1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */ 2 /* 3 Written 1998-2000 by Donald Becker. 4 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please 6 send all bug reports to me, and not to Donald Becker, as this code 7 has been heavily modified from Donald's original version. 8 9 This software may be used and distributed according to the terms of 10 the GNU General Public License (GPL), incorporated herein by reference. 11 Drivers based on or derived from this code fall under the GPL and must 12 retain the authorship, copyright and license notice. This file is not 13 a complete program and may only be used when the entire operating 14 system is licensed under the GPL. 15 16 The information below comes from Donald Becker's original driver: 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 Support and updates available at 24 http://www.scyld.com/network/starfire.html 25 [link no longer provides useful info -jgarzik] 26 27 */ 28 29 #define DRV_NAME "starfire" 30 #define DRV_VERSION "2.1" 31 #define DRV_RELDATE "July 6, 2008" 32 33 #include <linux/interrupt.h> 34 #include <linux/module.h> 35 #include <linux/kernel.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/init.h> 40 #include <linux/delay.h> 41 #include <linux/crc32.h> 42 #include <linux/ethtool.h> 43 #include <linux/mii.h> 44 #include <linux/if_vlan.h> 45 #include <linux/mm.h> 46 #include <linux/firmware.h> 47 #include <asm/processor.h> /* Processor type for cache alignment. */ 48 #include <asm/uaccess.h> 49 #include <asm/io.h> 50 51 /* 52 * The current frame processor firmware fails to checksum a fragment 53 * of length 1. If and when this is fixed, the #define below can be removed. 54 */ 55 #define HAS_BROKEN_FIRMWARE 56 57 /* 58 * If using the broken firmware, data must be padded to the next 32-bit boundary. 59 */ 60 #ifdef HAS_BROKEN_FIRMWARE 61 #define PADDING_MASK 3 62 #endif 63 64 /* 65 * Define this if using the driver with the zero-copy patch 66 */ 67 #define ZEROCOPY 68 69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 70 #define VLAN_SUPPORT 71 #endif 72 73 /* The user-configurable values. 74 These may be modified when a driver module is loaded.*/ 75 76 /* Used for tuning interrupt latency vs. overhead. */ 77 static int intr_latency; 78 static int small_frames; 79 80 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 81 static int max_interrupt_work = 20; 82 static int mtu; 83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 84 The Starfire has a 512 element hash table based on the Ethernet CRC. */ 85 static const int multicast_filter_limit = 512; 86 /* Whether to do TCP/UDP checksums in hardware */ 87 static int enable_hw_cksum = 1; 88 89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 90 /* 91 * Set the copy breakpoint for the copy-only-tiny-frames scheme. 92 * Setting to > 1518 effectively disables this feature. 93 * 94 * NOTE: 95 * The ia64 doesn't allow for unaligned loads even of integers being 96 * misaligned on a 2 byte boundary. Thus always force copying of 97 * packets as the starfire doesn't allow for misaligned DMAs ;-( 98 * 23/10/2000 - Jes 99 * 100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64, 101 * at least, having unaligned frames leads to a rather serious performance 102 * penalty. -Ion 103 */ 104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) 105 static int rx_copybreak = PKT_BUF_SZ; 106 #else 107 static int rx_copybreak /* = 0 */; 108 #endif 109 110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */ 111 #ifdef __sparc__ 112 #define DMA_BURST_SIZE 64 113 #else 114 #define DMA_BURST_SIZE 128 115 #endif 116 117 /* Used to pass the media type, etc. 118 Both 'options[]' and 'full_duplex[]' exist for driver interoperability. 119 The media type is usually passed in 'options[]'. 120 These variables are deprecated, use ethtool instead. -Ion 121 */ 122 #define MAX_UNITS 8 /* More are supported, limit only on options */ 123 static int options[MAX_UNITS] = {0, }; 124 static int full_duplex[MAX_UNITS] = {0, }; 125 126 /* Operational parameters that are set at compile time. */ 127 128 /* The "native" ring sizes are either 256 or 2048. 129 However in some modes a descriptor may be marked to wrap the ring earlier. 130 */ 131 #define RX_RING_SIZE 256 132 #define TX_RING_SIZE 32 133 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */ 134 #define DONE_Q_SIZE 1024 135 /* All queues must be aligned on a 256-byte boundary */ 136 #define QUEUE_ALIGN 256 137 138 #if RX_RING_SIZE > 256 139 #define RX_Q_ENTRIES Rx2048QEntries 140 #else 141 #define RX_Q_ENTRIES Rx256QEntries 142 #endif 143 144 /* Operational parameters that usually are not changed. */ 145 /* Time in jiffies before concluding the transmitter is hung. */ 146 #define TX_TIMEOUT (2 * HZ) 147 148 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 149 /* 64-bit dma_addr_t */ 150 #define ADDR_64BITS /* This chip uses 64 bit addresses. */ 151 #define netdrv_addr_t __le64 152 #define cpu_to_dma(x) cpu_to_le64(x) 153 #define dma_to_cpu(x) le64_to_cpu(x) 154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit 155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit 156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit 157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit 158 #define RX_DESC_ADDR_SIZE RxDescAddr64bit 159 #else /* 32-bit dma_addr_t */ 160 #define netdrv_addr_t __le32 161 #define cpu_to_dma(x) cpu_to_le32(x) 162 #define dma_to_cpu(x) le32_to_cpu(x) 163 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit 164 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit 165 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit 166 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit 167 #define RX_DESC_ADDR_SIZE RxDescAddr32bit 168 #endif 169 170 #define skb_first_frag_len(skb) skb_headlen(skb) 171 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1) 172 173 /* Firmware names */ 174 #define FIRMWARE_RX "adaptec/starfire_rx.bin" 175 #define FIRMWARE_TX "adaptec/starfire_tx.bin" 176 177 /* These identify the driver base version and may not be removed. */ 178 static const char version[] __devinitconst = 179 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n" 180 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n"; 181 182 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 183 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver"); 184 MODULE_LICENSE("GPL"); 185 MODULE_VERSION(DRV_VERSION); 186 MODULE_FIRMWARE(FIRMWARE_RX); 187 MODULE_FIRMWARE(FIRMWARE_TX); 188 189 module_param(max_interrupt_work, int, 0); 190 module_param(mtu, int, 0); 191 module_param(debug, int, 0); 192 module_param(rx_copybreak, int, 0); 193 module_param(intr_latency, int, 0); 194 module_param(small_frames, int, 0); 195 module_param_array(options, int, NULL, 0); 196 module_param_array(full_duplex, int, NULL, 0); 197 module_param(enable_hw_cksum, int, 0); 198 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt"); 199 MODULE_PARM_DESC(mtu, "MTU (all boards)"); 200 MODULE_PARM_DESC(debug, "Debug level (0-6)"); 201 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 202 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds"); 203 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)"); 204 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex"); 205 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)"); 206 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)"); 207 208 /* 209 Theory of Operation 210 211 I. Board Compatibility 212 213 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter. 214 215 II. Board-specific settings 216 217 III. Driver operation 218 219 IIIa. Ring buffers 220 221 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The 222 ring sizes are set fixed by the hardware, but may optionally be wrapped 223 earlier by the END bit in the descriptor. 224 This driver uses that hardware queue size for the Rx ring, where a large 225 number of entries has no ill effect beyond increases the potential backlog. 226 The Tx ring is wrapped with the END bit, since a large hardware Tx queue 227 disables the queue layer priority ordering and we have no mechanism to 228 utilize the hardware two-level priority queue. When modifying the 229 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning 230 levels. 