop recovery failed.\n"); 1981 } 1982 1983 static void recover_all_queues(struct adapter *adap) 1984 { 1985 int i; 1986 1987 for_each_ethrxq(&adap->sge, i) 1988 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 1989 if (is_offload(adap)) { 1990 struct sge_uld_txq_info *txq_info = 1991 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1992 if (txq_info) { 1993 for_each_ofldtxq(&adap->sge, i) { 1994 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1995 1996 sync_txq_pidx(adap, &txq->q); 1997 } 1998 } 1999 } 2000 for_each_port(adap, i) 2001 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2002 } 2003 2004 static void process_db_drop(struct work_struct *work) 2005 { 2006 struct adapter *adap; 2007 2008 adap = container_of(work, struct adapter, db_drop_task); 2009 2010 if (is_t4(adap->params.chip)) { 2011 drain_db_fifo(adap, dbfifo_drain_delay); 2012 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2013 drain_db_fifo(adap, dbfifo_drain_delay); 2014 recover_all_queues(adap); 2015 drain_db_fifo(adap, dbfifo_drain_delay); 2016 enable_dbs(adap); 2017 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2018 } else if (is_t5(adap->params.chip)) { 2019 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2020 u16 qid = (dropped_db >> 15) & 0x1ffff; 2021 u16 pidx_inc = dropped_db & 0x1fff; 2022 u64 bar2_qoffset; 2023 unsigned int bar2_qid; 2024 int ret; 2025 2026 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2027 0, &bar2_qoffset, &bar2_qid); 2028 if (ret) 2029 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2030 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2031 else 2032 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2033 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2034 2035 /* Re-enable BAR2 WC */ 2036 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2037 } 2038 2039 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2040 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2041 } 2042 2043 void t4_db_full(struct adapter *adap) 2044 { 2045 if (is_t4(adap->params.chip)) { 2046 disable_dbs(adap); 2047 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2048 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2049 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2050 queue_work(adap->workq, &adap->db_full_task); 2051 } 2052 } 2053 2054 void t4_db_dropped(struct adapter *adap) 2055 { 2056 if (is_t4(adap->params.chip)) { 2057 disable_dbs(adap); 2058 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2059 } 2060 queue_work(adap->workq, &adap->db_drop_task); 2061 } 2062 2063 void t4_register_netevent_notifier(void) 2064 { 2065 if (!netevent_registered) { 2066 register_netevent_notifier(&cxgb4_netevent_nb); 2067 netevent_registered = true; 2068 } 2069 } 2070 2071 static void detach_ulds(struct adapter *adap) 2072 { 2073 unsigned int i; 2074 2075 mutex_lock(&uld_mutex); 2076 list_del(&adap->list_node); 2077 for (i = 0; i < CXGB4_ULD_MAX; i++) 2078 if (adap->uld && adap->uld[i].handle) { 2079 adap->uld[i].state_change(adap->uld[i].handle, 2080 CXGB4_STATE_DETACH); 2081 adap->uld[i].handle = NULL; 2082 } 2083 if (netevent_registered && list_empty(&adapter_list)) { 2084 unregister_netevent_notifier(&cxgb4_netevent_nb); 2085 netevent_registered = false; 2086 } 2087 mutex_unlock(&uld_mutex); 2088 } 2089 2090 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2091 { 2092 unsigned int i; 2093 2094 mutex_lock(&uld_mutex); 2095 for (i = 0; i < CXGB4_ULD_MAX; i++) 2096 if (adap->uld && adap->uld[i].handle) 2097 adap->uld[i].state_change(adap->uld[i].handle, 2098 new_state); 2099 mutex_unlock(&uld_mutex); 2100 } 2101 2102 #if IS_ENABLED(CONFIG_IPV6) 2103 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2104 unsigned long event, void *data) 2105 { 2106 struct inet6_ifaddr *ifa = data; 2107 struct net_device *event_dev = ifa->idev->dev; 2108 const struct device *parent = NULL; 2109 #if IS_ENABLED(CONFIG_BONDING) 2110 struct adapter *adap; 2111 #endif 2112 if (is_vlan_dev(event_dev)) 2113 event_dev = vlan_dev_real_dev(event_dev); 2114 #if IS_ENABLED(CONFIG_BONDING) 2115 if (event_dev->flags & IFF_MASTER) { 2116 list_for_each_entry(adap, &adapter_list, list_node) { 2117 switch (event) { 2118 case NETDEV_UP: 2119 cxgb4_clip_get(adap->port[0], 2120 (const u32 *)ifa, 1); 2121 break; 2122 case NETDEV_DOWN: 2123 cxgb4_clip_release(adap->port[0], 2124 (const u32 *)ifa, 1); 2125 break; 2126 default: 2127 break; 2128 } 2129 } 2130 return NOTIFY_OK; 2131 } 2132 #endif 2133 2134 if (event_dev) 2135 parent = event_dev->dev.parent; 2136 2137 if (parent && parent->driver == &cxgb4_driver.driver) { 2138 switch (event) { 2139 case NETDEV_UP: 2140 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2141 break; 2142 case NETDEV_DOWN: 2143 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2144 break; 2145 default: 2146 break; 2147 } 2148 } 2149 return NOTIFY_OK; 2150 } 2151 2152 static bool inet6addr_registered; 2153 static struct notifier_block cxgb4_inet6addr_notifier = { 2154 .notifier_call = cxgb4_inet6addr_handler 2155 }; 2156 2157 static void update_clip(const struct adapter *adap) 2158 { 2159 int i; 2160 struct net_device *dev; 2161 int ret; 2162 2163 rcu_read_lock(); 2164 2165 for (i = 0; i < MAX_NPORTS; i++) { 2166 dev = adap->port[i]; 2167 ret = 0; 2168 2169 if (dev) 2170 ret = cxgb4_update_root_dev_clip(dev); 2171 2172 if (ret < 0) 2173 break; 2174 } 2175 rcu_read_unlock(); 2176 } 2177 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2178 2179 /** 2180 * cxgb_up - enable the adapter 2181 * @adap: adapter being enabled 2182 * 2183 * Called when the first port is enabled, this function performs the 2184 * actions necessary to make an adapter operational, such as completing 2185 * the initialization of HW modules, and enabling interrupts. 2186 * 2187 * Must be called with the rtnl lock held. 2188 */ 2189 static int cxgb_up(struct adapter *adap) 2190 { 2191 int err; 2192 2193 mutex_lock(&uld_mutex); 2194 err = setup_sge_queues(adap); 2195 if (err) 2196 goto rel_lock; 2197 err = setup_rss(adap); 2198 if (err) 2199 goto freeq; 2200 2201 if (adap->flags & USING_MSIX) { 2202 name_msix_vecs(adap); 2203 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2204 adap->msix_info[0].desc, adap); 2205 if (err) 2206 goto irq_err; 2207 err = request_msix_queue_irqs(adap); 2208 if (err) { 2209 free_irq(adap->msix_info[0].vec, adap); 2210 goto irq_err; 2211 } 2212 } else { 2213 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2214 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2215 adap->port[0]->name, adap); 2216 if (err) 2217 goto irq_err; 2218 } 2219 2220 enable_rx(adap); 2221 t4_sge_start(adap); 2222 t4_intr_enable(adap); 2223 adap->flags |= FULL_INIT_DONE; 2224 mutex_unlock(&uld_mutex); 2225 2226 notify_ulds(adap, CXGB4_STATE_UP); 2227 #if IS_ENABLED(CONFIG_IPV6) 2228 update_clip(adap); 2229 #endif 2230 /* Initialize hash mac addr list*/ 2231 INIT_LIST_HEAD(&adap->mac_hlist); 2232 return err; 2233 2234 irq_err: 2235 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2236 freeq: 2237 t4_free_sge_resources(adap); 2238 rel_lock: 2239 mutex_unlock(&uld_mutex); 2240 return err; 2241 } 2242 2243 static void cxgb_down(struct adapter *adapter) 2244 { 2245 cancel_work_sync(&adapter->tid_release_task); 2246 cancel_work_sync(&adapter->db_full_task); 2247 cancel_work_sync(&adapter->db_drop_task); 2248 adapter->tid_release_task_busy = false; 2249 adapter->tid_release_head = NULL; 2250 2251 t4_sge_stop(adapter); 2252 t4_free_sge_resources(adapter); 2253 adapter->flags &= ~FULL_INIT_DONE; 2254 } 2255 2256 /* 2257 * net_device operations 2258 */ 2259 static int cxgb_open(struct net_device *dev) 2260 { 2261 int err; 2262 struct port_info *pi = netdev_priv(dev); 2263 struct adapter *adapter = pi->adapter; 2264 2265 netif_carrier_off(dev); 2266 2267 if (!(adapter->flags & FULL_INIT_DONE)) { 2268 err = cxgb_up(adapter); 2269 if (err < 0) 2270 return err; 2271 } 2272 2273 /* It's possible that the basic port information could have 2274 * changed since we first read it. 2275 */ 2276 err = t4_update_port_info(pi); 2277 if (err < 0) 2278 return err; 2279 2280 err = link_start(dev); 2281 if (!err) 2282 netif_tx_start_all_queues(dev); 2283 return err; 2284 } 2285 2286 static int cxgb_close(struct net_device *dev) 2287 { 2288 struct port_info *pi = netdev_priv(dev); 2289 struct adapter *adapter = pi->adapter; 2290 2291 netif_tx_stop_all_queues(dev); 2292 netif_carrier_off(dev); 2293 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2294 } 2295 2296 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2297 __be32 sip, __be16 sport, __be16 vlan, 2298 unsigned int queue, unsigned char port, unsigned char mask) 2299 { 2300 int ret; 2301 struct filter_entry *f; 2302 struct adapter *adap; 2303 int i; 2304 u8 *val; 2305 2306 adap = netdev2adap(dev); 2307 2308 /* Adjust stid to correct filter index */ 2309 stid -= adap->tids.sftid_base; 2310 stid += adap->tids.nftids; 2311 2312 /* Check to make sure the filter requested is writable ... 2313 */ 2314 f = &adap->tids.ftid_tab[stid]; 2315 ret = writable_filter(f); 2316 if (ret) 2317 return ret; 2318 2319 /* Clear out any old resources being used by the filter before 2320 * we start constructing the new filter. 2321 */ 2322 if (f->valid) 2323 clear_filter(adap, f); 2324 2325 /* Clear out filter specifications */ 2326 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2327 f->fs.val.lport = cpu_to_be16(sport); 2328 f->fs.mask.lport = ~0; 2329 val = (u8 *)&sip; 2330 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2331 for (i = 0; i < 4; i++) { 2332 f->fs.val.lip[i] = val[i]; 2333 f->fs.mask.lip[i] = ~0; 2334 } 2335 if (adap->params.tp.vlan_pri_map & PORT_F) { 2336 f->fs.val.iport = port; 2337 f->fs.mask.iport = mask; 2338 } 2339 } 2340 2341 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2342 f->fs.val.proto = IPPROTO_TCP; 2343 f->fs.mask.proto = ~0; 2344 } 2345 2346 f->fs.dirsteer = 1; 2347 f->fs.iq = queue; 2348 /* Mark filter as locked */ 2349 f->locked = 1; 2350 f->fs.rpttid = 1; 2351 2352 /* Save the actual tid. We need this to get the corresponding 2353 * filter entry structure in filter_rpl. 2354 */ 2355 f->tid = stid + adap->tids.ftid_base; 2356 ret = set_filter_wr(adap, stid); 2357 if (ret) { 2358 clear_filter(adap, f); 2359 return ret; 2360 } 2361 2362 return 0; 2363 } 2364 EXPORT_SYMBOL(cxgb4_create_server_filter); 2365 2366 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2367 unsigned int queue, bool ipv6) 2368 { 2369 struct filter_entry *f; 2370 struct adapter *adap; 2371 2372 adap = netdev2adap(dev); 2373 2374 /* Adjust stid to correct filter index */ 2375 stid -= adap->tids.sftid_base; 2376 stid += adap->tids.nftids; 2377 2378 f = &adap->tids.ftid_tab[stid]; 2379 /* Unlock the filter */ 2380 f->locked = 0; 2381 2382 return delete_filter(adap, stid); 2383 } 2384 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2385 2386 static void cxgb_get_stats(struct net_device *dev, 2387 struct rtnl_link_stats64 *ns) 2388 { 2389 struct port_stats stats; 2390 struct port_info *p = netdev_priv(dev); 2391 struct adapter *adapter = p->adapter; 2392 2393 /* Block retrieving statistics during EEH error 2394 * recovery. Otherwise, the recovery might fail 2395 * and the PCI device will be removed permanently 2396 */ 2397 spin_lock(&adapter->stats_lock); 2398 if (!netif_device_present(dev)) { 2399 spin_unlock(&adapter->stats_lock); 2400 return; 2401 } 2402 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2403 &p->stats_base); 2404 spin_unlock(&adapter->stats_lock); 2405 2406 ns->tx_bytes = stats.tx_octets; 2407 ns->tx_packets = stats.tx_frames; 2408 ns->rx_bytes = stats.rx_octets; 2409 ns->rx_packets = stats.rx_frames; 2410 ns->multicast = stats.rx_mcast_frames; 2411 2412 /* detailed rx_errors */ 2413 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2414 stats.rx_runt; 2415 ns->rx_over_errors = 0; 2416 ns->rx_crc_errors = stats.rx_fcs_err; 2417 ns->rx_frame_errors = stats.rx_symbol_err; 2418 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2419 stats.rx_ovflow2 + stats.rx_ovflow3 + 2420 stats.rx_trunc0 + stats.rx_trunc1 + 2421 stats.rx_trunc2 + stats.rx_trunc3; 2422 ns->rx_missed_errors = 0; 2423 2424 /* detailed tx_errors */ 2425 ns->tx_aborted_errors = 0; 2426 ns->tx_carrier_errors = 0; 2427 ns->tx_fifo_errors = 0; 2428 ns->tx_heartbeat_errors = 0; 2429 ns->tx_window_errors = 0; 2430 2431 ns->tx_errors = stats.tx_error_frames; 2432 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2433 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2434 } 2435 2436 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2437 { 2438 unsigned int mbox; 2439 int ret = 0, prtad, devad; 2440 struct port_info *pi = netdev_priv(dev); 2441 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2442 2443 switch (cmd) { 2444 case SIOCGMIIPHY: 2445 if (pi->mdio_addr < 0) 2446 return -EOPNOTSUPP; 2447 data->phy_id = pi->mdio_addr; 2448 break; 2449 case SIOCGMIIREG: 2450 case SIOCSMIIREG: 2451 if (mdio_phy_id_is_c45(data->phy_id)) { 2452 prtad = mdio_phy_id_prtad(data->phy_id); 2453 devad = mdio_phy_id_devad(data->phy_id); 2454 } else if (data->phy_id < 32) { 2455 prtad = data->phy_id; 2456 devad = 0; 2457 data->reg_num &= 0x1f; 2458 } else 2459 return -EINVAL; 2460 2461 mbox = pi->adapter->pf; 2462 if (cmd == SIOCGMIIREG) 2463 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2464 data->reg_num, &data->val_out); 2465 else 2466 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2467 data->reg_num, data->val_in); 2468 break; 2469 case SIOCGHWTSTAMP: 2470 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2471 sizeof(pi->tstamp_config)) ? 