xref: /linux/drivers/net/ethernet/agere/et131x.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* Agere Systems Inc.
2  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3  *
4  * Copyright © 2005 Agere Systems Inc.
5  * All rights reserved.
6  *   http://www.agere.com
7  *
8  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9  *
10  *------------------------------------------------------------------------------
11  *
12  * SOFTWARE LICENSE
13  *
14  * This software is provided subject to the following terms and conditions,
15  * which you should read carefully before using the software.  Using this
16  * software indicates your acceptance of these terms and conditions.  If you do
17  * not agree with these terms and conditions, do not use the software.
18  *
19  * Copyright © 2005 Agere Systems Inc.
20  * All rights reserved.
21  *
22  * Redistribution and use in source or binary forms, with or without
23  * modifications, are permitted provided that the following conditions are met:
24  *
25  * . Redistributions of source code must retain the above copyright notice, this
26  *    list of conditions and the following Disclaimer as comments in the code as
27  *    well as in the documentation and/or other materials provided with the
28  *    distribution.
29  *
30  * . Redistributions in binary form must reproduce the above copyright notice,
31  *    this list of conditions and the following Disclaimer in the documentation
32  *    and/or other materials provided with the distribution.
33  *
34  * . Neither the name of Agere Systems Inc. nor the names of the contributors
35  *    may be used to endorse or promote products derived from this software
36  *    without specific prior written permission.
37  *
38  * Disclaimer
39  *
40  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
43  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51  * DAMAGE.
52  */
53 
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72 
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81 
82 #include "et131x.h"
83 
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88 
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS          1000
91 #define MAX_NUM_WRITE_RETRIES           2
92 
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96 
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE       0x400	/* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET  0x1FF	/* 50%   Tx, 50%   Rx */
100 
101 /* ISR defines */
102 /* For interrupts, normal running is:
103  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104  *       watchdog_interrupt & txdma_xfer_done
105  *
106  * In both cases, when flow control is enabled for either Tx or bi-direction,
107  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108  * buffer rings are running low.
109  */
110 #define INT_MASK_DISABLE            0xffffffff
111 
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113  * #define INT_MASK_ENABLE             0xfff6bf17
114  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
115  */
116 #define INT_MASK_ENABLE             0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
118 
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE	60
122 
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST	128
125 
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED		0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST		0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST		0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS		0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST	0x0010
132 
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT	(1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD	0
136 
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE	0x00000008
139 
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER		0x00200000
142 
143 #define FMP_ADAPTER_NON_RECOVER_ERROR	0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR	0x04000000
145 
146 #define FMP_ADAPTER_FAIL_SEND_MASK	0x3ff00000
147 
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS		0xA4
150 #define ET1310_PCI_EEPROM_STATUS	0xB2
151 #define ET1310_PCI_ACK_NACK		0xC0
152 #define ET1310_PCI_REPLAY		0xC2
153 #define ET1310_PCI_L0L1LATENCY		0xCF
154 
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG	0xED00	/* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST	0xED01	/* ET1310 100  Base-T */
158 
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO	1000
161 
162 #define PARM_RX_NUM_BUFS_DEF    4
163 #define PARM_RX_TIME_INT_DEF    10
164 #define PARM_RX_MEM_END_DEF     0x2bc
165 #define PARM_TX_TIME_INT_DEF    40
166 #define PARM_TX_NUM_BUFS_DEF    4
167 #define PARM_DMA_CACHE_DEF      0
168 
169 /* RX defines */
170 #define FBR_CHUNKS		32
171 #define MAX_DESC_PER_RING_RX	1024
172 
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK	40
175 #define NIC_DEFAULT_NUM_RFD	1024
176 #define NUM_FBRS		2
177 
178 #define MAX_PACKETS_HANDLED	256
179 
180 #define ALCATEL_MULTICAST_PKT	0x01000000
181 #define ALCATEL_BROADCAST_PKT	0x02000000
182 
183 /* typedefs for Free Buffer Descriptors */
184 struct fbr_desc {
185 	u32 addr_lo;
186 	u32 addr_hi;
187 	u32 word2;		/* Bits 10-31 reserved, 0-9 descriptor */
188 };
189 
190 /* Packet Status Ring Descriptors
191  *
192  * Word 0:
193  *
194  * top 16 bits are from the Alcatel Status Word as enumerated in
195  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
196  *
197  * 0: hp			hash pass
198  * 1: ipa			IP checksum assist
199  * 2: ipp			IP checksum pass
200  * 3: tcpa			TCP checksum assist
201  * 4: tcpp			TCP checksum pass
202  * 5: wol			WOL Event
203  * 6: rxmac_error		RXMAC Error Indicator
204  * 7: drop			Drop packet
205  * 8: ft			Frame Truncated
206  * 9: jp			Jumbo Packet
207  * 10: vp			VLAN Packet
208  * 11-15: unused
209  * 16: asw_prev_pkt_dropped	e.g. IFG too small on previous
210  * 17: asw_RX_DV_event		short receive event detected
211  * 18: asw_false_carrier_event	bad carrier since last good packet
212  * 19: asw_code_err		one or more nibbles signalled as errors
213  * 20: asw_CRC_err		CRC error
214  * 21: asw_len_chk_err		frame length field incorrect
215  * 22: asw_too_long		frame length > 1518 bytes
216  * 23: asw_OK			valid CRC + no code error
217  * 24: asw_multicast		has a multicast address
218  * 25: asw_broadcast		has a broadcast address
219  * 26: asw_dribble_nibble	spurious bits after EOP
220  * 27: asw_control_frame	is a control frame
221  * 28: asw_pause_frame		is a pause frame
222  * 29: asw_unsupported_op	unsupported OP code
223  * 30: asw_VLAN_tag		VLAN tag detected
224  * 31: asw_long_evt		Rx long event
225  *
226  * Word 1:
227  * 0-15: length			length in bytes
228  * 16-25: bi			Buffer Index
229  * 26-27: ri			Ring Index
230  * 28-31: reserved
231  */
232 struct pkt_stat_desc {
233 	u32 word0;
234 	u32 word1;
235 };
236 
237 /* Typedefs for the RX DMA status word */
238 
239 /* rx status word 0 holds part of the status bits of the Rx DMA engine
240  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
241  * which contains the Free Buffer ring 0 and 1 available offset.
242  *
243  * bit 0-9 FBR1 offset
244  * bit 10 Wrap flag for FBR1
245  * bit 16-25 FBR0 offset
246  * bit 26 Wrap flag for FBR0
247  */
248 
249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
250  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
251  * which contains the Packet Status Ring available offset.
252  *
253  * bit 0-15 reserved
254  * bit 16-27 PSRoffset
255  * bit 28 PSRwrap
256  * bit 29-31 unused
257  */
258 
259 /* struct rx_status_block is a structure representing the status of the Rx
260  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
261  */
262 struct rx_status_block {
263 	u32 word0;
264 	u32 word1;
265 };
266 
267 /* Structure for look-up table holding free buffer ring pointers, addresses
268  * and state.
269  */
270 struct fbr_lookup {
271 	void		*virt[MAX_DESC_PER_RING_RX];
272 	u32		 bus_high[MAX_DESC_PER_RING_RX];
273 	u32		 bus_low[MAX_DESC_PER_RING_RX];
274 	void		*ring_virtaddr;
275 	dma_addr_t	 ring_physaddr;
276 	void		*mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
277 	dma_addr_t	 mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
278 	u32		 local_full;
279 	u32		 num_entries;
280 	dma_addr_t	 buffsize;
281 };
282 
283 /* struct rx_ring is the structure representing the adaptor's local
284  * reference(s) to the rings
285  */
286 struct rx_ring {
287 	struct fbr_lookup *fbr[NUM_FBRS];
288 	void *ps_ring_virtaddr;
289 	dma_addr_t ps_ring_physaddr;
290 	u32 local_psr_full;
291 	u32 psr_entries;
292 
293 	struct rx_status_block *rx_status_block;
294 	dma_addr_t rx_status_bus;
295 
296 	struct list_head recv_list;
297 	u32 num_ready_recv;
298 
299 	u32 num_rfd;
300 
301 	bool unfinished_receives;
302 };
303 
304 /* TX defines */
305 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
306  *
307  * 0-15: length of packet
308  * 16-27: VLAN tag
309  * 28: VLAN CFI
310  * 29-31: VLAN priority
311  *
312  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
313  *
314  * 0: last packet in the sequence
315  * 1: first packet in the sequence
316  * 2: interrupt the processor when this pkt sent
317  * 3: Control word - no packet data
318  * 4: Issue half-duplex backpressure : XON/XOFF
319  * 5: send pause frame
320  * 6: Tx frame has error
321  * 7: append CRC
322  * 8: MAC override
323  * 9: pad packet
324  * 10: Packet is a Huge packet
325  * 11: append VLAN tag
326  * 12: IP checksum assist
327  * 13: TCP checksum assist
328  * 14: UDP checksum assist
329  */
330 #define TXDESC_FLAG_LASTPKT		0x0001
331 #define TXDESC_FLAG_FIRSTPKT		0x0002
332 #define TXDESC_FLAG_INTPROC		0x0004
333 
334 /* struct tx_desc represents each descriptor on the ring */
335 struct tx_desc {
336 	u32 addr_hi;
337 	u32 addr_lo;
338 	u32 len_vlan;	/* control words how to xmit the */
339 	u32 flags;	/* data (detailed above) */
340 };
341 
342 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
343  * by 0x101c / 0x1020. This is a DMA10 type
344  */
345 
346 /* TCB (Transmit Control Block: Host Side) */
347 struct tcb {
348 	struct tcb *next;	/* Next entry in ring */
349 	u32 count;		/* Used to spot stuck/lost packets */
350 	u32 stale;		/* Used to spot stuck/lost packets */
351 	struct sk_buff *skb;	/* Network skb we are tied to */
352 	u32 index;		/* Ring indexes */
353 	u32 index_start;
354 };
355 
356 /* Structure representing our local reference(s) to the ring */
357 struct tx_ring {
358 	/* TCB (Transmit Control Block) memory and lists */
359 	struct tcb *tcb_ring;
360 
361 	/* List of TCBs that are ready to be used */
362 	struct tcb *tcb_qhead;
363 	struct tcb *tcb_qtail;
364 
365 	/* list of TCBs that are currently being sent. */
366 	struct tcb *send_head;
367 	struct tcb *send_tail;
368 	int used;
369 
370 	/* The actual descriptor ring */
371 	struct tx_desc *tx_desc_ring;
372 	dma_addr_t tx_desc_ring_pa;
373 
374 	/* send_idx indicates where we last wrote to in the descriptor ring. */
375 	u32 send_idx;
376 
377 	/* The location of the write-back status block */
378 	u32 *tx_status;
379 	dma_addr_t tx_status_pa;
380 
381 	/* Packets since the last IRQ: used for interrupt coalescing */
382 	int since_irq;
383 };
384 
385 /* Do not change these values: if changed, then change also in respective
386  * TXdma and Rxdma engines
387  */
388 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
389 #define NUM_TCB                      64
390 
391 /* These values are all superseded by registry entries to facilitate tuning.
392  * Once the desired performance has been achieved, the optimal registry values
393  * should be re-populated to these #defines:
394  */
395 #define TX_ERROR_PERIOD             1000
396 
397 #define LO_MARK_PERCENT_FOR_PSR     15
398 #define LO_MARK_PERCENT_FOR_RX      15
399 
400 /* RFD (Receive Frame Descriptor) */
401 struct rfd {
402 	struct list_head list_node;
403 	struct sk_buff *skb;
404 	u32 len;	/* total size of receive frame */
405 	u16 bufferindex;
406 	u8 ringindex;
407 };
408 
409 /* Flow Control */
410 #define FLOW_BOTH	0
411 #define FLOW_TXONLY	1
412 #define FLOW_RXONLY	2
413 #define FLOW_NONE	3
414 
415 /* Struct to define some device statistics */
416 struct ce_stats {
417 	u32		multicast_pkts_rcvd;
418 	u32		rcvd_pkts_dropped;
419 
420 	u32		tx_underflows;
421 	u32		tx_collisions;
422 	u32		tx_excessive_collisions;
423 	u32		tx_first_collisions;
424 	u32		tx_late_collisions;
425 	u32		tx_max_pkt_errs;
426 	u32		tx_deferred;
427 
428 	u32		rx_overflows;
429 	u32		rx_length_errs;
430 	u32		rx_align_errs;
431 	u32		rx_crc_errs;
432 	u32		rx_code_violations;
433 	u32		rx_other_errs;
434 
435 	u32		interrupt_status;
436 };
437 
438 /* The private adapter structure */
439 struct et131x_adapter {
440 	struct net_device *netdev;
441 	struct pci_dev *pdev;
442 	struct mii_bus *mii_bus;
443 	struct phy_device *phydev;
444 	struct napi_struct napi;
445 
446 	/* Flags that indicate current state of the adapter */
447 	u32 flags;
448 
449 	/* local link state, to determine if a state change has occurred */
450 	int link;
451 
452 	/* Configuration  */
453 	u8 rom_addr[ETH_ALEN];
454 	u8 addr[ETH_ALEN];
455 	bool has_eeprom;
456 	u8 eeprom_data[2];
457 
458 	spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
459 	spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
460 	spinlock_t rcv_lock; /* protects the rx_ring receive list */
461 
462 	/* Packet Filter and look ahead size */
463 	u32 packet_filter;
464 
465 	/* multicast list */
466 	u32 multicast_addr_count;
467 	u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
468 
469 	/* Pointer to the device's PCI register space */
470 	struct address_map __iomem *regs;
471 
472 	/* Registry parameters */
473 	u8 wanted_flow;		/* Flow we want for 802.3x flow control */
474 	u32 registry_jumbo_packet;	/* Max supported ethernet packet size */
475 
476 	/* Derived from the registry: */
477 	u8 flow;		/* flow control validated by the far-end */
478 
479 	/* Minimize init-time */
480 	struct timer_list error_timer;
481 
482 	/* variable putting the phy into coma mode when boot up with no cable
483 	 * plugged in after 5 seconds
484 	 */
485 	u8 boot_coma;
486 
487 	/* Tx Memory Variables */
488 	struct tx_ring tx_ring;
489 
490 	/* Rx Memory Variables */
491 	struct rx_ring rx_ring;
492 
493 	struct ce_stats stats;
494 };
495 
496 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
497 {
498 	u32 reg;
499 	int i;
500 
501 	/* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
502 	 *    bits 7,1:0 both equal to 1, at least once after reset.
503 	 *    Subsequent operations need only to check that bits 1:0 are equal
504 	 *    to 1 prior to starting a single byte read/write
505 	 */
506 	for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
507 		if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
508 			return -EIO;
509 
510 		/* I2C idle and Phy Queue Avail both true */
511 		if ((reg & 0x3000) == 0x3000) {
512 			if (status)
513 				*status = reg;
514 			return reg & 0xFF;
515 		}
516 	}
517 	return -ETIMEDOUT;
518 }
519 
520 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
521 {
522 	struct pci_dev *pdev = adapter->pdev;
523 	int index = 0;
524 	int retries;
525 	int err = 0;
526 	int writeok = 0;
527 	u32 status;
528 	u32 val = 0;
529 
530 	/* For an EEPROM, an I2C single byte write is defined as a START
531 	 * condition followed by the device address, EEPROM address, one byte
532 	 * of data and a STOP condition.  The STOP condition will trigger the
533 	 * EEPROM's internally timed write cycle to the nonvolatile memory.
534 	 * All inputs are disabled during this write cycle and the EEPROM will
535 	 * not respond to any access until the internal write is complete.
536 	 */
537 	err = eeprom_wait_ready(pdev, NULL);
538 	if (err < 0)
539 		return err;
540 
541 	 /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
542 	  *    and bits 1:0 both =0.  Bit 5 should be set according to the
543 	  *    type of EEPROM being accessed (1=two byte addressing, 0=one
544 	  *    byte addressing).
545 	  */
546 	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
547 				  LBCIF_CONTROL_LBCIF_ENABLE |
548 					LBCIF_CONTROL_I2C_WRITE))
549 		return -EIO;
550 
551 	/* Prepare EEPROM address for Step 3 */
552 	for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
553 		if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
554 			break;
555 		/* Write the data to the LBCIF Data Register (the I2C write
556 		 * will begin).
557 		 */
558 		if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
559 			break;
560 		/* Monitor bit 1:0 of the LBCIF Status Register.  When bits
561 		 * 1:0 are both equal to 1, the I2C write has completed and the
562 		 * internal write cycle of the EEPROM is about to start.
563 		 * (bits 1:0 = 01 is a legal state while waiting from both
564 		 * equal to 1, but bits 1:0 = 10 is invalid and implies that
565 		 * something is broken).
566 		 */
567 		err = eeprom_wait_ready(pdev, &status);
568 		if (err < 0)
569 			return 0;
570 
571 		/* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
572 		 * an error has occurred.Don't break here if we are revision
573 		 * 1, this is so we do a blind write for load bug.
574 		 */
575 		if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
576 		    adapter->pdev->revision == 0)
577 			break;
578 
579 		/* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
580 		 * ACK error has occurred on the address phase of the write.
581 		 * This could be due to an actual hardware failure or the
582 		 * EEPROM may still be in its internal write cycle from a
583 		 * previous write. This write operation was ignored and must be
584 		  *repeated later.