231 232 IIIb/c. Transmit/Receive Structure 233 234 See the Adaptec manual for the many possible structures, and options for 235 each structure. There are far too many to document all of them here. 236 237 For transmit this driver uses type 0/1 transmit descriptors (depending 238 on the 32/64 bitness of the architecture), and relies on automatic 239 minimum-length padding. It does not use the completion queue 240 consumer index, but instead checks for non-zero status entries. 241 242 For receive this driver uses type 2/3 receive descriptors. The driver 243 allocates full frame size skbuffs for the Rx ring buffers, so all frames 244 should fit in a single descriptor. The driver does not use the completion 245 queue consumer index, but instead checks for non-zero status entries. 246 247 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff 248 is allocated and the frame is copied to the new skbuff. When the incoming 249 frame is larger, the skbuff is passed directly up the protocol stack. 250 Buffers consumed this way are replaced by newly allocated skbuffs in a later 251 phase of receive. 252 253 A notable aspect of operation is that unaligned buffers are not permitted by 254 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame 255 isn't longword aligned, which may cause problems on some machine 256 e.g. Alphas and IA64. For these architectures, the driver is forced to copy 257 the frame into a new skbuff unconditionally. Copied frames are put into the 258 skbuff at an offset of "+2", thus 16-byte aligning the IP header. 259 260 IIId. Synchronization 261 262 The driver runs as two independent, single-threaded flows of control. One 263 is the send-packet routine, which enforces single-threaded use by the 264 dev->tbusy flag. The other thread is the interrupt handler, which is single 265 threaded by the hardware and interrupt handling software. 266 267 The send packet thread has partial control over the Tx ring and the netif_queue 268 status. If the number of free Tx slots in the ring falls below a certain number 269 (currently hardcoded to 4), it signals the upper layer to stop the queue. 270 271 The interrupt handler has exclusive control over the Rx ring and records stats 272 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 273 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the 274 number of free Tx slow is above the threshold, it signals the upper layer to 275 restart the queue. 276 277 IV. Notes 278 279 IVb. References 280 281 The Adaptec Starfire manuals, available only from Adaptec. 282 http://www.scyld.com/expert/100mbps.html 283 http://www.scyld.com/expert/NWay.html 284 285 IVc. Errata 286 287 - StopOnPerr is broken, don't enable 288 - Hardware ethernet padding exposes random data, perform software padding 289 instead (unverified -- works correctly for all the hardware I have) 290 291 */ 292 293 294 295 enum chip_capability_flags {CanHaveMII=1, }; 296 297 enum chipset { 298 CH_6915 = 0, 299 }; 300 301 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = { 302 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 }, 303 { 0, } 304 }; 305 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl); 306 307 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */ 308 static const struct chip_info { 309 const char *name; 310 int drv_flags; 311 } netdrv_tbl[] __devinitdata = { 312 { "Adaptec Starfire 6915", CanHaveMII }, 313 }; 314 315 316 /* Offsets to the device registers. 317 Unlike software-only systems, device drivers interact with complex hardware. 318 It's not useful to define symbolic names for every register bit in the 319 device. The name can only partially document the semantics and make 320 the driver longer and more difficult to read. 321 In general, only the important configuration values or bits changed 322 multiple times should be defined symbolically. 323 */ 324 enum register_offsets { 325 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074, 326 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088, 327 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000, 328 GPIOCtrl=0x5008C, TxDescCtrl=0x50090, 329 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */ 330 TxRingHiAddr=0x5009C, /* 64 bit address extension. */ 331 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4, 332 TxThreshold=0x500B0, 333 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8, 334 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0, 335 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0, 336 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0, 337 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4, 338 TxMode=0x55000, VlanType=0x55064, 339 PerfFilterTable=0x56000, HashTable=0x56100, 340 TxGfpMem=0x58000, RxGfpMem=0x5a000, 341 }; 342 343 /* 344 * Bits in the interrupt status/mask registers. 345 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register 346 * enables all the interrupt sources that are or'ed into those status bits. 347 */ 348 enum intr_status_bits { 349 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000, 350 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000, 351 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000, 352 IntrTxComplQLow=0x200000, IntrPCI=0x100000, 353 IntrDMAErr=0x080000, IntrTxDataLow=0x040000, 354 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000, 355 IntrNormalSummary=0x8000, IntrTxDone=0x4000, 356 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000, 357 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400, 358 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100, 359 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40, 360 IntrNoTxCsum=0x20, IntrTxBadID=0x10, 361 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04, 362 IntrTxGfp=0x02, IntrPCIPad=0x01, 363 /* not quite bits */ 364 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done, 365 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low, 366 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe, 367 }; 368 369 /* Bits in the RxFilterMode register. */ 370 enum rx_mode_bits { 371 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01, 372 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30, 373 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200, 374 WakeupOnGFP=0x0800, 375 }; 376 377 /* Bits in the TxMode register */ 378 enum tx_mode_bits { 379 MiiSoftReset=0x8000, MIILoopback=0x4000, 380 TxFlowEnable=0x0800, RxFlowEnable=0x0400, 381 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01, 382 }; 383 384 /* Bits in the TxDescCtrl register. */ 385 enum tx_ctrl_bits { 386 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20, 387 TxDescSpace128=0x30, TxDescSpace256=0x40, 388 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02, 389 TxDescType3=0x03, TxDescType4=0x04, 390 TxNoDMACompletion=0x08, 391 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0, 392 TxHiPriFIFOThreshShift=24, TxPadLenShift=16, 393 TxDMABurstSizeShift=8, 394 }; 395 396 /* Bits in the RxDescQCtrl register. */ 397 enum rx_ctrl_bits { 398 RxBufferLenShift=16, RxMinDescrThreshShift=0, 399 RxPrefetchMode=0x8000, RxVariableQ=0x2000, 400 Rx2048QEntries=0x4000, Rx256QEntries=0, 401 RxDescAddr64bit=0x1000, RxDescAddr32bit=0, 402 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0, 403 RxDescSpace4=0x000, RxDescSpace8=0x100, 404 RxDescSpace16=0x200, RxDescSpace32=0x300, 405 RxDescSpace64=0x400, RxDescSpace128=0x500, 406 RxConsumerWrEn=0x80, 407 }; 408 409 /* Bits in the RxDMACtrl register. */ 410 enum rx_dmactrl_bits { 411 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000, 412 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000, 413 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000, 414 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000, 415 RxChecksumRejectTCPOnly=0x01000000, 416 RxCompletionQ2Enable=0x800000, 417 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000, 418 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000, 419 RxDMAQ2NonIP=0x400000, 420 RxUseBackupQueue=0x080000, RxDMACRC=0x040000, 421 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8, 422 RxBurstSizeShift=0, 423 }; 424 425 /* Bits in the RxCompletionAddr register */ 426 enum rx_compl_bits { 427 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0, 428 RxComplProducerWrEn=0x40, 429 RxComplType0=0x00, RxComplType1=0x10, 430 RxComplType2=0x20, RxComplType3=0x30, 431 RxComplThreshShift=0, 432 }; 433 434 /* Bits in the TxCompletionAddr register */ 435 enum tx_compl_bits { 436 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0, 437 TxComplProducerWrEn=0x40, 438 TxComplIntrStatus=0x20, 439 CommonQueueMode=0x10, 440 TxComplThreshShift=0, 441 }; 442 443 /* Bits in the GenCtrl register */ 444 enum gen_ctrl_bits { 445 RxEnable=0x05, TxEnable=0x0a, 446 RxGFPEnable=0x10, TxGFPEnable=0x20, 447 }; 448 449 /* Bits in the IntrTimerCtrl register */ 450 enum intr_ctrl_bits { 451 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100, 452 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600, 453 IntrLatencyMask=0x1f, 454 }; 455 456 /* The Rx and Tx buffer descriptors. */ 457 struct starfire_rx_desc { 458 netdrv_addr_t rxaddr; 459 }; 460 enum rx_desc_bits { 461 RxDescValid=1, RxDescEndRing=2, 462 }; 463 464 /* Completion queue entry. */ 465 struct short_rx_done_desc { 466 __le32 status; /* Low 16 bits is length. */ 467 }; 468 struct basic_rx_done_desc { 469 __le32 status; /* Low 16 bits is length. */ 470 __le16 vlanid; 471 __le16 status2; 472 }; 473 struct csum_rx_done_desc { 474 __le32 status; /* Low 16 bits is length. */ 475 __le16 csum; /* Partial checksum */ 476 __le16 status2; 477 }; 478 struct full_rx_done_desc { 479 __le32 status; /* Low 16 bits is length. */ 480 __le16 status3; 481 __le16 status2; 482 __le16 vlanid; 483 __le16 csum; /* partial checksum */ 484 __le32 timestamp; 485 }; 486 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */ 487 #ifdef VLAN_SUPPORT 488 typedef struct full_rx_done_desc rx_done_desc; 489 #define RxComplType RxComplType3 490 #else /* not VLAN_SUPPORT */ 491 typedef struct csum_rx_done_desc rx_done_desc; 492 #define RxComplType RxComplType2 493 #endif /* not VLAN_SUPPORT */ 494 495 enum rx_done_bits { 496 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000, 497 }; 498 499 /* Type 1 Tx descriptor. */ 500 struct starfire_tx_desc_1 { 501 __le32 status; /* Upper bits are status, lower 16 length. */ 502 __le32 addr; 503 }; 504 505 /* Type 2 Tx descriptor. */ 506 struct starfire_tx_desc_2 { 507 __le32 status; /* Upper bits are status, lower 16 length. */ 508 __le32 reserved; 509 __le64 addr; 510 }; 511 512 #ifdef ADDR_64BITS 513 typedef struct starfire_tx_desc_2 starfire_tx_desc; 514 #define TX_DESC_TYPE TxDescType2 515 #else /* not ADDR_64BITS */ 516 typedef struct starfire_tx_desc_1 starfire_tx_desc; 517 #define TX_DESC_TYPE TxDescType1 518 #endif /* not ADDR_64BITS */ 519 #define TX_DESC_SPACING TxDescSpaceUnlim 520 521 enum tx_desc_bits { 522 TxDescID=0xB0000000, 523 TxCRCEn=0x01000000, TxDescIntr=0x08000000, 524 TxRingWrap=0x04000000, TxCalTCP=0x02000000, 525 }; 526 struct tx_done_desc { 527 __le32 status; /* timestamp, index. */ 528 #if 0 529 __le32 intrstatus; /* interrupt status */ 530 #endif 531 }; 532 533 struct rx_ring_info { 534 struct sk_buff *skb; 535 dma_addr_t mapping; 536 }; 537 struct tx_ring_info { 538 struct sk_buff *skb; 539 dma_addr_t mapping; 540 unsigned int used_slots; 541 }; 542 543 #define PHY_CNT 2 544 struct netdev_private { 545 /* Descriptor rings first for alignment. */ 546 struct starfire_rx_desc *rx_ring; 547 starfire_tx_desc *tx_ring; 548 dma_addr_t rx_ring_dma; 549 dma_addr_t tx_ring_dma; 550 /* The addresses of rx/tx-in-place skbuffs. */ 551 struct rx_ring_info rx_info[RX_RING_SIZE]; 552 struct tx_ring_info tx_info[TX_RING_SIZE]; 553 /* Pointers to completion queues (full pages). */ 554 rx_done_desc *rx_done_q; 555 dma_addr_t rx_done_q_dma; 556 unsigned int rx_done; 557 struct tx_done_desc *tx_done_q; 558 dma_addr_t tx_done_q_dma; 559 unsigned int tx_done; 560 struct napi_struct napi; 561 struct net_device *dev; 562 struct pci_dev *pci_dev; 563 #ifdef VLAN_SUPPORT 564 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 565 #endif 566 void *queue_mem; 567 dma_addr_t queue_mem_dma; 568 size_t queue_mem_size; 569 570 /* Frequently used values: keep some adjacent for cache effect. */ 571 spinlock_t lock; 572 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 573 unsigned int cur_tx, dirty_tx, reap_tx; 574 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 575 /* These values keep track of the transceiver/media in use. */ 576 int speed100; /* Set if speed == 100MBit. */ 577 u32 tx_mode; 578 u32 intr_timer_ctrl; 579 u8 tx_threshold; 580 /* MII transceiver section. */ 581 struct mii_if_info mii_if; /* MII lib hooks/info */ 582 int phy_cnt; /* MII device addresses. */ 583 unsigned char phys[PHY_CNT]; /* MII device addresses. */ 584 void __iomem *base; 585 }; 586 587 588 static int mdio_read(struct net_device *dev, int phy_id, int location); 589 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 590 static int netdev_open(struct net_device *dev); 591 static void check_duplex(struct net_device *dev); 592 static void tx_timeout(struct net_device *dev); 593 static void init_ring(struct net_device *dev); 594 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 595 static irqreturn_t intr_handler(int irq, void *dev_instance); 596 static void netdev_error(struct net_device *dev, int intr_status); 597 static int __netdev_rx(struct net_device *dev, int *quota); 598 static int netdev_poll(struct napi_struct *napi, int budget); 599 static void refill_rx_ring(struct net_device *dev); 600 static void netdev_error(struct net_device *dev, int intr_status); 601 static void set_rx_mode(struct net_device *dev); 602 static struct net_device_stats *get_stats(struct net_device *dev); 603 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 604 static int netdev_close(struct net_device *dev); 605 static void netdev_media_change(struct net_device *dev); 606 static const struct ethtool_ops ethtool_ops; 607 608 609 #ifdef VLAN_SUPPORT 610 static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid) 611 { 612 struct netdev_private *np = netdev_priv(dev); 613 614 spin_lock(&np->lock); 615 if (debug > 1) 616 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid); 617 set_bit(vid, np->active_vlans); 618 set_rx_mode(dev); 619 spin_unlock(&np->lock); 620 621 return 0; 622 } 623 624 static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) 625 { 626 struct netdev_private *np = netdev_priv(dev); 627 628 spin_lock(&np->lock); 629 if (debug > 1) 630 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid); 631 clear_bit(vid, np->active_vlans); 632 set_rx_mode(dev); 633 spin_unlock(&np->lock); 634 635 return 0; 636 } 637 #endif /* VLAN_SUPPORT */ 638 639 640 static const struct net_device_ops netdev_ops = { 641 .ndo_open = netdev_open, 642 .ndo_stop = netdev_close, 643 .ndo_start_xmit = start_tx, 644 .ndo_tx_timeout = tx_timeout, 645 .ndo_get_stats = get_stats, 646 .ndo_set_rx_mode = set_rx_mode, 647 .ndo_do_ioctl = netdev_ioctl, 648 .ndo_change_mtu = eth_change_mtu, 649 .ndo_set_mac_address = eth_mac_addr, 650 .ndo_validate_addr = eth_validate_addr, 651 #ifdef VLAN_SUPPORT 652 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid, 653 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid, 654 #endif 655 }; 656 657 static int __devinit starfire_init_one(struct pci_dev *pdev, 658 const struct pci_device_id *ent) 659 { 660 struct netdev_private *np; 661 int i, irq, option, chip_idx = ent->driver_data; 662 struct net_device *dev; 663 static int card_idx = -1; 664 long ioaddr; 665 void __iomem *base; 666 int drv_flags, io_size; 667 int boguscnt; 668 669 /* when built into the kernel, we only print version if device is found */ 670 #ifndef MODULE 671 static int printed_version; 672 if (!printed_version++) 673 printk(version); 674 #endif 675 676 card_idx++; 677 678 if (pci_enable_device (pdev)) 679 return -EIO; 680 681 ioaddr = pci_resource_start(pdev, 0); 682 io_size = pci_resource_len(pdev, 0); 683 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) { 684 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx); 685 return -ENODEV; 686 } 687 688 dev = alloc_etherdev(sizeof(*np)); 689 if (!dev) { 690 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx); 691 return -ENOMEM; 692 } 693 SET_NETDEV_DEV(dev, &pdev->dev); 694 695 irq = pdev->irq; 696 697 if (pci_request_regions (pdev, DRV_NAME)) { 698 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx); 699 goto err_out_free_netdev; 700 } 701 702 base = ioremap(ioaddr, io_size); 703 if (!base) { 704 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n", 705 card_idx, io_size, ioaddr); 706 goto err_out_free_res; 707 } 708 709 pci_set_master(pdev); 710 711 /* enable MWI -- it vastly improves Rx performance on sparc64 */ 712 pci_try_set_mwi(pdev); 713 714 #ifdef ZEROCOPY 715 /* Starfire can do TCP/UDP checksumming */ 716 if (enable_hw_cksum) 717 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 718 #endif /* ZEROCOPY */ 719 720 #ifdef VLAN_SUPPORT 721 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER; 722 #endif /* VLAN_RX_KILL_VID */ 723 #ifdef ADDR_64BITS 724 dev->features |= NETIF_F_HIGHDMA; 725 #endif /* ADDR_64BITS */ 726 727 /* Serial EEPROM reads are hidden by the hardware. */ 728 for (i = 0; i < 6; i++) 729 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i); 730 731 #if ! defined(final_version) /* Dump the EEPROM contents during development. */ 732 if (debug > 4) 733 for (i = 0; i < 0x20; i++) 734 printk("%2.2x%s", 735 (unsigned int)readb(base + EEPROMCtrl + i), 736 i % 16 != 15 ? " " : "\n"); 737 #endif 738 739 /* Issue soft reset */ 740 writel(MiiSoftReset, base + TxMode); 741 udelay(1000); 742 writel(0, base + TxMode); 743 744 /* Reset the chip to erase previous misconfiguration. */ 745 writel(1, base + PCIDeviceConfig); 746 boguscnt = 1000; 747 while (--boguscnt > 0) { 748 udelay(10); 749 if ((readl(base + PCIDeviceConfig) & 1) == 0) 750 break; 751 } 752 if (boguscnt == 0) 753 printk("%s: chipset reset never completed!