2472 -EFAULT : 0; 2473 case SIOCSHWTSTAMP: 2474 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2475 sizeof(pi->tstamp_config))) 2476 return -EFAULT; 2477 2478 switch (pi->tstamp_config.rx_filter) { 2479 case HWTSTAMP_FILTER_NONE: 2480 pi->rxtstamp = false; 2481 break; 2482 case HWTSTAMP_FILTER_ALL: 2483 pi->rxtstamp = true; 2484 break; 2485 default: 2486 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2487 return -ERANGE; 2488 } 2489 2490 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2491 sizeof(pi->tstamp_config)) ? 2492 -EFAULT : 0; 2493 default: 2494 return -EOPNOTSUPP; 2495 } 2496 return ret; 2497 } 2498 2499 static void cxgb_set_rxmode(struct net_device *dev) 2500 { 2501 /* unfortunately we can't return errors to the stack */ 2502 set_rxmode(dev, -1, false); 2503 } 2504 2505 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2506 { 2507 int ret; 2508 struct port_info *pi = netdev_priv(dev); 2509 2510 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2511 -1, -1, -1, true); 2512 if (!ret) 2513 dev->mtu = new_mtu; 2514 return ret; 2515 } 2516 2517 #ifdef CONFIG_PCI_IOV 2518 static int dummy_open(struct net_device *dev) 2519 { 2520 /* Turn carrier off since we don't have to transmit anything on this 2521 * interface. 2522 */ 2523 netif_carrier_off(dev); 2524 return 0; 2525 } 2526 2527 /* Fill MAC address that will be assigned by the FW */ 2528 static void fill_vf_station_mac_addr(struct adapter *adap) 2529 { 2530 unsigned int i; 2531 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2532 int err; 2533 u8 *na; 2534 u16 a, b; 2535 2536 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2537 if (!err) { 2538 na = adap->params.vpd.na; 2539 for (i = 0; i < ETH_ALEN; i++) 2540 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2541 hex2val(na[2 * i + 1])); 2542 a = (hw_addr[0] << 8) | hw_addr[1]; 2543 b = (hw_addr[1] << 8) | hw_addr[2]; 2544 a ^= b; 2545 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2546 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2547 macaddr[0] = a >> 8; 2548 macaddr[1] = a & 0xff; 2549 2550 for (i = 2; i < 5; i++) 2551 macaddr[i] = hw_addr[i + 1]; 2552 2553 for (i = 0; i < adap->num_vfs; i++) { 2554 macaddr[5] = adap->pf * 16 + i; 2555 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr); 2556 } 2557 } 2558 } 2559 2560 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2561 { 2562 struct port_info *pi = netdev_priv(dev); 2563 struct adapter *adap = pi->adapter; 2564 int ret; 2565 2566 /* verify MAC addr is valid */ 2567 if (!is_valid_ether_addr(mac)) { 2568 dev_err(pi->adapter->pdev_dev, 2569 "Invalid Ethernet address %pM for VF %d\n", 2570 mac, vf); 2571 return -EINVAL; 2572 } 2573 2574 dev_info(pi->adapter->pdev_dev, 2575 "Setting MAC %pM on VF %d\n", mac, vf); 2576 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2577 if (!ret) 2578 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2579 return ret; 2580 } 2581 2582 static int cxgb_get_vf_config(struct net_device *dev, 2583 int vf, struct ifla_vf_info *ivi) 2584 { 2585 struct port_info *pi = netdev_priv(dev); 2586 struct adapter *adap = pi->adapter; 2587 2588 if (vf >= adap->num_vfs) 2589 return -EINVAL; 2590 ivi->vf = vf; 2591 ivi->max_tx_rate = adap->vfinfo[vf].tx_rate; 2592 ivi->min_tx_rate = 0; 2593 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr); 2594 return 0; 2595 } 2596 2597 static int cxgb_get_phys_port_id(struct net_device *dev, 2598 struct netdev_phys_item_id *ppid) 2599 { 2600 struct port_info *pi = netdev_priv(dev); 2601 unsigned int phy_port_id; 2602 2603 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2604 ppid->id_len = sizeof(phy_port_id); 2605 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2606 return 0; 2607 } 2608 2609 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate, 2610 int max_tx_rate) 2611 { 2612 struct port_info *pi = netdev_priv(dev); 2613 struct adapter *adap = pi->adapter; 2614 struct fw_port_cmd port_cmd, port_rpl; 2615 u32 link_status, speed = 0; 2616 u32 fw_pfvf, fw_class; 2617 int class_id = vf; 2618 int link_ok, ret; 2619 u16 pktsize; 2620 2621 if (vf >= adap->num_vfs) 2622 return -EINVAL; 2623 2624 if (min_tx_rate) { 2625 dev_err(adap->pdev_dev, 2626 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2627 min_tx_rate, vf); 2628 return -EINVAL; 2629 } 2630 /* Retrieve link details for VF port */ 2631 memset(&port_cmd, 0, sizeof(port_cmd)); 2632 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 2633 FW_CMD_REQUEST_F | 2634 FW_CMD_READ_F | 2635 FW_PORT_CMD_PORTID_V(pi->port_id)); 2636 port_cmd.action_to_len16 = 2637 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 2638 FW_LEN16(port_cmd)); 2639 ret = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 2640 &port_rpl); 2641 if (ret != FW_SUCCESS) { 2642 dev_err(adap->pdev_dev, 2643 "Failed to get link status for VF %d\n", vf); 2644 return -EINVAL; 2645 } 2646 link_status = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype); 2647 link_ok = (link_status & FW_PORT_CMD_LSTATUS_F) != 0; 2648 if (!link_ok) { 2649 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2650 return -EINVAL; 2651 } 2652 /* Determine link speed */ 2653 if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 2654 speed = 100; 2655 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 2656 speed = 1000; 2657 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 2658 speed = 10000; 2659 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 2660 speed = 25000; 2661 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 2662 speed = 40000; 2663 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 2664 speed = 100000; 2665 2666 if (max_tx_rate > speed) { 2667 dev_err(adap->pdev_dev, 2668 "Max tx rate %d for VF %d can't be > link-speed %u", 2669 max_tx_rate, vf, speed); 2670 return -EINVAL; 2671 } 2672 pktsize = be16_to_cpu(port_rpl.u.info.mtu); 2673 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2674 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2675 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2676 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2677 /* configure Traffic Class for rate-limiting */ 2678 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2679 SCHED_CLASS_LEVEL_CL_RL, 2680 SCHED_CLASS_MODE_CLASS, 2681 SCHED_CLASS_RATEUNIT_BITS, 2682 SCHED_CLASS_RATEMODE_ABS, 2683 pi->port_id, class_id, 0, 2684 max_tx_rate * 1000, 0, pktsize); 2685 if (ret) { 2686 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2687 ret); 2688 return -EINVAL; 2689 } 2690 dev_info(adap->pdev_dev, 2691 "Class %d with MSS %u configured with rate %u\n", 2692 class_id, pktsize, max_tx_rate); 2693 2694 /* bind VF to configured Traffic Class */ 2695 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2696 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2697 fw_class = class_id; 2698 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2699 &fw_class); 2700 if (ret) { 2701 dev_err(adap->pdev_dev, 2702 "Err %d in binding VF %d to Traffic Class %d\n", 2703 ret, vf, class_id); 2704 return -EINVAL; 2705 } 2706 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2707 adap->pf, vf, class_id); 2708 adap->vfinfo[vf].tx_rate = max_tx_rate; 2709 return 0; 2710 } 2711 2712 #endif 2713 2714 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2715 { 2716 int ret; 2717 struct sockaddr *addr = p; 2718 struct port_info *pi = netdev_priv(dev); 2719 2720 if (!is_valid_ether_addr(addr->sa_data)) 2721 return -EADDRNOTAVAIL; 2722 2723 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2724 pi->xact_addr_filt, addr->sa_data, true, true); 2725 if (ret < 0) 2726 return ret; 2727 2728 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2729 pi->xact_addr_filt = ret; 2730 return 0; 2731 } 2732 2733 #ifdef CONFIG_NET_POLL_CONTROLLER 2734 static void cxgb_netpoll(struct net_device *dev) 2735 { 2736 struct port_info *pi = netdev_priv(dev); 2737 struct adapter *adap = pi->adapter; 2738 2739 if (adap->flags & USING_MSIX) { 2740 int i; 2741 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2742 2743 for (i = pi->nqsets; i; i--, rx++) 2744 t4_sge_intr_msix(0, &rx->rspq); 2745 } else 2746 t4_intr_handler(adap)(0, adap); 2747 } 2748 #endif 2749 2750 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2751 { 2752 struct port_info *pi = netdev_priv(dev); 2753 struct adapter *adap = pi->adapter; 2754 struct sched_class *e; 2755 struct ch_sched_params p; 2756 struct ch_sched_queue qe; 2757 u32 req_rate; 2758 int err = 0; 2759 2760 if (!can_sched(dev)) 2761 return -ENOTSUPP; 2762 2763 if (index < 0 || index > pi->nqsets - 1) 2764 return -EINVAL; 2765 2766 if (!(adap->flags & FULL_INIT_DONE)) { 2767 dev_err(adap->pdev_dev, 2768 "Failed to rate limit on queue %d. Link Down?\n", 2769 index); 2770 return -EINVAL; 2771 } 2772 2773 /* Convert from Mbps to Kbps */ 2774 req_rate = rate << 10; 2775 2776 /* Max rate is 10 Gbps */ 2777 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2778 dev_err(adap->pdev_dev, 2779 "Invalid rate %u Mbps, Max rate is %u Gbps\n", 2780 rate, SCHED_MAX_RATE_KBPS); 2781 return -ERANGE; 2782 } 2783 2784 /* First unbind the queue from any existing class */ 2785 memset(&qe, 0, sizeof(qe)); 2786 qe.queue = index; 2787 qe.class = SCHED_CLS_NONE; 2788 2789 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2790 if (err) { 2791 dev_err(adap->pdev_dev, 2792 "Unbinding Queue %d on port %d fail. Err: %d\n", 2793 index, pi->port_id, err); 2794 return err; 2795 } 2796 2797 /* Queue already unbound */ 2798 if (!req_rate) 2799 return 0; 2800 2801 /* Fetch any available unused or matching scheduling class */ 2802 memset(&p, 0, sizeof(p)); 2803 p.type = SCHED_CLASS_TYPE_PACKET; 2804 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2805 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2806 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2807 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2808 p.u.params.channel = pi->tx_chan; 2809 p.u.params.class = SCHED_CLS_NONE; 2810 p.u.params.minrate = 0; 2811 p.u.params.maxrate = req_rate; 2812 p.u.params.weight = 0; 2813 p.u.params.pktsize = dev->mtu; 2814 2815 e = cxgb4_sched_class_alloc(dev, &p); 2816 if (!e) 2817 return -ENOMEM; 2818 2819 /* Bind the queue to a scheduling class */ 2820 memset(&qe, 0, sizeof(qe)); 2821 qe.queue = index; 2822 qe.class = e->idx; 2823 2824 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2825 if (err) 2826 dev_err(adap->pdev_dev, 2827 "Queue rate limiting failed. Err: %d\n", err); 2828 return err; 2829 } 2830 2831 static int cxgb_setup_tc(struct net_device *dev, u32 handle, u32 chain_index, 2832 __be16 proto, struct tc_to_netdev *tc) 2833 { 2834 struct port_info *pi = netdev2pinfo(dev); 2835 struct adapter *adap = netdev2adap(dev); 2836 2837 if (chain_index) 2838 return -EOPNOTSUPP; 2839 2840 if (!(adap->flags & FULL_INIT_DONE)) { 2841 dev_err(adap->pdev_dev, 2842 "Failed to setup tc on port %d. Link Down?\n", 2843 pi->port_id); 2844 return -EINVAL; 2845 } 2846 2847 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) && 2848 tc->type == TC_SETUP_CLSU32) { 2849 switch (tc->cls_u32->command) { 2850 case TC_CLSU32_NEW_KNODE: 2851 case TC_CLSU32_REPLACE_KNODE: 2852 return cxgb4_config_knode(dev, proto, tc->cls_u32); 2853 case TC_CLSU32_DELETE_KNODE: 2854 return cxgb4_delete_knode(dev, proto, tc->cls_u32); 2855 default: 2856 return -EOPNOTSUPP; 2857 } 2858 } 2859 2860 return -EOPNOTSUPP; 2861 } 2862 2863 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2864 netdev_features_t features) 2865 { 2866 /* Disable GRO, if RX_CSUM is disabled */ 2867 if (!