585 		 */
586 		if (status & LBCIF_STATUS_ACK_ERROR) {
587 			/* This could be due to an actual hardware failure
588 			 * or the EEPROM may still be in its internal write
589 			 * cycle from a previous write. This write operation
590 			 * was ignored and must be repeated later.
591 			 */
592 			udelay(10);
593 			continue;
594 		}
595 
596 		writeok = 1;
597 		break;
598 	}
599 
600 	udelay(10);
601 
602 	while (1) {
603 		if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
604 					  LBCIF_CONTROL_LBCIF_ENABLE))
605 			writeok = 0;
606 
607 		/* Do read until internal ACK_ERROR goes away meaning write
608 		 * completed
609 		 */
610 		do {
611 			pci_write_config_dword(pdev,
612 					       LBCIF_ADDRESS_REGISTER,
613 					       addr);
614 			do {
615 				pci_read_config_dword(pdev,
616 						      LBCIF_DATA_REGISTER,
617 						      &val);
618 			} while ((val & 0x00010000) == 0);
619 		} while (val & 0x00040000);
620 
621 		if ((val & 0xFF00) != 0xC000 || index == 10000)
622 			break;
623 		index++;
624 	}
625 	return writeok ? 0 : -EIO;
626 }
627 
628 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
629 {
630 	struct pci_dev *pdev = adapter->pdev;
631 	int err;
632 	u32 status;
633 
634 	/* A single byte read is similar to the single byte write, with the
635 	 * exception of the data flow:
636 	 */
637 	err = eeprom_wait_ready(pdev, NULL);
638 	if (err < 0)
639 		return err;
640 	/* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
641 	 * and bits 1:0 both =0.  Bit 5 should be set according to the type
642 	 * of EEPROM being accessed (1=two byte addressing, 0=one byte
643 	 * addressing).
644 	 */
645 	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
646 				  LBCIF_CONTROL_LBCIF_ENABLE))
647 		return -EIO;
648 	/* Write the address to the LBCIF Address Register (I2C read will
649 	 * begin).
650 	 */
651 	if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
652 		return -EIO;
653 	/* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
654 	 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
655 	 * has occurred).
656 	 */
657 	err = eeprom_wait_ready(pdev, &status);
658 	if (err < 0)
659 		return err;
660 	/* Regardless of error status, read data byte from LBCIF Data
661 	 * Register.
662 	 */
663 	*pdata = err;
664 
665 	return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
666 }
667 
668 static int et131x_init_eeprom(struct et131x_adapter *adapter)
669 {
670 	struct pci_dev *pdev = adapter->pdev;
671 	u8 eestatus;
672 
673 	pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
674 
675 	/* THIS IS A WORKAROUND:
676 	 * I need to call this function twice to get my card in a
677 	 * LG M1 Express Dual running. I tried also a msleep before this
678 	 * function, because I thought there could be some time conditions
679 	 * but it didn't work. Call the whole function twice also work.
680 	 */
681 	if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
682 		dev_err(&pdev->dev,
683 			"Could not read PCI config space for EEPROM Status\n");
684 		return -EIO;
685 	}
686 
687 	/* Determine if the error(s) we care about are present. If they are
688 	 * present we need to fail.
689 	 */
690 	if (eestatus & 0x4C) {
691 		int write_failed = 0;
692 
693 		if (pdev->revision == 0x01) {
694 			int	i;
695 			static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
696 
697 			/* Re-write the first 4 bytes if we have an eeprom
698 			 * present and the revision id is 1, this fixes the
699 			 * corruption seen with 1310 B Silicon
700 			 */
701 			for (i = 0; i < 3; i++)
702 				if (eeprom_write(adapter, i, eedata[i]) < 0)
703 					write_failed = 1;
704 		}
705 		if (pdev->revision  != 0x01 || write_failed) {
706 			dev_err(&pdev->dev,
707 				"Fatal EEPROM Status Error - 0x%04x\n",
708 				eestatus);
709 
710 			/* This error could mean that there was an error
711 			 * reading the eeprom or that the eeprom doesn't exist.
712 			 * We will treat each case the same and not try to
713 			 * gather additional information that normally would
714 			 * come from the eeprom, like MAC Address
715 			 */
716 			adapter->has_eeprom = 0;
717 			return -EIO;
718 		}
719 	}
720 	adapter->has_eeprom = 1;
721 
722 	/* Read the EEPROM for information regarding LED behavior. Refer to
723 	 * et131x_xcvr_init() for its use.
724 	 */
725 	eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
726 	eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
727 
728 	if (adapter->eeprom_data[0] != 0xcd)
729 		/* Disable all optional features */
730 		adapter->eeprom_data[1] = 0x00;
731 
732 	return 0;
733 }
734 
735 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
736 {
737 	/* Setup the receive dma configuration register for normal operation */
738 	u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
739 	struct rx_ring *rx_ring = &adapter->rx_ring;
740 
741 	if (rx_ring->fbr[1]->buffsize == 4096)
742 		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
743 	else if (rx_ring->fbr[1]->buffsize == 8192)
744 		csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
745 	else if (rx_ring->fbr[1]->buffsize == 16384)
746 		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
747 
748 	csr |= ET_RXDMA_CSR_FBR0_ENABLE;
749 	if (rx_ring->fbr[0]->buffsize == 256)
750 		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
751 	else if (rx_ring->fbr[0]->buffsize == 512)
752 		csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
753 	else if (rx_ring->fbr[0]->buffsize == 1024)
754 		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
755 	writel(csr, &adapter->regs->rxdma.csr);
756 
757 	csr = readl(&adapter->regs->rxdma.csr);
758 	if (csr & ET_RXDMA_CSR_HALT_STATUS) {
759 		udelay(5);
760 		csr = readl(&adapter->regs->rxdma.csr);
761 		if (csr & ET_RXDMA_CSR_HALT_STATUS) {
762 			dev_err(&adapter->pdev->dev,
763 				"RX Dma failed to exit halt state. CSR 0x%08x\n",
764 				csr);
765 		}
766 	}
767 }
768 
769 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
770 {
771 	u32 csr;
772 	/* Setup the receive dma configuration register */
773 	writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
774 	       &adapter->regs->rxdma.csr);
775 	csr = readl(&adapter->regs->rxdma.csr);
776 	if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
777 		udelay(5);
778 		csr = readl(&adapter->regs->rxdma.csr);
779 		if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
780 			dev_err(&adapter->pdev->dev,
781 				"RX Dma failed to enter halt state. CSR 0x%08x\n",
782 				csr);
783 	}
784 }
785 
786 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
787 {
788 	/* Setup the transmit dma configuration register for normal
789 	 * operation
790 	 */
791 	writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
792 	       &adapter->regs->txdma.csr);
793 }
794 
795 static inline void add_10bit(u32 *v, int n)
796 {
797 	*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
798 }
799 
800 static inline void add_12bit(u32 *v, int n)
801 {
802 	*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
803 }
804 
805 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
806 {
807 	struct mac_regs __iomem *macregs = &adapter->regs->mac;
808 	u32 station1;
809 	u32 station2;
810 	u32 ipg;
811 
812 	/* First we need to reset everything.  Write to MAC configuration
813 	 * register 1 to perform reset.
814 	 */
815 	writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
816 	       ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
817 	       ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
818 	       &macregs->cfg1);
819 
820 	/* Next lets configure the MAC Inter-packet gap register */
821 	ipg = 0x38005860;		/* IPG1 0x38 IPG2 0x58 B2B 0x60 */
822 	ipg |= 0x50 << 8;		/* ifg enforce 0x50 */
823 	writel(ipg, &macregs->ipg);
824 
825 	/* Next lets configure the MAC Half Duplex register */
826 	/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
827 	writel(0x00A1F037, &macregs->hfdp);
828 
829 	/* Next lets configure the MAC Interface Control register */
830 	writel(0, &macregs->if_ctrl);
831 
832 	writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
833 
834 	/* Next lets configure the MAC Station Address register.  These
835 	 * values are read from the EEPROM during initialization and stored
836 	 * in the adapter structure.  We write what is stored in the adapter
837 	 * structure to the MAC Station Address registers high and low.  This
838 	 * station address is used for generating and checking pause control
839 	 * packets.
840 	 */
841 	station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
842 		   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
843 	station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
844 		   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
845 		   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
846 		    adapter->addr[2];
847 	writel(station1, &macregs->station_addr_1);
848 	writel(station2, &macregs->station_addr_2);
849 
850 	/* Max ethernet packet in bytes that will be passed by the mac without
851 	 * being truncated.  Allow the MAC to pass 4 more than our max packet
852 	 * size.  This is 4 for the Ethernet CRC.
853 	 *
854 	 * Packets larger than (registry_jumbo_packet) that do not contain a
855 	 * VLAN ID will be dropped by the Rx function.
856 	 */
857 	writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
858 
859 	/* clear out MAC config reset */
860 	writel(0, &macregs->cfg1);
861 }
862 
863 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
864 {
865 	int32_t delay = 0;
866 	struct mac_regs __iomem *mac = &adapter->regs->mac;
867 	struct phy_device *phydev = adapter->phydev;
868 	u32 cfg1;
869 	u32 cfg2;
870 	u32 ifctrl;
871 	u32 ctl;
872 
873 	ctl = readl(&adapter->regs->txmac.ctl);
874 	cfg1 = readl(&mac->cfg1);
875 	cfg2 = readl(&mac->cfg2);
876 	ifctrl = readl(&mac->if_ctrl);
877 
878 	/* Set up the if mode bits */
879 	cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
880 	if (phydev->speed == SPEED_1000) {
881 		cfg2 |= ET_MAC_CFG2_IFMODE_1000;
882 		ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
883 	} else {
884 		cfg2 |= ET_MAC_CFG2_IFMODE_100;
885 		ifctrl |= ET_MAC_IFCTRL_PHYMODE;
886 	}
887 
888 	cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
889 							ET_MAC_CFG1_TX_FLOW;
890 
891 	cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
892 	if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
893 		cfg1 |= ET_MAC_CFG1_RX_FLOW;
894 	writel(cfg1, &mac->cfg1);
895 
896 	/* Now we need to initialize the MAC Configuration 2 register */
897 	/* preamble 7, check length, huge frame off, pad crc, crc enable
898 	 * full duplex off
899 	 */
900 	cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
901 	cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
902 	cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
903 	cfg2 |=	ET_MAC_CFG2_IFMODE_CRC_ENABLE;
904 	cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
905 	cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
906 
907 	if (phydev->duplex == DUPLEX_FULL)
908 		cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
909 
910 	ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
911 	if (phydev->duplex == DUPLEX_HALF)
912 		ifctrl |= ET_MAC_IFCTRL_GHDMODE;
913 
914 	writel(ifctrl, &mac->if_ctrl);
915 	writel(cfg2, &mac->cfg2);
916 
917 	do {
918 		udelay(10);
919 		delay++;
920 		cfg1 = readl(&mac->cfg1);
921 	} while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
922 
923 	if (delay == 100) {
924 		dev_warn(&adapter->pdev->dev,
925 			 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
926 			 cfg1);
927 	}
928 
929 	ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
930 	writel(ctl, &adapter->regs->txmac.ctl);
931 
932 	if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
933 		et131x_rx_dma_enable(adapter);
934 		et131x_tx_dma_enable(adapter);
935 	}
936 }
937 
938 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
939 {
940 	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
941 
942 	return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
943 }
944 
945 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
946 {
947 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
948 	u32 hash1 = 0;
949 	u32 hash2 = 0;
950 	u32 hash3 = 0;
951 	u32 hash4 = 0;
952 	u32 pm_csr;
953 
954 	/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
955 	 * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
956 	 * specified) then we should pass NO multi-cast addresses to the
957 	 * driver.
958 	 */
959 	if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
960 		int i;
961 
962 		/* Loop through our multicast array and set up the device */
963 		for (i = 0; i < adapter->multicast_addr_count; i++) {
964 			u32 result;
965 
966 			result = ether_crc(6, adapter->multicast_list[i]);
967 
968 			result = (result & 0x3F800000) >> 23;
969 
970 			if (result < 32) {
971 				hash1 |= (1 << result);
972 			} else if ((31 < result) && (result < 64)) {
973 				result -= 32;
974 				hash2 |= (1 << result);
975 			} else if ((63 < result) && (result < 96)) {
976 				result -= 64;
977 				hash3 |= (1 << result);
978 			} else {
979 				result -= 96;
980 				hash4 |= (1 << result);
981 			}
982 		}
983 	}
984 
985 	/* Write out the new hash to the device */
986 	pm_csr = readl(&adapter->regs->global.pm_csr);
987 	if (!et1310_in_phy_coma(adapter)) {
988 		writel(hash1, &rxmac->multi_hash1);
989 		writel(hash2, &rxmac->multi_hash2);
990 		writel(hash3, &rxmac->multi_hash3);
991 		writel(hash4, &rxmac->multi_hash4);
992 	}
993 }
994 
995 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
996 {
997 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
998 	u32 uni_pf1;
999 	u32 uni_pf2;
1000 	u32 uni_pf3;
1001 	u32 pm_csr;
1002 
1003 	/* Set up unicast packet filter reg 3 to be the first two octets of
1004 	 * the MAC address for both address
1005 	 *
1006 	 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1007 	 * MAC address for second address
1008 	 *
1009 	 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1010 	 * MAC address for first address
1011 	 */
1012 	uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1013 		  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1014 		  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1015 		   adapter->addr[1];
1016 
1017 	uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1018 		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1019 		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1020 		   adapter->addr[5];
1021 
1022 	uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1023 		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1024 		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1025 		   adapter->addr[5];
1026 
1027 	pm_csr = readl(&adapter->regs->global.pm_csr);
1028 	if (!et1310_in_phy_coma(adapter)) {
1029 		writel(uni_pf1, &rxmac->uni_pf_addr1);
1030 		writel(uni_pf2, &rxmac->uni_pf_addr2);
1031 		writel(uni_pf3, &rxmac->uni_pf_addr3);
1032 	}
1033 }
1034 
1035 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1036 {
1037 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1038 	struct phy_device *phydev = adapter->phydev;
1039 	u32 sa_lo;
1040 	u32 sa_hi = 0;
1041 	u32 pf_ctrl = 0;
1042 	u32 __iomem *wolw;
1043 
1044 	/* Disable the MAC while it is being configured (also disable WOL) */
1045 	writel(0x8, &rxmac->ctrl);
1046 
1047 	/* Initialize WOL to disabled. */
1048 	writel(0, &rxmac->crc0);
1049 	writel(0, &rxmac->crc12);
1050 	writel(0, &rxmac->crc34);
1051 
1052 	/* We need to set the WOL mask0 - mask4 next.  We initialize it to
1053 	 * its default Values of 0x00000000 because there are not WOL masks
1054 	 * as of this time.
1055 	 */
1056 	for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1057 		writel(0, wolw);
1058 
1059 	/* Lets setup the WOL Source Address */
1060 	sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1061 		(adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1062 		(adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1063 		 adapter->addr[5];
1064 	writel(sa_lo, &rxmac->sa_lo);
1065 
1066 	sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1067 		       adapter->addr[1];
1068 	writel(sa_hi, &rxmac->sa_hi);
1069 
1070 	/* Disable all Packet Filtering */
1071 	writel(0, &rxmac->pf_ctrl);
1072 
1073 	/* Let's initialize the Unicast Packet filtering address */
1074 	if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1075 		et1310_setup_device_for_unicast(adapter);
1076 		pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1077 	} else {
1078 		writel(0, &rxmac->uni_pf_addr1);
1079 		writel(0, &rxmac->uni_pf_addr2);
1080 		writel(0, &rxmac->uni_pf_addr3);
1081 	}
1082 
1083 	/* Let's initialize the Multicast hash */
1084 	if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1085 		pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1086 		et1310_setup_device_for_multicast(adapter);
1087 	}
1088 
1089 	/* Runt packet filtering.  Didn't work in version A silicon. */
1090 	pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1091 	pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1092 
1093 	if (adapter->registry_jumbo_packet > 8192)
1094 		/* In order to transmit jumbo packets greater than 8k, the
1095 		 * FIFO between RxMAC and RxDMA needs to be reduced in size
1096 		 * to (16k - Jumbo packet size).  In order to implement this,
1097 		 * we must use "cut through" mode in the RxMAC, which chops
1098 		 * packets down into segments which are (max_size * 16).  In
1099 		 * this case we selected 256 bytes, since this is the size of
1100 		 * the PCI-Express TLP's that the 1310 uses.
1101 		 *
1102 		 * seg_en on, fc_en off, size 0x10
1103 		 */
1104 		writel(0x41, &rxmac->mcif_ctrl_max_seg);
1105 	else
1106 		writel(0, &rxmac->mcif_ctrl_max_seg);
1107 
1108 	writel(0, &rxmac->mcif_water_mark);
1109 	writel(0, &rxmac->mif_ctrl);
1110 	writel(0, &rxmac->space_avail);
1111 
1112 	/* Initialize the the mif_ctrl register
1113 	 * bit 3:  Receive code error. One or more nibbles were signaled as
1114 	 *	   errors  during the reception of the packet.  Clear this
1115 	 *	   bit in Gigabit, set it in 100Mbit.  This was derived
1116 	 *	   experimentally at UNH.
1117 	 * bit 4:  Receive CRC error. The packet's CRC did not match the
1118 	 *	   internally generated CRC.