\n", dev->name); 754 /* wait a little longer */ 755 udelay(1000); 756 757 dev->base_addr = (unsigned long)base; 758 dev->irq = irq; 759 760 np = netdev_priv(dev); 761 np->dev = dev; 762 np->base = base; 763 spin_lock_init(&np->lock); 764 pci_set_drvdata(pdev, dev); 765 766 np->pci_dev = pdev; 767 768 np->mii_if.dev = dev; 769 np->mii_if.mdio_read = mdio_read; 770 np->mii_if.mdio_write = mdio_write; 771 np->mii_if.phy_id_mask = 0x1f; 772 np->mii_if.reg_num_mask = 0x1f; 773 774 drv_flags = netdrv_tbl[chip_idx].drv_flags; 775 776 option = card_idx < MAX_UNITS ? options[card_idx] : 0; 777 if (dev->mem_start) 778 option = dev->mem_start; 779 780 /* The lower four bits are the media type. */ 781 if (option & 0x200) 782 np->mii_if.full_duplex = 1; 783 784 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) 785 np->mii_if.full_duplex = 1; 786 787 if (np->mii_if.full_duplex) 788 np->mii_if.force_media = 1; 789 else 790 np->mii_if.force_media = 0; 791 np->speed100 = 1; 792 793 /* timer resolution is 128 * 0.8us */ 794 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) | 795 Timer10X | EnableIntrMasking; 796 797 if (small_frames > 0) { 798 np->intr_timer_ctrl |= SmallFrameBypass; 799 switch (small_frames) { 800 case 1 ... 64: 801 np->intr_timer_ctrl |= SmallFrame64; 802 break; 803 case 65 ... 128: 804 np->intr_timer_ctrl |= SmallFrame128; 805 break; 806 case 129 ... 256: 807 np->intr_timer_ctrl |= SmallFrame256; 808 break; 809 default: 810 np->intr_timer_ctrl |= SmallFrame512; 811 if (small_frames > 512) 812 printk("Adjusting small_frames down to 512\n"); 813 break; 814 } 815 } 816 817 dev->netdev_ops = &netdev_ops; 818 dev->watchdog_timeo = TX_TIMEOUT; 819 SET_ETHTOOL_OPS(dev, ðtool_ops); 820 821 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work); 822 823 if (mtu) 824 dev->mtu = mtu; 825 826 if (register_netdev(dev)) 827 goto err_out_cleardev; 828 829 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 830 dev->name, netdrv_tbl[chip_idx].name, base, 831 dev->dev_addr, irq); 832 833 if (drv_flags & CanHaveMII) { 834 int phy, phy_idx = 0; 835 int mii_status; 836 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) { 837 mdio_write(dev, phy, MII_BMCR, BMCR_RESET); 838 mdelay(100); 839 boguscnt = 1000; 840 while (--boguscnt > 0) 841 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0) 842 break; 843 if (boguscnt == 0) { 844 printk("%s: PHY#%d reset never completed!\n", dev->name, phy); 845 continue; 846 } 847 mii_status = mdio_read(dev, phy, MII_BMSR); 848 if (mii_status != 0) { 849 np->phys[phy_idx++] = phy; 850 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE); 851 printk(KERN_INFO "%s: MII PHY found at address %d, status " 852 "%#4.4x advertising %#4.4x.\n", 853 dev->name, phy, mii_status, np->mii_if.advertising); 854 /* there can be only one PHY on-board */ 855 break; 856 } 857 } 858 np->phy_cnt = phy_idx; 859 if (np->phy_cnt > 0) 860 np->mii_if.phy_id = np->phys[0]; 861 else 862 memset(&np->mii_if, 0, sizeof(np->mii_if)); 863 } 864 865 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n", 866 dev->name, enable_hw_cksum ? "enabled" : "disabled"); 867 return 0; 868 869 err_out_cleardev: 870 pci_set_drvdata(pdev, NULL); 871 iounmap(base); 872 err_out_free_res: 873 pci_release_regions (pdev); 874 err_out_free_netdev: 875 free_netdev(dev); 876 return -ENODEV; 877 } 878 879 880 /* Read the MII Management Data I/O (MDIO) interfaces. */ 881 static int mdio_read(struct net_device *dev, int phy_id, int location) 882 { 883 struct netdev_private *np = netdev_priv(dev); 884 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); 885 int result, boguscnt=1000; 886 /* ??? Should we add a busy-wait here? */ 887 do { 888 result = readl(mdio_addr); 889 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0); 890 if (boguscnt == 0) 891 return 0; 892 if ((result & 0xffff) == 0xffff) 893 return 0; 894 return result & 0xffff; 895 } 896 897 898 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 899 { 900 struct netdev_private *np = netdev_priv(dev); 901 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); 902 writel(value, mdio_addr); 903 /* The busy-wait will occur before a read. */ 904 } 905 906 907 static int netdev_open(struct net_device *dev) 908 { 909 const struct firmware *fw_rx, *fw_tx; 910 const __be32 *fw_rx_data, *fw_tx_data; 911 struct netdev_private *np = netdev_priv(dev); 912 void __iomem *ioaddr = np->base; 913 int i, retval; 914 size_t tx_size, rx_size; 915 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size; 916 917 /* Do we ever need to reset the chip??? */ 918 919 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev); 920 if (retval) 921 return retval; 922 923 /* Disable the Rx and Tx, and reset the chip. */ 924 writel(0, ioaddr + GenCtrl); 925 writel(1, ioaddr + PCIDeviceConfig); 926 if (debug > 1) 927 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", 928 dev->name, dev->irq); 929 930 /* Allocate the various queues. */ 931 if (!np->queue_mem) { 932 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 933 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 934 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 935 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE; 936 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size; 937 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma); 938 if (np->queue_mem == NULL) { 939 free_irq(dev->irq, dev); 940 return -ENOMEM; 941 } 942 943 np->tx_done_q = np->queue_mem; 944 np->tx_done_q_dma = np->queue_mem_dma; 945 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size; 946 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size; 947 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size; 948 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size; 949 np->rx_ring = (void *) np->tx_ring + tx_ring_size; 950 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size; 951 } 952 953 /* Start with no carrier, it gets adjusted later */ 954 netif_carrier_off(dev); 955 init_ring(dev); 956 /* Set the size of the Rx buffers. */ 957 writel((np->rx_buf_sz << RxBufferLenShift) | 958 (0 << RxMinDescrThreshShift) | 959 RxPrefetchMode | RxVariableQ | 960 RX_Q_ENTRIES | 961 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE | 962 RxDescSpace4, 963 ioaddr + RxDescQCtrl); 964 965 /* Set up the Rx DMA controller. */ 966 writel(RxChecksumIgnore | 967 (0 << RxEarlyIntThreshShift) | 968 (6 << RxHighPrioThreshShift) | 969 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift), 970 ioaddr + RxDMACtrl); 971 972 /* Set Tx descriptor */ 973 writel((2 << TxHiPriFIFOThreshShift) | 974 (0 << TxPadLenShift) | 975 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) | 976 TX_DESC_Q_ADDR_SIZE | 977 TX_DESC_SPACING | TX_DESC_TYPE, 978 ioaddr + TxDescCtrl); 979 980 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr); 981 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr); 982 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr); 983 writel(np->rx_ring_dma, ioaddr + RxDescQAddr); 984 writel(np->tx_ring_dma, ioaddr + TxRingPtr); 985 986 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr); 987 writel(np->rx_done_q_dma | 988 RxComplType | 989 (0 << RxComplThreshShift), 990 ioaddr + RxCompletionAddr); 991 992 if (debug > 1) 993 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name); 994 995 /* Fill both the Tx SA register and the Rx perfect filter. */ 996 for (i = 0; i < 6; i++) 997 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i); 998 /* The first entry is special because it bypasses the VLAN filter. 