xref: /linux/drivers/net/ethernet/adaptec/starfire.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 	Written 1998-2000 by Donald Becker.
4 
5 	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 	send all bug reports to me, and not to Donald Becker, as this code
7 	has been heavily modified from Donald's original version.
8 
9 	This software may be used and distributed according to the terms of
10 	the GNU General Public License (GPL), incorporated herein by reference.
11 	Drivers based on or derived from this code fall under the GPL and must
12 	retain the authorship, copyright and license notice.  This file is not
13 	a complete program and may only be used when the entire operating
14 	system is licensed under the GPL.
15 
16 	The information below comes from Donald Becker's original driver:
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 	Support and updates available at
24 	http://www.scyld.com/network/starfire.html
25 	[link no longer provides useful info -jgarzik]
26 
27 */
28 
29 #define DRV_NAME	"starfire"
30 #define DRV_VERSION	"2.1"
31 #define DRV_RELDATE	"July  6, 2008"
32 
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h>		/* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 
51 /*
52  * The current frame processor firmware fails to checksum a fragment
53  * of length 1. If and when this is fixed, the #define below can be removed.
54  */
55 #define HAS_BROKEN_FIRMWARE
56 
57 /*
58  * If using the broken firmware, data must be padded to the next 32-bit boundary.
59  */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63 
64 /*
65  * Define this if using the driver with the zero-copy patch
66  */
67 #define ZEROCOPY
68 
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72 
73 /* The user-configurable values.
74    These may be modified when a driver module is loaded.*/
75 
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79 
80 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84    The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88 
89 #define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
90 /*
91  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92  * Setting to > 1518 effectively disables this feature.
93  *
94  * NOTE:
95  * The ia64 doesn't allow for unaligned loads even of integers being
96  * misaligned on a 2 byte boundary. Thus always force copying of
97  * packets as the starfire doesn't allow for misaligned DMAs ;-(
98  * 23/10/2000 - Jes
99  *
100  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101  * at least, having unaligned frames leads to a rather serious performance
102  * penalty. -Ion
103  */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109 
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116 
117 /* Used to pass the media type, etc.
118    Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119    The media type is usually passed in 'options[]'.
120    These variables are deprecated, use ethtool instead. -Ion
121 */
122 #define MAX_UNITS 8		/* More are supported, limit only on options */
123 static int options[MAX_UNITS] = {0, };
124 static int full_duplex[MAX_UNITS] = {0, };
125 
126 /* Operational parameters that are set at compile time. */
127 
128 /* The "native" ring sizes are either 256 or 2048.
129    However in some modes a descriptor may be marked to wrap the ring earlier.
130 */
131 #define RX_RING_SIZE	256
132 #define TX_RING_SIZE	32
133 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134 #define DONE_Q_SIZE	1024
135 /* All queues must be aligned on a 256-byte boundary */
136 #define QUEUE_ALIGN	256
137 
138 #if RX_RING_SIZE > 256
139 #define RX_Q_ENTRIES Rx2048QEntries
140 #else
141 #define RX_Q_ENTRIES Rx256QEntries
142 #endif
143 
144 /* Operational parameters that usually are not changed. */
145 /* Time in jiffies before concluding the transmitter is hung. */
146 #define TX_TIMEOUT	(2 * HZ)
147 
148 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
149 /* 64-bit dma_addr_t */
150 #define ADDR_64BITS	/* This chip uses 64 bit addresses. */
151 #define netdrv_addr_t __le64
152 #define cpu_to_dma(x) cpu_to_le64(x)
153 #define dma_to_cpu(x) le64_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
159 #else  /* 32-bit dma_addr_t */
160 #define netdrv_addr_t __le32
161 #define cpu_to_dma(x) cpu_to_le32(x)
162 #define dma_to_cpu(x) le32_to_cpu(x)
163 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
168 #endif
169 
170 #define skb_first_frag_len(skb)	skb_headlen(skb)
171 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
172 
173 /* Firmware names */
174 #define FIRMWARE_RX	"adaptec/starfire_rx.bin"
175 #define FIRMWARE_TX	"adaptec/starfire_tx.bin"
176 
177 /* These identify the driver base version and may not be removed. */
178 static const char version[] __devinitconst =
179 KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
180 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
181 
182 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_FIRMWARE(FIRMWARE_RX);
187 MODULE_FIRMWARE(FIRMWARE_TX);
188 
189 module_param(max_interrupt_work, int, 0);
190 module_param(mtu, int, 0);
191 module_param(debug, int, 0);
192 module_param(rx_copybreak, int, 0);
193 module_param(intr_latency, int, 0);
194 module_param(small_frames, int, 0);
195 module_param_array(options, int, NULL, 0);
196 module_param_array(full_duplex, int, NULL, 0);
197 module_param(enable_hw_cksum, int, 0);
198 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199 MODULE_PARM_DESC(mtu, "MTU (all boards)");
200 MODULE_PARM_DESC(debug, "Debug level (0-6)");
201 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
207 
208 /*
209 				Theory of Operation
210 
211 I. Board Compatibility
212 
213 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
214 
215 II. Board-specific settings
216 
217 III. Driver operation
218 
219 IIIa. Ring buffers
220 
221 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
222 ring sizes are set fixed by the hardware, but may optionally be wrapped
223 earlier by the END bit in the descriptor.
224 This driver uses that hardware queue size for the Rx ring, where a large
225 number of entries has no ill effect beyond increases the potential backlog.
226 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227 disables the queue layer priority ordering and we have no mechanism to
228 utilize the hardware two-level priority queue.  When modifying the
229 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230 levels.
231 
232 IIIb/c. Transmit/Receive Structure
233 
234 See the Adaptec manual for the many possible structures, and options for
235 each structure.  There are far too many to document all of them here.
236 
237 For transmit this driver uses type 0/1 transmit descriptors (depending
238 on the 32/64 bitness of the architecture), and relies on automatic
239 minimum-length padding.  It does not use the completion queue
240 consumer index, but instead checks for non-zero status entries.
241 
242 For receive this driver uses type 2/3 receive descriptors.  The driver
243 allocates full frame size skbuffs for the Rx ring buffers, so all frames
244 should fit in a single descriptor.  The driver does not use the completion
245 queue consumer index, but instead checks for non-zero status entries.
246 
247 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248 is allocated and the frame is copied to the new skbuff.  When the incoming
249 frame is larger, the skbuff is passed directly up the protocol stack.
250 Buffers consumed this way are replaced by newly allocated skbuffs in a later
251 phase of receive.
252 
253 A notable aspect of operation is that unaligned buffers are not permitted by
254 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
255 isn't longword aligned, which may cause problems on some machine
256 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257 the frame into a new skbuff unconditionally. Copied frames are put into the
258 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
259 
260 IIId. Synchronization
261 
262 The driver runs as two independent, single-threaded flows of control.  One
263 is the send-packet routine, which enforces single-threaded use by the
264 dev->tbusy flag.  The other thread is the interrupt handler, which is single
265 threaded by the hardware and interrupt handling software.
266 
267 The send packet thread has partial control over the Tx ring and the netif_queue
268 status. If the number of free Tx slots in the ring falls below a certain number
269 (currently hardcoded to 4), it signals the upper layer to stop the queue.
270 
271 The interrupt handler has exclusive control over the Rx ring and records stats
272 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
273 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274 number of free Tx slow is above the threshold, it signals the upper layer to
275 restart the queue.
276 
277 IV. Notes
278 
279 IVb. References
280 
281 The Adaptec Starfire manuals, available only from Adaptec.
282 http://www.scyld.com/expert/100mbps.html
283 http://www.scyld.com/expert/NWay.html
284 
285 IVc. Errata
286 
287 - StopOnPerr is broken, don't enable
288 - Hardware ethernet padding exposes random data, perform software padding
289   instead (unverified -- works correctly for all the hardware I have)
290 
291 */
292 
293 
294 
295 enum chip_capability_flags {CanHaveMII=1, };
296 
297 enum chipset {
298 	CH_6915 = 0,
299 };
300 
301 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
302 	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
303 	{ 0, }
304 };
305 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
306 
307 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
308 static const struct chip_info {
309 	const char *name;
310 	int drv_flags;
311 } netdrv_tbl[] __devinitdata = {
312 	{ "Adaptec Starfire 6915", CanHaveMII },
313 };
314 
315 
316 /* Offsets to the device registers.