1119 	 * bit 5:  Receive length check error. Indicates that frame length
1120 	 *	   field value in the packet does not match the actual data
1121 	 *	   byte length and is not a type field.
1122 	 * bit 16: Receive frame truncated.
1123 	 * bit 17: Drop packet enable
1124 	 */
1125 	if (phydev && phydev->speed == SPEED_100)
1126 		writel(0x30038, &rxmac->mif_ctrl);
1127 	else
1128 		writel(0x30030, &rxmac->mif_ctrl);
1129 
1130 	/* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1131 	 * filter is always enabled since it is where the runt packets are
1132 	 * supposed to be dropped.  For version A silicon, runt packet
1133 	 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1134 	 * but we still leave the packet filter on.
1135 	 */
1136 	writel(pf_ctrl, &rxmac->pf_ctrl);
1137 	writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1138 }
1139 
1140 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1141 {
1142 	struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1143 
1144 	/* We need to update the Control Frame Parameters
1145 	 * cfpt - control frame pause timer set to 64 (0x40)
1146 	 * cfep - control frame extended pause timer set to 0x0
1147 	 */
1148 	if (adapter->flow == FLOW_NONE)
1149 		writel(0, &txmac->cf_param);
1150 	else
1151 		writel(0x40, &txmac->cf_param);
1152 }
1153 
1154 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1155 {
1156 	struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1157 	u32 __iomem *reg;
1158 
1159 	/* initialize all the macstat registers to zero on the device  */
1160 	for (reg = &macstat->txrx_0_64_byte_frames;
1161 	     reg <= &macstat->carry_reg2; reg++)
1162 		writel(0, reg);
1163 
1164 	/* Unmask any counters that we want to track the overflow of.
1165 	 * Initially this will be all counters.  It may become clear later
1166 	 * that we do not need to track all counters.
1167 	 */
1168 	writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1169 	writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1170 }
1171 
1172 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1173 			       u8 reg, u16 *value)
1174 {
1175 	struct mac_regs __iomem *mac = &adapter->regs->mac;
1176 	int status = 0;
1177 	u32 delay = 0;
1178 	u32 mii_addr;
1179 	u32 mii_cmd;
1180 	u32 mii_indicator;
1181 
1182 	/* Save a local copy of the registers we are dealing with so we can
1183 	 * set them back
1184 	 */
1185 	mii_addr = readl(&mac->mii_mgmt_addr);
1186 	mii_cmd = readl(&mac->mii_mgmt_cmd);
1187 
1188 	/* Stop the current operation */
1189 	writel(0, &mac->mii_mgmt_cmd);
1190 
1191 	/* Set up the register we need to read from on the correct PHY */
1192 	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1193 
1194 	writel(0x1, &mac->mii_mgmt_cmd);
1195 
1196 	do {
1197 		udelay(50);
1198 		delay++;
1199 		mii_indicator = readl(&mac->mii_mgmt_indicator);
1200 	} while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1201 
1202 	/* If we hit the max delay, we could not read the register */
1203 	if (delay == 50) {
1204 		dev_warn(&adapter->pdev->dev,
1205 			 "reg 0x%08x could not be read\n", reg);
1206 		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1207 			 mii_indicator);
1208 
1209 		status = -EIO;
1210 		goto out;
1211 	}
1212 
1213 	/* If we hit here we were able to read the register and we need to
1214 	 * return the value to the caller
1215 	 */
1216 	*value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1217 
1218 out:
1219 	/* Stop the read operation */
1220 	writel(0, &mac->mii_mgmt_cmd);
1221 
1222 	/* set the registers we touched back to the state at which we entered
1223 	 * this function
1224 	 */
1225 	writel(mii_addr, &mac->mii_mgmt_addr);
1226 	writel(mii_cmd, &mac->mii_mgmt_cmd);
1227 
1228 	return status;
1229 }
1230 
1231 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1232 {
1233 	struct phy_device *phydev = adapter->phydev;
1234 
1235 	if (!phydev)
1236 		return -EIO;
1237 
1238 	return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1239 }
1240 
1241 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1242 			    u16 value)
1243 {
1244 	struct mac_regs __iomem *mac = &adapter->regs->mac;
1245 	int status = 0;
1246 	u32 delay = 0;
1247 	u32 mii_addr;
1248 	u32 mii_cmd;
1249 	u32 mii_indicator;
1250 
1251 	/* Save a local copy of the registers we are dealing with so we can
1252 	 * set them back
1253 	 */
1254 	mii_addr = readl(&mac->mii_mgmt_addr);
1255 	mii_cmd = readl(&mac->mii_mgmt_cmd);
1256 
1257 	/* Stop the current operation */
1258 	writel(0, &mac->mii_mgmt_cmd);
1259 
1260 	/* Set up the register we need to write to on the correct PHY */
1261 	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1262 
1263 	/* Add the value to write to the registers to the mac */
1264 	writel(value, &mac->mii_mgmt_ctrl);
1265 
1266 	do {
1267 		udelay(50);
1268 		delay++;
1269 		mii_indicator = readl(&mac->mii_mgmt_indicator);
1270 	} while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1271 
1272 	/* If we hit the max delay, we could not write the register */
1273 	if (delay == 100) {
1274 		u16 tmp;
1275 
1276 		dev_warn(&adapter->pdev->dev,
1277 			 "reg 0x%08x could not be written", reg);
1278 		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1279 			 mii_indicator);
1280 		dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1281 			 readl(&mac->mii_mgmt_cmd));
1282 
1283 		et131x_mii_read(adapter, reg, &tmp);
1284 
1285 		status = -EIO;
1286 	}
1287 	/* Stop the write operation */
1288 	writel(0, &mac->mii_mgmt_cmd);
1289 
1290 	/* set the registers we touched back to the state at which we entered
1291 	 * this function
1292 	 */
1293 	writel(mii_addr, &mac->mii_mgmt_addr);
1294 	writel(mii_cmd, &mac->mii_mgmt_cmd);
1295 
1296 	return status;
1297 }
1298 
1299 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1300 				    u16 regnum,
1301 				    u16 bitnum,
1302 				    u8 *value)
1303 {
1304 	u16 reg;
1305 	u16 mask = 1 << bitnum;
1306 
1307 	et131x_mii_read(adapter, regnum, &reg);
1308 
1309 	*value = (reg & mask) >> bitnum;
1310 }
1311 
1312 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1313 {
1314 	struct phy_device *phydev = adapter->phydev;
1315 
1316 	if (phydev->duplex == DUPLEX_HALF) {
1317 		adapter->flow = FLOW_NONE;
1318 	} else {
1319 		char remote_pause, remote_async_pause;
1320 
1321 		et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1322 		et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1323 
1324 		if (remote_pause && remote_async_pause) {
1325 			adapter->flow = adapter->wanted_flow;
1326 		} else if (remote_pause && !remote_async_pause) {
1327 			if (adapter->wanted_flow == FLOW_BOTH)
1328 				adapter->flow = FLOW_BOTH;
1329 			else
1330 				adapter->flow = FLOW_NONE;
1331 		} else if (!remote_pause && !remote_async_pause) {
1332 			adapter->flow = FLOW_NONE;
1333 		} else {
1334 			if (adapter->wanted_flow == FLOW_BOTH)
1335 				adapter->flow = FLOW_RXONLY;
1336 			else
1337 				adapter->flow = FLOW_NONE;
1338 		}
1339 	}
1340 }
1341 
1342 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1343 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1344 {
1345 	struct ce_stats *stats = &adapter->stats;
1346 	struct macstat_regs __iomem *macstat =
1347 		&adapter->regs->macstat;
1348 
1349 	stats->tx_collisions	       += readl(&macstat->tx_total_collisions);
1350 	stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1351 	stats->tx_deferred	       += readl(&macstat->tx_deferred);
1352 	stats->tx_excessive_collisions +=
1353 				readl(&macstat->tx_multiple_collisions);
1354 	stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1355 	stats->tx_underflows	       += readl(&macstat->tx_undersize_frames);
1356 	stats->tx_max_pkt_errs	       += readl(&macstat->tx_oversize_frames);
1357 
1358 	stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1359 	stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1360 	stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1361 	stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1362 	stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1363 	stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1364 	stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1365 }
1366 
1367 /* et1310_handle_macstat_interrupt
1368  *
1369  * One of the MACSTAT counters has wrapped.  Update the local copy of
1370  * the statistics held in the adapter structure, checking the "wrap"
1371  * bit for each counter.
1372  */
1373 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1374 {
1375 	u32 carry_reg1;
1376 	u32 carry_reg2;
1377 
1378 	/* Read the interrupt bits from the register(s).  These are Clear On
1379 	 * Write.
1380 	 */
1381 	carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1382 	carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1383 
1384 	writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1385 	writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1386 
1387 	/* We need to do update the host copy of all the MAC_STAT counters.
1388 	 * For each counter, check it's overflow bit.  If the overflow bit is
1389 	 * set, then increment the host version of the count by one complete
1390 	 * revolution of the counter.  This routine is called when the counter
1391 	 * block indicates that one of the counters has wrapped.
1392 	 */
1393 	if (carry_reg1 & (1 << 14))
1394 		adapter->stats.rx_code_violations	+= COUNTER_WRAP_16_BIT;
1395 	if (carry_reg1 & (1 << 8))
1396 		adapter->stats.rx_align_errs	+= COUNTER_WRAP_12_BIT;
1397 	if (carry_reg1 & (1 << 7))
1398 		adapter->stats.rx_length_errs	+= COUNTER_WRAP_16_BIT;
1399 	if (carry_reg1 & (1 << 2))
1400 		adapter->stats.rx_other_errs	+= COUNTER_WRAP_16_BIT;
1401 	if (carry_reg1 & (1 << 6))
1402 		adapter->stats.rx_crc_errs	+= COUNTER_WRAP_16_BIT;
1403 	if (carry_reg1 & (1 << 3))
1404 		adapter->stats.rx_overflows	+= COUNTER_WRAP_16_BIT;
1405 	if (carry_reg1 & (1 << 0))
1406 		adapter->stats.rcvd_pkts_dropped	+= COUNTER_WRAP_16_BIT;
1407 	if (carry_reg2 & (1 << 16))
1408 		adapter->stats.tx_max_pkt_errs	+= COUNTER_WRAP_12_BIT;
1409 	if (carry_reg2 & (1 << 15))
1410 		adapter->stats.tx_underflows	+= COUNTER_WRAP_12_BIT;
1411 	if (carry_reg2 & (1 << 6))
1412 		adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1413 	if (carry_reg2 & (1 << 8))
1414 		adapter->stats.tx_deferred	+= COUNTER_WRAP_12_BIT;
1415 	if (carry_reg2 & (1 << 5))
1416 		adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1417 	if (carry_reg2 & (1 << 4))
1418 		adapter->stats.tx_late_collisions	+= COUNTER_WRAP_12_BIT;
1419 	if (carry_reg2 & (1 << 2))
1420 		adapter->stats.tx_collisions	+= COUNTER_WRAP_12_BIT;
1421 }
1422 
1423 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1424 {
1425 	struct net_device *netdev = bus->priv;
1426 	struct et131x_adapter *adapter = netdev_priv(netdev);
1427 	u16 value;
1428 	int ret;
1429 
1430 	ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1431 
1432 	if (ret < 0)
1433 		return ret;
1434 
1435 	return value;
1436 }
1437 
1438 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1439 			     int reg, u16 value)
1440 {
1441 	struct net_device *netdev = bus->priv;
1442 	struct et131x_adapter *adapter = netdev_priv(netdev);
1443 
1444 	return et131x_mii_write(adapter, phy_addr, reg, value);
1445 }
1446 
1447 /*	et1310_phy_power_switch	-	PHY power control
1448  *	@adapter: device to control
1449  *	@down: true for off/false for back on
1450  *
1451  *	one hundred, ten, one thousand megs
1452  *	How would you like to have your LAN accessed
1453  *	Can't you see that this code processed
1454  *	Phy power, phy power..
1455  */
1456 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1457 {
1458 	u16 data;
1459 	struct  phy_device *phydev = adapter->phydev;
1460 
1461 	et131x_mii_read(adapter, MII_BMCR, &data);
1462 	data &= ~BMCR_PDOWN;
1463 	if (down)
1464 		data |= BMCR_PDOWN;
1465 	et131x_mii_write(adapter, phydev->addr, MII_BMCR, data);
1466 }
1467 
1468 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1469 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1470 {
1471 	u16 lcr2;
1472 	struct  phy_device *phydev = adapter->phydev;
1473 
1474 	/* Set the LED behavior such that LED 1 indicates speed (off =
1475 	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1476 	 * link and activity (on for link, blink off for activity).
1477 	 *
1478 	 * NOTE: Some customizations have been added here for specific
1479 	 * vendors; The LED behavior is now determined by vendor data in the
1480 	 * EEPROM. However, the above description is the default.
1481 	 */
1482 	if ((adapter->eeprom_data[1] & 0x4) == 0) {
1483 		et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1484 
1485 		lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1486 		lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1487 
1488 		if ((adapter->eeprom_data[1] & 0x8) == 0)
1489 			lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1490 		else
1491 			lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1492 
1493 		et131x_mii_write(adapter, phydev->addr, PHY_LED_2, lcr2);
1494 	}
1495 }
1496 
1497 /* et131x_configure_global_regs	- configure JAGCore global regs */
1498 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1499 {
1500 	struct global_regs __iomem *regs = &adapter->regs->global;
1501 
1502 	writel(0, &regs->rxq_start_addr);
1503 	writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1504 
1505 	if (adapter->registry_jumbo_packet < 2048) {
1506 		/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1507 		 * block of RAM that the driver can split between Tx
1508 		 * and Rx as it desires.  Our default is to split it
1509 		 * 50/50:
1510 		 */
1511 		writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1512 		writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1513 	} else if (adapter->registry_jumbo_packet < 8192) {
1514 		/* For jumbo packets > 2k but < 8k, split 50-50. */
1515 		writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1516 		writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1517 	} else {
1518 		/* 9216 is the only packet size greater than 8k that
1519 		 * is available. The Tx buffer has to be big enough
1520 		 * for one whole packet on the Tx side. We'll make
1521 		 * the Tx 9408, and give the rest to Rx
1522 		 */
1523 		writel(0x01b3, &regs->rxq_end_addr);
1524 		writel(0x01b4, &regs->txq_start_addr);
1525 	}
1526 
1527 	/* Initialize the loopback register. Disable all loopbacks. */
1528 	writel(0, &regs->loopback);
1529 
1530 	writel(0, &regs->msi_config);
1531 
1532 	/* By default, disable the watchdog timer.  It will be enabled when
1533 	 * a packet is queued.
1534 	 */
1535 	writel(0, &regs->watchdog_timer);
1536 }
1537 
1538 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1539 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1540 {
1541 	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1542 	struct rx_ring *rx_local = &adapter->rx_ring;
1543 	struct fbr_desc *fbr_entry;
1544 	u32 entry;
1545 	u32 psr_num_des;
1546 	unsigned long flags;
1547 	u8 id;
1548 
1549 	et131x_rx_dma_disable(adapter);
1550 
1551 	/* Load the completion writeback physical address */
1552 	writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1553 	writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1554 
1555 	memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1556 
1557 	/* Set the address and parameters of the packet status ring */
1558 	writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1559 	writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1560 	writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1561 	writel(0, &rx_dma->psr_full_offset);
1562 
1563 	psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1564 	writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1565 	       &rx_dma->psr_min_des);
1566 
1567 	spin_lock_irqsave(&adapter->rcv_lock, flags);
1568 
1569 	/* These local variables track the PSR in the adapter structure */
1570 	rx_local->local_psr_full = 0;
1571 
1572 	for (id = 0; id < NUM_FBRS; id++) {
1573 		u32 __iomem *num_des;
1574 		u32 __iomem *full_offset;
1575 		u32 __iomem *min_des;
1576 		u32 __iomem *base_hi;
1577 		u32 __iomem *base_lo;
1578 		struct fbr_lookup *fbr = rx_local->fbr[id];
1579 
1580 		if (id == 0) {
1581 			num_des = &rx_dma->fbr0_num_des;
1582 			full_offset = &rx_dma->fbr0_full_offset;
1583 			min_des = &rx_dma->fbr0_min_des;
1584 			base_hi = &rx_dma->fbr0_base_hi;
1585 			base_lo = &rx_dma->fbr0_base_lo;
1586 		} else {
1587 			num_des = &rx_dma->fbr1_num_des;
1588 			full_offset = &rx_dma->fbr1_full_offset;
1589 			min_des = &rx_dma->fbr1_min_des;
1590 			base_hi = &rx_dma->fbr1_base_hi;
1591 			base_lo = &rx_dma->fbr1_base_lo;
1592 		}
1593 
1594 		/* Now's the best time to initialize FBR contents */
1595 		fbr_entry = fbr->ring_virtaddr;
1596 		for (entry = 0; entry < fbr->num_entries; entry++) {
1597 			fbr_entry->addr_hi = fbr->bus_high[entry];
1598 			fbr_entry->addr_lo = fbr->bus_low[entry];
1599 			fbr_entry->word2 = entry;
1600 			fbr_entry++;
1601 		}
1602 
1603 		/* Set the address and parameters of Free buffer ring 1 and 0 */
1604 		writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1605 		writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1606 		writel(fbr->num_entries - 1, num_des);
1607 		writel(ET_DMA10_WRAP, full_offset);
1608 
1609 		/* This variable tracks the free buffer ring 1 full position,
1610 		 * so it has to match the above.
