1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27 */
28
29 #define DRV_NAME "starfire"
30
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kernel.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mm.h>
44 #include <linux/firmware.h>
45 #include <asm/processor.h> /* Processor type for cache alignment. */
46 #include <linux/uaccess.h>
47 #include <asm/io.h>
48
49 /*
50 * The current frame processor firmware fails to checksum a fragment
51 * of length 1. If and when this is fixed, the #define below can be removed.
52 */
53 #define HAS_BROKEN_FIRMWARE
54
55 /*
56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
57 */
58 #ifdef HAS_BROKEN_FIRMWARE
59 #define PADDING_MASK 3
60 #endif
61
62 /*
63 * Define this if using the driver with the zero-copy patch
64 */
65 #define ZEROCOPY
66
67 #if IS_ENABLED(CONFIG_VLAN_8021Q)
68 #define VLAN_SUPPORT
69 #endif
70
71 /* The user-configurable values.
72 These may be modified when a driver module is loaded.*/
73
74 /* Used for tuning interrupt latency vs. overhead. */
75 static int intr_latency;
76 static int small_frames;
77
78 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
79 static int max_interrupt_work = 20;
80 static int mtu;
81 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82 The Starfire has a 512 element hash table based on the Ethernet CRC. */
83 static const int multicast_filter_limit = 512;
84 /* Whether to do TCP/UDP checksums in hardware */
85 static int enable_hw_cksum = 1;
86
87 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
88 /*
89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90 * Setting to > 1518 effectively disables this feature.
91 *
92 * NOTE:
93 * The ia64 doesn't allow for unaligned loads even of integers being
94 * misaligned on a 2 byte boundary. Thus always force copying of
95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
96 * 23/10/2000 - Jes
97 *
98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99 * at least, having unaligned frames leads to a rather serious performance
100 * penalty. -Ion
101 */
102 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103 static int rx_copybreak = PKT_BUF_SZ;
104 #else
105 static int rx_copybreak /* = 0 */;
106 #endif
107
108 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
109 #ifdef __sparc__
110 #define DMA_BURST_SIZE 64
111 #else
112 #define DMA_BURST_SIZE 128
113 #endif
114
115 /* Operational parameters that are set at compile time. */
116
117 /* The "native" ring sizes are either 256 or 2048.
118 However in some modes a descriptor may be marked to wrap the ring earlier.
119 */
120 #define RX_RING_SIZE 256
121 #define TX_RING_SIZE 32
122 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123 #define DONE_Q_SIZE 1024
124 /* All queues must be aligned on a 256-byte boundary */
125 #define QUEUE_ALIGN 256
126
127 #if RX_RING_SIZE > 256
128 #define RX_Q_ENTRIES Rx2048QEntries
129 #else
130 #define RX_Q_ENTRIES Rx256QEntries
131 #endif
132
133 /* Operational parameters that usually are not changed. */
134 /* Time in jiffies before concluding the transmitter is hung. */
135 #define TX_TIMEOUT (2 * HZ)
136
137 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138 /* 64-bit dma_addr_t */
139 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
140 #define netdrv_addr_t __le64
141 #define cpu_to_dma(x) cpu_to_le64(x)
142 #define dma_to_cpu(x) le64_to_cpu(x)
143 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
148 #else /* 32-bit dma_addr_t */
149 #define netdrv_addr_t __le32
150 #define cpu_to_dma(x) cpu_to_le32(x)
151 #define dma_to_cpu(x) le32_to_cpu(x)
152 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
157 #endif
158
159 #define skb_first_frag_len(skb) skb_headlen(skb)
160 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
161
162 /* Firmware names */
163 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
164 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
165
166 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
167 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168 MODULE_LICENSE("GPL");
169 MODULE_FIRMWARE(FIRMWARE_RX);
170 MODULE_FIRMWARE(FIRMWARE_TX);
171
172 module_param(max_interrupt_work, int, 0);
173 module_param(mtu, int, 0);
174 module_param(debug, int, 0);
175 module_param(rx_copybreak, int, 0);
176 module_param(intr_latency, int, 0);
177 module_param(small_frames, int, 0);
178 module_param(enable_hw_cksum, int, 0);
179 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180 MODULE_PARM_DESC(mtu, "MTU (all boards)");
181 MODULE_PARM_DESC(debug, "Debug level (0-6)");
182 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
186
187 /*
188 Theory of Operation
189
190 I. Board Compatibility
191
192 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
193
194 II. Board-specific settings
195
196 III. Driver operation
197
198 IIIa. Ring buffers
199
200 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
201 ring sizes are set fixed by the hardware, but may optionally be wrapped
202 earlier by the END bit in the descriptor.
203 This driver uses that hardware queue size for the Rx ring, where a large
204 number of entries has no ill effect beyond increases the potential backlog.
205 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206 disables the queue layer priority ordering and we have no mechanism to
207 utilize the hardware two-level priority queue. When modifying the
208 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
209 levels.
210
211 IIIb/c. Transmit/Receive Structure
212
213 See the Adaptec manual for the many possible structures, and options for
214 each structure. There are far too many to document all of them here.
215
216 For transmit this driver uses type 0/1 transmit descriptors (depending
217 on the 32/64 bitness of the architecture), and relies on automatic
218 minimum-length padding. It does not use the completion queue
219 consumer index, but instead checks for non-zero status entries.
220
221 For receive this driver uses type 2/3 receive descriptors. The driver
222 allocates full frame size skbuffs for the Rx ring buffers, so all frames
223 should fit in a single descriptor. The driver does not use the completion
224 queue consumer index, but instead checks for non-zero status entries.
225
226 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227 is allocated and the frame is copied to the new skbuff. When the incoming
228 frame is larger, the skbuff is passed directly up the protocol stack.
229 Buffers consumed this way are replaced by newly allocated skbuffs in a later
230 phase of receive.
231
232 A notable aspect of operation is that unaligned buffers are not permitted by
233 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
234 isn't longword aligned, which may cause problems on some machine
235 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236 the frame into a new skbuff unconditionally. Copied frames are put into the
237 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
238
239 IIId. Synchronization
240
241 The driver runs as two independent, single-threaded flows of control. One
242 is the send-packet routine, which enforces single-threaded use by the
243 dev->tbusy flag. The other thread is the interrupt handler, which is single
244 threaded by the hardware and interrupt handling software.