317    Unlike software-only systems, device drivers interact with complex hardware.
318    It's not useful to define symbolic names for every register bit in the
319    device.  The name can only partially document the semantics and make
320    the driver longer and more difficult to read.
321    In general, only the important configuration values or bits changed
322    multiple times should be defined symbolically.
323 */
324 enum register_offsets {
325 	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
331 	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 	TxThreshold=0x500B0,
333 	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 	TxMode=0x55000, VlanType=0x55064,
339 	PerfFilterTable=0x56000, HashTable=0x56100,
340 	TxGfpMem=0x58000, RxGfpMem=0x5a000,
341 };
342 
343 /*
344  * Bits in the interrupt status/mask registers.
345  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346  * enables all the interrupt sources that are or'ed into those status bits.
347  */
348 enum intr_status_bits {
349 	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 	IntrTxGfp=0x02, IntrPCIPad=0x01,
363 	/* not quite bits */
364 	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
367 };
368 
369 /* Bits in the RxFilterMode register. */
370 enum rx_mode_bits {
371 	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 	WakeupOnGFP=0x0800,
375 };
376 
377 /* Bits in the TxMode register */
378 enum tx_mode_bits {
379 	MiiSoftReset=0x8000, MIILoopback=0x4000,
380 	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
382 };
383 
384 /* Bits in the TxDescCtrl register. */
385 enum tx_ctrl_bits {
386 	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 	TxDescSpace128=0x30, TxDescSpace256=0x40,
388 	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 	TxDescType3=0x03, TxDescType4=0x04,
390 	TxNoDMACompletion=0x08,
391 	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 	TxDMABurstSizeShift=8,
394 };
395 
396 /* Bits in the RxDescQCtrl register. */
397 enum rx_ctrl_bits {
398 	RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 	Rx2048QEntries=0x4000, Rx256QEntries=0,
401 	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 	RxDescSpace4=0x000, RxDescSpace8=0x100,
404 	RxDescSpace16=0x200, RxDescSpace32=0x300,
405 	RxDescSpace64=0x400, RxDescSpace128=0x500,
406 	RxConsumerWrEn=0x80,
407 };
408 
409 /* Bits in the RxDMACtrl register. */
410 enum rx_dmactrl_bits {
411 	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 	RxChecksumRejectTCPOnly=0x01000000,
416 	RxCompletionQ2Enable=0x800000,
417 	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 	RxDMAQ2NonIP=0x400000,
420 	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 	RxBurstSizeShift=0,
423 };
424 
425 /* Bits in the RxCompletionAddr register */
426 enum rx_compl_bits {
427 	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 	RxComplProducerWrEn=0x40,
429 	RxComplType0=0x00, RxComplType1=0x10,
430 	RxComplType2=0x20, RxComplType3=0x30,
431 	RxComplThreshShift=0,
432 };
433 
434 /* Bits in the TxCompletionAddr register */
435 enum tx_compl_bits {
436 	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 	TxComplProducerWrEn=0x40,
438 	TxComplIntrStatus=0x20,
439 	CommonQueueMode=0x10,
440 	TxComplThreshShift=0,
441 };
442 
443 /* Bits in the GenCtrl register */
444 enum gen_ctrl_bits {
445 	RxEnable=0x05, TxEnable=0x0a,
446 	RxGFPEnable=0x10, TxGFPEnable=0x20,
447 };
448 
449 /* Bits in the IntrTimerCtrl register */
450 enum intr_ctrl_bits {
451 	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 	IntrLatencyMask=0x1f,
454 };
455 
456 /* The Rx and Tx buffer descriptors. */
457 struct starfire_rx_desc {
458 	netdrv_addr_t rxaddr;
459 };
460 enum rx_desc_bits {
461 	RxDescValid=1, RxDescEndRing=2,
462 };
463 
464 /* Completion queue entry. */
465 struct short_rx_done_desc {
466 	__le32 status;			/* Low 16 bits is length. */
467 };
468 struct basic_rx_done_desc {
469 	__le32 status;			/* Low 16 bits is length. */
470 	__le16 vlanid;
471 	__le16 status2;
472 };
473 struct csum_rx_done_desc {
474 	__le32 status;			/* Low 16 bits is length. */
475 	__le16 csum;			/* Partial checksum */
476 	__le16 status2;
477 };
478 struct full_rx_done_desc {
479 	__le32 status;			/* Low 16 bits is length. */
480 	__le16 status3;
481 	__le16 status2;
482 	__le16 vlanid;
483 	__le16 csum;			/* partial checksum */
484 	__le32 timestamp;
485 };
486 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
487 #ifdef VLAN_SUPPORT
488 typedef struct full_rx_done_desc rx_done_desc;
489 #define RxComplType RxComplType3
490 #else  /* not VLAN_SUPPORT */
491 typedef struct csum_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType2
493 #endif /* not VLAN_SUPPORT */
494 
495 enum rx_done_bits {
496 	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
497 };
498 
499 /* Type 1 Tx descriptor. */
500 struct starfire_tx_desc_1 {
501 	__le32 status;			/* Upper bits are status, lower 16 length. */
502 	__le32 addr;
503 };
504 
505 /* Type 2 Tx descriptor. */
506 struct starfire_tx_desc_2 {
507 	__le32 status;			/* Upper bits are status, lower 16 length. */
508 	__le32 reserved;
509 	__le64 addr;
510 };
511 
512 #ifdef ADDR_64BITS
513 typedef struct starfire_tx_desc_2 starfire_tx_desc;
514 #define TX_DESC_TYPE TxDescType2
515 #else  /* not ADDR_64BITS */
516 typedef struct starfire_tx_desc_1 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType1
518 #endif /* not ADDR_64BITS */
519 #define TX_DESC_SPACING TxDescSpaceUnlim
520 
521 enum tx_desc_bits {
522 	TxDescID=0xB0000000,
523 	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
525 };
526 struct tx_done_desc {
527 	__le32 status;			/* timestamp, index. */
528 #if 0
529 	__le32 intrstatus;		/* interrupt status */
530 #endif
531 };
532 
533 struct rx_ring_info {
534 	struct sk_buff *skb;
535 	dma_addr_t mapping;
536 };
537 struct tx_ring_info {
538 	struct sk_buff *skb;
539 	dma_addr_t mapping;
540 	unsigned int used_slots;
541 };
542 
543 #define PHY_CNT		2
544 struct netdev_private {
545 	/* Descriptor rings first for alignment. */
546 	struct starfire_rx_desc *rx_ring;
547 	starfire_tx_desc *tx_ring;
548 	dma_addr_t rx_ring_dma;
549 	dma_addr_t tx_ring_dma;
550 	/* The addresses of rx/tx-in-place skbuffs. */
551 	struct rx_ring_info rx_info[RX_RING_SIZE];
552 	struct tx_ring_info tx_info[TX_RING_SIZE];
553 	/* Pointers to completion queues (full pages). */
554 	rx_done_desc *rx_done_q;
555 	dma_addr_t rx_done_q_dma;
556 	unsigned int rx_done;
557 	struct tx_done_desc *tx_done_q;
558 	dma_addr_t tx_done_q_dma;
559 	unsigned int tx_done;
560 	struct napi_struct napi;
561 	struct net_device *dev;
562 	struct pci_dev *pci_dev;
563 #ifdef VLAN_SUPPORT
564 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
565 #endif
566 	void *queue_mem;
567 	dma_addr_t queue_mem_dma;
568 	size_t queue_mem_size;
569 
570 	/* Frequently used values: keep some adjacent for cache effect. */
571 	spinlock_t lock;
572 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
573 	unsigned int cur_tx, dirty_tx, reap_tx;
574 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
575 	/* These values keep track of the transceiver/media in use. */
576 	int speed100;			/* Set if speed == 100MBit. */
577 	u32 tx_mode;
578 	u32 intr_timer_ctrl;
579 	u8 tx_threshold;
580 	/* MII transceiver section. */
581 	struct mii_if_info mii_if;		/* MII lib hooks/info */
582 	int phy_cnt;			/* MII device addresses. */
583 	unsigned char phys[PHY_CNT];	/* MII device addresses. */
584 	void __iomem *base;
585 };
586 
587 
588 static int	mdio_read(struct net_device *dev, int phy_id, int location);
589 static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
590 static int	netdev_open(struct net_device *dev);
591 static void	check_duplex(struct net_device *dev);
592 static void	tx_timeout(struct net_device *dev);
593 static void	init_ring(struct net_device *dev);
594 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
595 static irqreturn_t intr_handler(int irq, void *dev_instance);
596 static void	netdev_error(struct net_device *dev, int intr_status);
597 static int	__netdev_rx(struct net_device *dev, int *quota);
598 static int	netdev_poll(struct napi_struct *napi, int budget);
599 static void	refill_rx_ring(struct net_device *dev);
600 static void	netdev_error(struct net_device *dev, int intr_status);
601 static void	set_rx_mode(struct net_device *dev);
602 static struct net_device_stats *get_stats(struct net_device *dev);
603 static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604 static int	netdev_close(struct net_device *dev);
605 static void	netdev_media_change(struct net_device *dev);
606 static const struct ethtool_ops ethtool_ops;