1611 		 */
1612 		fbr->local_full = ET_DMA10_WRAP;
1613 		writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1614 		       min_des);
1615 	}
1616 
1617 	/* Program the number of packets we will receive before generating an
1618 	 * interrupt.
1619 	 * For version B silicon, this value gets updated once autoneg is
1620 	 *complete.
1621 	 */
1622 	writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1623 
1624 	/* The "time_done" is not working correctly to coalesce interrupts
1625 	 * after a given time period, but rather is giving us an interrupt
1626 	 * regardless of whether we have received packets.
1627 	 * This value gets updated once autoneg is complete.
1628 	 */
1629 	writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1630 
1631 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1632 }
1633 
1634 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1635  *
1636  * Configure the transmit engine with the ring buffers we have created
1637  * and prepare it for use.
1638  */
1639 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1640 {
1641 	struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1642 	struct tx_ring *tx_ring = &adapter->tx_ring;
1643 
1644 	/* Load the hardware with the start of the transmit descriptor ring. */
1645 	writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1646 	writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1647 
1648 	/* Initialise the transmit DMA engine */
1649 	writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1650 
1651 	/* Load the completion writeback physical address */
1652 	writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1653 	writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1654 
1655 	*tx_ring->tx_status = 0;
1656 
1657 	writel(0, &txdma->service_request);
1658 	tx_ring->send_idx = 0;
1659 }
1660 
1661 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1662 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1663 {
1664 	et131x_configure_global_regs(adapter);
1665 	et1310_config_mac_regs1(adapter);
1666 
1667 	/* Configure the MMC registers */
1668 	/* All we need to do is initialize the Memory Control Register */
1669 	writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1670 
1671 	et1310_config_rxmac_regs(adapter);
1672 	et1310_config_txmac_regs(adapter);
1673 
1674 	et131x_config_rx_dma_regs(adapter);
1675 	et131x_config_tx_dma_regs(adapter);
1676 
1677 	et1310_config_macstat_regs(adapter);
1678 
1679 	et1310_phy_power_switch(adapter, 0);
1680 	et131x_xcvr_init(adapter);
1681 }
1682 
1683 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1684 static void et131x_soft_reset(struct et131x_adapter *adapter)
1685 {
1686 	u32 reg;
1687 
1688 	/* Disable MAC Core */
1689 	reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1690 	      ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1691 	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1692 	writel(reg, &adapter->regs->mac.cfg1);
1693 
1694 	reg = ET_RESET_ALL;
1695 	writel(reg, &adapter->regs->global.sw_reset);
1696 
1697 	reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1698 	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1699 	writel(reg, &adapter->regs->mac.cfg1);
1700 	writel(0, &adapter->regs->mac.cfg1);
1701 }
1702 
1703 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1704 {
1705 	u32 mask;
1706 
1707 	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1708 		mask = INT_MASK_ENABLE;
1709 	else
1710 		mask = INT_MASK_ENABLE_NO_FLOW;
1711 
1712 	writel(mask, &adapter->regs->global.int_mask);
1713 }
1714 
1715 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1716 {
1717 	writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1718 }
1719 
1720 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1721 {
1722 	/* Setup the transmit dma configuration register */
1723 	writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1724 	       &adapter->regs->txdma.csr);
1725 }
1726 
1727 static void et131x_enable_txrx(struct net_device *netdev)
1728 {
1729 	struct et131x_adapter *adapter = netdev_priv(netdev);
1730 
1731 	et131x_rx_dma_enable(adapter);
1732 	et131x_tx_dma_enable(adapter);
1733 
1734 	if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1735 		et131x_enable_interrupts(adapter);
1736 
1737 	netif_start_queue(netdev);
1738 }
1739 
1740 static void et131x_disable_txrx(struct net_device *netdev)
1741 {
1742 	struct et131x_adapter *adapter = netdev_priv(netdev);
1743 
1744 	netif_stop_queue(netdev);
1745 
1746 	et131x_rx_dma_disable(adapter);
1747 	et131x_tx_dma_disable(adapter);
1748 
1749 	et131x_disable_interrupts(adapter);
1750 }
1751 
1752 static void et131x_init_send(struct et131x_adapter *adapter)
1753 {
1754 	int i;
1755 	struct tx_ring *tx_ring = &adapter->tx_ring;
1756 	struct tcb *tcb = tx_ring->tcb_ring;
1757 
1758 	tx_ring->tcb_qhead = tcb;
1759 
1760 	memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1761 
1762 	for (i = 0; i < NUM_TCB; i++) {
1763 		tcb->next = tcb + 1;
1764 		tcb++;
1765 	}
1766 
1767 	tcb--;
1768 	tx_ring->tcb_qtail = tcb;
1769 	tcb->next = NULL;
1770 	/* Curr send queue should now be empty */
1771 	tx_ring->send_head = NULL;
1772 	tx_ring->send_tail = NULL;
1773 }
1774 
1775 /* et1310_enable_phy_coma
1776  *
1777  * driver receive an phy status change interrupt while in D0 and check that
1778  * phy_status is down.
1779  *
1780  *          -- gate off JAGCore;
1781  *          -- set gigE PHY in Coma mode
1782  *          -- wake on phy_interrupt; Perform software reset JAGCore,
1783  *             re-initialize jagcore and gigE PHY
1784  */
1785 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1786 {
1787 	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1788 
1789 	/* Stop sending packets. */
1790 	adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1791 
1792 	/* Wait for outstanding Receive packets */
1793 	et131x_disable_txrx(adapter->netdev);
1794 
1795 	/* Gate off JAGCore 3 clock domains */
1796 	pmcsr &= ~ET_PMCSR_INIT;
1797 	writel(pmcsr, &adapter->regs->global.pm_csr);
1798 
1799 	/* Program gigE PHY in to Coma mode */
1800 	pmcsr |= ET_PM_PHY_SW_COMA;
1801 	writel(pmcsr, &adapter->regs->global.pm_csr);
1802 }
1803 
1804 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1805 {
1806 	u32 pmcsr;
1807 
1808 	pmcsr = readl(&adapter->regs->global.pm_csr);
1809 
1810 	/* Disable phy_sw_coma register and re-enable JAGCore clocks */
1811 	pmcsr |= ET_PMCSR_INIT;
1812 	pmcsr &= ~ET_PM_PHY_SW_COMA;
1813 	writel(pmcsr, &adapter->regs->global.pm_csr);
1814 
1815 	/* Restore the GbE PHY speed and duplex modes;
1816 	 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1817 	 */
1818 
1819 	/* Re-initialize the send structures */
1820 	et131x_init_send(adapter);
1821 
1822 	/* Bring the device back to the state it was during init prior to
1823 	 * autonegotiation being complete.  This way, when we get the auto-neg
1824 	 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1825 	 */
1826 	et131x_soft_reset(adapter);
1827 
1828 	et131x_adapter_setup(adapter);
1829 
1830 	/* Allow Tx to restart */
1831 	adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1832 
1833 	et131x_enable_txrx(adapter->netdev);
1834 }
1835 
1836 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1837 {
1838 	u32 tmp_free_buff_ring = *free_buff_ring;
1839 
1840 	tmp_free_buff_ring++;
1841 	/* This works for all cases where limit < 1024. The 1023 case
1842 	 * works because 1023++ is 1024 which means the if condition is not
1843 	 * taken but the carry of the bit into the wrap bit toggles the wrap
1844 	 * value correctly
1845 	 */
1846 	if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1847 		tmp_free_buff_ring &= ~ET_DMA10_MASK;
1848 		tmp_free_buff_ring ^= ET_DMA10_WRAP;
1849 	}
1850 	/* For the 1023 case */
1851 	tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1852 	*free_buff_ring = tmp_free_buff_ring;
1853 	return tmp_free_buff_ring;
1854 }
1855 
1856 /* et131x_rx_dma_memory_alloc
1857  *
1858  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1859  * and the Packet Status Ring.
1860  */
1861 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1862 {
1863 	u8 id;
1864 	u32 i, j;
1865 	u32 bufsize;
1866 	u32 psr_size;
1867 	u32 fbr_chunksize;
1868 	struct rx_ring *rx_ring = &adapter->rx_ring;
1869 	struct fbr_lookup *fbr;
1870 
1871 	/* Alloc memory for the lookup table */
1872 	rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873 	if (rx_ring->fbr[0] == NULL)
1874 		return -ENOMEM;
1875 	rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1876 	if (rx_ring->fbr[1] == NULL)
1877 		return -ENOMEM;
1878 
1879 	/* The first thing we will do is configure the sizes of the buffer
1880 	 * rings. These will change based on jumbo packet support.  Larger
1881 	 * jumbo packets increases the size of each entry in FBR0, and the
1882 	 * number of entries in FBR0, while at the same time decreasing the
1883 	 * number of entries in FBR1.
1884 	 *
1885 	 * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1886 	 * entries are huge in order to accommodate a "jumbo" frame, then it
1887 	 * will have less entries.  Conversely, FBR1 will now be relied upon
1888 	 * to carry more "normal" frames, thus it's entry size also increases
1889 	 * and the number of entries goes up too (since it now carries
1890 	 * "small" + "regular" packets.
1891 	 *
1892 	 * In this scheme, we try to maintain 512 entries between the two
1893 	 * rings. Also, FBR1 remains a constant size - when it's size doubles
1894 	 * the number of entries halves.  FBR0 increases in size, however.
1895 	 */
1896 	if (adapter->registry_jumbo_packet < 2048) {
1897 		rx_ring->fbr[0]->buffsize = 256;
1898 		rx_ring->fbr[0]->num_entries = 512;
1899 		rx_ring->fbr[1]->buffsize = 2048;
1900 		rx_ring->fbr[1]->num_entries = 512;
1901 	} else if (adapter->registry_jumbo_packet < 4096) {
1902 		rx_ring->fbr[0]->buffsize = 512;
1903 		rx_ring->fbr[0]->num_entries = 1024;
1904 		rx_ring->fbr[1]->buffsize = 4096;
1905 		rx_ring->fbr[1]->num_entries = 512;
1906 	} else {
1907 		rx_ring->fbr[0]->buffsize = 1024;
1908 		rx_ring->fbr[0]->num_entries = 768;
1909 		rx_ring->fbr[1]->buffsize = 16384;
1910 		rx_ring->fbr[1]->num_entries = 128;
1911 	}
1912 
1913 	rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1914 			       rx_ring->fbr[1]->num_entries;
1915 
1916 	for (id = 0; id < NUM_FBRS; id++) {
1917 		fbr = rx_ring->fbr[id];
1918 		/* Allocate an area of memory for Free Buffer Ring */
1919 		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1920 		fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1921 							bufsize,
1922 							&fbr->ring_physaddr,
1923 							GFP_KERNEL);
1924 		if (!fbr->ring_virtaddr) {
1925 			dev_err(&adapter->pdev->dev,
1926 				"Cannot alloc memory for Free Buffer Ring %d\n",
1927 				id);
1928 			return -ENOMEM;
1929 		}
1930 	}
1931 
1932 	for (id = 0; id < NUM_FBRS; id++) {
1933 		fbr = rx_ring->fbr[id];
1934 		fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1935 
1936 		for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1937 			dma_addr_t fbr_physaddr;
1938 
1939 			fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1940 					&adapter->pdev->dev, fbr_chunksize,
1941 					&fbr->mem_physaddrs[i],
1942 					GFP_KERNEL);
1943 
1944 			if (!fbr->mem_virtaddrs[i]) {
1945 				dev_err(&adapter->pdev->dev,
1946 					"Could not alloc memory\n");
1947 				return -ENOMEM;
1948 			}
1949 
1950 			/* See NOTE in "Save Physical Address" comment above */
1951 			fbr_physaddr = fbr->mem_physaddrs[i];
1952 
1953 			for (j = 0; j < FBR_CHUNKS; j++) {
1954 				u32 k = (i * FBR_CHUNKS) + j;
1955 
1956 				/* Save the Virtual address of this index for
1957 				 * quick access later
1958 				 */
1959 				fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1960 						   (j * fbr->buffsize);
1961 
1962 				/* now store the physical address in the
1963 				 * descriptor so the device can access it
1964 				 */
1965 				fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1966 				fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1967 				fbr_physaddr += fbr->buffsize;
1968 			}
1969 		}
1970 	}
1971 
1972 	/* Allocate an area of memory for FIFO of Packet Status ring entries */
1973 	psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1974 
1975 	rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1976 						  psr_size,
1977 						  &rx_ring->ps_ring_physaddr,
1978 						  GFP_KERNEL);
1979 
1980 	if (!rx_ring->ps_ring_virtaddr) {
1981 		dev_err(&adapter->pdev->dev,
1982 			"Cannot alloc memory for Packet Status Ring\n");
1983 		return -ENOMEM;
1984 	}
1985 
1986 	/* Allocate an area of memory for writeback of status information */
1987 	rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1988 					    sizeof(struct rx_status_block),
1989 					    &rx_ring->rx_status_bus,
1990 					    GFP_KERNEL);
1991 	if (!rx_ring->rx_status_block) {
1992 		dev_err(&adapter->pdev->dev,
1993 			"Cannot alloc memory for Status Block\n");
1994 		return -ENOMEM;
1995 	}
1996 	rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1997 
1998 	/* The RFDs are going to be put on lists later on, so initialize the
1999 	 * lists now.
2000 	 */
2001 	INIT_LIST_HEAD(&rx_ring->recv_list);
2002 	return 0;
2003 }
2004 
2005 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2006 {
2007 	u8 id;
2008 	u32 ii;
2009 	u32 bufsize;
2010 	u32 psr_size;
2011 	struct rfd *rfd;
2012 	struct rx_ring *rx_ring = &adapter->rx_ring;
2013 	struct fbr_lookup *fbr;
2014 
2015 	/* Free RFDs and associated packet descriptors */
2016 	WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2017 
2018 	while (!list_empty(&rx_ring->recv_list)) {
2019 		rfd = list_entry(rx_ring->recv_list.next,
2020 				 struct rfd, list_node);
2021 
2022 		list_del(&rfd->list_node);
2023 		rfd->skb = NULL;
2024 		kfree(rfd);
2025 	}
2026 
2027 	/* Free Free Buffer Rings */
2028 	for (id = 0; id < NUM_FBRS; id++) {
2029 		fbr = rx_ring->fbr[id];
2030 
2031 		if (!fbr || !fbr->ring_virtaddr)
2032 			continue;
2033 
2034 		/* First the packet memory */
2035 		for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2036 			if (fbr->mem_virtaddrs[ii]) {
2037 				bufsize = fbr->buffsize * FBR_CHUNKS;
2038 
2039 				dma_free_coherent(&adapter->pdev->dev,
2040 						  bufsize,
2041 						  fbr->mem_virtaddrs[ii],
2042 						  fbr->mem_physaddrs[ii]);
2043 
2044 				fbr->mem_virtaddrs[ii] = NULL;
2045 			}
2046 		}
2047 
2048 		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2049 
2050 		dma_free_coherent(&adapter->pdev->dev,
2051 				  bufsize,
2052 				  fbr->ring_virtaddr,
2053 				  fbr->ring_physaddr);
2054 
2055 		fbr->ring_virtaddr = NULL;
2056 	}
2057 
2058 	/* Free Packet Status Ring */
2059 	if (rx_ring->ps_ring_virtaddr) {
2060 		psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2061 
2062 		dma_free_coherent(&adapter->pdev->dev, psr_size,
2063 				  rx_ring->ps_ring_virtaddr,
2064 				  rx_ring->ps_ring_physaddr);
2065 
2066 		rx_ring->ps_ring_virtaddr = NULL;
2067 	}
2068 
2069 	/* Free area of memory for the writeback of status information */
2070 	if (rx_ring->rx_status_block) {
2071 		dma_free_coherent(&adapter->pdev->dev,
2072 				  sizeof(struct rx_status_block),
2073 				  rx_ring->rx_status_block,
2074 				  rx_ring->rx_status_bus);
2075 		rx_ring->rx_status_block = NULL;
2076 	}
2077 
2078 	/* Free the FBR Lookup Table */
2079 	kfree(rx_ring->fbr[0]);
2080 	kfree(rx_ring->fbr[1]);
2081 
2082 	/* Reset Counters */
2083 	rx_ring->num_ready_recv = 0;
2084 }
2085 
2086 /* et131x_init_recv - Initialize receive data structures */
2087 static int et131x_init_recv(struct et131x_adapter *adapter)
2088 {
2089 	struct rfd *rfd;
2090 	u32 rfdct;
2091 	struct rx_ring *rx_ring = &adapter->rx_ring;
2092 
2093 	/* Setup each RFD */
2094 	for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2095 		rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2096 		if (!rfd)
2097 			return -ENOMEM;
2098 
2099 		rfd->skb = NULL;
2100 
2101 		/* Add this RFD to the recv_list */
2102 		list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2103 
2104 		/* Increment the available RFD's */
2105 		rx_ring->num_ready_recv++;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2112 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2113 {
2114 	struct phy_device *phydev = adapter->phydev;
2115 
2116 	/* For version B silicon, we do not use the RxDMA timer for 10 and 100
2117 	 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2118 	 */
2119 	if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2120 		writel(0, &adapter->regs->rxdma.max_pkt_time);
2121 		writel(1, &adapter->regs->rxdma.num_pkt_done);
2122 	}
2123 }
2124 
2125 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2126 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2127 {
2128 	struct rx_ring *rx_local = &adapter->rx_ring;
2129 	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2130 	u16 buff_index = rfd->bufferindex;
2131 	u8 ring_index = rfd->ringindex;
2132 	unsigned long flags;
2133 	struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2134 
2135 	/* We don't use any of the OOB data besides status. Otherwise, we
2136 	 * need to clean up OOB data
2137 	 */
2138 	if (buff_index < fbr->num_entries) {
2139 		u32 free_buff_ring;
2140 		u32 __iomem *offset;
2141 		struct fbr_desc *next;
2142 
2143 		if (ring_index == 0)
2144 			offset = &rx_dma->fbr0_full_offset;
2145 		else
2146 			offset = &rx_dma->fbr1_full_offset;
2147 
2148 		next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2149 		       INDEX10(fbr->local_full);
2150 
2151 		/* Handle the Free Buffer Ring advancement here. Write
2152 		 * the PA / Buffer Index for the returned buffer into
2153 		 * the oldest (next to be freed)FBR entry
2154 		 */
2155 		next->addr_hi = fbr->bus_high[buff_index];
2156 		next->addr_lo = fbr->bus_low[buff_index];
2157 		next->word2 = buff_index;
2158 
2159 		free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2160 						     fbr->num_entries - 1);
2161 		writel(free_buff_ring, offset);
2162 	} else {
2163 		dev_err(&adapter->pdev->dev,
2164 			"%s illegal Buffer Index returned\n", __func__);
2165 	}
2166 
2167 	/* The processing on this RFD is done, so put it back on the tail of
2168 	 * our list
2169 	 */
2170 	spin_lock_irqsave(&adapter->rcv_lock, flags);
2171 	list_add_tail(&rfd->list_node, &rx_local->recv_list);
2172 	rx_local->num_ready_recv++;
2173 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2174 
2175 	WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2176 }
2177 
2178 /* nic_rx_pkts - Checks the hardware for available packets
2179  *
2180  * Checks the hardware for available packets, using completion ring
2181  * If packets are available, it gets an RFD from the recv_list, attaches
2182  * the packet to it, puts the RFD in the RecvPendList, and also returns
2183  * the pointer to the RFD.
