1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 #include <net/udp_tunnel.h> 69 70 #include "cxgb4.h" 71 #include "cxgb4_filter.h" 72 #include "t4_regs.h" 73 #include "t4_values.h" 74 #include "t4_msg.h" 75 #include "t4fw_api.h" 76 #include "t4fw_version.h" 77 #include "cxgb4_dcb.h" 78 #include "srq.h" 79 #include "cxgb4_debugfs.h" 80 #include "clip_tbl.h" 81 #include "l2t.h" 82 #include "smt.h" 83 #include "sched.h" 84 #include "cxgb4_tc_u32.h" 85 #include "cxgb4_tc_flower.h" 86 #include "cxgb4_ptp.h" 87 #include "cxgb4_cudbg.h" 88 89 char cxgb4_driver_name[] = KBUILD_MODNAME; 90 91 #ifdef DRV_VERSION 92 #undef DRV_VERSION 93 #endif 94 #define DRV_VERSION "2.0.0-ko" 95 const char cxgb4_driver_version[] = DRV_VERSION; 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_VERSION(DRV_VERSION); 139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 140 MODULE_FIRMWARE(FW4_FNAME); 141 MODULE_FIRMWARE(FW5_FNAME); 142 MODULE_FIRMWARE(FW6_FNAME); 143 144 /* 145 * The driver uses the best interrupt scheme available on a platform in the 146 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 147 * of these schemes the driver may consider as follows: 148 * 149 * msi = 2: choose from among all three options 150 * msi = 1: only consider MSI and INTx interrupts 151 * msi = 0: force INTx interrupts 152 */ 153 static int msi = 2; 154 155 module_param(msi, int, 0644); 156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 157 158 /* 159 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 160 * offset by 2 bytes in order to have the IP headers line up on 4-byte 161 * boundaries. This is a requirement for many architectures which will throw 162 * a machine check fault if an attempt is made to access one of the 4-byte IP 163 * header fields on a non-4-byte boundary. And it's a major performance issue 164 * even on some architectures which allow it like some implementations of the 165 * x86 ISA. However, some architectures don't mind this and for some very 166 * edge-case performance sensitive applications (like forwarding large volumes 167 * of small packets), setting this DMA offset to 0 will decrease the number of 168 * PCI-E Bus transfers enough to measurably affect performance. 169 */ 170 static int rx_dma_offset = 2; 171 172 /* TX Queue select used to determine what algorithm to use for selecting TX 173 * queue. Select between the kernel provided function (select_queue=0) or user 174 * cxgb_select_queue function (select_queue=1) 175 * 176 * Default: select_queue=0 177 */ 178 static int select_queue; 179 module_param(select_queue, int, 0644); 180 MODULE_PARM_DESC(select_queue, 181 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 182 183 static struct dentry *cxgb4_debugfs_root; 184 185 LIST_HEAD(adapter_list); 186 DEFINE_MUTEX(uld_mutex); 187 188 static void link_report(struct net_device *dev) 189 { 190 if (!netif_carrier_ok(dev)) 191 netdev_info(dev, "link down\n"); 192 else { 193 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 194 195 const char *s; 196 const struct port_info *p = netdev_priv(dev); 197 198 switch (p->link_cfg.speed) { 199 case 100: 200 s = "100Mbps"; 201 break; 202 case 1000: 203 s = "1Gbps"; 204 break; 205 case 10000: 206 s = "10Gbps"; 207 break; 208 case 25000: 209 s = "25Gbps"; 210 break; 211 case 40000: 212 s = "40Gbps"; 213 break; 214 case 50000: 215 s = "50Gbps"; 216 break; 217 case 100000: 218 s = "100Gbps"; 219 break; 220 default: 221 pr_info("%s: unsupported speed: %d\n", 222 dev->name, p->link_cfg.speed); 223 return; 224 } 225 226 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 227 fc[p->link_cfg.fc]); 228 } 229 } 230 231 #ifdef CONFIG_CHELSIO_T4_DCB 232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 234 { 235 struct port_info *pi = netdev_priv(dev); 236 struct adapter *adap = pi->adapter; 237 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 238 int i; 239 240 /* We use a simple mapping of Port TX Queue Index to DCB 241 * Priority when we're enabling DCB. 242 */ 243 for (i = 0; i < pi->nqsets; i++, txq++) { 244 u32 name, value; 245 int err; 246 247 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 248 FW_PARAMS_PARAM_X_V( 249 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 250 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 251 value = enable ? i : 0xffffffff; 252 253 /* Since we can be called while atomic (from "interrupt 254 * level") we need to issue the Set Parameters Commannd 255 * without sleeping (timeout < 0). 256 */ 257 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 258 &name, &value, 259 -FW_CMD_MAX_TIMEOUT); 260 261 if (err) 262 dev_err(adap->pdev_dev, 263 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 264 enable ? "set" : "unset", pi->port_id, i, -err); 265 else 266 txq->dcb_prio = enable ? value : 0; 267 } 268 } 269 270 static int cxgb4_dcb_enabled(const struct net_device *dev) 271 { 272 struct port_info *pi = netdev_priv(dev); 273 274 if (!pi->dcb.enabled) 275 return 0; 276 277 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 278 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 279 } 280 #endif /* CONFIG_CHELSIO_T4_DCB */ 281 282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 283 { 284 struct net_device *dev = adapter->port[port_id]; 285 286 /* Skip changes from disabled ports. */ 287 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 288 if (link_stat) 289 netif_carrier_on(dev); 290 else { 291 #ifdef CONFIG_CHELSIO_T4_DCB 292 if (cxgb4_dcb_enabled(dev)) { 293 cxgb4_dcb_reset(dev); 294 dcb_tx_queue_prio_enable(dev, false); 295 } 296 #endif /* CONFIG_CHELSIO_T4_DCB */ 297 netif_carrier_off(dev); 298 } 299 300 link_report(dev); 301 } 302 } 303 304 void t4_os_portmod_changed(struct adapter *adap, int port_id) 305 { 306 static const char *mod_str[] = { 307 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 308 }; 309 310 struct net_device *dev = adap->port[port_id]; 311 struct port_info *pi = netdev_priv(dev); 312 313 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 314 netdev_info(dev, "port module unplugged\n"); 315 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 316 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 317 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 318 netdev_info(dev, "%s: unsupported port module inserted\n", 319 dev->name); 320 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 321 netdev_info(dev, "%s: unknown port module inserted\n", 322 dev->name); 323 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 324 netdev_info(dev, "%s: transceiver module error\n", dev->name); 325 else 326 netdev_info(dev, "%s: unknown module type %d inserted\n", 327 dev->name, pi->mod_type); 328 329 /* If the interface is running, then we'll need any "sticky" Link 330 * Parameters redone with a new Transceiver Module. 331 */ 332 pi->link_cfg.redo_l1cfg = netif_running(dev); 333 } 334 335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 336 module_param(dbfifo_int_thresh, int, 0644); 337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 338 339 /* 340 * usecs to sleep while draining the dbfifo 341 */ 342 static int dbfifo_drain_delay = 1000; 343 module_param(dbfifo_drain_delay, int, 0644); 344 MODULE_PARM_DESC(dbfifo_drain_delay, 345 "usecs to sleep while draining the dbfifo"); 346 347 static inline int cxgb4_set_addr_hash(struct port_info *pi) 348 { 349 struct adapter *adap = pi->adapter; 350 u64 vec = 0; 351 bool ucast = false; 352 struct hash_mac_addr *entry; 353 354 /* Calculate the hash vector for the updated list and program it */ 355 list_for_each_entry(entry, &adap->mac_hlist, list) { 356 ucast |= is_unicast_ether_addr(entry->addr); 357 vec |= (1ULL << hash_mac_addr(entry->addr)); 358 } 359 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 360 vec, false); 361 } 362 363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 364 { 365 struct port_info *pi = netdev_priv(netdev); 366 struct adapter *adap = pi->adapter; 367 int ret; 368 u64 mhash = 0; 369 u64 uhash = 0; 370 bool free = false; 371 bool ucast = is_unicast_ether_addr(mac_addr); 372 const u8 *maclist[1] = {mac_addr}; 373 struct hash_mac_addr *new_entry; 374 375 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 376 NULL, ucast ? &uhash : &mhash, false); 377 if (ret < 0) 378 goto out; 379 /* if hash != 0, then add the addr to hash addr list 380 * so on the end we will calculate the hash for the 381 * list and program it 382 */ 383 if (uhash || mhash) { 384 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 385 if (!new_entry) 386 return -ENOMEM; 387 ether_addr_copy(new_entry->addr, mac_addr); 388 list_add_tail(&new_entry->list, &adap->mac_hlist); 389 ret = cxgb4_set_addr_hash(pi); 390 } 391 out: 392 return ret < 0 ? ret : 0; 393 } 394 395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 396 { 397 struct port_info *pi = netdev_priv(netdev); 398 struct adapter *adap = pi->adapter; 399 int ret; 400 const u8 *maclist[1] = {mac_addr}; 401 struct hash_mac_addr *entry, *tmp; 402 403 /* If the MAC address to be removed is in the hash addr 404 * list, delete it from the list and update hash vector 405 */ 406 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 407 if (ether_addr_equal(entry->addr, mac_addr)) { 408 list_del(&entry->list); 409 kfree(entry); 410 return cxgb4_set_addr_hash(pi); 411 } 412 } 413 414 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 415 return ret < 0 ? -EINVAL : 0; 416 } 417 418 /* 419 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 420 * If @mtu is -1 it is left unchanged. 421 */ 422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 423 { 424 struct port_info *pi = netdev_priv(dev); 425 struct adapter *adapter = pi->adapter; 426 427 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 429 430 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 431 (dev->flags & IFF_PROMISC) ? 1 : 0, 432 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 433 sleep_ok); 434 } 435 436 /** 437 * link_start - enable a port 438 * @dev: the port to enable 439 * 440 * Performs the MAC and PHY actions needed to enable a port. 441 */ 442 static int link_start(struct net_device *dev) 443 { 444 int ret; 445 struct port_info *pi = netdev_priv(dev); 446 unsigned int mb = pi->adapter->pf; 447 448 /* 449 * We do not set address filters and promiscuity here, the stack does 450 * that step explicitly. 451 */ 452 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 453 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 454 if (ret == 0) { 455 ret = t4_change_mac(pi->adapter, mb, pi->viid, 456 pi->xact_addr_filt, dev->dev_addr, true, 457 true); 458 if (ret >= 0) { 459 pi->xact_addr_filt = ret; 460 ret = 0; 461 } 462 } 463 if (ret == 0) 464 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 465 &pi->link_cfg); 466 if (ret == 0) { 467 local_bh_disable(); 468 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 469 true, CXGB4_DCB_ENABLED); 470 local_bh_enable(); 471 } 472 473 return ret; 474 } 475 476 #ifdef CONFIG_CHELSIO_T4_DCB 477 /* Handle a Data Center Bridging update message from the firmware. */ 478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 479 { 480 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 481 struct net_device *dev = adap->port[adap->chan_map[port]]; 482 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 483 int new_dcb_enabled; 484 485 cxgb4_dcb_handle_fw_update(adap, pcmd); 486 new_dcb_enabled = cxgb4_dcb_enabled(dev); 487 488 /* If the DCB has become enabled or disabled on the port then we're 489 * going to need to set up/tear down DCB Priority parameters for the 490 * TX Queues associated with the port. 491 */ 492 if (new_dcb_enabled != old_dcb_enabled) 493 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 494 } 495 #endif /* CONFIG_CHELSIO_T4_DCB */ 496 497 /* Response queue handler for the FW event queue. 498 */ 499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 500 const struct pkt_gl *gl) 501 { 502 u8 opcode = ((const struct rss_header *)rsp)->opcode; 503 504 rsp++; /* skip RSS header */ 505 506 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 507 */ 508 if (unlikely(opcode == CPL_FW4_MSG && 509 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 510 rsp++; 511 opcode = ((const struct rss_header *)rsp)->opcode; 512 rsp++; 513 if (opcode != CPL_SGE_EGR_UPDATE) { 514 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 515 , opcode); 516 goto out; 517 } 518 } 519 520 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 521 const struct cpl_sge_egr_update *p = (void *)rsp; 522 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 523 struct sge_txq *txq; 524 525 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 526 txq->restarts++; 527 if (txq->q_type == CXGB4_TXQ_ETH) { 528 struct sge_eth_txq *eq; 529 530 eq = container_of(txq, struct sge_eth_txq, q); 531 netif_tx_wake_queue(eq->txq); 532 } else { 533 struct sge_uld_txq *oq; 534 535 oq = container_of(txq, struct sge_uld_txq, q); 536 tasklet_schedule(&oq->qresume_tsk); 537 } 538 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 539 const struct cpl_fw6_msg *p = (void *)rsp; 540 541 #ifdef CONFIG_CHELSIO_T4_DCB 542 const struct fw_port_cmd *pcmd = (const void *)p->data; 543 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 544 unsigned int action = 545 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 546 547 if (cmd == FW_PORT_CMD && 548 (action == FW_PORT_ACTION_GET_PORT_INFO || 549 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 550 int port = FW_PORT_CMD_PORTID_G( 551 be32_to_cpu(pcmd->op_to_portid)); 552 struct net_device *dev; 553 int dcbxdis, state_input; 554 555 dev = q->adap->port[q->adap->chan_map[port]]; 556 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 557 ? !!(pcmd->u.info.dcbxdis_pkd & 558 FW_PORT_CMD_DCBXDIS_F) 559 : !!(pcmd->u.info32.lstatus32_to_cbllen32 & 560 FW_PORT_CMD_DCBXDIS32_F)); 561 state_input = (dcbxdis 562 ? CXGB4_DCB_INPUT_FW_DISABLED 563 : CXGB4_DCB_INPUT_FW_ENABLED); 564 565 cxgb4_dcb_state_fsm(dev, state_input); 566 } 567 568 if (cmd == FW_PORT_CMD && 569 action == FW_PORT_ACTION_L2_DCB_CFG) 570 dcb_rpl(q->adap, pcmd); 571 else 572 #endif 573 if (p->type == 0) 574 t4_handle_fw_rpl(q->adap, p->data); 575 } else if (opcode == CPL_L2T_WRITE_RPL) { 576 const struct cpl_l2t_write_rpl *p = (void *)rsp; 577 578 do_l2t_write_rpl(q->adap, p); 579 } else if (opcode == CPL_SMT_WRITE_RPL) { 580 const struct cpl_smt_write_rpl *p = (void *)rsp; 581 582 do_smt_write_rpl(q->adap, p); 583 } else if (opcode == CPL_SET_TCB_RPL) { 584 const struct cpl_set_tcb_rpl *p = (void *)rsp; 585 586 filter_rpl(q->adap, p); 587 } else if (opcode == CPL_ACT_OPEN_RPL) { 588 const struct cpl_act_open_rpl *p = (void *)rsp; 589 590 hash_filter_rpl(q->adap, p); 591 } else if (opcode == CPL_ABORT_RPL_RSS) { 592 const struct cpl_abort_rpl_rss *p = (void *)rsp; 593 594 hash_del_filter_rpl(q->adap, p); 595 } else if (opcode == CPL_SRQ_TABLE_RPL) { 596 const struct cpl_srq_table_rpl *p = (void *)rsp; 597 598 do_srq_table_rpl(q->adap, p); 599 } else 600 dev_err(q->adap->pdev_dev, 601 "unexpected CPL %#x on FW event queue\n", opcode); 602 out: 603 return 0; 604 } 605 606 static void disable_msi(struct adapter *adapter) 607 { 608 if (adapter->flags & USING_MSIX) { 609 pci_disable_msix(adapter->pdev); 610 adapter->flags &= ~USING_MSIX; 611 } else if (adapter->flags & USING_MSI) { 612 pci_disable_msi(adapter->pdev); 613 adapter->flags &= ~USING_MSI; 614 } 615 } 616 617 /* 618 * Interrupt handler for non-data events used with MSI-X. 619 */ 620 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 621 { 622 struct adapter *adap = cookie; 623 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 624 625 if (v & PFSW_F) { 626 adap->swintr = 1; 627 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 628 } 629 if (adap->flags & MASTER_PF) 630 t4_slow_intr_handler(adap); 631 return IRQ_HANDLED; 632 } 633 634 /* 635 * Name the MSI-X interrupts. 636 */ 637 static void name_msix_vecs(struct adapter *adap) 638 { 639 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 640 641 /* non-data interrupts */ 642 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 643 644 /* FW events */ 645 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 646 adap->port[0]->name); 647 648 /* Ethernet queues */ 649 for_each_port(adap, j) { 650 struct net_device *d = adap->port[j]; 651 const struct port_info *pi = netdev_priv(d); 652 653 for (i = 0; i < pi->nqsets; i++, msi_idx++) 654 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 655 d->name, i); 656 } 657 } 658 659 static int request_msix_queue_irqs(struct adapter *adap) 660 { 661 struct sge *s = &adap->sge; 662 int err, ethqidx; 663 int msi_index = 2; 664 665 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 666 adap->msix_info[1].desc, &s->fw_evtq); 667 if (err) 668 return err; 669 670 for_each_ethrxq(s, ethqidx) { 671 err = request_irq(adap->msix_info[msi_index].vec, 672 t4_sge_intr_msix, 0, 673 adap->msix_info[msi_index].desc, 674 &s->ethrxq[ethqidx].rspq); 675 if (err) 676 goto unwind; 677 msi_index++; 678 } 679 return 0; 680 681 unwind: 682 while (--ethqidx >= 0) 683 free_irq(adap->msix_info[--msi_index].vec, 684 &s->ethrxq[ethqidx].rspq); 685 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 686 return err; 687 } 688 689 static void free_msix_queue_irqs(struct adapter *adap) 690 { 691 int i, msi_index = 2; 692 struct sge *s = &adap->sge; 693 694 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 695 for_each_ethrxq(s, i) 696 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 697 } 698 699 /** 700 * cxgb4_write_rss - write the RSS table for a given port 701 * @pi: the port 702 * @queues: array of queue indices for RSS 703 * 704 * Sets up the portion of the HW RSS table for the port's VI to distribute 705 * packets to the Rx queues in @queues. 706 * Should never be called before setting up sge eth rx queues 707 */ 708 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 709 { 710 u16 *rss; 711 int i, err; 712 struct adapter *adapter = pi->adapter; 713 const struct sge_eth_rxq *rxq; 714 715 rxq = &adapter->sge.ethrxq[pi->first_qset]; 716 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 717 if (!rss) 718 return -ENOMEM; 719 720 /* map the queue indices to queue ids */ 721 for (i = 0; i < pi->rss_size; i++, queues++) 722 rss[i] = rxq[*queues].rspq.abs_id; 723 724 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 725 pi->rss_size, rss, pi->rss_size); 726 /* If Tunnel All Lookup isn't specified in the global RSS 727 * Configuration, then we need to specify a default Ingress 728 * Queue for any ingress packets which aren't hashed. We'll 729 * use our first ingress queue ... 730 */ 731 if (!err) 732 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 733 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 734 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 735 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 736 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 737 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 738 rss[0]); 739 kfree(rss); 740 return err; 741 } 742 743 /** 744 * setup_rss - configure RSS 745 * @adap: the adapter 746 * 747 * Sets up RSS for each port. 748 */ 749 static int setup_rss(struct adapter *adap) 750 { 751 int i, j, err; 752 753 for_each_port(adap, i) { 754 const struct port_info *pi = adap2pinfo(adap, i); 755 756 /* Fill default values with equal distribution */ 757 for (j = 0; j < pi->rss_size; j++) 758 pi->rss[j] = j % pi->nqsets; 759 760 err = cxgb4_write_rss(pi, pi->rss); 761 if (err) 762 return err; 763 } 764 return 0; 765 } 766 767 /* 768 * Return the channel of the ingress queue with the given qid. 769 */ 770 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 771 { 772 qid -= p->ingr_start; 773 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 774 } 775 776 /* 777 * Wait until all NAPI handlers are descheduled. 778 */ 779 static void quiesce_rx(struct adapter *adap) 780 { 781 int i; 782 783 for (i = 0; i < adap->sge.ingr_sz; i++) { 784 struct sge_rspq *q = adap->sge.ingr_map[i]; 785 786 if (q && q->handler) 787 napi_disable(&q->napi); 788 } 789 } 790 791 /* Disable interrupt and napi handler */ 792 static void disable_interrupts(struct adapter *adap) 793 { 794 if (adap->flags & FULL_INIT_DONE) { 795 t4_intr_disable(adap); 796 if (adap->flags & USING_MSIX) { 797 free_msix_queue_irqs(adap); 798 free_irq(adap->msix_info[0].vec, adap); 799 } else { 800 free_irq(adap->pdev->irq, adap); 801 } 802 quiesce_rx(adap); 803 } 804 } 805 806 /* 807 * Enable NAPI scheduling and interrupt generation for all Rx queues. 808 */ 809 static void enable_rx(struct adapter *adap) 810 { 811 int i; 812 813 for (i = 0; i < adap->sge.ingr_sz; i++) { 814 struct sge_rspq *q = adap->sge.ingr_map[i]; 815 816 if (!q) 817 continue; 818 if (q->handler) 819 napi_enable(&q->napi); 820 821 /* 0-increment GTS to start the timer and enable interrupts */ 822 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 823 SEINTARM_V(q->intr_params) | 824 INGRESSQID_V(q->cntxt_id)); 825 } 826 } 827 828 829 static int setup_fw_sge_queues(struct adapter *adap) 830 { 831 struct sge *s = &adap->sge; 832 int err = 0; 833 834 bitmap_zero(s->starving_fl, s->egr_sz); 835 bitmap_zero(s->txq_maperr, s->egr_sz); 836 837 if (adap->flags & USING_MSIX) 838 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 839 else { 840 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 841 NULL, NULL, NULL, -1); 842 if (err) 843 return err; 844 adap->msi_idx = -((int)s->intrq.abs_id + 1); 845 } 846 847 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 848 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 849 return err; 850 } 851 852 /** 853 * setup_sge_queues - configure SGE Tx/Rx/response queues 854 * @adap: the adapter 855 * 856 * Determines how many sets of SGE queues to use and initializes them. 857 * We support multiple queue sets per port if we have MSI-X, otherwise 858 * just one queue set per port. 859 */ 860 static int setup_sge_queues(struct adapter *adap) 861 { 862 int err, i, j; 863 struct sge *s = &adap->sge; 864 struct sge_uld_rxq_info *rxq_info = NULL; 865 unsigned int cmplqid = 0; 866 867 if (is_uld(adap)) 868 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 869 870 for_each_port(adap, i) { 871 struct net_device *dev = adap->port[i]; 872 struct port_info *pi = netdev_priv(dev); 873 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 874 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 875 876 for (j = 0; j < pi->nqsets; j++, q++) { 877 if (adap->msi_idx > 0) 878 adap->msi_idx++; 879 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 880 adap->msi_idx, &q->fl, 881 t4_ethrx_handler, 882 NULL, 883 t4_get_tp_ch_map(adap, 884 pi->tx_chan)); 885 if (err) 886 goto freeout; 887 q->rspq.idx = j; 888 memset(&q->stats, 0, sizeof(q->stats)); 889 } 890 for (j = 0; j < pi->nqsets; j++, t++) { 891 err = t4_sge_alloc_eth_txq(adap, t, dev, 892 netdev_get_tx_queue(dev, j), 893 s->fw_evtq.cntxt_id); 894 if (err) 895 goto freeout; 896 } 897 } 898 899 for_each_port(adap, i) { 900 /* Note that cmplqid below is 0 if we don't 901 * have RDMA queues, and that's the right value. 