607 
608 
609 #ifdef VLAN_SUPPORT
610 static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
611 {
612 	struct netdev_private *np = netdev_priv(dev);
613 
614 	spin_lock(&np->lock);
615 	if (debug > 1)
616 		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
617 	set_bit(vid, np->active_vlans);
618 	set_rx_mode(dev);
619 	spin_unlock(&np->lock);
620 
621 	return 0;
622 }
623 
624 static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
625 {
626 	struct netdev_private *np = netdev_priv(dev);
627 
628 	spin_lock(&np->lock);
629 	if (debug > 1)
630 		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
631 	clear_bit(vid, np->active_vlans);
632 	set_rx_mode(dev);
633 	spin_unlock(&np->lock);
634 
635 	return 0;
636 }
637 #endif /* VLAN_SUPPORT */
638 
639 
640 static const struct net_device_ops netdev_ops = {
641 	.ndo_open		= netdev_open,
642 	.ndo_stop		= netdev_close,
643 	.ndo_start_xmit		= start_tx,
644 	.ndo_tx_timeout		= tx_timeout,
645 	.ndo_get_stats		= get_stats,
646 	.ndo_set_rx_mode	= set_rx_mode,
647 	.ndo_do_ioctl		= netdev_ioctl,
648 	.ndo_change_mtu		= eth_change_mtu,
649 	.ndo_set_mac_address	= eth_mac_addr,
650 	.ndo_validate_addr	= eth_validate_addr,
651 #ifdef VLAN_SUPPORT
652 	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
653 	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
654 #endif
655 };
656 
657 static int __devinit starfire_init_one(struct pci_dev *pdev,
658 				       const struct pci_device_id *ent)
659 {
660 	struct netdev_private *np;
661 	int i, irq, option, chip_idx = ent->driver_data;
662 	struct net_device *dev;
663 	static int card_idx = -1;
664 	long ioaddr;
665 	void __iomem *base;
666 	int drv_flags, io_size;
667 	int boguscnt;
668 
669 /* when built into the kernel, we only print version if device is found */
670 #ifndef MODULE
671 	static int printed_version;
672 	if (!printed_version++)
673 		printk(version);
674 #endif
675 
676 	card_idx++;
677 
678 	if (pci_enable_device (pdev))
679 		return -EIO;
680 
681 	ioaddr = pci_resource_start(pdev, 0);
682 	io_size = pci_resource_len(pdev, 0);
683 	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
684 		printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
685 		return -ENODEV;
686 	}
687 
688 	dev = alloc_etherdev(sizeof(*np));
689 	if (!dev) {
690 		printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
691 		return -ENOMEM;
692 	}
693 	SET_NETDEV_DEV(dev, &pdev->dev);
694 
695 	irq = pdev->irq;
696 
697 	if (pci_request_regions (pdev, DRV_NAME)) {
698 		printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
699 		goto err_out_free_netdev;
700 	}
701 
702 	base = ioremap(ioaddr, io_size);
703 	if (!base) {
704 		printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
705 			card_idx, io_size, ioaddr);
706 		goto err_out_free_res;
707 	}
708 
709 	pci_set_master(pdev);
710 
711 	/* enable MWI -- it vastly improves Rx performance on sparc64 */
712 	pci_try_set_mwi(pdev);
713 
714 #ifdef ZEROCOPY
715 	/* Starfire can do TCP/UDP checksumming */
716 	if (enable_hw_cksum)
717 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
718 #endif /* ZEROCOPY */
719 
720 #ifdef VLAN_SUPPORT
721 	dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
722 #endif /* VLAN_RX_KILL_VID */
723 #ifdef ADDR_64BITS
724 	dev->features |= NETIF_F_HIGHDMA;
725 #endif /* ADDR_64BITS */
726 
727 	/* Serial EEPROM reads are hidden by the hardware. */
728 	for (i = 0; i < 6; i++)
729 		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
730 
731 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
732 	if (debug > 4)
733 		for (i = 0; i < 0x20; i++)
734 			printk("%2.2x%s",
735 			       (unsigned int)readb(base + EEPROMCtrl + i),
736 			       i % 16 != 15 ? " " : "\n");
737 #endif
738 
739 	/* Issue soft reset */
740 	writel(MiiSoftReset, base + TxMode);
741 	udelay(1000);
742 	writel(0, base + TxMode);
743 
744 	/* Reset the chip to erase previous misconfiguration. */
745 	writel(1, base + PCIDeviceConfig);
746 	boguscnt = 1000;
747 	while (--boguscnt > 0) {
748 		udelay(10);
749 		if ((readl(base + PCIDeviceConfig) & 1) == 0)
750 			break;
751 	}
752 	if (boguscnt == 0)
753 		printk("%s: chipset reset never completed!\n", dev->name);
754 	/* wait a little longer */
755 	udelay(1000);
756 
757 	dev->base_addr = (unsigned long)base;
758 	dev->irq = irq;
759 
760 	np = netdev_priv(dev);
761 	np->dev = dev;
762 	np->base = base;
763 	spin_lock_init(&np->lock);
764 	pci_set_drvdata(pdev, dev);
765 
766 	np->pci_dev = pdev;
767 
768 	np->mii_if.dev = dev;
769 	np->mii_if.mdio_read = mdio_read;
770 	np->mii_if.mdio_write = mdio_write;
771 	np->mii_if.phy_id_mask = 0x1f;
772 	np->mii_if.reg_num_mask = 0x1f;
773 
774 	drv_flags = netdrv_tbl[chip_idx].drv_flags;
775 
776 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
777 	if (dev->mem_start)
778 		option = dev->mem_start;
779 
780 	/* The lower four bits are the media type. */
781 	if (option & 0x200)
782 		np->mii_if.full_duplex = 1;
783 
784 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
785 		np->mii_if.full_duplex = 1;
786 
787 	if (np->mii_if.full_duplex)
788 		np->mii_if.force_media = 1;
789 	else
790 		np->mii_if.force_media = 0;
791 	np->speed100 = 1;
792 
793 	/* timer resolution is 128 * 0.8us */
794 	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
795 		Timer10X | EnableIntrMasking;
796 
797 	if (small_frames > 0) {
798 		np->intr_timer_ctrl |= SmallFrameBypass;
799 		switch (small_frames) {
800 		case 1 ... 64:
801 			np->intr_timer_ctrl |= SmallFrame64;
802 			break;
803 		case 65 ... 128:
804 			np->intr_timer_ctrl |= SmallFrame128;
805 			break;
806 		case 129 ... 256:
807 			np->intr_timer_ctrl |= SmallFrame256;
808 			break;
809 		default:
810 			np->intr_timer_ctrl |= SmallFrame512;
811 			if (small_frames > 512)
812 				printk("Adjusting small_frames down to 512\n");
813 			break;
814 		}
815 	}
816 
817 	dev->netdev_ops = &netdev_ops;
818 	dev->watchdog_timeo = TX_TIMEOUT;
819 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
820 
821 	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
822 
823 	if (mtu)
824 		dev->mtu = mtu;
825 
826 	if (register_netdev(dev))
827 		goto err_out_cleardev;
828 
829 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
830 	       dev->name, netdrv_tbl[chip_idx].name, base,
831 	       dev->dev_addr, irq);
832 
833 	if (drv_flags & CanHaveMII) {
834 		int phy, phy_idx = 0;
835 		int mii_status;
836 		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
837 			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
838 			mdelay(100);
839 			boguscnt = 1000;
840 			while (--boguscnt > 0)
841 				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
842 					break;
843 			if (boguscnt == 0) {
844 				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
845 				continue;
846 			}
847 			mii_status = mdio_read(dev, phy, MII_BMSR);
848 			if (mii_status != 0) {
849 				np->phys[phy_idx++] = phy;
850 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
851 				printk(KERN_INFO "%s: MII PHY found at address %d, status "
852 					   "%#4.4x advertising %#4.4x.\n",
853 					   dev->name, phy, mii_status, np->mii_if.advertising);
854 				/* there can be only one PHY on-board */
855 				break;
856 			}
857 		}
858 		np->phy_cnt = phy_idx;
859 		if (np->phy_cnt > 0)
860 			np->mii_if.phy_id = np->phys[0];
861 		else
862 			memset(&np->mii_if, 0, sizeof(np->mii_if));
863 	}
864 
865 	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
866 	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
867 	return 0;
868 
869 err_out_cleardev:
870 	pci_set_drvdata(pdev, NULL);
871 	iounmap(base);
872 err_out_free_res:
873 	pci_release_regions (pdev);
874 err_out_free_netdev:
875 	free_netdev(dev);
876 	return -ENODEV;
877 }
878 
879 
880 /* Read the MII Management Data I/O (MDIO) interfaces. */
881 static int mdio_read(struct net_device *dev, int phy_id, int location)
882 {
883 	struct netdev_private *np = netdev_priv(dev);
884 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
885 	int result, boguscnt=1000;
886 	/* ??? Should we add a busy-wait here? */
887 	do {
888 		result = readl(mdio_addr);
889 	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
890 	if (boguscnt == 0)
891 		return 0;
892 	if ((result & 0xffff) == 0xffff)
893 		return 0;
894 	return result & 0xffff;
895 }
896 
897 
898 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
899 {
900 	struct netdev_private *np = netdev_priv(dev);
901 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
902 	writel(value, mdio_addr);
903 	/* The busy-wait will occur before a read. */
904 }
905 
906 