999 Don't use it. */ 1000 writew(0, ioaddr + PerfFilterTable); 1001 writew(0, ioaddr + PerfFilterTable + 4); 1002 writew(0, ioaddr + PerfFilterTable + 8); 1003 for (i = 1; i < 16; i++) { 1004 __be16 *eaddrs = (__be16 *)dev->dev_addr; 1005 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16; 1006 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4; 1007 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4; 1008 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8; 1009 } 1010 1011 /* Initialize other registers. */ 1012 /* Configure the PCI bus bursts and FIFO thresholds. */ 1013 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */ 1014 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode); 1015 udelay(1000); 1016 writel(np->tx_mode, ioaddr + TxMode); 1017 np->tx_threshold = 4; 1018 writel(np->tx_threshold, ioaddr + TxThreshold); 1019 1020 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl); 1021 1022 napi_enable(&np->napi); 1023 1024 netif_start_queue(dev); 1025 1026 if (debug > 1) 1027 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name); 1028 set_rx_mode(dev); 1029 1030 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE); 1031 check_duplex(dev); 1032 1033 /* Enable GPIO interrupts on link change */ 1034 writel(0x0f00ff00, ioaddr + GPIOCtrl); 1035 1036 /* Set the interrupt mask */ 1037 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr | 1038 IntrTxDMADone | IntrStatsMax | IntrLinkChange | 1039 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID, 1040 ioaddr + IntrEnable); 1041 /* Enable PCI interrupts. */ 1042 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig), 1043 ioaddr + PCIDeviceConfig); 1044 1045 #ifdef VLAN_SUPPORT 1046 /* Set VLAN type to 802.1q */ 1047 writel(ETH_P_8021Q, ioaddr + VlanType); 1048 #endif /* VLAN_SUPPORT */ 1049 1050 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev); 1051 if (retval) { 1052 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", 1053 FIRMWARE_RX); 1054 goto out_init; 1055 } 1056 if (fw_rx->size % 4) { 1057 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", 1058 fw_rx->size, FIRMWARE_RX); 1059 retval = -EINVAL; 1060 goto out_rx; 1061 } 1062 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev); 1063 if (retval) { 1064 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", 1065 FIRMWARE_TX); 1066 goto out_rx; 1067 } 1068 if (fw_tx->size % 4) { 1069 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", 1070 fw_tx->size, FIRMWARE_TX); 1071 retval = -EINVAL; 1072 goto out_tx; 1073 } 1074 fw_rx_data = (const __be32 *)&fw_rx->data[0]; 1075 fw_tx_data = (const __be32 *)&fw_tx->data[0]; 1076 rx_size = fw_rx->size / 4; 1077 tx_size = fw_tx->size / 4; 1078 1079 /* Load Rx/Tx firmware into the frame processors */ 1080 for (i = 0; i < rx_size; i++) 1081 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4); 1082 for (i = 0; i < tx_size; i++) 1083 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4); 1084 if (enable_hw_cksum) 1085 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */ 1086 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl); 1087 else 1088 /* Enable the Rx and Tx units only. */ 1089 writel(TxEnable|RxEnable, ioaddr + GenCtrl); 1090 1091 if (debug > 1) 1092 printk(KERN_DEBUG "%s: Done netdev_open().\n", 1093 dev->name); 1094 1095 out_tx: 1096 release_firmware(fw_tx); 1097 out_rx: 1098 release_firmware(fw_rx); 1099 out_init: 1100 if (retval) 1101 netdev_close(dev); 1102 return retval; 1103 } 1104 1105 1106 static void check_duplex(struct net_device *dev) 1107 { 1108 struct netdev_private *np = netdev_priv(dev); 1109 u16 reg0; 1110 int silly_count = 1000; 1111 1112 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising); 1113 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET); 1114 udelay(500); 1115 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET) 1116 /* do nothing */; 1117 if (!silly_count) { 1118 printk("%s: MII reset failed!\n", dev->name); 1119 return; 1120 } 1121 1122 reg0 = mdio_read(dev, np->phys[0], MII_BMCR); 1123 1124 if (!np->mii_if.force_media) { 1125 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART; 1126 } else { 1127 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART); 1128 if (np->speed100) 1129 reg0 |= BMCR_SPEED100; 1130 if (np->mii_if.full_duplex) 1131 reg0 |= BMCR_FULLDPLX; 1132 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n", 1133 dev->name, 1134 np->speed100 ? "100" : "10", 1135 np->mii_if.full_duplex ? "full" : "half"); 1136 } 1137 mdio_write(dev, np->phys[0], MII_BMCR, reg0); 1138 } 1139 1140 1141 static void tx_timeout(struct net_device *dev) 1142 { 1143 struct netdev_private *np = netdev_priv(dev); 1144 void __iomem *ioaddr = np->base; 1145 int old_debug; 1146 1147 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, " 1148 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus)); 1149 1150 /* Perhaps we should reinitialize the hardware here. */ 1151 1152 /* 1153 * Stop and restart the interface. 1154 * Cheat and increase the debug level temporarily. 1155 */ 1156 old_debug = debug; 1157 debug = 2; 1158 netdev_close(dev); 1159 netdev_open(dev); 1160 debug = old_debug; 1161 1162 /* Trigger an immediate transmit demand. */ 1163 1164 dev->trans_start = jiffies; /* prevent tx timeout */ 1165 dev->stats.tx_errors++; 1166 netif_wake_queue(dev); 1167 } 1168 1169 1170 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1171 static void init_ring(struct net_device *dev) 1172 { 1173 struct netdev_private *np = netdev_priv(dev); 1174 int i; 1175 1176 np->cur_rx = np->cur_tx = np->reap_tx = 0; 1177 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0; 1178 1179 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1180 1181 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1182 for (i = 0; i < RX_RING_SIZE; i++) { 1183 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz); 1184 np->rx_info[i].skb = skb; 1185 if (skb == NULL) 1186 break; 1187 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1188 skb->dev = dev; /* Mark as being used by this device. */ 1189 /* Grrr, we cannot offset to correctly align the IP header. */ 1190 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid); 1191 } 1192 writew(i - 1, np->base + RxDescQIdx); 1193 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1194 1195 /* Clear the remainder of the Rx buffer ring. */ 1196 for ( ; i < RX_RING_SIZE; i++) { 1197 np->rx_ring[i].rxaddr = 0; 1198 np->rx_info[i].skb = NULL; 1199 np->rx_info[i].mapping = 0; 1200 } 1201 /* Mark the last entry as wrapping the ring. */ 1202 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing); 1203 1204 /* Clear the completion rings. */ 1205 for (i = 0; i < DONE_Q_SIZE; i++) { 1206 np->rx_done_q[i].status = 0; 1207 np->tx_done_q[i].status = 0; 1208 } 1209 1210 for (i = 0; i < TX_RING_SIZE; i++) 1211 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i])); 1212 } 1213 1214 1215 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 1216 { 1217 struct netdev_private *np = netdev_priv(dev); 1218 unsigned int entry; 1219 u32 status; 1220 int i; 1221 1222 /* 1223 * be cautious here, wrapping the queue has weird semantics 1224 * and we may not have enough slots even when it seems we do. 1225 */ 1226 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) { 1227 netif_stop_queue(dev); 1228 return NETDEV_TX_BUSY; 1229 } 1230 1231 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE) 1232 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1233 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK)) 1234 return NETDEV_TX_OK; 1235 } 1236 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */ 1237 1238 entry = np->cur_tx % TX_RING_SIZE; 1239 for (i = 0; i < skb_num_frags(skb); i++) { 1240 int wrap_ring = 0; 1241 status = TxDescID; 1242 1243 if (i == 0) { 1244 np->tx_info[entry].skb = skb; 1245 status |= TxCRCEn; 1246 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) { 1247 status |= TxRingWrap; 1248 wrap_ring = 1; 1249 } 1250 if (np->reap_tx) { 1251 status |= TxDescIntr; 1252 np->reap_tx = 0; 1253 } 1254 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1255 status |= TxCalTCP; 1256 dev->stats.tx_compressed++; 1257 } 1258 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16); 1259 1260 np->tx_info[entry].mapping = 1261 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE); 1262 } else { 1263 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1]; 1264 status |= skb_frag_size(this_frag); 1265 np->tx_info[entry].mapping = 1266 