245
246 The send packet thread has partial control over the Tx ring and the netif_queue
247 status. If the number of free Tx slots in the ring falls below a certain number
248 (currently hardcoded to 4), it signals the upper layer to stop the queue.
249
250 The interrupt handler has exclusive control over the Rx ring and records stats
251 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
252 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253 number of free Tx slow is above the threshold, it signals the upper layer to
254 restart the queue.
255
256 IV. Notes
257
258 IVb. References
259
260 The Adaptec Starfire manuals, available only from Adaptec.
261 http://www.scyld.com/expert/100mbps.html
262 http://www.scyld.com/expert/NWay.html
263
264 IVc. Errata
265
266 - StopOnPerr is broken, don't enable
267 - Hardware ethernet padding exposes random data, perform software padding
268 instead (unverified -- works correctly for all the hardware I have)
269
270 */
271
272
273
274 enum chip_capability_flags {CanHaveMII=1, };
275
276 enum chipset {
277 CH_6915 = 0,
278 };
279
280 static const struct pci_device_id starfire_pci_tbl[] = {
281 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
282 { 0, }
283 };
284 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
285
286 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287 static const struct chip_info {
288 const char *name;
289 int drv_flags;
290 } netdrv_tbl[] = {
291 { "Adaptec Starfire 6915", CanHaveMII },
292 };
293
294
295 /* Offsets to the device registers.
296 Unlike software-only systems, device drivers interact with complex hardware.
297 It's not useful to define symbolic names for every register bit in the
298 device. The name can only partially document the semantics and make
299 the driver longer and more difficult to read.
300 In general, only the important configuration values or bits changed
301 multiple times should be defined symbolically.
302 */
303 enum register_offsets {
304 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
310 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
311 TxThreshold=0x500B0,
312 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317 TxMode=0x55000, VlanType=0x55064,
318 PerfFilterTable=0x56000, HashTable=0x56100,
319 TxGfpMem=0x58000, RxGfpMem=0x5a000,
320 };
321
322 /*
323 * Bits in the interrupt status/mask registers.
324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325 * enables all the interrupt sources that are or'ed into those status bits.
326 */
327 enum intr_status_bits {
328 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341 IntrTxGfp=0x02, IntrPCIPad=0x01,
342 /* not quite bits */
343 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
346 };
347
348 /* Bits in the RxFilterMode register. */
349 enum rx_mode_bits {
350 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
353 WakeupOnGFP=0x0800,
354 };
355
356 /* Bits in the TxMode register */
357 enum tx_mode_bits {
358 MiiSoftReset=0x8000, MIILoopback=0x4000,
359 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
361 };
362
363 /* Bits in the TxDescCtrl register. */
364 enum tx_ctrl_bits {
365 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366 TxDescSpace128=0x30, TxDescSpace256=0x40,
367 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368 TxDescType3=0x03, TxDescType4=0x04,
369 TxNoDMACompletion=0x08,
370 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372 TxDMABurstSizeShift=8,
373 };
374
375 /* Bits in the RxDescQCtrl register. */
376 enum rx_ctrl_bits {
377 RxBufferLenShift=16, RxMinDescrThreshShift=0,
378 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379 Rx2048QEntries=0x4000, Rx256QEntries=0,
380 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382 RxDescSpace4=0x000, RxDescSpace8=0x100,
383 RxDescSpace16=0x200, RxDescSpace32=0x300,
384 RxDescSpace64=0x400, RxDescSpace128=0x500,
385 RxConsumerWrEn=0x80,
386 };
387
388 /* Bits in the RxDMACtrl register. */
389 enum rx_dmactrl_bits {
390 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394 RxChecksumRejectTCPOnly=0x01000000,
395 RxCompletionQ2Enable=0x800000,
396 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398 RxDMAQ2NonIP=0x400000,
399 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
401 RxBurstSizeShift=0,
402 };
403
404 /* Bits in the RxCompletionAddr register */
405 enum rx_compl_bits {
406 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407 RxComplProducerWrEn=0x40,
408 RxComplType0=0x00, RxComplType1=0x10,
409 RxComplType2=0x20, RxComplType3=0x30,
410 RxComplThreshShift=0,
411 };
412
413 /* Bits in the TxCompletionAddr register */
414 enum tx_compl_bits {
415 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416 TxComplProducerWrEn=0x40,
417 TxComplIntrStatus=0x20,
418 CommonQueueMode=0x10,
419 TxComplThreshShift=0,
420 };
421
422 /* Bits in the GenCtrl register */
423 enum gen_ctrl_bits {
424 RxEnable=0x05, TxEnable=0x0a,
425 RxGFPEnable=0x10, TxGFPEnable=0x20,
426 };
427
428 /* Bits in the IntrTimerCtrl register */
429 enum intr_ctrl_bits {
430 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432 IntrLatencyMask=0x1f,
433 };
434
435 /* The Rx and Tx buffer descriptors. */
436 struct starfire_rx_desc {
437 netdrv_addr_t rxaddr;
438 };
439 enum rx_desc_bits {
440 RxDescValid=1, RxDescEndRing=2,
441 };
442
443 /* Completion queue entry. */
444 struct csum_rx_done_desc {
445 __le32 status; /* Low 16 bits is length. */
446 __le16 csum; /* Partial checksum */
447 __le16 status2;
448 };
449 struct full_rx_done_desc {
450 __le32 status; /* Low 16 bits is length. */
451 __le16 status3;
452 __le16 status2;
453 __le16 vlanid;
454 __le16 csum; /* partial checksum */
455 __le32 timestamp;
456 };
457 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
458 #ifdef VLAN_SUPPORT
459 typedef struct full_rx_done_desc rx_done_desc;
460 #define RxComplType RxComplType3
461 #else /* not VLAN_SUPPORT */
462 typedef struct csum_rx_done_desc rx_done_desc;
463 #define RxComplType RxComplType2
464 #endif /* not VLAN_SUPPORT */
465
466 enum rx_done_bits {
467 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
468 };
469
470 /* Type 1 Tx descriptor. */
471 struct starfire_tx_desc_1 {
472 __le32 status; /* Upper bits are status, lower 16 length. */
473 __le32 addr;
474 };
475
476 /* Type 2 Tx descriptor. */
477 struct starfire_tx_desc_2 {
478 __le32 status; /* Upper bits are status, lower 16 length. */
479 __le32 reserved;
480 __le64 addr;
481 };
482
483 #ifdef ADDR_64BITS
484 typedef struct starfire_tx_desc_2 starfire_tx_desc;