(features & NETIF_F_RXCSUM)) 2868 features &= ~NETIF_F_GRO; 2869 2870 return features; 2871 } 2872 2873 static const struct net_device_ops cxgb4_netdev_ops = { 2874 .ndo_open = cxgb_open, 2875 .ndo_stop = cxgb_close, 2876 .ndo_start_xmit = t4_eth_xmit, 2877 .ndo_select_queue = cxgb_select_queue, 2878 .ndo_get_stats64 = cxgb_get_stats, 2879 .ndo_set_rx_mode = cxgb_set_rxmode, 2880 .ndo_set_mac_address = cxgb_set_mac_addr, 2881 .ndo_set_features = cxgb_set_features, 2882 .ndo_validate_addr = eth_validate_addr, 2883 .ndo_do_ioctl = cxgb_ioctl, 2884 .ndo_change_mtu = cxgb_change_mtu, 2885 #ifdef CONFIG_NET_POLL_CONTROLLER 2886 .ndo_poll_controller = cxgb_netpoll, 2887 #endif 2888 #ifdef CONFIG_CHELSIO_T4_FCOE 2889 .ndo_fcoe_enable = cxgb_fcoe_enable, 2890 .ndo_fcoe_disable = cxgb_fcoe_disable, 2891 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2892 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 2893 .ndo_setup_tc = cxgb_setup_tc, 2894 .ndo_fix_features = cxgb_fix_features, 2895 }; 2896 2897 #ifdef CONFIG_PCI_IOV 2898 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 2899 .ndo_open = dummy_open, 2900 .ndo_set_vf_mac = cxgb_set_vf_mac, 2901 .ndo_get_vf_config = cxgb_get_vf_config, 2902 .ndo_set_vf_rate = cxgb_set_vf_rate, 2903 .ndo_get_phys_port_id = cxgb_get_phys_port_id, 2904 }; 2905 #endif 2906 2907 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2908 { 2909 struct adapter *adapter = netdev2adap(dev); 2910 2911 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 2912 strlcpy(info->version, cxgb4_driver_version, 2913 sizeof(info->version)); 2914 strlcpy(info->bus_info, pci_name(adapter->pdev), 2915 sizeof(info->bus_info)); 2916 } 2917 2918 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 2919 .get_drvinfo = get_drvinfo, 2920 }; 2921 2922 void t4_fatal_err(struct adapter *adap) 2923 { 2924 int port; 2925 2926 if (pci_channel_offline(adap->pdev)) 2927 return; 2928 2929 /* Disable the SGE since ULDs are going to free resources that 2930 * could be exposed to the adapter. RDMA MWs for example... 2931 */ 2932 t4_shutdown_adapter(adap); 2933 for_each_port(adap, port) { 2934 struct net_device *dev = adap->port[port]; 2935 2936 /* If we get here in very early initialization the network 2937 * devices may not have been set up yet. 2938 */ 2939 if (!dev) 2940 continue; 2941 2942 netif_tx_stop_all_queues(dev); 2943 netif_carrier_off(dev); 2944 } 2945 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 2946 } 2947 2948 static void setup_memwin(struct adapter *adap) 2949 { 2950 u32 nic_win_base = t4_get_util_window(adap); 2951 2952 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 2953 } 2954 2955 static void setup_memwin_rdma(struct adapter *adap) 2956 { 2957 if (adap->vres.ocq.size) { 2958 u32 start; 2959 unsigned int sz_kb; 2960 2961 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 2962 start &= PCI_BASE_ADDRESS_MEM_MASK; 2963 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 2964 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 2965 t4_write_reg(adap, 2966 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 2967 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 2968 t4_write_reg(adap, 2969 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 2970 adap->vres.ocq.start); 2971 t4_read_reg(adap, 2972 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 2973 } 2974 } 2975 2976 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 2977 { 2978 u32 v; 2979 int ret; 2980 2981 /* get device capabilities */ 2982 memset(c, 0, sizeof(*c)); 2983 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2984 FW_CMD_REQUEST_F | FW_CMD_READ_F); 2985 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 2986 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 2987 if (ret < 0) 2988 return ret; 2989 2990 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2991 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 2992 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 2993 if (ret < 0) 2994 return ret; 2995 2996 ret = t4_config_glbl_rss(adap, adap->pf, 2997 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 2998 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 2999 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3000 if (ret < 0) 3001 return ret; 3002 3003 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3004 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3005 FW_CMD_CAP_PF); 3006 if (ret < 0) 3007 return ret; 3008 3009 t4_sge_init(adap); 3010 3011 /* tweak some settings */ 3012 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3013 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3014 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3015 v = t4_read_reg(adap, TP_PIO_DATA_A); 3016 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3017 3018 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3019 adap->params.tp.tx_modq_map = 0xE4; 3020 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3021 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3022 3023 /* associate each Tx modulation queue with consecutive Tx channels */ 3024 v = 0x84218421; 3025 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3026 &v, 1, TP_TX_SCHED_HDR_A); 3027 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3028 &v, 1, TP_TX_SCHED_FIFO_A); 3029 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3030 &v, 1, TP_TX_SCHED_PCMD_A); 3031 3032 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3033 if (is_offload(adap)) { 3034 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3035 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3036 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3037 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3038 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3039 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3040 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3041 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3042 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3043 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3044 } 3045 3046 /* get basic stuff going */ 3047 return t4_early_init(adap, adap->pf); 3048 } 3049 3050 /* 3051 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3052 */ 3053 #define MAX_ATIDS 8192U 3054 3055 /* 3056 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3057 * 3058 * If the firmware we're dealing with has Configuration File support, then 3059 * we use that to perform all configuration 3060 */ 3061 3062 /* 3063 * Tweak configuration based on module parameters, etc. Most of these have 3064 * defaults assigned to them by Firmware Configuration Files (if we're using 3065 * them) but need to be explicitly set if we're using hard-coded 3066 * initialization. But even in the case of using Firmware Configuration 3067 * Files, we'd like to expose the ability to change these via module 3068 * parameters so these are essentially common tweaks/settings for 3069 * Configuration Files and hard-coded initialization ... 3070 */ 3071 static int adap_init0_tweaks(struct adapter *adapter) 3072 { 3073 /* 3074 * Fix up various Host-Dependent Parameters like Page Size, Cache 3075 * Line Size, etc. The firmware default is for a 4KB Page Size and 3076 * 64B Cache Line Size ... 3077 */ 3078 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3079 3080 /* 3081 * Process module parameters which affect early initialization. 3082 */ 3083 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3084 dev_err(&adapter->pdev->dev, 3085 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3086 rx_dma_offset); 3087 rx_dma_offset = 2; 3088 } 3089 t4_set_reg_field(adapter, SGE_CONTROL_A, 3090 PKTSHIFT_V(PKTSHIFT_M), 3091 PKTSHIFT_V(rx_dma_offset)); 3092 3093 /* 3094 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3095 * adds the pseudo header itself. 3096 */ 3097 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3098 CSUM_HAS_PSEUDO_HDR_F, 0); 3099 3100 return 0; 3101 } 3102 3103 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3104 * unto themselves and they contain their own firmware to perform their 3105 * tasks ... 3106 */ 3107 static int phy_aq1202_version(const u8 *phy_fw_data, 3108 size_t phy_fw_size) 3109 { 3110 int offset; 3111 3112 /* At offset 0x8 you're looking for the primary image's 3113 * starting offset which is 3 Bytes wide 3114 * 3115 * At offset 0xa of the primary image, you look for the offset 3116 * of the DRAM segment which is 3 Bytes wide. 3117 * 3118 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3119 * wide 3120 */ 3121 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3122 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3123 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3124 3125 offset = le24(phy_fw_data + 0x8) << 12; 3126 offset = le24(phy_fw_data + offset + 0xa); 3127 return be16(phy_fw_data + offset + 0x27e); 3128 3129 #undef be16 3130 #undef le16 3131 #undef le24 3132 } 3133 3134 static struct info_10gbt_phy_fw { 3135 unsigned int phy_fw_id; /* PCI Device ID */ 3136 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3137 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3138 int phy_flash; /* Has FLASH for PHY Firmware */ 3139 } phy_info_array[] = { 3140 { 3141 PHY_AQ1202_DEVICEID, 3142 PHY_AQ1202_FIRMWARE, 3143 phy_aq1202_version, 3144 1, 3145 }, 3146 { 3147 PHY_BCM84834_DEVICEID, 3148 PHY_BCM84834_FIRMWARE, 3149 NULL, 3150 0, 3151 }, 3152 { 0, NULL, NULL }, 3153 }; 3154 3155 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3156 { 3157 int i; 3158 3159 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3160 if (phy_info_array[i].phy_fw_id == devid) 3161 return &phy_info_array[i]; 3162 } 3163 return NULL; 3164 } 3165 3166 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3167 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3168 * we return a negative error number. If we transfer new firmware we return 1 3169 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3170 */ 3171 static int adap_init0_phy(struct adapter *adap) 3172 { 3173 const struct firmware *phyf; 3174 int ret; 3175 struct info_10gbt_phy_fw *phy_info; 3176 3177 /* Use the device ID to determine which PHY file to flash. 3178 */ 3179 phy_info = find_phy_info(adap->pdev->device); 3180 if (!phy_info) { 3181 dev_warn(adap->pdev_dev, 3182 "No PHY Firmware file found for this PHY\n"); 3183 return -EOPNOTSUPP; 3184 } 3185 3186 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3187 * use that. The adapter firmware provides us with a memory buffer 3188 * where we can load a PHY firmware file from the host if we want to 3189 * override the PHY firmware File in flash. 3190 */ 3191 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3192 adap->pdev_dev); 3193 if (ret < 0) { 3194 /* For adapters without FLASH attached to PHY for their 3195 * firmware, it's obviously a fatal error if we can't get the 3196 * firmware to the adapter. For adapters with PHY firmware 3197 * FLASH storage, it's worth a warning if we can't find the 3198 * PHY Firmware but we'll neuter the error ... 3199 */ 3200 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3201 "/lib/firmware/%s, error %d\n", 3202 phy_info->phy_fw_file, -ret); 3203 if (phy_info->phy_flash) { 3204 int cur_phy_fw_ver = 0; 3205 3206 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3207 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3208 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3209 ret = 0; 3210 } 3211 3212 return ret; 3213 } 3214 3215 /* Load PHY Firmware onto adapter. 3216 */ 3217 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3218 phy_info->phy_fw_version, 3219 (u8 *)phyf->data, phyf->size); 3220 if (ret < 0) 3221 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3222 -ret); 3223 else if (ret > 0) { 3224 int new_phy_fw_ver = 0; 3225 3226 if (phy_info->phy_fw_version) 3227 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3228 phyf->size); 3229 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3230 "Firmware /lib/firmware/%s, version %#x\n", 3231 phy_info->phy_fw_file, new_phy_fw_ver); 3232 } 3233 3234 release_firmware(phyf); 3235 3236 return ret; 3237 } 3238 3239 /* 3240 * Attempt to initialize the adapter via a Firmware Configuration File. 3241 */ 3242 static int adap_init0_config(struct adapter *adapter, int reset) 3243 { 3244 struct fw_caps_config_cmd caps_cmd; 3245 const struct firmware *cf; 3246 unsigned long mtype = 0, maddr = 0; 3247 u32 finiver, finicsum, cfcsum; 3248 int ret; 3249 int config_issued = 0; 3250 char *fw_config_file, fw_config_file_path[256]; 3251 char *config_name = NULL; 3252 3253 /* 3254 * Reset device if necessary. 3255 */ 3256 if (reset) { 3257 ret = t4_fw_reset(adapter, adapter->mbox, 3258 PIORSTMODE_F | PIORST_F); 3259 if (ret < 0) 3260 goto bye; 3261 } 3262 3263 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3264 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3265 * to be performed after any global adapter RESET above since some 3266 * PHYs only have local RAM copies of the PHY firmware. 3267 */ 3268 if (is_10gbt_device(adapter->pdev->device)) { 3269 ret = adap_init0_phy(adapter); 3270 if (ret < 0) 3271 goto bye; 3272 } 3273 /* 3274 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3275 * then use that. Otherwise, use the configuration file stored 3276 * in the adapter flash ... 