1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
52 */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110 #define INT_MASK_DISABLE 0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
139
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER 0x00200000
142
143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
145
146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
147
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS 0xA4
150 #define ET1310_PCI_EEPROM_STATUS 0xB2
151 #define ET1310_PCI_ACK_NACK 0xC0
152 #define ET1310_PCI_REPLAY 0xC2
153 #define ET1310_PCI_L0L1LATENCY 0xCF
154
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
158
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
161
162 #define PARM_RX_NUM_BUFS_DEF 4
163 #define PARM_RX_TIME_INT_DEF 10
164 #define PARM_RX_MEM_END_DEF 0x2bc
165 #define PARM_TX_TIME_INT_DEF 40
166 #define PARM_TX_NUM_BUFS_DEF 4
167 #define PARM_DMA_CACHE_DEF 0
168
169 /* RX defines */
170 #define FBR_CHUNKS 32
171 #define MAX_DESC_PER_RING_RX 1024
172
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK 40
175 #define NIC_DEFAULT_NUM_RFD 1024
176 #define NUM_FBRS 2
177
178 #define MAX_PACKETS_HANDLED 256
179 #define ET131X_MIN_MTU 64
180 #define ET131X_MAX_MTU 9216
181
182 #define ALCATEL_MULTICAST_PKT 0x01000000
183 #define ALCATEL_BROADCAST_PKT 0x02000000
184
185 /* typedefs for Free Buffer Descriptors */
186 struct fbr_desc {
187 u32 addr_lo;
188 u32 addr_hi;
189 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
190 };
191
192 /* Packet Status Ring Descriptors
193 *
194 * Word 0:
195 *
196 * top 16 bits are from the Alcatel Status Word as enumerated in
197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
198 *
199 * 0: hp hash pass
200 * 1: ipa IP checksum assist
201 * 2: ipp IP checksum pass
202 * 3: tcpa TCP checksum assist
203 * 4: tcpp TCP checksum pass
204 * 5: wol WOL Event
205 * 6: rxmac_error RXMAC Error Indicator
206 * 7: drop Drop packet
207 * 8: ft Frame Truncated
208 * 9: jp Jumbo Packet
209 * 10: vp VLAN Packet
210 * 11-15: unused
211 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
212 * 17: asw_RX_DV_event short receive event detected
213 * 18: asw_false_carrier_event bad carrier since last good packet
214 * 19: asw_code_err one or more nibbles signalled as errors
215 * 20: asw_CRC_err CRC error
216 * 21: asw_len_chk_err frame length field incorrect
217 * 22: asw_too_long frame length > 1518 bytes
218 * 23: asw_OK valid CRC + no code error
219 * 24: asw_multicast has a multicast address
220 * 25: asw_broadcast has a broadcast address
221 * 26: asw_dribble_nibble spurious bits after EOP
222 * 27: asw_control_frame is a control frame
223 * 28: asw_pause_frame is a pause frame
224 * 29: asw_unsupported_op unsupported OP code
225 * 30: asw_VLAN_tag VLAN tag detected
226 * 31: asw_long_evt Rx long event
227 *
228 * Word 1:
229 * 0-15: length length in bytes
230 * 16-25: bi Buffer Index
231 * 26-27: ri Ring Index
232 * 28-31: reserved
233 */
234 struct pkt_stat_desc {
235 u32 word0;
236 u32 word1;
237 };
238
239 /* Typedefs for the RX DMA status word */
240
241 /* rx status word 0 holds part of the status bits of the Rx DMA engine
242 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
243 * which contains the Free Buffer ring 0 and 1 available offset.
244 *
245 * bit 0-9 FBR1 offset
246 * bit 10 Wrap flag for FBR1
247 * bit 16-25 FBR0 offset
248 * bit 26 Wrap flag for FBR0
249 */
250
251 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
252 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
253 * which contains the Packet Status Ring available offset.
254 *
255 * bit 0-15 reserved
256 * bit 16-27 PSRoffset
257 * bit 28 PSRwrap
258 * bit 29-31 unused
259 */
260
261 /* struct rx_status_block is a structure representing the status of the Rx
262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
263 */
264 struct rx_status_block {
265 u32 word0;
266 u32 word1;
267 };
268
269 /* Structure for look-up table holding free buffer ring pointers, addresses
270 * and state.
271 */
272 struct fbr_lookup {
273 void *virt[MAX_DESC_PER_RING_RX];
274 u32 bus_high[MAX_DESC_PER_RING_RX];
275 u32 bus_low[MAX_DESC_PER_RING_RX];
276 void *ring_virtaddr;
277 dma_addr_t ring_physaddr;
278 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
279 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
280 u32 local_full;
281 u32 num_entries;
282 dma_addr_t buffsize;
283 };
284
285 /* struct rx_ring is the structure representing the adaptor's local
286 * reference(s) to the rings
287 */
288 struct rx_ring {
289 struct fbr_lookup *fbr[NUM_FBRS];
290 void *ps_ring_virtaddr;
291 dma_addr_t ps_ring_physaddr;
292 u32 local_psr_full;
293 u32 psr_entries;
294
295 struct rx_status_block *rx_status_block;
296 dma_addr_t rx_status_bus;
297
298 struct list_head recv_list;
299 u32 num_ready_recv;
300
301 u32 num_rfd;
302
303 bool unfinished_receives;
304 };
305
306 /* TX defines */
307 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
308 *
309 * 0-15: length of packet
310 * 16-27: VLAN tag
311 * 28: VLAN CFI
312 * 29-31: VLAN priority
313 *
314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
315 *
316 * 0: last packet in the sequence
317 * 1: first packet in the sequence
318 * 2: interrupt the processor when this pkt sent
319 * 3: Control word - no packet data
320 * 4: Issue half-duplex backpressure : XON/XOFF
321 * 5: send pause frame
322 * 6: Tx frame has error
323 * 7: append CRC
324 * 8: MAC override
325 * 9: pad packet
326 * 10: Packet is a Huge packet
327 * 11: append VLAN tag
328 * 12: IP checksum assist
329 * 13: TCP checksum assist
330 * 14: UDP checksum assist
331 */
332 #define TXDESC_FLAG_LASTPKT 0x0001
333 #define TXDESC_FLAG_FIRSTPKT 0x0002
334 #define TXDESC_FLAG_INTPROC 0x0004
335
336 /* struct tx_desc represents each descriptor on the ring */
337 struct tx_desc {
338 u32 addr_hi;
339 u32 addr_lo;
340 u32 len_vlan; /* control words how to xmit the */
341 u32 flags; /* data (detailed above) */
342 };
343
344 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
345 * by 0x101c / 0x1020. This is a DMA10 type
346 */
347
348 /* TCB (Transmit Control Block: Host Side) */
349 struct tcb {
350 struct tcb *next; /* Next entry in ring */
351 u32 count; /* Used to spot stuck/lost packets */
352 u32 stale; /* Used to spot stuck/lost packets */
353 struct sk_buff *skb; /* Network skb we are tied to */
354 u32 index; /* Ring indexes */
355 u32 index_start;
356 };
357
358 /* Structure representing our local reference(s) to the ring */
359 struct tx_ring {
360 /* TCB (Transmit Control Block) memory and lists */
361 struct tcb *tcb_ring;
362
363 /* List of TCBs that are ready to be used */
364 struct tcb *tcb_qhead;
365 struct tcb *tcb_qtail;
366
367 /* list of TCBs that are currently being sent. */
368 struct tcb *send_head;
369 struct tcb *send_tail;
370 int used;
371
372 /* The actual descriptor ring */
373 struct tx_desc *tx_desc_ring;
374 dma_addr_t tx_desc_ring_pa;
375
376 /* send_idx indicates where we last wrote to in the descriptor ring. */
377 u32 send_idx;
378
379 /* The location of the write-back status block */
380 u32 *tx_status;
381 dma_addr_t tx_status_pa;
382
383 /* Packets since the last IRQ: used for interrupt coalescing */
384 int since_irq;
385 };
386
387 /* Do not change these values: if changed, then change also in respective
388 * TXdma and Rxdma engines
389 */
390 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
391 #define NUM_TCB 64
392
393 /* These values are all superseded by registry entries to facilitate tuning.
394 * Once the desired performance has been achieved, the optimal registry values
395 * should be re-populated to these #defines:
396 */
397 #define TX_ERROR_PERIOD 1000
398
399 #define LO_MARK_PERCENT_FOR_PSR 15
400 #define LO_MARK_PERCENT_FOR_RX 15
401
402 /* RFD (Receive Frame Descriptor) */
403 struct rfd {
404 struct list_head list_node;
405 struct sk_buff *skb;
406 u32 len; /* total size of receive frame */
407 u16 bufferindex;
408 u8 ringindex;
409 };
410
411 /* Flow Control */
412 #define FLOW_BOTH 0
413 #define FLOW_TXONLY 1
414 #define FLOW_RXONLY 2
415 #define FLOW_NONE 3
416
417 /* Struct to define some device statistics */
418 struct ce_stats {
419 u32 multicast_pkts_rcvd;
420 u32 rcvd_pkts_dropped;
421
422 u32 tx_underflows;
423 u32 tx_collisions;
424 u32 tx_excessive_collisions;
425 u32 tx_first_collisions;
426 u32 tx_late_collisions;
427 u32 tx_max_pkt_errs;
428 u32 tx_deferred;
429
430 u32 rx_overflows;
431 u32 rx_length_errs;
432 u32 rx_align_errs;
433 u32 rx_crc_errs;
434 u32 rx_code_violations;
435 u32 rx_other_errs;
436
437 u32 interrupt_status;
438 };
439
440 /* The private adapter structure */
441 struct et131x_adapter {
442 struct net_device *netdev;
443 struct pci_dev *pdev;
444 struct mii_bus *mii_bus;
445 struct napi_struct napi;
446
447 /* Flags that indicate current state of the adapter */
448 u32 flags;
449
450 /* local link state, to determine if a state change has occurred */
451 int link;
452
453 /* Configuration */
454 u8 rom_addr[ETH_ALEN];
455 u8 addr[ETH_ALEN];
456 bool has_eeprom;
457 u8 eeprom_data[2];
458
459 spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
460 spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
461 spinlock_t rcv_lock; /* protects the rx_ring receive list */
462
463 /* Packet Filter and look ahead size */
464 u32 packet_filter;
465
466 /* multicast list */
467 u32 multicast_addr_count;
468 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
469
470 /* Pointer to the device's PCI register space */
471 struct address_map __iomem *regs;
472
473 /* Registry parameters */
474 u8 wanted_flow; /* Flow we want for 802.3x flow control */
475 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
476
477 /* Derived from the registry: */
478 u8 flow; /* flow control validated by the far-end */
479
480 /* Minimize init-time */
481 struct timer_list error_timer;
482
483 /* variable putting the phy into coma mode when boot up with no cable
484 * plugged in after 5 seconds
485 */
486 u8 boot_coma;
487
488 /* Tx Memory Variables */
489 struct tx_ring tx_ring;
490
491 /* Rx Memory Variables */
492 struct rx_ring rx_ring;
493
494 struct ce_stats stats;
495 };
496
eeprom_wait_ready(struct pci_dev * pdev,u32 * status)497 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
498 {
499 u32 reg;
500 int i;
501
502 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
503 * bits 7,1:0 both equal to 1, at least once after reset.
504 * Subsequent operations need only to check that bits 1:0 are equal
505 * to 1 prior to starting a single byte read/write
506 */
507 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
508 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, ®))
509 return -EIO;
510
511 /* I2C idle and Phy Queue Avail both true */
512 if ((reg & 0x3000) == 0x3000) {
513 if (status)
514 *status = reg;
515 return reg & 0xFF;
516 }
517 }
518 return -ETIMEDOUT;
519 }
520
eeprom_write(struct et131x_adapter * adapter,u32 addr,u8 data)521 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
522 {
523 struct pci_dev *pdev = adapter->pdev;
524 int index = 0;
525 int retries;
526 int err = 0;
527 int writeok = 0;
528 u32 status;
529 u32 val = 0;
530
531 /* For an EEPROM, an I2C single byte write is defined as a START
532 * condition followed by the device address, EEPROM address, one byte
533 * of data and a STOP condition. The STOP condition will trigger the
534 * EEPROM's internally timed write cycle to the nonvolatile memory.
535 * All inputs are disabled during this write cycle and the EEPROM will
536 * not respond to any access until the internal write is complete.
537 */
538 err = eeprom_wait_ready(pdev, NULL);
539 if (err < 0)
540 return err;
541
542 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
543 * and bits 1:0 both =0. Bit 5 should be set according to the
544 * type of EEPROM being accessed (1=two byte addressing, 0=one
545 * byte addressing).
546 */
547 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
548 LBCIF_CONTROL_LBCIF_ENABLE |
549 LBCIF_CONTROL_I2C_WRITE))
550 return -EIO;
551
552 /* Prepare EEPROM address for Step 3 */
553 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
554 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
555 break;
556 /* Write the data to the LBCIF Data Register (the I2C write
557 * will begin).
558 */
559 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
560 break;
561 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
562 * 1:0 are both equal to 1, the I2C write has completed and the
563 * internal write cycle of the EEPROM is about to start.
564 * (bits 1:0 = 01 is a legal state while waiting from both
565 * equal to 1, but bits 1:0 = 10 is invalid and implies that
566 * something is broken).
567 */
568 err = eeprom_wait_ready(pdev, &status);
569 if (err < 0)
570 return 0;
571
572 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
573 * an error has occurred.Don't break here if we are revision
574 * 1, this is so we do a blind write for load bug.
575 */
576 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
577 adapter->pdev->revision == 0)
578 break;
579
580 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
581 * ACK error has occurred on the address phase of the write.
582 * This could be due to an actual hardware failure or the
583 * EEPROM may still be in its internal write cycle from a
584 * previous write. This write operation was ignored and must be
585 *repeated later.
586 */
587 if (status & LBCIF_STATUS_ACK_ERROR) {
588 /* This could be due to an actual hardware failure
589 * or the EEPROM may still be in its internal write
590 * cycle from a previous write. This write operation
591 * was ignored and must be repeated later.
592 */
593 udelay(10);
594 continue;
595 }
596
597 writeok = 1;
598 break;
599 }
600
601 udelay(10);
602
603 while (1) {
604 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
605 LBCIF_CONTROL_LBCIF_ENABLE))
606 writeok = 0;
607
608 /* Do read until internal ACK_ERROR goes away meaning write
609 * completed
610 */
611 do {
612 pci_write_config_dword(pdev,
613 LBCIF_ADDRESS_REGISTER,
614 addr);
615 do {
616 pci_read_config_dword(pdev,
617 LBCIF_DATA_REGISTER,
618 &val);
619 } while ((val & 0x00010000) == 0);
620 } while (val & 0x00040000);
621
622 if ((val & 0xFF00) != 0xC000 || index == 10000)
623 break;
624 index++;
625 }
626 return writeok ? 0 : -EIO;
627 }
628
eeprom_read(struct et131x_adapter * adapter,u32 addr,u8 * pdata)629 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
630 {
631 struct pci_dev *pdev = adapter->pdev;
632 int err;
633 u32 status;
634
635 /* A single byte read is similar to the single byte write, with the
636 * exception of the data flow:
637 */
638 err = eeprom_wait_ready(pdev, NULL);
639 if (err < 0)
640 return err;
641 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
642 * and bits 1:0 both =0. Bit 5 should be set according to the type
643 * of EEPROM being accessed (1=two byte addressing, 0=one byte
644 * addressing).
645 */
646 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
647 LBCIF_CONTROL_LBCIF_ENABLE))
648 return -EIO;
649 /* Write the address to the LBCIF Address Register (I2C read will
650 * begin).
651 */
652 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
653 return -EIO;
654 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
655 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
656 * has occurred).
657 */
658 err = eeprom_wait_ready(pdev, &status);
659 if (err < 0)
660 return err;
661 /* Regardless of error status, read data byte from LBCIF Data
662 * Register.