485 #define TX_DESC_TYPE TxDescType2
486 #else /* not ADDR_64BITS */
487 typedef struct starfire_tx_desc_1 starfire_tx_desc;
488 #define TX_DESC_TYPE TxDescType1
489 #endif /* not ADDR_64BITS */
490 #define TX_DESC_SPACING TxDescSpaceUnlim
491
492 enum tx_desc_bits {
493 TxDescID=0xB0000000,
494 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
495 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
496 };
497 struct tx_done_desc {
498 __le32 status; /* timestamp, index. */
499 #if 0
500 __le32 intrstatus; /* interrupt status */
501 #endif
502 };
503
504 struct rx_ring_info {
505 struct sk_buff *skb;
506 dma_addr_t mapping;
507 };
508 struct tx_ring_info {
509 struct sk_buff *skb;
510 dma_addr_t mapping;
511 unsigned int used_slots;
512 };
513
514 #define PHY_CNT 2
515 struct netdev_private {
516 /* Descriptor rings first for alignment. */
517 struct starfire_rx_desc *rx_ring;
518 starfire_tx_desc *tx_ring;
519 dma_addr_t rx_ring_dma;
520 dma_addr_t tx_ring_dma;
521 /* The addresses of rx/tx-in-place skbuffs. */
522 struct rx_ring_info rx_info[RX_RING_SIZE];
523 struct tx_ring_info tx_info[TX_RING_SIZE];
524 /* Pointers to completion queues (full pages). */
525 rx_done_desc *rx_done_q;
526 dma_addr_t rx_done_q_dma;
527 unsigned int rx_done;
528 struct tx_done_desc *tx_done_q;
529 dma_addr_t tx_done_q_dma;
530 unsigned int tx_done;
531 struct napi_struct napi;
532 struct net_device *dev;
533 struct pci_dev *pci_dev;
534 #ifdef VLAN_SUPPORT
535 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
536 #endif
537 void *queue_mem;
538 dma_addr_t queue_mem_dma;
539 size_t queue_mem_size;
540
541 /* Frequently used values: keep some adjacent for cache effect. */
542 spinlock_t lock;
543 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
544 unsigned int cur_tx, dirty_tx, reap_tx;
545 unsigned int rx_buf_sz; /* Based on MTU+slack. */
546 /* These values keep track of the transceiver/media in use. */
547 int speed100; /* Set if speed == 100MBit. */
548 u32 tx_mode;
549 u32 intr_timer_ctrl;
550 u8 tx_threshold;
551 /* MII transceiver section. */
552 struct mii_if_info mii_if; /* MII lib hooks/info */
553 int phy_cnt; /* MII device addresses. */
554 unsigned char phys[PHY_CNT]; /* MII device addresses. */
555 void __iomem *base;
556 };
557
558
559 static int mdio_read(struct net_device *dev, int phy_id, int location);
560 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
561 static int netdev_open(struct net_device *dev);
562 static void check_duplex(struct net_device *dev);
563 static void tx_timeout(struct net_device *dev, unsigned int txqueue);
564 static void init_ring(struct net_device *dev);
565 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
566 static irqreturn_t intr_handler(int irq, void *dev_instance);
567 static void netdev_error(struct net_device *dev, int intr_status);
568 static int __netdev_rx(struct net_device *dev, int *quota);
569 static int netdev_poll(struct napi_struct *napi, int budget);
570 static void refill_rx_ring(struct net_device *dev);
571 static void netdev_error(struct net_device *dev, int intr_status);
572 static void set_rx_mode(struct net_device *dev);
573 static struct net_device_stats *get_stats(struct net_device *dev);
574 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
575 static int netdev_close(struct net_device *dev);
576 static void netdev_media_change(struct net_device *dev);
577 static const struct ethtool_ops ethtool_ops;
578
579
580 #ifdef VLAN_SUPPORT
netdev_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)581 static int netdev_vlan_rx_add_vid(struct net_device *dev,
582 __be16 proto, u16 vid)
583 {
584 struct netdev_private *np = netdev_priv(dev);
585
586 spin_lock(&np->lock);
587 if (debug > 1)
588 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
589 set_bit(vid, np->active_vlans);
590 set_rx_mode(dev);
591 spin_unlock(&np->lock);
592
593 return 0;
594 }
595
netdev_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)596 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
597 __be16 proto, u16 vid)
598 {
599 struct netdev_private *np = netdev_priv(dev);
600
601 spin_lock(&np->lock);
602 if (debug > 1)
603 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
604 clear_bit(vid, np->active_vlans);
605 set_rx_mode(dev);
606 spin_unlock(&np->lock);
607
608 return 0;
609 }
610 #endif /* VLAN_SUPPORT */
611
612
613 static const struct net_device_ops netdev_ops = {
614 .ndo_open = netdev_open,
615 .ndo_stop = netdev_close,
616 .ndo_start_xmit = start_tx,
617 .ndo_tx_timeout = tx_timeout,
618 .ndo_get_stats = get_stats,
619 .ndo_set_rx_mode = set_rx_mode,
620 .ndo_eth_ioctl = netdev_ioctl,
621 .ndo_set_mac_address = eth_mac_addr,
622 .ndo_validate_addr = eth_validate_addr,
623 #ifdef VLAN_SUPPORT
624 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
625 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
626 #endif
627 };
628
starfire_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)629 static int starfire_init_one(struct pci_dev *pdev,
630 const struct pci_device_id *ent)
631 {
632 struct device *d = &pdev->dev;
633 struct netdev_private *np;
634 int i, irq, chip_idx = ent->driver_data;
635 struct net_device *dev;
636 u8 addr[ETH_ALEN];
637 long ioaddr;
638 void __iomem *base;
639 int drv_flags, io_size;
640 int boguscnt;
641
642 if (pci_enable_device (pdev))
643 return -EIO;
644
645 ioaddr = pci_resource_start(pdev, 0);
646 io_size = pci_resource_len(pdev, 0);
647 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
648 dev_err(d, "no PCI MEM resources, aborting\n");
649 return -ENODEV;
650 }
651
652 dev = alloc_etherdev(sizeof(*np));
653 if (!dev)
654 return -ENOMEM;
655
656 SET_NETDEV_DEV(dev, &pdev->dev);
657
658 irq = pdev->irq;
659
660 if (pci_request_regions (pdev, DRV_NAME)) {
661 dev_err(d, "cannot reserve PCI resources, aborting\n");
662 goto err_out_free_netdev;
663 }
664
665 base = ioremap(ioaddr, io_size);
666 if (!base) {
667 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
668 io_size, ioaddr);
669 goto err_out_free_res;
670 }
671
672 pci_set_master(pdev);
673
674 /* enable MWI -- it vastly improves Rx performance on sparc64 */
675 pci_try_set_mwi(pdev);
676
677 #ifdef ZEROCOPY
678 /* Starfire can do TCP/UDP checksumming */
679 if (enable_hw_cksum)
680 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
681 #endif /* ZEROCOPY */
682
683 #ifdef VLAN_SUPPORT
684 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
685 #endif /* VLAN_RX_KILL_VID */
686 #ifdef ADDR_64BITS