3277 */ 3278 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3279 case CHELSIO_T4: 3280 fw_config_file = FW4_CFNAME; 3281 break; 3282 case CHELSIO_T5: 3283 fw_config_file = FW5_CFNAME; 3284 break; 3285 case CHELSIO_T6: 3286 fw_config_file = FW6_CFNAME; 3287 break; 3288 default: 3289 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3290 adapter->pdev->device); 3291 ret = -EINVAL; 3292 goto bye; 3293 } 3294 3295 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3296 if (ret < 0) { 3297 config_name = "On FLASH"; 3298 mtype = FW_MEMTYPE_CF_FLASH; 3299 maddr = t4_flash_cfg_addr(adapter); 3300 } else { 3301 u32 params[7], val[7]; 3302 3303 sprintf(fw_config_file_path, 3304 "/lib/firmware/%s", fw_config_file); 3305 config_name = fw_config_file_path; 3306 3307 if (cf->size >= FLASH_CFG_MAX_SIZE) 3308 ret = -ENOMEM; 3309 else { 3310 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3311 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3312 ret = t4_query_params(adapter, adapter->mbox, 3313 adapter->pf, 0, 1, params, val); 3314 if (ret == 0) { 3315 /* 3316 * For t4_memory_rw() below addresses and 3317 * sizes have to be in terms of multiples of 4 3318 * bytes. So, if the Configuration File isn't 3319 * a multiple of 4 bytes in length we'll have 3320 * to write that out separately since we can't 3321 * guarantee that the bytes following the 3322 * residual byte in the buffer returned by 3323 * request_firmware() are zeroed out ... 3324 */ 3325 size_t resid = cf->size & 0x3; 3326 size_t size = cf->size & ~0x3; 3327 __be32 *data = (__be32 *)cf->data; 3328 3329 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3330 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3331 3332 spin_lock(&adapter->win0_lock); 3333 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3334 size, data, T4_MEMORY_WRITE); 3335 if (ret == 0 && resid != 0) { 3336 union { 3337 __be32 word; 3338 char buf[4]; 3339 } last; 3340 int i; 3341 3342 last.word = data[size >> 2]; 3343 for (i = resid; i < 4; i++) 3344 last.buf[i] = 0; 3345 ret = t4_memory_rw(adapter, 0, mtype, 3346 maddr + size, 3347 4, &last.word, 3348 T4_MEMORY_WRITE); 3349 } 3350 spin_unlock(&adapter->win0_lock); 3351 } 3352 } 3353 3354 release_firmware(cf); 3355 if (ret) 3356 goto bye; 3357 } 3358 3359 /* 3360 * Issue a Capability Configuration command to the firmware to get it 3361 * to parse the Configuration File. We don't use t4_fw_config_file() 3362 * because we want the ability to modify various features after we've 3363 * processed the configuration file ... 3364 */ 3365 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3366 caps_cmd.op_to_write = 3367 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3368 FW_CMD_REQUEST_F | 3369 FW_CMD_READ_F); 3370 caps_cmd.cfvalid_to_len16 = 3371 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3372 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3373 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3374 FW_LEN16(caps_cmd)); 3375 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3376 &caps_cmd); 3377 3378 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3379 * Configuration File in FLASH), our last gasp effort is to use the 3380 * Firmware Configuration File which is embedded in the firmware. A 3381 * very few early versions of the firmware didn't have one embedded 3382 * but we can ignore those. 3383 */ 3384 if (ret == -ENOENT) { 3385 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3386 caps_cmd.op_to_write = 3387 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3388 FW_CMD_REQUEST_F | 3389 FW_CMD_READ_F); 3390 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3391 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3392 sizeof(caps_cmd), &caps_cmd); 3393 config_name = "Firmware Default"; 3394 } 3395 3396 config_issued = 1; 3397 if (ret < 0) 3398 goto bye; 3399 3400 finiver = ntohl(caps_cmd.finiver); 3401 finicsum = ntohl(caps_cmd.finicsum); 3402 cfcsum = ntohl(caps_cmd.cfcsum); 3403 if (finicsum != cfcsum) 3404 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3405 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3406 finicsum, cfcsum); 3407 3408 /* 3409 * And now tell the firmware to use the configuration we just loaded. 3410 */ 3411 caps_cmd.op_to_write = 3412 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3413 FW_CMD_REQUEST_F | 3414 FW_CMD_WRITE_F); 3415 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3416 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3417 NULL); 3418 if (ret < 0) 3419 goto bye; 3420 3421 /* 3422 * Tweak configuration based on system architecture, module 3423 * parameters, etc. 3424 */ 3425 ret = adap_init0_tweaks(adapter); 3426 if (ret < 0) 3427 goto bye; 3428 3429 /* 3430 * And finally tell the firmware to initialize itself using the 3431 * parameters from the Configuration File. 3432 */ 3433 ret = t4_fw_initialize(adapter, adapter->mbox); 3434 if (ret < 0) 3435 goto bye; 3436 3437 /* Emit Firmware Configuration File information and return 3438 * successfully. 3439 */ 3440 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3441 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3442 config_name, finiver, cfcsum); 3443 return 0; 3444 3445 /* 3446 * Something bad happened. Return the error ... (If the "error" 3447 * is that there's no Configuration File on the adapter we don't 3448 * want to issue a warning since this is fairly common.) 3449 */ 3450 bye: 3451 if (config_issued && ret != -ENOENT) 3452 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3453 config_name, -ret); 3454 return ret; 3455 } 3456 3457 static struct fw_info fw_info_array[] = { 3458 { 3459 .chip = CHELSIO_T4, 3460 .fs_name = FW4_CFNAME, 3461 .fw_mod_name = FW4_FNAME, 3462 .fw_hdr = { 3463 .chip = FW_HDR_CHIP_T4, 3464 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3465 .intfver_nic = FW_INTFVER(T4, NIC), 3466 .intfver_vnic = FW_INTFVER(T4, VNIC), 3467 .intfver_ri = FW_INTFVER(T4, RI), 3468 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3469 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3470 }, 3471 }, { 3472 .chip = CHELSIO_T5, 3473 .fs_name = FW5_CFNAME, 3474 .fw_mod_name = FW5_FNAME, 3475 .fw_hdr = { 3476 .chip = FW_HDR_CHIP_T5, 3477 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3478 .intfver_nic = FW_INTFVER(T5, NIC), 3479 .intfver_vnic = FW_INTFVER(T5, VNIC), 3480 .intfver_ri = FW_INTFVER(T5, RI), 3481 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3482 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3483 }, 3484 }, { 3485 .chip = CHELSIO_T6, 3486 .fs_name = FW6_CFNAME, 3487 .fw_mod_name = FW6_FNAME, 3488 .fw_hdr = { 3489 .chip = FW_HDR_CHIP_T6, 3490 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3491 .intfver_nic = FW_INTFVER(T6, NIC), 3492 .intfver_vnic = FW_INTFVER(T6, VNIC), 3493 .intfver_ofld = FW_INTFVER(T6, OFLD), 3494 .intfver_ri = FW_INTFVER(T6, RI), 3495 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3496 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3497 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3498 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3499 }, 3500 } 3501 3502 }; 3503 3504 static struct fw_info *find_fw_info(int chip) 3505 { 3506 int i; 3507 3508 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3509 if (fw_info_array[i].chip == chip) 3510 return &fw_info_array[i]; 3511 } 3512 return NULL; 3513 } 3514 3515 /* 3516 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3517 */ 3518 static int adap_init0(struct adapter *adap) 3519 { 3520 int ret; 3521 u32 v, port_vec; 3522 enum dev_state state; 3523 u32 params[7], val[7]; 3524 struct fw_caps_config_cmd caps_cmd; 3525 int reset = 1; 3526 3527 /* Grab Firmware Device Log parameters as early as possible so we have 3528 * access to it for debugging, etc. 3529 */ 3530 ret = t4_init_devlog_params(adap); 3531 if (ret < 0) 3532 return ret; 3533 3534 /* Contact FW, advertising Master capability */ 3535 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3536 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3537 if (ret < 0) { 3538 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3539 ret); 3540 return ret; 3541 } 3542 if (ret == adap->mbox) 3543 adap->flags |= MASTER_PF; 3544 3545 /* 3546 * If we're the Master PF Driver and the device is uninitialized, 3547 * then let's consider upgrading the firmware ... (We always want 3548 * to check the firmware version number in order to A. get it for 3549 * later reporting and B. to warn if the currently loaded firmware 3550 * is excessively mismatched relative to the driver.) 3551 */ 3552 t4_get_fw_version(adap, &adap->params.fw_vers); 3553 t4_get_bs_version(adap, &adap->params.bs_vers); 3554 t4_get_tp_version(adap, &adap->params.tp_vers); 3555 t4_get_exprom_version(adap, &adap->params.er_vers); 3556 3557 ret = t4_check_fw_version(adap); 3558 /* If firmware is too old (not supported by driver) force an update. */ 3559 if (ret) 3560 state = DEV_STATE_UNINIT; 3561 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3562 struct fw_info *fw_info; 3563 struct fw_hdr *card_fw; 3564 const struct firmware *fw; 3565 const u8 *fw_data = NULL; 3566 unsigned int fw_size = 0; 3567 3568 /* This is the firmware whose headers the driver was compiled 3569 * against 3570 */ 3571 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3572 if (fw_info == NULL) { 3573 dev_err(adap->pdev_dev, 3574 "unable to get firmware info for chip %d.\n", 3575 CHELSIO_CHIP_VERSION(adap->params.chip)); 3576 return -EINVAL; 3577 } 3578 3579 /* allocate memory to read the header of the firmware on the 3580 * card 3581 */ 3582 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 3583 3584 /* Get FW from from /lib/firmware/ */ 3585 ret = request_firmware(&fw, fw_info->fw_mod_name, 3586 adap->pdev_dev); 3587 if (ret < 0) { 3588 dev_err(adap->pdev_dev, 3589 "unable to load firmware image %s, error %d\n", 3590 fw_info->fw_mod_name, ret); 3591 } else { 3592 fw_data = fw->data; 3593 fw_size = fw->size; 3594 } 3595 3596 /* upgrade FW logic */ 3597 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3598 state, &reset); 3599 3600 /* Cleaning up */ 3601 release_firmware(fw); 3602 kvfree(card_fw); 3603 3604 if (ret < 0) 3605 goto bye; 3606 } 3607 3608 /* 3609 * Grab VPD parameters. This should be done after we establish a 3610 * connection to the firmware since some of the VPD parameters 3611 * (notably the Core Clock frequency) are retrieved via requests to 3612 * the firmware. On the other hand, we need these fairly early on 3613 * so we do this right after getting ahold of the firmware. 3614 */ 3615 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3616 if (ret < 0) 3617 goto bye; 3618 3619 /* 3620 * Find out what ports are available to us. Note that we need to do 3621 * this before calling adap_init0_no_config() since it needs nports 3622 * and portvec ... 3623 */ 3624 v = 3625 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3626 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3627 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3628 if (ret < 0) 3629 goto bye; 3630 3631 adap->params.nports = hweight32(port_vec); 3632 adap->params.portvec = port_vec; 3633 3634 /* If the firmware is initialized already, emit a simply note to that 3635 * effect. Otherwise, it's time to try initializing the adapter. 3636 */ 3637 if (state == DEV_STATE_INIT) { 3638 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3639 "Adapter already initialized\n", 3640 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3641 } else { 3642 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3643 "Initializing adapter\n"); 3644 3645 /* Find out whether we're dealing with a version of the 3646 * firmware which has configuration file support. 3647 */ 3648 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3649 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3650 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3651 params, val); 3652 3653 /* If the firmware doesn't support Configuration Files, 3654 * return an error. 3655 */ 3656 if (ret < 0) { 3657 dev_err(adap->pdev_dev, "firmware doesn't support " 3658 "Firmware Configuration Files\n"); 3659 goto bye; 3660 } 3661 3662 /* The firmware provides us with a memory buffer where we can 3663 * load a Configuration File from the host if we want to 3664 * override the Configuration File in flash. 3665 */ 3666 ret = adap_init0_config(adap, reset); 3667 if (ret == -ENOENT) { 3668 dev_err(adap->pdev_dev, "no Configuration File " 3669 "present on adapter.\n"); 3670 goto bye; 3671 } 3672 if (ret < 0) { 3673 dev_err(adap->pdev_dev, "could not initialize " 3674 "adapter, error %d\n", -ret); 3675 goto bye; 3676 } 3677 } 3678 3679 /* Give the SGE code a chance to pull in anything that it needs ... 3680 * Note that this must be called after we retrieve our VPD parameters 3681 * in order to know how to convert core ticks to seconds, etc. 3682 */ 3683 ret = t4_sge_init(adap); 3684 if (ret < 0) 3685 goto bye; 3686 3687 if (is_bypass_device(adap->pdev->device)) 3688 adap->params.bypass = 1; 3689 3690 /* 3691 * Grab some of our basic fundamental operating parameters. 