2184  */
2185 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2186 {
2187 	struct rx_ring *rx_local = &adapter->rx_ring;
2188 	struct rx_status_block *status;
2189 	struct pkt_stat_desc *psr;
2190 	struct rfd *rfd;
2191 	unsigned long flags;
2192 	struct list_head *element;
2193 	u8 ring_index;
2194 	u16 buff_index;
2195 	u32 len;
2196 	u32 word0;
2197 	u32 word1;
2198 	struct sk_buff *skb;
2199 	struct fbr_lookup *fbr;
2200 
2201 	/* RX Status block is written by the DMA engine prior to every
2202 	 * interrupt. It contains the next to be used entry in the Packet
2203 	 * Status Ring, and also the two Free Buffer rings.
2204 	 */
2205 	status = rx_local->rx_status_block;
2206 	word1 = status->word1 >> 16;
2207 
2208 	/* Check the PSR and wrap bits do not match */
2209 	if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2210 		return NULL; /* Looks like this ring is not updated yet */
2211 
2212 	/* The packet status ring indicates that data is available. */
2213 	psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2214 			(rx_local->local_psr_full & 0xFFF);
2215 
2216 	/* Grab any information that is required once the PSR is advanced,
2217 	 * since we can no longer rely on the memory being accurate
2218 	 */
2219 	len = psr->word1 & 0xFFFF;
2220 	ring_index = (psr->word1 >> 26) & 0x03;
2221 	fbr = rx_local->fbr[ring_index];
2222 	buff_index = (psr->word1 >> 16) & 0x3FF;
2223 	word0 = psr->word0;
2224 
2225 	/* Indicate that we have used this PSR entry. */
2226 	/* FIXME wrap 12 */
2227 	add_12bit(&rx_local->local_psr_full, 1);
2228 	if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2229 		/* Clear psr full and toggle the wrap bit */
2230 		rx_local->local_psr_full &=  ~0xFFF;
2231 		rx_local->local_psr_full ^= 0x1000;
2232 	}
2233 
2234 	writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2235 
2236 	if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2237 		/* Illegal buffer or ring index cannot be used by S/W*/
2238 		dev_err(&adapter->pdev->dev,
2239 			"NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2240 			rx_local->local_psr_full & 0xFFF, len, buff_index);
2241 		return NULL;
2242 	}
2243 
2244 	/* Get and fill the RFD. */
2245 	spin_lock_irqsave(&adapter->rcv_lock, flags);
2246 
2247 	element = rx_local->recv_list.next;
2248 	rfd = list_entry(element, struct rfd, list_node);
2249 
2250 	if (!rfd) {
2251 		spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2252 		return NULL;
2253 	}
2254 
2255 	list_del(&rfd->list_node);
2256 	rx_local->num_ready_recv--;
2257 
2258 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2259 
2260 	rfd->bufferindex = buff_index;
2261 	rfd->ringindex = ring_index;
2262 
2263 	/* In V1 silicon, there is a bug which screws up filtering of runt
2264 	 * packets. Therefore runt packet filtering is disabled in the MAC and
2265 	 * the packets are dropped here. They are also counted here.
2266 	 */
2267 	if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2268 		adapter->stats.rx_other_errs++;
2269 		rfd->len = 0;
2270 		goto out;
2271 	}
2272 
2273 	if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2274 		adapter->stats.multicast_pkts_rcvd++;
2275 
2276 	rfd->len = len;
2277 
2278 	skb = dev_alloc_skb(rfd->len + 2);
2279 	if (!skb)
2280 		return NULL;
2281 
2282 	adapter->netdev->stats.rx_bytes += rfd->len;
2283 
2284 	memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2285 
2286 	skb->protocol = eth_type_trans(skb, adapter->netdev);
2287 	skb->ip_summed = CHECKSUM_NONE;
2288 	netif_receive_skb(skb);
2289 
2290 out:
2291 	nic_return_rfd(adapter, rfd);
2292 	return rfd;
2293 }
2294 
2295 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2296 {
2297 	struct rfd *rfd = NULL;
2298 	int count = 0;
2299 	int limit = budget;
2300 	bool done = true;
2301 	struct rx_ring *rx_ring = &adapter->rx_ring;
2302 
2303 	if (budget > MAX_PACKETS_HANDLED)
2304 		limit = MAX_PACKETS_HANDLED;
2305 
2306 	/* Process up to available RFD's */
2307 	while (count < limit) {
2308 		if (list_empty(&rx_ring->recv_list)) {
2309 			WARN_ON(rx_ring->num_ready_recv != 0);
2310 			done = false;
2311 			break;
2312 		}
2313 
2314 		rfd = nic_rx_pkts(adapter);
2315 
2316 		if (rfd == NULL)
2317 			break;
2318 
2319 		/* Do not receive any packets until a filter has been set.
2320 		 * Do not receive any packets until we have link.
2321 		 * If length is zero, return the RFD in order to advance the
2322 		 * Free buffer ring.
2323 		 */
2324 		if (!adapter->packet_filter ||
2325 		    !netif_carrier_ok(adapter->netdev) ||
2326 		    rfd->len == 0)
2327 			continue;
2328 
2329 		adapter->netdev->stats.rx_packets++;
2330 
2331 		if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2332 			dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2333 
2334 		count++;
2335 	}
2336 
2337 	if (count == limit || !done) {
2338 		rx_ring->unfinished_receives = true;
2339 		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2340 		       &adapter->regs->global.watchdog_timer);
2341 	} else {
2342 		/* Watchdog timer will disable itself if appropriate. */
2343 		rx_ring->unfinished_receives = false;
2344 	}
2345 
2346 	return count;
2347 }
2348 
2349 /* et131x_tx_dma_memory_alloc
2350  *
2351  * Allocates memory that will be visible both to the device and to the CPU.
2352  * The OS will pass us packets, pointers to which we will insert in the Tx
2353  * Descriptor queue. The device will read this queue to find the packets in
2354  * memory. The device will update the "status" in memory each time it xmits a
2355  * packet.
2356  */
2357 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2358 {
2359 	int desc_size = 0;
2360 	struct tx_ring *tx_ring = &adapter->tx_ring;
2361 
2362 	/* Allocate memory for the TCB's (Transmit Control Block) */
2363 	tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2364 				    GFP_ATOMIC | GFP_DMA);
2365 	if (!tx_ring->tcb_ring)
2366 		return -ENOMEM;
2367 
2368 	desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2369 	tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2370 						   desc_size,
2371 						   &tx_ring->tx_desc_ring_pa,
2372 						   GFP_KERNEL);
2373 	if (!tx_ring->tx_desc_ring) {
2374 		dev_err(&adapter->pdev->dev,
2375 			"Cannot alloc memory for Tx Ring\n");
2376 		return -ENOMEM;
2377 	}
2378 
2379 	tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2380 						    sizeof(u32),
2381 						    &tx_ring->tx_status_pa,
2382 						    GFP_KERNEL);
2383 	if (!tx_ring->tx_status_pa) {
2384 		dev_err(&adapter->pdev->dev,
2385 			"Cannot alloc memory for Tx status block\n");
2386 		return -ENOMEM;
2387 	}
2388 	return 0;
2389 }
2390 
2391 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2392 {
2393 	int desc_size = 0;
2394 	struct tx_ring *tx_ring = &adapter->tx_ring;
2395 
2396 	if (tx_ring->tx_desc_ring) {
2397 		/* Free memory relating to Tx rings here */
2398 		desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2399 		dma_free_coherent(&adapter->pdev->dev,
2400 				  desc_size,
2401 				  tx_ring->tx_desc_ring,
2402 				  tx_ring->tx_desc_ring_pa);
2403 		tx_ring->tx_desc_ring = NULL;
2404 	}
2405 
2406 	/* Free memory for the Tx status block */
2407 	if (tx_ring->tx_status) {
2408 		dma_free_coherent(&adapter->pdev->dev,
2409 				  sizeof(u32),
2410 				  tx_ring->tx_status,
2411 				  tx_ring->tx_status_pa);
2412 
2413 		tx_ring->tx_status = NULL;
2414 	}
2415 	/* Free the memory for the tcb structures */
2416 	kfree(tx_ring->tcb_ring);
2417 }
2418 
2419 /* nic_send_packet - NIC specific send handler for version B silicon. */
2420 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2421 {
2422 	u32 i;
2423 	struct tx_desc desc[24];
2424 	u32 frag = 0;
2425 	u32 thiscopy, remainder;
2426 	struct sk_buff *skb = tcb->skb;
2427 	u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2428 	struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2429 	struct phy_device *phydev = adapter->phydev;
2430 	dma_addr_t dma_addr;
2431 	struct tx_ring *tx_ring = &adapter->tx_ring;
2432 
2433 	/* Part of the optimizations of this send routine restrict us to
2434 	 * sending 24 fragments at a pass.  In practice we should never see
2435 	 * more than 5 fragments.
2436 	 */
2437 
2438 	/* nr_frags should be no more than 18. */
2439 	BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2440 
2441 	memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2442 
2443 	for (i = 0; i < nr_frags; i++) {
2444 		/* If there is something in this element, lets get a
2445 		 * descriptor from the ring and get the necessary data
2446 		 */
2447 		if (i == 0) {
2448 			/* If the fragments are smaller than a standard MTU,
2449 			 * then map them to a single descriptor in the Tx
2450 			 * Desc ring. However, if they're larger, as is
2451 			 * possible with support for jumbo packets, then
2452 			 * split them each across 2 descriptors.
2453 			 *
2454 			 * This will work until we determine why the hardware
2455 			 * doesn't seem to like large fragments.
2456 			 */
2457 			if (skb_headlen(skb) <= 1514) {
2458 				/* Low 16bits are length, high is vlan and
2459 				 * unused currently so zero
2460 				 */
2461 				desc[frag].len_vlan = skb_headlen(skb);
2462 				dma_addr = dma_map_single(&adapter->pdev->dev,
2463 							  skb->data,
2464 							  skb_headlen(skb),
2465 							  DMA_TO_DEVICE);
2466 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2467 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2468 				frag++;
2469 			} else {
2470 				desc[frag].len_vlan = skb_headlen(skb) / 2;
2471 				dma_addr = dma_map_single(&adapter->pdev->dev,
2472 							  skb->data,
2473 							  skb_headlen(skb) / 2,
2474 							  DMA_TO_DEVICE);
2475 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2476 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2477 				frag++;
2478 
2479 				desc[frag].len_vlan = skb_headlen(skb) / 2;
2480 				dma_addr = dma_map_single(&adapter->pdev->dev,
2481 							  skb->data +
2482 							  skb_headlen(skb) / 2,
2483 							  skb_headlen(skb) / 2,
2484 							  DMA_TO_DEVICE);
2485 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2486 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2487 				frag++;
2488 			}
2489 		} else {
2490 			desc[frag].len_vlan = frags[i - 1].size;
2491 			dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2492 						    &frags[i - 1],
2493 						    0,
2494 						    frags[i - 1].size,
2495 						    DMA_TO_DEVICE);
2496 			desc[frag].addr_lo = lower_32_bits(dma_addr);
2497 			desc[frag].addr_hi = upper_32_bits(dma_addr);
2498 			frag++;
2499 		}
2500 	}
2501 
2502 	if (phydev && phydev->speed == SPEED_1000) {
2503 		if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2504 			/* Last element & Interrupt flag */
2505 			desc[frag - 1].flags =
2506 				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2507 			tx_ring->since_irq = 0;
2508 		} else { /* Last element */
2509 			desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2510 		}
2511 	} else {
2512 		desc[frag - 1].flags =
2513 				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2514 	}
2515 
2516 	desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2517 
2518 	tcb->index_start = tx_ring->send_idx;
2519 	tcb->stale = 0;
2520 
2521 	thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2522 
2523 	if (thiscopy >= frag) {
2524 		remainder = 0;
2525 		thiscopy = frag;
2526 	} else {
2527 		remainder = frag - thiscopy;
2528 	}
2529 
2530 	memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2531 	       desc,
2532 	       sizeof(struct tx_desc) * thiscopy);
2533 
2534 	add_10bit(&tx_ring->send_idx, thiscopy);
2535 
2536 	if (INDEX10(tx_ring->send_idx) == 0 ||
2537 	    INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2538 		tx_ring->send_idx &= ~ET_DMA10_MASK;
2539 		tx_ring->send_idx ^= ET_DMA10_WRAP;
2540 	}
2541 
2542 	if (remainder) {
2543 		memcpy(tx_ring->tx_desc_ring,
2544 		       desc + thiscopy,
2545 		       sizeof(struct tx_desc) * remainder);
2546 
2547 		add_10bit(&tx_ring->send_idx, remainder);
2548 	}
2549 
2550 	if (INDEX10(tx_ring->send_idx) == 0) {
2551 		if (tx_ring->send_idx)
2552 			tcb->index = NUM_DESC_PER_RING_TX - 1;
2553 		else
2554 			tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2555 	} else {
2556 		tcb->index = tx_ring->send_idx - 1;
2557 	}
2558 
2559 	spin_lock(&adapter->tcb_send_qlock);
2560 
2561 	if (tx_ring->send_tail)
2562 		tx_ring->send_tail->next = tcb;
2563 	else
2564 		tx_ring->send_head = tcb;
2565 
2566 	tx_ring->send_tail = tcb;
2567 
2568 	WARN_ON(tcb->next != NULL);
2569 
2570 	tx_ring->used++;
2571 
2572 	spin_unlock(&adapter->tcb_send_qlock);
2573 
2574 	/* Write the new write pointer back to the device. */
2575 	writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2576 
2577 	/* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2578 	 * timer to wake us up if this packet isn't followed by N more.