687 dev->features |= NETIF_F_HIGHDMA;
688 #endif /* ADDR_64BITS */
689
690 /* Serial EEPROM reads are hidden by the hardware. */
691 for (i = 0; i < 6; i++)
692 addr[i] = readb(base + EEPROMCtrl + 20 - i);
693 eth_hw_addr_set(dev, addr);
694
695 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
696 if (debug > 4)
697 for (i = 0; i < 0x20; i++)
698 printk("%2.2x%s",
699 (unsigned int)readb(base + EEPROMCtrl + i),
700 i % 16 != 15 ? " " : "\n");
701 #endif
702
703 /* Issue soft reset */
704 writel(MiiSoftReset, base + TxMode);
705 udelay(1000);
706 writel(0, base + TxMode);
707
708 /* Reset the chip to erase previous misconfiguration. */
709 writel(1, base + PCIDeviceConfig);
710 boguscnt = 1000;
711 while (--boguscnt > 0) {
712 udelay(10);
713 if ((readl(base + PCIDeviceConfig) & 1) == 0)
714 break;
715 }
716 if (boguscnt == 0)
717 printk("%s: chipset reset never completed!\n", dev->name);
718 /* wait a little longer */
719 udelay(1000);
720
721 np = netdev_priv(dev);
722 np->dev = dev;
723 np->base = base;
724 spin_lock_init(&np->lock);
725 pci_set_drvdata(pdev, dev);
726
727 np->pci_dev = pdev;
728
729 np->mii_if.dev = dev;
730 np->mii_if.mdio_read = mdio_read;
731 np->mii_if.mdio_write = mdio_write;
732 np->mii_if.phy_id_mask = 0x1f;
733 np->mii_if.reg_num_mask = 0x1f;
734
735 drv_flags = netdrv_tbl[chip_idx].drv_flags;
736
737 np->speed100 = 1;
738
739 /* timer resolution is 128 * 0.8us */
740 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
741 Timer10X | EnableIntrMasking;
742
743 if (small_frames > 0) {
744 np->intr_timer_ctrl |= SmallFrameBypass;
745 switch (small_frames) {
746 case 1 ... 64:
747 np->intr_timer_ctrl |= SmallFrame64;
748 break;
749 case 65 ... 128:
750 np->intr_timer_ctrl |= SmallFrame128;
751 break;
752 case 129 ... 256:
753 np->intr_timer_ctrl |= SmallFrame256;
754 break;
755 default:
756 np->intr_timer_ctrl |= SmallFrame512;
757 if (small_frames > 512)
758 printk("Adjusting small_frames down to 512\n");
759 break;
760 }
761 }
762
763 dev->netdev_ops = &netdev_ops;
764 dev->watchdog_timeo = TX_TIMEOUT;
765 dev->ethtool_ops = ðtool_ops;
766
767 netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
768
769 if (mtu)
770 dev->mtu = mtu;
771
772 if (register_netdev(dev))
773 goto err_out_cleardev;
774
775 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
776 dev->name, netdrv_tbl[chip_idx].name, base,
777 dev->dev_addr, irq);
778
779 if (drv_flags & CanHaveMII) {
780 int phy, phy_idx = 0;
781 int mii_status;
782 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
783 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
784 msleep(100);
785 boguscnt = 1000;
786 while (--boguscnt > 0)
787 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
788 break;
789 if (boguscnt == 0) {
790 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
791 continue;
792 }
793 mii_status = mdio_read(dev, phy, MII_BMSR);
794 if (mii_status != 0) {
795 np->phys[phy_idx++] = phy;
796 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
797 printk(KERN_INFO "%s: MII PHY found at address %d, status "
798 "%#4.4x advertising %#4.4x.\n",
799 dev->name, phy, mii_status, np->mii_if.advertising);
800 /* there can be only one PHY on-board */
801 break;
802 }
803 }
804 np->phy_cnt = phy_idx;
805 if (np->phy_cnt > 0)
806 np->mii_if.phy_id = np->phys[0];
807 else
808 memset(&np->mii_if, 0, sizeof(np->mii_if));
809 }
810
811 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
812 dev->name, enable_hw_cksum ? "enabled" : "disabled");
813 return 0;
814
815 err_out_cleardev:
816 iounmap(base);
817 err_out_free_res:
818 pci_release_regions (pdev);
819 err_out_free_netdev:
820 free_netdev(dev);
821 return -ENODEV;
822 }
823
824
825 /* Read the MII Management Data I/O (MDIO) interfaces. */
mdio_read(struct net_device * dev,int phy_id,int location)826 static int mdio_read(struct net_device *dev, int phy_id, int location)
827 {
828 struct netdev_private *np = netdev_priv(dev);
829 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
830 int result, boguscnt=1000;
831 /* ??? Should we add a busy-wait here? */
832 do {
833 result = readl(mdio_addr);
834 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
835 if (boguscnt == 0)
836 return 0;
837 if ((result & 0xffff) == 0xffff)
838 return 0;
839 return result & 0xffff;
840 }
841
842
mdio_write(struct net_device * dev,int phy_id,int location,int value)843 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
844 {
845 struct netdev_private *np = netdev_priv(dev);
846 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
847 writel(value, mdio_addr);
848 /* The busy-wait will occur before a read. */
849 }
850
851
netdev_open(struct net_device * dev)852 static int netdev_open(struct net_device *dev)
853 {
854 const struct firmware *fw_rx, *fw_tx;
855 const __be32 *fw_rx_data, *fw_tx_data;
856 struct netdev_private *np = netdev_priv(dev);
857 void __iomem *ioaddr = np->base;
858 const int irq = np->pci_dev->irq;
859 int i, retval;
860 size_t tx_size, rx_size;
861 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
862
863 /* Do we ever need to reset the chip??? */
864
865 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
866 if (retval)
867 return retval;
868
869 /* Disable the Rx and Tx, and reset the chip. */
870 writel(0, ioaddr + GenCtrl);
871 writel(1, ioaddr + PCIDeviceConfig);
872 if (debug > 1)
873 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
874 dev->name, irq);
875
876 /* Allocate the various queues. */
877 if (!np->queue_mem) {
878 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
879 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
880 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
881 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
882 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
883 np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
884 np->queue_mem_size,
885 &np->queue_mem_dma, GFP_ATOMIC);
886 if (np->queue_mem == NULL) {
887 free_irq(irq, dev);
888 return -ENOMEM;
889 }
890
891 np->tx_done_q = np->queue_mem;
892 np->tx_done_q_dma = np->queue_mem_dma;
893 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
894 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
895 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
896 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
897 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
898 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
899 }
900
901 /* Start with no carrier, it gets adjusted later */
902 netif_carrier_off(dev);