3692 */ 3693 #define FW_PARAM_DEV(param) \ 3694 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3695 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3696 3697 #define FW_PARAM_PFVF(param) \ 3698 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3699 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3700 FW_PARAMS_PARAM_Y_V(0) | \ 3701 FW_PARAMS_PARAM_Z_V(0) 3702 3703 params[0] = FW_PARAM_PFVF(EQ_START); 3704 params[1] = FW_PARAM_PFVF(L2T_START); 3705 params[2] = FW_PARAM_PFVF(L2T_END); 3706 params[3] = FW_PARAM_PFVF(FILTER_START); 3707 params[4] = FW_PARAM_PFVF(FILTER_END); 3708 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3709 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3710 if (ret < 0) 3711 goto bye; 3712 adap->sge.egr_start = val[0]; 3713 adap->l2t_start = val[1]; 3714 adap->l2t_end = val[2]; 3715 adap->tids.ftid_base = val[3]; 3716 adap->tids.nftids = val[4] - val[3] + 1; 3717 adap->sge.ingr_start = val[5]; 3718 3719 /* qids (ingress/egress) returned from firmware can be anywhere 3720 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3721 * Hence driver needs to allocate memory for this range to 3722 * store the queue info. Get the highest IQFLINT/EQ index returned 3723 * in FW_EQ_*_CMD.alloc command. 3724 */ 3725 params[0] = FW_PARAM_PFVF(EQ_END); 3726 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3727 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3728 if (ret < 0) 3729 goto bye; 3730 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3731 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3732 3733 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3734 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3735 if (!adap->sge.egr_map) { 3736 ret = -ENOMEM; 3737 goto bye; 3738 } 3739 3740 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3741 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3742 if (!adap->sge.ingr_map) { 3743 ret = -ENOMEM; 3744 goto bye; 3745 } 3746 3747 /* Allocate the memory for the vaious egress queue bitmaps 3748 * ie starving_fl, txq_maperr and blocked_fl. 3749 */ 3750 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3751 sizeof(long), GFP_KERNEL); 3752 if (!adap->sge.starving_fl) { 3753 ret = -ENOMEM; 3754 goto bye; 3755 } 3756 3757 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3758 sizeof(long), GFP_KERNEL); 3759 if (!adap->sge.txq_maperr) { 3760 ret = -ENOMEM; 3761 goto bye; 3762 } 3763 3764 #ifdef CONFIG_DEBUG_FS 3765 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3766 sizeof(long), GFP_KERNEL); 3767 if (!adap->sge.blocked_fl) { 3768 ret = -ENOMEM; 3769 goto bye; 3770 } 3771 #endif 3772 3773 params[0] = FW_PARAM_PFVF(CLIP_START); 3774 params[1] = FW_PARAM_PFVF(CLIP_END); 3775 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3776 if (ret < 0) 3777 goto bye; 3778 adap->clipt_start = val[0]; 3779 adap->clipt_end = val[1]; 3780 3781 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 3782 * Classes supported by the hardware/firmware so we hard code it here 3783 * for now. 3784 */ 3785 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 3786 3787 /* query params related to active filter region */ 3788 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3789 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3790 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3791 /* If Active filter size is set we enable establishing 3792 * offload connection through firmware work request 3793 */ 3794 if ((val[0] != val[1]) && (ret >= 0)) { 3795 adap->flags |= FW_OFLD_CONN; 3796 adap->tids.aftid_base = val[0]; 3797 adap->tids.aftid_end = val[1]; 3798 } 3799 3800 /* If we're running on newer firmware, let it know that we're 3801 * prepared to deal with encapsulated CPL messages. Older 3802 * firmware won't understand this and we'll just get 3803 * unencapsulated messages ... 3804 */ 3805 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3806 val[0] = 1; 3807 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3808 3809 /* 3810 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3811 * capability. Earlier versions of the firmware didn't have the 3812 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3813 * permission to use ULPTX MEMWRITE DSGL. 3814 */ 3815 if (is_t4(adap->params.chip)) { 3816 adap->params.ulptx_memwrite_dsgl = false; 3817 } else { 3818 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3819 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3820 1, params, val); 3821 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3822 } 3823 3824 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 3825 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 3826 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3827 1, params, val); 3828 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 3829 3830 /* 3831 * Get device capabilities so we can determine what resources we need 3832 * to manage. 3833 */ 3834 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3835 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3836 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3837 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3838 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3839 &caps_cmd); 3840 if (ret < 0) 3841 goto bye; 3842 3843 if (caps_cmd.ofldcaps) { 3844 /* query offload-related parameters */ 3845 params[0] = FW_PARAM_DEV(NTID); 3846 params[1] = FW_PARAM_PFVF(SERVER_START); 3847 params[2] = FW_PARAM_PFVF(SERVER_END); 3848 params[3] = FW_PARAM_PFVF(TDDP_START); 3849 params[4] = FW_PARAM_PFVF(TDDP_END); 3850 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3851 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3852 params, val); 3853 if (ret < 0) 3854 goto bye; 3855 adap->tids.ntids = val[0]; 3856 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3857 adap->tids.stid_base = val[1]; 3858 adap->tids.nstids = val[2] - val[1] + 1; 3859 /* 3860 * Setup server filter region. Divide the available filter 3861 * region into two parts. Regular filters get 1/3rd and server 3862 * filters get 2/3rd part. This is only enabled if workarond 3863 * path is enabled. 3864 * 1. For regular filters. 3865 * 2. Server filter: This are special filters which are used 3866 * to redirect SYN packets to offload queue. 3867 */ 3868 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3869 adap->tids.sftid_base = adap->tids.ftid_base + 3870 DIV_ROUND_UP(adap->tids.nftids, 3); 3871 adap->tids.nsftids = adap->tids.nftids - 3872 DIV_ROUND_UP(adap->tids.nftids, 3); 3873 adap->tids.nftids = adap->tids.sftid_base - 3874 adap->tids.ftid_base; 3875 } 3876 adap->vres.ddp.start = val[3]; 3877 adap->vres.ddp.size = val[4] - val[3] + 1; 3878 adap->params.ofldq_wr_cred = val[5]; 3879 3880 adap->params.offload = 1; 3881 adap->num_ofld_uld += 1; 3882 } 3883 if (caps_cmd.rdmacaps) { 3884 params[0] = FW_PARAM_PFVF(STAG_START); 3885 params[1] = FW_PARAM_PFVF(STAG_END); 3886 params[2] = FW_PARAM_PFVF(RQ_START); 3887 params[3] = FW_PARAM_PFVF(RQ_END); 3888 params[4] = FW_PARAM_PFVF(PBL_START); 3889 params[5] = FW_PARAM_PFVF(PBL_END); 3890 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3891 params, val); 3892 if (ret < 0) 3893 goto bye; 3894 adap->vres.stag.start = val[0]; 3895 adap->vres.stag.size = val[1] - val[0] + 1; 3896 adap->vres.rq.start = val[2]; 3897 adap->vres.rq.size = val[3] - val[2] + 1; 3898 adap->vres.pbl.start = val[4]; 3899 adap->vres.pbl.size = val[5] - val[4] + 1; 3900 3901 params[0] = FW_PARAM_PFVF(SQRQ_START); 3902 params[1] = FW_PARAM_PFVF(SQRQ_END); 3903 params[2] = FW_PARAM_PFVF(CQ_START); 3904 params[3] = FW_PARAM_PFVF(CQ_END); 3905 params[4] = FW_PARAM_PFVF(OCQ_START); 3906 params[5] = FW_PARAM_PFVF(OCQ_END); 3907 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 3908 val); 3909 if (ret < 0) 3910 goto bye; 3911 adap->vres.qp.start = val[0]; 3912 adap->vres.qp.size = val[1] - val[0] + 1; 3913 adap->vres.cq.start = val[2]; 3914 adap->vres.cq.size = val[3] - val[2] + 1; 3915 adap->vres.ocq.start = val[4]; 3916 adap->vres.ocq.size = val[5] - val[4] + 1; 3917 3918 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3919 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3920 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 3921 val); 3922 if (ret < 0) { 3923 adap->params.max_ordird_qp = 8; 3924 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3925 ret = 0; 3926 } else { 3927 adap->params.max_ordird_qp = val[0]; 3928 adap->params.max_ird_adapter = val[1]; 3929 } 3930 dev_info(adap->pdev_dev, 3931 "max_ordird_qp %d max_ird_adapter %d\n", 3932 adap->params.max_ordird_qp, 3933 adap->params.max_ird_adapter); 3934 adap->num_ofld_uld += 2; 3935 } 3936 if (caps_cmd.iscsicaps) { 3937 params[0] = FW_PARAM_PFVF(ISCSI_START); 3938 params[1] = FW_PARAM_PFVF(ISCSI_END); 3939 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 3940 params, val); 3941 if (ret < 0) 3942 goto bye; 3943 adap->vres.iscsi.start = val[0]; 3944 adap->vres.iscsi.size = val[1] - val[0] + 1; 3945 /* LIO target and cxgb4i initiaitor */ 3946 adap->num_ofld_uld += 2; 3947 } 3948 if (caps_cmd.cryptocaps) { 3949 /* Should query params here...TODO */ 3950 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 3951 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 3952 params, val); 3953 if (ret < 0) { 3954 if (ret != -EINVAL) 3955 goto bye; 3956 } else { 3957 adap->vres.ncrypto_fc = val[0]; 3958 } 3959 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE; 3960 adap->num_uld += 1; 3961 } 3962 #undef FW_PARAM_PFVF 3963 #undef FW_PARAM_DEV 3964 3965 /* The MTU/MSS Table is initialized by now, so load their values. If 3966 * we're initializing the adapter, then we'll make any modifications 3967 * we want to the MTU/MSS Table and also initialize the congestion 3968 * parameters. 3969 */ 3970 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3971 if (state != DEV_STATE_INIT) { 3972 int i; 3973 3974 /* The default MTU Table contains values 1492 and 1500. 3975 * However, for TCP, it's better to have two values which are 3976 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 3977 * This allows us to have a TCP Data Payload which is a 3978 * multiple of 8 regardless of what combination of TCP Options 3979 * are in use (always a multiple of 4 bytes) which is 3980 * important for performance reasons. For instance, if no 3981 * options are in use, then we have a 20-byte IP header and a 3982 * 20-byte TCP header. In this case, a 1500-byte MSS would 3983 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 3984 * which is not a multiple of 8. So using an MSS of 1488 in 3985 * this case results in a TCP Data Payload of 1448 bytes which 3986 * is a multiple of 8. On the other hand, if 12-byte TCP Time 3987 * Stamps have been negotiated, then an MTU of 1500 bytes 3988 * results in a TCP Data Payload of 1448 bytes which, as 3989 * above, is a multiple of 8 bytes ... 3990 */ 3991 for (i = 0; i < NMTUS; i++) 3992 if (adap->params.mtus[i] == 1492) { 3993 adap->params.mtus[i] = 1488; 3994 break; 3995 } 3996 3997 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3998 adap->params.b_wnd); 3999 } 4000 t4_init_sge_params(adap); 4001 adap->flags |= FW_OK; 4002 t4_init_tp_params(adap); 4003 return 0; 4004 4005 /* 4006 * Something bad happened. If a command timed out or failed with EIO 4007 * FW does not operate within its spec or something catastrophic 4008 * happened to HW/FW, stop issuing commands. 4009 */ 4010 bye: 4011 kfree(adap->sge.egr_map); 4012 kfree(adap->sge.ingr_map); 4013 kfree(adap->sge.starving_fl); 4014 kfree(adap->sge.txq_maperr); 4015 #ifdef CONFIG_DEBUG_FS 4016 kfree(adap->sge.blocked_fl); 4017 #endif 4018 if (ret != -ETIMEDOUT && ret != -EIO) 4019 t4_fw_bye(adap, adap->mbox); 4020 return ret; 4021 } 4022 4023 /* EEH callbacks */ 4024 4025 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4026 pci_channel_state_t state) 4027 { 4028 int i; 4029 struct adapter *adap = pci_get_drvdata(pdev); 4030 4031 if (!adap) 4032 goto out; 4033 4034 rtnl_lock(); 4035 adap->flags &= ~FW_OK; 4036 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4037 spin_lock(&adap->stats_lock); 4038 for_each_port(adap, i) { 4039 struct net_device *dev = adap->port[i]; 4040 if (dev) { 4041 netif_device_detach(dev); 4042 netif_carrier_off(dev); 4043 } 4044 } 4045 spin_unlock(&adap->stats_lock); 4046 disable_interrupts(adap); 4047 if (adap->flags & FULL_INIT_DONE) 4048 cxgb_down(adap); 4049 rtnl_unlock(); 4050 if ((adap->flags & DEV_ENABLED)) { 4051 pci_disable_device(pdev); 4052 adap->flags &= ~DEV_ENABLED; 4053 } 4054 out: return state == pci_channel_io_perm_failure ? 4055 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4056 } 4057 4058 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4059 { 4060 int i, ret; 4061 struct fw_caps_config_cmd c; 4062 struct adapter *adap = pci_get_drvdata(pdev); 4063 4064 if (!adap) { 4065 pci_restore_state(pdev); 4066 pci_save_state(pdev); 4067 return PCI_ERS_RESULT_RECOVERED; 4068 } 4069 4070 if (!