2579 	 */
2580 	if (phydev && phydev->speed == SPEED_1000) {
2581 		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2582 		       &adapter->regs->global.watchdog_timer);
2583 	}
2584 	return 0;
2585 }
2586 
2587 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2588 {
2589 	int status;
2590 	struct tcb *tcb;
2591 	unsigned long flags;
2592 	struct tx_ring *tx_ring = &adapter->tx_ring;
2593 
2594 	/* All packets must have at least a MAC address and a protocol type */
2595 	if (skb->len < ETH_HLEN)
2596 		return -EIO;
2597 
2598 	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2599 
2600 	tcb = tx_ring->tcb_qhead;
2601 
2602 	if (tcb == NULL) {
2603 		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2604 		return -ENOMEM;
2605 	}
2606 
2607 	tx_ring->tcb_qhead = tcb->next;
2608 
2609 	if (tx_ring->tcb_qhead == NULL)
2610 		tx_ring->tcb_qtail = NULL;
2611 
2612 	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2613 
2614 	tcb->skb = skb;
2615 	tcb->next = NULL;
2616 
2617 	status = nic_send_packet(adapter, tcb);
2618 
2619 	if (status != 0) {
2620 		spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2621 
2622 		if (tx_ring->tcb_qtail)
2623 			tx_ring->tcb_qtail->next = tcb;
2624 		else
2625 			/* Apparently ready Q is empty. */
2626 			tx_ring->tcb_qhead = tcb;
2627 
2628 		tx_ring->tcb_qtail = tcb;
2629 		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2630 		return status;
2631 	}
2632 	WARN_ON(tx_ring->used > NUM_TCB);
2633 	return 0;
2634 }
2635 
2636 /* free_send_packet - Recycle a struct tcb */
2637 static inline void free_send_packet(struct et131x_adapter *adapter,
2638 				    struct tcb *tcb)
2639 {
2640 	unsigned long flags;
2641 	struct tx_desc *desc = NULL;
2642 	struct net_device_stats *stats = &adapter->netdev->stats;
2643 	struct tx_ring *tx_ring = &adapter->tx_ring;
2644 	u64  dma_addr;
2645 
2646 	if (tcb->skb) {
2647 		stats->tx_bytes += tcb->skb->len;
2648 
2649 		/* Iterate through the TX descriptors on the ring
2650 		 * corresponding to this packet and umap the fragments
2651 		 * they point to
2652 		 */
2653 		do {
2654 			desc = tx_ring->tx_desc_ring +
2655 			       INDEX10(tcb->index_start);
2656 
2657 			dma_addr = desc->addr_lo;
2658 			dma_addr |= (u64)desc->addr_hi << 32;
2659 
2660 			dma_unmap_single(&adapter->pdev->dev,
2661 					 dma_addr,
2662 					 desc->len_vlan, DMA_TO_DEVICE);
2663 
2664 			add_10bit(&tcb->index_start, 1);
2665 			if (INDEX10(tcb->index_start) >=
2666 							NUM_DESC_PER_RING_TX) {
2667 				tcb->index_start &= ~ET_DMA10_MASK;
2668 				tcb->index_start ^= ET_DMA10_WRAP;
2669 			}
2670 		} while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2671 
2672 		dev_kfree_skb_any(tcb->skb);
2673 	}
2674 
2675 	memset(tcb, 0, sizeof(struct tcb));
2676 
2677 	/* Add the TCB to the Ready Q */
2678 	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2679 
2680 	stats->tx_packets++;
2681 
2682 	if (tx_ring->tcb_qtail)
2683 		tx_ring->tcb_qtail->next = tcb;
2684 	else /* Apparently ready Q is empty. */
2685 		tx_ring->tcb_qhead = tcb;
2686 
2687 	tx_ring->tcb_qtail = tcb;
2688 
2689 	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2690 	WARN_ON(tx_ring->used < 0);
2691 }
2692 
2693 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2694 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2695 {
2696 	struct tcb *tcb;
2697 	unsigned long flags;
2698 	u32 freed = 0;
2699 	struct tx_ring *tx_ring = &adapter->tx_ring;
2700 
2701 	/* Any packets being sent? Check the first TCB on the send list */
2702 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2703 
2704 	tcb = tx_ring->send_head;
2705 
2706 	while (tcb != NULL && freed < NUM_TCB) {
2707 		struct tcb *next = tcb->next;
2708 
2709 		tx_ring->send_head = next;
2710 
2711 		if (next == NULL)
2712 			tx_ring->send_tail = NULL;
2713 
2714 		tx_ring->used--;
2715 
2716 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2717 
2718 		freed++;
2719 		free_send_packet(adapter, tcb);
2720 
2721 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2722 
2723 		tcb = tx_ring->send_head;
2724 	}
2725 
2726 	WARN_ON(freed == NUM_TCB);
2727 
2728 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2729 
2730 	tx_ring->used = 0;
2731 }
2732 
2733 /* et131x_handle_send_pkts
2734  *
2735  * Re-claim the send resources, complete sends and get more to send from
2736  * the send wait queue.
2737  */
2738 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2739 {
2740 	unsigned long flags;
2741 	u32 serviced;
2742 	struct tcb *tcb;
2743 	u32 index;
2744 	struct tx_ring *tx_ring = &adapter->tx_ring;
2745 
2746 	serviced = readl(&adapter->regs->txdma.new_service_complete);
2747 	index = INDEX10(serviced);
2748 
2749 	/* Has the ring wrapped?  Process any descriptors that do not have
2750 	 * the same "wrap" indicator as the current completion indicator
2751 	 */
2752 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2753 
2754 	tcb = tx_ring->send_head;
2755 
2756 	while (tcb &&
2757 	       ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2758 	       index < INDEX10(tcb->index)) {
2759 		tx_ring->used--;
2760 		tx_ring->send_head = tcb->next;
2761 		if (tcb->next == NULL)
2762 			tx_ring->send_tail = NULL;
2763 
2764 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2765 		free_send_packet(adapter, tcb);
2766 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2767 
2768 		/* Goto the next packet */
2769 		tcb = tx_ring->send_head;
2770 	}
2771 	while (tcb &&
2772 	       !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2773 	       index > (tcb->index & ET_DMA10_MASK)) {
2774 		tx_ring->used--;
2775 		tx_ring->send_head = tcb->next;
2776 		if (tcb->next == NULL)
2777 			tx_ring->send_tail = NULL;
2778 
2779 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2780 		free_send_packet(adapter, tcb);
2781 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2782 
2783 		/* Goto the next packet */
2784 		tcb = tx_ring->send_head;
2785 	}
2786 
2787 	/* Wake up the queue when we hit a low-water mark */
2788 	if (tx_ring->used <= NUM_TCB / 3)
2789 		netif_wake_queue(adapter->netdev);
2790 
2791 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2792 }
2793 
2794 static int et131x_get_settings(struct net_device *netdev,
2795 			       struct ethtool_cmd *cmd)
2796 {
2797 	struct et131x_adapter *adapter = netdev_priv(netdev);
2798 
2799 	return phy_ethtool_gset(adapter->phydev, cmd);
2800 }
2801 
2802 static int et131x_set_settings(struct net_device *netdev,
2803 			       struct ethtool_cmd *cmd)
2804 {
2805 	struct et131x_adapter *adapter = netdev_priv(netdev);
2806 
2807 	return phy_ethtool_sset(adapter->phydev, cmd);
2808 }
2809 
2810 static int et131x_get_regs_len(struct net_device *netdev)
2811 {
2812 #define ET131X_REGS_LEN 256
2813 	return ET131X_REGS_LEN * sizeof(u32);
2814 }
2815 
2816 static void et131x_get_regs(struct net_device *netdev,
2817 			    struct ethtool_regs *regs, void *regs_data)
2818 {
2819 	struct et131x_adapter *adapter = netdev_priv(netdev);
2820 	struct address_map __iomem *aregs = adapter->regs;
2821 	u32 *regs_buff = regs_data;
2822 	u32 num = 0;
2823 	u16 tmp;
2824 
2825 	memset(regs_data, 0, et131x_get_regs_len(netdev));
2826 
2827 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2828 			adapter->pdev->device;
2829 
2830 	/* PHY regs */
2831 	et131x_mii_read(adapter, MII_BMCR, &tmp);
2832 	regs_buff[num++] = tmp;
2833 	et131x_mii_read(adapter, MII_BMSR, &tmp);
2834 	regs_buff[num++] = tmp;
2835 	et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2836 	regs_buff[num++] = tmp;
2837 	et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2838 	regs_buff[num++] = tmp;
2839 	et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2840 	regs_buff[num++] = tmp;
2841 	et131x_mii_read(adapter, MII_LPA, &tmp);
2842 	regs_buff[num++] = tmp;
2843 	et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2844 	regs_buff[num++] = tmp;
2845 	/* Autoneg next page transmit reg */
2846 	et131x_mii_read(adapter, 0x07, &tmp);
2847 	regs_buff[num++] = tmp;
2848 	/* Link partner next page reg */
2849 	et131x_mii_read(adapter, 0x08, &tmp);
2850 	regs_buff[num++] = tmp;
2851 	et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2852 	regs_buff[num++] = tmp;
2853 	et131x_mii_read(adapter, MII_STAT1000, &tmp);
2854 	regs_buff[num++] = tmp;
2855 	et131x_mii_read(adapter, 0x0b, &tmp);
2856 	regs_buff[num++] = tmp;
2857 	et131x_mii_read(adapter, 0x0c, &tmp);
2858 	regs_buff[num++] = tmp;
2859 	et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2860 	regs_buff[num++] = tmp;
2861 	et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2862 	regs_buff[num++] = tmp;
2863 	et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2864 	regs_buff[num++] = tmp;
2865 
2866 	et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2867 	regs_buff[num++] = tmp;
2868 	et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2869 	regs_buff[num++] = tmp;
2870 	et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2871 	regs_buff[num++] = tmp;
2872 	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2873 	regs_buff[num++] = tmp;
2874 	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2875 	regs_buff[num++] = tmp;
2876 
2877 	et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2878 	regs_buff[num++] = tmp;
2879 	et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2880 	regs_buff[num++] = tmp;
2881 	et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2882 	regs_buff[num++] = tmp;
2883 	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2884 	regs_buff[num++] = tmp;
2885 	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2886 	regs_buff[num++] = tmp;
2887 	et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2888 	regs_buff[num++] = tmp;
2889 	et131x_mii_read(adapter, PHY_LED_1, &tmp);
2890 	regs_buff[num++] = tmp;
2891 	et131x_mii_read(adapter, PHY_LED_2, &tmp);
2892 	regs_buff[num++] = tmp;
2893 
2894 	/* Global regs */
2895 	regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2896 	regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2897 	regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2898 	regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2899 	regs_buff[num++] = readl(&aregs->global.pm_csr);
2900 	regs_buff[num++] = adapter->stats.interrupt_status;
2901 	regs_buff[num++] = readl(&aregs->global.int_mask);
2902 	regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2903 	regs_buff[num++] = readl(&aregs->global.int_status_alias);
2904 	regs_buff[num++] = readl(&aregs->global.sw_reset);
2905 	regs_buff[num++] = readl(&aregs->global.slv_timer);
2906 	regs_buff[num++] = readl(&aregs->global.msi_config);
2907 	regs_buff[num++] = readl(&aregs->global.loopback);
2908 	regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2909 
2910 	/* TXDMA regs */
2911 	regs_buff[num++] = readl(&aregs->txdma.csr);
2912 	regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2913 	regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2914 	regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2915 	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2916 	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2917 	regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2918 	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2919 	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2920 	regs_buff[num++] = readl(&aregs->txdma.service_request);
2921 	regs_buff[num++] = readl(&aregs->txdma.service_complete);
2922 	regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2923 	regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2924 	regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2925 	regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2926 	regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2927 	regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2928 	regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2929 	regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2930 	regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2931 	regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2932 	regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2933 	regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2934 	regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2935 	regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2936 	regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2937 
2938 	/* RXDMA regs */
2939 	regs_buff[num++] = readl(&aregs->rxdma.csr);
2940 	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2941 	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2942 	regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2943 	regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2944 	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2945 	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2946 	regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2947 	regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2948 	regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2949 	regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2950 	regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2951 	regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2952 	regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2953 	regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2954 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2955 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2956 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2957 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2958 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2959 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2960 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2961 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2962 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2963 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2964 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2965 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2966 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2967 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2968 }
2969 
2970 static void et131x_get_drvinfo(struct net_device *netdev,
2971 			       struct ethtool_drvinfo *info)
2972 {
2973 	struct et131x_adapter *adapter = netdev_priv(netdev);
2974 
2975 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2976 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2977 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2978 		sizeof(info->bus_info));
2979 }
2980 
2981 static struct ethtool_ops et131x_ethtool_ops = {
2982 	.get_settings	= et131x_get_settings,
2983 	.set_settings	= et131x_set_settings,
2984 	.get_drvinfo	= et131x_get_drvinfo,
2985 	.get_regs_len	= et131x_get_regs_len,
2986 	.get_regs	= et131x_get_regs,
2987 	.get_link	= ethtool_op_get_link,
2988 };
2989 
2990 /* et131x_hwaddr_init - set up the MAC Address */
2991 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2992 {
2993 	/* If have our default mac from init and no mac address from
2994 	 * EEPROM then we need to generate the last octet and set it on the
2995 	 * device
2996 	 */
2997 	if (is_zero_ether_addr(adapter->rom_addr)) {
2998 		/* We need to randomly generate the last octet so we
2999 		 * decrease our chances of setting the mac address to
3000 		 * same as another one of our cards in the system
3001 		 */
3002 		get_random_bytes(&adapter->addr[5], 1);
3003 		/* We have the default value in the register we are
3004 		 * working with so we need to copy the current
3005 		 * address into the permanent address
3006 		 */
3007 		ether_addr_copy(adapter->rom_addr, adapter->addr);
3008 	} else {
3009 		/* We do not have an override address, so set the
3010 		 * current address to the permanent address and add
3011 		 * it to the device
3012 		 */
3013 		ether_addr_copy(adapter->addr, adapter->rom_addr);
3014 	}
3015 }
3016 
3017 static int et131x_pci_init(struct et131x_adapter *adapter,
3018 			   struct pci_dev *pdev)
3019 {
3020 	u16 max_payload;
3021 	int i, rc;
3022 
3023 	rc = et131x_init_eeprom(adapter);
3024 	if (rc < 0)
3025 		goto out;
3026 
3027 	if (!pci_is_pcie(pdev)) {
3028 		dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3029 		goto err_out;
3030 	}
3031 
3032 	/* Program the Ack/Nak latency and replay timers */
3033 	max_payload = pdev->pcie_mpss;
3034 
3035 	if (max_payload < 2) {
3036 		static const u16 acknak[2] = { 0x76, 0xD0 };
3037 		static const u16 replay[2] = { 0x1E0, 0x2ED };
3038 
3039 		if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3040 					  acknak[max_payload])) {
3041 			dev_err(&pdev->dev,
3042 				"Could not write PCI config space for ACK/NAK\n");
3043 			goto err_out;
3044 		}
3045 		if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3046 					  replay[max_payload])) {
3047 			dev_err(&pdev->dev,
3048 				"Could not write PCI config space for Replay Timer\n");
3049 			goto err_out;
3050 		}
3051 	}
3052 
3053 	/* l0s and l1 latency timers.  We are using default values.
3054 	 * Representing 001 for L0s and 010 for L1
3055 	 */
3056 	if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3057 		dev_err(&pdev->dev,
3058 			"Could not write PCI config space for Latency Timers\n");
3059 		goto err_out;
3060 	}
3061 
3062 	/* Change the max read size to 2k */
3063 	if (pcie_set_readrq(pdev, 2048)) {
3064 		dev_err(&pdev->dev,
3065 			"Couldn't change PCI config space for Max read size\n");
3066 		goto err_out;
3067 	}
3068 
3069 	/* Get MAC address from config space if an eeprom exists, otherwise
3070 	 * the MAC address there will not be valid
3071 	 */
3072 	if (!adapter->has_eeprom) {
3073 		et131x_hwaddr_init(adapter);
3074 		return 0;
3075 	}
3076 
3077 	for (i = 0; i < ETH_ALEN; i++) {
3078 		if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3079 					 adapter->rom_addr + i)) {
3080 			dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3081 			goto err_out;
3082 		}
3083 	}
3084 	ether_addr_copy(adapter->addr, adapter->rom_addr);
3085 out:
3086 	return rc;
3087 err_out:
3088 	rc = -EIO;
3089 	goto out;
3090 }
3091 
3092 /* et131x_error_timer_handler
3093  * @data: timer-specific variable; here a pointer to our adapter structure
3094  *
3095  * The routine called when the error timer expires, to track the number of
3096  * recurring errors.
3097  */
3098 static void et131x_error_timer_handler(unsigned long data)
3099 {
3100 	struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3101 	struct phy_device *phydev = adapter->phydev;
3102 
3103 	if (et1310_in_phy_coma(adapter)) {
3104 		/* Bring the device immediately out of coma, to
3105 		 * prevent it from sleeping indefinitely, this
3106 		 * mechanism could be improved!
3107 		 */
3108 		et1310_disable_phy_coma(adapter);
3109 		adapter->boot_coma = 20;
3110 	} else {
3111 		et1310_update_macstat_host_counters(adapter);
3112 	}
3113 
3114 	if (!phydev->link && adapter->boot_coma < 11)
3115 		adapter->boot_coma++;
3116 
3117 	if (adapter->boot_coma == 10) {
3118 		if (!phydev->link) {
3119 			if (!et1310_in_phy_coma(adapter)) {
3120 				/* NOTE - This was originally a 'sync with
3121 				 *  interrupt'. How to do that under Linux?
3122 				 */
3123 				et131x_enable_interrupts(adapter);
3124 				et1310_enable_phy_coma(adapter);
3125 			}
3126 		}
3127 	}
3128 
3129 	/* This is a periodic timer, so reschedule */
3130 	mod_timer(&adapter->error_timer, jiffies +
3131 		  msecs_to_jiffies(TX_ERROR_PERIOD));
3132 }
3133 
3134 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3135 {
3136 	et131x_tx_dma_memory_free(adapter);
3137 	et131x_rx_dma_memory_free(adapter);
3138 }
3139 
3140 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3141 {
3142 	int status;
3143 
3144 	status = et131x_tx_dma_memory_alloc(adapter);
3145 	if (status) {
3146 		dev_err(&adapter->pdev->dev,
3147 			"et131x_tx_dma_memory_alloc FAILED\n");
3148 		et131x_tx_dma_memory_free(adapter);
3149 		return status;
3150 	}
3151 
3152 	status = et131x_rx_dma_memory_alloc(adapter);
3153 	if (status) {
3154 		dev_err(&adapter->pdev->dev,
3155 			"et131x_rx_dma_memory_alloc FAILED\n");
3156 		et131x_adapter_memory_free(adapter);
3157 		return status;
3158 	}
3159 
3160 	status = et131x_init_recv(adapter);
3161 	if (status) {
3162 		dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3163 		et131x_adapter_memory_free(adapter);
3164 	}
3165 	return status;
3166 }
3167 
3168 static void et131x_adjust_link(struct net_device *netdev)
3169 {
3170 	struct et131x_adapter *adapter = netdev_priv(netdev);
3171 	struct  phy_device *phydev = adapter->phydev;
3172 
3173 	if (!phydev)
3174 		return;
3175 	if (phydev->link == adapter->link)
3176 		return;
3177 
3178 	/* Check to see if we are in coma mode and if
3179 	 * so, disable it because we will not be able
3180 	 * to read PHY values until we are out.