902 */ 903 if (rxq_info) 904 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 905 906 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 907 s->fw_evtq.cntxt_id, cmplqid); 908 if (err) 909 goto freeout; 910 } 911 912 if (!is_t4(adap->params.chip)) { 913 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 914 netdev_get_tx_queue(adap->port[0], 0) 915 , s->fw_evtq.cntxt_id); 916 if (err) 917 goto freeout; 918 } 919 920 t4_write_reg(adap, is_t4(adap->params.chip) ? 921 MPS_TRC_RSS_CONTROL_A : 922 MPS_T5_TRC_RSS_CONTROL_A, 923 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 924 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 925 return 0; 926 freeout: 927 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 928 t4_free_sge_resources(adap); 929 return err; 930 } 931 932 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 933 void *accel_priv, select_queue_fallback_t fallback) 934 { 935 int txq; 936 937 #ifdef CONFIG_CHELSIO_T4_DCB 938 /* If a Data Center Bridging has been successfully negotiated on this 939 * link then we'll use the skb's priority to map it to a TX Queue. 940 * The skb's priority is determined via the VLAN Tag Priority Code 941 * Point field. 942 */ 943 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 944 u16 vlan_tci; 945 int err; 946 947 err = vlan_get_tag(skb, &vlan_tci); 948 if (unlikely(err)) { 949 if (net_ratelimit()) 950 netdev_warn(dev, 951 "TX Packet without VLAN Tag on DCB Link\n"); 952 txq = 0; 953 } else { 954 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 955 #ifdef CONFIG_CHELSIO_T4_FCOE 956 if (skb->protocol == htons(ETH_P_FCOE)) 957 txq = skb->priority & 0x7; 958 #endif /* CONFIG_CHELSIO_T4_FCOE */ 959 } 960 return txq; 961 } 962 #endif /* CONFIG_CHELSIO_T4_DCB */ 963 964 if (select_queue) { 965 txq = (skb_rx_queue_recorded(skb) 966 ? skb_get_rx_queue(skb) 967 : smp_processor_id()); 968 969 while (unlikely(txq >= dev->real_num_tx_queues)) 970 txq -= dev->real_num_tx_queues; 971 972 return txq; 973 } 974 975 return fallback(dev, skb) % dev->real_num_tx_queues; 976 } 977 978 static int closest_timer(const struct sge *s, int time) 979 { 980 int i, delta, match = 0, min_delta = INT_MAX; 981 982 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 983 delta = time - s->timer_val[i]; 984 if (delta < 0) 985 delta = -delta; 986 if (delta < min_delta) { 987 min_delta = delta; 988 match = i; 989 } 990 } 991 return match; 992 } 993 994 static int closest_thres(const struct sge *s, int thres) 995 { 996 int i, delta, match = 0, min_delta = INT_MAX; 997 998 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 999 delta = thres - s->counter_val[i]; 1000 if (delta < 0) 1001 delta = -delta; 1002 if (delta < min_delta) { 1003 min_delta = delta; 1004 match = i; 1005 } 1006 } 1007 return match; 1008 } 1009 1010 /** 1011 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1012 * @q: the Rx queue 1013 * @us: the hold-off time in us, or 0 to disable timer 1014 * @cnt: the hold-off packet count, or 0 to disable counter 1015 * 1016 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1017 * one of the two needs to be enabled for the queue to generate interrupts. 1018 */ 1019 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1020 unsigned int us, unsigned int cnt) 1021 { 1022 struct adapter *adap = q->adap; 1023 1024 if ((us | cnt) == 0) 1025 cnt = 1; 1026 1027 if (cnt) { 1028 int err; 1029 u32 v, new_idx; 1030 1031 new_idx = closest_thres(&adap->sge, cnt); 1032 if (q->desc && q->pktcnt_idx != new_idx) { 1033 /* the queue has already been created, update it */ 1034 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1035 FW_PARAMS_PARAM_X_V( 1036 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1037 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1038 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1039 &v, &new_idx); 1040 if (err) 1041 return err; 1042 } 1043 q->pktcnt_idx = new_idx; 1044 } 1045 1046 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1047 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1048 return 0; 1049 } 1050 1051 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1052 { 1053 const struct port_info *pi = netdev_priv(dev); 1054 netdev_features_t changed = dev->features ^ features; 1055 int err; 1056 1057 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1058 return 0; 1059 1060 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1061 -1, -1, -1, 1062 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1063 if (unlikely(err)) 1064 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1065 return err; 1066 } 1067 1068 static int setup_debugfs(struct adapter *adap) 1069 { 1070 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1071 return -1; 1072 1073 #ifdef CONFIG_DEBUG_FS 1074 t4_setup_debugfs(adap); 1075 #endif 1076 return 0; 1077 } 1078 1079 /* 1080 * upper-layer driver support 1081 */ 1082 1083 /* 1084 * Allocate an active-open TID and set it to the supplied value. 1085 */ 1086 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1087 { 1088 int atid = -1; 1089 1090 spin_lock_bh(&t->atid_lock); 1091 if (t->afree) { 1092 union aopen_entry *p = t->afree; 1093 1094 atid = (p - t->atid_tab) + t->atid_base; 1095 t->afree = p->next; 1096 p->data = data; 1097 t->atids_in_use++; 1098 } 1099 spin_unlock_bh(&t->atid_lock); 1100 return atid; 1101 } 1102 EXPORT_SYMBOL(cxgb4_alloc_atid); 1103 1104 /* 1105 * Release an active-open TID. 1106 */ 1107 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1108 { 1109 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1110 1111 spin_lock_bh(&t->atid_lock); 1112 p->next = t->afree; 1113 t->afree = p; 1114 t->atids_in_use--; 1115 spin_unlock_bh(&t->atid_lock); 1116 } 1117 EXPORT_SYMBOL(cxgb4_free_atid); 1118 1119 /* 1120 * Allocate a server TID and set it to the supplied value. 1121 */ 1122 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1123 { 1124 int stid; 1125 1126 spin_lock_bh(&t->stid_lock); 1127 if (family == PF_INET) { 1128 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1129 if (stid < t->nstids) 1130 __set_bit(stid, t->stid_bmap); 1131 else 1132 stid = -1; 1133 } else { 1134 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1135 if (stid < 0) 1136 stid = -1; 1137 } 1138 if (stid >= 0) { 1139 t->stid_tab[stid].data = data; 1140 stid += t->stid_base; 1141 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1142 * This is equivalent to 4 TIDs. With CLIP enabled it 1143 * needs 2 TIDs. 1144 */ 1145 if (family == PF_INET6) { 1146 t->stids_in_use += 2; 1147 t->v6_stids_in_use += 2; 1148 } else { 1149 t->stids_in_use++; 1150 } 1151 } 1152 spin_unlock_bh(&t->stid_lock); 1153 return stid; 1154 } 1155 EXPORT_SYMBOL(cxgb4_alloc_stid); 1156 1157 /* Allocate a server filter TID and set it to the supplied value. 1158 */ 1159 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1160 { 1161 int stid; 1162 1163 spin_lock_bh(&t->stid_lock); 1164 if (family == PF_INET) { 1165 stid = find_next_zero_bit(t->stid_bmap, 1166 t->nstids + t->nsftids, t->nstids); 1167 if (stid < (t->nstids + t->nsftids)) 1168 __set_bit(stid, t->stid_bmap); 1169 else 1170 stid = -1; 1171 } else { 1172 stid = -1; 1173 } 1174 if (stid >= 0) { 1175 t->stid_tab[stid].data = data; 1176 stid -= t->nstids; 1177 stid += t->sftid_base; 1178 t->sftids_in_use++; 1179 } 1180 spin_unlock_bh(&t->stid_lock); 1181 return stid; 1182 } 1183 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1184 1185 /* Release a server TID. 1186 */ 1187 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1188 { 1189 /* Is it a server filter TID? */ 1190 if (t->nsftids && (stid >= t->sftid_base)) { 1191 stid -= t->sftid_base; 1192 stid += t->nstids; 1193 } else { 1194 stid -= t->stid_base; 1195 } 1196 1197 spin_lock_bh(&t->stid_lock); 1198 if (family == PF_INET) 1199 __clear_bit(stid, t->stid_bmap); 1200 else 1201 bitmap_release_region(t->stid_bmap, stid, 1); 1202 t->stid_tab[stid].data = NULL; 1203 if (stid < t->nstids) { 1204 if (family == PF_INET6) { 1205 t->stids_in_use -= 2; 1206 t->v6_stids_in_use -= 2; 1207 } else { 1208 t->stids_in_use--; 1209 } 1210 } else { 1211 t->sftids_in_use--; 1212 } 1213 1214 spin_unlock_bh(&t->stid_lock); 1215 } 1216 EXPORT_SYMBOL(cxgb4_free_stid); 1217 1218 /* 1219 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1220 */ 1221 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1222 unsigned int tid) 1223 { 1224 struct cpl_tid_release *req; 1225 1226 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1227 req = __skb_put(skb, sizeof(*req)); 1228 INIT_TP_WR(req, tid); 1229 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1230 } 1231 1232 /* 1233 * Queue a TID release request and if necessary schedule a work queue to 1234 * process it. 1235 */ 1236 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1237 unsigned int tid) 1238 { 1239 void **p = &t->tid_tab[tid]; 1240 struct adapter *adap = container_of(t, struct adapter, tids); 1241 1242 spin_lock_bh(&adap->tid_release_lock); 1243 *p = adap->tid_release_head; 1244 /* Low 2 bits encode the Tx channel number */ 1245 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1246 if (!adap->tid_release_task_busy) { 1247 adap->tid_release_task_busy = true; 1248 queue_work(adap->workq, &adap->tid_release_task); 1249 } 1250 spin_unlock_bh(&adap->tid_release_lock); 1251 } 1252 1253 /* 1254 * Process the list of pending TID release requests. 1255 */ 1256 static void process_tid_release_list(struct work_struct *work) 1257 { 1258 struct sk_buff *skb; 1259 struct adapter *adap; 1260 1261 adap = container_of(work, struct adapter, tid_release_task); 1262 1263 spin_lock_bh(&adap->tid_release_lock); 1264 while (adap->tid_release_head) { 1265 void **p = adap->tid_release_head; 1266 unsigned int chan = (uintptr_t)p & 3; 1267 p = (void *)p - chan; 1268 1269 adap->tid_release_head = *p; 1270 *p = NULL; 1271 spin_unlock_bh(&adap->tid_release_lock); 1272 1273 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1274 GFP_KERNEL))) 1275 schedule_timeout_uninterruptible(1); 1276 1277 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1278 t4_ofld_send(adap, skb); 1279 spin_lock_bh(&adap->tid_release_lock); 1280 } 1281 adap->tid_release_task_busy = false; 1282 spin_unlock_bh(&adap->tid_release_lock); 1283 } 1284 1285 /* 1286 * Release a TID and inform HW. If we are unable to allocate the release 1287 * message we defer to a work queue. 1288 */ 1289 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1290 unsigned short family) 1291 { 1292 struct sk_buff *skb; 1293 struct adapter *adap = container_of(t, struct adapter, tids); 1294 1295 WARN_ON(tid >= t->ntids); 1296 1297 if (t->tid_tab[tid]) { 1298 t->tid_tab[tid] = NULL; 1299 atomic_dec(&t->conns_in_use); 1300 if (t->hash_base && (tid >= t->hash_base)) { 1301 if (family == AF_INET6) 1302 atomic_sub(2, &t->hash_tids_in_use); 1303 else 1304 atomic_dec(&t->hash_tids_in_use); 1305 } else { 1306 if (family == AF_INET6) 1307 atomic_sub(2, &t->tids_in_use); 1308 else 1309 atomic_dec(&t->tids_in_use); 1310 } 1311 } 1312 1313 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1314 if (likely(skb)) { 1315 mk_tid_release(skb, chan, tid); 1316 t4_ofld_send(adap, skb); 1317 } else 1318 cxgb4_queue_tid_release(t, chan, tid); 1319 } 1320 EXPORT_SYMBOL(cxgb4_remove_tid); 1321 1322 /* 1323 * Allocate and initialize the TID tables. Returns 0 on success. 1324 */ 1325 static int tid_init(struct tid_info *t) 1326 { 1327 struct adapter *adap = container_of(t, struct adapter, tids); 1328 unsigned int max_ftids = t->nftids + t->nsftids; 1329 unsigned int natids = t->natids; 1330 unsigned int stid_bmap_size; 1331 unsigned int ftid_bmap_size; 1332 size_t size; 1333 1334 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1335 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1336 size = t->ntids * sizeof(*t->tid_tab) + 1337 natids * sizeof(*t->atid_tab) + 1338 t->nstids * sizeof(*t->stid_tab) + 1339 t->nsftids * sizeof(*t->stid_tab) + 1340 stid_bmap_size * sizeof(long) + 1341 max_ftids * sizeof(*t->ftid_tab) + 1342 ftid_bmap_size * sizeof(long); 1343 1344 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1345 if (!t->tid_tab) 1346 return -ENOMEM; 1347 1348 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1349 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1350 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1351 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1352 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1353 spin_lock_init(&t->stid_lock); 1354 spin_lock_init(&t->atid_lock); 1355 spin_lock_init(&t->ftid_lock); 1356 1357 t->stids_in_use = 0; 1358 t->v6_stids_in_use = 0; 1359 t->sftids_in_use = 0; 1360 t->afree = NULL; 1361 t->atids_in_use = 0; 1362 atomic_set(&t->tids_in_use, 0); 1363 atomic_set(&t->conns_in_use, 0); 1364 atomic_set(&t->hash_tids_in_use, 0); 1365 1366 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1367 if (natids) { 1368 while (--natids) 1369 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1370 t->afree = t->atid_tab; 1371 } 1372 1373 if (is_offload(adap)) { 1374 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1375 /* Reserve stid 0 for T4/T5 adapters */ 1376 if (!t->stid_base && 1377 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1378 __set_bit(0, t->stid_bmap); 1379 } 1380 1381 bitmap_zero(t->ftid_bmap, t->nftids); 1382 return 0; 1383 } 1384 1385 /** 1386 * cxgb4_create_server - create an IP server 1387 * @dev: the device 1388 * @stid: the server TID 1389 * @sip: local IP address to bind server to 1390 * @sport: the server's TCP port 1391 * @queue: queue to direct messages from this server to 1392 * 1393 * Create an IP server for the given port and address. 1394 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1395 */ 1396 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1397 __be32 sip, __be16 sport, __be16 vlan, 1398 unsigned int queue) 1399 { 1400 unsigned int chan; 1401 struct sk_buff *skb; 1402 struct adapter *adap; 1403 struct cpl_pass_open_req *req; 1404 int ret; 1405 1406 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1407 if (!skb) 1408 return -ENOMEM; 1409 1410 adap = netdev2adap(dev); 1411 req = __skb_put(skb, sizeof(*req)); 1412 INIT_TP_WR(req, 0); 1413 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1414 req->local_port = sport; 1415 req->peer_port = htons(0); 1416 req->local_ip = sip; 1417 req->peer_ip = htonl(0); 1418 chan = rxq_to_chan(&adap->sge, queue); 1419 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1420 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1421 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1422 ret = t4_mgmt_tx(adap, skb); 1423 return net_xmit_eval(ret); 1424 } 1425 EXPORT_SYMBOL(cxgb4_create_server); 1426 1427 /* cxgb4_create_server6 - create an IPv6 server 1428 * @dev: the device 1429 * @stid: the server TID 1430 * @sip: local IPv6 address to bind server to 1431 * @sport: the server's TCP port 1432 * @queue: queue to direct messages from this server to 1433 * 1434 * Create an IPv6 server for the given port and address. 1435 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1436 */ 1437 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1438 const struct in6_addr *sip, __be16 sport, 1439 unsigned int queue) 1440 { 1441 unsigned int chan; 1442 struct sk_buff *skb; 1443 struct adapter *adap; 1444 struct cpl_pass_open_req6 *req; 1445 int ret; 1446 1447 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1448 if (!skb) 1449 return -ENOMEM; 1450 1451 adap = netdev2adap(dev); 1452 req = __skb_put(skb, sizeof(*req)); 1453 INIT_TP_WR(req, 0); 1454 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1455 req->local_port = sport; 1456 req->peer_port = htons(0); 1457 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1458 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1459 req->peer_ip_hi = cpu_to_be64(0); 1460 req->peer_ip_lo = cpu_to_be64(0); 1461 chan = rxq_to_chan(&adap->sge, queue); 1462 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1463 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1464 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1465 ret = t4_mgmt_tx(adap, skb); 1466 return net_xmit_eval(ret); 1467 } 1468 EXPORT_SYMBOL(cxgb4_create_server6); 1469 1470 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1471 unsigned int queue, bool ipv6) 1472 { 1473 struct sk_buff *skb; 1474 struct adapter *adap; 1475 struct cpl_close_listsvr_req *req; 1476 int ret; 1477 1478 adap = netdev2adap(dev); 1479 1480 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1481 if (!skb) 1482 return -ENOMEM; 1483 1484 req = __skb_put(skb, sizeof(*req)); 1485 INIT_TP_WR(req, 0); 1486 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1487 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1488 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1489 ret = t4_mgmt_tx(adap, skb); 1490 return net_xmit_eval(ret); 1491 } 1492 EXPORT_SYMBOL(cxgb4_remove_server); 1493 1494 /** 1495 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1496 * @mtus: the HW MTU table 1497 * @mtu: the target MTU 1498 * @idx: index of selected entry in the MTU table 1499 * 1500 * Returns the index and the value in the HW MTU table that is closest to 1501 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1502 * table, in which case that smallest available value is selected. 1503 */ 1504 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1505 unsigned int *idx) 1506 { 1507 unsigned int i = 0; 1508 1509 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1510 ++i; 1511 if (idx) 1512 *idx = i; 1513 return mtus[i]; 1514 } 1515 EXPORT_SYMBOL(cxgb4_best_mtu); 1516 1517 /** 1518 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1519 * @mtus: the HW MTU table 1520 * @header_size: Header Size 1521 * @data_size_max: maximum Data Segment Size 1522 * @data_size_align: desired Data Segment Size Alignment (2^N) 1523 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1524 * 1525 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1526 * MTU Table based solely on a Maximum MTU parameter, we break that 1527 * parameter up into a Header Size and Maximum Data Segment Size, and 1528 * provide a desired Data Segment Size Alignment. If we find an MTU in 1529 * the Hardware MTU Table which will result in a Data Segment Size with 1530 * the requested alignment _and_ that MTU isn't "too far" from the 1531 * closest MTU, then we'll return that rather than the closest MTU. 1532 */ 1533 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1534 unsigned short header_size, 1535 unsigned short data_size_max, 1536 unsigned short data_size_align, 1537 unsigned int *mtu_idxp) 1538 { 1539 unsigned short max_mtu = header_size + data_size_max; 1540 unsigned short data_size_align_mask = data_size_align - 1; 1541 int mtu_idx, aligned_mtu_idx; 1542 1543 /* Scan the MTU Table till we find an MTU which is larger than our 1544 * Maximum MTU or we reach the end of the table. Along the way, 1545 * record the last MTU found, if any, which will result in a Data 1546 * Segment Length matching the requested alignment. 1547 */ 1548 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1549 unsigned short data_size = mtus[mtu_idx] - header_size; 1550 1551 /* If this MTU minus the Header Size would result in a 1552 * Data Segment Size of the desired alignment, remember it. 1553 */ 1554 if ((data_size & data_size_align_mask) == 0) 1555 aligned_mtu_idx = mtu_idx; 1556 1557 /* If we're not at the end of the Hardware MTU Table and the 1558 * next element is larger than our Maximum MTU, drop out of 1559 * the loop. 1560 */ 1561 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1562 break; 1563 } 1564 1565 /* If we fell out of the loop because we ran to the end of the table, 1566 * then we just have to use the last [largest] entry. 1567 */ 1568 if (mtu_idx == NMTUS) 1569 mtu_idx--; 1570 1571 /* If we found an MTU which resulted in the requested Data Segment 1572 * Length alignment and that's "not far" from the largest MTU which is 1573 * less than or equal to the maximum MTU, then use that. 1574 */ 1575 if (aligned_mtu_idx >= 0 && 1576 mtu_idx - aligned_mtu_idx <= 1) 1577 mtu_idx = aligned_mtu_idx; 1578 1579 /* If the caller has passed in an MTU Index pointer, pass the 1580 * MTU Index back. Return the MTU value. 