(adap->flags & DEV_ENABLED)) { 4071 if (pci_enable_device(pdev)) { 4072 dev_err(&pdev->dev, "Cannot reenable PCI " 4073 "device after reset\n"); 4074 return PCI_ERS_RESULT_DISCONNECT; 4075 } 4076 adap->flags |= DEV_ENABLED; 4077 } 4078 4079 pci_set_master(pdev); 4080 pci_restore_state(pdev); 4081 pci_save_state(pdev); 4082 pci_cleanup_aer_uncorrect_error_status(pdev); 4083 4084 if (t4_wait_dev_ready(adap->regs) < 0) 4085 return PCI_ERS_RESULT_DISCONNECT; 4086 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4087 return PCI_ERS_RESULT_DISCONNECT; 4088 adap->flags |= FW_OK; 4089 if (adap_init1(adap, &c)) 4090 return PCI_ERS_RESULT_DISCONNECT; 4091 4092 for_each_port(adap, i) { 4093 struct port_info *p = adap2pinfo(adap, i); 4094 4095 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4096 NULL, NULL); 4097 if (ret < 0) 4098 return PCI_ERS_RESULT_DISCONNECT; 4099 p->viid = ret; 4100 p->xact_addr_filt = -1; 4101 } 4102 4103 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4104 adap->params.b_wnd); 4105 setup_memwin(adap); 4106 if (cxgb_up(adap)) 4107 return PCI_ERS_RESULT_DISCONNECT; 4108 return PCI_ERS_RESULT_RECOVERED; 4109 } 4110 4111 static void eeh_resume(struct pci_dev *pdev) 4112 { 4113 int i; 4114 struct adapter *adap = pci_get_drvdata(pdev); 4115 4116 if (!adap) 4117 return; 4118 4119 rtnl_lock(); 4120 for_each_port(adap, i) { 4121 struct net_device *dev = adap->port[i]; 4122 if (dev) { 4123 if (netif_running(dev)) { 4124 link_start(dev); 4125 cxgb_set_rxmode(dev); 4126 } 4127 netif_device_attach(dev); 4128 } 4129 } 4130 rtnl_unlock(); 4131 } 4132 4133 static const struct pci_error_handlers cxgb4_eeh = { 4134 .error_detected = eeh_err_detected, 4135 .slot_reset = eeh_slot_reset, 4136 .resume = eeh_resume, 4137 }; 4138 4139 /* Return true if the Link Configuration supports "High Speeds" (those greater 4140 * than 1Gb/s). 4141 */ 4142 static inline bool is_x_10g_port(const struct link_config *lc) 4143 { 4144 unsigned int speeds, high_speeds; 4145 4146 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported)); 4147 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G); 4148 4149 return high_speeds != 0; 4150 } 4151 4152 /* 4153 * Perform default configuration of DMA queues depending on the number and type 4154 * of ports we found and the number of available CPUs. Most settings can be 4155 * modified by the admin prior to actual use. 4156 */ 4157 static void cfg_queues(struct adapter *adap) 4158 { 4159 struct sge *s = &adap->sge; 4160 int i = 0, n10g = 0, qidx = 0; 4161 #ifndef CONFIG_CHELSIO_T4_DCB 4162 int q10g = 0; 4163 #endif 4164 4165 /* Reduce memory usage in kdump environment, disable all offload. 4166 */ 4167 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4168 adap->params.offload = 0; 4169 adap->params.crypto = 0; 4170 } 4171 4172 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4173 #ifdef CONFIG_CHELSIO_T4_DCB 4174 /* For Data Center Bridging support we need to be able to support up 4175 * to 8 Traffic Priorities; each of which will be assigned to its 4176 * own TX Queue in order to prevent Head-Of-Line Blocking. 4177 */ 4178 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4179 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4180 MAX_ETH_QSETS, adap->params.nports * 8); 4181 BUG_ON(1); 4182 } 4183 4184 for_each_port(adap, i) { 4185 struct port_info *pi = adap2pinfo(adap, i); 4186 4187 pi->first_qset = qidx; 4188 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4189 qidx += pi->nqsets; 4190 } 4191 #else /* !CONFIG_CHELSIO_T4_DCB */ 4192 /* 4193 * We default to 1 queue per non-10G port and up to # of cores queues 4194 * per 10G port. 4195 */ 4196 if (n10g) 4197 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4198 if (q10g > netif_get_num_default_rss_queues()) 4199 q10g = netif_get_num_default_rss_queues(); 4200 4201 if (is_kdump_kernel()) 4202 q10g = 1; 4203 4204 for_each_port(adap, i) { 4205 struct port_info *pi = adap2pinfo(adap, i); 4206 4207 pi->first_qset = qidx; 4208 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4209 qidx += pi->nqsets; 4210 } 4211 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4212 4213 s->ethqsets = qidx; 4214 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4215 4216 if (is_uld(adap)) { 4217 /* 4218 * For offload we use 1 queue/channel if all ports are up to 1G, 4219 * otherwise we divide all available queues amongst the channels 4220 * capped by the number of available cores. 4221 */ 4222 if (n10g) { 4223 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4224 s->ofldqsets = roundup(i, adap->params.nports); 4225 } else { 4226 s->ofldqsets = adap->params.nports; 4227 } 4228 } 4229 4230 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4231 struct sge_eth_rxq *r = &s->ethrxq[i]; 4232 4233 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4234 r->fl.size = 72; 4235 } 4236 4237 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4238 s->ethtxq[i].q.size = 1024; 4239 4240 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4241 s->ctrlq[i].q.size = 512; 4242 4243 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4244 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4245 } 4246 4247 /* 4248 * Reduce the number of Ethernet queues across all ports to at most n. 4249 * n provides at least one queue per port. 4250 */ 4251 static void reduce_ethqs(struct adapter *adap, int n) 4252 { 4253 int i; 4254 struct port_info *pi; 4255 4256 while (n < adap->sge.ethqsets) 4257 for_each_port(adap, i) { 4258 pi = adap2pinfo(adap, i); 4259 if (pi->nqsets > 1) { 4260 pi->nqsets--; 4261 adap->sge.ethqsets--; 4262 if (adap->sge.ethqsets <= n) 4263 break; 4264 } 4265 } 4266 4267 n = 0; 4268 for_each_port(adap, i) { 4269 pi = adap2pinfo(adap, i); 4270 pi->first_qset = n; 4271 n += pi->nqsets; 4272 } 4273 } 4274 4275 static int get_msix_info(struct adapter *adap) 4276 { 4277 struct uld_msix_info *msix_info; 4278 unsigned int max_ingq = 0; 4279 4280 if (is_offload(adap)) 4281 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4282 if (is_pci_uld(adap)) 4283 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4284 4285 if (!max_ingq) 4286 goto out; 4287 4288 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4289 if (!msix_info) 4290 return -ENOMEM; 4291 4292 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4293 sizeof(long), GFP_KERNEL); 4294 if (!adap->msix_bmap_ulds.msix_bmap) { 4295 kfree(msix_info); 4296 return -ENOMEM; 4297 } 4298 spin_lock_init(&adap->msix_bmap_ulds.lock); 4299 adap->msix_info_ulds = msix_info; 4300 out: 4301 return 0; 4302 } 4303 4304 static void free_msix_info(struct adapter *adap) 4305 { 4306 if (!(adap->num_uld && adap->num_ofld_uld)) 4307 return; 4308 4309 kfree(adap->msix_info_ulds); 4310 kfree(adap->msix_bmap_ulds.msix_bmap); 4311 } 4312 4313 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4314 #define EXTRA_VECS 2 4315 4316 static int enable_msix(struct adapter *adap) 4317 { 4318 int ofld_need = 0, uld_need = 0; 4319 int i, j, want, need, allocated; 4320 struct sge *s = &adap->sge; 4321 unsigned int nchan = adap->params.nports; 4322 struct msix_entry *entries; 4323 int max_ingq = MAX_INGQ; 4324 4325 if (is_pci_uld(adap)) 4326 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4327 if (is_offload(adap)) 4328 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4329 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4330 GFP_KERNEL); 4331 if (!entries) 4332 return -ENOMEM; 4333 4334 /* map for msix */ 4335 if (get_msix_info(adap)) { 4336 adap->params.offload = 0; 4337 adap->params.crypto = 0; 4338 } 4339 4340 for (i = 0; i < max_ingq + 1; ++i) 4341 entries[i].entry = i; 4342 4343 want = s->max_ethqsets + EXTRA_VECS; 4344 if (is_offload(adap)) { 4345 want += adap->num_ofld_uld * s->ofldqsets; 4346 ofld_need = adap->num_ofld_uld * nchan; 4347 } 4348 if (is_pci_uld(adap)) { 4349 want += adap->num_uld * s->ofldqsets; 4350 uld_need = adap->num_uld * nchan; 4351 } 4352 #ifdef CONFIG_CHELSIO_T4_DCB 4353 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4354 * each port. 4355 */ 4356 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4357 #else 4358 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4359 #endif 4360 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4361 if (allocated < 0) { 4362 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4363 " not using MSI-X\n"); 4364 kfree(entries); 4365 return allocated; 4366 } 4367 4368 /* Distribute available vectors to the various queue groups. 4369 * Every group gets its minimum requirement and NIC gets top 4370 * priority for leftovers. 4371 */ 4372 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4373 if (i < s->max_ethqsets) { 4374 s->max_ethqsets = i; 4375 if (i < s->ethqsets) 4376 reduce_ethqs(adap, i); 4377 } 4378 if (is_uld(adap)) { 4379 if (allocated < want) 4380 s->nqs_per_uld = nchan; 4381 else 4382 s->nqs_per_uld = s->ofldqsets; 4383 } 4384 4385 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 4386 adap->msix_info[i].vec = entries[i].vector; 4387 if (is_uld(adap)) { 4388 for (j = 0 ; i < allocated; ++i, j++) { 4389 adap->msix_info_ulds[j].vec = entries[i].vector; 4390 adap->msix_info_ulds[j].idx = i; 4391 } 4392 adap->msix_bmap_ulds.mapsize = j; 4393 } 4394 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4395 "nic %d per uld %d\n", 4396 allocated, s->max_ethqsets, s->nqs_per_uld); 4397 4398 kfree(entries); 4399 return 0; 4400 } 4401 4402 #undef EXTRA_VECS 4403 4404 static int init_rss(struct adapter *adap) 4405 { 4406 unsigned int i; 4407 int err; 4408 4409 err = t4_init_rss_mode(adap, adap->mbox); 4410 if (err) 4411 return err; 4412 4413 for_each_port(adap, i) { 4414 struct port_info *pi = adap2pinfo(adap, i); 4415 4416 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4417 if (!pi->rss) 4418 return -ENOMEM; 4419 } 4420 return 0; 4421 } 4422 4423 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4424 enum pci_bus_speed *speed, 4425 enum pcie_link_width *width) 4426 { 4427 u32 lnkcap1, lnkcap2; 4428 int err1, err2; 4429 4430 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4431 4432 *speed = PCI_SPEED_UNKNOWN; 4433 *width = PCIE_LNK_WIDTH_UNKNOWN; 4434 4435 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4436 &lnkcap1); 4437 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4438 &lnkcap2); 4439 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4440 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4441 *speed = PCIE_SPEED_8_0GT; 4442 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4443 *speed = PCIE_SPEED_5_0GT; 4444 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4445 *speed = PCIE_SPEED_2_5GT; 4446 } 4447 if (!err1) { 4448 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4449 if (!lnkcap2) { /* pre-r3.0 */ 4450 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4451 *speed = PCIE_SPEED_5_0GT; 4452 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4453 *speed = PCIE_SPEED_2_5GT; 4454 } 4455 } 4456 4457 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4458 return err1 ? err1 : err2 ? err2 : -EINVAL; 4459 return 0; 4460 } 4461 4462 static void cxgb4_check_pcie_caps(struct adapter *adap) 4463 { 4464 enum pcie_link_width width, width_cap; 4465 enum pci_bus_speed speed, speed_cap; 4466 4467 #define PCIE_SPEED_STR(speed) \ 4468 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4469 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4470 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4471 "Unknown") 4472 4473 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4474 dev_warn(adap->pdev_dev, 4475 "Unable to determine PCIe device BW capabilities\n"); 4476 return; 4477 } 4478 4479 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4480 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4481 dev_warn(adap->pdev_dev, 4482 "Unable to determine PCI Express bandwidth.\n"); 4483 return; 4484 } 4485 4486 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4487 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4488 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4489 width, width_cap); 4490 if (speed < speed_cap || width < width_cap) 4491 dev_info(adap->pdev_dev, 4492 "A slot with more lanes and/or higher speed is " 4493 "suggested for optimal performance.\n"); 4494 } 4495 4496 /* Dump basic information about the adapter */ 4497 static void print_adapter_info(struct adapter *adapter) 4498 { 4499 /* Device information */ 4500 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 4501 adapter->params.vpd.id, 4502 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 4503 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 4504 adapter->params.vpd.sn, adapter->params.vpd.pn); 4505 4506 /* Firmware Version */ 4507 if (!adapter->params.fw_vers) 4508 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 4509 else 4510 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 4511 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 4512 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 4513 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 4514 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 4515 4516 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 4517 * Firmware, so dev_info() is more appropriate here.) 4518 */ 4519 if (!adapter->params.bs_vers) 4520 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 4521 else 4522 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 4523 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 4524 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 4525 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 4526 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 4527 4528 /* TP Microcode Version */ 4529 if (!adapter->params.tp_vers) 4530 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 4531 else 4532 dev_info(adapter->pdev_dev, 4533 "TP Microcode version: %u.