663 */
664 *pdata = err;
665
666 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
667 }
668
et131x_init_eeprom(struct et131x_adapter * adapter)669 static int et131x_init_eeprom(struct et131x_adapter *adapter)
670 {
671 struct pci_dev *pdev = adapter->pdev;
672 u8 eestatus;
673
674 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
675
676 /* THIS IS A WORKAROUND:
677 * I need to call this function twice to get my card in a
678 * LG M1 Express Dual running. I tried also a msleep before this
679 * function, because I thought there could be some time conditions
680 * but it didn't work. Call the whole function twice also work.
681 */
682 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
683 dev_err(&pdev->dev,
684 "Could not read PCI config space for EEPROM Status\n");
685 return -EIO;
686 }
687
688 /* Determine if the error(s) we care about are present. If they are
689 * present we need to fail.
690 */
691 if (eestatus & 0x4C) {
692 int write_failed = 0;
693
694 if (pdev->revision == 0x01) {
695 int i;
696 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
697
698 /* Re-write the first 4 bytes if we have an eeprom
699 * present and the revision id is 1, this fixes the
700 * corruption seen with 1310 B Silicon
701 */
702 for (i = 0; i < 3; i++)
703 if (eeprom_write(adapter, i, eedata[i]) < 0)
704 write_failed = 1;
705 }
706 if (pdev->revision != 0x01 || write_failed) {
707 dev_err(&pdev->dev,
708 "Fatal EEPROM Status Error - 0x%04x\n",
709 eestatus);
710
711 /* This error could mean that there was an error
712 * reading the eeprom or that the eeprom doesn't exist.
713 * We will treat each case the same and not try to
714 * gather additional information that normally would
715 * come from the eeprom, like MAC Address
716 */
717 adapter->has_eeprom = false;
718 return -EIO;
719 }
720 }
721 adapter->has_eeprom = true;
722
723 /* Read the EEPROM for information regarding LED behavior. Refer to
724 * et131x_xcvr_init() for its use.
725 */
726 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
727 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
728
729 if (adapter->eeprom_data[0] != 0xcd)
730 /* Disable all optional features */
731 adapter->eeprom_data[1] = 0x00;
732
733 return 0;
734 }
735
et131x_rx_dma_enable(struct et131x_adapter * adapter)736 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
737 {
738 /* Setup the receive dma configuration register for normal operation */
739 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
740 struct rx_ring *rx_ring = &adapter->rx_ring;
741
742 if (rx_ring->fbr[1]->buffsize == 4096)
743 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
744 else if (rx_ring->fbr[1]->buffsize == 8192)
745 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
746 else if (rx_ring->fbr[1]->buffsize == 16384)
747 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
748
749 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
750 if (rx_ring->fbr[0]->buffsize == 256)
751 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
752 else if (rx_ring->fbr[0]->buffsize == 512)
753 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
754 else if (rx_ring->fbr[0]->buffsize == 1024)
755 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
756 writel(csr, &adapter->regs->rxdma.csr);
757
758 csr = readl(&adapter->regs->rxdma.csr);
759 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
760 udelay(5);
761 csr = readl(&adapter->regs->rxdma.csr);
762 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
763 dev_err(&adapter->pdev->dev,
764 "RX Dma failed to exit halt state. CSR 0x%08x\n",
765 csr);
766 }
767 }
768 }
769
et131x_rx_dma_disable(struct et131x_adapter * adapter)770 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
771 {
772 u32 csr;
773 /* Setup the receive dma configuration register */
774 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
775 &adapter->regs->rxdma.csr);
776 csr = readl(&adapter->regs->rxdma.csr);
777 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
778 udelay(5);
779 csr = readl(&adapter->regs->rxdma.csr);
780 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
781 dev_err(&adapter->pdev->dev,
782 "RX Dma failed to enter halt state. CSR 0x%08x\n",
783 csr);
784 }
785 }
786
et131x_tx_dma_enable(struct et131x_adapter * adapter)787 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
788 {
789 /* Setup the transmit dma configuration register for normal
790 * operation
791 */
792 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
793 &adapter->regs->txdma.csr);
794 }
795
add_10bit(u32 * v,int n)796 static inline void add_10bit(u32 *v, int n)
797 {
798 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
799 }
800
add_12bit(u32 * v,int n)801 static inline void add_12bit(u32 *v, int n)
802 {
803 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
804 }
805
et1310_config_mac_regs1(struct et131x_adapter * adapter)806 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
807 {
808 struct mac_regs __iomem *macregs = &adapter->regs->mac;
809 u32 station1;
810 u32 station2;
811 u32 ipg;
812
813 /* First we need to reset everything. Write to MAC configuration
814 * register 1 to perform reset.
815 */
816 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
817 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
818 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
819 ¯egs->cfg1);
820
821 /* Next lets configure the MAC Inter-packet gap register */
822 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
823 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
824 writel(ipg, ¯egs->ipg);
825
826 /* Next lets configure the MAC Half Duplex register */
827 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
828 writel(0x00A1F037, ¯egs->hfdp);
829
830 /* Next lets configure the MAC Interface Control register */
831 writel(0, ¯egs->if_ctrl);
832
833 writel(ET_MAC_MIIMGMT_CLK_RST, ¯egs->mii_mgmt_cfg);
834
835 /* Next lets configure the MAC Station Address register. These
836 * values are read from the EEPROM during initialization and stored
837 * in the adapter structure. We write what is stored in the adapter
838 * structure to the MAC Station Address registers high and low. This
839 * station address is used for generating and checking pause control
840 * packets.
841 */
842 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
843 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
844 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
845 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
846 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
847 adapter->addr[2];
848 writel(station1, ¯egs->station_addr_1);
849 writel(station2, ¯egs->station_addr_2);
850
851 /* Max ethernet packet in bytes that will be passed by the mac without
852 * being truncated. Allow the MAC to pass 4 more than our max packet
853 * size. This is 4 for the Ethernet CRC.
854 *
855 * Packets larger than (registry_jumbo_packet) that do not contain a
856 * VLAN ID will be dropped by the Rx function.
857 */
858 writel(adapter->registry_jumbo_packet + 4, ¯egs->max_fm_len);
859
860 /* clear out MAC config reset */
861 writel(0, ¯egs->cfg1);
862 }
863
et1310_config_mac_regs2(struct et131x_adapter * adapter)864 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
865 {
866 int32_t delay = 0;
867 struct mac_regs __iomem *mac = &adapter->regs->mac;
868 struct phy_device *phydev = adapter->netdev->phydev;
869 u32 cfg1;
870 u32 cfg2;
871 u32 ifctrl;
872 u32 ctl;
873
874 ctl = readl(&adapter->regs->txmac.ctl);
875 cfg1 = readl(&mac->cfg1);
876 cfg2 = readl(&mac->cfg2);
877 ifctrl = readl(&mac->if_ctrl);
878
879 /* Set up the if mode bits */
880 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
881 if (phydev->speed == SPEED_1000) {
882 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
883 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
884 } else {
885 cfg2 |= ET_MAC_CFG2_IFMODE_100;
886 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
887 }
888
889 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
890 ET_MAC_CFG1_TX_FLOW;
891
892 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
893 if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
894 cfg1 |= ET_MAC_CFG1_RX_FLOW;
895 writel(cfg1, &mac->cfg1);
896
897 /* Now we need to initialize the MAC Configuration 2 register */
898 /* preamble 7, check length, huge frame off, pad crc, crc enable
899 * full duplex off
900 */
901 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
902 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
903 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
904 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
905 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
906 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
907
908 if (phydev->duplex == DUPLEX_FULL)
909 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
910
911 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
912 if (phydev->duplex == DUPLEX_HALF)
913 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
914
915 writel(ifctrl, &mac->if_ctrl);
916 writel(cfg2, &mac->cfg2);
917
918 do {
919 udelay(10);
920 delay++;
921 cfg1 = readl(&mac->cfg1);
922 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
923
924 if (delay == 100) {
925 dev_warn(&adapter->pdev->dev,
926 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
927 cfg1);
928 }
929
930 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
931 writel(ctl, &adapter->regs->txmac.ctl);
932
933 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
934 et131x_rx_dma_enable(adapter);
935 et131x_tx_dma_enable(adapter);
936 }
937 }
938
et1310_in_phy_coma(struct et131x_adapter * adapter)939 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
940 {
941 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
942
943 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
944 }
945
et1310_setup_device_for_multicast(struct et131x_adapter * adapter)946 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
947 {
948 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
949 u32 hash1 = 0;
950 u32 hash2 = 0;
951 u32 hash3 = 0;
952 u32 hash4 = 0;
953
954 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
955 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
956 * specified) then we should pass NO multi-cast addresses to the
957 * driver.
958 */
959 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
960 int i;
961
962 /* Loop through our multicast array and set up the device */
963 for (i = 0; i < adapter->multicast_addr_count; i++) {
964 u32 result;
965
966 result = ether_crc(6, adapter->multicast_list[i]);
967
968 result = (result & 0x3F800000) >> 23;
969
970 if (result < 32) {
971 hash1 |= (1 << result);
972 } else if ((31 < result) && (result < 64)) {
973 result -= 32;
974 hash2 |= (1 << result);
975 } else if ((63 < result) && (result < 96)) {
976 result -= 64;
977 hash3 |= (1 << result);
978 } else {
979 result -= 96;
980 hash4 |= (1 << result);
981 }
982 }
983 }
984
985 /* Write out the new hash to the device */
986 if (!et1310_in_phy_coma(adapter)) {
987 writel(hash1, &rxmac->multi_hash1);
988 writel(hash2, &rxmac->multi_hash2);
989 writel(hash3, &rxmac->multi_hash3);
990 writel(hash4, &rxmac->multi_hash4);
991 }
992 }
993
et1310_setup_device_for_unicast(struct et131x_adapter * adapter)994 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
995 {
996 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
997 u32 uni_pf1;
998 u32 uni_pf2;
999 u32 uni_pf3;
1000
1001 /* Set up unicast packet filter reg 3 to be the first two octets of
1002 * the MAC address for both address
1003 *
1004 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1005 * MAC address for second address
1006 *
1007 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1008 * MAC address for first address
1009 */
1010 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1011 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1012 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1013 adapter->addr[1];
1014
1015 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1016 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1017 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1018 adapter->addr[5];
1019
1020 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1021 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1022 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1023 adapter->addr[5];
1024
1025 if (!et1310_in_phy_coma(adapter)) {
1026 writel(uni_pf1, &rxmac->uni_pf_addr1);
1027 writel(uni_pf2, &rxmac->uni_pf_addr2);
1028 writel(uni_pf3, &rxmac->uni_pf_addr3);
1029 }
1030 }
1031
et1310_config_rxmac_regs(struct et131x_adapter * adapter)1032 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1033 {
1034 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1035 struct phy_device *phydev = adapter->netdev->phydev;
1036 u32 sa_lo;
1037 u32 sa_hi = 0;
1038 u32 pf_ctrl = 0;
1039 u32 __iomem *wolw;
1040
1041 /* Disable the MAC while it is being configured (also disable WOL) */
1042 writel(0x8, &rxmac->ctrl);
1043
1044 /* Initialize WOL to disabled. */
1045 writel(0, &rxmac->crc0);
1046 writel(0, &rxmac->crc12);
1047 writel(0, &rxmac->crc34);
1048
1049 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1050 * its default Values of 0x00000000 because there are not WOL masks
1051 * as of this time.
1052 */
1053 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1054 writel(0, wolw);
1055
1056 /* Lets setup the WOL Source Address */
1057 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1058 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1059 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1060 adapter->addr[5];
1061 writel(sa_lo, &rxmac->sa_lo);
1062
1063 sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1064 adapter->addr[1];
1065 writel(sa_hi, &rxmac->sa_hi);
1066
1067 /* Disable all Packet Filtering */
1068 writel(0, &rxmac->pf_ctrl);
1069
1070 /* Let's initialize the Unicast Packet filtering address */
1071 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1072 et1310_setup_device_for_unicast(adapter);
1073 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1074 } else {
1075 writel(0, &rxmac->uni_pf_addr1);
1076 writel(0, &rxmac->uni_pf_addr2);
1077 writel(0, &rxmac->uni_pf_addr3);
1078 }
1079
1080 /* Let's initialize the Multicast hash */
1081 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1082 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1083 et1310_setup_device_for_multicast(adapter);
1084 }
1085
1086 /* Runt packet filtering. Didn't work in version A silicon. */
1087 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1088 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1089
1090 if (adapter->registry_jumbo_packet > 8192)
1091 /* In order to transmit jumbo packets greater than 8k, the
1092 * FIFO between RxMAC and RxDMA needs to be reduced in size
1093 * to (16k - Jumbo packet size). In order to implement this,
1094 * we must use "cut through" mode in the RxMAC, which chops
1095 * packets down into segments which are (max_size * 16). In
1096 * this case we selected 256 bytes, since this is the size of
1097 * the PCI-Express TLP's that the 1310 uses.
1098 *
1099 * seg_en on, fc_en off, size 0x10
1100 */
1101 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1102 else
1103 writel(0, &rxmac->mcif_ctrl_max_seg);
1104
1105 writel(0, &rxmac->mcif_water_mark);
1106 writel(0, &rxmac->mif_ctrl);
1107 writel(0, &rxmac->space_avail);
1108
1109 /* Initialize the mif_ctrl register
1110 * bit 3: Receive code error. One or more nibbles were signaled as
1111 * errors during the reception of the packet. Clear this
1112 * bit in Gigabit, set it in 100Mbit. This was derived
1113 * experimentally at UNH.
1114 * bit 4: Receive CRC error. The packet's CRC did not match the
1115 * internally generated CRC.
1116 * bit 5: Receive length check error. Indicates that frame length
1117 * field value in the packet does not match the actual data
1118 * byte length and is not a type field.
1119 * bit 16: Receive frame truncated.
1120 * bit 17: Drop packet enable
1121 */
1122 if (phydev && phydev->speed == SPEED_100)
1123 writel(0x30038, &rxmac->mif_ctrl);
1124 else
1125 writel(0x30030, &rxmac->mif_ctrl);
1126
1127 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1128 * filter is always enabled since it is where the runt packets are
1129 * supposed to be dropped. For version A silicon, runt packet
1130 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1131 * but we still leave the packet filter on.
1132 */
1133 writel(pf_ctrl, &rxmac->pf_ctrl);
1134 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1135 }
1136
et1310_config_txmac_regs(struct et131x_adapter * adapter)1137 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1138 {
1139 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1140
1141 /* We need to update the Control Frame Parameters
1142 * cfpt - control frame pause timer set to 64 (0x40)
1143 * cfep - control frame extended pause timer set to 0x0
1144 */
1145 if (adapter->flow == FLOW_NONE)
1146 writel(0, &txmac->cf_param);
1147 else
1148 writel(0x40, &txmac->cf_param);
1149 }
1150
et1310_config_macstat_regs(struct et131x_adapter * adapter)1151 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1152 {
1153 struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1154 u32 __iomem *reg;
1155
1156 /* initialize all the macstat registers to zero on the device */
1157 for (reg = &macstat->txrx_0_64_byte_frames;
1158 reg <= &macstat->carry_reg2; reg++)
1159 writel(0, reg);
1160
1161 /* Unmask any counters that we want to track the overflow of.
1162 * Initially this will be all counters. It may become clear later
1163 * that we do not need to track all counters.