pci_map_single(np->pci_dev, 1267 skb_frag_address(this_frag), 1268 skb_frag_size(this_frag), 1269 PCI_DMA_TODEVICE); 1270 } 1271 1272 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping); 1273 np->tx_ring[entry].status = cpu_to_le32(status); 1274 if (debug > 3) 1275 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n", 1276 dev->name, np->cur_tx, np->dirty_tx, 1277 entry, status); 1278 if (wrap_ring) { 1279 np->tx_info[entry].used_slots = TX_RING_SIZE - entry; 1280 np->cur_tx += np->tx_info[entry].used_slots; 1281 entry = 0; 1282 } else { 1283 np->tx_info[entry].used_slots = 1; 1284 np->cur_tx += np->tx_info[entry].used_slots; 1285 entry++; 1286 } 1287 /* scavenge the tx descriptors twice per TX_RING_SIZE */ 1288 if (np->cur_tx % (TX_RING_SIZE / 2) == 0) 1289 np->reap_tx = 1; 1290 } 1291 1292 /* Non-x86: explicitly flush descriptor cache lines here. */ 1293 /* Ensure all descriptors are written back before the transmit is 1294 initiated. - Jes */ 1295 wmb(); 1296 1297 /* Update the producer index. */ 1298 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx); 1299 1300 /* 4 is arbitrary, but should be ok */ 1301 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE) 1302 netif_stop_queue(dev); 1303 1304 return NETDEV_TX_OK; 1305 } 1306 1307 1308 /* The interrupt handler does all of the Rx thread work and cleans up 1309 after the Tx thread. */ 1310 static irqreturn_t intr_handler(int irq, void *dev_instance) 1311 { 1312 struct net_device *dev = dev_instance; 1313 struct netdev_private *np = netdev_priv(dev); 1314 void __iomem *ioaddr = np->base; 1315 int boguscnt = max_interrupt_work; 1316 int consumer; 1317 int tx_status; 1318 int handled = 0; 1319 1320 do { 1321 u32 intr_status = readl(ioaddr + IntrClear); 1322 1323 if (debug > 4) 1324 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n", 1325 dev->name, intr_status); 1326 1327 if (intr_status == 0 || intr_status == (u32) -1) 1328 break; 1329 1330 handled = 1; 1331 1332 if (intr_status & (IntrRxDone | IntrRxEmpty)) { 1333 u32 enable; 1334 1335 if (likely(napi_schedule_prep(&np->napi))) { 1336 __napi_schedule(&np->napi); 1337 enable = readl(ioaddr + IntrEnable); 1338 enable &= ~(IntrRxDone | IntrRxEmpty); 1339 writel(enable, ioaddr + IntrEnable); 1340 /* flush PCI posting buffers */ 1341 readl(ioaddr + IntrEnable); 1342 } else { 1343 /* Paranoia check */ 1344 enable = readl(ioaddr + IntrEnable); 1345 if (enable & (IntrRxDone | IntrRxEmpty)) { 1346 printk(KERN_INFO 1347 "%s: interrupt while in poll!\n", 1348 dev->name); 1349 enable &= ~(IntrRxDone | IntrRxEmpty); 1350 writel(enable, ioaddr + IntrEnable); 1351 } 1352 } 1353 } 1354 1355 /* Scavenge the skbuff list based on the Tx-done queue. 1356 There are redundant checks here that may be cleaned up 1357 after the driver has proven to be reliable. */ 1358 consumer = readl(ioaddr + TxConsumerIdx); 1359 if (debug > 3) 1360 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n", 1361 dev->name, consumer); 1362 1363 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) { 1364 if (debug > 3) 1365 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n", 1366 dev->name, np->dirty_tx, np->tx_done, tx_status); 1367 if ((tx_status & 0xe0000000) == 0xa0000000) { 1368 dev->stats.tx_packets++; 1369 } else if ((tx_status & 0xe0000000) == 0x80000000) { 1370 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc); 1371 struct sk_buff *skb = np->tx_info[entry].skb; 1372 np->tx_info[entry].skb = NULL; 1373 pci_unmap_single(np->pci_dev, 1374 np->tx_info[entry].mapping, 1375 skb_first_frag_len(skb), 1376 PCI_DMA_TODEVICE); 1377 np->tx_info[entry].mapping = 0; 1378 np->dirty_tx += np->tx_info[entry].used_slots; 1379 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; 1380 { 1381 int i; 1382 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1383 pci_unmap_single(np->pci_dev, 1384 np->tx_info[entry].mapping, 1385 skb_frag_size(&skb_shinfo(skb)->frags[i]), 1386 PCI_DMA_TODEVICE); 1387 np->dirty_tx++; 1388 entry++; 1389 } 1390 } 1391 1392 dev_kfree_skb_irq(skb); 1393 } 1394 np->tx_done_q[np->tx_done].status = 0; 1395 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE; 1396 } 1397 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2); 1398 1399 if (netif_queue_stopped(dev) && 1400 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) { 1401 /* The ring is no longer full, wake the queue. */ 1402 netif_wake_queue(dev); 1403 } 1404 1405 /* Stats overflow */ 1406 if (intr_status & IntrStatsMax) 1407 get_stats(dev); 1408 1409 /* Media change interrupt. */ 1410 if (intr_status & IntrLinkChange) 1411 netdev_media_change(dev); 1412 1413 /* Abnormal error summary/uncommon events handlers. */ 1414 if (intr_status & IntrAbnormalSummary) 1415 netdev_error(dev, intr_status); 1416 1417 if (--boguscnt < 0) { 1418 if (debug > 1) 1419 printk(KERN_WARNING "%s: Too much work at interrupt, " 1420 "status=%#8.8x.\n", 1421 dev->name, intr_status); 1422 break; 1423 } 1424 } while (1); 1425 1426 if (debug > 4) 1427 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n", 1428 dev->name, (int) readl(ioaddr + IntrStatus)); 1429 return IRQ_RETVAL(handled); 1430 } 1431 1432 1433 /* 1434 * This routine is logically part of the interrupt/poll handler, but separated 1435 * for clarity and better register allocation. 1436 */ 1437 static int __netdev_rx(struct net_device *dev, int *quota) 1438 { 1439 struct netdev_private *np = netdev_priv(dev); 1440 u32 desc_status; 1441 int retcode = 0; 1442 1443 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1444 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) { 1445 struct sk_buff *skb; 1446 u16 pkt_len; 1447 int entry; 1448 rx_done_desc *desc = &np->rx_done_q[np->rx_done]; 1449 1450 if (debug > 4) 1451 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status); 1452 if (!(desc_status & RxOK)) { 1453 /* There was an error. */ 1454 if (debug > 2) 1455 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status); 1456 dev->stats.rx_errors++; 1457 if (desc_status & RxFIFOErr) 1458 dev->stats.rx_fifo_errors++; 1459 goto next_rx; 1460 } 1461 1462 if (*quota <= 0) { /* out of rx quota */ 1463 retcode = 1; 1464 goto out; 1465 } 1466 (*quota)--; 1467 1468 pkt_len = desc_status; /* Implicitly Truncate */ 1469 entry = (desc_status >> 16) & 0x7ff; 1470 1471 if (debug > 4) 1472 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota); 1473 /* Check if the packet is long enough to accept without copying 1474 to a minimally-sized skbuff. */ 1475 if (pkt_len < rx_copybreak && 1476 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { 1477 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1478 pci_dma_sync_single_for_cpu(np->pci_dev, 1479 np->rx_info[entry].mapping, 1480 pkt_len, PCI_DMA_FROMDEVICE); 1481 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len); 1482 pci_dma_sync_single_for_device(np->pci_dev, 1483 np->rx_info[entry].mapping, 1484 pkt_len, PCI_DMA_FROMDEVICE); 1485 skb_put(skb, pkt_len); 1486 } else { 1487 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1488 skb = np->rx_info[entry].skb; 1489 skb_put(skb, pkt_len); 1490 np->rx_info[entry].skb = NULL; 1491 np->rx_info[entry].mapping = 0; 1492 } 1493 #ifndef final_version /* Remove after testing. */ 1494 /* You will want this info for the initial debug. */ 1495 if (debug > 5) { 1496 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n", 1497 skb->data, skb->data + 6, 1498 skb->data[12], skb->data[13]); 1499 } 1500 #endif 1501 1502 skb->protocol = eth_type_trans(skb, dev); 1503 #ifdef VLAN_SUPPORT 1504 if (debug > 4) 1505 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2)); 1506 #endif 1507 if (le16_to_cpu(desc->status2) & 0x0100) { 1508 skb->ip_summed = CHECKSUM_UNNECESSARY; 1509 dev->stats.rx_compressed++; 1510 } 1511 /* 1512 * This feature doesn't seem to be working, at least 1513 * with the two firmware versions I have. If the GFP sees 1514 * an IP fragment, it either ignores it completely, or reports 1515 * "bad checksum" on it. 1516 * 1517 * Maybe I missed something -- corrections are welcome. 