903 init_ring(dev);
904 /* Set the size of the Rx buffers. */
905 writel((np->rx_buf_sz << RxBufferLenShift) |
906 (0 << RxMinDescrThreshShift) |
907 RxPrefetchMode | RxVariableQ |
908 RX_Q_ENTRIES |
909 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
910 RxDescSpace4,
911 ioaddr + RxDescQCtrl);
912
913 /* Set up the Rx DMA controller. */
914 writel(RxChecksumIgnore |
915 (0 << RxEarlyIntThreshShift) |
916 (6 << RxHighPrioThreshShift) |
917 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
918 ioaddr + RxDMACtrl);
919
920 /* Set Tx descriptor */
921 writel((2 << TxHiPriFIFOThreshShift) |
922 (0 << TxPadLenShift) |
923 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
924 TX_DESC_Q_ADDR_SIZE |
925 TX_DESC_SPACING | TX_DESC_TYPE,
926 ioaddr + TxDescCtrl);
927
928 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
929 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
930 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
931 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
932 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
933
934 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
935 writel(np->rx_done_q_dma |
936 RxComplType |
937 (0 << RxComplThreshShift),
938 ioaddr + RxCompletionAddr);
939
940 if (debug > 1)
941 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
942
943 /* Fill both the Tx SA register and the Rx perfect filter. */
944 for (i = 0; i < 6; i++)
945 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
946 /* The first entry is special because it bypasses the VLAN filter.
947 Don't use it. */
948 writew(0, ioaddr + PerfFilterTable);
949 writew(0, ioaddr + PerfFilterTable + 4);
950 writew(0, ioaddr + PerfFilterTable + 8);
951 for (i = 1; i < 16; i++) {
952 const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
953 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
954 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
955 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
956 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
957 }
958
959 /* Initialize other registers. */
960 /* Configure the PCI bus bursts and FIFO thresholds. */
961 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
962 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
963 udelay(1000);
964 writel(np->tx_mode, ioaddr + TxMode);
965 np->tx_threshold = 4;
966 writel(np->tx_threshold, ioaddr + TxThreshold);
967
968 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
969
970 napi_enable(&np->napi);
971
972 netif_start_queue(dev);
973
974 if (debug > 1)
975 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
976 set_rx_mode(dev);
977
978 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
979 check_duplex(dev);
980
981 /* Enable GPIO interrupts on link change */
982 writel(0x0f00ff00, ioaddr + GPIOCtrl);
983
984 /* Set the interrupt mask */
985 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
986 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
987 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
988 ioaddr + IntrEnable);
989 /* Enable PCI interrupts. */
990 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
991 ioaddr + PCIDeviceConfig);
992
993 #ifdef VLAN_SUPPORT
994 /* Set VLAN type to 802.1q */
995 writel(ETH_P_8021Q, ioaddr + VlanType);
996 #endif /* VLAN_SUPPORT */
997
998 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
999 if (retval) {
1000 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1001 FIRMWARE_RX);
1002 goto out_init;
1003 }
1004 if (fw_rx->size % 4) {
1005 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1006 fw_rx->size, FIRMWARE_RX);
1007 retval = -EINVAL;
1008 goto out_rx;
1009 }
1010 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1011 if (retval) {
1012 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1013 FIRMWARE_TX);
1014 goto out_rx;
1015 }
1016 if (fw_tx->size % 4) {
1017 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1018 fw_tx->size, FIRMWARE_TX);
1019 retval = -EINVAL;
1020 goto out_tx;
1021 }
1022 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1023 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1024 rx_size = fw_rx->size / 4;
1025 tx_size = fw_tx->size / 4;
1026
1027 /* Load Rx/Tx firmware into the frame processors */
1028 for (i = 0; i < rx_size; i++)
1029 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1030 for (i = 0; i < tx_size; i++)
1031 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1032 if (enable_hw_cksum)
1033 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1034 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1035 else
1036 /* Enable the Rx and Tx units only. */
1037 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1038
1039 if (debug > 1)
1040 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1041 dev->name);
1042
1043 out_tx:
1044 release_firmware(fw_tx);
1045 out_rx:
1046 release_firmware(fw_rx);
1047 out_init:
1048 if (retval)
1049 netdev_close(dev);
1050 return retval;
1051 }
1052
1053
check_duplex(struct net_device * dev)1054 static void check_duplex(struct net_device *dev)
1055 {
1056 struct netdev_private *np = netdev_priv(dev);
1057 u16 reg0;
1058 int silly_count = 1000;
1059
1060 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1061 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1062 udelay(500);
1063 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1064 /* do nothing */;
1065 if (!silly_count) {
1066 printk("%s: MII reset failed!\n", dev->name);
1067 return;
1068 }
1069
1070 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1071
1072 if (!np->mii_if.force_media) {
1073 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1074 } else {
1075 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1076 if (np->speed100)
1077 reg0 |= BMCR_SPEED100;
1078 if (np->mii_if.full_duplex)
1079 reg0 |= BMCR_FULLDPLX;
1080 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1081 dev->name,
1082 np->speed100 ? "100" : "10",
1083 np->mii_if.full_duplex ? "full" : "half");
1084 }
1085 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1086 }
1087
1088
tx_timeout(struct net_device * dev,unsigned int txqueue)1089 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1090 {
1091 struct netdev_private *np = netdev_priv(dev);
1092 void __iomem *ioaddr = np->base;
1093 int old_debug;
1094
1095 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1096 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1097
1098 /* Perhaps we should reinitialize the hardware here. */
1099
1100 /*
1101 * Stop and restart the interface.