1164 */
1165 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1166 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1167 }
1168
et131x_phy_mii_read(struct et131x_adapter * adapter,u8 addr,u8 reg,u16 * value)1169 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1170 u8 reg, u16 *value)
1171 {
1172 struct mac_regs __iomem *mac = &adapter->regs->mac;
1173 int status = 0;
1174 u32 delay = 0;
1175 u32 mii_addr;
1176 u32 mii_cmd;
1177 u32 mii_indicator;
1178
1179 /* Save a local copy of the registers we are dealing with so we can
1180 * set them back
1181 */
1182 mii_addr = readl(&mac->mii_mgmt_addr);
1183 mii_cmd = readl(&mac->mii_mgmt_cmd);
1184
1185 /* Stop the current operation */
1186 writel(0, &mac->mii_mgmt_cmd);
1187
1188 /* Set up the register we need to read from on the correct PHY */
1189 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1190
1191 writel(0x1, &mac->mii_mgmt_cmd);
1192
1193 do {
1194 udelay(50);
1195 delay++;
1196 mii_indicator = readl(&mac->mii_mgmt_indicator);
1197 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1198
1199 /* If we hit the max delay, we could not read the register */
1200 if (delay == 50) {
1201 dev_warn(&adapter->pdev->dev,
1202 "reg 0x%08x could not be read\n", reg);
1203 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1204 mii_indicator);
1205
1206 status = -EIO;
1207 goto out;
1208 }
1209
1210 /* If we hit here we were able to read the register and we need to
1211 * return the value to the caller
1212 */
1213 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1214
1215 out:
1216 /* Stop the read operation */
1217 writel(0, &mac->mii_mgmt_cmd);
1218
1219 /* set the registers we touched back to the state at which we entered
1220 * this function
1221 */
1222 writel(mii_addr, &mac->mii_mgmt_addr);
1223 writel(mii_cmd, &mac->mii_mgmt_cmd);
1224
1225 return status;
1226 }
1227
et131x_mii_read(struct et131x_adapter * adapter,u8 reg,u16 * value)1228 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1229 {
1230 struct phy_device *phydev = adapter->netdev->phydev;
1231
1232 if (!phydev)
1233 return -EIO;
1234
1235 return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1236 }
1237
et131x_mii_write(struct et131x_adapter * adapter,u8 addr,u8 reg,u16 value)1238 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1239 u16 value)
1240 {
1241 struct mac_regs __iomem *mac = &adapter->regs->mac;
1242 int status = 0;
1243 u32 delay = 0;
1244 u32 mii_addr;
1245 u32 mii_cmd;
1246 u32 mii_indicator;
1247
1248 /* Save a local copy of the registers we are dealing with so we can
1249 * set them back
1250 */
1251 mii_addr = readl(&mac->mii_mgmt_addr);
1252 mii_cmd = readl(&mac->mii_mgmt_cmd);
1253
1254 /* Stop the current operation */
1255 writel(0, &mac->mii_mgmt_cmd);
1256
1257 /* Set up the register we need to write to on the correct PHY */
1258 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1259
1260 /* Add the value to write to the registers to the mac */
1261 writel(value, &mac->mii_mgmt_ctrl);
1262
1263 do {
1264 udelay(50);
1265 delay++;
1266 mii_indicator = readl(&mac->mii_mgmt_indicator);
1267 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1268
1269 /* If we hit the max delay, we could not write the register */
1270 if (delay == 100) {
1271 u16 tmp;
1272
1273 dev_warn(&adapter->pdev->dev,
1274 "reg 0x%08x could not be written", reg);
1275 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1276 mii_indicator);
1277 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1278 readl(&mac->mii_mgmt_cmd));
1279
1280 et131x_mii_read(adapter, reg, &tmp);
1281
1282 status = -EIO;
1283 }
1284 /* Stop the write operation */
1285 writel(0, &mac->mii_mgmt_cmd);
1286
1287 /* set the registers we touched back to the state at which we entered
1288 * this function
1289 */
1290 writel(mii_addr, &mac->mii_mgmt_addr);
1291 writel(mii_cmd, &mac->mii_mgmt_cmd);
1292
1293 return status;
1294 }
1295
et1310_phy_read_mii_bit(struct et131x_adapter * adapter,u16 regnum,u16 bitnum,u8 * value)1296 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1297 u16 regnum,
1298 u16 bitnum,
1299 u8 *value)
1300 {
1301 u16 reg;
1302 u16 mask = 1 << bitnum;
1303
1304 et131x_mii_read(adapter, regnum, ®);
1305
1306 *value = (reg & mask) >> bitnum;
1307 }
1308
et1310_config_flow_control(struct et131x_adapter * adapter)1309 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1310 {
1311 struct phy_device *phydev = adapter->netdev->phydev;
1312
1313 if (phydev->duplex == DUPLEX_HALF) {
1314 adapter->flow = FLOW_NONE;
1315 } else {
1316 char remote_pause, remote_async_pause;
1317
1318 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1319 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1320
1321 if (remote_pause && remote_async_pause) {
1322 adapter->flow = adapter->wanted_flow;
1323 } else if (remote_pause && !remote_async_pause) {
1324 if (adapter->wanted_flow == FLOW_BOTH)
1325 adapter->flow = FLOW_BOTH;
1326 else
1327 adapter->flow = FLOW_NONE;
1328 } else if (!remote_pause && !remote_async_pause) {
1329 adapter->flow = FLOW_NONE;
1330 } else {
1331 if (adapter->wanted_flow == FLOW_BOTH)
1332 adapter->flow = FLOW_RXONLY;
1333 else
1334 adapter->flow = FLOW_NONE;
1335 }
1336 }
1337 }
1338
1339 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
et1310_update_macstat_host_counters(struct et131x_adapter * adapter)1340 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1341 {
1342 struct ce_stats *stats = &adapter->stats;
1343 struct macstat_regs __iomem *macstat =
1344 &adapter->regs->macstat;
1345
1346 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1347 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1348 stats->tx_deferred += readl(&macstat->tx_deferred);
1349 stats->tx_excessive_collisions +=
1350 readl(&macstat->tx_multiple_collisions);
1351 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1352 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1353 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1354
1355 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1356 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1357 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1358 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1359 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1360 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1361 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1362 }
1363
1364 /* et1310_handle_macstat_interrupt
1365 *
1366 * One of the MACSTAT counters has wrapped. Update the local copy of
1367 * the statistics held in the adapter structure, checking the "wrap"
1368 * bit for each counter.
1369 */
et1310_handle_macstat_interrupt(struct et131x_adapter * adapter)1370 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1371 {
1372 u32 carry_reg1;
1373 u32 carry_reg2;
1374
1375 /* Read the interrupt bits from the register(s). These are Clear On
1376 * Write.
1377 */
1378 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1379 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1380
1381 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1382 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1383
1384 /* We need to do update the host copy of all the MAC_STAT counters.
1385 * For each counter, check it's overflow bit. If the overflow bit is
1386 * set, then increment the host version of the count by one complete
1387 * revolution of the counter. This routine is called when the counter
1388 * block indicates that one of the counters has wrapped.
1389 */
1390 if (carry_reg1 & (1 << 14))
1391 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1392 if (carry_reg1 & (1 << 8))
1393 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1394 if (carry_reg1 & (1 << 7))
1395 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1396 if (carry_reg1 & (1 << 2))
1397 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1398 if (carry_reg1 & (1 << 6))
1399 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1400 if (carry_reg1 & (1 << 3))
1401 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1402 if (carry_reg1 & (1 << 0))
1403 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1404 if (carry_reg2 & (1 << 16))
1405 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1406 if (carry_reg2 & (1 << 15))
1407 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1408 if (carry_reg2 & (1 << 6))
1409 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1410 if (carry_reg2 & (1 << 8))
1411 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1412 if (carry_reg2 & (1 << 5))
1413 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1414 if (carry_reg2 & (1 << 4))
1415 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1416 if (carry_reg2 & (1 << 2))
1417 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1418 }
1419
et131x_mdio_read(struct mii_bus * bus,int phy_addr,int reg)1420 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1421 {
1422 struct net_device *netdev = bus->priv;
1423 struct et131x_adapter *adapter = netdev_priv(netdev);
1424 u16 value;
1425 int ret;
1426
1427 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1428
1429 if (ret < 0)
1430 return ret;
1431
1432 return value;
1433 }
1434
et131x_mdio_write(struct mii_bus * bus,int phy_addr,int reg,u16 value)1435 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1436 int reg, u16 value)
1437 {
1438 struct net_device *netdev = bus->priv;
1439 struct et131x_adapter *adapter = netdev_priv(netdev);
1440
1441 return et131x_mii_write(adapter, phy_addr, reg, value);
1442 }
1443
1444 /* et1310_phy_power_switch - PHY power control
1445 * @adapter: device to control
1446 * @down: true for off/false for back on
1447 *
1448 * one hundred, ten, one thousand megs
1449 * How would you like to have your LAN accessed
1450 * Can't you see that this code processed
1451 * Phy power, phy power..
1452 */
et1310_phy_power_switch(struct et131x_adapter * adapter,bool down)1453 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1454 {
1455 u16 data;
1456 struct phy_device *phydev = adapter->netdev->phydev;
1457
1458 et131x_mii_read(adapter, MII_BMCR, &data);
1459 data &= ~BMCR_PDOWN;
1460 if (down)
1461 data |= BMCR_PDOWN;
1462 et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1463 }
1464
1465 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
et131x_xcvr_init(struct et131x_adapter * adapter)1466 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1467 {
1468 u16 lcr2;
1469 struct phy_device *phydev = adapter->netdev->phydev;
1470
1471 /* Set the LED behavior such that LED 1 indicates speed (off =
1472 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1473 * link and activity (on for link, blink off for activity).
1474 *
1475 * NOTE: Some customizations have been added here for specific
1476 * vendors; The LED behavior is now determined by vendor data in the
1477 * EEPROM. However, the above description is the default.
1478 */
1479 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1480 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1481
1482 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1483 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1484
1485 if ((adapter->eeprom_data[1] & 0x8) == 0)
1486 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1487 else
1488 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1489
1490 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1491 }
1492 }
1493
1494 /* et131x_configure_global_regs - configure JAGCore global regs */
et131x_configure_global_regs(struct et131x_adapter * adapter)1495 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1496 {
1497 struct global_regs __iomem *regs = &adapter->regs->global;
1498
1499 writel(0, ®s->rxq_start_addr);
1500 writel(INTERNAL_MEM_SIZE - 1, ®s->txq_end_addr);
1501
1502 if (adapter->registry_jumbo_packet < 2048) {
1503 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1504 * block of RAM that the driver can split between Tx
1505 * and Rx as it desires. Our default is to split it
1506 * 50/50:
1507 */
1508 writel(PARM_RX_MEM_END_DEF, ®s->rxq_end_addr);
1509 writel(PARM_RX_MEM_END_DEF + 1, ®s->txq_start_addr);
1510 } else if (adapter->registry_jumbo_packet < 8192) {
1511 /* For jumbo packets > 2k but < 8k, split 50-50. */
1512 writel(INTERNAL_MEM_RX_OFFSET, ®s->rxq_end_addr);
1513 writel(INTERNAL_MEM_RX_OFFSET + 1, ®s->txq_start_addr);
1514 } else {
1515 /* 9216 is the only packet size greater than 8k that
1516 * is available. The Tx buffer has to be big enough
1517 * for one whole packet on the Tx side. We'll make
1518 * the Tx 9408, and give the rest to Rx
1519 */
1520 writel(0x01b3, ®s->rxq_end_addr);
1521 writel(0x01b4, ®s->txq_start_addr);
1522 }
1523
1524 /* Initialize the loopback register. Disable all loopbacks. */
1525 writel(0, ®s->loopback);
1526
1527 writel(0, ®s->msi_config);
1528
1529 /* By default, disable the watchdog timer. It will be enabled when
1530 * a packet is queued.
1531 */
1532 writel(0, ®s->watchdog_timer);
1533 }
1534
1535 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
et131x_config_rx_dma_regs(struct et131x_adapter * adapter)1536 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1537 {
1538 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1539 struct rx_ring *rx_local = &adapter->rx_ring;
1540 struct fbr_desc *fbr_entry;
1541 u32 entry;
1542 u32 psr_num_des;
1543 unsigned long flags;
1544 u8 id;
1545
1546 et131x_rx_dma_disable(adapter);
1547
1548 /* Load the completion writeback physical address */
1549 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1550 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1551
1552 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1553
1554 /* Set the address and parameters of the packet status ring */
1555 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1556 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1557 writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1558 writel(0, &rx_dma->psr_full_offset);
1559
1560 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1561 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1562 &rx_dma->psr_min_des);
1563
1564 spin_lock_irqsave(&adapter->rcv_lock, flags);
1565
1566 /* These local variables track the PSR in the adapter structure */
1567 rx_local->local_psr_full = 0;
1568
1569 for (id = 0; id < NUM_FBRS; id++) {
1570 u32 __iomem *num_des;
1571 u32 __iomem *full_offset;
1572 u32 __iomem *min_des;
1573 u32 __iomem *base_hi;
1574 u32 __iomem *base_lo;
1575 struct fbr_lookup *fbr = rx_local->fbr[id];
1576
1577 if (id == 0) {
1578 num_des = &rx_dma->fbr0_num_des;
1579 full_offset = &rx_dma->fbr0_full_offset;
1580 min_des = &rx_dma->fbr0_min_des;
1581 base_hi = &rx_dma->fbr0_base_hi;
1582 base_lo = &rx_dma->fbr0_base_lo;
1583 } else {
1584 num_des = &rx_dma->fbr1_num_des;
1585 full_offset = &rx_dma->fbr1_full_offset;
1586 min_des = &rx_dma->fbr1_min_des;
1587 base_hi = &rx_dma->fbr1_base_hi;
1588 base_lo = &rx_dma->fbr1_base_lo;
1589 }
1590
1591 /* Now's the best time to initialize FBR contents */
1592 fbr_entry = fbr->ring_virtaddr;
1593 for (entry = 0; entry < fbr->num_entries; entry++) {
1594 fbr_entry->addr_hi = fbr->bus_high[entry];
1595 fbr_entry->addr_lo = fbr->bus_low[entry];
1596 fbr_entry->word2 = entry;
1597 fbr_entry++;
1598 }
1599
1600 /* Set the address and parameters of Free buffer ring 1 and 0 */
1601 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1602 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1603 writel(fbr->num_entries - 1, num_des);
1604 writel(ET_DMA10_WRAP, full_offset);
1605
1606 /* This variable tracks the free buffer ring 1 full position,
1607 * so it has to match the above.
1608 */
1609 fbr->local_full = ET_DMA10_WRAP;
1610 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1611 min_des);
1612 }
1613
1614 /* Program the number of packets we will receive before generating an
1615 * interrupt.
1616 * For version B silicon, this value gets updated once autoneg is
1617 *complete.
1618 */
1619 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1620
1621 /* The "time_done" is not working correctly to coalesce interrupts
1622 * after a given time period, but rather is giving us an interrupt
1623 * regardless of whether we have received packets.
1624 * This value gets updated once autoneg is complete.
1625 */
1626 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1627
1628 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1629 }
1630
1631 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1632 *
1633 * Configure the transmit engine with the ring buffers we have created
1634 * and prepare it for use.