%u.%u.%u\n", 4534 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 4535 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 4536 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 4537 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 4538 4539 /* Expansion ROM version */ 4540 if (!adapter->params.er_vers) 4541 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 4542 else 4543 dev_info(adapter->pdev_dev, 4544 "Expansion ROM version: %u.%u.%u.%u\n", 4545 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 4546 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 4547 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 4548 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 4549 4550 /* Software/Hardware configuration */ 4551 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4552 is_offload(adapter) ? "R" : "", 4553 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4554 (adapter->flags & USING_MSI) ? "MSI" : ""), 4555 is_offload(adapter) ? "Offload" : "non-Offload"); 4556 } 4557 4558 static void print_port_info(const struct net_device *dev) 4559 { 4560 char buf[80]; 4561 char *bufp = buf; 4562 const char *spd = ""; 4563 const struct port_info *pi = netdev_priv(dev); 4564 const struct adapter *adap = pi->adapter; 4565 4566 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4567 spd = " 2.5 GT/s"; 4568 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4569 spd = " 5 GT/s"; 4570 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4571 spd = " 8 GT/s"; 4572 4573 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4574 bufp += sprintf(bufp, "100M/"); 4575 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4576 bufp += sprintf(bufp, "1G/"); 4577 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4578 bufp += sprintf(bufp, "10G/"); 4579 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G) 4580 bufp += sprintf(bufp, "25G/"); 4581 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4582 bufp += sprintf(bufp, "40G/"); 4583 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G) 4584 bufp += sprintf(bufp, "100G/"); 4585 if (bufp != buf) 4586 --bufp; 4587 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4588 4589 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4590 dev->name, adap->params.vpd.id, adap->name, buf); 4591 } 4592 4593 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4594 { 4595 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4596 } 4597 4598 /* 4599 * Free the following resources: 4600 * - memory used for tables 4601 * - MSI/MSI-X 4602 * - net devices 4603 * - resources FW is holding for us 4604 */ 4605 static void free_some_resources(struct adapter *adapter) 4606 { 4607 unsigned int i; 4608 4609 kvfree(adapter->l2t); 4610 t4_cleanup_sched(adapter); 4611 kvfree(adapter->tids.tid_tab); 4612 cxgb4_cleanup_tc_u32(adapter); 4613 kfree(adapter->sge.egr_map); 4614 kfree(adapter->sge.ingr_map); 4615 kfree(adapter->sge.starving_fl); 4616 kfree(adapter->sge.txq_maperr); 4617 #ifdef CONFIG_DEBUG_FS 4618 kfree(adapter->sge.blocked_fl); 4619 #endif 4620 disable_msi(adapter); 4621 4622 for_each_port(adapter, i) 4623 if (adapter->port[i]) { 4624 struct port_info *pi = adap2pinfo(adapter, i); 4625 4626 if (pi->viid != 0) 4627 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4628 0, pi->viid); 4629 kfree(adap2pinfo(adapter, i)->rss); 4630 free_netdev(adapter->port[i]); 4631 } 4632 if (adapter->flags & FW_OK) 4633 t4_fw_bye(adapter, adapter->pf); 4634 } 4635 4636 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4637 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4638 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4639 #define SEGMENT_SIZE 128 4640 4641 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4642 { 4643 u16 device_id; 4644 4645 /* Retrieve adapter's device ID */ 4646 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4647 4648 switch (device_id >> 12) { 4649 case CHELSIO_T4: 4650 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4651 case CHELSIO_T5: 4652 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4653 case CHELSIO_T6: 4654 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4655 default: 4656 dev_err(&pdev->dev, "Device %d is not supported\n", 4657 device_id); 4658 } 4659 return -EINVAL; 4660 } 4661 4662 #ifdef CONFIG_PCI_IOV 4663 static void dummy_setup(struct net_device *dev) 4664 { 4665 dev->type = ARPHRD_NONE; 4666 dev->mtu = 0; 4667 dev->hard_header_len = 0; 4668 dev->addr_len = 0; 4669 dev->tx_queue_len = 0; 4670 dev->flags |= IFF_NOARP; 4671 dev->priv_flags |= IFF_NO_QUEUE; 4672 4673 /* Initialize the device structure. */ 4674 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 4675 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 4676 dev->needs_free_netdev = true; 4677 } 4678 4679 static int config_mgmt_dev(struct pci_dev *pdev) 4680 { 4681 struct adapter *adap = pci_get_drvdata(pdev); 4682 struct net_device *netdev; 4683 struct port_info *pi; 4684 char name[IFNAMSIZ]; 4685 int err; 4686 4687 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf); 4688 netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN, 4689 dummy_setup); 4690 if (!netdev) 4691 return -ENOMEM; 4692 4693 pi = netdev_priv(netdev); 4694 pi->adapter = adap; 4695 pi->port_id = adap->pf % adap->params.nports; 4696 SET_NETDEV_DEV(netdev, &pdev->dev); 4697 4698 adap->port[0] = netdev; 4699 4700 err = register_netdev(adap->port[0]); 4701 if (err) { 4702 pr_info("Unable to register VF mgmt netdev %s\n", name); 4703 free_netdev(adap->port[0]); 4704 adap->port[0] = NULL; 4705 return err; 4706 } 4707 return 0; 4708 } 4709 4710 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4711 { 4712 struct adapter *adap = pci_get_drvdata(pdev); 4713 int err = 0; 4714 int current_vfs = pci_num_vf(pdev); 4715 u32 pcie_fw; 4716 4717 pcie_fw = readl(adap->regs + PCIE_FW_A); 4718 /* Check if cxgb4 is the MASTER and fw is initialized */ 4719 if (!(pcie_fw & PCIE_FW_INIT_F) || 4720 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4721 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4722 dev_warn(&pdev->dev, 4723 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4724 return -EOPNOTSUPP; 4725 } 4726 4727 /* If any of the VF's is already assigned to Guest OS, then 4728 * SRIOV for the same cannot be modified 4729 */ 4730 if (current_vfs && pci_vfs_assigned(pdev)) { 4731 dev_err(&pdev->dev, 4732 "Cannot modify SR-IOV while VFs are assigned\n"); 4733 num_vfs = current_vfs; 4734 return num_vfs; 4735 } 4736 4737 /* Disable SRIOV when zero is passed. 4738 * One needs to disable SRIOV before modifying it, else 4739 * stack throws the below warning: 4740 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4741 */ 4742 if (!num_vfs) { 4743 pci_disable_sriov(pdev); 4744 if (adap->port[0]) { 4745 unregister_netdev(adap->port[0]); 4746 adap->port[0] = NULL; 4747 } 4748 /* free VF resources */ 4749 kfree(adap->vfinfo); 4750 adap->vfinfo = NULL; 4751 adap->num_vfs = 0; 4752 return num_vfs; 4753 } 4754 4755 if (num_vfs != current_vfs) { 4756 err = pci_enable_sriov(pdev, num_vfs); 4757 if (err) 4758 return err; 4759 4760 adap->num_vfs = num_vfs; 4761 err = config_mgmt_dev(pdev); 4762 if (err) 4763 return err; 4764 } 4765 4766 adap->vfinfo = kcalloc(adap->num_vfs, 4767 sizeof(struct vf_info), GFP_KERNEL); 4768 if (adap->vfinfo) 4769 fill_vf_station_mac_addr(adap); 4770 return num_vfs; 4771 } 4772 #endif 4773 4774 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4775 { 4776 int func, i, err, s_qpp, qpp, num_seg; 4777 struct port_info *pi; 4778 bool highdma = false; 4779 struct adapter *adapter = NULL; 4780 struct net_device *netdev; 4781 void __iomem *regs; 4782 u32 whoami, pl_rev; 4783 enum chip_type chip; 4784 static int adap_idx = 1; 4785 #ifdef CONFIG_PCI_IOV 4786 u32 v, port_vec; 4787 #endif 4788 4789 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4790 4791 err = pci_request_regions(pdev, KBUILD_MODNAME); 4792 if (err) { 4793 /* Just info, some other driver may have claimed the device. */ 4794 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4795 return err; 4796 } 4797 4798 err = pci_enable_device(pdev); 4799 if (err) { 4800 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4801 goto out_release_regions; 4802 } 4803 4804 regs = pci_ioremap_bar(pdev, 0); 4805 if (!regs) { 4806 dev_err(&pdev->dev, "cannot map device registers\n"); 4807 err = -ENOMEM; 4808 goto out_disable_device; 4809 } 4810 4811 err = t4_wait_dev_ready(regs); 4812 if (err < 0) 4813 goto out_unmap_bar0; 4814 4815 /* We control everything through one PF */ 4816 whoami = readl(regs + PL_WHOAMI_A); 4817 pl_rev = REV_G(readl(regs + PL_REV_A)); 4818 chip = get_chip_type(pdev, pl_rev); 4819 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4820 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4821 if (func != ent->driver_data) { 4822 #ifndef CONFIG_PCI_IOV 4823 iounmap(regs); 4824 #endif 4825 pci_disable_device(pdev); 4826 pci_save_state(pdev); /* to restore SR-IOV later */ 4827 goto sriov; 4828 } 4829 4830 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4831 highdma = true; 4832 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4833 if (err) { 4834 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4835 "coherent allocations\n"); 4836 goto out_unmap_bar0; 4837 } 4838 } else { 4839 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4840 if (err) { 4841 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4842 goto out_unmap_bar0; 4843 } 4844 } 4845 4846 pci_enable_pcie_error_reporting(pdev); 4847 enable_pcie_relaxed_ordering(pdev); 4848 pci_set_master(pdev); 4849 pci_save_state(pdev); 4850 4851 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4852 if (!adapter) { 4853 err = -ENOMEM; 4854 goto out_unmap_bar0; 4855 } 4856 adap_idx++; 4857 4858 adapter->workq = create_singlethread_workqueue("cxgb4"); 4859 if (!adapter->workq) { 4860 err = -ENOMEM; 4861 goto out_free_adapter; 4862 } 4863 4864 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4865 (sizeof(struct mbox_cmd) * 4866 T4_OS_LOG_MBOX_CMDS), 4867 GFP_KERNEL); 4868 if (!adapter->mbox_log) { 4869 err = -ENOMEM; 4870 goto out_free_adapter; 4871 } 4872 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4873 4874 /* PCI device has been enabled */ 4875 adapter->flags |= DEV_ENABLED; 4876 4877 adapter->regs = regs; 4878 adapter->pdev = pdev; 4879 adapter->pdev_dev = &pdev->dev; 4880 adapter->name = pci_name(pdev); 4881 adapter->mbox = func; 4882 adapter->pf = func; 4883 adapter->msg_enable = DFLT_MSG_ENABLE; 4884 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4885 4886 spin_lock_init(&adapter->stats_lock); 4887 spin_lock_init(&adapter->tid_release_lock); 4888 spin_lock_init(&adapter->win0_lock); 4889 spin_lock_init(&adapter->mbox_lock); 4890 4891 INIT_LIST_HEAD(&adapter->mlist.list); 4892 4893 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4894 INIT_WORK(&adapter->db_full_task, process_db_full); 4895 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4896 4897 err = t4_prep_adapter(adapter); 4898 if (err) 4899 goto out_free_adapter; 4900 4901 4902 if (!is_t4(adapter->params.chip)) { 4903 s_qpp = (QUEUESPERPAGEPF0_S + 4904 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4905 adapter->pf); 4906 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4907 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4908 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4909 4910 /* Each segment size is 128B. Write coalescing is enabled only 4911 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4912 * queue is less no of segments that can be accommodated in 4913 * a page size. 4914 */ 4915 if (qpp > num_seg) { 4916 dev_err(&pdev->dev, 4917 "Incorrect number of egress queues per page\n"); 4918 err = -EINVAL; 4919 goto out_free_adapter; 4920 } 4921 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4922 pci_resource_len(pdev, 2)); 4923 if (!adapter->bar2) { 4924 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4925 err = -ENOMEM; 4926 goto out_free_adapter; 4927 } 4928 } 4929 4930 setup_memwin(adapter); 4931 err = adap_init0(adapter); 4932 #ifdef CONFIG_DEBUG_FS 4933 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4934 #endif 4935 setup_memwin_rdma(adapter); 