907 static int netdev_open(struct net_device *dev)
908 {
909 	const struct firmware *fw_rx, *fw_tx;
910 	const __be32 *fw_rx_data, *fw_tx_data;
911 	struct netdev_private *np = netdev_priv(dev);
912 	void __iomem *ioaddr = np->base;
913 	int i, retval;
914 	size_t tx_size, rx_size;
915 	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
916 
917 	/* Do we ever need to reset the chip??? */
918 
919 	retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
920 	if (retval)
921 		return retval;
922 
923 	/* Disable the Rx and Tx, and reset the chip. */
924 	writel(0, ioaddr + GenCtrl);
925 	writel(1, ioaddr + PCIDeviceConfig);
926 	if (debug > 1)
927 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
928 		       dev->name, dev->irq);
929 
930 	/* Allocate the various queues. */
931 	if (!np->queue_mem) {
932 		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
933 		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
934 		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
935 		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
936 		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
937 		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
938 		if (np->queue_mem == NULL) {
939 			free_irq(dev->irq, dev);
940 			return -ENOMEM;
941 		}
942 
943 		np->tx_done_q     = np->queue_mem;
944 		np->tx_done_q_dma = np->queue_mem_dma;
945 		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
946 		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
947 		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
948 		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
949 		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
950 		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
951 	}
952 
953 	/* Start with no carrier, it gets adjusted later */
954 	netif_carrier_off(dev);
955 	init_ring(dev);
956 	/* Set the size of the Rx buffers. */
957 	writel((np->rx_buf_sz << RxBufferLenShift) |
958 	       (0 << RxMinDescrThreshShift) |
959 	       RxPrefetchMode | RxVariableQ |
960 	       RX_Q_ENTRIES |
961 	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
962 	       RxDescSpace4,
963 	       ioaddr + RxDescQCtrl);
964 
965 	/* Set up the Rx DMA controller. */
966 	writel(RxChecksumIgnore |
967 	       (0 << RxEarlyIntThreshShift) |
968 	       (6 << RxHighPrioThreshShift) |
969 	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
970 	       ioaddr + RxDMACtrl);
971 
972 	/* Set Tx descriptor */
973 	writel((2 << TxHiPriFIFOThreshShift) |
974 	       (0 << TxPadLenShift) |
975 	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
976 	       TX_DESC_Q_ADDR_SIZE |
977 	       TX_DESC_SPACING | TX_DESC_TYPE,
978 	       ioaddr + TxDescCtrl);
979 
980 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
981 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
982 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
983 	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
984 	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
985 
986 	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
987 	writel(np->rx_done_q_dma |
988 	       RxComplType |
989 	       (0 << RxComplThreshShift),
990 	       ioaddr + RxCompletionAddr);
991 
992 	if (debug > 1)
993 		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
994 
995 	/* Fill both the Tx SA register and the Rx perfect filter. */
996 	for (i = 0; i < 6; i++)
997 		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
998 	/* The first entry is special because it bypasses the VLAN filter.
999 	   Don't use it. */
1000 	writew(0, ioaddr + PerfFilterTable);
1001 	writew(0, ioaddr + PerfFilterTable + 4);
1002 	writew(0, ioaddr + PerfFilterTable + 8);
1003 	for (i = 1; i < 16; i++) {
1004 		__be16 *eaddrs = (__be16 *)dev->dev_addr;
1005 		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1006 		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1007 		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1008 		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1009 	}
1010 
1011 	/* Initialize other registers. */
1012 	/* Configure the PCI bus bursts and FIFO thresholds. */
1013 	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
1014 	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1015 	udelay(1000);
1016 	writel(np->tx_mode, ioaddr + TxMode);
1017 	np->tx_threshold = 4;
1018 	writel(np->tx_threshold, ioaddr + TxThreshold);
1019 
1020 	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1021 
1022 	napi_enable(&np->napi);
1023 
1024 	netif_start_queue(dev);
1025 
1026 	if (debug > 1)
1027 		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1028 	set_rx_mode(dev);
1029 
1030 	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1031 	check_duplex(dev);
1032 
1033 	/* Enable GPIO interrupts on link change */
1034 	writel(0x0f00ff00, ioaddr + GPIOCtrl);
1035 
1036 	/* Set the interrupt mask */
1037 	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1038 	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1039 	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1040 	       ioaddr + IntrEnable);
1041 	/* Enable PCI interrupts. */
1042 	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1043 	       ioaddr + PCIDeviceConfig);
1044 
1045 #ifdef VLAN_SUPPORT
1046 	/* Set VLAN type to 802.1q */
1047 	writel(ETH_P_8021Q, ioaddr + VlanType);
1048 #endif /* VLAN_SUPPORT */
1049 
1050 	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1051 	if (retval) {
1052 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1053 		       FIRMWARE_RX);
1054 		goto out_init;
1055 	}
1056 	if (fw_rx->size % 4) {
1057 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1058 		       fw_rx->size, FIRMWARE_RX);
1059 		retval = -EINVAL;
1060 		goto out_rx;
1061 	}
1062 	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1063 	if (retval) {
1064 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1065 		       FIRMWARE_TX);
1066 		goto out_rx;
1067 	}
1068 	if (fw_tx->size % 4) {
1069 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1070 		       fw_tx->size, FIRMWARE_TX);
1071 		retval = -EINVAL;
1072 		goto out_tx;
1073 	}
1074 	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1075 	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1076 	rx_size = fw_rx->size / 4;
1077 	tx_size = fw_tx->size / 4;
1078 
1079 	/* Load Rx/Tx firmware into the frame processors */
1080 	for (i = 0; i < rx_size; i++)
1081 		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1082 	for (i = 0; i < tx_size; i++)
1083 		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1084 	if (enable_hw_cksum)
1085 		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1086 		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1087 	else
1088 		/* Enable the Rx and Tx units only. */
1089 		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1090 
1091 	if (debug > 1)
1092 		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1093 		       dev->name);
1094 
1095 out_tx:
1096 	release_firmware(fw_tx);
1097 out_rx:
1098 	release_firmware(fw_rx);
1099 out_init:
1100 	if (retval)
1101 		netdev_close(dev);
1102 	return retval;
1103 }
1104 
1105 
1106 static void check_duplex(struct net_device *dev)
1107 {
1108 	struct netdev_private *np = netdev_priv(dev);
1109 	u16 reg0;
1110 	int silly_count = 1000;
1111 
1112 	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1113 	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1114 	udelay(500);
1115 	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1116 		/* do nothing */;
1117 	if (!silly_count) {
1118 		printk("%s: MII reset failed!\n", dev->name);
1119 		return;
1120 	}
1121 
1122 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1123 
1124 	if (!np->mii_if.force_media) {
1125 		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1126 	} else {
1127 		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1128 		if (np->speed100)
1129 			reg0 |= BMCR_SPEED100;
1130 		if (np->mii_if.full_duplex)
1131 			reg0 |= BMCR_FULLDPLX;
1132 		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1133 		       dev->name,
1134 		       np->speed100 ? "100" : "10",
1135 		       np->mii_if.full_duplex ? "full" : "half");
1136 	}
1137 	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1138 }
1139 
1140 
1141 static void tx_timeout(struct net_device *dev)
1142 {
1143 	struct netdev_private *np = netdev_priv(dev);
1144 	void __iomem *ioaddr = np->base;
1145 	int old_debug;
1146 
1147 	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1148 	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1149 
1150 	/* Perhaps we should reinitialize the hardware here. */
1151 
1152 	/*
1153 	 * Stop and restart the interface.