1635 */
et131x_config_tx_dma_regs(struct et131x_adapter * adapter)1636 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1637 {
1638 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1639 struct tx_ring *tx_ring = &adapter->tx_ring;
1640
1641 /* Load the hardware with the start of the transmit descriptor ring. */
1642 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1643 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1644
1645 /* Initialise the transmit DMA engine */
1646 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1647
1648 /* Load the completion writeback physical address */
1649 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1650 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1651
1652 *tx_ring->tx_status = 0;
1653
1654 writel(0, &txdma->service_request);
1655 tx_ring->send_idx = 0;
1656 }
1657
1658 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
et131x_adapter_setup(struct et131x_adapter * adapter)1659 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1660 {
1661 et131x_configure_global_regs(adapter);
1662 et1310_config_mac_regs1(adapter);
1663
1664 /* Configure the MMC registers */
1665 /* All we need to do is initialize the Memory Control Register */
1666 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1667
1668 et1310_config_rxmac_regs(adapter);
1669 et1310_config_txmac_regs(adapter);
1670
1671 et131x_config_rx_dma_regs(adapter);
1672 et131x_config_tx_dma_regs(adapter);
1673
1674 et1310_config_macstat_regs(adapter);
1675
1676 et1310_phy_power_switch(adapter, 0);
1677 et131x_xcvr_init(adapter);
1678 }
1679
1680 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
et131x_soft_reset(struct et131x_adapter * adapter)1681 static void et131x_soft_reset(struct et131x_adapter *adapter)
1682 {
1683 u32 reg;
1684
1685 /* Disable MAC Core */
1686 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1687 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1688 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1689 writel(reg, &adapter->regs->mac.cfg1);
1690
1691 reg = ET_RESET_ALL;
1692 writel(reg, &adapter->regs->global.sw_reset);
1693
1694 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1695 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1696 writel(reg, &adapter->regs->mac.cfg1);
1697 writel(0, &adapter->regs->mac.cfg1);
1698 }
1699
et131x_enable_interrupts(struct et131x_adapter * adapter)1700 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1701 {
1702 u32 mask;
1703
1704 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1705 mask = INT_MASK_ENABLE;
1706 else
1707 mask = INT_MASK_ENABLE_NO_FLOW;
1708
1709 writel(mask, &adapter->regs->global.int_mask);
1710 }
1711
et131x_disable_interrupts(struct et131x_adapter * adapter)1712 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1713 {
1714 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1715 }
1716
et131x_tx_dma_disable(struct et131x_adapter * adapter)1717 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1718 {
1719 /* Setup the transmit dma configuration register */
1720 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1721 &adapter->regs->txdma.csr);
1722 }
1723
et131x_enable_txrx(struct net_device * netdev)1724 static void et131x_enable_txrx(struct net_device *netdev)
1725 {
1726 struct et131x_adapter *adapter = netdev_priv(netdev);
1727
1728 et131x_rx_dma_enable(adapter);
1729 et131x_tx_dma_enable(adapter);
1730
1731 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1732 et131x_enable_interrupts(adapter);
1733
1734 netif_start_queue(netdev);
1735 }
1736
et131x_disable_txrx(struct net_device * netdev)1737 static void et131x_disable_txrx(struct net_device *netdev)
1738 {
1739 struct et131x_adapter *adapter = netdev_priv(netdev);
1740
1741 netif_stop_queue(netdev);
1742
1743 et131x_rx_dma_disable(adapter);
1744 et131x_tx_dma_disable(adapter);
1745
1746 et131x_disable_interrupts(adapter);
1747 }
1748
et131x_init_send(struct et131x_adapter * adapter)1749 static void et131x_init_send(struct et131x_adapter *adapter)
1750 {
1751 int i;
1752 struct tx_ring *tx_ring = &adapter->tx_ring;
1753 struct tcb *tcb = tx_ring->tcb_ring;
1754
1755 tx_ring->tcb_qhead = tcb;
1756
1757 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1758
1759 for (i = 0; i < NUM_TCB; i++) {
1760 tcb->next = tcb + 1;
1761 tcb++;
1762 }
1763
1764 tcb--;
1765 tx_ring->tcb_qtail = tcb;
1766 tcb->next = NULL;
1767 /* Curr send queue should now be empty */
1768 tx_ring->send_head = NULL;
1769 tx_ring->send_tail = NULL;
1770 }
1771
1772 /* et1310_enable_phy_coma
1773 *
1774 * driver receive an phy status change interrupt while in D0 and check that
1775 * phy_status is down.
1776 *
1777 * -- gate off JAGCore;
1778 * -- set gigE PHY in Coma mode
1779 * -- wake on phy_interrupt; Perform software reset JAGCore,
1780 * re-initialize jagcore and gigE PHY
1781 */
et1310_enable_phy_coma(struct et131x_adapter * adapter)1782 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1783 {
1784 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1785
1786 /* Stop sending packets. */
1787 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1788
1789 /* Wait for outstanding Receive packets */
1790 et131x_disable_txrx(adapter->netdev);
1791
1792 /* Gate off JAGCore 3 clock domains */
1793 pmcsr &= ~ET_PMCSR_INIT;
1794 writel(pmcsr, &adapter->regs->global.pm_csr);
1795
1796 /* Program gigE PHY in to Coma mode */
1797 pmcsr |= ET_PM_PHY_SW_COMA;
1798 writel(pmcsr, &adapter->regs->global.pm_csr);
1799 }
1800
et1310_disable_phy_coma(struct et131x_adapter * adapter)1801 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1802 {
1803 u32 pmcsr;
1804
1805 pmcsr = readl(&adapter->regs->global.pm_csr);
1806
1807 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1808 pmcsr |= ET_PMCSR_INIT;
1809 pmcsr &= ~ET_PM_PHY_SW_COMA;
1810 writel(pmcsr, &adapter->regs->global.pm_csr);
1811
1812 /* Restore the GbE PHY speed and duplex modes;
1813 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1814 */
1815
1816 /* Re-initialize the send structures */
1817 et131x_init_send(adapter);
1818
1819 /* Bring the device back to the state it was during init prior to
1820 * autonegotiation being complete. This way, when we get the auto-neg
1821 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1822 */
1823 et131x_soft_reset(adapter);
1824
1825 et131x_adapter_setup(adapter);
1826
1827 /* Allow Tx to restart */
1828 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1829
1830 et131x_enable_txrx(adapter->netdev);
1831 }
1832
bump_free_buff_ring(u32 * free_buff_ring,u32 limit)1833 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1834 {
1835 u32 tmp_free_buff_ring = *free_buff_ring;
1836
1837 tmp_free_buff_ring++;
1838 /* This works for all cases where limit < 1024. The 1023 case
1839 * works because 1023++ is 1024 which means the if condition is not
1840 * taken but the carry of the bit into the wrap bit toggles the wrap
1841 * value correctly
1842 */
1843 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1844 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1845 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1846 }
1847 /* For the 1023 case */
1848 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1849 *free_buff_ring = tmp_free_buff_ring;
1850 return tmp_free_buff_ring;
1851 }
1852
1853 /* et131x_rx_dma_memory_alloc
1854 *
1855 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1856 * and the Packet Status Ring.
1857 */
et131x_rx_dma_memory_alloc(struct et131x_adapter * adapter)1858 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1859 {
1860 u8 id;
1861 u32 i, j;
1862 u32 bufsize;
1863 u32 psr_size;
1864 u32 fbr_chunksize;
1865 struct rx_ring *rx_ring = &adapter->rx_ring;
1866 struct fbr_lookup *fbr;
1867
1868 /* Alloc memory for the lookup table */
1869 rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1870 if (rx_ring->fbr[0] == NULL)
1871 return -ENOMEM;
1872 rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873 if (rx_ring->fbr[1] == NULL)
1874 return -ENOMEM;
1875
1876 /* The first thing we will do is configure the sizes of the buffer
1877 * rings. These will change based on jumbo packet support. Larger
1878 * jumbo packets increases the size of each entry in FBR0, and the
1879 * number of entries in FBR0, while at the same time decreasing the
1880 * number of entries in FBR1.
1881 *
1882 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
1883 * entries are huge in order to accommodate a "jumbo" frame, then it
1884 * will have less entries. Conversely, FBR1 will now be relied upon
1885 * to carry more "normal" frames, thus it's entry size also increases
1886 * and the number of entries goes up too (since it now carries
1887 * "small" + "regular" packets.
1888 *
1889 * In this scheme, we try to maintain 512 entries between the two
1890 * rings. Also, FBR1 remains a constant size - when it's size doubles
1891 * the number of entries halves. FBR0 increases in size, however.
1892 */
1893 if (adapter->registry_jumbo_packet < 2048) {
1894 rx_ring->fbr[0]->buffsize = 256;
1895 rx_ring->fbr[0]->num_entries = 512;
1896 rx_ring->fbr[1]->buffsize = 2048;
1897 rx_ring->fbr[1]->num_entries = 512;
1898 } else if (adapter->registry_jumbo_packet < 4096) {
1899 rx_ring->fbr[0]->buffsize = 512;
1900 rx_ring->fbr[0]->num_entries = 1024;
1901 rx_ring->fbr[1]->buffsize = 4096;
1902 rx_ring->fbr[1]->num_entries = 512;
1903 } else {
1904 rx_ring->fbr[0]->buffsize = 1024;
1905 rx_ring->fbr[0]->num_entries = 768;
1906 rx_ring->fbr[1]->buffsize = 16384;
1907 rx_ring->fbr[1]->num_entries = 128;
1908 }
1909
1910 rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1911 rx_ring->fbr[1]->num_entries;
1912
1913 for (id = 0; id < NUM_FBRS; id++) {
1914 fbr = rx_ring->fbr[id];
1915 /* Allocate an area of memory for Free Buffer Ring */
1916 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1917 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1918 bufsize,
1919 &fbr->ring_physaddr,
1920 GFP_KERNEL);
1921 if (!fbr->ring_virtaddr) {
1922 dev_err(&adapter->pdev->dev,
1923 "Cannot alloc memory for Free Buffer Ring %d\n",
1924 id);
1925 return -ENOMEM;
1926 }
1927 }
1928
1929 for (id = 0; id < NUM_FBRS; id++) {
1930 fbr = rx_ring->fbr[id];
1931 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1932
1933 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1934 dma_addr_t fbr_physaddr;
1935
1936 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1937 &adapter->pdev->dev, fbr_chunksize,
1938 &fbr->mem_physaddrs[i],
1939 GFP_KERNEL);
1940
1941 if (!fbr->mem_virtaddrs[i]) {
1942 dev_err(&adapter->pdev->dev,
1943 "Could not alloc memory\n");
1944 return -ENOMEM;
1945 }
1946
1947 /* See NOTE in "Save Physical Address" comment above */
1948 fbr_physaddr = fbr->mem_physaddrs[i];
1949
1950 for (j = 0; j < FBR_CHUNKS; j++) {
1951 u32 k = (i * FBR_CHUNKS) + j;
1952
1953 /* Save the Virtual address of this index for
1954 * quick access later
1955 */
1956 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1957 (j * fbr->buffsize);
1958
1959 /* now store the physical address in the
1960 * descriptor so the device can access it
1961 */
1962 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1963 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1964 fbr_physaddr += fbr->buffsize;
1965 }
1966 }
1967 }
1968
1969 /* Allocate an area of memory for FIFO of Packet Status ring entries */
1970 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1971
1972 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1973 psr_size,
1974 &rx_ring->ps_ring_physaddr,
1975 GFP_KERNEL);
1976
1977 if (!rx_ring->ps_ring_virtaddr) {
1978 dev_err(&adapter->pdev->dev,
1979 "Cannot alloc memory for Packet Status Ring\n");
1980 return -ENOMEM;
1981 }
1982
1983 /* Allocate an area of memory for writeback of status information */
1984 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1985 sizeof(struct rx_status_block),
1986 &rx_ring->rx_status_bus,
1987 GFP_KERNEL);
1988 if (!rx_ring->rx_status_block) {
1989 dev_err(&adapter->pdev->dev,
1990 "Cannot alloc memory for Status Block\n");
1991 return -ENOMEM;
1992 }
1993 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1994
1995 /* The RFDs are going to be put on lists later on, so initialize the
1996 * lists now.
1997 */
1998 INIT_LIST_HEAD(&rx_ring->recv_list);
1999 return 0;
2000 }
2001
et131x_rx_dma_memory_free(struct et131x_adapter * adapter)2002 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2003 {
2004 u8 id;
2005 u32 ii;
2006 u32 bufsize;
2007 u32 psr_size;
2008 struct rfd *rfd;
2009 struct rx_ring *rx_ring = &adapter->rx_ring;
2010 struct fbr_lookup *fbr;
2011
2012 /* Free RFDs and associated packet descriptors */
2013 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2014
2015 while (!list_empty(&rx_ring->recv_list)) {
2016 rfd = list_entry(rx_ring->recv_list.next,
2017 struct rfd, list_node);
2018
2019 list_del(&rfd->list_node);
2020 rfd->skb = NULL;
2021 kfree(rfd);
2022 }
2023
2024 /* Free Free Buffer Rings */
2025 for (id = 0; id < NUM_FBRS; id++) {
2026 fbr = rx_ring->fbr[id];
2027
2028 if (!fbr || !fbr->ring_virtaddr)
2029 continue;
2030
2031 /* First the packet memory */
2032 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2033 if (fbr->mem_virtaddrs[ii]) {
2034 bufsize = fbr->buffsize * FBR_CHUNKS;
2035
2036 dma_free_coherent(&adapter->pdev->dev,
2037 bufsize,
2038 fbr->mem_virtaddrs[ii],
2039 fbr->mem_physaddrs[ii]);
2040
2041 fbr->mem_virtaddrs[ii] = NULL;
2042 }
2043 }
2044
2045 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2046
2047 dma_free_coherent(&adapter->pdev->dev,
2048 bufsize,
2049 fbr->ring_virtaddr,
2050 fbr->ring_physaddr);
2051
2052 fbr->ring_virtaddr = NULL;
2053 }
2054
2055 /* Free Packet Status Ring */
2056 if (rx_ring->ps_ring_virtaddr) {
2057 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2058
2059 dma_free_coherent(&adapter->pdev->dev, psr_size,
2060 rx_ring->ps_ring_virtaddr,
2061 rx_ring->ps_ring_physaddr);
2062
2063 rx_ring->ps_ring_virtaddr = NULL;
2064 }
2065
2066 /* Free area of memory for the writeback of status information */
2067 if (rx_ring->rx_status_block) {
2068 dma_free_coherent(&adapter->pdev->dev,
2069 sizeof(struct rx_status_block),
2070 rx_ring->rx_status_block,
2071 rx_ring->rx_status_bus);
2072 rx_ring->rx_status_block = NULL;
2073 }
2074
2075 /* Free the FBR Lookup Table */
2076 kfree(rx_ring->fbr[0]);
2077 kfree(rx_ring->fbr[1]);
2078
2079 /* Reset Counters */
2080 rx_ring->num_ready_recv = 0;
2081 }
2082
2083 /* et131x_init_recv - Initialize receive data structures */
et131x_init_recv(struct et131x_adapter * adapter)2084 static int et131x_init_recv(struct et131x_adapter *adapter)
2085 {
2086 struct rfd *rfd;
2087 u32 rfdct;
2088 struct rx_ring *rx_ring = &adapter->rx_ring;
2089
2090 /* Setup each RFD */
2091 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2092 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2093 if (!rfd)
2094 return -ENOMEM;
2095
2096 rfd->skb = NULL;
2097
2098 /* Add this RFD to the recv_list */
2099 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2100
2101 /* Increment the available RFD's */
2102 rx_ring->num_ready_recv++;
2103 }
2104
2105 return 0;
2106 }
2107
2108 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
et131x_set_rx_dma_timer(struct et131x_adapter * adapter)2109 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2110 {
2111 struct phy_device *phydev = adapter->netdev->phydev;
2112
2113 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2114 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2115 */
2116 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2117 writel(0, &adapter->regs->rxdma.max_pkt_time);
2118 writel(1, &adapter->regs->rxdma.num_pkt_done);
2119 }
2120 }
2121
2122 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
nic_return_rfd(struct et131x_adapter * adapter,struct rfd * rfd)2123 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2124 {
2125 struct rx_ring *rx_local = &adapter->rx_ring;
2126 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2127 u16 buff_index = rfd->bufferindex;
2128 u8 ring_index = rfd->ringindex;
2129 unsigned long flags;
2130 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2131
2132 /* We don't use any of the OOB data besides status. Otherwise, we
2133 * need to clean up OOB data
2134 */
2135 if (buff_index < fbr->num_entries) {
2136 u32 free_buff_ring;
2137 u32 __iomem *offset;
2138 struct fbr_desc *next;
2139
2140 if (ring_index == 0)
2141 offset = &rx_dma->fbr0_full_offset;
2142 else
2143 offset = &rx_dma->fbr1_full_offset;
2144
2145 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2146 INDEX10(fbr->local_full);
2147
2148 /* Handle the Free Buffer Ring advancement here. Write
2149 * the PA / Buffer Index for the returned buffer into
2150 * the oldest (next to be freed)FBR entry
2151 */
2152 next->addr_hi = fbr->bus_high[buff_index];
2153 next->addr_lo = fbr->bus_low[buff_index];
2154 next->word2 = buff_index;
2155
2156 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2157 fbr->num_entries - 1);
2158 writel(free_buff_ring, offset);
2159 } else {
2160 dev_err(&adapter->pdev->dev,
2161 "%s illegal Buffer Index returned\n", __func__);
2162 }
2163
2164 /* The processing on this RFD is done, so put it back on the tail of
2165 * our list
2166 */
2167 spin_lock_irqsave(&adapter->rcv_lock, flags);
2168 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2169 rx_local->num_ready_recv++;
2170 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2171
2172 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2173 }
2174
2175 /* nic_rx_pkts - Checks the hardware for available packets
2176 *
2177 * Checks the hardware for available packets, using completion ring
2178 * If packets are available, it gets an RFD from the recv_list, attaches
2179 * the packet to it, puts the RFD in the RecvPendList, and also returns
2180 * the pointer to the RFD.