1581 */ 1582 if (mtu_idxp) 1583 *mtu_idxp = mtu_idx; 1584 return mtus[mtu_idx]; 1585 } 1586 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1587 1588 /** 1589 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1590 * @chip: chip type 1591 * @viid: VI id of the given port 1592 * 1593 * Return the SMT index for this VI. 1594 */ 1595 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1596 { 1597 /* In T4/T5, SMT contains 256 SMAC entries organized in 1598 * 128 rows of 2 entries each. 1599 * In T6, SMT contains 256 SMAC entries in 256 rows. 1600 * TODO: The below code needs to be updated when we add support 1601 * for 256 VFs. 1602 */ 1603 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1604 return ((viid & 0x7f) << 1); 1605 else 1606 return (viid & 0x7f); 1607 } 1608 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1609 1610 /** 1611 * cxgb4_port_chan - get the HW channel of a port 1612 * @dev: the net device for the port 1613 * 1614 * Return the HW Tx channel of the given port. 1615 */ 1616 unsigned int cxgb4_port_chan(const struct net_device *dev) 1617 { 1618 return netdev2pinfo(dev)->tx_chan; 1619 } 1620 EXPORT_SYMBOL(cxgb4_port_chan); 1621 1622 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1623 { 1624 struct adapter *adap = netdev2adap(dev); 1625 u32 v1, v2, lp_count, hp_count; 1626 1627 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1628 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1629 if (is_t4(adap->params.chip)) { 1630 lp_count = LP_COUNT_G(v1); 1631 hp_count = HP_COUNT_G(v1); 1632 } else { 1633 lp_count = LP_COUNT_T5_G(v1); 1634 hp_count = HP_COUNT_T5_G(v2); 1635 } 1636 return lpfifo ? lp_count : hp_count; 1637 } 1638 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1639 1640 /** 1641 * cxgb4_port_viid - get the VI id of a port 1642 * @dev: the net device for the port 1643 * 1644 * Return the VI id of the given port. 1645 */ 1646 unsigned int cxgb4_port_viid(const struct net_device *dev) 1647 { 1648 return netdev2pinfo(dev)->viid; 1649 } 1650 EXPORT_SYMBOL(cxgb4_port_viid); 1651 1652 /** 1653 * cxgb4_port_idx - get the index of a port 1654 * @dev: the net device for the port 1655 * 1656 * Return the index of the given port. 1657 */ 1658 unsigned int cxgb4_port_idx(const struct net_device *dev) 1659 { 1660 return netdev2pinfo(dev)->port_id; 1661 } 1662 EXPORT_SYMBOL(cxgb4_port_idx); 1663 1664 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1665 struct tp_tcp_stats *v6) 1666 { 1667 struct adapter *adap = pci_get_drvdata(pdev); 1668 1669 spin_lock(&adap->stats_lock); 1670 t4_tp_get_tcp_stats(adap, v4, v6, false); 1671 spin_unlock(&adap->stats_lock); 1672 } 1673 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1674 1675 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1676 const unsigned int *pgsz_order) 1677 { 1678 struct adapter *adap = netdev2adap(dev); 1679 1680 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1681 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1682 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1683 HPZ3_V(pgsz_order[3])); 1684 } 1685 EXPORT_SYMBOL(cxgb4_iscsi_init); 1686 1687 int cxgb4_flush_eq_cache(struct net_device *dev) 1688 { 1689 struct adapter *adap = netdev2adap(dev); 1690 1691 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1692 } 1693 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1694 1695 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1696 { 1697 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1698 __be64 indices; 1699 int ret; 1700 1701 spin_lock(&adap->win0_lock); 1702 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1703 sizeof(indices), (__be32 *)&indices, 1704 T4_MEMORY_READ); 1705 spin_unlock(&adap->win0_lock); 1706 if (!ret) { 1707 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1708 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1709 } 1710 return ret; 1711 } 1712 1713 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1714 u16 size) 1715 { 1716 struct adapter *adap = netdev2adap(dev); 1717 u16 hw_pidx, hw_cidx; 1718 int ret; 1719 1720 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1721 if (ret) 1722 goto out; 1723 1724 if (pidx != hw_pidx) { 1725 u16 delta; 1726 u32 val; 1727 1728 if (pidx >= hw_pidx) 1729 delta = pidx - hw_pidx; 1730 else 1731 delta = size - hw_pidx + pidx; 1732 1733 if (is_t4(adap->params.chip)) 1734 val = PIDX_V(delta); 1735 else 1736 val = PIDX_T5_V(delta); 1737 wmb(); 1738 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1739 QID_V(qid) | val); 1740 } 1741 out: 1742 return ret; 1743 } 1744 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1745 1746 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1747 { 1748 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1749 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1750 u32 offset, memtype, memaddr; 1751 struct adapter *adap; 1752 u32 hma_size = 0; 1753 int ret; 1754 1755 adap = netdev2adap(dev); 1756 1757 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1758 1759 /* Figure out where the offset lands in the Memory Type/Address scheme. 1760 * This code assumes that the memory is laid out starting at offset 0 1761 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1762 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1763 * MC0, and some have both MC0 and MC1. 1764 */ 1765 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1766 edc0_size = EDRAM0_SIZE_G(size) << 20; 1767 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1768 edc1_size = EDRAM1_SIZE_G(size) << 20; 1769 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1770 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1771 1772 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1773 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1774 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1775 } 1776 edc0_end = edc0_size; 1777 edc1_end = edc0_end + edc1_size; 1778 mc0_end = edc1_end + mc0_size; 1779 1780 if (offset < edc0_end) { 1781 memtype = MEM_EDC0; 1782 memaddr = offset; 1783 } else if (offset < edc1_end) { 1784 memtype = MEM_EDC1; 1785 memaddr = offset - edc0_end; 1786 } else { 1787 if (hma_size && (offset < (edc1_end + hma_size))) { 1788 memtype = MEM_HMA; 1789 memaddr = offset - edc1_end; 1790 } else if (offset < mc0_end) { 1791 memtype = MEM_MC0; 1792 memaddr = offset - edc1_end; 1793 } else if (is_t5(adap->params.chip)) { 1794 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1795 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1796 mc1_end = mc0_end + mc1_size; 1797 if (offset < mc1_end) { 1798 memtype = MEM_MC1; 1799 memaddr = offset - mc0_end; 1800 } else { 1801 /* offset beyond the end of any memory */ 1802 goto err; 1803 } 1804 } else { 1805 /* T4/T6 only has a single memory channel */ 1806 goto err; 1807 } 1808 } 1809 1810 spin_lock(&adap->win0_lock); 1811 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1812 spin_unlock(&adap->win0_lock); 1813 return ret; 1814 1815 err: 1816 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1817 stag, offset); 1818 return -EINVAL; 1819 } 1820 EXPORT_SYMBOL(cxgb4_read_tpte); 1821 1822 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1823 { 1824 u32 hi, lo; 1825 struct adapter *adap; 1826 1827 adap = netdev2adap(dev); 1828 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1829 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1830 1831 return ((u64)hi << 32) | (u64)lo; 1832 } 1833 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1834 1835 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1836 unsigned int qid, 1837 enum cxgb4_bar2_qtype qtype, 1838 int user, 1839 u64 *pbar2_qoffset, 1840 unsigned int *pbar2_qid) 1841 { 1842 return t4_bar2_sge_qregs(netdev2adap(dev), 1843 qid, 1844 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1845 ? T4_BAR2_QTYPE_EGRESS 1846 : T4_BAR2_QTYPE_INGRESS), 1847 user, 1848 pbar2_qoffset, 1849 pbar2_qid); 1850 } 1851 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1852 1853 static struct pci_driver cxgb4_driver; 1854 1855 static void check_neigh_update(struct neighbour *neigh) 1856 { 1857 const struct device *parent; 1858 const struct net_device *netdev = neigh->dev; 1859 1860 if (is_vlan_dev(netdev)) 1861 netdev = vlan_dev_real_dev(netdev); 1862 parent = netdev->dev.parent; 1863 if (parent && parent->driver == &cxgb4_driver.driver) 1864 t4_l2t_update(dev_get_drvdata(parent), neigh); 1865 } 1866 1867 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1868 void *data) 1869 { 1870 switch (event) { 1871 case NETEVENT_NEIGH_UPDATE: 1872 check_neigh_update(data); 1873 break; 1874 case NETEVENT_REDIRECT: 1875 default: 1876 break; 1877 } 1878 return 0; 1879 } 1880 1881 static bool netevent_registered; 1882 static struct notifier_block cxgb4_netevent_nb = { 1883 .notifier_call = netevent_cb 1884 }; 1885 1886 static void drain_db_fifo(struct adapter *adap, int usecs) 1887 { 1888 u32 v1, v2, lp_count, hp_count; 1889 1890 do { 1891 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1892 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1893 if (is_t4(adap->params.chip)) { 1894 lp_count = LP_COUNT_G(v1); 1895 hp_count = HP_COUNT_G(v1); 1896 } else { 1897 lp_count = LP_COUNT_T5_G(v1); 1898 hp_count = HP_COUNT_T5_G(v2); 1899 } 1900 1901 if (lp_count == 0 && hp_count == 0) 1902 break; 1903 set_current_state(TASK_UNINTERRUPTIBLE); 1904 schedule_timeout(usecs_to_jiffies(usecs)); 1905 } while (1); 1906 } 1907 1908 static void disable_txq_db(struct sge_txq *q) 1909 { 1910 unsigned long flags; 1911 1912 spin_lock_irqsave(&q->db_lock, flags); 1913 q->db_disabled = 1; 1914 spin_unlock_irqrestore(&q->db_lock, flags); 1915 } 1916 1917 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1918 { 1919 spin_lock_irq(&q->db_lock); 1920 if (q->db_pidx_inc) { 1921 /* Make sure that all writes to the TX descriptors 1922 * are committed before we tell HW about them. 1923 */ 1924 wmb(); 1925 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1926 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1927 q->db_pidx_inc = 0; 1928 } 1929 q->db_disabled = 0; 1930 spin_unlock_irq(&q->db_lock); 1931 } 1932 1933 static void disable_dbs(struct adapter *adap) 1934 { 1935 int i; 1936 1937 for_each_ethrxq(&adap->sge, i) 1938 disable_txq_db(&adap->sge.ethtxq[i].q); 1939 if (is_offload(adap)) { 1940 struct sge_uld_txq_info *txq_info = 1941 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1942 1943 if (txq_info) { 1944 for_each_ofldtxq(&adap->sge, i) { 1945 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1946 1947 disable_txq_db(&txq->q); 1948 } 1949 } 1950 } 1951 for_each_port(adap, i) 1952 disable_txq_db(&adap->sge.ctrlq[i].q); 1953 } 1954 1955 static void enable_dbs(struct adapter *adap) 1956 { 1957 int i; 1958 1959 for_each_ethrxq(&adap->sge, i) 1960 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1961 if (is_offload(adap)) { 1962 struct sge_uld_txq_info *txq_info = 1963 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1964 1965 if (txq_info) { 1966 for_each_ofldtxq(&adap->sge, i) { 1967 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1968 1969 enable_txq_db(adap, &txq->q); 1970 } 1971 } 1972 } 1973 for_each_port(adap, i) 1974 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1975 } 1976 1977 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1978 { 1979 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1980 1981 if (adap->uld && adap->uld[type].handle) 1982 adap->uld[type].control(adap->uld[type].handle, cmd); 1983 } 1984 1985 static void process_db_full(struct work_struct *work) 1986 { 1987 struct adapter *adap; 1988 1989 adap = container_of(work, struct adapter, db_full_task); 1990 1991 drain_db_fifo(adap, dbfifo_drain_delay); 1992 enable_dbs(adap); 1993 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1994 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1995 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1996 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1997 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1998 else 1999 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2000 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2001 } 2002 2003 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2004 { 2005 u16 hw_pidx, hw_cidx; 2006 int ret; 2007 2008 spin_lock_irq(&q->db_lock); 2009 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2010 if (ret) 2011 goto out; 2012 if (q->db_pidx != hw_pidx) { 2013 u16 delta; 2014 u32 val; 2015 2016 if (q->db_pidx >= hw_pidx) 2017 delta = q->db_pidx - hw_pidx; 2018 else 2019 delta = q->size - hw_pidx + q->db_pidx; 2020 2021 if (is_t4(adap->params.chip)) 2022 val = PIDX_V(delta); 2023 else 2024 val = PIDX_T5_V(delta); 2025 wmb(); 2026 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2027 QID_V(q->cntxt_id) | val); 2028 } 2029 out: 2030 q->db_disabled = 0; 2031 q->db_pidx_inc = 0; 2032 spin_unlock_irq(&q->db_lock); 2033 if (ret) 2034 CH_WARN(adap, "DB drop recovery failed.\n"); 2035 } 2036 2037 static void recover_all_queues(struct adapter *adap) 2038 { 2039 int i; 2040 2041 for_each_ethrxq(&adap->sge, i) 2042 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2043 if (is_offload(adap)) { 2044 struct sge_uld_txq_info *txq_info = 2045 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2046 if (txq_info) { 2047 for_each_ofldtxq(&adap->sge, i) { 2048 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2049 2050 sync_txq_pidx(adap, &txq->q); 2051 } 2052 } 2053 } 2054 for_each_port(adap, i) 2055 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2056 } 2057 2058 static void process_db_drop(struct work_struct *work) 2059 { 2060 struct adapter *adap; 2061 2062 adap = container_of(work, struct adapter, db_drop_task); 2063 2064 if (is_t4(adap->params.chip)) { 2065 drain_db_fifo(adap, dbfifo_drain_delay); 2066 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2067 drain_db_fifo(adap, dbfifo_drain_delay); 2068 recover_all_queues(adap); 2069 drain_db_fifo(adap, dbfifo_drain_delay); 2070 enable_dbs(adap); 2071 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2072 } else if (is_t5(adap->params.chip)) { 2073 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2074 u16 qid = (dropped_db >> 15) & 0x1ffff; 2075 u16 pidx_inc = dropped_db & 0x1fff; 2076 u64 bar2_qoffset; 2077 unsigned int bar2_qid; 2078 int ret; 2079 2080 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2081 0, &bar2_qoffset, &bar2_qid); 2082 if (ret) 2083 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2084 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2085 else 2086 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2087 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2088 2089 /* Re-enable BAR2 WC */ 2090 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2091 } 2092 2093 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2094 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2095 } 2096 2097 void t4_db_full(struct adapter *adap) 2098 { 2099 if (is_t4(adap->params.chip)) { 2100 disable_dbs(adap); 2101 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2102 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2103 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2104 queue_work(adap->workq, &adap->db_full_task); 2105 } 2106 } 2107 2108 void t4_db_dropped(struct adapter *adap) 2109 { 2110 if (is_t4(adap->params.chip)) { 2111 disable_dbs(adap); 2112 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2113 } 2114 queue_work(adap->workq, &adap->db_drop_task); 2115 } 2116 2117 void t4_register_netevent_notifier(void) 2118 { 2119 if (!netevent_registered) { 2120 register_netevent_notifier(&cxgb4_netevent_nb); 2121 netevent_registered = true; 2122 } 2123 } 2124 2125 static void detach_ulds(struct adapter *adap) 2126 { 2127 unsigned int i; 2128 2129 mutex_lock(&uld_mutex); 2130 list_del(&adap->list_node); 2131 2132 for (i = 0; i < CXGB4_ULD_MAX; i++) 2133 if (adap->uld && adap->uld[i].handle) 2134 adap->uld[i].state_change(adap->uld[i].handle, 2135 CXGB4_STATE_DETACH); 2136 2137 if (netevent_registered && list_empty(&adapter_list)) { 2138 unregister_netevent_notifier(&cxgb4_netevent_nb); 2139 netevent_registered = false; 2140 } 2141 mutex_unlock(&uld_mutex); 2142 } 2143 2144 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2145 { 2146 unsigned int i; 2147 2148 mutex_lock(&uld_mutex); 2149 for (i = 0; i < CXGB4_ULD_MAX; i++) 2150 if (adap->uld && adap->uld[i].handle) 2151 adap->uld[i].state_change(adap->uld[i].handle, 2152 new_state); 2153 mutex_unlock(&uld_mutex); 2154 } 2155 2156 #if IS_ENABLED(CONFIG_IPV6) 2157 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2158 unsigned long event, void *data) 2159 { 2160 struct inet6_ifaddr *ifa = data; 2161 struct net_device *event_dev = ifa->idev->dev; 2162 const struct device *parent = NULL; 2163 #if IS_ENABLED(CONFIG_BONDING) 2164 struct adapter *adap; 2165 #endif 2166 if (is_vlan_dev(event_dev)) 2167 event_dev = vlan_dev_real_dev(event_dev); 2168 #if IS_ENABLED(CONFIG_BONDING) 2169 if (event_dev->flags & IFF_MASTER) { 2170 list_for_each_entry(adap, &adapter_list, list_node) { 2171 switch (event) { 2172 case NETDEV_UP: 2173 cxgb4_clip_get(adap->port[0], 2174 (const u32 *)ifa, 1); 2175 break; 2176 case NETDEV_DOWN: 2177 cxgb4_clip_release(adap->port[0], 2178 (const u32 *)ifa, 1); 2179 break; 2180 default: 2181 break; 2182 } 2183 } 2184 return NOTIFY_OK; 2185 } 2186 #endif 2187 2188 if (event_dev) 2189 parent = event_dev->dev.parent; 2190 2191 if (parent && parent->driver == &cxgb4_driver.driver) { 2192 switch (event) { 2193 case NETDEV_UP: 2194 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2195 break; 2196 case NETDEV_DOWN: 2197 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2198 break; 2199 default: 2200 break; 2201 } 2202 } 2203 return NOTIFY_OK; 2204 } 2205 2206 static bool inet6addr_registered; 2207 static struct notifier_block cxgb4_inet6addr_notifier = { 2208 .notifier_call = cxgb4_inet6addr_handler 2209 }; 2210 2211 static void update_clip(const struct adapter *adap) 2212 { 2213 int i; 2214 struct net_device *dev; 2215 int ret; 2216 2217 rcu_read_lock(); 2218 2219 for (i = 0; i < MAX_NPORTS; i++) { 2220 dev = adap->port[i]; 2221 ret = 0; 2222 2223 if (dev) 2224 ret = cxgb4_update_root_dev_clip(dev); 2225 2226 if (ret < 0) 2227 break; 2228 } 2229 rcu_read_unlock(); 2230 } 2231 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2232 2233 /** 2234 * cxgb_up - enable the adapter 2235 * @adap: adapter being enabled 2236 * 2237 * Called when the first port is enabled, this function performs the 2238 * actions necessary to make an adapter operational, such as completing 2239 * the initialization of HW modules, and enabling interrupts. 2240 * 2241 * Must be called with the rtnl lock held. 2242 */ 2243 static int cxgb_up(struct adapter *adap) 2244 { 2245 int err; 2246 2247 mutex_lock(&uld_mutex); 2248 err = setup_sge_queues(adap); 2249 if (err) 2250 goto rel_lock; 2251 err = setup_rss(adap); 2252 if (err) 2253 goto freeq; 2254 2255 if (adap->flags & USING_MSIX) { 2256 name_msix_vecs(adap); 2257 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2258 adap->msix_info[0].desc, adap); 2259 if (err) 2260 goto irq_err; 2261 err = request_msix_queue_irqs(adap); 2262 if (err) { 2263 free_irq(adap->msix_info[0].vec, adap); 2264 goto irq_err; 2265 } 2266 } else { 2267 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2268 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2269 adap->port[0]->name, adap); 2270 if (err) 2271 goto irq_err; 2272 } 2273 2274 enable_rx(adap); 2275 t4_sge_start(adap); 2276 t4_intr_enable(adap); 2277 adap->flags |= FULL_INIT_DONE; 2278 mutex_unlock(&uld_mutex); 2279 2280 notify_ulds(adap, CXGB4_STATE_UP); 2281 #if IS_ENABLED(CONFIG_IPV6) 2282 update_clip(adap); 2283 #endif 2284 /* Initialize hash mac addr list*/ 2285 INIT_LIST_HEAD(&adap->mac_hlist); 2286 return err; 2287 2288 irq_err: 2289 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2290 freeq: 2291 t4_free_sge_resources(adap); 2292 rel_lock: 2293 mutex_unlock(&uld_mutex); 2294 return err; 2295 } 2296 2297 static void cxgb_down(struct adapter *adapter) 2298 { 2299 cancel_work_sync(&adapter->tid_release_task); 2300 cancel_work_sync(&adapter->db_full_task); 2301 cancel_work_sync(&adapter->db_drop_task); 2302 adapter->tid_release_task_busy = false; 2303 adapter->tid_release_head = NULL; 2304 2305 t4_sge_stop(adapter); 2306 t4_free_sge_resources(adapter); 2307 adapter->flags &= ~FULL_INIT_DONE; 2308 } 2309 2310 /* 2311 * net_device operations 2312 */ 2313 static int cxgb_open(struct net_device *dev) 2314 { 2315 int err; 2316 struct port_info *pi = netdev_priv(dev); 2317 struct adapter *adapter = pi->adapter; 2318 2319 netif_carrier_off(dev); 2320 2321 if (!(adapter->flags & FULL_INIT_DONE)) { 2322 err = cxgb_up(adapter); 2323 if (err < 0) 2324 return err; 2325 } 2326 2327 /* It's possible that the basic port information could have 2328 * changed since we first read it. 2329 */ 2330 err = t4_update_port_info(pi); 2331 if (err < 0) 2332 return err; 2333 2334 err = link_start(dev); 2335 if (!err) 2336 netif_tx_start_all_queues(dev); 2337 return err; 2338 } 2339 2340 static int cxgb_close(struct net_device *dev) 2341 { 2342 struct port_info *pi = netdev_priv(dev); 2343 struct adapter *adapter = pi->adapter; 2344 int ret; 2345 2346 netif_tx_stop_all_queues(dev); 2347 netif_carrier_off(dev); 2348 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2349 false, false, false); 2350 #ifdef CONFIG_CHELSIO_T4_DCB 2351 cxgb4_dcb_reset(dev); 2352 dcb_tx_queue_prio_enable(dev, false); 2353 #endif 2354 return ret; 2355 } 2356 2357 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2358 __be32 sip, __be16 sport, __be16 vlan, 2359 unsigned int queue, unsigned char port, unsigned char mask) 2360 { 2361 int ret; 2362 struct filter_entry *f; 2363 struct adapter *adap; 2364 int i; 2365 u8 *val; 2366 2367 adap = netdev2adap(dev); 2368 2369 /* Adjust stid to correct filter index */ 2370 stid -= adap->tids.sftid_base; 2371 stid += adap->tids.nftids; 2372 2373 /* Check to make sure the filter requested is writable ... 2374 */ 2375 f = &adap->tids.ftid_tab[stid]; 2376 ret = writable_filter(f); 2377 if (ret) 2378 return ret; 2379 2380 /* Clear out any old resources being used by the filter before 2381 * we start constructing the new filter. 