1102 * Cheat and increase the debug level temporarily.
1103 */
1104 old_debug = debug;
1105 debug = 2;
1106 netdev_close(dev);
1107 netdev_open(dev);
1108 debug = old_debug;
1109
1110 /* Trigger an immediate transmit demand. */
1111
1112 netif_trans_update(dev); /* prevent tx timeout */
1113 dev->stats.tx_errors++;
1114 netif_wake_queue(dev);
1115 }
1116
1117
1118 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1119 static void init_ring(struct net_device *dev)
1120 {
1121 struct netdev_private *np = netdev_priv(dev);
1122 int i;
1123
1124 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1125 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1126
1127 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1128
1129 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1130 for (i = 0; i < RX_RING_SIZE; i++) {
1131 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1132 np->rx_info[i].skb = skb;
1133 if (skb == NULL)
1134 break;
1135 np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1136 skb->data,
1137 np->rx_buf_sz,
1138 DMA_FROM_DEVICE);
1139 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1140 dev_kfree_skb(skb);
1141 np->rx_info[i].skb = NULL;
1142 break;
1143 }
1144 /* Grrr, we cannot offset to correctly align the IP header. */
1145 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1146 }
1147 writew(i - 1, np->base + RxDescQIdx);
1148 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1149
1150 /* Clear the remainder of the Rx buffer ring. */
1151 for ( ; i < RX_RING_SIZE; i++) {
1152 np->rx_ring[i].rxaddr = 0;
1153 np->rx_info[i].skb = NULL;
1154 np->rx_info[i].mapping = 0;
1155 }
1156 /* Mark the last entry as wrapping the ring. */
1157 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1158
1159 /* Clear the completion rings. */
1160 for (i = 0; i < DONE_Q_SIZE; i++) {
1161 np->rx_done_q[i].status = 0;
1162 np->tx_done_q[i].status = 0;
1163 }
1164
1165 for (i = 0; i < TX_RING_SIZE; i++)
1166 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1167 }
1168
1169
start_tx(struct sk_buff * skb,struct net_device * dev)1170 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1171 {
1172 struct netdev_private *np = netdev_priv(dev);
1173 unsigned int entry;
1174 unsigned int prev_tx;
1175 u32 status;
1176 int i, j;
1177
1178 /*
1179 * be cautious here, wrapping the queue has weird semantics
1180 * and we may not have enough slots even when it seems we do.
1181 */
1182 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1183 netif_stop_queue(dev);
1184 return NETDEV_TX_BUSY;
1185 }
1186
1187 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1188 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1189 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1190 return NETDEV_TX_OK;
1191 }
1192 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1193
1194 prev_tx = np->cur_tx;
1195 entry = np->cur_tx % TX_RING_SIZE;
1196 for (i = 0; i < skb_num_frags(skb); i++) {
1197 int wrap_ring = 0;
1198 status = TxDescID;
1199
1200 if (i == 0) {
1201 np->tx_info[entry].skb = skb;
1202 status |= TxCRCEn;
1203 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1204 status |= TxRingWrap;
1205 wrap_ring = 1;
1206 }
1207 if (np->reap_tx) {
1208 status |= TxDescIntr;
1209 np->reap_tx = 0;
1210 }
1211 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1212 status |= TxCalTCP;
1213 dev->stats.tx_compressed++;
1214 }
1215 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1216
1217 np->tx_info[entry].mapping =
1218 dma_map_single(&np->pci_dev->dev, skb->data,
1219 skb_first_frag_len(skb),
1220 DMA_TO_DEVICE);
1221 } else {
1222 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1223 status |= skb_frag_size(this_frag);
1224 np->tx_info[entry].mapping =
1225 dma_map_single(&np->pci_dev->dev,
1226 skb_frag_address(this_frag),
1227 skb_frag_size(this_frag),
1228 DMA_TO_DEVICE);
1229 }
1230 if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1231 dev->stats.tx_dropped++;
1232 goto err_out;
1233 }
1234
1235 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1236 np->tx_ring[entry].status = cpu_to_le32(status);
1237 if (debug > 3)
1238 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1239 dev->name, np->cur_tx, np->dirty_tx,
1240 entry, status);
1241 if (wrap_ring) {
1242 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1243 np->cur_tx += np->tx_info[entry].used_slots;
1244 entry = 0;
1245 } else {
1246 np->tx_info[entry].used_slots = 1;
1247 np->cur_tx += np->tx_info[entry].used_slots;
1248 entry++;
1249 }
1250 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1251 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1252 np->reap_tx = 1;
1253 }
1254
1255 /* Non-x86: explicitly flush descriptor cache lines here. */
1256 /* Ensure all descriptors are written back before the transmit is
1257 initiated. - Jes */
1258 wmb();
1259
1260 /* Update the producer index. */
1261 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1262
1263 /* 4 is arbitrary, but should be ok */
1264 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1265 netif_stop_queue(dev);
1266
1267 return NETDEV_TX_OK;
1268
1269 err_out:
1270 entry = prev_tx % TX_RING_SIZE;
1271 np->tx_info[entry].skb = NULL;
1272 if (i > 0) {
1273 dma_unmap_single(&np->pci_dev->dev,
1274 np->tx_info[entry].mapping,
1275 skb_first_frag_len(skb), DMA_TO_DEVICE);
1276 np->tx_info[entry].mapping = 0;
1277 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1278 for (j = 1; j < i; j++) {
1279 dma_unmap_single(&np->pci_dev->dev,
1280 np->tx_info[entry].mapping,
1281 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1282 DMA_TO_DEVICE);
1283 entry++;
1284 }
1285 }
1286 dev_kfree_skb_any(skb);
1287 np->cur_tx = prev_tx;
1288 return NETDEV_TX_OK;
1289 }
1290
1291 /* The interrupt handler does all of the Rx thread work and cleans up
1292 after the Tx thread. */
intr_handler(int irq,void * dev_instance)1293 static irqreturn_t intr_handler(int irq, void *dev_instance)
1294 {
1295 struct net_device *dev = dev_instance;
1296 struct netdev_private *np = netdev_priv(dev);
1297 void __iomem *ioaddr = np->base;
1298 int boguscnt = max_interrupt_work;
1299 int consumer;
1300 int tx_status;
1301 int handled = 0;
1302
1303 do {
1304 u32 intr_status = readl(ioaddr + IntrClear);
1305
1306 if (debug > 4)
1307 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1308 dev->name, intr_status);
1309
1310 if (intr_status == 0 || intr_status == (u32) -1)
1311 break;
1312
1313 handled = 1;
1314
1315 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1316 u32 enable;
1317
1318 if (likely(napi_schedule_prep(&np->napi))) {
1319 __napi_schedule(&np->napi);
1320 enable = readl(ioaddr + IntrEnable);
1321 enable &= ~(IntrRxDone | IntrRxEmpty);
1322 writel(enable, ioaddr + IntrEnable);
1323 /* flush PCI posting buffers */
1324 readl(ioaddr + IntrEnable);
1325 } else {
1326 /* Paranoia check */
1327 enable = readl(ioaddr + IntrEnable);
1328 if (enable & (IntrRxDone | IntrRxEmpty)) {
1329 printk(KERN_INFO
1330 "%s: interrupt while in poll!\n",
1331 dev->name);
1332 enable &= ~(IntrRxDone | IntrRxEmpty);
1333 writel(enable, ioaddr + IntrEnable);
1334 }
1335 }
1336 }
1337
1338 /* Scavenge the skbuff list based on the Tx-done queue.