2181 */
nic_rx_pkts(struct et131x_adapter * adapter)2182 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2183 {
2184 struct rx_ring *rx_local = &adapter->rx_ring;
2185 struct rx_status_block *status;
2186 struct pkt_stat_desc *psr;
2187 struct rfd *rfd;
2188 unsigned long flags;
2189 struct list_head *element;
2190 u8 ring_index;
2191 u16 buff_index;
2192 u32 len;
2193 u32 word0;
2194 u32 word1;
2195 struct sk_buff *skb;
2196 struct fbr_lookup *fbr;
2197
2198 /* RX Status block is written by the DMA engine prior to every
2199 * interrupt. It contains the next to be used entry in the Packet
2200 * Status Ring, and also the two Free Buffer rings.
2201 */
2202 status = rx_local->rx_status_block;
2203 word1 = status->word1 >> 16;
2204
2205 /* Check the PSR and wrap bits do not match */
2206 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2207 return NULL; /* Looks like this ring is not updated yet */
2208
2209 /* The packet status ring indicates that data is available. */
2210 psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2211 (rx_local->local_psr_full & 0xFFF);
2212
2213 /* Grab any information that is required once the PSR is advanced,
2214 * since we can no longer rely on the memory being accurate
2215 */
2216 len = psr->word1 & 0xFFFF;
2217 ring_index = (psr->word1 >> 26) & 0x03;
2218 fbr = rx_local->fbr[ring_index];
2219 buff_index = (psr->word1 >> 16) & 0x3FF;
2220 word0 = psr->word0;
2221
2222 /* Indicate that we have used this PSR entry. */
2223 /* FIXME wrap 12 */
2224 add_12bit(&rx_local->local_psr_full, 1);
2225 if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2226 /* Clear psr full and toggle the wrap bit */
2227 rx_local->local_psr_full &= ~0xFFF;
2228 rx_local->local_psr_full ^= 0x1000;
2229 }
2230
2231 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2232
2233 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2234 /* Illegal buffer or ring index cannot be used by S/W*/
2235 dev_err(&adapter->pdev->dev,
2236 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2237 rx_local->local_psr_full & 0xFFF, len, buff_index);
2238 return NULL;
2239 }
2240
2241 /* Get and fill the RFD. */
2242 spin_lock_irqsave(&adapter->rcv_lock, flags);
2243
2244 element = rx_local->recv_list.next;
2245 rfd = list_entry(element, struct rfd, list_node);
2246
2247 if (!rfd) {
2248 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2249 return NULL;
2250 }
2251
2252 list_del(&rfd->list_node);
2253 rx_local->num_ready_recv--;
2254
2255 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2256
2257 rfd->bufferindex = buff_index;
2258 rfd->ringindex = ring_index;
2259
2260 /* In V1 silicon, there is a bug which screws up filtering of runt
2261 * packets. Therefore runt packet filtering is disabled in the MAC and
2262 * the packets are dropped here. They are also counted here.
2263 */
2264 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2265 adapter->stats.rx_other_errs++;
2266 rfd->len = 0;
2267 goto out;
2268 }
2269
2270 if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2271 adapter->stats.multicast_pkts_rcvd++;
2272
2273 rfd->len = len;
2274
2275 skb = dev_alloc_skb(rfd->len + 2);
2276 if (!skb)
2277 return NULL;
2278
2279 adapter->netdev->stats.rx_bytes += rfd->len;
2280
2281 skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2282
2283 skb->protocol = eth_type_trans(skb, adapter->netdev);
2284 skb->ip_summed = CHECKSUM_NONE;
2285 netif_receive_skb(skb);
2286
2287 out:
2288 nic_return_rfd(adapter, rfd);
2289 return rfd;
2290 }
2291
et131x_handle_recv_pkts(struct et131x_adapter * adapter,int budget)2292 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2293 {
2294 struct rfd *rfd = NULL;
2295 int count = 0;
2296 int limit = budget;
2297 bool done = true;
2298 struct rx_ring *rx_ring = &adapter->rx_ring;
2299
2300 if (budget > MAX_PACKETS_HANDLED)
2301 limit = MAX_PACKETS_HANDLED;
2302
2303 /* Process up to available RFD's */
2304 while (count < limit) {
2305 if (list_empty(&rx_ring->recv_list)) {
2306 WARN_ON(rx_ring->num_ready_recv != 0);
2307 done = false;
2308 break;
2309 }
2310
2311 rfd = nic_rx_pkts(adapter);
2312
2313 if (rfd == NULL)
2314 break;
2315
2316 /* Do not receive any packets until a filter has been set.
2317 * Do not receive any packets until we have link.
2318 * If length is zero, return the RFD in order to advance the
2319 * Free buffer ring.
2320 */
2321 if (!adapter->packet_filter ||
2322 !netif_carrier_ok(adapter->netdev) ||
2323 rfd->len == 0)
2324 continue;
2325
2326 adapter->netdev->stats.rx_packets++;
2327
2328 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2329 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2330
2331 count++;
2332 }
2333
2334 if (count == limit || !done) {
2335 rx_ring->unfinished_receives = true;
2336 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2337 &adapter->regs->global.watchdog_timer);
2338 } else {
2339 /* Watchdog timer will disable itself if appropriate. */
2340 rx_ring->unfinished_receives = false;
2341 }
2342
2343 return count;
2344 }
2345
2346 /* et131x_tx_dma_memory_alloc
2347 *
2348 * Allocates memory that will be visible both to the device and to the CPU.
2349 * The OS will pass us packets, pointers to which we will insert in the Tx
2350 * Descriptor queue. The device will read this queue to find the packets in
2351 * memory. The device will update the "status" in memory each time it xmits a
2352 * packet.
2353 */
et131x_tx_dma_memory_alloc(struct et131x_adapter * adapter)2354 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2355 {
2356 int desc_size = 0;
2357 struct tx_ring *tx_ring = &adapter->tx_ring;
2358
2359 /* Allocate memory for the TCB's (Transmit Control Block) */
2360 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2361 GFP_KERNEL | GFP_DMA);
2362 if (!tx_ring->tcb_ring)
2363 return -ENOMEM;
2364
2365 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2366 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2367 desc_size,
2368 &tx_ring->tx_desc_ring_pa,
2369 GFP_KERNEL);
2370 if (!tx_ring->tx_desc_ring) {
2371 dev_err(&adapter->pdev->dev,
2372 "Cannot alloc memory for Tx Ring\n");
2373 return -ENOMEM;
2374 }
2375
2376 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2377 sizeof(u32),
2378 &tx_ring->tx_status_pa,
2379 GFP_KERNEL);
2380 if (!tx_ring->tx_status) {
2381 dev_err(&adapter->pdev->dev,
2382 "Cannot alloc memory for Tx status block\n");
2383 return -ENOMEM;
2384 }
2385 return 0;
2386 }
2387
et131x_tx_dma_memory_free(struct et131x_adapter * adapter)2388 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2389 {
2390 int desc_size = 0;
2391 struct tx_ring *tx_ring = &adapter->tx_ring;
2392
2393 if (tx_ring->tx_desc_ring) {
2394 /* Free memory relating to Tx rings here */
2395 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2396 dma_free_coherent(&adapter->pdev->dev,
2397 desc_size,
2398 tx_ring->tx_desc_ring,
2399 tx_ring->tx_desc_ring_pa);
2400 tx_ring->tx_desc_ring = NULL;
2401 }
2402
2403 /* Free memory for the Tx status block */
2404 if (tx_ring->tx_status) {
2405 dma_free_coherent(&adapter->pdev->dev,
2406 sizeof(u32),
2407 tx_ring->tx_status,
2408 tx_ring->tx_status_pa);
2409
2410 tx_ring->tx_status = NULL;
2411 }
2412 /* Free the memory for the tcb structures */
2413 kfree(tx_ring->tcb_ring);
2414 }
2415
2416 #define MAX_TX_DESC_PER_PKT 24
2417
2418 /* nic_send_packet - NIC specific send handler for version B silicon. */
nic_send_packet(struct et131x_adapter * adapter,struct tcb * tcb)2419 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2420 {
2421 u32 i;
2422 struct tx_desc desc[MAX_TX_DESC_PER_PKT];
2423 u32 frag = 0;
2424 u32 thiscopy, remainder;
2425 struct sk_buff *skb = tcb->skb;
2426 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2427 skb_frag_t *frags = &skb_shinfo(skb)->frags[0];
2428 struct phy_device *phydev = adapter->netdev->phydev;
2429 dma_addr_t dma_addr;
2430 struct tx_ring *tx_ring = &adapter->tx_ring;
2431
2432 /* Part of the optimizations of this send routine restrict us to
2433 * sending 24 fragments at a pass. In practice we should never see
2434 * more than 5 fragments.
2435 */
2436
2437 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2438
2439 for (i = 0; i < nr_frags; i++) {
2440 /* If there is something in this element, lets get a
2441 * descriptor from the ring and get the necessary data
2442 */
2443 if (i == 0) {
2444 /* If the fragments are smaller than a standard MTU,
2445 * then map them to a single descriptor in the Tx
2446 * Desc ring. However, if they're larger, as is
2447 * possible with support for jumbo packets, then
2448 * split them each across 2 descriptors.
2449 *
2450 * This will work until we determine why the hardware
2451 * doesn't seem to like large fragments.
2452 */
2453 if (skb_headlen(skb) <= 1514) {
2454 /* Low 16bits are length, high is vlan and
2455 * unused currently so zero
2456 */
2457 desc[frag].len_vlan = skb_headlen(skb);
2458 dma_addr = dma_map_single(&adapter->pdev->dev,
2459 skb->data,
2460 skb_headlen(skb),
2461 DMA_TO_DEVICE);
2462 desc[frag].addr_lo = lower_32_bits(dma_addr);
2463 desc[frag].addr_hi = upper_32_bits(dma_addr);
2464 frag++;
2465 } else {
2466 desc[frag].len_vlan = skb_headlen(skb) / 2;
2467 dma_addr = dma_map_single(&adapter->pdev->dev,
2468 skb->data,
2469 skb_headlen(skb) / 2,
2470 DMA_TO_DEVICE);
2471 desc[frag].addr_lo = lower_32_bits(dma_addr);
2472 desc[frag].addr_hi = upper_32_bits(dma_addr);
2473 frag++;
2474
2475 desc[frag].len_vlan = skb_headlen(skb) / 2;
2476 dma_addr = dma_map_single(&adapter->pdev->dev,
2477 skb->data +
2478 skb_headlen(skb) / 2,
2479 skb_headlen(skb) / 2,
2480 DMA_TO_DEVICE);
2481 desc[frag].addr_lo = lower_32_bits(dma_addr);
2482 desc[frag].addr_hi = upper_32_bits(dma_addr);
2483 frag++;
2484 }
2485 } else {
2486 desc[frag].len_vlan = skb_frag_size(&frags[i - 1]);
2487 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2488 &frags[i - 1],
2489 0,
2490 desc[frag].len_vlan,
2491 DMA_TO_DEVICE);
2492 desc[frag].addr_lo = lower_32_bits(dma_addr);
2493 desc[frag].addr_hi = upper_32_bits(dma_addr);
2494 frag++;
2495 }
2496 }
2497
2498 if (phydev && phydev->speed == SPEED_1000) {
2499 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2500 /* Last element & Interrupt flag */
2501 desc[frag - 1].flags =
2502 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2503 tx_ring->since_irq = 0;
2504 } else { /* Last element */
2505 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2506 }
2507 } else {
2508 desc[frag - 1].flags =
2509 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2510 }
2511
2512 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2513
2514 tcb->index_start = tx_ring->send_idx;
2515 tcb->stale = 0;
2516
2517 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2518
2519 if (thiscopy >= frag) {
2520 remainder = 0;
2521 thiscopy = frag;
2522 } else {
2523 remainder = frag - thiscopy;
2524 }
2525
2526 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2527 desc,
2528 sizeof(struct tx_desc) * thiscopy);
2529
2530 add_10bit(&tx_ring->send_idx, thiscopy);
2531
2532 if (INDEX10(tx_ring->send_idx) == 0 ||
2533 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2534 tx_ring->send_idx &= ~ET_DMA10_MASK;
2535 tx_ring->send_idx ^= ET_DMA10_WRAP;
2536 }
2537
2538 if (remainder) {
2539 memcpy(tx_ring->tx_desc_ring,
2540 desc + thiscopy,
2541 sizeof(struct tx_desc) * remainder);
2542
2543 add_10bit(&tx_ring->send_idx, remainder);
2544 }
2545
2546 if (INDEX10(tx_ring->send_idx) == 0) {
2547 if (tx_ring->send_idx)
2548 tcb->index = NUM_DESC_PER_RING_TX - 1;
2549 else
2550 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2551 } else {
2552 tcb->index = tx_ring->send_idx - 1;
2553 }
2554
2555 spin_lock(&adapter->tcb_send_qlock);
2556
2557 if (tx_ring->send_tail)
2558 tx_ring->send_tail->next = tcb;
2559 else
2560 tx_ring->send_head = tcb;
2561
2562 tx_ring->send_tail = tcb;
2563
2564 WARN_ON(tcb->next != NULL);
2565
2566 tx_ring->used++;
2567
2568 spin_unlock(&adapter->tcb_send_qlock);
2569
2570 /* Write the new write pointer back to the device. */
2571 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2572
2573 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2574 * timer to wake us up if this packet isn't followed by N more.