2382 */ 2383 if (f->valid) 2384 clear_filter(adap, f); 2385 2386 /* Clear out filter specifications */ 2387 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2388 f->fs.val.lport = cpu_to_be16(sport); 2389 f->fs.mask.lport = ~0; 2390 val = (u8 *)&sip; 2391 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2392 for (i = 0; i < 4; i++) { 2393 f->fs.val.lip[i] = val[i]; 2394 f->fs.mask.lip[i] = ~0; 2395 } 2396 if (adap->params.tp.vlan_pri_map & PORT_F) { 2397 f->fs.val.iport = port; 2398 f->fs.mask.iport = mask; 2399 } 2400 } 2401 2402 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2403 f->fs.val.proto = IPPROTO_TCP; 2404 f->fs.mask.proto = ~0; 2405 } 2406 2407 f->fs.dirsteer = 1; 2408 f->fs.iq = queue; 2409 /* Mark filter as locked */ 2410 f->locked = 1; 2411 f->fs.rpttid = 1; 2412 2413 /* Save the actual tid. We need this to get the corresponding 2414 * filter entry structure in filter_rpl. 2415 */ 2416 f->tid = stid + adap->tids.ftid_base; 2417 ret = set_filter_wr(adap, stid); 2418 if (ret) { 2419 clear_filter(adap, f); 2420 return ret; 2421 } 2422 2423 return 0; 2424 } 2425 EXPORT_SYMBOL(cxgb4_create_server_filter); 2426 2427 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2428 unsigned int queue, bool ipv6) 2429 { 2430 struct filter_entry *f; 2431 struct adapter *adap; 2432 2433 adap = netdev2adap(dev); 2434 2435 /* Adjust stid to correct filter index */ 2436 stid -= adap->tids.sftid_base; 2437 stid += adap->tids.nftids; 2438 2439 f = &adap->tids.ftid_tab[stid]; 2440 /* Unlock the filter */ 2441 f->locked = 0; 2442 2443 return delete_filter(adap, stid); 2444 } 2445 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2446 2447 static void cxgb_get_stats(struct net_device *dev, 2448 struct rtnl_link_stats64 *ns) 2449 { 2450 struct port_stats stats; 2451 struct port_info *p = netdev_priv(dev); 2452 struct adapter *adapter = p->adapter; 2453 2454 /* Block retrieving statistics during EEH error 2455 * recovery. Otherwise, the recovery might fail 2456 * and the PCI device will be removed permanently 2457 */ 2458 spin_lock(&adapter->stats_lock); 2459 if (!netif_device_present(dev)) { 2460 spin_unlock(&adapter->stats_lock); 2461 return; 2462 } 2463 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2464 &p->stats_base); 2465 spin_unlock(&adapter->stats_lock); 2466 2467 ns->tx_bytes = stats.tx_octets; 2468 ns->tx_packets = stats.tx_frames; 2469 ns->rx_bytes = stats.rx_octets; 2470 ns->rx_packets = stats.rx_frames; 2471 ns->multicast = stats.rx_mcast_frames; 2472 2473 /* detailed rx_errors */ 2474 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2475 stats.rx_runt; 2476 ns->rx_over_errors = 0; 2477 ns->rx_crc_errors = stats.rx_fcs_err; 2478 ns->rx_frame_errors = stats.rx_symbol_err; 2479 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2480 stats.rx_ovflow2 + stats.rx_ovflow3 + 2481 stats.rx_trunc0 + stats.rx_trunc1 + 2482 stats.rx_trunc2 + stats.rx_trunc3; 2483 ns->rx_missed_errors = 0; 2484 2485 /* detailed tx_errors */ 2486 ns->tx_aborted_errors = 0; 2487 ns->tx_carrier_errors = 0; 2488 ns->tx_fifo_errors = 0; 2489 ns->tx_heartbeat_errors = 0; 2490 ns->tx_window_errors = 0; 2491 2492 ns->tx_errors = stats.tx_error_frames; 2493 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2494 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2495 } 2496 2497 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2498 { 2499 unsigned int mbox; 2500 int ret = 0, prtad, devad; 2501 struct port_info *pi = netdev_priv(dev); 2502 struct adapter *adapter = pi->adapter; 2503 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2504 2505 switch (cmd) { 2506 case SIOCGMIIPHY: 2507 if (pi->mdio_addr < 0) 2508 return -EOPNOTSUPP; 2509 data->phy_id = pi->mdio_addr; 2510 break; 2511 case SIOCGMIIREG: 2512 case SIOCSMIIREG: 2513 if (mdio_phy_id_is_c45(data->phy_id)) { 2514 prtad = mdio_phy_id_prtad(data->phy_id); 2515 devad = mdio_phy_id_devad(data->phy_id); 2516 } else if (data->phy_id < 32) { 2517 prtad = data->phy_id; 2518 devad = 0; 2519 data->reg_num &= 0x1f; 2520 } else 2521 return -EINVAL; 2522 2523 mbox = pi->adapter->pf; 2524 if (cmd == SIOCGMIIREG) 2525 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2526 data->reg_num, &data->val_out); 2527 else 2528 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2529 data->reg_num, data->val_in); 2530 break; 2531 case SIOCGHWTSTAMP: 2532 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2533 sizeof(pi->tstamp_config)) ? 2534 -EFAULT : 0; 2535 case SIOCSHWTSTAMP: 2536 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2537 sizeof(pi->tstamp_config))) 2538 return -EFAULT; 2539 2540 if (!is_t4(adapter->params.chip)) { 2541 switch (pi->tstamp_config.tx_type) { 2542 case HWTSTAMP_TX_OFF: 2543 case HWTSTAMP_TX_ON: 2544 break; 2545 default: 2546 return -ERANGE; 2547 } 2548 2549 switch (pi->tstamp_config.rx_filter) { 2550 case HWTSTAMP_FILTER_NONE: 2551 pi->rxtstamp = false; 2552 break; 2553 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2554 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2555 cxgb4_ptprx_timestamping(pi, pi->port_id, 2556 PTP_TS_L4); 2557 break; 2558 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2559 cxgb4_ptprx_timestamping(pi, pi->port_id, 2560 PTP_TS_L2_L4); 2561 break; 2562 case HWTSTAMP_FILTER_ALL: 2563 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2564 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2565 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2566 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2567 pi->rxtstamp = true; 2568 break; 2569 default: 2570 pi->tstamp_config.rx_filter = 2571 HWTSTAMP_FILTER_NONE; 2572 return -ERANGE; 2573 } 2574 2575 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2576 (pi->tstamp_config.rx_filter == 2577 HWTSTAMP_FILTER_NONE)) { 2578 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2579 pi->ptp_enable = false; 2580 } 2581 2582 if (pi->tstamp_config.rx_filter != 2583 HWTSTAMP_FILTER_NONE) { 2584 if (cxgb4_ptp_redirect_rx_packet(adapter, 2585 pi) >= 0) 2586 pi->ptp_enable = true; 2587 } 2588 } else { 2589 /* For T4 Adapters */ 2590 switch (pi->tstamp_config.rx_filter) { 2591 case HWTSTAMP_FILTER_NONE: 2592 pi->rxtstamp = false; 2593 break; 2594 case HWTSTAMP_FILTER_ALL: 2595 pi->rxtstamp = true; 2596 break; 2597 default: 2598 pi->tstamp_config.rx_filter = 2599 HWTSTAMP_FILTER_NONE; 2600 return -ERANGE; 2601 } 2602 } 2603 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2604 sizeof(pi->tstamp_config)) ? 2605 -EFAULT : 0; 2606 default: 2607 return -EOPNOTSUPP; 2608 } 2609 return ret; 2610 } 2611 2612 static void cxgb_set_rxmode(struct net_device *dev) 2613 { 2614 /* unfortunately we can't return errors to the stack */ 2615 set_rxmode(dev, -1, false); 2616 } 2617 2618 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2619 { 2620 int ret; 2621 struct port_info *pi = netdev_priv(dev); 2622 2623 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2624 -1, -1, -1, true); 2625 if (!ret) 2626 dev->mtu = new_mtu; 2627 return ret; 2628 } 2629 2630 #ifdef CONFIG_PCI_IOV 2631 static int cxgb4_mgmt_open(struct net_device *dev) 2632 { 2633 /* Turn carrier off since we don't have to transmit anything on this 2634 * interface. 2635 */ 2636 netif_carrier_off(dev); 2637 return 0; 2638 } 2639 2640 /* Fill MAC address that will be assigned by the FW */ 2641 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2642 { 2643 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2644 unsigned int i, vf, nvfs; 2645 u16 a, b; 2646 int err; 2647 u8 *na; 2648 2649 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2650 PCI_CAP_ID_VPD); 2651 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2652 if (err) 2653 return; 2654 2655 na = adap->params.vpd.na; 2656 for (i = 0; i < ETH_ALEN; i++) 2657 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2658 hex2val(na[2 * i + 1])); 2659 2660 a = (hw_addr[0] << 8) | hw_addr[1]; 2661 b = (hw_addr[1] << 8) | hw_addr[2]; 2662 a ^= b; 2663 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2664 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2665 macaddr[0] = a >> 8; 2666 macaddr[1] = a & 0xff; 2667 2668 for (i = 2; i < 5; i++) 2669 macaddr[i] = hw_addr[i + 1]; 2670 2671 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2672 vf < nvfs; vf++) { 2673 macaddr[5] = adap->pf * 16 + vf; 2674 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2675 } 2676 } 2677 2678 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2679 { 2680 struct port_info *pi = netdev_priv(dev); 2681 struct adapter *adap = pi->adapter; 2682 int ret; 2683 2684 /* verify MAC addr is valid */ 2685 if (!is_valid_ether_addr(mac)) { 2686 dev_err(pi->adapter->pdev_dev, 2687 "Invalid Ethernet address %pM for VF %d\n", 2688 mac, vf); 2689 return -EINVAL; 2690 } 2691 2692 dev_info(pi->adapter->pdev_dev, 2693 "Setting MAC %pM on VF %d\n", mac, vf); 2694 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2695 if (!ret) 2696 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2697 return ret; 2698 } 2699 2700 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2701 int vf, struct ifla_vf_info *ivi) 2702 { 2703 struct port_info *pi = netdev_priv(dev); 2704 struct adapter *adap = pi->adapter; 2705 struct vf_info *vfinfo; 2706 2707 if (vf >= adap->num_vfs) 2708 return -EINVAL; 2709 vfinfo = &adap->vfinfo[vf]; 2710 2711 ivi->vf = vf; 2712 ivi->max_tx_rate = vfinfo->tx_rate; 2713 ivi->min_tx_rate = 0; 2714 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2715 ivi->vlan = vfinfo->vlan; 2716 return 0; 2717 } 2718 2719 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2720 struct netdev_phys_item_id *ppid) 2721 { 2722 struct port_info *pi = netdev_priv(dev); 2723 unsigned int phy_port_id; 2724 2725 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2726 ppid->id_len = sizeof(phy_port_id); 2727 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2728 return 0; 2729 } 2730 2731 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2732 int min_tx_rate, int max_tx_rate) 2733 { 2734 struct port_info *pi = netdev_priv(dev); 2735 struct adapter *adap = pi->adapter; 2736 unsigned int link_ok, speed, mtu; 2737 u32 fw_pfvf, fw_class; 2738 int class_id = vf; 2739 int ret; 2740 u16 pktsize; 2741 2742 if (vf >= adap->num_vfs) 2743 return -EINVAL; 2744 2745 if (min_tx_rate) { 2746 dev_err(adap->pdev_dev, 2747 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2748 min_tx_rate, vf); 2749 return -EINVAL; 2750 } 2751 2752 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2753 if (ret != FW_SUCCESS) { 2754 dev_err(adap->pdev_dev, 2755 "Failed to get link information for VF %d\n", vf); 2756 return -EINVAL; 2757 } 2758 2759 if (!link_ok) { 2760 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2761 return -EINVAL; 2762 } 2763 2764 if (max_tx_rate > speed) { 2765 dev_err(adap->pdev_dev, 2766 "Max tx rate %d for VF %d can't be > link-speed %u", 2767 max_tx_rate, vf, speed); 2768 return -EINVAL; 2769 } 2770 2771 pktsize = mtu; 2772 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2773 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2774 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2775 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2776 /* configure Traffic Class for rate-limiting */ 2777 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2778 SCHED_CLASS_LEVEL_CL_RL, 2779 SCHED_CLASS_MODE_CLASS, 2780 SCHED_CLASS_RATEUNIT_BITS, 2781 SCHED_CLASS_RATEMODE_ABS, 2782 pi->tx_chan, class_id, 0, 2783 max_tx_rate * 1000, 0, pktsize); 2784 if (ret) { 2785 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2786 ret); 2787 return -EINVAL; 2788 } 2789 dev_info(adap->pdev_dev, 2790 "Class %d with MSS %u configured with rate %u\n", 2791 class_id, pktsize, max_tx_rate); 2792 2793 /* bind VF to configured Traffic Class */ 2794 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2795 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2796 fw_class = class_id; 2797 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2798 &fw_class); 2799 if (ret) { 2800 dev_err(adap->pdev_dev, 2801 "Err %d in binding VF %d to Traffic Class %d\n", 2802 ret, vf, class_id); 2803 return -EINVAL; 2804 } 2805 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2806 adap->pf, vf, class_id); 2807 adap->vfinfo[vf].tx_rate = max_tx_rate; 2808 return 0; 2809 } 2810 2811 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2812 u16 vlan, u8 qos, __be16 vlan_proto) 2813 { 2814 struct port_info *pi = netdev_priv(dev); 2815 struct adapter *adap = pi->adapter; 2816 int ret; 2817 2818 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2819 return -EINVAL; 2820 2821 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2822 return -EPROTONOSUPPORT; 2823 2824 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2825 if (!ret) { 2826 adap->vfinfo[vf].vlan = vlan; 2827 return 0; 2828 } 2829 2830 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2831 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2832 return ret; 2833 } 2834 #endif /* CONFIG_PCI_IOV */ 2835 2836 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2837 { 2838 int ret; 2839 struct sockaddr *addr = p; 2840 struct port_info *pi = netdev_priv(dev); 2841 2842 if (!is_valid_ether_addr(addr->sa_data)) 2843 return -EADDRNOTAVAIL; 2844 2845 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2846 pi->xact_addr_filt, addr->sa_data, true, true); 2847 if (ret < 0) 2848 return ret; 2849 2850 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2851 pi->xact_addr_filt = ret; 2852 return 0; 2853 } 2854 2855 #ifdef CONFIG_NET_POLL_CONTROLLER 2856 static void cxgb_netpoll(struct net_device *dev) 2857 { 2858 struct port_info *pi = netdev_priv(dev); 2859 struct adapter *adap = pi->adapter; 2860 2861 if (adap->flags & USING_MSIX) { 2862 int i; 2863 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2864 2865 for (i = pi->nqsets; i; i--, rx++) 2866 t4_sge_intr_msix(0, &rx->rspq); 2867 } else 2868 t4_intr_handler(adap)(0, adap); 2869 } 2870 #endif 2871 2872 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2873 { 2874 struct port_info *pi = netdev_priv(dev); 2875 struct adapter *adap = pi->adapter; 2876 struct sched_class *e; 2877 struct ch_sched_params p; 2878 struct ch_sched_queue qe; 2879 u32 req_rate; 2880 int err = 0; 2881 2882 if (!can_sched(dev)) 2883 return -ENOTSUPP; 2884 2885 if (index < 0 || index > pi->nqsets - 1) 2886 return -EINVAL; 2887 2888 if (!(adap->flags & FULL_INIT_DONE)) { 2889 dev_err(adap->pdev_dev, 2890 "Failed to rate limit on queue %d. Link Down?\n", 2891 index); 2892 return -EINVAL; 2893 } 2894 2895 /* Convert from Mbps to Kbps */ 2896 req_rate = rate * 1000; 2897 2898 /* Max rate is 100 Gbps */ 2899 if (req_rate > SCHED_MAX_RATE_KBPS) { 2900 dev_err(adap->pdev_dev, 2901 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2902 rate, SCHED_MAX_RATE_KBPS / 1000); 2903 return -ERANGE; 2904 } 2905 2906 /* First unbind the queue from any existing class */ 2907 memset(&qe, 0, sizeof(qe)); 2908 qe.queue = index; 2909 qe.class = SCHED_CLS_NONE; 2910 2911 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2912 if (err) { 2913 dev_err(adap->pdev_dev, 2914 "Unbinding Queue %d on port %d fail. Err: %d\n", 2915 index, pi->port_id, err); 2916 return err; 2917 } 2918 2919 /* Queue already unbound */ 2920 if (!req_rate) 2921 return 0; 2922 2923 /* Fetch any available unused or matching scheduling class */ 2924 memset(&p, 0, sizeof(p)); 2925 p.type = SCHED_CLASS_TYPE_PACKET; 2926 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2927 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2928 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2929 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2930 p.u.params.channel = pi->tx_chan; 2931 p.u.params.class = SCHED_CLS_NONE; 2932 p.u.params.minrate = 0; 2933 p.u.params.maxrate = req_rate; 2934 p.u.params.weight = 0; 2935 p.u.params.pktsize = dev->mtu; 2936 2937 e = cxgb4_sched_class_alloc(dev, &p); 2938 if (!e) 2939 return -ENOMEM; 2940 2941 /* Bind the queue to a scheduling class */ 2942 memset(&qe, 0, sizeof(qe)); 2943 qe.queue = index; 2944 qe.class = e->idx; 2945 2946 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2947 if (err) 2948 dev_err(adap->pdev_dev, 2949 "Queue rate limiting failed. Err: %d\n", err); 2950 return err; 2951 } 2952 2953 static int cxgb_setup_tc_flower(struct net_device *dev, 2954 struct tc_cls_flower_offload *cls_flower) 2955 { 2956 switch (cls_flower->command) { 2957 case TC_CLSFLOWER_REPLACE: 2958 return cxgb4_tc_flower_replace(dev, cls_flower); 2959 case TC_CLSFLOWER_DESTROY: 2960 return cxgb4_tc_flower_destroy(dev, cls_flower); 2961 case TC_CLSFLOWER_STATS: 2962 return cxgb4_tc_flower_stats(dev, cls_flower); 2963 default: 2964 return -EOPNOTSUPP; 2965 } 2966 } 2967 2968 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 2969 struct tc_cls_u32_offload *cls_u32) 2970 { 2971 switch (cls_u32->command) { 2972 case TC_CLSU32_NEW_KNODE: 2973 case TC_CLSU32_REPLACE_KNODE: 2974 return cxgb4_config_knode(dev, cls_u32); 2975 case TC_CLSU32_DELETE_KNODE: 2976 return cxgb4_delete_knode(dev, cls_u32); 2977 default: 2978 return -EOPNOTSUPP; 2979 } 2980 } 2981 2982 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2983 void *cb_priv) 2984 { 2985 struct net_device *dev = cb_priv; 2986 struct port_info *pi = netdev2pinfo(dev); 2987 struct adapter *adap = netdev2adap(dev); 2988 2989 if (!(adap->flags & FULL_INIT_DONE)) { 2990 dev_err(adap->pdev_dev, 2991 "Failed to setup tc on port %d. Link Down?\n", 2992 pi->port_id); 2993 return -EINVAL; 2994 } 2995 2996 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 2997 return -EOPNOTSUPP; 2998 2999 switch (type) { 3000 case TC_SETUP_CLSU32: 3001 return cxgb_setup_tc_cls_u32(dev, type_data); 3002 case TC_SETUP_CLSFLOWER: 3003 return cxgb_setup_tc_flower(dev, type_data); 3004 default: 3005 return -EOPNOTSUPP; 3006 } 3007 } 3008 3009 static int cxgb_setup_tc_block(struct net_device *dev, 3010 struct tc_block_offload *f) 3011 { 3012 struct port_info *pi = netdev2pinfo(dev); 3013 3014 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3015 return -EOPNOTSUPP; 3016 3017 switch (f->command) { 3018 case TC_BLOCK_BIND: 3019 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3020 pi, dev, f->extack); 3021 case TC_BLOCK_UNBIND: 3022 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3023 return 0; 3024 default: 3025 return -EOPNOTSUPP; 3026 } 3027 } 3028 3029 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3030 void *type_data) 3031 { 3032 switch (type) { 3033 case TC_SETUP_BLOCK: 3034 return cxgb_setup_tc_block(dev, type_data); 3035 default: 3036 return -EOPNOTSUPP; 3037 } 3038 } 3039 3040 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3041 struct udp_tunnel_info *ti) 3042 { 3043 struct port_info *pi = netdev_priv(netdev); 3044 struct adapter *adapter = pi->adapter; 3045 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3046 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3047 int ret = 0, i; 3048 3049 if (chip_ver < CHELSIO_T6) 3050 return; 3051 3052 switch (ti->type) { 3053 case UDP_TUNNEL_TYPE_VXLAN: 3054 if (!adapter->vxlan_port_cnt || 3055 adapter->vxlan_port != ti->port) 3056 return; /* Invalid VxLAN destination port */ 3057 3058 adapter->vxlan_port_cnt--; 3059 if (adapter->vxlan_port_cnt) 3060 return; 3061 3062 adapter->vxlan_port = 0; 3063 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3064 break; 3065 case UDP_TUNNEL_TYPE_GENEVE: 3066 if (!adapter->geneve_port_cnt || 3067 adapter->geneve_port != ti->port) 3068 return; /* Invalid GENEVE destination port */ 3069 3070 adapter->geneve_port_cnt--; 3071 if (adapter->geneve_port_cnt) 3072 return; 3073 3074 adapter->geneve_port = 0; 3075 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3076 default: 3077 return; 3078 } 3079 3080 /* Matchall mac entries can be deleted only after all tunnel ports 3081 * are brought down or removed. 3082 */ 3083 if (!adapter->rawf_cnt) 3084 return; 3085 for_each_port(adapter, i) { 3086 pi = adap2pinfo(adapter, i); 3087 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3088 match_all_mac, match_all_mac, 3089 adapter->rawf_start + 3090 pi->port_id, 3091 1, pi->port_id, false); 3092 if (ret < 0) { 3093 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3094 i); 3095 return; 3096 } 3097 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3098 pi->port_id].refcnt); 3099 } 3100 } 3101 3102 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3103 struct udp_tunnel_info *ti) 3104 { 3105 struct port_info *pi = netdev_priv(netdev); 3106 struct adapter *adapter = pi->adapter; 3107 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3108 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3109 int i, ret; 3110 3111 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3112 return; 3113 3114 switch (ti->type) { 3115 case UDP_TUNNEL_TYPE_VXLAN: 3116 /* Callback for adding vxlan port can be called with the same 3117 * port for both IPv4 and IPv6. We should not disable the 3118 * offloading when the same port for both protocols is added 3119 * and later one of them is removed. 3120 */ 3121 if (adapter->vxlan_port_cnt && 3122 adapter->vxlan_port == ti->port) { 3123 adapter->vxlan_port_cnt++; 3124 return; 3125 } 3126 3127 /* We will support only one VxLAN port */ 3128 if (adapter->vxlan_port_cnt) { 3129 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3130 be16_to_cpu(adapter->vxlan_port), 3131 be16_to_cpu(ti->port)); 3132 return; 3133 } 3134 3135 adapter->vxlan_port = ti->port; 3136 adapter->vxlan_port_cnt = 1; 3137 3138 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3139 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3140 break; 3141 case UDP_TUNNEL_TYPE_GENEVE: 3142 if (adapter->geneve_port_cnt && 3143 adapter->geneve_port == ti->port) { 3144 adapter->geneve_port_cnt++; 3145 return; 3146 } 3147 3148 /* We will support only one GENEVE port */ 3149 if (adapter->geneve_port_cnt) { 3150 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3151 be16_to_cpu(adapter->geneve_port), 3152 be16_to_cpu(ti->port)); 3153 return; 3154 } 3155 3156 adapter->geneve_port = ti->port; 3157 adapter->geneve_port_cnt = 1; 3158 3159 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3160 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3161 default: 3162 return; 3163 } 3164 3165 /* Create a 'match all' mac filter entry for inner mac, 3166 * if raw mac interface is supported. Once the linux kernel provides 3167 * driver entry points for adding/deleting the inner mac addresses, 3168 * we will remove this 'match all' entry and fallback to adding 3169 * exact match filters. 3170 */ 3171 for_each_port(adapter, i) { 3172 pi = adap2pinfo(adapter, i); 3173 3174 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3175 match_all_mac, 3176 match_all_mac, 3177 adapter->rawf_start + 3178 pi->port_id, 3179 1, pi->port_id, false); 3180 if (ret < 0) { 3181 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3182 be16_to_cpu(ti->port)); 3183 cxgb_del_udp_tunnel(netdev, ti); 3184 return; 3185 } 3186 atomic_inc(&adapter->mps_encap[ret].refcnt); 3187 } 3188 } 3189 3190 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3191 struct net_device *dev, 3192 netdev_features_t features) 3193 { 3194 struct port_info *pi = netdev_priv(dev); 3195 struct adapter *adapter = pi->adapter; 3196 3197 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3198 return features; 3199 3200 /* Check if hw supports offload for this packet */ 3201 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3202 return features; 3203 3204 /* Offload is not supported for this encapsulated packet */ 3205 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3206 } 3207 3208 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3209 netdev_features_t features) 3210 { 3211 /* Disable GRO, if RX_CSUM is disabled */ 3212 if (!