3181 	 */
3182 	if (et1310_in_phy_coma(adapter))
3183 		et1310_disable_phy_coma(adapter);
3184 
3185 	adapter->link = phydev->link;
3186 	phy_print_status(phydev);
3187 
3188 	if (phydev->link) {
3189 		adapter->boot_coma = 20;
3190 		if (phydev->speed == SPEED_10) {
3191 			u16 register18;
3192 
3193 			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3194 					&register18);
3195 			et131x_mii_write(adapter, phydev->addr,
3196 					 PHY_MPHY_CONTROL_REG,
3197 					 register18 | 0x4);
3198 			et131x_mii_write(adapter, phydev->addr, PHY_INDEX_REG,
3199 					 register18 | 0x8402);
3200 			et131x_mii_write(adapter, phydev->addr, PHY_DATA_REG,
3201 					 register18 | 511);
3202 			et131x_mii_write(adapter, phydev->addr,
3203 					 PHY_MPHY_CONTROL_REG, register18);
3204 		}
3205 
3206 		et1310_config_flow_control(adapter);
3207 
3208 		if (phydev->speed == SPEED_1000 &&
3209 		    adapter->registry_jumbo_packet > 2048) {
3210 			u16 reg;
3211 
3212 			et131x_mii_read(adapter, PHY_CONFIG, &reg);
3213 			reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3214 			reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3215 			et131x_mii_write(adapter, phydev->addr, PHY_CONFIG,
3216 					 reg);
3217 		}
3218 
3219 		et131x_set_rx_dma_timer(adapter);
3220 		et1310_config_mac_regs2(adapter);
3221 	} else {
3222 		adapter->boot_coma = 0;
3223 
3224 		if (phydev->speed == SPEED_10) {
3225 			u16 register18;
3226 
3227 			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3228 					&register18);
3229 			et131x_mii_write(adapter, phydev->addr,
3230 					 PHY_MPHY_CONTROL_REG,
3231 					 register18 | 0x4);
3232 			et131x_mii_write(adapter, phydev->addr,
3233 					 PHY_INDEX_REG, register18 | 0x8402);
3234 			et131x_mii_write(adapter, phydev->addr,
3235 					 PHY_DATA_REG, register18 | 511);
3236 			et131x_mii_write(adapter, phydev->addr,
3237 					 PHY_MPHY_CONTROL_REG, register18);
3238 		}
3239 
3240 		et131x_free_busy_send_packets(adapter);
3241 		et131x_init_send(adapter);
3242 
3243 		/* Bring the device back to the state it was during
3244 		 * init prior to autonegotiation being complete. This
3245 		 * way, when we get the auto-neg complete interrupt,
3246 		 * we can complete init by calling config_mac_regs2.
3247 		 */
3248 		et131x_soft_reset(adapter);
3249 
3250 		et131x_adapter_setup(adapter);
3251 
3252 		et131x_disable_txrx(netdev);
3253 		et131x_enable_txrx(netdev);
3254 	}
3255 }
3256 
3257 static int et131x_mii_probe(struct net_device *netdev)
3258 {
3259 	struct et131x_adapter *adapter = netdev_priv(netdev);
3260 	struct  phy_device *phydev = NULL;
3261 
3262 	phydev = phy_find_first(adapter->mii_bus);
3263 	if (!phydev) {
3264 		dev_err(&adapter->pdev->dev, "no PHY found\n");
3265 		return -ENODEV;
3266 	}
3267 
3268 	phydev = phy_connect(netdev, dev_name(&phydev->dev),
3269 			     &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3270 
3271 	if (IS_ERR(phydev)) {
3272 		dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3273 		return PTR_ERR(phydev);
3274 	}
3275 
3276 	phydev->supported &= (SUPPORTED_10baseT_Half |
3277 			      SUPPORTED_10baseT_Full |
3278 			      SUPPORTED_100baseT_Half |
3279 			      SUPPORTED_100baseT_Full |
3280 			      SUPPORTED_Autoneg |
3281 			      SUPPORTED_MII |
3282 			      SUPPORTED_TP);
3283 
3284 	if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3285 		phydev->supported |= SUPPORTED_1000baseT_Half |
3286 				     SUPPORTED_1000baseT_Full;
3287 
3288 	phydev->advertising = phydev->supported;
3289 	phydev->autoneg = AUTONEG_ENABLE;
3290 	adapter->phydev = phydev;
3291 
3292 	dev_info(&adapter->pdev->dev,
3293 		 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3294 		 phydev->drv->name, dev_name(&phydev->dev));
3295 
3296 	return 0;
3297 }
3298 
3299 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3300 						  struct pci_dev *pdev)
3301 {
3302 	static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3303 
3304 	struct et131x_adapter *adapter;
3305 
3306 	adapter = netdev_priv(netdev);
3307 	adapter->pdev = pci_dev_get(pdev);
3308 	adapter->netdev = netdev;
3309 
3310 	spin_lock_init(&adapter->tcb_send_qlock);
3311 	spin_lock_init(&adapter->tcb_ready_qlock);
3312 	spin_lock_init(&adapter->rcv_lock);
3313 
3314 	adapter->registry_jumbo_packet = 1514;	/* 1514-9216 */
3315 
3316 	ether_addr_copy(adapter->addr, default_mac);
3317 
3318 	return adapter;
3319 }
3320 
3321 static void et131x_pci_remove(struct pci_dev *pdev)
3322 {
3323 	struct net_device *netdev = pci_get_drvdata(pdev);
3324 	struct et131x_adapter *adapter = netdev_priv(netdev);
3325 
3326 	unregister_netdev(netdev);
3327 	netif_napi_del(&adapter->napi);
3328 	phy_disconnect(adapter->phydev);
3329 	mdiobus_unregister(adapter->mii_bus);
3330 	kfree(adapter->mii_bus->irq);
3331 	mdiobus_free(adapter->mii_bus);
3332 
3333 	et131x_adapter_memory_free(adapter);
3334 	iounmap(adapter->regs);
3335 	pci_dev_put(pdev);
3336 
3337 	free_netdev(netdev);
3338 	pci_release_regions(pdev);
3339 	pci_disable_device(pdev);
3340 }
3341 
3342 static void et131x_up(struct net_device *netdev)
3343 {
3344 	struct et131x_adapter *adapter = netdev_priv(netdev);
3345 
3346 	et131x_enable_txrx(netdev);
3347 	phy_start(adapter->phydev);
3348 }
3349 
3350 static void et131x_down(struct net_device *netdev)
3351 {
3352 	struct et131x_adapter *adapter = netdev_priv(netdev);
3353 
3354 	/* Save the timestamp for the TX watchdog, prevent a timeout */
3355 	netdev->trans_start = jiffies;
3356 
3357 	phy_stop(adapter->phydev);
3358 	et131x_disable_txrx(netdev);
3359 }
3360 
3361 #ifdef CONFIG_PM_SLEEP
3362 static int et131x_suspend(struct device *dev)
3363 {
3364 	struct pci_dev *pdev = to_pci_dev(dev);
3365 	struct net_device *netdev = pci_get_drvdata(pdev);
3366 
3367 	if (netif_running(netdev)) {
3368 		netif_device_detach(netdev);
3369 		et131x_down(netdev);
3370 		pci_save_state(pdev);
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 static int et131x_resume(struct device *dev)
3377 {
3378 	struct pci_dev *pdev = to_pci_dev(dev);
3379 	struct net_device *netdev = pci_get_drvdata(pdev);
3380 
3381 	if (netif_running(netdev)) {
3382 		pci_restore_state(pdev);
3383 		et131x_up(netdev);
3384 		netif_device_attach(netdev);
3385 	}
3386 
3387 	return 0;
3388 }
3389 #endif
3390 
3391 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3392 
3393 static irqreturn_t et131x_isr(int irq, void *dev_id)
3394 {
3395 	bool handled = true;
3396 	bool enable_interrupts = true;
3397 	struct net_device *netdev = dev_id;
3398 	struct et131x_adapter *adapter = netdev_priv(netdev);
3399 	struct address_map __iomem *iomem = adapter->regs;
3400 	struct rx_ring *rx_ring = &adapter->rx_ring;
3401 	struct tx_ring *tx_ring = &adapter->tx_ring;
3402 	u32 status;
3403 
3404 	if (!netif_device_present(netdev)) {
3405 		handled = false;
3406 		enable_interrupts = false;
3407 		goto out;
3408 	}
3409 
3410 	et131x_disable_interrupts(adapter);
3411 
3412 	status = readl(&adapter->regs->global.int_status);
3413 
3414 	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3415 		status &= ~INT_MASK_ENABLE;
3416 	else
3417 		status &= ~INT_MASK_ENABLE_NO_FLOW;
3418 
3419 	/* Make sure this is our interrupt */
3420 	if (!status) {
3421 		handled = false;
3422 		et131x_enable_interrupts(adapter);
3423 		goto out;
3424 	}
3425 
3426 	/* This is our interrupt, so process accordingly */
3427 	if (status & ET_INTR_WATCHDOG) {
3428 		struct tcb *tcb = tx_ring->send_head;
3429 
3430 		if (tcb)
3431 			if (++tcb->stale > 1)
3432 				status |= ET_INTR_TXDMA_ISR;
3433 
3434 		if (rx_ring->unfinished_receives)
3435 			status |= ET_INTR_RXDMA_XFR_DONE;
3436 		else if (tcb == NULL)
3437 			writel(0, &adapter->regs->global.watchdog_timer);
3438 
3439 		status &= ~ET_INTR_WATCHDOG;
3440 	}
3441 
3442 	if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3443 		enable_interrupts = false;
3444 		napi_schedule(&adapter->napi);
3445 	}
3446 
3447 	status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3448 
3449 	if (!status)
3450 		goto out;
3451 
3452 	if (status & ET_INTR_TXDMA_ERR) {
3453 		/* Following read also clears the register (COR) */
3454 		u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3455 
3456 		dev_warn(&adapter->pdev->dev,
3457 			 "TXDMA_ERR interrupt, error = %d\n",
3458 			 txdma_err);
3459 	}
3460 
3461 	if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3462 		/* This indicates the number of unused buffers in RXDMA free
3463 		 * buffer ring 0 is <= the limit you programmed. Free buffer
3464 		 * resources need to be returned.  Free buffers are consumed as
3465 		 * packets are passed from the network to the host. The host
3466 		 * becomes aware of the packets from the contents of the packet
3467 		 * status ring. This ring is queried when the packet done
3468 		 * interrupt occurs. Packets are then passed to the OS. When
3469 		 * the OS is done with the packets the resources can be
3470 		 * returned to the ET1310 for re-use. This interrupt is one
3471 		 * method of returning resources.
3472 		 */
3473 
3474 		/*  If the user has flow control on, then we will
3475 		 * send a pause packet, otherwise just exit
3476 		 */
3477 		if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3478 			u32 pm_csr;
3479 
3480 			/* Tell the device to send a pause packet via the back
3481 			 * pressure register (bp req and bp xon/xoff)
3482 			 */
3483 			pm_csr = readl(&iomem->global.pm_csr);
3484 			if (!et1310_in_phy_coma(adapter))
3485 				writel(3, &iomem->txmac.bp_ctrl);
3486 		}
3487 	}
3488 
3489 	/* Handle Packet Status Ring Low Interrupt */
3490 	if (status & ET_INTR_RXDMA_STAT_LOW) {
3491 		/* Same idea as with the two Free Buffer Rings. Packets going
3492 		 * from the network to the host each consume a free buffer
3493 		 * resource and a packet status resource. These resources are
3494 		 * passed to the OS. When the OS is done with the resources,
3495 		 * they need to be returned to the ET1310. This is one method
3496 		 * of returning the resources.
3497 		 */
3498 	}
3499 
3500 	if (status & ET_INTR_RXDMA_ERR) {
3501 		/* The rxdma_error interrupt is sent when a time-out on a
3502 		 * request issued by the JAGCore has occurred or a completion is
3503 		 * returned with an un-successful status. In both cases the
3504 		 * request is considered complete. The JAGCore will
3505 		 * automatically re-try the request in question. Normally
3506 		 * information on events like these are sent to the host using
3507 		 * the "Advanced Error Reporting" capability. This interrupt is
3508 		 * another way of getting similar information. The only thing
3509 		 * required is to clear the interrupt by reading the ISR in the
3510 		 * global resources. The JAGCore will do a re-try on the
3511 		 * request. Normally you should never see this interrupt. If
3512 		 * you start to see this interrupt occurring frequently then
3513 		 * something bad has occurred. A reset might be the thing to do.
3514 		 */
3515 		/* TRAP();*/
3516 
3517 		dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3518 			 readl(&iomem->txmac.tx_test));
3519 	}
3520 
3521 	/* Handle the Wake on LAN Event */
3522 	if (status & ET_INTR_WOL) {
3523 		/* This is a secondary interrupt for wake on LAN. The driver
3524 		 * should never see this, if it does, something serious is
3525 		 * wrong.
3526 		 */
3527 		dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3528 	}
3529 
3530 	if (status & ET_INTR_TXMAC) {
3531 		u32 err = readl(&iomem->txmac.err);
3532 
3533 		/* When any of the errors occur and TXMAC generates an
3534 		 * interrupt to report these errors, it usually means that
3535 		 * TXMAC has detected an error in the data stream retrieved
3536 		 * from the on-chip Tx Q. All of these errors are catastrophic
3537 		 * and TXMAC won't be able to recover data when these errors
3538 		 * occur. In a nutshell, the whole Tx path will have to be reset
3539 		 * and re-configured afterwards.
3540 		 */
3541 		dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3542 			 err);
3543 
3544 		/* If we are debugging, we want to see this error, otherwise we
3545 		 * just want the device to be reset and continue
3546 		 */
3547 	}
3548 
3549 	if (status & ET_INTR_RXMAC) {
3550 		/* These interrupts are catastrophic to the device, what we need
3551 		 * to do is disable the interrupts and set the flag to cause us
3552 		 * to reset so we can solve this issue.
3553 		 */
3554 		dev_warn(&adapter->pdev->dev,
3555 			 "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3556 			 readl(&iomem->rxmac.err_reg));
3557 
3558 		dev_warn(&adapter->pdev->dev,
3559 			 "Enable 0x%08x, Diag 0x%08x\n",
3560 			 readl(&iomem->rxmac.ctrl),
3561 			 readl(&iomem->rxmac.rxq_diag));
3562 
3563 		/* If we are debugging, we want to see this error, otherwise we
3564 		 * just want the device to be reset and continue
3565 		 */
3566 	}
3567 
3568 	if (status & ET_INTR_MAC_STAT) {
3569 		/* This means at least one of the un-masked counters in the
3570 		 * MAC_STAT block has rolled over. Use this to maintain the top,
3571 		 * software managed bits of the counter(s).
3572 		 */
3573 		et1310_handle_macstat_interrupt(adapter);
3574 	}
3575 
3576 	if (status & ET_INTR_SLV_TIMEOUT) {
3577 		/* This means a timeout has occurred on a read or write request
3578 		 * to one of the JAGCore registers. The Global Resources block
3579 		 * has terminated the request and on a read request, returned a
3580 		 * "fake" value. The most likely reasons are: Bad Address or the
3581 		 * addressed module is in a power-down state and can't respond.