2575 */
2576 if (phydev && phydev->speed == SPEED_1000) {
2577 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2578 &adapter->regs->global.watchdog_timer);
2579 }
2580 return 0;
2581 }
2582
send_packet(struct sk_buff * skb,struct et131x_adapter * adapter)2583 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2584 {
2585 int status;
2586 struct tcb *tcb;
2587 unsigned long flags;
2588 struct tx_ring *tx_ring = &adapter->tx_ring;
2589
2590 /* All packets must have at least a MAC address and a protocol type */
2591 if (skb->len < ETH_HLEN)
2592 return -EIO;
2593
2594 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2595
2596 tcb = tx_ring->tcb_qhead;
2597
2598 if (tcb == NULL) {
2599 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2600 return -ENOMEM;
2601 }
2602
2603 tx_ring->tcb_qhead = tcb->next;
2604
2605 if (tx_ring->tcb_qhead == NULL)
2606 tx_ring->tcb_qtail = NULL;
2607
2608 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2609
2610 tcb->skb = skb;
2611 tcb->next = NULL;
2612
2613 status = nic_send_packet(adapter, tcb);
2614
2615 if (status != 0) {
2616 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2617
2618 if (tx_ring->tcb_qtail)
2619 tx_ring->tcb_qtail->next = tcb;
2620 else
2621 /* Apparently ready Q is empty. */
2622 tx_ring->tcb_qhead = tcb;
2623
2624 tx_ring->tcb_qtail = tcb;
2625 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2626 return status;
2627 }
2628 WARN_ON(tx_ring->used > NUM_TCB);
2629 return 0;
2630 }
2631
2632 /* free_send_packet - Recycle a struct tcb */
free_send_packet(struct et131x_adapter * adapter,struct tcb * tcb)2633 static inline void free_send_packet(struct et131x_adapter *adapter,
2634 struct tcb *tcb)
2635 {
2636 unsigned long flags;
2637 struct tx_desc *desc = NULL;
2638 struct net_device_stats *stats = &adapter->netdev->stats;
2639 struct tx_ring *tx_ring = &adapter->tx_ring;
2640 u64 dma_addr;
2641
2642 if (tcb->skb) {
2643 stats->tx_bytes += tcb->skb->len;
2644
2645 /* Iterate through the TX descriptors on the ring
2646 * corresponding to this packet and umap the fragments
2647 * they point to
2648 */
2649 do {
2650 desc = tx_ring->tx_desc_ring +
2651 INDEX10(tcb->index_start);
2652
2653 dma_addr = desc->addr_lo;
2654 dma_addr |= (u64)desc->addr_hi << 32;
2655
2656 dma_unmap_single(&adapter->pdev->dev,
2657 dma_addr,
2658 desc->len_vlan, DMA_TO_DEVICE);
2659
2660 add_10bit(&tcb->index_start, 1);
2661 if (INDEX10(tcb->index_start) >=
2662 NUM_DESC_PER_RING_TX) {
2663 tcb->index_start &= ~ET_DMA10_MASK;
2664 tcb->index_start ^= ET_DMA10_WRAP;
2665 }
2666 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2667
2668 dev_kfree_skb_any(tcb->skb);
2669 }
2670
2671 memset(tcb, 0, sizeof(struct tcb));
2672
2673 /* Add the TCB to the Ready Q */
2674 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2675
2676 stats->tx_packets++;
2677
2678 if (tx_ring->tcb_qtail)
2679 tx_ring->tcb_qtail->next = tcb;
2680 else /* Apparently ready Q is empty. */
2681 tx_ring->tcb_qhead = tcb;
2682
2683 tx_ring->tcb_qtail = tcb;
2684
2685 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2686 WARN_ON(tx_ring->used < 0);
2687 }
2688
2689 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
et131x_free_busy_send_packets(struct et131x_adapter * adapter)2690 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2691 {
2692 struct tcb *tcb;
2693 unsigned long flags;
2694 u32 freed = 0;
2695 struct tx_ring *tx_ring = &adapter->tx_ring;
2696
2697 /* Any packets being sent? Check the first TCB on the send list */
2698 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2699
2700 tcb = tx_ring->send_head;
2701
2702 while (tcb != NULL && freed < NUM_TCB) {
2703 struct tcb *next = tcb->next;
2704
2705 tx_ring->send_head = next;
2706
2707 if (next == NULL)
2708 tx_ring->send_tail = NULL;
2709
2710 tx_ring->used--;
2711
2712 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2713
2714 freed++;
2715 free_send_packet(adapter, tcb);
2716
2717 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2718
2719 tcb = tx_ring->send_head;
2720 }
2721
2722 WARN_ON(freed == NUM_TCB);
2723
2724 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2725
2726 tx_ring->used = 0;
2727 }
2728
2729 /* et131x_handle_send_pkts
2730 *
2731 * Re-claim the send resources, complete sends and get more to send from
2732 * the send wait queue.
2733 */
et131x_handle_send_pkts(struct et131x_adapter * adapter)2734 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2735 {
2736 unsigned long flags;
2737 u32 serviced;
2738 struct tcb *tcb;
2739 u32 index;
2740 struct tx_ring *tx_ring = &adapter->tx_ring;
2741
2742 serviced = readl(&adapter->regs->txdma.new_service_complete);
2743 index = INDEX10(serviced);
2744
2745 /* Has the ring wrapped? Process any descriptors that do not have
2746 * the same "wrap" indicator as the current completion indicator
2747 */
2748 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2749
2750 tcb = tx_ring->send_head;
2751
2752 while (tcb &&
2753 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2754 index < INDEX10(tcb->index)) {
2755 tx_ring->used--;
2756 tx_ring->send_head = tcb->next;
2757 if (tcb->next == NULL)
2758 tx_ring->send_tail = NULL;
2759
2760 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2761 free_send_packet(adapter, tcb);
2762 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2763
2764 /* Goto the next packet */
2765 tcb = tx_ring->send_head;
2766 }
2767 while (tcb &&
2768 !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2769 index > (tcb->index & ET_DMA10_MASK)) {
2770 tx_ring->used--;
2771 tx_ring->send_head = tcb->next;
2772 if (tcb->next == NULL)
2773 tx_ring->send_tail = NULL;
2774
2775 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2776 free_send_packet(adapter, tcb);
2777 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2778
2779 /* Goto the next packet */
2780 tcb = tx_ring->send_head;
2781 }
2782
2783 /* Wake up the queue when we hit a low-water mark */
2784 if (tx_ring->used <= NUM_TCB / 3)
2785 netif_wake_queue(adapter->netdev);
2786
2787 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2788 }
2789
et131x_get_regs_len(struct net_device * netdev)2790 static int et131x_get_regs_len(struct net_device *netdev)
2791 {
2792 #define ET131X_REGS_LEN 256
2793 return ET131X_REGS_LEN * sizeof(u32);
2794 }
2795
et131x_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * regs_data)2796 static void et131x_get_regs(struct net_device *netdev,
2797 struct ethtool_regs *regs, void *regs_data)
2798 {
2799 struct et131x_adapter *adapter = netdev_priv(netdev);
2800 struct address_map __iomem *aregs = adapter->regs;
2801 u32 *regs_buff = regs_data;
2802 u32 num = 0;
2803 u16 tmp;
2804
2805 memset(regs_data, 0, et131x_get_regs_len(netdev));
2806
2807 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2808 adapter->pdev->device;
2809
2810 /* PHY regs */
2811 et131x_mii_read(adapter, MII_BMCR, &tmp);
2812 regs_buff[num++] = tmp;
2813 et131x_mii_read(adapter, MII_BMSR, &tmp);
2814 regs_buff[num++] = tmp;
2815 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2816 regs_buff[num++] = tmp;
2817 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2818 regs_buff[num++] = tmp;
2819 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2820 regs_buff[num++] = tmp;
2821 et131x_mii_read(adapter, MII_LPA, &tmp);
2822 regs_buff[num++] = tmp;
2823 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2824 regs_buff[num++] = tmp;
2825 /* Autoneg next page transmit reg */
2826 et131x_mii_read(adapter, 0x07, &tmp);
2827 regs_buff[num++] = tmp;
2828 /* Link partner next page reg */
2829 et131x_mii_read(adapter, 0x08, &tmp);
2830 regs_buff[num++] = tmp;
2831 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2832 regs_buff[num++] = tmp;
2833 et131x_mii_read(adapter, MII_STAT1000, &tmp);
2834 regs_buff[num++] = tmp;
2835 et131x_mii_read(adapter, 0x0b, &tmp);
2836 regs_buff[num++] = tmp;
2837 et131x_mii_read(adapter, 0x0c, &tmp);
2838 regs_buff[num++] = tmp;
2839 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2840 regs_buff[num++] = tmp;
2841 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2842 regs_buff[num++] = tmp;
2843 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2844 regs_buff[num++] = tmp;
2845
2846 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2847 regs_buff[num++] = tmp;
2848 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2849 regs_buff[num++] = tmp;
2850 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2851 regs_buff[num++] = tmp;
2852 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2853 regs_buff[num++] = tmp;
2854 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2855 regs_buff[num++] = tmp;
2856
2857 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2858 regs_buff[num++] = tmp;
2859 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2860 regs_buff[num++] = tmp;
2861 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2862 regs_buff[num++] = tmp;
2863 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2864 regs_buff[num++] = tmp;
2865 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2866 regs_buff[num++] = tmp;
2867 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2868 regs_buff[num++] = tmp;
2869 et131x_mii_read(adapter, PHY_LED_1, &tmp);
2870 regs_buff[num++] = tmp;
2871 et131x_mii_read(adapter, PHY_LED_2, &tmp);
2872 regs_buff[num++] = tmp;
2873
2874 /* Global regs */
2875 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2876 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2877 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2878 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2879 regs_buff[num++] = readl(&aregs->global.pm_csr);
2880 regs_buff[num++] = adapter->stats.interrupt_status;
2881 regs_buff[num++] = readl(&aregs->global.int_mask);
2882 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2883 regs_buff[num++] = readl(&aregs->global.int_status_alias);
2884 regs_buff[num++] = readl(&aregs->global.sw_reset);
2885 regs_buff[num++] = readl(&aregs->global.slv_timer);
2886 regs_buff[num++] = readl(&aregs->global.msi_config);
2887 regs_buff[num++] = readl(&aregs->global.loopback);
2888 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2889
2890 /* TXDMA regs */
2891 regs_buff[num++] = readl(&aregs->txdma.csr);
2892 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2893 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2894 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2895 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2896 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2897 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2898 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2899 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2900 regs_buff[num++] = readl(&aregs->txdma.service_request);
2901 regs_buff[num++] = readl(&aregs->txdma.service_complete);
2902 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2903 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2904 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2905 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2906 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2907 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2908 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2909 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2910 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2911 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2912 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2913 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2914 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2915 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2916 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2917
2918 /* RXDMA regs */
2919 regs_buff[num++] = readl(&aregs->rxdma.csr);
2920 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2921 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2922 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2923 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2924 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2925 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2926 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2927 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2928 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2929 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2930 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2931 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2932 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2933 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2934 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2935 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2936 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2937 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2938 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2939 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2940 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2941 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2942 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2943 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2944 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2945 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2946 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2947 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2948 }
2949
et131x_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)2950 static void et131x_get_drvinfo(struct net_device *netdev,
2951 struct ethtool_drvinfo *info)
2952 {
2953 struct et131x_adapter *adapter = netdev_priv(netdev);
2954
2955 strscpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2956 strscpy(info->bus_info, pci_name(adapter->pdev),
2957 sizeof(info->bus_info));
2958 }
2959
2960 static const struct ethtool_ops et131x_ethtool_ops = {
2961 .get_drvinfo = et131x_get_drvinfo,
2962 .get_regs_len = et131x_get_regs_len,
2963 .get_regs = et131x_get_regs,
2964 .get_link = ethtool_op_get_link,
2965 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2966 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2967 };
2968
2969 /* et131x_hwaddr_init - set up the MAC Address */
et131x_hwaddr_init(struct et131x_adapter * adapter)2970 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2971 {
2972 /* If have our default mac from init and no mac address from
2973 * EEPROM then we need to generate the last octet and set it on the
2974 * device
2975 */
2976 if (is_zero_ether_addr(adapter->rom_addr)) {
2977 /* We need to randomly generate the last octet so we
2978 * decrease our chances of setting the mac address to
2979 * same as another one of our cards in the system
2980 */
2981 get_random_bytes(&adapter->addr[5], 1);
2982 /* We have the default value in the register we are
2983 * working with so we need to copy the current
2984 * address into the permanent address
2985 */
2986 ether_addr_copy(adapter->rom_addr, adapter->addr);
2987 } else {
2988 /* We do not have an override address, so set the
2989 * current address to the permanent address and add
2990 * it to the device
2991 */
2992 ether_addr_copy(adapter->addr, adapter->rom_addr);
2993 }
2994 }
2995
et131x_pci_init(struct et131x_adapter * adapter,struct pci_dev * pdev)2996 static int et131x_pci_init(struct et131x_adapter *adapter,
2997 struct pci_dev *pdev)
2998 {
2999 u16 max_payload;
3000 int i, rc;
3001
3002 rc = et131x_init_eeprom(adapter);
3003 if (rc < 0)
3004 goto out;
3005
3006 if (!pci_is_pcie(pdev)) {
3007 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3008 goto err_out;
3009 }
3010
3011 /* Program the Ack/Nak latency and replay timers */
3012 max_payload = pdev->pcie_mpss;
3013
3014 if (max_payload < 2) {
3015 static const u16 acknak[2] = { 0x76, 0xD0 };
3016 static const u16 replay[2] = { 0x1E0, 0x2ED };
3017
3018 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3019 acknak[max_payload])) {
3020 dev_err(&pdev->dev,
3021 "Could not write PCI config space for ACK/NAK\n");
3022 goto err_out;
3023 }
3024 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3025 replay[max_payload])) {
3026 dev_err(&pdev->dev,
3027 "Could not write PCI config space for Replay Timer\n");
3028 goto err_out;
3029 }
3030 }
3031
3032 /* l0s and l1 latency timers. We are using default values.
3033 * Representing 001 for L0s and 010 for L1
3034 */
3035 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3036 dev_err(&pdev->dev,
3037 "Could not write PCI config space for Latency Timers\n");
3038 goto err_out;
3039 }
3040
3041 /* Change the max read size to 2k */
3042 if (pcie_set_readrq(pdev, 2048)) {
3043 dev_err(&pdev->dev,
3044 "Couldn't change PCI config space for Max read size\n");
3045 goto err_out;
3046 }
3047
3048 /* Get MAC address from config space if an eeprom exists, otherwise
3049 * the MAC address there will not be valid
3050 */
3051 if (!adapter->has_eeprom) {
3052 et131x_hwaddr_init(adapter);
3053 return 0;
3054 }
3055
3056 for (i = 0; i < ETH_ALEN; i++) {
3057 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3058 adapter->rom_addr + i)) {
3059 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3060 goto err_out;
3061 }
3062 }
3063 ether_addr_copy(adapter->addr, adapter->rom_addr);
3064 out:
3065 return rc;
3066 err_out:
3067 rc = -EIO;
3068 goto out;
3069 }
3070
3071 /* et131x_error_timer_handler
3072 * @data: timer-specific variable; here a pointer to our adapter structure
3073 *
3074 * The routine called when the error timer expires, to track the number of
3075 * recurring errors.
3076 */
et131x_error_timer_handler(struct timer_list * t)3077 static void et131x_error_timer_handler(struct timer_list *t)
3078 {
3079 struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3080 struct phy_device *phydev = adapter->netdev->phydev;
3081
3082 if (et1310_in_phy_coma(adapter)) {
3083 /* Bring the device immediately out of coma, to
3084 * prevent it from sleeping indefinitely, this
3085 * mechanism could be improved!
3086 */
3087 et1310_disable_phy_coma(adapter);
3088 adapter->boot_coma = 20;
3089 } else {
3090 et1310_update_macstat_host_counters(adapter);
3091 }
3092
3093 if (!phydev->link && adapter->boot_coma < 11)
3094 adapter->boot_coma++;
3095
3096 if (adapter->boot_coma == 10) {
3097 if (!phydev->link) {
3098 if (!et1310_in_phy_coma(adapter)) {
3099 /* NOTE - This was originally a 'sync with
3100 * interrupt'. How to do that under Linux?
3101 */
3102 et131x_enable_interrupts(adapter);
3103 et1310_enable_phy_coma(adapter);
3104 }
3105 }
3106 }
3107
3108 /* This is a periodic timer, so reschedule */
3109 mod_timer(&adapter->error_timer, jiffies +
3110 msecs_to_jiffies(TX_ERROR_PERIOD));
3111 }
3112
et131x_adapter_memory_free(struct et131x_adapter * adapter)3113 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3114 {
3115 et131x_tx_dma_memory_free(adapter);
3116 et131x_rx_dma_memory_free(adapter);
3117 }
3118
et131x_adapter_memory_alloc(struct et131x_adapter * adapter)3119 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3120 {
3121 int status;
3122
3123 status = et131x_tx_dma_memory_alloc(adapter);
3124 if (status) {
3125 dev_err(&adapter->pdev->dev,
3126 "et131x_tx_dma_memory_alloc FAILED\n");
3127 et131x_tx_dma_memory_free(adapter);
3128 return status;
3129 }
3130
3131 status = et131x_rx_dma_memory_alloc(adapter);
3132 if (status) {
3133 dev_err(&adapter->pdev->dev,
3134 "et131x_rx_dma_memory_alloc FAILED\n");
3135 et131x_adapter_memory_free(adapter);
3136 return status;
3137 }
3138
3139 status = et131x_init_recv(adapter);
3140 if (status) {
3141 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3142 et131x_adapter_memory_free(adapter);
3143 }
3144 return status;
3145 }
3146
et131x_adjust_link(struct net_device * netdev)3147 static void et131x_adjust_link(struct net_device *netdev)
3148 {
3149 struct et131x_adapter *adapter = netdev_priv(netdev);
3150 struct phy_device *phydev = netdev->phydev;
3151
3152 if (!phydev)
3153 return;
3154 if (phydev->link == adapter->link)
3155 return;
3156
3157 /* Check to see if we are in coma mode and if
3158 * so, disable it because we will not be able
3159 * to read PHY values until we are out.