(features & NETIF_F_RXCSUM)) 3213 features &= ~NETIF_F_GRO; 3214 3215 return features; 3216 } 3217 3218 static const struct net_device_ops cxgb4_netdev_ops = { 3219 .ndo_open = cxgb_open, 3220 .ndo_stop = cxgb_close, 3221 .ndo_start_xmit = t4_start_xmit, 3222 .ndo_select_queue = cxgb_select_queue, 3223 .ndo_get_stats64 = cxgb_get_stats, 3224 .ndo_set_rx_mode = cxgb_set_rxmode, 3225 .ndo_set_mac_address = cxgb_set_mac_addr, 3226 .ndo_set_features = cxgb_set_features, 3227 .ndo_validate_addr = eth_validate_addr, 3228 .ndo_do_ioctl = cxgb_ioctl, 3229 .ndo_change_mtu = cxgb_change_mtu, 3230 #ifdef CONFIG_NET_POLL_CONTROLLER 3231 .ndo_poll_controller = cxgb_netpoll, 3232 #endif 3233 #ifdef CONFIG_CHELSIO_T4_FCOE 3234 .ndo_fcoe_enable = cxgb_fcoe_enable, 3235 .ndo_fcoe_disable = cxgb_fcoe_disable, 3236 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3237 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3238 .ndo_setup_tc = cxgb_setup_tc, 3239 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3240 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3241 .ndo_features_check = cxgb_features_check, 3242 .ndo_fix_features = cxgb_fix_features, 3243 }; 3244 3245 #ifdef CONFIG_PCI_IOV 3246 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3247 .ndo_open = cxgb4_mgmt_open, 3248 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3249 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3250 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3251 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3252 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3253 }; 3254 #endif 3255 3256 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3257 struct ethtool_drvinfo *info) 3258 { 3259 struct adapter *adapter = netdev2adap(dev); 3260 3261 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3262 strlcpy(info->version, cxgb4_driver_version, 3263 sizeof(info->version)); 3264 strlcpy(info->bus_info, pci_name(adapter->pdev), 3265 sizeof(info->bus_info)); 3266 } 3267 3268 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3269 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3270 }; 3271 3272 static void notify_fatal_err(struct work_struct *work) 3273 { 3274 struct adapter *adap; 3275 3276 adap = container_of(work, struct adapter, fatal_err_notify_task); 3277 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3278 } 3279 3280 void t4_fatal_err(struct adapter *adap) 3281 { 3282 int port; 3283 3284 if (pci_channel_offline(adap->pdev)) 3285 return; 3286 3287 /* Disable the SGE since ULDs are going to free resources that 3288 * could be exposed to the adapter. RDMA MWs for example... 3289 */ 3290 t4_shutdown_adapter(adap); 3291 for_each_port(adap, port) { 3292 struct net_device *dev = adap->port[port]; 3293 3294 /* If we get here in very early initialization the network 3295 * devices may not have been set up yet. 3296 */ 3297 if (!dev) 3298 continue; 3299 3300 netif_tx_stop_all_queues(dev); 3301 netif_carrier_off(dev); 3302 } 3303 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3304 queue_work(adap->workq, &adap->fatal_err_notify_task); 3305 } 3306 3307 static void setup_memwin(struct adapter *adap) 3308 { 3309 u32 nic_win_base = t4_get_util_window(adap); 3310 3311 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3312 } 3313 3314 static void setup_memwin_rdma(struct adapter *adap) 3315 { 3316 if (adap->vres.ocq.size) { 3317 u32 start; 3318 unsigned int sz_kb; 3319 3320 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3321 start &= PCI_BASE_ADDRESS_MEM_MASK; 3322 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3323 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3324 t4_write_reg(adap, 3325 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3326 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3327 t4_write_reg(adap, 3328 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3329 adap->vres.ocq.start); 3330 t4_read_reg(adap, 3331 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3332 } 3333 } 3334 3335 /* HMA Definitions */ 3336 3337 /* The maximum number of address that can be send in a single FW cmd */ 3338 #define HMA_MAX_ADDR_IN_CMD 5 3339 3340 #define HMA_PAGE_SIZE PAGE_SIZE 3341 3342 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3343 3344 #define HMA_PAGE_ORDER \ 3345 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3346 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3347 3348 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3349 * configuration(in units of MB). 3350 */ 3351 #define HMA_MIN_TOTAL_SIZE 1 3352 #define HMA_MAX_TOTAL_SIZE \ 3353 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3354 HMA_MAX_NO_FW_ADDRESS) >> 20) 3355 3356 static void adap_free_hma_mem(struct adapter *adapter) 3357 { 3358 struct scatterlist *iter; 3359 struct page *page; 3360 int i; 3361 3362 if (!adapter->hma.sgt) 3363 return; 3364 3365 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3366 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3367 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3368 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3369 } 3370 3371 for_each_sg(adapter->hma.sgt->sgl, iter, 3372 adapter->hma.sgt->orig_nents, i) { 3373 page = sg_page(iter); 3374 if (page) 3375 __free_pages(page, HMA_PAGE_ORDER); 3376 } 3377 3378 kfree(adapter->hma.phy_addr); 3379 sg_free_table(adapter->hma.sgt); 3380 kfree(adapter->hma.sgt); 3381 adapter->hma.sgt = NULL; 3382 } 3383 3384 static int adap_config_hma(struct adapter *adapter) 3385 { 3386 struct scatterlist *sgl, *iter; 3387 struct sg_table *sgt; 3388 struct page *newpage; 3389 unsigned int i, j, k; 3390 u32 param, hma_size; 3391 unsigned int ncmds; 3392 size_t page_size; 3393 u32 page_order; 3394 int node, ret; 3395 3396 /* HMA is supported only for T6+ cards. 3397 * Avoid initializing HMA in kdump kernels. 3398 */ 3399 if (is_kdump_kernel() || 3400 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3401 return 0; 3402 3403 /* Get the HMA region size required by fw */ 3404 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3405 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3406 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3407 1, ¶m, &hma_size); 3408 /* An error means card has its own memory or HMA is not supported by 3409 * the firmware. Return without any errors. 3410 */ 3411 if (ret || !hma_size) 3412 return 0; 3413 3414 if (hma_size < HMA_MIN_TOTAL_SIZE || 3415 hma_size > HMA_MAX_TOTAL_SIZE) { 3416 dev_err(adapter->pdev_dev, 3417 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3418 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3419 return -EINVAL; 3420 } 3421 3422 page_size = HMA_PAGE_SIZE; 3423 page_order = HMA_PAGE_ORDER; 3424 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3425 if (unlikely(!adapter->hma.sgt)) { 3426 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3427 return -ENOMEM; 3428 } 3429 sgt = adapter->hma.sgt; 3430 /* FW returned value will be in MB's 3431 */ 3432 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3433 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3434 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3435 kfree(adapter->hma.sgt); 3436 adapter->hma.sgt = NULL; 3437 return -ENOMEM; 3438 } 3439 3440 sgl = adapter->hma.sgt->sgl; 3441 node = dev_to_node(adapter->pdev_dev); 3442 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3443 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3444 __GFP_ZERO, page_order); 3445 if (!newpage) { 3446 dev_err(adapter->pdev_dev, 3447 "Not enough memory for HMA page allocation\n"); 3448 ret = -ENOMEM; 3449 goto free_hma; 3450 } 3451 sg_set_page(iter, newpage, page_size << page_order, 0); 3452 } 3453 3454 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3455 DMA_BIDIRECTIONAL); 3456 if (!sgt->nents) { 3457 dev_err(adapter->pdev_dev, 3458 "Not enough memory for HMA DMA mapping"); 3459 ret = -ENOMEM; 3460 goto free_hma; 3461 } 3462 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3463 3464 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3465 GFP_KERNEL); 3466 if (unlikely(!adapter->hma.phy_addr)) 3467 goto free_hma; 3468 3469 for_each_sg(sgl, iter, sgt->nents, i) { 3470 newpage = sg_page(iter); 3471 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3472 } 3473 3474 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3475 /* Pass on the addresses to firmware */ 3476 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3477 struct fw_hma_cmd hma_cmd; 3478 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3479 u8 soc = 0, eoc = 0; 3480 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3481 3482 soc = (i == 0) ? 1 : 0; 3483 eoc = (i == ncmds - 1) ? 1 : 0; 3484 3485 /* For last cmd, set naddr corresponding to remaining 3486 * addresses 3487 */ 3488 if (i == ncmds - 1) { 3489 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3490 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3491 } 3492 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3493 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3494 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3495 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3496 3497 hma_cmd.mode_to_pcie_params = 3498 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3499 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3500 3501 /* HMA cmd size specified in MB's */ 3502 hma_cmd.naddr_size = 3503 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3504 FW_HMA_CMD_NADDR_V(naddr)); 3505 3506 /* Total Page size specified in units of 4K */ 3507 hma_cmd.addr_size_pkd = 3508 htonl(FW_HMA_CMD_ADDR_SIZE_V 3509 ((page_size << page_order) >> 12)); 3510 3511 /* Fill the 5 addresses */ 3512 for (j = 0; j < naddr; j++) { 3513 hma_cmd.phy_address[j] = 3514 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3515 } 3516 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3517 sizeof(hma_cmd), &hma_cmd); 3518 if (ret) { 3519 dev_err(adapter->pdev_dev, 3520 "HMA FW command failed with err %d\n", ret); 3521 goto free_hma; 3522 } 3523 } 3524 3525 if (!ret) 3526 dev_info(adapter->pdev_dev, 3527 "Reserved %uMB host memory for HMA\n", hma_size); 3528 return ret; 3529 3530 free_hma: 3531 adap_free_hma_mem(adapter); 3532 return ret; 3533 } 3534 3535 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3536 { 3537 u32 v; 3538 int ret; 3539 3540 /* Now that we've successfully configured and initialized the adapter 3541 * can ask the Firmware what resources it has provisioned for us. 3542 */ 3543 ret = t4_get_pfres(adap); 3544 if (ret) { 3545 dev_err(adap->pdev_dev, 3546 "Unable to retrieve resource provisioning information\n"); 3547 return ret; 3548 } 3549 3550 /* get device capabilities */ 3551 memset(c, 0, sizeof(*c)); 3552 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3553 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3554 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3555 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3556 if (ret < 0) 3557 return ret; 3558 3559 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3560 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3561 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3562 if (ret < 0) 3563 return ret; 3564 3565 ret = t4_config_glbl_rss(adap, adap->pf, 3566 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3567 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3568 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3569 if (ret < 0) 3570 return ret; 3571 3572 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3573 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3574 FW_CMD_CAP_PF); 3575 if (ret < 0) 3576 return ret; 3577 3578 t4_sge_init(adap); 3579 3580 /* tweak some settings */ 3581 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3582 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3583 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3584 v = t4_read_reg(adap, TP_PIO_DATA_A); 3585 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3586 3587 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3588 adap->params.tp.tx_modq_map = 0xE4; 3589 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3590 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3591 3592 /* associate each Tx modulation queue with consecutive Tx channels */ 3593 v = 0x84218421; 3594 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3595 &v, 1, TP_TX_SCHED_HDR_A); 3596 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3597 &v, 1, TP_TX_SCHED_FIFO_A); 3598 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3599 &v, 1, TP_TX_SCHED_PCMD_A); 3600 3601 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3602 if (is_offload(adap)) { 3603 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3604 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3605 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3606 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3607 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3608 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3609 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3610 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3611 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3612 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3613 } 3614 3615 /* get basic stuff going */ 3616 return t4_early_init(adap, adap->pf); 3617 } 3618 3619 /* 3620 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3621 */ 3622 #define MAX_ATIDS 8192U 3623 3624 /* 3625 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3626 * 3627 * If the firmware we're dealing with has Configuration File support, then 3628 * we use that to perform all configuration 3629 */ 3630 3631 /* 3632 * Tweak configuration based on module parameters, etc. Most of these have 3633 * defaults assigned to them by Firmware Configuration Files (if we're using 3634 * them) but need to be explicitly set if we're using hard-coded 3635 * initialization. But even in the case of using Firmware Configuration 3636 * Files, we'd like to expose the ability to change these via module 3637 * parameters so these are essentially common tweaks/settings for 3638 * Configuration Files and hard-coded initialization ... 3639 */ 3640 static int adap_init0_tweaks(struct adapter *adapter) 3641 { 3642 /* 3643 * Fix up various Host-Dependent Parameters like Page Size, Cache 3644 * Line Size, etc. The firmware default is for a 4KB Page Size and 3645 * 64B Cache Line Size ... 3646 */ 3647 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3648 3649 /* 3650 * Process module parameters which affect early initialization. 3651 */ 3652 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3653 dev_err(&adapter->pdev->dev, 3654 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3655 rx_dma_offset); 3656 rx_dma_offset = 2; 3657 } 3658 t4_set_reg_field(adapter, SGE_CONTROL_A, 3659 PKTSHIFT_V(PKTSHIFT_M), 3660 PKTSHIFT_V(rx_dma_offset)); 3661 3662 /* 3663 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3664 * adds the pseudo header itself. 3665 */ 3666 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3667 CSUM_HAS_PSEUDO_HDR_F, 0); 3668 3669 return 0; 3670 } 3671 3672 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3673 * unto themselves and they contain their own firmware to perform their 3674 * tasks ... 3675 */ 3676 static int phy_aq1202_version(const u8 *phy_fw_data, 3677 size_t phy_fw_size) 3678 { 3679 int offset; 3680 3681 /* At offset 0x8 you're looking for the primary image's 3682 * starting offset which is 3 Bytes wide 3683 * 3684 * At offset 0xa of the primary image, you look for the offset 3685 * of the DRAM segment which is 3 Bytes wide. 3686 * 3687 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3688 * wide 3689 */ 3690 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3691 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3692 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3693 3694 offset = le24(phy_fw_data + 0x8) << 12; 3695 offset = le24(phy_fw_data + offset + 0xa); 3696 return be16(phy_fw_data + offset + 0x27e); 3697 3698 #undef be16 3699 #undef le16 3700 #undef le24 3701 } 3702 3703 static struct info_10gbt_phy_fw { 3704 unsigned int phy_fw_id; /* PCI Device ID */ 3705 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3706 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3707 int phy_flash; /* Has FLASH for PHY Firmware */ 3708 } phy_info_array[] = { 3709 { 3710 PHY_AQ1202_DEVICEID, 3711 PHY_AQ1202_FIRMWARE, 3712 phy_aq1202_version, 3713 1, 3714 }, 3715 { 3716 PHY_BCM84834_DEVICEID, 3717 PHY_BCM84834_FIRMWARE, 3718 NULL, 3719 0, 3720 }, 3721 { 0, NULL, NULL }, 3722 }; 3723 3724 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3725 { 3726 int i; 3727 3728 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3729 if (phy_info_array[i].phy_fw_id == devid) 3730 return &phy_info_array[i]; 3731 } 3732 return NULL; 3733 } 3734 3735 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3736 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3737 * we return a negative error number. If we transfer new firmware we return 1 3738 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3739 */ 3740 static int adap_init0_phy(struct adapter *adap) 3741 { 3742 const struct firmware *phyf; 3743 int ret; 3744 struct info_10gbt_phy_fw *phy_info; 3745 3746 /* Use the device ID to determine which PHY file to flash. 3747 */ 3748 phy_info = find_phy_info(adap->pdev->device); 3749 if (!phy_info) { 3750 dev_warn(adap->pdev_dev, 3751 "No PHY Firmware file found for this PHY\n"); 3752 return -EOPNOTSUPP; 3753 } 3754 3755 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3756 * use that. The adapter firmware provides us with a memory buffer 3757 * where we can load a PHY firmware file from the host if we want to 3758 * override the PHY firmware File in flash. 3759 */ 3760 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3761 adap->pdev_dev); 3762 if (ret < 0) { 3763 /* For adapters without FLASH attached to PHY for their 3764 * firmware, it's obviously a fatal error if we can't get the 3765 * firmware to the adapter. For adapters with PHY firmware 3766 * FLASH storage, it's worth a warning if we can't find the 3767 * PHY Firmware but we'll neuter the error ... 3768 */ 3769 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3770 "/lib/firmware/%s, error %d\n", 3771 phy_info->phy_fw_file, -ret); 3772 if (phy_info->phy_flash) { 3773 int cur_phy_fw_ver = 0; 3774 3775 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3776 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3777 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3778 ret = 0; 3779 } 3780 3781 return ret; 3782 } 3783 3784 /* Load PHY Firmware onto adapter. 3785 */ 3786 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3787 phy_info->phy_fw_version, 3788 (u8 *)phyf->data, phyf->size); 3789 if (ret < 0) 3790 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3791 -ret); 3792 else if (ret > 0) { 3793 int new_phy_fw_ver = 0; 3794 3795 if (phy_info->phy_fw_version) 3796 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3797 phyf->size); 3798 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3799 "Firmware /lib/firmware/%s, version %#x\n", 3800 phy_info->phy_fw_file, new_phy_fw_ver); 3801 } 3802 3803 release_firmware(phyf); 3804 3805 return ret; 3806 } 3807 3808 /* 3809 * Attempt to initialize the adapter via a Firmware Configuration File. 3810 */ 3811 static int adap_init0_config(struct adapter *adapter, int reset) 3812 { 3813 struct fw_caps_config_cmd caps_cmd; 3814 const struct firmware *cf; 3815 unsigned long mtype = 0, maddr = 0; 3816 u32 finiver, finicsum, cfcsum; 3817 int ret; 3818 int config_issued = 0; 3819 char *fw_config_file, fw_config_file_path[256]; 3820 char *config_name = NULL; 3821 3822 /* 3823 * Reset device if necessary. 3824 */ 3825 if (reset) { 3826 ret = t4_fw_reset(adapter, adapter->mbox, 3827 PIORSTMODE_F | PIORST_F); 3828 if (ret < 0) 3829 goto bye; 3830 } 3831 3832 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3833 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3834 * to be performed after any global adapter RESET above since some 3835 * PHYs only have local RAM copies of the PHY firmware. 3836 */ 3837 if (is_10gbt_device(adapter->pdev->device)) { 3838 ret = adap_init0_phy(adapter); 3839 if (ret < 0) 3840 goto bye; 3841 } 3842 /* 3843 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3844 * then use that. Otherwise, use the configuration file stored 3845 * in the adapter flash ... 3846 */ 3847 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3848 case CHELSIO_T4: 3849 fw_config_file = FW4_CFNAME; 3850 break; 3851 case CHELSIO_T5: 3852 fw_config_file = FW5_CFNAME; 3853 break; 3854 case CHELSIO_T6: 3855 fw_config_file = FW6_CFNAME; 3856 break; 3857 default: 3858 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3859 adapter->pdev->device); 3860 ret = -EINVAL; 3861 goto bye; 3862 } 3863 3864 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3865 if (ret < 0) { 3866 config_name = "On FLASH"; 3867 mtype = FW_MEMTYPE_CF_FLASH; 3868 maddr = t4_flash_cfg_addr(adapter); 3869 } else { 3870 u32 params[7], val[7]; 3871 3872 sprintf(fw_config_file_path, 3873 "/lib/firmware/%s", fw_config_file); 3874 config_name = fw_config_file_path; 3875 3876 if (cf->size >= FLASH_CFG_MAX_SIZE) 3877 ret = -ENOMEM; 3878 else { 3879 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3880 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3881 ret = t4_query_params(adapter, adapter->mbox, 3882 adapter->pf, 0, 1, params, val); 3883 if (ret == 0) { 3884 /* 3885 * For t4_memory_rw() below addresses and 3886 * sizes have to be in terms of multiples of 4 3887 * bytes. So, if the Configuration File isn't 3888 * a multiple of 4 bytes in length we'll have 3889 * to write that out separately since we can't 3890 * guarantee that the bytes following the 3891 * residual byte in the buffer returned by 3892 * request_firmware() are zeroed out ... 