1154 	 * Cheat and increase the debug level temporarily.
1155 	 */
1156 	old_debug = debug;
1157 	debug = 2;
1158 	netdev_close(dev);
1159 	netdev_open(dev);
1160 	debug = old_debug;
1161 
1162 	/* Trigger an immediate transmit demand. */
1163 
1164 	dev->trans_start = jiffies; /* prevent tx timeout */
1165 	dev->stats.tx_errors++;
1166 	netif_wake_queue(dev);
1167 }
1168 
1169 
1170 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1171 static void init_ring(struct net_device *dev)
1172 {
1173 	struct netdev_private *np = netdev_priv(dev);
1174 	int i;
1175 
1176 	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1177 	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1178 
1179 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1180 
1181 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1182 	for (i = 0; i < RX_RING_SIZE; i++) {
1183 		struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1184 		np->rx_info[i].skb = skb;
1185 		if (skb == NULL)
1186 			break;
1187 		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1188 		skb->dev = dev;			/* Mark as being used by this device. */
1189 		/* Grrr, we cannot offset to correctly align the IP header. */
1190 		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1191 	}
1192 	writew(i - 1, np->base + RxDescQIdx);
1193 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1194 
1195 	/* Clear the remainder of the Rx buffer ring. */
1196 	for (  ; i < RX_RING_SIZE; i++) {
1197 		np->rx_ring[i].rxaddr = 0;
1198 		np->rx_info[i].skb = NULL;
1199 		np->rx_info[i].mapping = 0;
1200 	}
1201 	/* Mark the last entry as wrapping the ring. */
1202 	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1203 
1204 	/* Clear the completion rings. */
1205 	for (i = 0; i < DONE_Q_SIZE; i++) {
1206 		np->rx_done_q[i].status = 0;
1207 		np->tx_done_q[i].status = 0;
1208 	}
1209 
1210 	for (i = 0; i < TX_RING_SIZE; i++)
1211 		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1212 }
1213 
1214 
1215 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1216 {
1217 	struct netdev_private *np = netdev_priv(dev);
1218 	unsigned int entry;
1219 	u32 status;
1220 	int i;
1221 
1222 	/*
1223 	 * be cautious here, wrapping the queue has weird semantics
1224 	 * and we may not have enough slots even when it seems we do.
1225 	 */
1226 	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1227 		netif_stop_queue(dev);
1228 		return NETDEV_TX_BUSY;
1229 	}
1230 
1231 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1232 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1233 		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1234 			return NETDEV_TX_OK;
1235 	}
1236 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1237 
1238 	entry = np->cur_tx % TX_RING_SIZE;
1239 	for (i = 0; i < skb_num_frags(skb); i++) {
1240 		int wrap_ring = 0;
1241 		status = TxDescID;
1242 
1243 		if (i == 0) {
1244 			np->tx_info[entry].skb = skb;
1245 			status |= TxCRCEn;
1246 			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1247 				status |= TxRingWrap;
1248 				wrap_ring = 1;
1249 			}
1250 			if (np->reap_tx) {
1251 				status |= TxDescIntr;
1252 				np->reap_tx = 0;
1253 			}
1254 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1255 				status |= TxCalTCP;
1256 				dev->stats.tx_compressed++;
1257 			}
1258 			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1259 
1260 			np->tx_info[entry].mapping =
1261 				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1262 		} else {
1263 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1264 			status |= skb_frag_size(this_frag);
1265 			np->tx_info[entry].mapping =
1266 				pci_map_single(np->pci_dev,
1267 					       skb_frag_address(this_frag),
1268 					       skb_frag_size(this_frag),
1269 					       PCI_DMA_TODEVICE);
1270 		}
1271 
1272 		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1273 		np->tx_ring[entry].status = cpu_to_le32(status);
1274 		if (debug > 3)
1275 			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1276 			       dev->name, np->cur_tx, np->dirty_tx,
1277 			       entry, status);
1278 		if (wrap_ring) {
1279 			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1280 			np->cur_tx += np->tx_info[entry].used_slots;
1281 			entry = 0;
1282 		} else {
1283 			np->tx_info[entry].used_slots = 1;
1284 			np->cur_tx += np->tx_info[entry].used_slots;
1285 			entry++;
1286 		}
1287 		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1288 		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1289 			np->reap_tx = 1;
1290 	}
1291 
1292 	/* Non-x86: explicitly flush descriptor cache lines here. */
1293 	/* Ensure all descriptors are written back before the transmit is
1294 	   initiated. - Jes */
1295 	wmb();
1296 
1297 	/* Update the producer index. */
1298 	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1299 
1300 	/* 4 is arbitrary, but should be ok */
1301 	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1302 		netif_stop_queue(dev);
1303 
1304 	return NETDEV_TX_OK;
1305 }
1306 
1307 
1308 /* The interrupt handler does all of the Rx thread work and cleans up
1309    after the Tx thread. */
1310 static irqreturn_t intr_handler(int irq, void *dev_instance)
1311 {
1312 	struct net_device *dev = dev_instance;
1313 	struct netdev_private *np = netdev_priv(dev);
1314 	void __iomem *ioaddr = np->base;
1315 	int boguscnt = max_interrupt_work;
1316 	int consumer;
1317 	int tx_status;
1318 	int handled = 0;
1319 
1320 	do {
1321 		u32 intr_status = readl(ioaddr + IntrClear);
1322 
1323 		if (debug > 4)
1324 			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1325 			       dev->name, intr_status);
1326 
1327 		if (intr_status == 0 || intr_status == (u32) -1)
1328 			break;
1329 
1330 		handled = 1;
1331 
1332 		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1333 			u32 enable;
1334 
1335 			if (likely(napi_schedule_prep(&np->napi))) {
1336 				__napi_schedule(&np->napi);
1337 				enable = readl(ioaddr + IntrEnable);
1338 				enable &= ~(IntrRxDone | IntrRxEmpty);
1339 				writel(enable, ioaddr + IntrEnable);
1340 				/* flush PCI posting buffers */
1341 				readl(ioaddr + IntrEnable);
1342 			} else {
1343 				/* Paranoia check */
1344 				enable = readl(ioaddr + IntrEnable);
1345 				if (enable & (IntrRxDone | IntrRxEmpty)) {
1346 					printk(KERN_INFO
1347 					       "%s: interrupt while in poll!\n",
1348 					       dev->name);
1349 					enable &= ~(IntrRxDone | IntrRxEmpty);
1350 					writel(enable, ioaddr + IntrEnable);
1351 				}
1352 			}
1353 		}
1354 
1355 		/* Scavenge the skbuff list based on the Tx-done queue.