1339 There are redundant checks here that may be cleaned up
1340 after the driver has proven to be reliable. */
1341 consumer = readl(ioaddr + TxConsumerIdx);
1342 if (debug > 3)
1343 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1344 dev->name, consumer);
1345
1346 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1347 if (debug > 3)
1348 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1349 dev->name, np->dirty_tx, np->tx_done, tx_status);
1350 if ((tx_status & 0xe0000000) == 0xa0000000) {
1351 dev->stats.tx_packets++;
1352 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1353 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1354 struct sk_buff *skb = np->tx_info[entry].skb;
1355 np->tx_info[entry].skb = NULL;
1356 dma_unmap_single(&np->pci_dev->dev,
1357 np->tx_info[entry].mapping,
1358 skb_first_frag_len(skb),
1359 DMA_TO_DEVICE);
1360 np->tx_info[entry].mapping = 0;
1361 np->dirty_tx += np->tx_info[entry].used_slots;
1362 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1363 {
1364 int i;
1365 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1366 dma_unmap_single(&np->pci_dev->dev,
1367 np->tx_info[entry].mapping,
1368 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1369 DMA_TO_DEVICE);
1370 np->dirty_tx++;
1371 entry++;
1372 }
1373 }
1374
1375 dev_consume_skb_irq(skb);
1376 }
1377 np->tx_done_q[np->tx_done].status = 0;
1378 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1379 }
1380 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1381
1382 if (netif_queue_stopped(dev) &&
1383 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1384 /* The ring is no longer full, wake the queue. */
1385 netif_wake_queue(dev);
1386 }
1387
1388 /* Stats overflow */
1389 if (intr_status & IntrStatsMax)
1390 get_stats(dev);
1391
1392 /* Media change interrupt. */
1393 if (intr_status & IntrLinkChange)
1394 netdev_media_change(dev);
1395
1396 /* Abnormal error summary/uncommon events handlers. */
1397 if (intr_status & IntrAbnormalSummary)
1398 netdev_error(dev, intr_status);
1399
1400 if (--boguscnt < 0) {
1401 if (debug > 1)
1402 printk(KERN_WARNING "%s: Too much work at interrupt, "
1403 "status=%#8.8x.\n",
1404 dev->name, intr_status);
1405 break;
1406 }
1407 } while (1);
1408
1409 if (debug > 4)
1410 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1411 dev->name, (int) readl(ioaddr + IntrStatus));
1412 return IRQ_RETVAL(handled);
1413 }
1414
1415
1416 /*
1417 * This routine is logically part of the interrupt/poll handler, but separated
1418 * for clarity and better register allocation.
1419 */
__netdev_rx(struct net_device * dev,int * quota)1420 static int __netdev_rx(struct net_device *dev, int *quota)
1421 {
1422 struct netdev_private *np = netdev_priv(dev);
1423 u32 desc_status;
1424 int retcode = 0;
1425
1426 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1427 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1428 struct sk_buff *skb;
1429 u16 pkt_len;
1430 int entry;
1431 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1432
1433 if (debug > 4)
1434 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1435 if (!(desc_status & RxOK)) {
1436 /* There was an error. */
1437 if (debug > 2)
1438 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1439 dev->stats.rx_errors++;
1440 if (desc_status & RxFIFOErr)
1441 dev->stats.rx_fifo_errors++;
1442 goto next_rx;
1443 }
1444
1445 if (*quota <= 0) { /* out of rx quota */
1446 retcode = 1;
1447 goto out;
1448 }
1449 (*quota)--;
1450
1451 pkt_len = desc_status; /* Implicitly Truncate */
1452 entry = (desc_status >> 16) & 0x7ff;
1453
1454 if (debug > 4)
1455 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1456 /* Check if the packet is long enough to accept without copying
1457 to a minimally-sized skbuff. */
1458 if (pkt_len < rx_copybreak &&
1459 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1460 skb_reserve(skb, 2); /* 16 byte align the IP header */
1461 dma_sync_single_for_cpu(&np->pci_dev->dev,
1462 np->rx_info[entry].mapping,
1463 pkt_len, DMA_FROM_DEVICE);
1464 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1465 dma_sync_single_for_device(&np->pci_dev->dev,
1466 np->rx_info[entry].mapping,
1467 pkt_len, DMA_FROM_DEVICE);
1468 skb_put(skb, pkt_len);
1469 } else {
1470 dma_unmap_single(&np->pci_dev->dev,
1471 np->rx_info[entry].mapping,
1472 np->rx_buf_sz, DMA_FROM_DEVICE);
1473 skb = np->rx_info[entry].skb;
1474 skb_put(skb, pkt_len);
1475 np->rx_info[entry].skb = NULL;
1476 np->rx_info[entry].mapping = 0;
1477 }
1478 #ifndef final_version /* Remove after testing. */
1479 /* You will want this info for the initial debug. */
1480 if (debug > 5) {
1481 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1482 skb->data, skb->data + 6,
1483 skb->data[12], skb->data[13]);
1484 }
1485 #endif
1486
1487 skb->protocol = eth_type_trans(skb, dev);
1488 #ifdef VLAN_SUPPORT
1489 if (debug > 4)
1490 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1491 #endif
1492 if (le16_to_cpu(desc->status2) & 0x0100) {
1493 skb->ip_summed = CHECKSUM_UNNECESSARY;
1494 dev->stats.rx_compressed++;
1495 }
1496 /*
1497 * This feature doesn't seem to be working, at least
1498 * with the two firmware versions I have. If the GFP sees
1499 * an IP fragment, it either ignores it completely, or reports
1500 * "bad checksum" on it.