3893 */ 3894 size_t resid = cf->size & 0x3; 3895 size_t size = cf->size & ~0x3; 3896 __be32 *data = (__be32 *)cf->data; 3897 3898 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3899 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3900 3901 spin_lock(&adapter->win0_lock); 3902 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3903 size, data, T4_MEMORY_WRITE); 3904 if (ret == 0 && resid != 0) { 3905 union { 3906 __be32 word; 3907 char buf[4]; 3908 } last; 3909 int i; 3910 3911 last.word = data[size >> 2]; 3912 for (i = resid; i < 4; i++) 3913 last.buf[i] = 0; 3914 ret = t4_memory_rw(adapter, 0, mtype, 3915 maddr + size, 3916 4, &last.word, 3917 T4_MEMORY_WRITE); 3918 } 3919 spin_unlock(&adapter->win0_lock); 3920 } 3921 } 3922 3923 release_firmware(cf); 3924 if (ret) 3925 goto bye; 3926 } 3927 3928 /* 3929 * Issue a Capability Configuration command to the firmware to get it 3930 * to parse the Configuration File. We don't use t4_fw_config_file() 3931 * because we want the ability to modify various features after we've 3932 * processed the configuration file ... 3933 */ 3934 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3935 caps_cmd.op_to_write = 3936 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3937 FW_CMD_REQUEST_F | 3938 FW_CMD_READ_F); 3939 caps_cmd.cfvalid_to_len16 = 3940 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3941 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3942 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3943 FW_LEN16(caps_cmd)); 3944 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3945 &caps_cmd); 3946 3947 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3948 * Configuration File in FLASH), our last gasp effort is to use the 3949 * Firmware Configuration File which is embedded in the firmware. A 3950 * very few early versions of the firmware didn't have one embedded 3951 * but we can ignore those. 3952 */ 3953 if (ret == -ENOENT) { 3954 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3955 caps_cmd.op_to_write = 3956 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3957 FW_CMD_REQUEST_F | 3958 FW_CMD_READ_F); 3959 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3960 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3961 sizeof(caps_cmd), &caps_cmd); 3962 config_name = "Firmware Default"; 3963 } 3964 3965 config_issued = 1; 3966 if (ret < 0) 3967 goto bye; 3968 3969 finiver = ntohl(caps_cmd.finiver); 3970 finicsum = ntohl(caps_cmd.finicsum); 3971 cfcsum = ntohl(caps_cmd.cfcsum); 3972 if (finicsum != cfcsum) 3973 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3974 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3975 finicsum, cfcsum); 3976 3977 /* 3978 * And now tell the firmware to use the configuration we just loaded. 3979 */ 3980 caps_cmd.op_to_write = 3981 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3982 FW_CMD_REQUEST_F | 3983 FW_CMD_WRITE_F); 3984 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3985 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3986 NULL); 3987 if (ret < 0) 3988 goto bye; 3989 3990 /* 3991 * Tweak configuration based on system architecture, module 3992 * parameters, etc. 3993 */ 3994 ret = adap_init0_tweaks(adapter); 3995 if (ret < 0) 3996 goto bye; 3997 3998 /* We will proceed even if HMA init fails. */ 3999 ret = adap_config_hma(adapter); 4000 if (ret) 4001 dev_err(adapter->pdev_dev, 4002 "HMA configuration failed with error %d\n", ret); 4003 4004 /* 4005 * And finally tell the firmware to initialize itself using the 4006 * parameters from the Configuration File. 4007 */ 4008 ret = t4_fw_initialize(adapter, adapter->mbox); 4009 if (ret < 0) 4010 goto bye; 4011 4012 /* Emit Firmware Configuration File information and return 4013 * successfully. 4014 */ 4015 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4016 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4017 config_name, finiver, cfcsum); 4018 return 0; 4019 4020 /* 4021 * Something bad happened. Return the error ... (If the "error" 4022 * is that there's no Configuration File on the adapter we don't 4023 * want to issue a warning since this is fairly common.) 4024 */ 4025 bye: 4026 if (config_issued && ret != -ENOENT) 4027 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4028 config_name, -ret); 4029 return ret; 4030 } 4031 4032 static struct fw_info fw_info_array[] = { 4033 { 4034 .chip = CHELSIO_T4, 4035 .fs_name = FW4_CFNAME, 4036 .fw_mod_name = FW4_FNAME, 4037 .fw_hdr = { 4038 .chip = FW_HDR_CHIP_T4, 4039 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4040 .intfver_nic = FW_INTFVER(T4, NIC), 4041 .intfver_vnic = FW_INTFVER(T4, VNIC), 4042 .intfver_ri = FW_INTFVER(T4, RI), 4043 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4044 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4045 }, 4046 }, { 4047 .chip = CHELSIO_T5, 4048 .fs_name = FW5_CFNAME, 4049 .fw_mod_name = FW5_FNAME, 4050 .fw_hdr = { 4051 .chip = FW_HDR_CHIP_T5, 4052 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4053 .intfver_nic = FW_INTFVER(T5, NIC), 4054 .intfver_vnic = FW_INTFVER(T5, VNIC), 4055 .intfver_ri = FW_INTFVER(T5, RI), 4056 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4057 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4058 }, 4059 }, { 4060 .chip = CHELSIO_T6, 4061 .fs_name = FW6_CFNAME, 4062 .fw_mod_name = FW6_FNAME, 4063 .fw_hdr = { 4064 .chip = FW_HDR_CHIP_T6, 4065 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4066 .intfver_nic = FW_INTFVER(T6, NIC), 4067 .intfver_vnic = FW_INTFVER(T6, VNIC), 4068 .intfver_ofld = FW_INTFVER(T6, OFLD), 4069 .intfver_ri = FW_INTFVER(T6, RI), 4070 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4071 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4072 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4073 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4074 }, 4075 } 4076 4077 }; 4078 4079 static struct fw_info *find_fw_info(int chip) 4080 { 4081 int i; 4082 4083 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4084 if (fw_info_array[i].chip == chip) 4085 return &fw_info_array[i]; 4086 } 4087 return NULL; 4088 } 4089 4090 /* 4091 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4092 */ 4093 static int adap_init0(struct adapter *adap) 4094 { 4095 int ret; 4096 u32 v, port_vec; 4097 enum dev_state state; 4098 u32 params[7], val[7]; 4099 struct fw_caps_config_cmd caps_cmd; 4100 int reset = 1; 4101 4102 /* Grab Firmware Device Log parameters as early as possible so we have 4103 * access to it for debugging, etc. 4104 */ 4105 ret = t4_init_devlog_params(adap); 4106 if (ret < 0) 4107 return ret; 4108 4109 /* Contact FW, advertising Master capability */ 4110 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4111 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4112 if (ret < 0) { 4113 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4114 ret); 4115 return ret; 4116 } 4117 if (ret == adap->mbox) 4118 adap->flags |= MASTER_PF; 4119 4120 /* 4121 * If we're the Master PF Driver and the device is uninitialized, 4122 * then let's consider upgrading the firmware ... (We always want 4123 * to check the firmware version number in order to A. get it for 4124 * later reporting and B. to warn if the currently loaded firmware 4125 * is excessively mismatched relative to the driver.) 4126 */ 4127 4128 t4_get_version_info(adap); 4129 ret = t4_check_fw_version(adap); 4130 /* If firmware is too old (not supported by driver) force an update. */ 4131 if (ret) 4132 state = DEV_STATE_UNINIT; 4133 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4134 struct fw_info *fw_info; 4135 struct fw_hdr *card_fw; 4136 const struct firmware *fw; 4137 const u8 *fw_data = NULL; 4138 unsigned int fw_size = 0; 4139 4140 /* This is the firmware whose headers the driver was compiled 4141 * against 4142 */ 4143 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4144 if (fw_info == NULL) { 4145 dev_err(adap->pdev_dev, 4146 "unable to get firmware info for chip %d.\n", 4147 CHELSIO_CHIP_VERSION(adap->params.chip)); 4148 return -EINVAL; 4149 } 4150 4151 /* allocate memory to read the header of the firmware on the 4152 * card 4153 */ 4154 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4155 if (!card_fw) { 4156 ret = -ENOMEM; 4157 goto bye; 4158 } 4159 4160 /* Get FW from from /lib/firmware/ */ 4161 ret = request_firmware(&fw, fw_info->fw_mod_name, 4162 adap->pdev_dev); 4163 if (ret < 0) { 4164 dev_err(adap->pdev_dev, 4165 "unable to load firmware image %s, error %d\n", 4166 fw_info->fw_mod_name, ret); 4167 } else { 4168 fw_data = fw->data; 4169 fw_size = fw->size; 4170 } 4171 4172 /* upgrade FW logic */ 4173 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4174 state, &reset); 4175 4176 /* Cleaning up */ 4177 release_firmware(fw); 4178 kvfree(card_fw); 4179 4180 if (ret < 0) 4181 goto bye; 4182 } 4183 4184 /* If the firmware is initialized already, emit a simply note to that 4185 * effect. Otherwise, it's time to try initializing the adapter. 4186 */ 4187 if (state == DEV_STATE_INIT) { 4188 ret = adap_config_hma(adap); 4189 if (ret) 4190 dev_err(adap->pdev_dev, 4191 "HMA configuration failed with error %d\n", 4192 ret); 4193 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4194 "Adapter already initialized\n", 4195 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4196 } else { 4197 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4198 "Initializing adapter\n"); 4199 4200 /* Find out whether we're dealing with a version of the 4201 * firmware which has configuration file support. 4202 */ 4203 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4204 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4205 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4206 params, val); 4207 4208 /* If the firmware doesn't support Configuration Files, 4209 * return an error. 4210 */ 4211 if (ret < 0) { 4212 dev_err(adap->pdev_dev, "firmware doesn't support " 4213 "Firmware Configuration Files\n"); 4214 goto bye; 4215 } 4216 4217 /* The firmware provides us with a memory buffer where we can 4218 * load a Configuration File from the host if we want to 4219 * override the Configuration File in flash. 4220 */ 4221 ret = adap_init0_config(adap, reset); 4222 if (ret == -ENOENT) { 4223 dev_err(adap->pdev_dev, "no Configuration File " 4224 "present on adapter.\n"); 4225 goto bye; 4226 } 4227 if (ret < 0) { 4228 dev_err(adap->pdev_dev, "could not initialize " 4229 "adapter, error %d\n", -ret); 4230 goto bye; 4231 } 4232 } 4233 4234 /* Now that we've successfully configured and initialized the adapter 4235 * (or found it already initialized), we can ask the Firmware what 4236 * resources it has provisioned for us. 4237 */ 4238 ret = t4_get_pfres(adap); 4239 if (ret) { 4240 dev_err(adap->pdev_dev, 4241 "Unable to retrieve resource provisioning information\n"); 4242 goto bye; 4243 } 4244 4245 /* Grab VPD parameters. This should be done after we establish a 4246 * connection to the firmware since some of the VPD parameters 4247 * (notably the Core Clock frequency) are retrieved via requests to 4248 * the firmware. On the other hand, we need these fairly early on 4249 * so we do this right after getting ahold of the firmware. 4250 * 4251 * We need to do this after initializing the adapter because someone 4252 * could have FLASHed a new VPD which won't be read by the firmware 4253 * until we do the RESET ... 4254 */ 4255 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4256 if (ret < 0) 4257 goto bye; 4258 4259 /* Find out what ports are available to us. Note that we need to do 4260 * this before calling adap_init0_no_config() since it needs nports 4261 * and portvec ... 4262 */ 4263 v = 4264 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4265 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4266 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4267 if (ret < 0) 4268 goto bye; 4269 4270 adap->params.nports = hweight32(port_vec); 4271 adap->params.portvec = port_vec; 4272 4273 /* Give the SGE code a chance to pull in anything that it needs ... 4274 * Note that this must be called after we retrieve our VPD parameters 4275 * in order to know how to convert core ticks to seconds, etc. 4276 */ 4277 ret = t4_sge_init(adap); 4278 if (ret < 0) 4279 goto bye; 4280 4281 if (is_bypass_device(adap->pdev->device)) 4282 adap->params.bypass = 1; 4283 4284 /* 4285 * Grab some of our basic fundamental operating parameters. 4286 */ 4287 #define FW_PARAM_DEV(param) \ 4288 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4289 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4290 4291 #define FW_PARAM_PFVF(param) \ 4292 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4293 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4294 FW_PARAMS_PARAM_Y_V(0) | \ 4295 FW_PARAMS_PARAM_Z_V(0) 4296 4297 params[0] = FW_PARAM_PFVF(EQ_START); 4298 params[1] = FW_PARAM_PFVF(L2T_START); 4299 params[2] = FW_PARAM_PFVF(L2T_END); 4300 params[3] = FW_PARAM_PFVF(FILTER_START); 4301 params[4] = FW_PARAM_PFVF(FILTER_END); 4302 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4303 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4304 if (ret < 0) 4305 goto bye; 4306 adap->sge.egr_start = val[0]; 4307 adap->l2t_start = val[1]; 4308 adap->l2t_end = val[2]; 4309 adap->tids.ftid_base = val[3]; 4310 adap->tids.nftids = val[4] - val[3] + 1; 4311 adap->sge.ingr_start = val[5]; 4312 4313 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4314 /* Read the raw mps entries. In T6, the last 2 tcam entries 4315 * are reserved for raw mac addresses (rawf = 2, one per port). 4316 */ 4317 params[0] = FW_PARAM_PFVF(RAWF_START); 4318 params[1] = FW_PARAM_PFVF(RAWF_END); 4319 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4320 params, val); 4321 if (ret == 0) { 4322 adap->rawf_start = val[0]; 4323 adap->rawf_cnt = val[1] - val[0] + 1; 4324 } 4325 } 4326 4327 /* qids (ingress/egress) returned from firmware can be anywhere 4328 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4329 * Hence driver needs to allocate memory for this range to 4330 * store the queue info. Get the highest IQFLINT/EQ index returned 4331 * in FW_EQ_*_CMD.alloc command. 4332 */ 4333 params[0] = FW_PARAM_PFVF(EQ_END); 4334 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4335 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4336 if (ret < 0) 4337 goto bye; 4338 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4339 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4340 4341 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4342 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4343 if (!adap->sge.egr_map) { 4344 ret = -ENOMEM; 4345 goto bye; 4346 } 4347 4348 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4349 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4350 if (!adap->sge.ingr_map) { 4351 ret = -ENOMEM; 4352 goto bye; 4353 } 4354 4355 /* Allocate the memory for the vaious egress queue bitmaps 4356 * ie starving_fl, txq_maperr and blocked_fl. 4357 */ 4358 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4359 sizeof(long), GFP_KERNEL); 4360 if (!adap->sge.starving_fl) { 4361 ret = -ENOMEM; 4362 goto bye; 4363 } 4364 4365 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4366 sizeof(long), GFP_KERNEL); 4367 if (!adap->sge.txq_maperr) { 4368 ret = -ENOMEM; 4369 goto bye; 4370 } 4371 4372 #ifdef CONFIG_DEBUG_FS 4373 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4374 sizeof(long), GFP_KERNEL); 4375 if (!adap->sge.blocked_fl) { 4376 ret = -ENOMEM; 4377 goto bye; 4378 } 4379 #endif 4380 4381 params[0] = FW_PARAM_PFVF(CLIP_START); 4382 params[1] = FW_PARAM_PFVF(CLIP_END); 4383 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4384 if (ret < 0) 4385 goto bye; 4386 adap->clipt_start = val[0]; 4387 adap->clipt_end = val[1]; 4388 4389 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4390 * Classes supported by the hardware/firmware so we hard code it here 4391 * for now. 4392 */ 4393 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4394 4395 /* query params related to active filter region */ 4396 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4397 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4398 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4399 /* If Active filter size is set we enable establishing 4400 * offload connection through firmware work request 4401 */ 4402 if ((val[0] != val[1]) && (ret >= 0)) { 4403 adap->flags |= FW_OFLD_CONN; 4404 adap->tids.aftid_base = val[0]; 4405 adap->tids.aftid_end = val[1]; 4406 } 4407 4408 /* If we're running on newer firmware, let it know that we're 4409 * prepared to deal with encapsulated CPL messages. Older 4410 * firmware won't understand this and we'll just get 4411 * unencapsulated messages ... 4412 */ 4413 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4414 val[0] = 1; 4415 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4416 4417 /* 4418 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4419 * capability. Earlier versions of the firmware didn't have the 4420 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4421 * permission to use ULPTX MEMWRITE DSGL. 4422 */ 4423 if (is_t4(adap->params.chip)) { 4424 adap->params.ulptx_memwrite_dsgl = false; 4425 } else { 4426 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4427 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4428 1, params, val); 4429 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4430 } 4431 4432 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4433 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4434 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4435 1, params, val); 4436 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4437 4438 /* See if FW supports FW_FILTER2 work request */ 4439 if (is_t4(adap->params.chip)) { 4440 adap->params.filter2_wr_support = 0; 4441 } else { 4442 params[0] = FW_PARAM_DEV(FILTER2_WR); 4443 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4444 1, params, val); 4445 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4446 } 4447 4448 /* 4449 * Get device capabilities so we can determine what resources we need 4450 * to manage. 4451 */ 4452 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4453 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4454 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4455 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4456 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4457 &caps_cmd); 4458 if (ret < 0) 4459 goto bye; 4460 4461 if (caps_cmd.ofldcaps || 4462 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4463 /* query offload-related parameters */ 4464 params[0] = FW_PARAM_DEV(NTID); 4465 params[1] = FW_PARAM_PFVF(SERVER_START); 4466 params[2] = FW_PARAM_PFVF(SERVER_END); 4467 params[3] = FW_PARAM_PFVF(TDDP_START); 4468 params[4] = FW_PARAM_PFVF(TDDP_END); 4469 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4470 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4471 params, val); 4472 if (ret < 0) 4473 goto bye; 4474 adap->tids.ntids = val[0]; 4475 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4476 adap->tids.stid_base = val[1]; 4477 adap->tids.nstids = val[2] - val[1] + 1; 4478 /* 4479 * Setup server filter region. Divide the available filter 4480 * region into two parts. Regular filters get 1/3rd and server 4481 * filters get 2/3rd part. This is only enabled if workarond 4482 * path is enabled. 4483 * 1. For regular filters. 4484 * 2. Server filter: This are special filters which are used 4485 * to redirect SYN packets to offload queue. 4486 */ 4487 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4488 adap->tids.sftid_base = adap->tids.ftid_base + 4489 DIV_ROUND_UP(adap->tids.nftids, 3); 4490 adap->tids.nsftids = adap->tids.nftids - 4491 DIV_ROUND_UP(adap->tids.nftids, 3); 4492 adap->tids.nftids = adap->tids.sftid_base - 4493 adap->tids.ftid_base; 4494 } 4495 adap->vres.ddp.start = val[3]; 4496 adap->vres.ddp.size = val[4] - val[3] + 1; 4497 adap->params.ofldq_wr_cred = val[5]; 4498 4499 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4500 ret = init_hash_filter(adap); 4501 if (ret < 0) 4502 goto bye; 4503 } else { 4504 adap->params.offload = 1; 4505 adap->num_ofld_uld += 1; 4506 } 4507 } 4508 if (caps_cmd.rdmacaps) { 4509 params[0] = FW_PARAM_PFVF(STAG_START); 4510 params[1] = FW_PARAM_PFVF(STAG_END); 4511 params[2] = FW_PARAM_PFVF(RQ_START); 4512 params[3] = FW_PARAM_PFVF(RQ_END); 4513 params[4] = FW_PARAM_PFVF(PBL_START); 4514 params[5] = FW_PARAM_PFVF(PBL_END); 4515 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4516 params, val); 4517 if (ret < 0) 4518 goto bye; 4519 adap->vres.stag.start = val[0]; 4520 adap->vres.stag.size = val[1] - val[0] + 1; 4521 adap->vres.rq.start = val[2]; 4522 adap->vres.rq.size = val[3] - val[2] + 1; 4523 adap->vres.pbl.start = val[4]; 4524 adap->vres.pbl.size = val[5] - val[4] + 1; 4525 4526 params[0] = FW_PARAM_PFVF(SRQ_START); 4527 params[1] = FW_PARAM_PFVF(SRQ_END); 4528 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4529 params, val); 4530 if (!ret) { 4531 adap->vres.srq.start = val[0]; 4532 adap->vres.srq.size = val[1] - val[0] + 1; 4533 } 4534 if (adap->vres.srq.size) { 4535 adap->srq = t4_init_srq(adap->vres.srq.size); 4536 if (!adap->srq) 4537 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4538 } 4539 4540 params[0] = FW_PARAM_PFVF(SQRQ_START); 4541 params[1] = FW_PARAM_PFVF(SQRQ_END); 4542 params[2] = FW_PARAM_PFVF(CQ_START); 4543 params[3] = FW_PARAM_PFVF(CQ_END); 4544 params[4] = FW_PARAM_PFVF(OCQ_START); 4545 params[5] = FW_PARAM_PFVF(OCQ_END); 4546 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4547 val); 4548 if (ret < 0) 4549 goto bye; 4550 adap->vres.qp.start = val[0]; 4551 adap->vres.qp.size = val[1] - val[0] + 1; 4552 adap->vres.cq.start = val[2]; 4553 adap->vres.cq.size = val[3] - val[2] + 1; 4554 adap->vres.ocq.start = val[4]; 4555 adap->vres.ocq.size = val[5] - val[4] + 1; 4556 4557 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4558 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4559 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4560 val); 4561 if (ret < 0) { 4562 adap->params.max_ordird_qp = 8; 4563 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4564 ret = 0; 4565 } else { 4566 adap->params.max_ordird_qp = val[0]; 4567 adap->params.max_ird_adapter = val[1]; 4568 } 4569 dev_info(adap->pdev_dev, 4570 "max_ordird_qp %d max_ird_adapter %d\n", 4571 adap->params.max_ordird_qp, 4572 adap->params.max_ird_adapter); 4573 4574 /* Enable write_with_immediate if FW supports it */ 4575 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4576 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4577 val); 4578 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4579 4580 /* Enable write_cmpl if FW supports it */ 4581 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4582 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4583 val); 4584 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4585 adap->num_ofld_uld += 2; 4586 } 4587 if (caps_cmd.iscsicaps) { 4588 params[0] = FW_PARAM_PFVF(ISCSI_START); 4589 params[1] = FW_PARAM_PFVF(ISCSI_END); 4590 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4591 params, val); 4592 if (ret < 0) 4593 goto bye; 4594 adap->vres.iscsi.start = val[0]; 4595 adap->vres.iscsi.size = val[1] - val[0] + 1; 4596 /* LIO target and cxgb4i initiaitor */ 4597 adap->num_ofld_uld += 2; 4598 } 4599 if (caps_cmd.cryptocaps) { 4600 if (ntohs(caps_cmd.cryptocaps) & 4601 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4602 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4603 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4604 2, params, val); 4605 if (ret < 0) { 4606 if (ret != -EINVAL) 4607 goto bye; 4608 } else { 4609 adap->vres.ncrypto_fc = val[0]; 4610 } 4611 adap->num_ofld_uld += 1; 4612 } 4613 if (ntohs(caps_cmd.cryptocaps) & 4614 FW_CAPS_CONFIG_TLS_INLINE) { 4615 params[0] = FW_PARAM_PFVF(TLS_START); 4616 params[1] = FW_PARAM_PFVF(TLS_END); 4617 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4618 2, params, val); 4619 if (ret < 0) 4620 goto bye; 4621 adap->vres.key.start = val[0]; 4622 adap->vres.key.size = val[1] - val[0] + 1; 4623 adap->num_uld += 1; 4624 } 4625 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4626 } 4627 #undef FW_PARAM_PFVF 4628 #undef FW_PARAM_DEV 4629 4630 /* The MTU/MSS Table is initialized by now, so load their values. If 4631 * we're initializing the adapter, then we'll make any modifications 4632 * we want to the MTU/MSS Table and also initialize the congestion 4633 * parameters. 