4936 if (err) 4937 goto out_unmap_bar; 4938 4939 /* configure SGE_STAT_CFG_A to read WC stats */ 4940 if (!is_t4(adapter->params.chip)) 4941 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 4942 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 4943 T6_STATMODE_V(0))); 4944 4945 for_each_port(adapter, i) { 4946 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4947 MAX_ETH_QSETS); 4948 if (!netdev) { 4949 err = -ENOMEM; 4950 goto out_free_dev; 4951 } 4952 4953 SET_NETDEV_DEV(netdev, &pdev->dev); 4954 4955 adapter->port[i] = netdev; 4956 pi = netdev_priv(netdev); 4957 pi->adapter = adapter; 4958 pi->xact_addr_filt = -1; 4959 pi->port_id = i; 4960 netdev->irq = pdev->irq; 4961 4962 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4963 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4964 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4965 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 4966 NETIF_F_HW_TC; 4967 if (highdma) 4968 netdev->hw_features |= NETIF_F_HIGHDMA; 4969 netdev->features |= netdev->hw_features; 4970 netdev->vlan_features = netdev->features & VLAN_FEAT; 4971 4972 netdev->priv_flags |= IFF_UNICAST_FLT; 4973 4974 /* MTU range: 81 - 9600 */ 4975 netdev->min_mtu = 81; 4976 netdev->max_mtu = MAX_MTU; 4977 4978 netdev->netdev_ops = &cxgb4_netdev_ops; 4979 #ifdef CONFIG_CHELSIO_T4_DCB 4980 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4981 cxgb4_dcb_state_init(netdev); 4982 #endif 4983 cxgb4_set_ethtool_ops(netdev); 4984 } 4985 4986 pci_set_drvdata(pdev, adapter); 4987 4988 if (adapter->flags & FW_OK) { 4989 err = t4_port_init(adapter, func, func, 0); 4990 if (err) 4991 goto out_free_dev; 4992 } else if (adapter->params.nports == 1) { 4993 /* If we don't have a connection to the firmware -- possibly 4994 * because of an error -- grab the raw VPD parameters so we 4995 * can set the proper MAC Address on the debug network 4996 * interface that we've created. 4997 */ 4998 u8 hw_addr[ETH_ALEN]; 4999 u8 *na = adapter->params.vpd.na; 5000 5001 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5002 if (!err) { 5003 for (i = 0; i < ETH_ALEN; i++) 5004 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5005 hex2val(na[2 * i + 1])); 5006 t4_set_hw_addr(adapter, 0, hw_addr); 5007 } 5008 } 5009 5010 /* Configure queues and allocate tables now, they can be needed as 5011 * soon as the first register_netdev completes. 5012 */ 5013 cfg_queues(adapter); 5014 5015 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5016 if (!adapter->l2t) { 5017 /* We tolerate a lack of L2T, giving up some functionality */ 5018 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5019 adapter->params.offload = 0; 5020 } 5021 5022 #if IS_ENABLED(CONFIG_IPV6) 5023 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 5024 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5025 /* CLIP functionality is not present in hardware, 5026 * hence disable all offload features 5027 */ 5028 dev_warn(&pdev->dev, 5029 "CLIP not enabled in hardware, continuing\n"); 5030 adapter->params.offload = 0; 5031 } else { 5032 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5033 adapter->clipt_end); 5034 if (!adapter->clipt) { 5035 /* We tolerate a lack of clip_table, giving up 5036 * some functionality 5037 */ 5038 dev_warn(&pdev->dev, 5039 "could not allocate Clip table, continuing\n"); 5040 adapter->params.offload = 0; 5041 } 5042 } 5043 #endif 5044 5045 for_each_port(adapter, i) { 5046 pi = adap2pinfo(adapter, i); 5047 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5048 if (!pi->sched_tbl) 5049 dev_warn(&pdev->dev, 5050 "could not activate scheduling on port %d\n", 5051 i); 5052 } 5053 5054 if (tid_init(&adapter->tids) < 0) { 5055 dev_warn(&pdev->dev, "could not allocate TID table, " 5056 "continuing\n"); 5057 adapter->params.offload = 0; 5058 } else { 5059 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5060 if (!adapter->tc_u32) 5061 dev_warn(&pdev->dev, 5062 "could not offload tc u32, continuing\n"); 5063 } 5064 5065 if (is_offload(adapter)) { 5066 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5067 u32 hash_base, hash_reg; 5068 5069 if (chip <= CHELSIO_T5) { 5070 hash_reg = LE_DB_TID_HASHBASE_A; 5071 hash_base = t4_read_reg(adapter, hash_reg); 5072 adapter->tids.hash_base = hash_base / 4; 5073 } else { 5074 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5075 hash_base = t4_read_reg(adapter, hash_reg); 5076 adapter->tids.hash_base = hash_base; 5077 } 5078 } 5079 } 5080 5081 /* See what interrupts we'll be using */ 5082 if (msi > 1 && enable_msix(adapter) == 0) 5083 adapter->flags |= USING_MSIX; 5084 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5085 adapter->flags |= USING_MSI; 5086 if (msi > 1) 5087 free_msix_info(adapter); 5088 } 5089 5090 /* check for PCI Express bandwidth capabiltites */ 5091 cxgb4_check_pcie_caps(adapter); 5092 5093 err = init_rss(adapter); 5094 if (err) 5095 goto out_free_dev; 5096 5097 /* 5098 * The card is now ready to go. If any errors occur during device 5099 * registration we do not fail the whole card but rather proceed only 5100 * with the ports we manage to register successfully. However we must 5101 * register at least one net device. 5102 */ 5103 for_each_port(adapter, i) { 5104 pi = adap2pinfo(adapter, i); 5105 adapter->port[i]->dev_port = pi->lport; 5106 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5107 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5108 5109 netif_carrier_off(adapter->port[i]); 5110 5111 err = register_netdev(adapter->port[i]); 5112 if (err) 5113 break; 5114 adapter->chan_map[pi->tx_chan] = i; 5115 print_port_info(adapter->port[i]); 5116 } 5117 if (i == 0) { 5118 dev_err(&pdev->dev, "could not register any net devices\n"); 5119 goto out_free_dev; 5120 } 5121 if (err) { 5122 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5123 err = 0; 5124 } 5125 5126 if (cxgb4_debugfs_root) { 5127 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5128 cxgb4_debugfs_root); 5129 setup_debugfs(adapter); 5130 } 5131 5132 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5133 pdev->needs_freset = 1; 5134 5135 if (is_uld(adapter)) { 5136 mutex_lock(&uld_mutex); 5137 list_add_tail(&adapter->list_node, &adapter_list); 5138 mutex_unlock(&uld_mutex); 5139 } 5140 5141 print_adapter_info(adapter); 5142 setup_fw_sge_queues(adapter); 5143 return 0; 5144 5145 sriov: 5146 #ifdef CONFIG_PCI_IOV 5147 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5148 if (!adapter) { 5149 err = -ENOMEM; 5150 goto free_pci_region; 5151 } 5152 5153 adapter->pdev = pdev; 5154 adapter->pdev_dev = &pdev->dev; 5155 adapter->name = pci_name(pdev); 5156 adapter->mbox = func; 5157 adapter->pf = func; 5158 adapter->regs = regs; 5159 adapter->adap_idx = adap_idx; 5160 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5161 (sizeof(struct mbox_cmd) * 5162 T4_OS_LOG_MBOX_CMDS), 5163 GFP_KERNEL); 5164 if (!adapter->mbox_log) { 5165 err = -ENOMEM; 5166 goto free_adapter; 5167 } 5168 spin_lock_init(&adapter->mbox_lock); 5169 INIT_LIST_HEAD(&adapter->mlist.list); 5170 5171 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5172 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 5173 err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, 5174 &v, &port_vec); 5175 if (err < 0) { 5176 dev_err(adapter->pdev_dev, "Could not fetch port params\n"); 5177 goto free_mbox_log; 5178 } 5179 5180 adapter->params.nports = hweight32(port_vec); 5181 pci_set_drvdata(pdev, adapter); 5182 return 0; 5183 5184 free_mbox_log: 5185 kfree(adapter->mbox_log); 5186 free_adapter: 5187 kfree(adapter); 5188 free_pci_region: 5189 iounmap(regs); 5190 pci_disable_sriov(pdev); 5191 pci_release_regions(pdev); 5192 return err; 5193 #else 5194 return 0; 5195 #endif 5196 5197 out_free_dev: 5198 free_some_resources(adapter); 5199 if (adapter->flags & USING_MSIX) 5200 free_msix_info(adapter); 5201 if (adapter->num_uld || adapter->num_ofld_uld) 5202 t4_uld_mem_free(adapter); 5203 out_unmap_bar: 5204 if (!is_t4(adapter->params.chip)) 5205 iounmap(adapter->bar2); 5206 out_free_adapter: 5207 if (adapter->workq) 5208 destroy_workqueue(adapter->workq); 5209 5210 kfree(adapter->mbox_log); 5211 kfree(adapter); 5212 out_unmap_bar0: 5213 iounmap(regs); 5214 out_disable_device: 5215 pci_disable_pcie_error_reporting(pdev); 5216 pci_disable_device(pdev); 5217 out_release_regions: 5218 pci_release_regions(pdev); 5219 return err; 5220 } 5221 5222 static void remove_one(struct pci_dev *pdev) 5223 { 5224 struct adapter *adapter = pci_get_drvdata(pdev); 5225 5226 if (!adapter) { 5227 pci_release_regions(pdev); 5228 return; 5229 } 5230 5231 if (adapter->pf == 4) { 5232 int i; 5233 5234 /* Tear down per-adapter Work Queue first since it can contain 5235 * references to our adapter data structure. 5236 */ 5237 destroy_workqueue(adapter->workq); 5238 5239 if (is_uld(adapter)) 5240 detach_ulds(adapter); 5241 5242 disable_interrupts(adapter); 5243 5244 for_each_port(adapter, i) 5245 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5246 unregister_netdev(adapter->port[i]); 5247 5248 debugfs_remove_recursive(adapter->debugfs_root); 5249 5250 /* If we allocated filters, free up state associated with any 5251 * valid filters ... 5252 */ 5253 clear_all_filters(adapter); 5254 5255 if (adapter->flags & FULL_INIT_DONE) 5256 cxgb_down(adapter); 5257 5258 if (adapter->flags & USING_MSIX) 5259 free_msix_info(adapter); 5260 if (adapter->num_uld || adapter->num_ofld_uld) 5261 t4_uld_mem_free(adapter); 5262 free_some_resources(adapter); 5263 #if IS_ENABLED(CONFIG_IPV6) 5264 t4_cleanup_clip_tbl(adapter); 5265 #endif 5266 iounmap(adapter->regs); 5267 if (!is_t4(adapter->params.chip)) 5268 iounmap(adapter->bar2); 5269 pci_disable_pcie_error_reporting(pdev); 5270 if ((adapter->flags & DEV_ENABLED)) { 5271 pci_disable_device(pdev); 5272 adapter->flags &= ~DEV_ENABLED; 5273 } 5274 pci_release_regions(pdev); 5275 kfree(adapter->mbox_log); 5276 synchronize_rcu(); 5277 kfree(adapter); 5278 } 5279 #ifdef CONFIG_PCI_IOV 5280 else { 5281 if (adapter->port[0]) 5282 unregister_netdev(adapter->port[0]); 5283 iounmap(adapter->regs); 5284 kfree(adapter->vfinfo); 5285 kfree(adapter->mbox_log); 5286 kfree(adapter); 5287 pci_disable_sriov(pdev); 5288 pci_release_regions(pdev); 5289 } 5290 #endif 5291 } 5292 5293 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5294 * delivery. This is essentially a stripped down version of the PCI remove() 5295 * function where we do the minimal amount of work necessary to shutdown any 5296 * further activity. 5297 */ 5298 static void shutdown_one(struct pci_dev *pdev) 5299 { 5300 struct adapter *adapter = pci_get_drvdata(pdev); 5301 5302 /* As with remove_one() above (see extended comment), we only want do 5303 * do cleanup on PCI Devices which went all the way through init_one() 5304 * ... 5305 */ 5306 if (!adapter) { 5307 pci_release_regions(pdev); 5308 return; 5309 } 5310 5311 if (adapter->pf == 4) { 5312 int i; 5313 5314 for_each_port(adapter, i) 5315 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5316 cxgb_close(adapter->port[i]); 5317 5318 t4_uld_clean_up(adapter); 5319 disable_interrupts(adapter); 5320 disable_msi(adapter); 5321 5322 t4_sge_stop(adapter); 5323 if (adapter->flags & FW_OK) 5324 t4_fw_bye(adapter, adapter->mbox); 5325 } 5326 #ifdef CONFIG_PCI_IOV 5327 else { 5328 if (adapter->port[0]) 5329 unregister_netdev(adapter->port[0]); 5330 iounmap(adapter->regs); 5331 kfree(adapter->vfinfo); 5332 kfree(adapter->mbox_log); 5333 kfree(adapter); 5334 pci_disable_sriov(pdev); 5335 pci_release_regions(pdev); 5336 } 5337 #endif 5338 } 5339 5340 static struct pci_driver cxgb4_driver = { 5341 .name = KBUILD_MODNAME, 5342 .id_table = cxgb4_pci_tbl, 5343 .probe = init_one, 5344 .remove = remove_one, 5345 .shutdown = shutdown_one, 5346 #ifdef CONFIG_PCI_IOV 5347 .sriov_configure = cxgb4_iov_configure, 5348 #endif 5349 .err_handler = &cxgb4_eeh, 5350 }; 5351 5352 static int __init cxgb4_init_module(void) 5353 { 5354 int ret; 5355 5356 /* Debugfs support is optional, just warn if this fails */ 5357 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5358 if (!cxgb4_debugfs_root) 5359 pr_warn("could not create debugfs entry, continuing\n"); 5360 5361 ret = pci_register_driver(&cxgb4_driver); 5362 if (ret < 0) 5363 debugfs_remove(cxgb4_debugfs_root); 5364 5365 #if IS_ENABLED(CONFIG_IPV6) 5366 if (!inet6addr_registered) { 5367 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5368 inet6addr_registered = true; 5369 } 5370 #endif 5371 5372 return ret; 5373 } 5374 5375 static void __exit cxgb4_cleanup_module(void) 5376 { 5377 #if IS_ENABLED(CONFIG_IPV6) 5378 if (inet6addr_registered) { 5379 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5380 inet6addr_registered = false; 5381 } 5382 #endif 5383 pci_unregister_driver(&cxgb4_driver); 5384 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5385 } 5386 5387 module_init(cxgb4_init_module); 5388 module_exit(cxgb4_cleanup_module); 5389