1356 		   There are redundant checks here that may be cleaned up
1357 		   after the driver has proven to be reliable. */
1358 		consumer = readl(ioaddr + TxConsumerIdx);
1359 		if (debug > 3)
1360 			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1361 			       dev->name, consumer);
1362 
1363 		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1364 			if (debug > 3)
1365 				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1366 				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1367 			if ((tx_status & 0xe0000000) == 0xa0000000) {
1368 				dev->stats.tx_packets++;
1369 			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1370 				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1371 				struct sk_buff *skb = np->tx_info[entry].skb;
1372 				np->tx_info[entry].skb = NULL;
1373 				pci_unmap_single(np->pci_dev,
1374 						 np->tx_info[entry].mapping,
1375 						 skb_first_frag_len(skb),
1376 						 PCI_DMA_TODEVICE);
1377 				np->tx_info[entry].mapping = 0;
1378 				np->dirty_tx += np->tx_info[entry].used_slots;
1379 				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1380 				{
1381 					int i;
1382 					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1383 						pci_unmap_single(np->pci_dev,
1384 								 np->tx_info[entry].mapping,
1385 								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1386 								 PCI_DMA_TODEVICE);
1387 						np->dirty_tx++;
1388 						entry++;
1389 					}
1390 				}
1391 
1392 				dev_kfree_skb_irq(skb);
1393 			}
1394 			np->tx_done_q[np->tx_done].status = 0;
1395 			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1396 		}
1397 		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1398 
1399 		if (netif_queue_stopped(dev) &&
1400 		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1401 			/* The ring is no longer full, wake the queue. */
1402 			netif_wake_queue(dev);
1403 		}
1404 
1405 		/* Stats overflow */
1406 		if (intr_status & IntrStatsMax)
1407 			get_stats(dev);
1408 
1409 		/* Media change interrupt. */
1410 		if (intr_status & IntrLinkChange)
1411 			netdev_media_change(dev);
1412 
1413 		/* Abnormal error summary/uncommon events handlers. */
1414 		if (intr_status & IntrAbnormalSummary)
1415 			netdev_error(dev, intr_status);
1416 
1417 		if (--boguscnt < 0) {
1418 			if (debug > 1)
1419 				printk(KERN_WARNING "%s: Too much work at interrupt, "
1420 				       "status=%#8.8x.\n",
1421 				       dev->name, intr_status);
1422 			break;
1423 		}
1424 	} while (1);
1425 
1426 	if (debug > 4)
1427 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1428 		       dev->name, (int) readl(ioaddr + IntrStatus));
1429 	return IRQ_RETVAL(handled);
1430 }
1431 
1432 
1433 /*
1434  * This routine is logically part of the interrupt/poll handler, but separated
1435  * for clarity and better register allocation.
1436  */
1437 static int __netdev_rx(struct net_device *dev, int *quota)
1438 {
1439 	struct netdev_private *np = netdev_priv(dev);
1440 	u32 desc_status;
1441 	int retcode = 0;
1442 
1443 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1444 	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1445 		struct sk_buff *skb;
1446 		u16 pkt_len;
1447 		int entry;
1448 		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1449 
1450 		if (debug > 4)
1451 			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1452 		if (!(desc_status & RxOK)) {
1453 			/* There was an error. */
1454 			if (debug > 2)
1455 				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1456 			dev->stats.rx_errors++;
1457 			if (desc_status & RxFIFOErr)
1458 				dev->stats.rx_fifo_errors++;
1459 			goto next_rx;
1460 		}
1461 
1462 		if (*quota <= 0) {	/* out of rx quota */
1463 			retcode = 1;
1464 			goto out;
1465 		}
1466 		(*quota)--;
1467 
1468 		pkt_len = desc_status;	/* Implicitly Truncate */
1469 		entry = (desc_status >> 16) & 0x7ff;
1470 
1471 		if (debug > 4)
1472 			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1473 		/* Check if the packet is long enough to accept without copying
1474 		   to a minimally-sized skbuff. */
1475 		if (pkt_len < rx_copybreak &&
1476 		    (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1477 			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1478 			pci_dma_sync_single_for_cpu(np->pci_dev,
1479 						    np->rx_info[entry].mapping,
1480 						    pkt_len, PCI_DMA_FROMDEVICE);
1481 			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1482 			pci_dma_sync_single_for_device(np->pci_dev,
1483 						       np->rx_info[entry].mapping,
1484 						       pkt_len, PCI_DMA_FROMDEVICE);
1485 			skb_put(skb, pkt_len);
1486 		} else {
1487 			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1488 			skb = np->rx_info[entry].skb;
1489 			skb_put(skb, pkt_len);
1490 			np->rx_info[entry].skb = NULL;
1491 			np->rx_info[entry].mapping = 0;
1492 		}
1493 #ifndef final_version			/* Remove after testing. */
1494 		/* You will want this info for the initial debug. */
1495 		if (debug > 5) {
1496 			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1497 			       skb->data, skb->data + 6,
1498 			       skb->data[12], skb->data[13]);
1499 		}
1500 #endif
1501 
1502 		skb->protocol = eth_type_trans(skb, dev);
1503 #ifdef VLAN_SUPPORT
1504 		if (debug > 4)
1505 			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1506 #endif
1507 		if (le16_to_cpu(desc->status2) & 0x0100) {
1508 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1509 			dev->stats.rx_compressed++;
1510 		}
1511 		/*
1512 		 * This feature doesn't seem to be working, at least
1513 		 * with the two firmware versions I have. If the GFP sees
1514 		 * an IP fragment, it either ignores it completely, or reports
1515 		 * "bad checksum" on it.
1516 		 *
1517 		 * Maybe I missed something -- corrections are welcome.