1518 * Until then, the printk stays. :-) -Ion 1519 */ 1520 else if (le16_to_cpu(desc->status2) & 0x0040) { 1521 skb->ip_summed = CHECKSUM_COMPLETE; 1522 skb->csum = le16_to_cpu(desc->csum); 1523 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2)); 1524 } 1525 #ifdef VLAN_SUPPORT 1526 if (le16_to_cpu(desc->status2) & 0x0200) { 1527 u16 vlid = le16_to_cpu(desc->vlanid); 1528 1529 if (debug > 4) { 1530 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", 1531 vlid); 1532 } 1533 __vlan_hwaccel_put_tag(skb, vlid); 1534 } 1535 #endif /* VLAN_SUPPORT */ 1536 netif_receive_skb(skb); 1537 dev->stats.rx_packets++; 1538 1539 next_rx: 1540 np->cur_rx++; 1541 desc->status = 0; 1542 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE; 1543 } 1544 1545 if (*quota == 0) { /* out of rx quota */ 1546 retcode = 1; 1547 goto out; 1548 } 1549 writew(np->rx_done, np->base + CompletionQConsumerIdx); 1550 1551 out: 1552 refill_rx_ring(dev); 1553 if (debug > 5) 1554 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n", 1555 retcode, np->rx_done, desc_status); 1556 return retcode; 1557 } 1558 1559 static int netdev_poll(struct napi_struct *napi, int budget) 1560 { 1561 struct netdev_private *np = container_of(napi, struct netdev_private, napi); 1562 struct net_device *dev = np->dev; 1563 u32 intr_status; 1564 void __iomem *ioaddr = np->base; 1565 int quota = budget; 1566 1567 do { 1568 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear); 1569 1570 if (__netdev_rx(dev, "a)) 1571 goto out; 1572 1573 intr_status = readl(ioaddr + IntrStatus); 1574 } while (intr_status & (IntrRxDone | IntrRxEmpty)); 1575 1576 napi_complete(napi); 1577 intr_status = readl(ioaddr + IntrEnable); 1578 intr_status |= IntrRxDone | IntrRxEmpty; 1579 writel(intr_status, ioaddr + IntrEnable); 1580 1581 out: 1582 if (debug > 5) 1583 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", 1584 budget - quota); 1585 1586 /* Restart Rx engine if stopped. */ 1587 return budget - quota; 1588 } 1589 1590 static void refill_rx_ring(struct net_device *dev) 1591 { 1592 struct netdev_private *np = netdev_priv(dev); 1593 struct sk_buff *skb; 1594 int entry = -1; 1595 1596 /* Refill the Rx ring buffers. */ 1597 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { 1598 entry = np->dirty_rx % RX_RING_SIZE; 1599 if (np->rx_info[entry].skb == NULL) { 1600 skb = dev_alloc_skb(np->rx_buf_sz); 1601 np->rx_info[entry].skb = skb; 1602 if (skb == NULL) 1603 break; /* Better luck next round. */ 1604 np->rx_info[entry].mapping = 1605 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1606 skb->dev = dev; /* Mark as being used by this device. */ 1607 np->rx_ring[entry].rxaddr = 1608 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid); 1609 } 1610 if (entry == RX_RING_SIZE - 1) 1611 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing); 1612 } 1613 if (entry >= 0) 1614 writew(entry, np->base + RxDescQIdx); 1615 } 1616 1617 1618 static void netdev_media_change(struct net_device *dev) 1619 { 1620 struct netdev_private *np = netdev_priv(dev); 1621 void __iomem *ioaddr = np->base; 1622 u16 reg0, reg1, reg4, reg5; 1623 u32 new_tx_mode; 1624 u32 new_intr_timer_ctrl; 1625 1626 /* reset status first */ 1627 mdio_read(dev, np->phys[0], MII_BMCR); 1628 mdio_read(dev, np->phys[0], MII_BMSR); 1629 1630 reg0 = mdio_read(dev, np->phys[0], MII_BMCR); 1631 reg1 = mdio_read(dev, np->phys[0], MII_BMSR); 1632 1633 if (reg1 & BMSR_LSTATUS) { 1634 /* link is up */ 1635 if (reg0 & BMCR_ANENABLE) { 1636 /* autonegotiation is enabled */ 1637 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE); 1638 reg5 = mdio_read(dev, np->phys[0], MII_LPA); 1639 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) { 1640 np->speed100 = 1; 1641 np->mii_if.full_duplex = 1; 1642 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) { 1643 np->speed100 = 1; 1644 np->mii_if.full_duplex = 0; 1645 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) { 1646 np->speed100 = 0; 1647 np->mii_if.full_duplex = 1; 1648 } else { 1649 np->speed100 = 0; 1650 np->mii_if.full_duplex = 0; 1651 } 1652 } else { 1653 /* autonegotiation is disabled */ 1654 if (reg0 & BMCR_SPEED100) 1655 np->speed100 = 1; 1656 else 1657 np->speed100 = 0; 1658 if (reg0 & BMCR_FULLDPLX) 1659 np->mii_if.full_duplex = 1; 1660 else 1661 np->mii_if.full_duplex = 0; 1662 } 1663 netif_carrier_on(dev); 1664 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n", 1665 dev->name, 1666 np->speed100 ? "100" : "10", 1667 np->mii_if.full_duplex ? "full" : "half"); 1668 1669 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */ 1670 if (np->mii_if.full_duplex) 1671 new_tx_mode |= FullDuplex; 1672 if (np->tx_mode != new_tx_mode) { 1673 np->tx_mode = new_tx_mode; 1674 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode); 1675 udelay(1000); 1676 writel(np->tx_mode, ioaddr + TxMode); 1677 } 1678 1679 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X; 1680 if (np->speed100) 1681 new_intr_timer_ctrl |= Timer10X; 1682 if (np->intr_timer_ctrl != new_intr_timer_ctrl) { 1683 np->intr_timer_ctrl = new_intr_timer_ctrl; 1684 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl); 1685 } 1686 } else { 1687 netif_carrier_off(dev); 1688 printk(KERN_DEBUG "%s: Link is down\n", dev->name); 1689 } 1690 } 1691 1692 1693 static void netdev_error(struct net_device *dev, int intr_status) 1694 { 1695 struct netdev_private *np = netdev_priv(dev); 1696 1697 /* Came close to underrunning the Tx FIFO, increase threshold. */ 1698 if (intr_status & IntrTxDataLow) { 1699 if (np->tx_threshold <= PKT_BUF_SZ / 16) { 1700 writel(++np->tx_threshold, np->base + TxThreshold); 1701 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n", 1702 dev->name, np->tx_threshold * 16); 1703 } else 1704 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name); 1705 } 1706 if (intr_status & IntrRxGFPDead) { 1707 dev->stats.rx_fifo_errors++; 1708 dev->stats.rx_errors++; 1709 } 1710 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) { 1711 dev->stats.tx_fifo_errors++; 1712 dev->stats.tx_errors++; 1713 } 1714 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug) 1715 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n", 1716 dev->name, intr_status); 1717 } 1718 1719 1720 static struct net_device_stats *get_stats(struct net_device *dev) 1721 { 1722 struct netdev_private *np = netdev_priv(dev); 1723 void __iomem *ioaddr = np->base; 1724 1725 /* This adapter architecture needs no SMP locks. */ 1726 dev->stats.tx_bytes = readl(ioaddr + 0x57010); 1727 dev->stats.rx_bytes = readl(ioaddr + 0x57044); 1728 dev->stats.tx_packets = readl(ioaddr + 0x57000); 1729 dev->stats.tx_aborted_errors = 1730 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028); 1731 dev->stats.tx_window_errors = readl(ioaddr + 0x57018); 1732 dev->stats.collisions = 1733 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008); 1734 1735 /* The chip only need report frame silently dropped. */ 1736 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus); 1737 writew(0, ioaddr + RxDMAStatus); 1738 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C); 1739 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040); 1740 dev->stats.rx_length_errors = readl(ioaddr + 0x57058); 1741 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C); 1742 1743 return &dev->stats; 1744 } 1745 1746 #ifdef VLAN_SUPPORT 1747 static u32 set_vlan_mode(struct netdev_private *np) 1748 { 1749 u32 ret = VlanMode; 1750 u16 vid; 1751 void __iomem *filter_addr = np->base + HashTable + 8; 1752 int vlan_count = 0; 1753 1754 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) { 1755 if (vlan_count == 32) 1756 break; 1757 writew(vid, filter_addr); 1758 filter_addr += 16; 1759 vlan_count++; 1760 } 1761 if (vlan_count == 32) { 1762 ret |= PerfectFilterVlan; 1763 while (vlan_count < 32) { 1764 writew(0, filter_addr); 1765 filter_addr += 16; 1766 vlan_count++; 1767 } 1768 } 1769 return ret; 1770 } 1771 #endif /* VLAN_SUPPORT */ 1772 1773 static void set_rx_mode(struct net_device *dev) 1774 { 1775 struct netdev_private *np = netdev_priv(dev); 1776 void __iomem *ioaddr = np->base; 1777 u32 rx_mode = MinVLANPrio; 1778 struct netdev_hw_addr *ha; 1779 int i; 1780 1781 #ifdef VLAN_SUPPORT 1782 rx_mode |= set_vlan_mode(np); 1783 #endif /* VLAN_SUPPORT */ 1784 1785 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1786 rx_mode |= AcceptAll; 1787 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1788 (dev->flags & IFF_ALLMULTI)) { 1789 /* Too many to match, or accept all multicasts. */ 1790 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter; 1791 } else if (netdev_mc_count(dev) <= 14) { 1792 /* Use the 16 element perfect filter, skip first two entries. */ 1793 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16; 1794 __be16 *eaddrs; 1795 netdev_for_each_mc_addr(ha, dev) { 1796 eaddrs = (__be16 *) ha->addr; 1797 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4; 1798 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1799 