4634 */ 4635 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4636 if (state != DEV_STATE_INIT) { 4637 int i; 4638 4639 /* The default MTU Table contains values 1492 and 1500. 4640 * However, for TCP, it's better to have two values which are 4641 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4642 * This allows us to have a TCP Data Payload which is a 4643 * multiple of 8 regardless of what combination of TCP Options 4644 * are in use (always a multiple of 4 bytes) which is 4645 * important for performance reasons. For instance, if no 4646 * options are in use, then we have a 20-byte IP header and a 4647 * 20-byte TCP header. In this case, a 1500-byte MSS would 4648 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4649 * which is not a multiple of 8. So using an MSS of 1488 in 4650 * this case results in a TCP Data Payload of 1448 bytes which 4651 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4652 * Stamps have been negotiated, then an MTU of 1500 bytes 4653 * results in a TCP Data Payload of 1448 bytes which, as 4654 * above, is a multiple of 8 bytes ... 4655 */ 4656 for (i = 0; i < NMTUS; i++) 4657 if (adap->params.mtus[i] == 1492) { 4658 adap->params.mtus[i] = 1488; 4659 break; 4660 } 4661 4662 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4663 adap->params.b_wnd); 4664 } 4665 t4_init_sge_params(adap); 4666 adap->flags |= FW_OK; 4667 t4_init_tp_params(adap, true); 4668 return 0; 4669 4670 /* 4671 * Something bad happened. If a command timed out or failed with EIO 4672 * FW does not operate within its spec or something catastrophic 4673 * happened to HW/FW, stop issuing commands. 4674 */ 4675 bye: 4676 adap_free_hma_mem(adap); 4677 kfree(adap->sge.egr_map); 4678 kfree(adap->sge.ingr_map); 4679 kfree(adap->sge.starving_fl); 4680 kfree(adap->sge.txq_maperr); 4681 #ifdef CONFIG_DEBUG_FS 4682 kfree(adap->sge.blocked_fl); 4683 #endif 4684 if (ret != -ETIMEDOUT && ret != -EIO) 4685 t4_fw_bye(adap, adap->mbox); 4686 return ret; 4687 } 4688 4689 /* EEH callbacks */ 4690 4691 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4692 pci_channel_state_t state) 4693 { 4694 int i; 4695 struct adapter *adap = pci_get_drvdata(pdev); 4696 4697 if (!adap) 4698 goto out; 4699 4700 rtnl_lock(); 4701 adap->flags &= ~FW_OK; 4702 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4703 spin_lock(&adap->stats_lock); 4704 for_each_port(adap, i) { 4705 struct net_device *dev = adap->port[i]; 4706 if (dev) { 4707 netif_device_detach(dev); 4708 netif_carrier_off(dev); 4709 } 4710 } 4711 spin_unlock(&adap->stats_lock); 4712 disable_interrupts(adap); 4713 if (adap->flags & FULL_INIT_DONE) 4714 cxgb_down(adap); 4715 rtnl_unlock(); 4716 if ((adap->flags & DEV_ENABLED)) { 4717 pci_disable_device(pdev); 4718 adap->flags &= ~DEV_ENABLED; 4719 } 4720 out: return state == pci_channel_io_perm_failure ? 4721 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4722 } 4723 4724 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4725 { 4726 int i, ret; 4727 struct fw_caps_config_cmd c; 4728 struct adapter *adap = pci_get_drvdata(pdev); 4729 4730 if (!adap) { 4731 pci_restore_state(pdev); 4732 pci_save_state(pdev); 4733 return PCI_ERS_RESULT_RECOVERED; 4734 } 4735 4736 if (!(adap->flags & DEV_ENABLED)) { 4737 if (pci_enable_device(pdev)) { 4738 dev_err(&pdev->dev, "Cannot reenable PCI " 4739 "device after reset\n"); 4740 return PCI_ERS_RESULT_DISCONNECT; 4741 } 4742 adap->flags |= DEV_ENABLED; 4743 } 4744 4745 pci_set_master(pdev); 4746 pci_restore_state(pdev); 4747 pci_save_state(pdev); 4748 pci_cleanup_aer_uncorrect_error_status(pdev); 4749 4750 if (t4_wait_dev_ready(adap->regs) < 0) 4751 return PCI_ERS_RESULT_DISCONNECT; 4752 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4753 return PCI_ERS_RESULT_DISCONNECT; 4754 adap->flags |= FW_OK; 4755 if (adap_init1(adap, &c)) 4756 return PCI_ERS_RESULT_DISCONNECT; 4757 4758 for_each_port(adap, i) { 4759 struct port_info *p = adap2pinfo(adap, i); 4760 4761 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4762 NULL, NULL); 4763 if (ret < 0) 4764 return PCI_ERS_RESULT_DISCONNECT; 4765 p->viid = ret; 4766 p->xact_addr_filt = -1; 4767 } 4768 4769 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4770 adap->params.b_wnd); 4771 setup_memwin(adap); 4772 if (cxgb_up(adap)) 4773 return PCI_ERS_RESULT_DISCONNECT; 4774 return PCI_ERS_RESULT_RECOVERED; 4775 } 4776 4777 static void eeh_resume(struct pci_dev *pdev) 4778 { 4779 int i; 4780 struct adapter *adap = pci_get_drvdata(pdev); 4781 4782 if (!adap) 4783 return; 4784 4785 rtnl_lock(); 4786 for_each_port(adap, i) { 4787 struct net_device *dev = adap->port[i]; 4788 if (dev) { 4789 if (netif_running(dev)) { 4790 link_start(dev); 4791 cxgb_set_rxmode(dev); 4792 } 4793 netif_device_attach(dev); 4794 } 4795 } 4796 rtnl_unlock(); 4797 } 4798 4799 static const struct pci_error_handlers cxgb4_eeh = { 4800 .error_detected = eeh_err_detected, 4801 .slot_reset = eeh_slot_reset, 4802 .resume = eeh_resume, 4803 }; 4804 4805 /* Return true if the Link Configuration supports "High Speeds" (those greater 4806 * than 1Gb/s). 4807 */ 4808 static inline bool is_x_10g_port(const struct link_config *lc) 4809 { 4810 unsigned int speeds, high_speeds; 4811 4812 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4813 high_speeds = speeds & 4814 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4815 4816 return high_speeds != 0; 4817 } 4818 4819 /* 4820 * Perform default configuration of DMA queues depending on the number and type 4821 * of ports we found and the number of available CPUs. Most settings can be 4822 * modified by the admin prior to actual use. 4823 */ 4824 static int cfg_queues(struct adapter *adap) 4825 { 4826 struct sge *s = &adap->sge; 4827 int i, n10g = 0, qidx = 0; 4828 int niqflint, neq, avail_eth_qsets; 4829 int max_eth_qsets = 32; 4830 #ifndef CONFIG_CHELSIO_T4_DCB 4831 int q10g = 0; 4832 #endif 4833 4834 /* Reduce memory usage in kdump environment, disable all offload. 4835 */ 4836 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4837 adap->params.offload = 0; 4838 adap->params.crypto = 0; 4839 } 4840 4841 /* Calculate the number of Ethernet Queue Sets available based on 4842 * resources provisioned for us. We always have an Asynchronous 4843 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 4844 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 4845 * Ingress Queue. Meanwhile, we need two Egress Queues for each 4846 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 4847 * 4848 * Note that we should also take into account all of the various 4849 * Offload Queues. But, in any situation where we're operating in 4850 * a Resource Constrained Provisioning environment, doing any Offload 4851 * at all is problematic ... 4852 */ 4853 niqflint = adap->params.pfres.niqflint - 1; 4854 if (!(adap->flags & USING_MSIX)) 4855 niqflint--; 4856 neq = adap->params.pfres.neq / 2; 4857 avail_eth_qsets = min(niqflint, neq); 4858 4859 if (avail_eth_qsets > max_eth_qsets) 4860 avail_eth_qsets = max_eth_qsets; 4861 4862 if (avail_eth_qsets < adap->params.nports) { 4863 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 4864 avail_eth_qsets, adap->params.nports); 4865 return -ENOMEM; 4866 } 4867 4868 /* Count the number of 10Gb/s or better ports */ 4869 for_each_port(adap, i) 4870 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4871 4872 #ifdef CONFIG_CHELSIO_T4_DCB 4873 /* For Data Center Bridging support we need to be able to support up 4874 * to 8 Traffic Priorities; each of which will be assigned to its 4875 * own TX Queue in order to prevent Head-Of-Line Blocking. 4876 */ 4877 if (adap->params.nports * 8 > avail_eth_qsets) { 4878 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 4879 avail_eth_qsets, adap->params.nports * 8); 4880 return -ENOMEM; 4881 } 4882 4883 for_each_port(adap, i) { 4884 struct port_info *pi = adap2pinfo(adap, i); 4885 4886 pi->first_qset = qidx; 4887 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4888 qidx += pi->nqsets; 4889 } 4890 #else /* !CONFIG_CHELSIO_T4_DCB */ 4891 /* 4892 * We default to 1 queue per non-10G port and up to # of cores queues 4893 * per 10G port. 4894 */ 4895 if (n10g) 4896 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 4897 if (q10g > netif_get_num_default_rss_queues()) 4898 q10g = netif_get_num_default_rss_queues(); 4899 4900 if (is_kdump_kernel()) 4901 q10g = 1; 4902 4903 for_each_port(adap, i) { 4904 struct port_info *pi = adap2pinfo(adap, i); 4905 4906 pi->first_qset = qidx; 4907 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4908 qidx += pi->nqsets; 4909 } 4910 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4911 4912 s->ethqsets = qidx; 4913 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4914 4915 if (is_uld(adap)) { 4916 /* 4917 * For offload we use 1 queue/channel if all ports are up to 1G, 4918 * otherwise we divide all available queues amongst the channels 4919 * capped by the number of available cores. 4920 */ 4921 if (n10g) { 4922 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4923 s->ofldqsets = roundup(i, adap->params.nports); 4924 } else { 4925 s->ofldqsets = adap->params.nports; 4926 } 4927 } 4928 4929 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4930 struct sge_eth_rxq *r = &s->ethrxq[i]; 4931 4932 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4933 r->fl.size = 72; 4934 } 4935 4936 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4937 s->ethtxq[i].q.size = 1024; 4938 4939 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4940 s->ctrlq[i].q.size = 512; 4941 4942 if (!is_t4(adap->params.chip)) 4943 s->ptptxq.q.size = 8; 4944 4945 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4946 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4947 4948 return 0; 4949 } 4950 4951 /* 4952 * Reduce the number of Ethernet queues across all ports to at most n. 4953 * n provides at least one queue per port. 4954 */ 4955 static void reduce_ethqs(struct adapter *adap, int n) 4956 { 4957 int i; 4958 struct port_info *pi; 4959 4960 while (n < adap->sge.ethqsets) 4961 for_each_port(adap, i) { 4962 pi = adap2pinfo(adap, i); 4963 if (pi->nqsets > 1) { 4964 pi->nqsets--; 4965 adap->sge.ethqsets--; 4966 if (adap->sge.ethqsets <= n) 4967 break; 4968 } 4969 } 4970 4971 n = 0; 4972 for_each_port(adap, i) { 4973 pi = adap2pinfo(adap, i); 4974 pi->first_qset = n; 4975 n += pi->nqsets; 4976 } 4977 } 4978 4979 static int get_msix_info(struct adapter *adap) 4980 { 4981 struct uld_msix_info *msix_info; 4982 unsigned int max_ingq = 0; 4983 4984 if (is_offload(adap)) 4985 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4986 if (is_pci_uld(adap)) 4987 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4988 4989 if (!max_ingq) 4990 goto out; 4991 4992 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4993 if (!msix_info) 4994 return -ENOMEM; 4995 4996 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4997 sizeof(long), GFP_KERNEL); 4998 if (!adap->msix_bmap_ulds.msix_bmap) { 4999 kfree(msix_info); 5000 return -ENOMEM; 5001 } 5002 spin_lock_init(&adap->msix_bmap_ulds.lock); 5003 adap->msix_info_ulds = msix_info; 5004 out: 5005 return 0; 5006 } 5007 5008 static void free_msix_info(struct adapter *adap) 5009 { 5010 if (!(adap->num_uld && adap->num_ofld_uld)) 5011 return; 5012 5013 kfree(adap->msix_info_ulds); 5014 kfree(adap->msix_bmap_ulds.msix_bmap); 5015 } 5016 5017 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5018 #define EXTRA_VECS 2 5019 5020 static int enable_msix(struct adapter *adap) 5021 { 5022 int ofld_need = 0, uld_need = 0; 5023 int i, j, want, need, allocated; 5024 struct sge *s = &adap->sge; 5025 unsigned int nchan = adap->params.nports; 5026 struct msix_entry *entries; 5027 int max_ingq = MAX_INGQ; 5028 5029 if (is_pci_uld(adap)) 5030 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5031 if (is_offload(adap)) 5032 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5033 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5034 GFP_KERNEL); 5035 if (!entries) 5036 return -ENOMEM; 5037 5038 /* map for msix */ 5039 if (get_msix_info(adap)) { 5040 adap->params.offload = 0; 5041 adap->params.crypto = 0; 5042 } 5043 5044 for (i = 0; i < max_ingq + 1; ++i) 5045 entries[i].entry = i; 5046 5047 want = s->max_ethqsets + EXTRA_VECS; 5048 if (is_offload(adap)) { 5049 want += adap->num_ofld_uld * s->ofldqsets; 5050 ofld_need = adap->num_ofld_uld * nchan; 5051 } 5052 if (is_pci_uld(adap)) { 5053 want += adap->num_uld * s->ofldqsets; 5054 uld_need = adap->num_uld * nchan; 5055 } 5056 #ifdef CONFIG_CHELSIO_T4_DCB 5057 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5058 * each port. 5059 */ 5060 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5061 #else 5062 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5063 #endif 5064 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5065 if (allocated < 0) { 5066 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5067 " not using MSI-X\n"); 5068 kfree(entries); 5069 return allocated; 5070 } 5071 5072 /* Distribute available vectors to the various queue groups. 5073 * Every group gets its minimum requirement and NIC gets top 5074 * priority for leftovers. 5075 */ 5076 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5077 if (i < s->max_ethqsets) { 5078 s->max_ethqsets = i; 5079 if (i < s->ethqsets) 5080 reduce_ethqs(adap, i); 5081 } 5082 if (is_uld(adap)) { 5083 if (allocated < want) 5084 s->nqs_per_uld = nchan; 5085 else 5086 s->nqs_per_uld = s->ofldqsets; 5087 } 5088 5089 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5090 adap->msix_info[i].vec = entries[i].vector; 5091 if (is_uld(adap)) { 5092 for (j = 0 ; i < allocated; ++i, j++) { 5093 adap->msix_info_ulds[j].vec = entries[i].vector; 5094 adap->msix_info_ulds[j].idx = i; 5095 } 5096 adap->msix_bmap_ulds.mapsize = j; 5097 } 5098 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5099 "nic %d per uld %d\n", 5100 allocated, s->max_ethqsets, s->nqs_per_uld); 5101 5102 kfree(entries); 5103 return 0; 5104 } 5105 5106 #undef EXTRA_VECS 5107 5108 static int init_rss(struct adapter *adap) 5109 { 5110 unsigned int i; 5111 int err; 5112 5113 err = t4_init_rss_mode(adap, adap->mbox); 5114 if (err) 5115 return err; 5116 5117 for_each_port(adap, i) { 5118 struct port_info *pi = adap2pinfo(adap, i); 5119 5120 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5121 if (!pi->rss) 5122 return -ENOMEM; 5123 } 5124 return 0; 5125 } 5126 5127 /* Dump basic information about the adapter */ 5128 static void print_adapter_info(struct adapter *adapter) 5129 { 5130 /* Hardware/Firmware/etc. Version/Revision IDs */ 5131 t4_dump_version_info(adapter); 5132 5133 /* Software/Hardware configuration */ 5134 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5135 is_offload(adapter) ? "R" : "", 5136 ((adapter->flags & USING_MSIX) ? "MSI-X" : 5137 (adapter->flags & USING_MSI) ? "MSI" : ""), 5138 is_offload(adapter) ? "Offload" : "non-Offload"); 5139 } 5140 5141 static void print_port_info(const struct net_device *dev) 5142 { 5143 char buf[80]; 5144 char *bufp = buf; 5145 const char *spd = ""; 5146 const struct port_info *pi = netdev_priv(dev); 5147 const struct adapter *adap = pi->adapter; 5148 5149 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 5150 spd = " 2.5 GT/s"; 5151 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 5152 spd = " 5 GT/s"; 5153 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 5154 spd = " 8 GT/s"; 5155 5156 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5157 bufp += sprintf(bufp, "100M/"); 5158 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5159 bufp += sprintf(bufp, "1G/"); 5160 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5161 bufp += sprintf(bufp, "10G/"); 5162 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5163 bufp += sprintf(bufp, "25G/"); 5164 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5165 bufp += sprintf(bufp, "40G/"); 5166 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5167 bufp += sprintf(bufp, "50G/"); 5168 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5169 bufp += sprintf(bufp, "100G/"); 5170 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5171 bufp += sprintf(bufp, "200G/"); 5172 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5173 bufp += sprintf(bufp, "400G/"); 5174 if (bufp != buf) 5175 --bufp; 5176 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5177 5178 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5179 dev->name, adap->params.vpd.id, adap->name, buf); 5180 } 5181 5182 /* 5183 * Free the following resources: 5184 * - memory used for tables 5185 * - MSI/MSI-X 5186 * - net devices 5187 * - resources FW is holding for us 5188 */ 5189 static void free_some_resources(struct adapter *adapter) 5190 { 5191 unsigned int i; 5192 5193 kvfree(adapter->mps_encap); 5194 kvfree(adapter->smt); 5195 kvfree(adapter->l2t); 5196 kvfree(adapter->srq); 5197 t4_cleanup_sched(adapter); 5198 kvfree(adapter->tids.tid_tab); 5199 cxgb4_cleanup_tc_flower(adapter); 5200 cxgb4_cleanup_tc_u32(adapter); 5201 kfree(adapter->sge.egr_map); 5202 kfree(adapter->sge.ingr_map); 5203 kfree(adapter->sge.starving_fl); 5204 kfree(adapter->sge.txq_maperr); 5205 #ifdef CONFIG_DEBUG_FS 5206 kfree(adapter->sge.blocked_fl); 5207 #endif 5208 disable_msi(adapter); 5209 5210 for_each_port(adapter, i) 5211 if (adapter->port[i]) { 5212 struct port_info *pi = adap2pinfo(adapter, i); 5213 5214 if (pi->viid != 0) 5215 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5216 0, pi->viid); 5217 kfree(adap2pinfo(adapter, i)->rss); 5218 free_netdev(adapter->port[i]); 5219 } 5220 if (adapter->flags & FW_OK) 5221 t4_fw_bye(adapter, adapter->pf); 5222 } 5223 5224 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5225 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5226 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5227 #define SEGMENT_SIZE 128 5228 5229 static int t4_get_chip_type(struct adapter *adap, int ver) 5230 { 5231 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5232 5233 switch (ver) { 5234 case CHELSIO_T4: 5235 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5236 case CHELSIO_T5: 5237 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5238 case CHELSIO_T6: 5239 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5240 default: 5241 break; 5242 } 5243 return -EINVAL; 5244 } 5245 5246 #ifdef CONFIG_PCI_IOV 5247 static void cxgb4_mgmt_setup(struct net_device *dev) 5248 { 5249 dev->type = ARPHRD_NONE; 5250 dev->mtu = 0; 5251 dev->hard_header_len = 0; 5252 dev->addr_len = 0; 5253 dev->tx_queue_len = 0; 5254 dev->flags |= IFF_NOARP; 5255 dev->priv_flags |= IFF_NO_QUEUE; 5256 5257 /* Initialize the device structure. */ 5258 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5259 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5260 } 5261 5262 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5263 { 5264 struct adapter *adap = pci_get_drvdata(pdev); 5265 int err = 0; 5266 int current_vfs = pci_num_vf(pdev); 5267 u32 pcie_fw; 5268 5269 pcie_fw = readl(adap->regs + PCIE_FW_A); 5270 /* Check if fw is initialized */ 5271 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5272 dev_warn(&pdev->dev, "Device not initialized\n"); 5273 return -EOPNOTSUPP; 5274 } 5275 5276 /* If any of the VF's is already assigned to Guest OS, then 5277 * SRIOV for the same cannot be modified 5278 */ 5279 if (current_vfs && pci_vfs_assigned(pdev)) { 5280 dev_err(&pdev->dev, 5281 "Cannot modify SR-IOV while VFs are assigned\n"); 5282 return current_vfs; 5283 } 5284 /* Note that the upper-level code ensures that we're never called with 5285 * a non-zero "num_vfs" when we already have VFs instantiated. But 5286 * it never hurts to code defensively. 