1518 		 * Until then, the printk stays. :-) -Ion
1519 		 */
1520 		else if (le16_to_cpu(desc->status2) & 0x0040) {
1521 			skb->ip_summed = CHECKSUM_COMPLETE;
1522 			skb->csum = le16_to_cpu(desc->csum);
1523 			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1524 		}
1525 #ifdef VLAN_SUPPORT
1526 		if (le16_to_cpu(desc->status2) & 0x0200) {
1527 			u16 vlid = le16_to_cpu(desc->vlanid);
1528 
1529 			if (debug > 4) {
1530 				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1531 				       vlid);
1532 			}
1533 			__vlan_hwaccel_put_tag(skb, vlid);
1534 		}
1535 #endif /* VLAN_SUPPORT */
1536 		netif_receive_skb(skb);
1537 		dev->stats.rx_packets++;
1538 
1539 	next_rx:
1540 		np->cur_rx++;
1541 		desc->status = 0;
1542 		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1543 	}
1544 
1545 	if (*quota == 0) {	/* out of rx quota */
1546 		retcode = 1;
1547 		goto out;
1548 	}
1549 	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1550 
1551  out:
1552 	refill_rx_ring(dev);
1553 	if (debug > 5)
1554 		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1555 		       retcode, np->rx_done, desc_status);
1556 	return retcode;
1557 }
1558 
1559 static int netdev_poll(struct napi_struct *napi, int budget)
1560 {
1561 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1562 	struct net_device *dev = np->dev;
1563 	u32 intr_status;
1564 	void __iomem *ioaddr = np->base;
1565 	int quota = budget;
1566 
1567 	do {
1568 		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1569 
1570 		if (__netdev_rx(dev, &quota))
1571 			goto out;
1572 
1573 		intr_status = readl(ioaddr + IntrStatus);
1574 	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1575 
1576 	napi_complete(napi);
1577 	intr_status = readl(ioaddr + IntrEnable);
1578 	intr_status |= IntrRxDone | IntrRxEmpty;
1579 	writel(intr_status, ioaddr + IntrEnable);
1580 
1581  out:
1582 	if (debug > 5)
1583 		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1584 		       budget - quota);
1585 
1586 	/* Restart Rx engine if stopped. */
1587 	return budget - quota;
1588 }
1589 
1590 static void refill_rx_ring(struct net_device *dev)
1591 {
1592 	struct netdev_private *np = netdev_priv(dev);
1593 	struct sk_buff *skb;
1594 	int entry = -1;
1595 
1596 	/* Refill the Rx ring buffers. */
1597 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1598 		entry = np->dirty_rx % RX_RING_SIZE;
1599 		if (np->rx_info[entry].skb == NULL) {
1600 			skb = dev_alloc_skb(np->rx_buf_sz);
1601 			np->rx_info[entry].skb = skb;
1602 			if (skb == NULL)
1603 				break;	/* Better luck next round. */
1604 			np->rx_info[entry].mapping =
1605 				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1606 			skb->dev = dev;	/* Mark as being used by this device. */
1607 			np->rx_ring[entry].rxaddr =
1608 				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1609 		}
1610 		if (entry == RX_RING_SIZE - 1)
1611 			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1612 	}
1613 	if (entry >= 0)
1614 		writew(entry, np->base + RxDescQIdx);
1615 }
1616 
1617 
1618 static void netdev_media_change(struct net_device *dev)
1619 {
1620 	struct netdev_private *np = netdev_priv(dev);
1621 	void __iomem *ioaddr = np->base;
1622 	u16 reg0, reg1, reg4, reg5;
1623 	u32 new_tx_mode;
1624 	u32 new_intr_timer_ctrl;
1625 
1626 	/* reset status first */
1627 	mdio_read(dev, np->phys[0], MII_BMCR);
1628 	mdio_read(dev, np->phys[0], MII_BMSR);
1629 
1630 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1631 	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1632 
1633 	if (reg1 & BMSR_LSTATUS) {
1634 		/* link is up */
1635 		if (reg0 & BMCR_ANENABLE) {
1636 			/* autonegotiation is enabled */
1637 			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1638 			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1639 			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1640 				np->speed100 = 1;
1641 				np->mii_if.full_duplex = 1;
1642 			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1643 				np->speed100 = 1;
1644 				np->mii_if.full_duplex = 0;
1645 			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1646 				np->speed100 = 0;
1647 				np->mii_if.full_duplex = 1;
1648 			} else {
1649 				np->speed100 = 0;
1650 				np->mii_if.full_duplex = 0;
1651 			}
1652 		} else {
1653 			/* autonegotiation is disabled */
1654 			if (reg0 & BMCR_SPEED100)
1655 				np->speed100 = 1;
1656 			else
1657 				np->speed100 = 0;
1658 			if (reg0 & BMCR_FULLDPLX)
1659 				np->mii_if.full_duplex = 1;
1660 			else
1661 				np->mii_if.full_duplex = 0;
1662 		}
1663 		netif_carrier_on(dev);
1664 		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1665 		       dev->name,
1666 		       np->speed100 ? "100" : "10",
1667 		       np->mii_if.full_duplex ? "full" : "half");
1668 
1669 		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1670 		if (np->mii_if.full_duplex)
1671 			new_tx_mode |= FullDuplex;
1672 		if (np->tx_mode != new_tx_mode) {
1673 			np->tx_mode = new_tx_mode;
1674 			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1675 			udelay(1000);
1676 			writel(np->tx_mode, ioaddr + TxMode);
1677 		}
1678 
1679 		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1680 		if (np->speed100)
1681 			new_intr_timer_ctrl |= Timer10X;
1682 		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1683 			np->intr_timer_ctrl = new_intr_timer_ctrl;
1684 			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1685 		}
1686 	} else {
1687 		netif_carrier_off(dev);
1688 		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1689 	}
1690 }
1691 
1692 
1693 static void netdev_error(struct net_device *dev, int intr_status)
1694 {
1695 	struct netdev_private *np = netdev_priv(dev);
1696 
1697 	/* Came close to underrunning the Tx FIFO, increase threshold. */
1698 	if (intr_status & IntrTxDataLow) {
1699 		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1700 			writel(++np->tx_threshold, np->base + TxThreshold);
1701 			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1702 			       dev->name, np->tx_threshold * 16);
1703 		} else
1704 			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1705 	}
1706 	if (intr_status & IntrRxGFPDead) {
1707 		dev->stats.rx_fifo_errors++;
1708 		dev->stats.rx_errors++;
1709 	}
1710 	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1711 		dev->stats.tx_fifo_errors++;
1712 		dev->stats.tx_errors++;
1713 	}
1714 	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1715 		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1716 		       dev->name, intr_status);
1717 }
1718 
1719 
1720 static struct net_device_stats *get_stats(struct net_device *dev)
1721 {
1722 	struct netdev_private *np = netdev_priv(dev);
1723 	void __iomem *ioaddr = np->base;
1724 
1725 	/* This adapter architecture needs no SMP locks. */
1726 	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1727 	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1728 	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1729 	dev->stats.tx_aborted_errors =
1730 		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1731 	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1732 	dev->stats.collisions =
1733 		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1734 
1735 	/* The chip only need report frame silently dropped. */
1736 	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1737 	writew(0, ioaddr + RxDMAStatus);
1738 	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1739 	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1740 	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1741 	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1742 
1743 	return &dev->stats;
1744 }
1745 
1746 #ifdef VLAN_SUPPORT
1747 static u32 set_vlan_mode(struct netdev_private *np)
1748 {
1749 	u32 ret = VlanMode;
1750 	u16 vid;
1751 	void __iomem *filter_addr = np->base + HashTable + 8;
1752 	int vlan_count = 0;
1753 
1754 	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1755 		if (vlan_count == 32)
1756 			break;
1757 		writew(vid, filter_addr);
1758 		filter_addr += 16;
1759 		vlan_count++;
1760 	}
1761 	if (vlan_count == 32) {
1762 		ret |= PerfectFilterVlan;
1763 		while (vlan_count < 32) {
1764 			writew(0, filter_addr);
1765 			filter_addr += 16;
1766 			vlan_count++;
1767 		}
1768 	}
1769 	return ret;
1770 }
1771 #endif /* VLAN_SUPPORT */
1772 
1773 static void set_rx_mode(struct net_device *dev)
1774 {
1775 	struct netdev_private *np = netdev_priv(dev);
1776 	void __iomem *ioaddr = np->base;
1777 	u32 rx_mode = MinVLANPrio;
1778 	struct netdev_hw_addr *ha;
1779 	int i;
1780 
1781 #ifdef VLAN_SUPPORT
1782 	rx_mode |= set_vlan_mode(np);
1783 #endif /* VLAN_SUPPORT */
1784 
1785 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1786 		rx_mode |= AcceptAll;
1787 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1788 		   (dev->flags & IFF_ALLMULTI)) {
1789 		/* Too many to match, or accept all multicasts. */
1790 		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1791 	} else if (netdev_mc_count(dev) <= 14) {
1792 		/* Use the 16 element perfect filter, skip first two entries. */