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8; 1800 } 1801 eaddrs = (__be16 *)dev->dev_addr; 1802 i = netdev_mc_count(dev) + 2; 1803 while (i++ < 16) { 1804 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; 1805 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1806 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; 1807 } 1808 rx_mode |= AcceptBroadcast|PerfectFilter; 1809 } else { 1810 /* Must use a multicast hash table. */ 1811 void __iomem *filter_addr; 1812 __be16 *eaddrs; 1813 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */ 1814 1815 memset(mc_filter, 0, sizeof(mc_filter)); 1816 netdev_for_each_mc_addr(ha, dev) { 1817 /* The chip uses the upper 9 CRC bits 1818 as index into the hash table */ 1819 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23; 1820 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1]; 1821 1822 *fptr |= cpu_to_le32(1 << (bit_nr & 31)); 1823 } 1824 /* Clear the perfect filter list, skip first two entries. */ 1825 filter_addr = ioaddr + PerfFilterTable + 2 * 16; 1826 eaddrs = (__be16 *)dev->dev_addr; 1827 for (i = 2; i < 16; i++) { 1828 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; 1829 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1830 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; 1831 } 1832 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++) 1833 writew(mc_filter[i], filter_addr); 1834 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter; 1835 } 1836 writel(rx_mode, ioaddr + RxFilterMode); 1837 } 1838 1839 static int check_if_running(struct net_device *dev) 1840 { 1841 if (!netif_running(dev)) 1842 return -EINVAL; 1843 return 0; 1844 } 1845 1846 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1847 { 1848 struct netdev_private *np = netdev_priv(dev); 1849 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1850 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1851 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1852 } 1853 1854 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1855 { 1856 struct netdev_private *np = netdev_priv(dev); 1857 spin_lock_irq(&np->lock); 1858 mii_ethtool_gset(&np->mii_if, ecmd); 1859 spin_unlock_irq(&np->lock); 1860 return 0; 1861 } 1862 1863 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1864 { 1865 struct netdev_private *np = netdev_priv(dev); 1866 int res; 1867 spin_lock_irq(&np->lock); 1868 res = mii_ethtool_sset(&np->mii_if, ecmd); 1869 spin_unlock_irq(&np->lock); 1870 check_duplex(dev); 1871 return res; 1872 } 1873 1874 static int nway_reset(struct net_device *dev) 1875 { 1876 struct netdev_private *np = netdev_priv(dev); 1877 return mii_nway_restart(&np->mii_if); 1878 } 1879 1880 static u32 get_link(struct net_device *dev) 1881 { 1882 struct netdev_private *np = netdev_priv(dev); 1883 return mii_link_ok(&np->mii_if); 1884 } 1885 1886 static u32 get_msglevel(struct net_device *dev) 1887 { 1888 return debug; 1889 } 1890 1891 static void set_msglevel(struct net_device *dev, u32 val) 1892 { 1893 debug = val; 1894 } 1895 1896 static const struct ethtool_ops ethtool_ops = { 1897 .begin = check_if_running, 1898 .get_drvinfo = get_drvinfo, 1899 .get_settings = get_settings, 1900 .set_settings = set_settings, 1901 .nway_reset = nway_reset, 1902 .get_link = get_link, 1903 .get_msglevel = get_msglevel, 1904 .set_msglevel = set_msglevel, 1905 }; 1906 1907 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1908 { 1909 struct netdev_private *np = netdev_priv(dev); 1910 struct mii_ioctl_data *data = if_mii(rq); 1911 int rc; 1912 1913 if (!netif_running(dev)) 1914 return -EINVAL; 1915 1916 spin_lock_irq(&np->lock); 1917 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL); 1918 spin_unlock_irq(&np->lock); 1919 1920 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0])) 1921 check_duplex(dev); 1922 1923 return rc; 1924 } 1925 1926 static int netdev_close(struct net_device *dev) 1927 { 1928 struct netdev_private *np = netdev_priv(dev); 1929 void __iomem *ioaddr = np->base; 1930 int i; 1931 1932 netif_stop_queue(dev); 1933 1934 napi_disable(&np->napi); 1935 1936 if (debug > 1) { 1937 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n", 1938 dev->name, (int) readl(ioaddr + IntrStatus)); 1939 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1940 dev->name, np->cur_tx, np->dirty_tx, 1941 np->cur_rx, np->dirty_rx); 1942 } 1943 1944 /* Disable interrupts by clearing the interrupt mask. */ 1945 writel(0, ioaddr + IntrEnable); 1946 1947 /* Stop the chip's Tx and Rx processes. */ 1948 writel(0, ioaddr + GenCtrl); 1949 readl(ioaddr + GenCtrl); 1950 1951 if (debug > 5) { 1952 printk(KERN_DEBUG" Tx ring at %#llx:\n", 1953 (long long) np->tx_ring_dma); 1954 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++) 1955 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n", 1956 i, le32_to_cpu(np->tx_ring[i].status), 1957 (long long) dma_to_cpu(np->tx_ring[i].addr), 1958 le32_to_cpu(np->tx_done_q[i].status)); 1959 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n", 1960 (long long) np->rx_ring_dma, np->rx_done_q); 1961 if (np->rx_done_q) 1962 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) { 1963 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n", 1964 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status)); 1965 } 1966 } 1967 1968 free_irq(dev->irq, dev); 1969 1970 /* Free all the skbuffs in the Rx queue. */ 1971 for (i = 0; i < RX_RING_SIZE; i++) { 1972 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */ 1973 if (np->rx_info[i].skb != NULL) { 1974 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1975 dev_kfree_skb(np->rx_info[i].skb); 1976 } 1977 np->rx_info[i].skb = NULL; 1978 np->rx_info[i].mapping = 0; 1979 } 1980 for (i = 0; i < TX_RING_SIZE; i++) { 1981 struct sk_buff *skb = np->tx_info[i].skb; 1982 if (skb == NULL) 1983 continue; 1984 pci_unmap_single(np->pci_dev, 1985 np->tx_info[i].mapping, 1986 skb_first_frag_len(skb), PCI_DMA_TODEVICE); 1987 np->tx_info[i].mapping = 0; 1988 dev_kfree_skb(skb); 1989 np->tx_info[i].skb = NULL; 1990 } 1991 1992 return 0; 1993 } 1994 1995 #ifdef CONFIG_PM 1996 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state) 1997 { 1998 struct net_device *dev = pci_get_drvdata(pdev); 1999 2000 if (netif_running(dev)) { 2001 netif_device_detach(dev); 2002 netdev_close(dev); 2003 } 2004 2005 pci_save_state(pdev); 2006 pci_set_power_state(pdev, pci_choose_state(pdev,state)); 2007 2008 return 0; 2009 } 2010 2011 static int starfire_resume(struct pci_dev *pdev) 2012 { 2013 struct net_device *dev = pci_get_drvdata(pdev); 2014 2015 pci_set_power_state(pdev, PCI_D0); 2016 pci_restore_state(pdev); 2017 2018 if (netif_running(dev)) { 2019 netdev_open(dev); 2020 netif_device_attach(dev); 2021 } 2022 2023 return 0; 2024 } 2025 #endif /* CONFIG_PM */ 2026 2027 2028 static void __devexit starfire_remove_one (struct pci_dev *pdev) 2029 { 2030 struct net_device *dev = pci_get_drvdata(pdev); 2031 struct netdev_private *np = netdev_priv(dev); 2032 2033 BUG_ON(!dev); 2034 2035 unregister_netdev(dev); 2036 2037 if (np->queue_mem) 2038 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma); 2039 2040 2041 /* XXX: add wakeup code -- requires firmware for MagicPacket */ 2042 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */ 2043 pci_disable_device(pdev); 2044 2045 iounmap(np->base); 2046 pci_release_regions(pdev); 2047 2048 pci_set_drvdata(pdev, NULL); 2049 free_netdev(dev); /* Will also free np!! */ 2050 } 2051 2052 2053 static struct pci_driver starfire_driver = { 2054 .name = DRV_NAME, 2055 .probe = starfire_init_one, 2056 .remove = __devexit_p(starfire_remove_one), 2057 #ifdef CONFIG_PM 2058 .suspend = starfire_suspend, 2059 .resume = starfire_resume, 2060 #endif /* CONFIG_PM */ 2061 .id_table = starfire_pci_tbl, 2062 }; 2063 2064 2065 static int __init starfire_init (void) 2066 { 2067 /* when a module, this is printed whether or not devices are found in probe */ 2068 #ifdef MODULE 2069 printk(version); 2070 2071 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n"); 2072 #endif 2073 2074 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t)); 2075 2076 return pci_register_driver(&starfire_driver); 2077 } 2078 2079 2080 static void __exit starfire_cleanup (void) 2081 { 2082 pci_unregister_driver (&starfire_driver); 2083 } 2084 2085 2086 module_init(starfire_init); 2087 module_exit(starfire_cleanup); 2088 2089 2090 /* 2091 * Local variables: 2092 * c-basic-offset: 8 2093 * tab-width: 8 2094 * End: 2095 */ 2096