3582 		 */
3583 	}
3584 
3585 out:
3586 	if (enable_interrupts)
3587 		et131x_enable_interrupts(adapter);
3588 
3589 	return IRQ_RETVAL(handled);
3590 }
3591 
3592 static int et131x_poll(struct napi_struct *napi, int budget)
3593 {
3594 	struct et131x_adapter *adapter =
3595 		container_of(napi, struct et131x_adapter, napi);
3596 	int work_done = et131x_handle_recv_pkts(adapter, budget);
3597 
3598 	et131x_handle_send_pkts(adapter);
3599 
3600 	if (work_done < budget) {
3601 		napi_complete(&adapter->napi);
3602 		et131x_enable_interrupts(adapter);
3603 	}
3604 
3605 	return work_done;
3606 }
3607 
3608 /* et131x_stats - Return the current device statistics  */
3609 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3610 {
3611 	struct et131x_adapter *adapter = netdev_priv(netdev);
3612 	struct net_device_stats *stats = &adapter->netdev->stats;
3613 	struct ce_stats *devstat = &adapter->stats;
3614 
3615 	stats->rx_errors = devstat->rx_length_errs +
3616 			   devstat->rx_align_errs +
3617 			   devstat->rx_crc_errs +
3618 			   devstat->rx_code_violations +
3619 			   devstat->rx_other_errs;
3620 	stats->tx_errors = devstat->tx_max_pkt_errs;
3621 	stats->multicast = devstat->multicast_pkts_rcvd;
3622 	stats->collisions = devstat->tx_collisions;
3623 
3624 	stats->rx_length_errors = devstat->rx_length_errs;
3625 	stats->rx_over_errors = devstat->rx_overflows;
3626 	stats->rx_crc_errors = devstat->rx_crc_errs;
3627 	stats->rx_dropped = devstat->rcvd_pkts_dropped;
3628 
3629 	/* NOTE: Not used, can't find analogous statistics */
3630 	/* stats->rx_frame_errors     = devstat->; */
3631 	/* stats->rx_fifo_errors      = devstat->; */
3632 	/* stats->rx_missed_errors    = devstat->; */
3633 
3634 	/* stats->tx_aborted_errors   = devstat->; */
3635 	/* stats->tx_carrier_errors   = devstat->; */
3636 	/* stats->tx_fifo_errors      = devstat->; */
3637 	/* stats->tx_heartbeat_errors = devstat->; */
3638 	/* stats->tx_window_errors    = devstat->; */
3639 	return stats;
3640 }
3641 
3642 static int et131x_open(struct net_device *netdev)
3643 {
3644 	struct et131x_adapter *adapter = netdev_priv(netdev);
3645 	struct pci_dev *pdev = adapter->pdev;
3646 	unsigned int irq = pdev->irq;
3647 	int result;
3648 
3649 	/* Start the timer to track NIC errors */
3650 	init_timer(&adapter->error_timer);
3651 	adapter->error_timer.expires = jiffies +
3652 		msecs_to_jiffies(TX_ERROR_PERIOD);
3653 	adapter->error_timer.function = et131x_error_timer_handler;
3654 	adapter->error_timer.data = (unsigned long)adapter;
3655 	add_timer(&adapter->error_timer);
3656 
3657 	result = request_irq(irq, et131x_isr,
3658 			     IRQF_SHARED, netdev->name, netdev);
3659 	if (result) {
3660 		dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3661 		return result;
3662 	}
3663 
3664 	adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3665 
3666 	napi_enable(&adapter->napi);
3667 
3668 	et131x_up(netdev);
3669 
3670 	return result;
3671 }
3672 
3673 static int et131x_close(struct net_device *netdev)
3674 {
3675 	struct et131x_adapter *adapter = netdev_priv(netdev);
3676 
3677 	et131x_down(netdev);
3678 	napi_disable(&adapter->napi);
3679 
3680 	adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3681 	free_irq(adapter->pdev->irq, netdev);
3682 
3683 	/* Stop the error timer */
3684 	return del_timer_sync(&adapter->error_timer);
3685 }
3686 
3687 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3688 			int cmd)
3689 {
3690 	struct et131x_adapter *adapter = netdev_priv(netdev);
3691 
3692 	if (!adapter->phydev)
3693 		return -EINVAL;
3694 
3695 	return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
3696 }
3697 
3698 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3699 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3700 {
3701 	int filter = adapter->packet_filter;
3702 	u32 ctrl;
3703 	u32 pf_ctrl;
3704 
3705 	ctrl = readl(&adapter->regs->rxmac.ctrl);
3706 	pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3707 
3708 	/* Default to disabled packet filtering */
3709 	ctrl |= 0x04;
3710 
3711 	/* Set us to be in promiscuous mode so we receive everything, this
3712 	 * is also true when we get a packet filter of 0
3713 	 */
3714 	if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3715 		pf_ctrl &= ~7;	/* Clear filter bits */
3716 	else {
3717 		/* Set us up with Multicast packet filtering.  Three cases are
3718 		 * possible - (1) we have a multi-cast list, (2) we receive ALL
3719 		 * multicast entries or (3) we receive none.
3720 		 */
3721 		if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3722 			pf_ctrl &= ~2;	/* Multicast filter bit */
3723 		else {
3724 			et1310_setup_device_for_multicast(adapter);
3725 			pf_ctrl |= 2;
3726 			ctrl &= ~0x04;
3727 		}
3728 
3729 		/* Set us up with Unicast packet filtering */
3730 		if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3731 			et1310_setup_device_for_unicast(adapter);
3732 			pf_ctrl |= 4;
3733 			ctrl &= ~0x04;
3734 		}
3735 
3736 		/* Set us up with Broadcast packet filtering */
3737 		if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3738 			pf_ctrl |= 1;	/* Broadcast filter bit */
3739 			ctrl &= ~0x04;
3740 		} else {
3741 			pf_ctrl &= ~1;
3742 		}
3743 
3744 		/* Setup the receive mac configuration registers - Packet
3745 		 * Filter control + the enable / disable for packet filter
3746 		 * in the control reg.
3747 		 */
3748 		writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3749 		writel(ctrl, &adapter->regs->rxmac.ctrl);
3750 	}
3751 	return 0;
3752 }
3753 
3754 static void et131x_multicast(struct net_device *netdev)
3755 {
3756 	struct et131x_adapter *adapter = netdev_priv(netdev);
3757 	int packet_filter;
3758 	struct netdev_hw_addr *ha;
3759 	int i;
3760 
3761 	/* Before we modify the platform-independent filter flags, store them
3762 	 * locally. This allows us to determine if anything's changed and if
3763 	 * we even need to bother the hardware
3764 	 */
3765 	packet_filter = adapter->packet_filter;
3766 
3767 	/* Clear the 'multicast' flag locally; because we only have a single
3768 	 * flag to check multicast, and multiple multicast addresses can be
3769 	 * set, this is the easiest way to determine if more than one
3770 	 * multicast address is being set.
3771 	 */
3772 	packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3773 
3774 	/* Check the net_device flags and set the device independent flags
3775 	 * accordingly
3776 	 */
3777 	if (netdev->flags & IFF_PROMISC)
3778 		adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3779 	else
3780 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3781 
3782 	if ((netdev->flags & IFF_ALLMULTI) ||
3783 	    (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3784 		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3785 
3786 	if (netdev_mc_count(netdev) < 1) {
3787 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3788 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3789 	} else {
3790 		adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3791 	}
3792 
3793 	/* Set values in the private adapter struct */
3794 	i = 0;
3795 	netdev_for_each_mc_addr(ha, netdev) {
3796 		if (i == NIC_MAX_MCAST_LIST)
3797 			break;
3798 		ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3799 	}
3800 	adapter->multicast_addr_count = i;
3801 
3802 	/* Are the new flags different from the previous ones? If not, then no
3803 	 * action is required
3804 	 *
3805 	 * NOTE - This block will always update the multicast_list with the
3806 	 *        hardware, even if the addresses aren't the same.
3807 	 */
3808 	if (packet_filter != adapter->packet_filter)
3809 		et131x_set_packet_filter(adapter);
3810 }
3811 
3812 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3813 {
3814 	struct et131x_adapter *adapter = netdev_priv(netdev);
3815 	struct tx_ring *tx_ring = &adapter->tx_ring;
3816 
3817 	/* stop the queue if it's getting full */
3818 	if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3819 		netif_stop_queue(netdev);
3820 
3821 	/* Save the timestamp for the TX timeout watchdog */
3822 	netdev->trans_start = jiffies;
3823 
3824 	/* TCB is not available */
3825 	if (tx_ring->used >= NUM_TCB)
3826 		goto drop_err;
3827 
3828 	if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3829 	    !netif_carrier_ok(netdev))
3830 		goto drop_err;
3831 
3832 	if (send_packet(skb, adapter))
3833 		goto drop_err;
3834 
3835 	return NETDEV_TX_OK;
3836 
3837 drop_err:
3838 	dev_kfree_skb_any(skb);
3839 	adapter->netdev->stats.tx_dropped++;
3840 	return NETDEV_TX_OK;
3841 }
3842 
3843 /* et131x_tx_timeout - Timeout handler
3844  *
3845  * The handler called when a Tx request times out. The timeout period is
3846  * specified by the 'tx_timeo" element in the net_device structure (see
3847  * et131x_alloc_device() to see how this value is set).
3848  */
3849 static void et131x_tx_timeout(struct net_device *netdev)
3850 {
3851 	struct et131x_adapter *adapter = netdev_priv(netdev);
3852 	struct tx_ring *tx_ring = &adapter->tx_ring;
3853 	struct tcb *tcb;
3854 	unsigned long flags;
3855 
3856 	/* If the device is closed, ignore the timeout */
3857 	if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3858 		return;
3859 
3860 	/* Any nonrecoverable hardware error?
3861 	 * Checks adapter->flags for any failure in phy reading
3862 	 */
3863 	if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3864 		return;
3865 
3866 	/* Hardware failure? */
3867 	if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3868 		dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3869 		return;
3870 	}
3871 
3872 	/* Is send stuck? */
3873 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3874 	tcb = tx_ring->send_head;
3875 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3876 
3877 	if (tcb) {
3878 		tcb->count++;
3879 
3880 		if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3881 			dev_warn(&adapter->pdev->dev,
3882 				 "Send stuck - reset. tcb->WrIndex %x\n",
3883 				 tcb->index);
3884 
3885 			adapter->netdev->stats.tx_errors++;
3886 
3887 			/* perform reset of tx/rx */
3888 			et131x_disable_txrx(netdev);
3889 			et131x_enable_txrx(netdev);
3890 		}
3891 	}
3892 }
3893 
3894 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3895 {
3896 	int result = 0;
3897 	struct et131x_adapter *adapter = netdev_priv(netdev);
3898 
3899 	if (new_mtu < 64 || new_mtu > 9216)
3900 		return -EINVAL;
3901 
3902 	et131x_disable_txrx(netdev);
3903 
3904 	netdev->mtu = new_mtu;
3905 
3906 	et131x_adapter_memory_free(adapter);
3907 
3908 	/* Set the config parameter for Jumbo Packet support */
3909 	adapter->registry_jumbo_packet = new_mtu + 14;
3910 	et131x_soft_reset(adapter);
3911 
3912 	result = et131x_adapter_memory_alloc(adapter);
3913 	if (result != 0) {
3914 		dev_warn(&adapter->pdev->dev,
3915 			 "Change MTU failed; couldn't re-alloc DMA memory\n");
3916 		return result;
3917 	}
3918 
3919 	et131x_init_send(adapter);
3920 	et131x_hwaddr_init(adapter);
3921 	ether_addr_copy(netdev->dev_addr, adapter->addr);
3922 
3923 	/* Init the device with the new settings */
3924 	et131x_adapter_setup(adapter);
3925 	et131x_enable_txrx(netdev);
3926 
3927 	return result;
3928 }
3929 
3930 static const struct net_device_ops et131x_netdev_ops = {
3931 	.ndo_open		= et131x_open,
3932 	.ndo_stop		= et131x_close,
3933 	.ndo_start_xmit		= et131x_tx,
3934 	.ndo_set_rx_mode	= et131x_multicast,
3935 	.ndo_tx_timeout		= et131x_tx_timeout,
3936 	.ndo_change_mtu		= et131x_change_mtu,
3937 	.ndo_set_mac_address	= eth_mac_addr,
3938 	.ndo_validate_addr	= eth_validate_addr,
3939 	.ndo_get_stats		= et131x_stats,
3940 	.ndo_do_ioctl		= et131x_ioctl,
3941 };
3942 
3943 static int et131x_pci_setup(struct pci_dev *pdev,
3944 			    const struct pci_device_id *ent)
3945 {
3946 	struct net_device *netdev;
3947 	struct et131x_adapter *adapter;
3948 	int rc;
3949 	int ii;
3950 
3951 	rc = pci_enable_device(pdev);
3952 	if (rc < 0) {
3953 		dev_err(&pdev->dev, "pci_enable_device() failed\n");
3954 		goto out;
3955 	}
3956 
3957 	/* Perform some basic PCI checks */
3958 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3959 		dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3960 		rc = -ENODEV;
3961 		goto err_disable;
3962 	}
3963 
3964 	rc = pci_request_regions(pdev, DRIVER_NAME);
3965 	if (rc < 0) {
3966 		dev_err(&pdev->dev, "Can't get PCI resources\n");
3967 		goto err_disable;
3968 	}
3969 
3970 	pci_set_master(pdev);
3971 
3972 	/* Check the DMA addressing support of this device */
3973 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3974 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3975 		dev_err(&pdev->dev, "No usable DMA addressing method\n");
3976 		rc = -EIO;
3977 		goto err_release_res;
3978 	}
3979 
3980 	netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3981 	if (!netdev) {
3982 		dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3983 		rc = -ENOMEM;
3984 		goto err_release_res;
3985 	}
3986 
3987 	netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3988 	netdev->netdev_ops     = &et131x_netdev_ops;
3989 
3990 	SET_NETDEV_DEV(netdev, &pdev->dev);
3991 	netdev->ethtool_ops = &et131x_ethtool_ops;
3992 
3993 	adapter = et131x_adapter_init(netdev, pdev);
3994 
3995 	rc = et131x_pci_init(adapter, pdev);
3996 	if (rc < 0)
3997 		goto err_free_dev;
3998 
3999 	/* Map the bus-relative registers to system virtual memory */
4000 	adapter->regs = pci_ioremap_bar(pdev, 0);
4001 	if (!adapter->regs) {
4002 		dev_err(&pdev->dev, "Cannot map device registers\n");
4003 		rc = -ENOMEM;
4004 		goto err_free_dev;
4005 	}
4006 
4007 	/* If Phy COMA mode was enabled when we went down, disable it here. */
4008 	writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
4009 
4010 	et131x_soft_reset(adapter);
4011 	et131x_disable_interrupts(adapter);
4012 
4013 	rc = et131x_adapter_memory_alloc(adapter);
4014 	if (rc < 0) {
4015 		dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
4016 		goto err_iounmap;
4017 	}
4018 
4019 	et131x_init_send(adapter);
4020 
4021 	netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
4022 
4023 	ether_addr_copy(netdev->dev_addr, adapter->addr);
4024 
4025 	rc = -ENOMEM;
4026 
4027 	adapter->mii_bus = mdiobus_alloc();
4028 	if (!adapter->mii_bus) {
4029 		dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4030 		goto err_mem_free;
4031 	}
4032 
4033 	adapter->mii_bus->name = "et131x_eth_mii";
4034 	snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4035 		 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4036 	adapter->mii_bus->priv = netdev;
4037 	adapter->mii_bus->read = et131x_mdio_read;
4038 	adapter->mii_bus->write = et131x_mdio_write;
4039 	adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4040 					      GFP_KERNEL);
4041 	if (!adapter->mii_bus->irq)
4042 		goto err_mdio_free;
4043 
4044 	for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4045 		adapter->mii_bus->irq[ii] = PHY_POLL;
4046 
4047 	rc = mdiobus_register(adapter->mii_bus);
4048 	if (rc < 0) {
4049 		dev_err(&pdev->dev, "failed to register MII bus\n");
4050 		goto err_mdio_free_irq;
4051 	}
4052 
4053 	rc = et131x_mii_probe(netdev);
4054 	if (rc < 0) {
4055 		dev_err(&pdev->dev, "failed to probe MII bus\n");
4056 		goto err_mdio_unregister;
4057 	}
4058 
4059 	et131x_adapter_setup(adapter);
4060 
4061 	/* Init variable for counting how long we do not have link status */
4062 	adapter->boot_coma = 0;
4063 	et1310_disable_phy_coma(adapter);
4064 
4065 	/* We can enable interrupts now
4066 	 *
4067 	 *  NOTE - Because registration of interrupt handler is done in the
4068 	 *         device's open(), defer enabling device interrupts to that
4069 	 *         point
4070 	 */
4071 
4072 	rc = register_netdev(netdev);
4073 	if (rc < 0) {
4074 		dev_err(&pdev->dev, "register_netdev() failed\n");
4075 		goto err_phy_disconnect;
4076 	}
4077 
4078 	/* Register the net_device struct with the PCI subsystem. Save a copy
4079 	 * of the PCI config space for this device now that the device has
4080 	 * been initialized, just in case it needs to be quickly restored.
4081 	 */
4082 	pci_set_drvdata(pdev, netdev);
4083 out:
4084 	return rc;
4085 
4086 err_phy_disconnect:
4087 	phy_disconnect(adapter->phydev);
4088 err_mdio_unregister:
4089 	mdiobus_unregister(adapter->mii_bus);
4090 err_mdio_free_irq:
4091 	kfree(adapter->mii_bus->irq);
4092 err_mdio_free:
4093 	mdiobus_free(adapter->mii_bus);
4094 err_mem_free:
4095 	et131x_adapter_memory_free(adapter);
4096 err_iounmap:
4097 	iounmap(adapter->regs);
4098 err_free_dev:
4099 	pci_dev_put(pdev);
4100 	free_netdev(netdev);
4101 err_release_res:
4102 	pci_release_regions(pdev);
4103 err_disable:
4104 	pci_disable_device(pdev);
4105 	goto out;
4106 }
4107 
4108 static const struct pci_device_id et131x_pci_table[] = {
4109 	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4110 	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4111 	{ 0,}
4112 };
4113 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4114 
4115 static struct pci_driver et131x_driver = {
4116 	.name		= DRIVER_NAME,
4117 	.id_table	= et131x_pci_table,
4118 	.probe		= et131x_pci_setup,
4119 	.remove		= et131x_pci_remove,
4120 	.driver.pm	= &et131x_pm_ops,
4121 };
4122 
4123 module_pci_driver(et131x_driver);
4124