1793 		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1794 		__be16 *eaddrs;
1795 		netdev_for_each_mc_addr(ha, dev) {
1796 			eaddrs = (__be16 *) ha->addr;
1797 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1798 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1799 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1800 		}
1801 		eaddrs = (__be16 *)dev->dev_addr;
1802 		i = netdev_mc_count(dev) + 2;
1803 		while (i++ < 16) {
1804 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1805 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1806 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1807 		}
1808 		rx_mode |= AcceptBroadcast|PerfectFilter;
1809 	} else {
1810 		/* Must use a multicast hash table. */
1811 		void __iomem *filter_addr;
1812 		__be16 *eaddrs;
1813 		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1814 
1815 		memset(mc_filter, 0, sizeof(mc_filter));
1816 		netdev_for_each_mc_addr(ha, dev) {
1817 			/* The chip uses the upper 9 CRC bits
1818 			   as index into the hash table */
1819 			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1820 			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1821 
1822 			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1823 		}
1824 		/* Clear the perfect filter list, skip first two entries. */
1825 		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1826 		eaddrs = (__be16 *)dev->dev_addr;
1827 		for (i = 2; i < 16; i++) {
1828 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1829 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1830 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1831 		}
1832 		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1833 			writew(mc_filter[i], filter_addr);
1834 		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1835 	}
1836 	writel(rx_mode, ioaddr + RxFilterMode);
1837 }
1838 
1839 static int check_if_running(struct net_device *dev)
1840 {
1841 	if (!netif_running(dev))
1842 		return -EINVAL;
1843 	return 0;
1844 }
1845 
1846 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1847 {
1848 	struct netdev_private *np = netdev_priv(dev);
1849 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1850 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1851 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1852 }
1853 
1854 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1855 {
1856 	struct netdev_private *np = netdev_priv(dev);
1857 	spin_lock_irq(&np->lock);
1858 	mii_ethtool_gset(&np->mii_if, ecmd);
1859 	spin_unlock_irq(&np->lock);
1860 	return 0;
1861 }
1862 
1863 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1864 {
1865 	struct netdev_private *np = netdev_priv(dev);
1866 	int res;
1867 	spin_lock_irq(&np->lock);
1868 	res = mii_ethtool_sset(&np->mii_if, ecmd);
1869 	spin_unlock_irq(&np->lock);
1870 	check_duplex(dev);
1871 	return res;
1872 }
1873 
1874 static int nway_reset(struct net_device *dev)
1875 {
1876 	struct netdev_private *np = netdev_priv(dev);
1877 	return mii_nway_restart(&np->mii_if);
1878 }
1879 
1880 static u32 get_link(struct net_device *dev)
1881 {
1882 	struct netdev_private *np = netdev_priv(dev);
1883 	return mii_link_ok(&np->mii_if);
1884 }
1885 
1886 static u32 get_msglevel(struct net_device *dev)
1887 {
1888 	return debug;
1889 }
1890 
1891 static void set_msglevel(struct net_device *dev, u32 val)
1892 {
1893 	debug = val;
1894 }
1895 
1896 static const struct ethtool_ops ethtool_ops = {
1897 	.begin = check_if_running,
1898 	.get_drvinfo = get_drvinfo,
1899 	.get_settings = get_settings,
1900 	.set_settings = set_settings,
1901 	.nway_reset = nway_reset,
1902 	.get_link = get_link,
1903 	.get_msglevel = get_msglevel,
1904 	.set_msglevel = set_msglevel,
1905 };
1906 
1907 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1908 {
1909 	struct netdev_private *np = netdev_priv(dev);
1910 	struct mii_ioctl_data *data = if_mii(rq);
1911 	int rc;
1912 
1913 	if (!netif_running(dev))
1914 		return -EINVAL;
1915 
1916 	spin_lock_irq(&np->lock);
1917 	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1918 	spin_unlock_irq(&np->lock);
1919 
1920 	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1921 		check_duplex(dev);
1922 
1923 	return rc;
1924 }
1925 
1926 static int netdev_close(struct net_device *dev)
1927 {
1928 	struct netdev_private *np = netdev_priv(dev);
1929 	void __iomem *ioaddr = np->base;
1930 	int i;
1931 
1932 	netif_stop_queue(dev);
1933 
1934 	napi_disable(&np->napi);
1935 
1936 	if (debug > 1) {
1937 		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1938 			   dev->name, (int) readl(ioaddr + IntrStatus));
1939 		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1940 		       dev->name, np->cur_tx, np->dirty_tx,
1941 		       np->cur_rx, np->dirty_rx);
1942 	}
1943 
1944 	/* Disable interrupts by clearing the interrupt mask. */
1945 	writel(0, ioaddr + IntrEnable);
1946 
1947 	/* Stop the chip's Tx and Rx processes. */
1948 	writel(0, ioaddr + GenCtrl);
1949 	readl(ioaddr + GenCtrl);
1950 
1951 	if (debug > 5) {
1952 		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1953 		       (long long) np->tx_ring_dma);
1954 		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1955 			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1956 			       i, le32_to_cpu(np->tx_ring[i].status),
1957 			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1958 			       le32_to_cpu(np->tx_done_q[i].status));
1959 		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1960 		       (long long) np->rx_ring_dma, np->rx_done_q);
1961 		if (np->rx_done_q)
1962 			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1963 				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1964 				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1965 		}
1966 	}
1967 
1968 	free_irq(dev->irq, dev);
1969 
1970 	/* Free all the skbuffs in the Rx queue. */
1971 	for (i = 0; i < RX_RING_SIZE; i++) {
1972 		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1973 		if (np->rx_info[i].skb != NULL) {
1974 			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1975 			dev_kfree_skb(np->rx_info[i].skb);
1976 		}
1977 		np->rx_info[i].skb = NULL;
1978 		np->rx_info[i].mapping = 0;
1979 	}
1980 	for (i = 0; i < TX_RING_SIZE; i++) {
1981 		struct sk_buff *skb = np->tx_info[i].skb;
1982 		if (skb == NULL)
1983 			continue;
1984 		pci_unmap_single(np->pci_dev,
1985 				 np->tx_info[i].mapping,
1986 				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1987 		np->tx_info[i].mapping = 0;
1988 		dev_kfree_skb(skb);
1989 		np->tx_info[i].skb = NULL;
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 #ifdef CONFIG_PM
1996 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1997 {
1998 	struct net_device *dev = pci_get_drvdata(pdev);
1999 
2000 	if (netif_running(dev)) {
2001 		netif_device_detach(dev);
2002 		netdev_close(dev);
2003 	}
2004 
2005 	pci_save_state(pdev);
2006 	pci_set_power_state(pdev, pci_choose_state(pdev,state));
2007 
2008 	return 0;
2009 }
2010 
2011 static int starfire_resume(struct pci_dev *pdev)
2012 {
2013 	struct net_device *dev = pci_get_drvdata(pdev);
2014 
2015 	pci_set_power_state(pdev, PCI_D0);
2016 	pci_restore_state(pdev);
2017 
2018 	if (netif_running(dev)) {
2019 		netdev_open(dev);
2020 		netif_device_attach(dev);
2021 	}
2022 
2023 	return 0;
2024 }
2025 #endif /* CONFIG_PM */
2026 
2027 
2028 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2029 {
2030 	struct net_device *dev = pci_get_drvdata(pdev);
2031 	struct netdev_private *np = netdev_priv(dev);
2032 
2033 	BUG_ON(!dev);
2034 
2035 	unregister_netdev(dev);
2036 
2037 	if (np->queue_mem)
2038 		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2039 
2040 
2041 	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2042 	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2043 	pci_disable_device(pdev);
2044 
2045 	iounmap(np->base);
2046 	pci_release_regions(pdev);
2047 
2048 	pci_set_drvdata(pdev, NULL);
2049 	free_netdev(dev);			/* Will also free np!! */
2050 }
2051 
2052 
2053 static struct pci_driver starfire_driver = {
2054 	.name		= DRV_NAME,
2055 	.probe		= starfire_init_one,
2056 	.remove		= __devexit_p(starfire_remove_one),
2057 #ifdef CONFIG_PM
2058 	.suspend	= starfire_suspend,
2059 	.resume		= starfire_resume,
2060 #endif /* CONFIG_PM */
2061 	.id_table	= starfire_pci_tbl,
2062 };
2063 
2064 
2065 static int __init starfire_init (void)
2066 {
2067 /* when a module, this is printed whether or not devices are found in probe */
2068 #ifdef MODULE
2069 	printk(version);
2070 
2071 	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2072 #endif
2073 
2074 	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2075 
2076 	return pci_register_driver(&starfire_driver);
2077 }
2078 
2079 
2080 static void __exit starfire_cleanup (void)
2081 {
2082 	pci_unregister_driver (&starfire_driver);
2083 }
2084 
2085 
2086 module_init(starfire_init);
2087 module_exit(starfire_cleanup);
2088 
2089 
2090 /*
2091  * Local variables:
2092  *  c-basic-offset: 8
2093  *  tab-width: 8
2094  * End:
2095  */
2096