5287 */ 5288 if (num_vfs != 0 && current_vfs != 0) 5289 return -EBUSY; 5290 5291 /* Nothing to do for no change. */ 5292 if (num_vfs == current_vfs) 5293 return num_vfs; 5294 5295 /* Disable SRIOV when zero is passed. */ 5296 if (!num_vfs) { 5297 pci_disable_sriov(pdev); 5298 /* free VF Management Interface */ 5299 unregister_netdev(adap->port[0]); 5300 free_netdev(adap->port[0]); 5301 adap->port[0] = NULL; 5302 5303 /* free VF resources */ 5304 adap->num_vfs = 0; 5305 kfree(adap->vfinfo); 5306 adap->vfinfo = NULL; 5307 return 0; 5308 } 5309 5310 if (!current_vfs) { 5311 struct fw_pfvf_cmd port_cmd, port_rpl; 5312 struct net_device *netdev; 5313 unsigned int pmask, port; 5314 struct pci_dev *pbridge; 5315 struct port_info *pi; 5316 char name[IFNAMSIZ]; 5317 u32 devcap2; 5318 u16 flags; 5319 int pos; 5320 5321 /* If we want to instantiate Virtual Functions, then our 5322 * parent bridge's PCI-E needs to support Alternative Routing 5323 * ID (ARI) because our VFs will show up at function offset 8 5324 * and above. 5325 */ 5326 pbridge = pdev->bus->self; 5327 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5328 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5329 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5330 5331 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5332 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5333 /* Our parent bridge does not support ARI so issue a 5334 * warning and skip instantiating the VFs. They 5335 * won't be reachable. 5336 */ 5337 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5338 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5339 PCI_FUNC(pbridge->devfn)); 5340 return -ENOTSUPP; 5341 } 5342 memset(&port_cmd, 0, sizeof(port_cmd)); 5343 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5344 FW_CMD_REQUEST_F | 5345 FW_CMD_READ_F | 5346 FW_PFVF_CMD_PFN_V(adap->pf) | 5347 FW_PFVF_CMD_VFN_V(0)); 5348 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5349 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5350 &port_rpl); 5351 if (err) 5352 return err; 5353 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5354 port = ffs(pmask) - 1; 5355 /* Allocate VF Management Interface. */ 5356 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5357 adap->pf); 5358 netdev = alloc_netdev(sizeof(struct port_info), 5359 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5360 if (!netdev) 5361 return -ENOMEM; 5362 5363 pi = netdev_priv(netdev); 5364 pi->adapter = adap; 5365 pi->lport = port; 5366 pi->tx_chan = port; 5367 SET_NETDEV_DEV(netdev, &pdev->dev); 5368 5369 adap->port[0] = netdev; 5370 pi->port_id = 0; 5371 5372 err = register_netdev(adap->port[0]); 5373 if (err) { 5374 pr_info("Unable to register VF mgmt netdev %s\n", name); 5375 free_netdev(adap->port[0]); 5376 adap->port[0] = NULL; 5377 return err; 5378 } 5379 /* Allocate and set up VF Information. */ 5380 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5381 sizeof(struct vf_info), GFP_KERNEL); 5382 if (!adap->vfinfo) { 5383 unregister_netdev(adap->port[0]); 5384 free_netdev(adap->port[0]); 5385 adap->port[0] = NULL; 5386 return -ENOMEM; 5387 } 5388 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5389 } 5390 /* Instantiate the requested number of VFs. */ 5391 err = pci_enable_sriov(pdev, num_vfs); 5392 if (err) { 5393 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5394 if (!current_vfs) { 5395 unregister_netdev(adap->port[0]); 5396 free_netdev(adap->port[0]); 5397 adap->port[0] = NULL; 5398 kfree(adap->vfinfo); 5399 adap->vfinfo = NULL; 5400 } 5401 return err; 5402 } 5403 5404 adap->num_vfs = num_vfs; 5405 return num_vfs; 5406 } 5407 #endif /* CONFIG_PCI_IOV */ 5408 5409 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5410 { 5411 struct net_device *netdev; 5412 struct adapter *adapter; 5413 static int adap_idx = 1; 5414 int s_qpp, qpp, num_seg; 5415 struct port_info *pi; 5416 bool highdma = false; 5417 enum chip_type chip; 5418 void __iomem *regs; 5419 int func, chip_ver; 5420 u16 device_id; 5421 int i, err; 5422 u32 whoami; 5423 5424 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5425 5426 err = pci_request_regions(pdev, KBUILD_MODNAME); 5427 if (err) { 5428 /* Just info, some other driver may have claimed the device. */ 5429 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5430 return err; 5431 } 5432 5433 err = pci_enable_device(pdev); 5434 if (err) { 5435 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5436 goto out_release_regions; 5437 } 5438 5439 regs = pci_ioremap_bar(pdev, 0); 5440 if (!regs) { 5441 dev_err(&pdev->dev, "cannot map device registers\n"); 5442 err = -ENOMEM; 5443 goto out_disable_device; 5444 } 5445 5446 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5447 if (!adapter) { 5448 err = -ENOMEM; 5449 goto out_unmap_bar0; 5450 } 5451 5452 adapter->regs = regs; 5453 err = t4_wait_dev_ready(regs); 5454 if (err < 0) 5455 goto out_free_adapter; 5456 5457 /* We control everything through one PF */ 5458 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5459 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5460 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5461 if (chip < 0) { 5462 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5463 err = chip; 5464 goto out_free_adapter; 5465 } 5466 chip_ver = CHELSIO_CHIP_VERSION(chip); 5467 func = chip_ver <= CHELSIO_T5 ? 5468 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5469 5470 adapter->pdev = pdev; 5471 adapter->pdev_dev = &pdev->dev; 5472 adapter->name = pci_name(pdev); 5473 adapter->mbox = func; 5474 adapter->pf = func; 5475 adapter->params.chip = chip; 5476 adapter->adap_idx = adap_idx; 5477 adapter->msg_enable = DFLT_MSG_ENABLE; 5478 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5479 (sizeof(struct mbox_cmd) * 5480 T4_OS_LOG_MBOX_CMDS), 5481 GFP_KERNEL); 5482 if (!adapter->mbox_log) { 5483 err = -ENOMEM; 5484 goto out_free_adapter; 5485 } 5486 spin_lock_init(&adapter->mbox_lock); 5487 INIT_LIST_HEAD(&adapter->mlist.list); 5488 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5489 pci_set_drvdata(pdev, adapter); 5490 5491 if (func != ent->driver_data) { 5492 pci_disable_device(pdev); 5493 pci_save_state(pdev); /* to restore SR-IOV later */ 5494 return 0; 5495 } 5496 5497 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5498 highdma = true; 5499 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5500 if (err) { 5501 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5502 "coherent allocations\n"); 5503 goto out_free_adapter; 5504 } 5505 } else { 5506 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5507 if (err) { 5508 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5509 goto out_free_adapter; 5510 } 5511 } 5512 5513 pci_enable_pcie_error_reporting(pdev); 5514 pci_set_master(pdev); 5515 pci_save_state(pdev); 5516 adap_idx++; 5517 adapter->workq = create_singlethread_workqueue("cxgb4"); 5518 if (!adapter->workq) { 5519 err = -ENOMEM; 5520 goto out_free_adapter; 5521 } 5522 5523 /* PCI device has been enabled */ 5524 adapter->flags |= DEV_ENABLED; 5525 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5526 5527 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5528 * Ingress Packet Data to Free List Buffers in order to allow for 5529 * chipset performance optimizations between the Root Complex and 5530 * Memory Controllers. (Messages to the associated Ingress Queue 5531 * notifying new Packet Placement in the Free Lists Buffers will be 5532 * send without the Relaxed Ordering Attribute thus guaranteeing that 5533 * all preceding PCIe Transaction Layer Packets will be processed 5534 * first.) But some Root Complexes have various issues with Upstream 5535 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5536 * The PCIe devices which under the Root Complexes will be cleared the 5537 * Relaxed Ordering bit in the configuration space, So we check our 5538 * PCIe configuration space to see if it's flagged with advice against 5539 * using Relaxed Ordering. 5540 */ 5541 if (!pcie_relaxed_ordering_enabled(pdev)) 5542 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5543 5544 spin_lock_init(&adapter->stats_lock); 5545 spin_lock_init(&adapter->tid_release_lock); 5546 spin_lock_init(&adapter->win0_lock); 5547 5548 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5549 INIT_WORK(&adapter->db_full_task, process_db_full); 5550 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5551 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5552 5553 err = t4_prep_adapter(adapter); 5554 if (err) 5555 goto out_free_adapter; 5556 5557 if (is_kdump_kernel()) { 5558 /* Collect hardware state and append to /proc/vmcore */ 5559 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5560 if (err) { 5561 dev_warn(adapter->pdev_dev, 5562 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5563 err); 5564 err = 0; 5565 } 5566 } 5567 5568 if (!is_t4(adapter->params.chip)) { 5569 s_qpp = (QUEUESPERPAGEPF0_S + 5570 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5571 adapter->pf); 5572 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5573 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5574 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5575 5576 /* Each segment size is 128B. Write coalescing is enabled only 5577 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5578 * queue is less no of segments that can be accommodated in 5579 * a page size. 5580 */ 5581 if (qpp > num_seg) { 5582 dev_err(&pdev->dev, 5583 "Incorrect number of egress queues per page\n"); 5584 err = -EINVAL; 5585 goto out_free_adapter; 5586 } 5587 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5588 pci_resource_len(pdev, 2)); 5589 if (!adapter->bar2) { 5590 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5591 err = -ENOMEM; 5592 goto out_free_adapter; 5593 } 5594 } 5595 5596 setup_memwin(adapter); 5597 err = adap_init0(adapter); 5598 #ifdef CONFIG_DEBUG_FS 5599 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5600 #endif 5601 setup_memwin_rdma(adapter); 5602 if (err) 5603 goto out_unmap_bar; 5604 5605 /* configure SGE_STAT_CFG_A to read WC stats */ 5606 if (!is_t4(adapter->params.chip)) 5607 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5608 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5609 T6_STATMODE_V(0))); 5610 5611 for_each_port(adapter, i) { 5612 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5613 MAX_ETH_QSETS); 5614 if (!netdev) { 5615 err = -ENOMEM; 5616 goto out_free_dev; 5617 } 5618 5619 SET_NETDEV_DEV(netdev, &pdev->dev); 5620 5621 adapter->port[i] = netdev; 5622 pi = netdev_priv(netdev); 5623 pi->adapter = adapter; 5624 pi->xact_addr_filt = -1; 5625 pi->port_id = i; 5626 netdev->irq = pdev->irq; 5627 5628 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5629 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5630 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5631 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5632 NETIF_F_HW_TC; 5633 5634 if (chip_ver > CHELSIO_T5) { 5635 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5636 NETIF_F_IPV6_CSUM | 5637 NETIF_F_RXCSUM | 5638 NETIF_F_GSO_UDP_TUNNEL | 5639 NETIF_F_TSO | NETIF_F_TSO6; 5640 5641 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 5642 } 5643 5644 if (highdma) 5645 netdev->hw_features |= NETIF_F_HIGHDMA; 5646 netdev->features |= netdev->hw_features; 5647 netdev->vlan_features = netdev->features & VLAN_FEAT; 5648 5649 netdev->priv_flags |= IFF_UNICAST_FLT; 5650 5651 /* MTU range: 81 - 9600 */ 5652 netdev->min_mtu = 81; /* accommodate SACK */ 5653 netdev->max_mtu = MAX_MTU; 5654 5655 netdev->netdev_ops = &cxgb4_netdev_ops; 5656 #ifdef CONFIG_CHELSIO_T4_DCB 5657 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5658 cxgb4_dcb_state_init(netdev); 5659 #endif 5660 cxgb4_set_ethtool_ops(netdev); 5661 } 5662 5663 cxgb4_init_ethtool_dump(adapter); 5664 5665 pci_set_drvdata(pdev, adapter); 5666 5667 if (adapter->flags & FW_OK) { 5668 err = t4_port_init(adapter, func, func, 0); 5669 if (err) 5670 goto out_free_dev; 5671 } else if (adapter->params.nports == 1) { 5672 /* If we don't have a connection to the firmware -- possibly 5673 * because of an error -- grab the raw VPD parameters so we 5674 * can set the proper MAC Address on the debug network 5675 * interface that we've created. 5676 */ 5677 u8 hw_addr[ETH_ALEN]; 5678 u8 *na = adapter->params.vpd.na; 5679 5680 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5681 if (!err) { 5682 for (i = 0; i < ETH_ALEN; i++) 5683 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5684 hex2val(na[2 * i + 1])); 5685 t4_set_hw_addr(adapter, 0, hw_addr); 5686 } 5687 } 5688 5689 if (!(adapter->flags & FW_OK)) 5690 goto fw_attach_fail; 5691 5692 /* Configure queues and allocate tables now, they can be needed as 5693 * soon as the first register_netdev completes. 5694 */ 5695 err = cfg_queues(adapter); 5696 if (err) 5697 goto out_free_dev; 5698 5699 adapter->smt = t4_init_smt(); 5700 if (!adapter->smt) { 5701 /* We tolerate a lack of SMT, giving up some functionality */ 5702 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5703 } 5704 5705 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5706 if (!adapter->l2t) { 5707 /* We tolerate a lack of L2T, giving up some functionality */ 5708 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5709 adapter->params.offload = 0; 5710 } 5711 5712 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5713 sizeof(struct mps_encap_entry), 5714 GFP_KERNEL); 5715 if (!adapter->mps_encap) 5716 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5717 5718 #if IS_ENABLED(CONFIG_IPV6) 5719 if (chip_ver <= CHELSIO_T5 && 5720 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5721 /* CLIP functionality is not present in hardware, 5722 * hence disable all offload features 5723 */ 5724 dev_warn(&pdev->dev, 5725 "CLIP not enabled in hardware, continuing\n"); 5726 adapter->params.offload = 0; 5727 } else { 5728 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5729 adapter->clipt_end); 5730 if (!adapter->clipt) { 5731 /* We tolerate a lack of clip_table, giving up 5732 * some functionality 5733 */ 5734 dev_warn(&pdev->dev, 5735 "could not allocate Clip table, continuing\n"); 5736 adapter->params.offload = 0; 5737 } 5738 } 5739 #endif 5740 5741 for_each_port(adapter, i) { 5742 pi = adap2pinfo(adapter, i); 5743 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5744 if (!pi->sched_tbl) 5745 dev_warn(&pdev->dev, 5746 "could not activate scheduling on port %d\n", 5747 i); 5748 } 5749 5750 if (tid_init(&adapter->tids) < 0) { 5751 dev_warn(&pdev->dev, "could not allocate TID table, " 5752 "continuing\n"); 5753 adapter->params.offload = 0; 5754 } else { 5755 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5756 if (!adapter->tc_u32) 5757 dev_warn(&pdev->dev, 5758 "could not offload tc u32, continuing\n"); 5759 5760 if (cxgb4_init_tc_flower(adapter)) 5761 dev_warn(&pdev->dev, 5762 "could not offload tc flower, continuing\n"); 5763 } 5764 5765 if (is_offload(adapter) || is_hashfilter(adapter)) { 5766 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5767 u32 hash_base, hash_reg; 5768 5769 if (chip_ver <= CHELSIO_T5) { 5770 hash_reg = LE_DB_TID_HASHBASE_A; 5771 hash_base = t4_read_reg(adapter, hash_reg); 5772 adapter->tids.hash_base = hash_base / 4; 5773 } else { 5774 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5775 hash_base = t4_read_reg(adapter, hash_reg); 5776 adapter->tids.hash_base = hash_base; 5777 } 5778 } 5779 } 5780 5781 /* See what interrupts we'll be using */ 5782 if (msi > 1 && enable_msix(adapter) == 0) 5783 adapter->flags |= USING_MSIX; 5784 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5785 adapter->flags |= USING_MSI; 5786 if (msi > 1) 5787 free_msix_info(adapter); 5788 } 5789 5790 /* check for PCI Express bandwidth capabiltites */ 5791 pcie_print_link_status(pdev); 5792 5793 err = init_rss(adapter); 5794 if (err) 5795 goto out_free_dev; 5796 5797 err = setup_fw_sge_queues(adapter); 5798 if (err) { 5799 dev_err(adapter->pdev_dev, 5800 "FW sge queue allocation failed, err %d", err); 5801 goto out_free_dev; 5802 } 5803 5804 fw_attach_fail: 5805 /* 5806 * The card is now ready to go. If any errors occur during device 5807 * registration we do not fail the whole card but rather proceed only 5808 * with the ports we manage to register successfully. However we must 5809 * register at least one net device. 5810 */ 5811 for_each_port(adapter, i) { 5812 pi = adap2pinfo(adapter, i); 5813 adapter->port[i]->dev_port = pi->lport; 5814 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5815 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5816 5817 netif_carrier_off(adapter->port[i]); 5818 5819 err = register_netdev(adapter->port[i]); 5820 if (err) 5821 break; 5822 adapter->chan_map[pi->tx_chan] = i; 5823 print_port_info(adapter->port[i]); 5824 } 5825 if (i == 0) { 5826 dev_err(&pdev->dev, "could not register any net devices\n"); 5827 goto out_free_dev; 5828 } 5829 if (err) { 5830 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5831 err = 0; 5832 } 5833 5834 if (cxgb4_debugfs_root) { 5835 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5836 cxgb4_debugfs_root); 5837 setup_debugfs(adapter); 5838 } 5839 5840 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5841 pdev->needs_freset = 1; 5842 5843 if (is_uld(adapter)) { 5844 mutex_lock(&uld_mutex); 5845 list_add_tail(&adapter->list_node, &adapter_list); 5846 mutex_unlock(&uld_mutex); 5847 } 5848 5849 if (!is_t4(adapter->params.chip)) 5850 cxgb4_ptp_init(adapter); 5851 5852 print_adapter_info(adapter); 5853 return 0; 5854 5855 out_free_dev: 5856 t4_free_sge_resources(adapter); 5857 free_some_resources(adapter); 5858 if (adapter->flags & USING_MSIX) 5859 free_msix_info(adapter); 5860 if (adapter->num_uld || adapter->num_ofld_uld) 5861 t4_uld_mem_free(adapter); 5862 out_unmap_bar: 5863 if (!is_t4(adapter->params.chip)) 5864 iounmap(adapter->bar2); 5865 out_free_adapter: 5866 if (adapter->workq) 5867 destroy_workqueue(adapter->workq); 5868 5869 kfree(adapter->mbox_log); 5870 kfree(adapter); 5871 out_unmap_bar0: 5872 iounmap(regs); 5873 out_disable_device: 5874 pci_disable_pcie_error_reporting(pdev); 5875 pci_disable_device(pdev); 5876 out_release_regions: 5877 pci_release_regions(pdev); 5878 return err; 5879 } 5880 5881 static void remove_one(struct pci_dev *pdev) 5882 { 5883 struct adapter *adapter = pci_get_drvdata(pdev); 5884 5885 if (!adapter) { 5886 pci_release_regions(pdev); 5887 return; 5888 } 5889 5890 adapter->flags |= SHUTTING_DOWN; 5891 5892 if (adapter->pf == 4) { 5893 int i; 5894 5895 /* Tear down per-adapter Work Queue first since it can contain 5896 * references to our adapter data structure. 5897 */ 5898 destroy_workqueue(adapter->workq); 5899 5900 if (is_uld(adapter)) { 5901 detach_ulds(adapter); 5902 t4_uld_clean_up(adapter); 5903 } 5904 5905 adap_free_hma_mem(adapter); 5906 5907 disable_interrupts(adapter); 5908 5909 for_each_port(adapter, i) 5910 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5911 unregister_netdev(adapter->port[i]); 5912 5913 debugfs_remove_recursive(adapter->debugfs_root); 5914 5915 if (!is_t4(adapter->params.chip)) 5916 cxgb4_ptp_stop(adapter); 5917 5918 /* If we allocated filters, free up state associated with any 5919 * valid filters ... 5920 */ 5921 clear_all_filters(adapter); 5922 5923 if (adapter->flags & FULL_INIT_DONE) 5924 cxgb_down(adapter); 5925 5926 if (adapter->flags & USING_MSIX) 5927 free_msix_info(adapter); 5928 if (adapter->num_uld || adapter->num_ofld_uld) 5929 t4_uld_mem_free(adapter); 5930 free_some_resources(adapter); 5931 #if IS_ENABLED(CONFIG_IPV6) 5932 t4_cleanup_clip_tbl(adapter); 5933 #endif 5934 if (!is_t4(adapter->params.chip)) 5935 iounmap(adapter->bar2); 5936 } 5937 #ifdef CONFIG_PCI_IOV 5938 else { 5939 cxgb4_iov_configure(adapter->pdev, 0); 5940 } 5941 #endif 5942 iounmap(adapter->regs); 5943 pci_disable_pcie_error_reporting(pdev); 5944 if ((adapter->flags & DEV_ENABLED)) { 5945 pci_disable_device(pdev); 5946 adapter->flags &= ~DEV_ENABLED; 5947 } 5948 pci_release_regions(pdev); 5949 kfree(adapter->mbox_log); 5950 synchronize_rcu(); 5951 kfree(adapter); 5952 } 5953 5954 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5955 * delivery. This is essentially a stripped down version of the PCI remove() 5956 * function where we do the minimal amount of work necessary to shutdown any 5957 * further activity. 5958 */ 5959 static void shutdown_one(struct pci_dev *pdev) 5960 { 5961 struct adapter *adapter = pci_get_drvdata(pdev); 5962 5963 /* As with remove_one() above (see extended comment), we only want do 5964 * do cleanup on PCI Devices which went all the way through init_one() 5965 * ... 5966 */ 5967 if (!adapter) { 5968 pci_release_regions(pdev); 5969 return; 5970 } 5971 5972 adapter->flags |= SHUTTING_DOWN; 5973 5974 if (adapter->pf == 4) { 5975 int i; 5976 5977 for_each_port(adapter, i) 5978 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5979 cxgb_close(adapter->port[i]); 5980 5981 if (is_uld(adapter)) { 5982 detach_ulds(adapter); 5983 t4_uld_clean_up(adapter); 5984 } 5985 5986 disable_interrupts(adapter); 5987 disable_msi(adapter); 5988 5989 t4_sge_stop(adapter); 5990 if (adapter->flags & FW_OK) 5991 t4_fw_bye(adapter, adapter->mbox); 5992 } 5993 } 5994 5995 static struct pci_driver cxgb4_driver = { 5996 .name = KBUILD_MODNAME, 5997 .id_table = cxgb4_pci_tbl, 5998 .probe = init_one, 5999 .remove = remove_one, 6000 .shutdown = shutdown_one, 6001 #ifdef CONFIG_PCI_IOV 6002 .sriov_configure = cxgb4_iov_configure, 6003 #endif 6004 .err_handler = &cxgb4_eeh, 6005 }; 6006 6007 static int __init cxgb4_init_module(void) 6008 { 6009 int ret; 6010 6011 /* Debugfs support is optional, just warn if this fails */ 6012 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6013 if (!cxgb4_debugfs_root) 6014 pr_warn("could not create debugfs entry, continuing\n"); 6015 6016 ret = pci_register_driver(&cxgb4_driver); 6017 if (ret < 0) 6018 debugfs_remove(cxgb4_debugfs_root); 6019 6020 #if IS_ENABLED(CONFIG_IPV6) 6021 if (!inet6addr_registered) { 6022 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6023 inet6addr_registered = true; 6024 } 6025 #endif 6026 6027 return ret; 6028 } 6029 6030 static void __exit cxgb4_cleanup_module(void) 6031 { 6032 #if IS_ENABLED(CONFIG_IPV6) 6033 if (inet6addr_registered) { 6034 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6035 inet6addr_registered = false; 6036 } 6037 #endif 6038 pci_unregister_driver(&cxgb4_driver); 6039 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6040 } 6041 6042 module_init(cxgb4_init_module); 6043 module_exit(cxgb4_cleanup_module); 6044