3160 */
3161 if (et1310_in_phy_coma(adapter))
3162 et1310_disable_phy_coma(adapter);
3163
3164 adapter->link = phydev->link;
3165 phy_print_status(phydev);
3166
3167 if (phydev->link) {
3168 adapter->boot_coma = 20;
3169 if (phydev->speed == SPEED_10) {
3170 u16 register18;
3171
3172 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3173 ®ister18);
3174 et131x_mii_write(adapter, phydev->mdio.addr,
3175 PHY_MPHY_CONTROL_REG,
3176 register18 | 0x4);
3177 et131x_mii_write(adapter, phydev->mdio.addr,
3178 PHY_INDEX_REG, register18 | 0x8402);
3179 et131x_mii_write(adapter, phydev->mdio.addr,
3180 PHY_DATA_REG, register18 | 511);
3181 et131x_mii_write(adapter, phydev->mdio.addr,
3182 PHY_MPHY_CONTROL_REG, register18);
3183 }
3184
3185 et1310_config_flow_control(adapter);
3186
3187 if (phydev->speed == SPEED_1000 &&
3188 adapter->registry_jumbo_packet > 2048) {
3189 u16 reg;
3190
3191 et131x_mii_read(adapter, PHY_CONFIG, ®);
3192 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3193 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3194 et131x_mii_write(adapter, phydev->mdio.addr,
3195 PHY_CONFIG, reg);
3196 }
3197
3198 et131x_set_rx_dma_timer(adapter);
3199 et1310_config_mac_regs2(adapter);
3200 } else {
3201 adapter->boot_coma = 0;
3202
3203 if (phydev->speed == SPEED_10) {
3204 u16 register18;
3205
3206 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3207 ®ister18);
3208 et131x_mii_write(adapter, phydev->mdio.addr,
3209 PHY_MPHY_CONTROL_REG,
3210 register18 | 0x4);
3211 et131x_mii_write(adapter, phydev->mdio.addr,
3212 PHY_INDEX_REG, register18 | 0x8402);
3213 et131x_mii_write(adapter, phydev->mdio.addr,
3214 PHY_DATA_REG, register18 | 511);
3215 et131x_mii_write(adapter, phydev->mdio.addr,
3216 PHY_MPHY_CONTROL_REG, register18);
3217 }
3218
3219 et131x_free_busy_send_packets(adapter);
3220 et131x_init_send(adapter);
3221
3222 /* Bring the device back to the state it was during
3223 * init prior to autonegotiation being complete. This
3224 * way, when we get the auto-neg complete interrupt,
3225 * we can complete init by calling config_mac_regs2.
3226 */
3227 et131x_soft_reset(adapter);
3228
3229 et131x_adapter_setup(adapter);
3230
3231 et131x_disable_txrx(netdev);
3232 et131x_enable_txrx(netdev);
3233 }
3234 }
3235
et131x_mii_probe(struct net_device * netdev)3236 static int et131x_mii_probe(struct net_device *netdev)
3237 {
3238 struct et131x_adapter *adapter = netdev_priv(netdev);
3239 struct phy_device *phydev = NULL;
3240
3241 phydev = phy_find_first(adapter->mii_bus);
3242 if (!phydev) {
3243 dev_err(&adapter->pdev->dev, "no PHY found\n");
3244 return -ENODEV;
3245 }
3246
3247 phydev = phy_connect(netdev, phydev_name(phydev),
3248 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3249
3250 if (IS_ERR(phydev)) {
3251 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3252 return PTR_ERR(phydev);
3253 }
3254
3255 phy_set_max_speed(phydev, SPEED_100);
3256
3257 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3258 phy_set_max_speed(phydev, SPEED_1000);
3259
3260 phydev->autoneg = AUTONEG_ENABLE;
3261
3262 phy_attached_info(phydev);
3263
3264 return 0;
3265 }
3266
et131x_adapter_init(struct net_device * netdev,struct pci_dev * pdev)3267 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3268 struct pci_dev *pdev)
3269 {
3270 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3271
3272 struct et131x_adapter *adapter;
3273
3274 adapter = netdev_priv(netdev);
3275 adapter->pdev = pci_dev_get(pdev);
3276 adapter->netdev = netdev;
3277
3278 spin_lock_init(&adapter->tcb_send_qlock);
3279 spin_lock_init(&adapter->tcb_ready_qlock);
3280 spin_lock_init(&adapter->rcv_lock);
3281
3282 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3283
3284 ether_addr_copy(adapter->addr, default_mac);
3285
3286 return adapter;
3287 }
3288
et131x_pci_remove(struct pci_dev * pdev)3289 static void et131x_pci_remove(struct pci_dev *pdev)
3290 {
3291 struct net_device *netdev = pci_get_drvdata(pdev);
3292 struct et131x_adapter *adapter = netdev_priv(netdev);
3293
3294 unregister_netdev(netdev);
3295 netif_napi_del(&adapter->napi);
3296 phy_disconnect(netdev->phydev);
3297 mdiobus_unregister(adapter->mii_bus);
3298 mdiobus_free(adapter->mii_bus);
3299
3300 et131x_adapter_memory_free(adapter);
3301 iounmap(adapter->regs);
3302 pci_dev_put(pdev);
3303
3304 free_netdev(netdev);
3305 pci_release_regions(pdev);
3306 pci_disable_device(pdev);
3307 }
3308
et131x_up(struct net_device * netdev)3309 static void et131x_up(struct net_device *netdev)
3310 {
3311 et131x_enable_txrx(netdev);
3312 phy_start(netdev->phydev);
3313 }
3314
et131x_down(struct net_device * netdev)3315 static void et131x_down(struct net_device *netdev)
3316 {
3317 /* Save the timestamp for the TX watchdog, prevent a timeout */
3318 netif_trans_update(netdev);
3319
3320 phy_stop(netdev->phydev);
3321 et131x_disable_txrx(netdev);
3322 }
3323
3324 #ifdef CONFIG_PM_SLEEP
et131x_suspend(struct device * dev)3325 static int et131x_suspend(struct device *dev)
3326 {
3327 struct pci_dev *pdev = to_pci_dev(dev);
3328 struct net_device *netdev = pci_get_drvdata(pdev);
3329
3330 if (netif_running(netdev)) {
3331 netif_device_detach(netdev);
3332 et131x_down(netdev);
3333 pci_save_state(pdev);
3334 }
3335
3336 return 0;
3337 }
3338
et131x_resume(struct device * dev)3339 static int et131x_resume(struct device *dev)
3340 {
3341 struct pci_dev *pdev = to_pci_dev(dev);
3342 struct net_device *netdev = pci_get_drvdata(pdev);
3343
3344 if (netif_running(netdev)) {
3345 pci_restore_state(pdev);
3346 et131x_up(netdev);
3347 netif_device_attach(netdev);
3348 }
3349
3350 return 0;
3351 }
3352 #endif
3353
3354 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3355
et131x_isr(int irq,void * dev_id)3356 static irqreturn_t et131x_isr(int irq, void *dev_id)
3357 {
3358 bool handled = true;
3359 bool enable_interrupts = true;
3360 struct net_device *netdev = dev_id;
3361 struct et131x_adapter *adapter = netdev_priv(netdev);
3362 struct address_map __iomem *iomem = adapter->regs;
3363 struct rx_ring *rx_ring = &adapter->rx_ring;
3364 struct tx_ring *tx_ring = &adapter->tx_ring;
3365 u32 status;
3366
3367 if (!netif_device_present(netdev)) {
3368 handled = false;
3369 enable_interrupts = false;
3370 goto out;
3371 }
3372
3373 et131x_disable_interrupts(adapter);
3374
3375 status = readl(&adapter->regs->global.int_status);
3376
3377 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3378 status &= ~INT_MASK_ENABLE;
3379 else
3380 status &= ~INT_MASK_ENABLE_NO_FLOW;
3381
3382 /* Make sure this is our interrupt */
3383 if (!status) {
3384 handled = false;
3385 et131x_enable_interrupts(adapter);
3386 goto out;
3387 }
3388
3389 /* This is our interrupt, so process accordingly */
3390 if (status & ET_INTR_WATCHDOG) {
3391 struct tcb *tcb = tx_ring->send_head;
3392
3393 if (tcb)
3394 if (++tcb->stale > 1)
3395 status |= ET_INTR_TXDMA_ISR;
3396
3397 if (rx_ring->unfinished_receives)
3398 status |= ET_INTR_RXDMA_XFR_DONE;
3399 else if (tcb == NULL)
3400 writel(0, &adapter->regs->global.watchdog_timer);
3401
3402 status &= ~ET_INTR_WATCHDOG;
3403 }
3404
3405 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3406 enable_interrupts = false;
3407 napi_schedule(&adapter->napi);
3408 }
3409
3410 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3411
3412 if (!status)
3413 goto out;
3414
3415 if (status & ET_INTR_TXDMA_ERR) {
3416 /* Following read also clears the register (COR) */
3417 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3418
3419 dev_warn(&adapter->pdev->dev,
3420 "TXDMA_ERR interrupt, error = %d\n",
3421 txdma_err);
3422 }
3423
3424 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3425 /* This indicates the number of unused buffers in RXDMA free
3426 * buffer ring 0 is <= the limit you programmed. Free buffer
3427 * resources need to be returned. Free buffers are consumed as
3428 * packets are passed from the network to the host. The host
3429 * becomes aware of the packets from the contents of the packet
3430 * status ring. This ring is queried when the packet done
3431 * interrupt occurs. Packets are then passed to the OS. When
3432 * the OS is done with the packets the resources can be
3433 * returned to the ET1310 for re-use. This interrupt is one
3434 * method of returning resources.
3435 */
3436
3437 /* If the user has flow control on, then we will
3438 * send a pause packet, otherwise just exit
3439 */
3440 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3441 /* Tell the device to send a pause packet via the back
3442 * pressure register (bp req and bp xon/xoff)
3443 */
3444 if (!et1310_in_phy_coma(adapter))
3445 writel(3, &iomem->txmac.bp_ctrl);
3446 }
3447 }
3448
3449 /* Handle Packet Status Ring Low Interrupt */
3450 if (status & ET_INTR_RXDMA_STAT_LOW) {
3451 /* Same idea as with the two Free Buffer Rings. Packets going
3452 * from the network to the host each consume a free buffer
3453 * resource and a packet status resource. These resources are
3454 * passed to the OS. When the OS is done with the resources,
3455 * they need to be returned to the ET1310. This is one method
3456 * of returning the resources.
3457 */
3458 }
3459
3460 if (status & ET_INTR_RXDMA_ERR) {
3461 /* The rxdma_error interrupt is sent when a time-out on a
3462 * request issued by the JAGCore has occurred or a completion is
3463 * returned with an un-successful status. In both cases the
3464 * request is considered complete. The JAGCore will
3465 * automatically re-try the request in question. Normally
3466 * information on events like these are sent to the host using
3467 * the "Advanced Error Reporting" capability. This interrupt is
3468 * another way of getting similar information. The only thing
3469 * required is to clear the interrupt by reading the ISR in the
3470 * global resources. The JAGCore will do a re-try on the
3471 * request. Normally you should never see this interrupt. If
3472 * you start to see this interrupt occurring frequently then
3473 * something bad has occurred. A reset might be the thing to do.
3474 */
3475 /* TRAP();*/
3476
3477 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3478 readl(&iomem->txmac.tx_test));
3479 }
3480
3481 /* Handle the Wake on LAN Event */
3482 if (status & ET_INTR_WOL) {
3483 /* This is a secondary interrupt for wake on LAN. The driver
3484 * should never see this, if it does, something serious is
3485 * wrong.
3486 */
3487 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3488 }
3489
3490 if (status & ET_INTR_TXMAC) {
3491 u32 err = readl(&iomem->txmac.err);
3492
3493 /* When any of the errors occur and TXMAC generates an
3494 * interrupt to report these errors, it usually means that
3495 * TXMAC has detected an error in the data stream retrieved
3496 * from the on-chip Tx Q. All of these errors are catastrophic
3497 * and TXMAC won't be able to recover data when these errors
3498 * occur. In a nutshell, the whole Tx path will have to be reset
3499 * and re-configured afterwards.
3500 */
3501 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3502 err);
3503
3504 /* If we are debugging, we want to see this error, otherwise we
3505 * just want the device to be reset and continue
3506 */
3507 }
3508
3509 if (status & ET_INTR_RXMAC) {
3510 /* These interrupts are catastrophic to the device, what we need
3511 * to do is disable the interrupts and set the flag to cause us
3512 * to reset so we can solve this issue.
3513 */
3514 dev_warn(&adapter->pdev->dev,
3515 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
3516 readl(&iomem->rxmac.err_reg));
3517
3518 dev_warn(&adapter->pdev->dev,
3519 "Enable 0x%08x, Diag 0x%08x\n",
3520 readl(&iomem->rxmac.ctrl),
3521 readl(&iomem->rxmac.rxq_diag));
3522
3523 /* If we are debugging, we want to see this error, otherwise we
3524 * just want the device to be reset and continue
3525 */
3526 }
3527
3528 if (status & ET_INTR_MAC_STAT) {
3529 /* This means at least one of the un-masked counters in the
3530 * MAC_STAT block has rolled over. Use this to maintain the top,
3531 * software managed bits of the counter(s).
3532 */
3533 et1310_handle_macstat_interrupt(adapter);
3534 }
3535
3536 if (status & ET_INTR_SLV_TIMEOUT) {
3537 /* This means a timeout has occurred on a read or write request
3538 * to one of the JAGCore registers. The Global Resources block
3539 * has terminated the request and on a read request, returned a
3540 * "fake" value. The most likely reasons are: Bad Address or the
3541 * addressed module is in a power-down state and can't respond.
3542 */
3543 }
3544
3545 out:
3546 if (enable_interrupts)
3547 et131x_enable_interrupts(adapter);
3548
3549 return IRQ_RETVAL(handled);
3550 }
3551
et131x_poll(struct napi_struct * napi,int budget)3552 static int et131x_poll(struct napi_struct *napi, int budget)
3553 {
3554 struct et131x_adapter *adapter =
3555 container_of(napi, struct et131x_adapter, napi);
3556 int work_done = et131x_handle_recv_pkts(adapter, budget);
3557
3558 et131x_handle_send_pkts(adapter);
3559
3560 if (work_done < budget) {
3561 napi_complete_done(&adapter->napi, work_done);
3562 et131x_enable_interrupts(adapter);
3563 }
3564
3565 return work_done;
3566 }
3567
3568 /* et131x_stats - Return the current device statistics */
et131x_stats(struct net_device * netdev)3569 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3570 {
3571 struct et131x_adapter *adapter = netdev_priv(netdev);
3572 struct net_device_stats *stats = &adapter->netdev->stats;
3573 struct ce_stats *devstat = &adapter->stats;
3574
3575 stats->rx_errors = devstat->rx_length_errs +
3576 devstat->rx_align_errs +
3577 devstat->rx_crc_errs +
3578 devstat->rx_code_violations +
3579 devstat->rx_other_errs;
3580 stats->tx_errors = devstat->tx_max_pkt_errs;
3581 stats->multicast = devstat->multicast_pkts_rcvd;
3582 stats->collisions = devstat->tx_collisions;
3583
3584 stats->rx_length_errors = devstat->rx_length_errs;
3585 stats->rx_over_errors = devstat->rx_overflows;
3586 stats->rx_crc_errors = devstat->rx_crc_errs;
3587 stats->rx_dropped = devstat->rcvd_pkts_dropped;
3588
3589 /* NOTE: Not used, can't find analogous statistics */
3590 /* stats->rx_frame_errors = devstat->; */
3591 /* stats->rx_fifo_errors = devstat->; */
3592 /* stats->rx_missed_errors = devstat->; */
3593
3594 /* stats->tx_aborted_errors = devstat->; */
3595 /* stats->tx_carrier_errors = devstat->; */
3596 /* stats->tx_fifo_errors = devstat->; */
3597 /* stats->tx_heartbeat_errors = devstat->; */
3598 /* stats->tx_window_errors = devstat->; */
3599 return stats;
3600 }
3601
et131x_open(struct net_device * netdev)3602 static int et131x_open(struct net_device *netdev)
3603 {
3604 struct et131x_adapter *adapter = netdev_priv(netdev);
3605 struct pci_dev *pdev = adapter->pdev;
3606 unsigned int irq = pdev->irq;
3607 int result;
3608
3609 /* Start the timer to track NIC errors */
3610 timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3611 adapter->error_timer.expires = jiffies +
3612 msecs_to_jiffies(TX_ERROR_PERIOD);
3613 add_timer(&adapter->error_timer);
3614
3615 result = request_irq(irq, et131x_isr,
3616 IRQF_SHARED, netdev->name, netdev);
3617 if (result) {
3618 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3619 return result;
3620 }
3621
3622 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3623
3624 napi_enable(&adapter->napi);
3625
3626 et131x_up(netdev);
3627
3628 return result;
3629 }
3630
et131x_close(struct net_device * netdev)3631 static int et131x_close(struct net_device *netdev)
3632 {
3633 struct et131x_adapter *adapter = netdev_priv(netdev);
3634
3635 et131x_down(netdev);
3636 napi_disable(&adapter->napi);
3637
3638 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3639 free_irq(adapter->pdev->irq, netdev);
3640
3641 /* Stop the error timer */
3642 return del_timer_sync(&adapter->error_timer);
3643 }
3644
3645 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
et131x_set_packet_filter(struct et131x_adapter * adapter)3646 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3647 {
3648 int filter = adapter->packet_filter;
3649 u32 ctrl;
3650 u32 pf_ctrl;
3651
3652 ctrl = readl(&adapter->regs->rxmac.ctrl);
3653 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3654
3655 /* Default to disabled packet filtering */
3656 ctrl |= 0x04;
3657
3658 /* Set us to be in promiscuous mode so we receive everything, this
3659 * is also true when we get a packet filter of 0
3660 */
3661 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3662 pf_ctrl &= ~7; /* Clear filter bits */
3663 else {
3664 /* Set us up with Multicast packet filtering. Three cases are
3665 * possible - (1) we have a multi-cast list, (2) we receive ALL
3666 * multicast entries or (3) we receive none.
3667 */
3668 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3669 pf_ctrl &= ~2; /* Multicast filter bit */
3670 else {
3671 et1310_setup_device_for_multicast(adapter);
3672 pf_ctrl |= 2;
3673 ctrl &= ~0x04;
3674 }
3675
3676 /* Set us up with Unicast packet filtering */
3677 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3678 et1310_setup_device_for_unicast(adapter);
3679 pf_ctrl |= 4;
3680 ctrl &= ~0x04;
3681 }
3682
3683 /* Set us up with Broadcast packet filtering */
3684 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3685 pf_ctrl |= 1; /* Broadcast filter bit */
3686 ctrl &= ~0x04;
3687 } else {
3688 pf_ctrl &= ~1;
3689 }
3690
3691 /* Setup the receive mac configuration registers - Packet
3692 * Filter control + the enable / disable for packet filter
3693 * in the control reg.
3694 */
3695 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3696 writel(ctrl, &adapter->regs->rxmac.ctrl);
3697 }
3698 return 0;
3699 }
3700
et131x_multicast(struct net_device * netdev)3701 static void et131x_multicast(struct net_device *netdev)
3702 {
3703 struct et131x_adapter *adapter = netdev_priv(netdev);
3704 int packet_filter;
3705 struct netdev_hw_addr *ha;
3706 int i;
3707
3708 /* Before we modify the platform-independent filter flags, store them
3709 * locally. This allows us to determine if anything's changed and if
3710 * we even need to bother the hardware
3711 */
3712 packet_filter = adapter->packet_filter;
3713
3714 /* Clear the 'multicast' flag locally; because we only have a single
3715 * flag to check multicast, and multiple multicast addresses can be
3716 * set, this is the easiest way to determine if more than one
3717 * multicast address is being set.
3718 */
3719 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3720
3721 /* Check the net_device flags and set the device independent flags
3722 * accordingly
3723 */
3724 if (netdev->flags & IFF_PROMISC)
3725 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3726 else
3727 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3728
3729 if ((netdev->flags & IFF_ALLMULTI) ||
3730 (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3731 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3732
3733 if (netdev_mc_count(netdev) < 1) {
3734 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3735 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3736 } else {
3737 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3738 }
3739
3740 /* Set values in the private adapter struct */
3741 i = 0;
3742 netdev_for_each_mc_addr(ha, netdev) {
3743 if (i == NIC_MAX_MCAST_LIST)
3744 break;
3745 ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3746 }
3747 adapter->multicast_addr_count = i;
3748
3749 /* Are the new flags different from the previous ones? If not, then no
3750 * action is required
3751 *
3752 * NOTE - This block will always update the multicast_list with the
3753 * hardware, even if the addresses aren't the same.
3754 */
3755 if (packet_filter != adapter->packet_filter)
3756 et131x_set_packet_filter(adapter);
3757 }
3758
et131x_tx(struct sk_buff * skb,struct net_device * netdev)3759 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3760 {
3761 struct et131x_adapter *adapter = netdev_priv(netdev);
3762 struct tx_ring *tx_ring = &adapter->tx_ring;
3763
3764 /* This driver does not support TSO, it is very unlikely
3765 * this condition is true.
3766 */
3767 if (unlikely(skb_shinfo(skb)->nr_frags > MAX_TX_DESC_PER_PKT - 2)) {
3768 if (skb_linearize(skb))
3769 goto drop_err;
3770 }
3771 /* stop the queue if it's getting full */
3772 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3773 netif_stop_queue(netdev);
3774
3775 /* Save the timestamp for the TX timeout watchdog */
3776 netif_trans_update(netdev);
3777
3778 /* TCB is not available */
3779 if (tx_ring->used >= NUM_TCB)
3780 goto drop_err;
3781
3782 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3783 !netif_carrier_ok(netdev))
3784 goto drop_err;
3785
3786 if (send_packet(skb, adapter))
3787 goto drop_err;
3788
3789 return NETDEV_TX_OK;
3790
3791 drop_err:
3792 dev_kfree_skb_any(skb);
3793 adapter->netdev->stats.tx_dropped++;
3794 return NETDEV_TX_OK;
3795 }
3796
3797 /* et131x_tx_timeout - Timeout handler
3798 *
3799 * The handler called when a Tx request times out. The timeout period is
3800 * specified by the 'tx_timeo" element in the net_device structure (see
3801 * et131x_alloc_device() to see how this value is set).
3802 */
et131x_tx_timeout(struct net_device * netdev,unsigned int txqueue)3803 static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3804 {
3805 struct et131x_adapter *adapter = netdev_priv(netdev);
3806 struct tx_ring *tx_ring = &adapter->tx_ring;
3807 struct tcb *tcb;
3808 unsigned long flags;
3809
3810 /* If the device is closed, ignore the timeout */
3811 if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3812 return;
3813
3814 /* Any nonrecoverable hardware error?
3815 * Checks adapter->flags for any failure in phy reading
3816 */
3817 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3818 return;
3819
3820 /* Hardware failure? */
3821 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3822 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3823 return;
3824 }
3825
3826 /* Is send stuck? */
3827 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3828 tcb = tx_ring->send_head;
3829 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3830
3831 if (tcb) {
3832 tcb->count++;
3833
3834 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3835 dev_warn(&adapter->pdev->dev,
3836 "Send stuck - reset. tcb->WrIndex %x\n",
3837 tcb->index);
3838
3839 adapter->netdev->stats.tx_errors++;
3840
3841 /* perform reset of tx/rx */
3842 et131x_disable_txrx(netdev);
3843 et131x_enable_txrx(netdev);
3844 }
3845 }
3846 }
3847
et131x_change_mtu(struct net_device * netdev,int new_mtu)3848 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3849 {
3850 int result = 0;
3851 struct et131x_adapter *adapter = netdev_priv(netdev);
3852
3853 et131x_disable_txrx(netdev);
3854
3855 WRITE_ONCE(netdev->mtu, new_mtu);
3856
3857 et131x_adapter_memory_free(adapter);
3858
3859 /* Set the config parameter for Jumbo Packet support */
3860 adapter->registry_jumbo_packet = new_mtu + 14;
3861 et131x_soft_reset(adapter);
3862
3863 result = et131x_adapter_memory_alloc(adapter);
3864 if (result != 0) {
3865 dev_warn(&adapter->pdev->dev,
3866 "Change MTU failed; couldn't re-alloc DMA memory\n");
3867 return result;
3868 }
3869
3870 et131x_init_send(adapter);
3871 et131x_hwaddr_init(adapter);
3872 eth_hw_addr_set(netdev, adapter->addr);
3873
3874 /* Init the device with the new settings */
3875 et131x_adapter_setup(adapter);
3876 et131x_enable_txrx(netdev);
3877
3878 return result;
3879 }
3880
3881 static const struct net_device_ops et131x_netdev_ops = {
3882 .ndo_open = et131x_open,
3883 .ndo_stop = et131x_close,
3884 .ndo_start_xmit = et131x_tx,
3885 .ndo_set_rx_mode = et131x_multicast,
3886 .ndo_tx_timeout = et131x_tx_timeout,
3887 .ndo_change_mtu = et131x_change_mtu,
3888 .ndo_set_mac_address = eth_mac_addr,
3889 .ndo_validate_addr = eth_validate_addr,
3890 .ndo_get_stats = et131x_stats,
3891 .ndo_eth_ioctl = phy_do_ioctl,
3892 };
3893
et131x_pci_setup(struct pci_dev * pdev,const struct pci_device_id * ent)3894 static int et131x_pci_setup(struct pci_dev *pdev,
3895 const struct pci_device_id *ent)
3896 {
3897 struct net_device *netdev;
3898 struct et131x_adapter *adapter;
3899 int rc;
3900
3901 rc = pci_enable_device(pdev);
3902 if (rc < 0) {
3903 dev_err(&pdev->dev, "pci_enable_device() failed\n");
3904 goto out;
3905 }
3906
3907 /* Perform some basic PCI checks */
3908 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3909 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3910 rc = -ENODEV;
3911 goto err_disable;
3912 }
3913
3914 rc = pci_request_regions(pdev, DRIVER_NAME);
3915 if (rc < 0) {
3916 dev_err(&pdev->dev, "Can't get PCI resources\n");
3917 goto err_disable;
3918 }
3919
3920 pci_set_master(pdev);
3921
3922 /* Check the DMA addressing support of this device */
3923 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3924 if (rc) {
3925 dev_err(&pdev->dev, "No usable DMA addressing method\n");
3926 goto err_release_res;
3927 }
3928
3929 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3930 if (!netdev) {
3931 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3932 rc = -ENOMEM;
3933 goto err_release_res;
3934 }
3935
3936 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3937 netdev->netdev_ops = &et131x_netdev_ops;
3938 netdev->min_mtu = ET131X_MIN_MTU;
3939 netdev->max_mtu = ET131X_MAX_MTU;
3940
3941 SET_NETDEV_DEV(netdev, &pdev->dev);
3942 netdev->ethtool_ops = &et131x_ethtool_ops;
3943
3944 adapter = et131x_adapter_init(netdev, pdev);
3945
3946 rc = et131x_pci_init(adapter, pdev);
3947 if (rc < 0)
3948 goto err_free_dev;
3949
3950 /* Map the bus-relative registers to system virtual memory */
3951 adapter->regs = pci_ioremap_bar(pdev, 0);
3952 if (!adapter->regs) {
3953 dev_err(&pdev->dev, "Cannot map device registers\n");
3954 rc = -ENOMEM;
3955 goto err_free_dev;
3956 }
3957
3958 /* If Phy COMA mode was enabled when we went down, disable it here. */
3959 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
3960
3961 et131x_soft_reset(adapter);
3962 et131x_disable_interrupts(adapter);
3963
3964 rc = et131x_adapter_memory_alloc(adapter);
3965 if (rc < 0) {
3966 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3967 goto err_iounmap;
3968 }
3969
3970 et131x_init_send(adapter);
3971
3972 netif_napi_add(netdev, &adapter->napi, et131x_poll);
3973
3974 eth_hw_addr_set(netdev, adapter->addr);
3975
3976 rc = -ENOMEM;
3977
3978 adapter->mii_bus = mdiobus_alloc();
3979 if (!adapter->mii_bus) {
3980 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3981 goto err_mem_free;
3982 }
3983
3984 adapter->mii_bus->name = "et131x_eth_mii";
3985 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x", pci_dev_id(adapter->pdev));
3986 adapter->mii_bus->priv = netdev;
3987 adapter->mii_bus->read = et131x_mdio_read;
3988 adapter->mii_bus->write = et131x_mdio_write;
3989
3990 rc = mdiobus_register(adapter->mii_bus);
3991 if (rc < 0) {
3992 dev_err(&pdev->dev, "failed to register MII bus\n");
3993 goto err_mdio_free;
3994 }
3995
3996 rc = et131x_mii_probe(netdev);
3997 if (rc < 0) {
3998 dev_err(&pdev->dev, "failed to probe MII bus\n");
3999 goto err_mdio_unregister;
4000 }
4001
4002 et131x_adapter_setup(adapter);
4003
4004 /* Init variable for counting how long we do not have link status */
4005 adapter->boot_coma = 0;
4006 et1310_disable_phy_coma(adapter);
4007
4008 /* We can enable interrupts now
4009 *
4010 * NOTE - Because registration of interrupt handler is done in the
4011 * device's open(), defer enabling device interrupts to that
4012 * point
4013 */
4014
4015 rc = register_netdev(netdev);
4016 if (rc < 0) {
4017 dev_err(&pdev->dev, "register_netdev() failed\n");
4018 goto err_phy_disconnect;
4019 }
4020
4021 /* Register the net_device struct with the PCI subsystem. Save a copy
4022 * of the PCI config space for this device now that the device has
4023 * been initialized, just in case it needs to be quickly restored.
4024 */
4025 pci_set_drvdata(pdev, netdev);
4026 out:
4027 return rc;
4028
4029 err_phy_disconnect:
4030 phy_disconnect(netdev->phydev);
4031 err_mdio_unregister:
4032 mdiobus_unregister(adapter->mii_bus);
4033 err_mdio_free:
4034 mdiobus_free(adapter->mii_bus);
4035 err_mem_free:
4036 et131x_adapter_memory_free(adapter);
4037 err_iounmap:
4038 iounmap(adapter->regs);
4039 err_free_dev:
4040 pci_dev_put(pdev);
4041 free_netdev(netdev);
4042 err_release_res:
4043 pci_release_regions(pdev);
4044 err_disable:
4045 pci_disable_device(pdev);
4046 goto out;
4047 }
4048
4049 static const struct pci_device_id et131x_pci_table[] = {
4050 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4051 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4052 { 0,}
4053 };
4054 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4055
4056 static struct pci_driver et131x_driver = {
4057 .name = DRIVER_NAME,
4058 .id_table = et131x_pci_table,
4059 .probe = et131x_pci_setup,
4060 .remove = et131x_pci_remove,
4061 .driver.pm = &et131x_pm_ops,
4062 };
4063
4064 module_pci_driver(et131x_driver);
4065