1501 *
1502 * Maybe I missed something -- corrections are welcome.
1503 * Until then, the printk stays. :-) -Ion
1504 */
1505 else if (le16_to_cpu(desc->status2) & 0x0040) {
1506 skb->ip_summed = CHECKSUM_COMPLETE;
1507 skb->csum = le16_to_cpu(desc->csum);
1508 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1509 }
1510 #ifdef VLAN_SUPPORT
1511 if (le16_to_cpu(desc->status2) & 0x0200) {
1512 u16 vlid = le16_to_cpu(desc->vlanid);
1513
1514 if (debug > 4) {
1515 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1516 vlid);
1517 }
1518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1519 }
1520 #endif /* VLAN_SUPPORT */
1521 netif_receive_skb(skb);
1522 dev->stats.rx_packets++;
1523
1524 next_rx:
1525 np->cur_rx++;
1526 desc->status = 0;
1527 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1528 }
1529
1530 if (*quota == 0) { /* out of rx quota */
1531 retcode = 1;
1532 goto out;
1533 }
1534 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1535
1536 out:
1537 refill_rx_ring(dev);
1538 if (debug > 5)
1539 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1540 retcode, np->rx_done, desc_status);
1541 return retcode;
1542 }
1543
netdev_poll(struct napi_struct * napi,int budget)1544 static int netdev_poll(struct napi_struct *napi, int budget)
1545 {
1546 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1547 struct net_device *dev = np->dev;
1548 u32 intr_status;
1549 void __iomem *ioaddr = np->base;
1550 int quota = budget;
1551
1552 do {
1553 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1554
1555 if (__netdev_rx(dev, "a))
1556 goto out;
1557
1558 intr_status = readl(ioaddr + IntrStatus);
1559 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1560
1561 napi_complete(napi);
1562 intr_status = readl(ioaddr + IntrEnable);
1563 intr_status |= IntrRxDone | IntrRxEmpty;
1564 writel(intr_status, ioaddr + IntrEnable);
1565
1566 out:
1567 if (debug > 5)
1568 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1569 budget - quota);
1570
1571 /* Restart Rx engine if stopped. */
1572 return budget - quota;
1573 }
1574
refill_rx_ring(struct net_device * dev)1575 static void refill_rx_ring(struct net_device *dev)
1576 {
1577 struct netdev_private *np = netdev_priv(dev);
1578 struct sk_buff *skb;
1579 int entry = -1;
1580
1581 /* Refill the Rx ring buffers. */
1582 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1583 entry = np->dirty_rx % RX_RING_SIZE;
1584 if (np->rx_info[entry].skb == NULL) {
1585 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1586 np->rx_info[entry].skb = skb;
1587 if (skb == NULL)
1588 break; /* Better luck next round. */
1589 np->rx_info[entry].mapping =
1590 dma_map_single(&np->pci_dev->dev, skb->data,
1591 np->rx_buf_sz, DMA_FROM_DEVICE);
1592 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1593 dev_kfree_skb(skb);
1594 np->rx_info[entry].skb = NULL;
1595 break;
1596 }
1597 np->rx_ring[entry].rxaddr =
1598 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1599 }
1600 if (entry == RX_RING_SIZE - 1)
1601 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1602 }
1603 if (entry >= 0)
1604 writew(entry, np->base + RxDescQIdx);
1605 }
1606
1607
netdev_media_change(struct net_device * dev)1608 static void netdev_media_change(struct net_device *dev)
1609 {
1610 struct netdev_private *np = netdev_priv(dev);
1611 void __iomem *ioaddr = np->base;
1612 u16 reg0, reg1, reg4, reg5;
1613 u32 new_tx_mode;
1614 u32 new_intr_timer_ctrl;
1615
1616 /* reset status first */
1617 mdio_read(dev, np->phys[0], MII_BMCR);
1618 mdio_read(dev, np->phys[0], MII_BMSR);
1619
1620 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1621 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1622
1623 if (reg1 & BMSR_LSTATUS) {
1624 /* link is up */
1625 if (reg0 & BMCR_ANENABLE) {
1626 /* autonegotiation is enabled */
1627 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1628 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1629 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1630 np->speed100 = 1;
1631 np->mii_if.full_duplex = 1;
1632 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1633 np->speed100 = 1;
1634 np->mii_if.full_duplex = 0;
1635 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1636 np->speed100 = 0;
1637 np->mii_if.full_duplex = 1;
1638 } else {
1639 np->speed100 = 0;
1640 np->mii_if.full_duplex = 0;
1641 }
1642 } else {
1643 /* autonegotiation is disabled */
1644 if (reg0 & BMCR_SPEED100)
1645 np->speed100 = 1;
1646 else
1647 np->speed100 = 0;
1648 if (reg0 & BMCR_FULLDPLX)
1649 np->mii_if.full_duplex = 1;
1650 else
1651 np->mii_if.full_duplex = 0;
1652 }
1653 netif_carrier_on(dev);
1654 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1655 dev->name,
1656 np->speed100 ? "100" : "10",
1657 np->mii_if.full_duplex ? "full" : "half");
1658
1659 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1660 if (np->mii_if.full_duplex)
1661 new_tx_mode |= FullDuplex;
1662 if (np->tx_mode != new_tx_mode) {
1663 np->tx_mode = new_tx_mode;
1664 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1665 udelay(1000);
1666 writel(np->tx_mode, ioaddr + TxMode);
1667 }
1668
1669 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1670 if (np->speed100)
1671 new_intr_timer_ctrl |= Timer10X;
1672 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1673 np->intr_timer_ctrl = new_intr_timer_ctrl;
1674 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1675 }
1676 } else {
1677 netif_carrier_off(dev);
1678 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1679 }
1680 }
1681
1682
netdev_error(struct net_device * dev,int intr_status)1683 static void netdev_error(struct net_device *dev, int intr_status)
1684 {
1685 struct netdev_private *np = netdev_priv(dev);
1686
1687 /* Came close to underrunning the Tx FIFO, increase threshold. */
1688 if (intr_status & IntrTxDataLow) {
1689 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1690 writel(++np->tx_threshold, np->base + TxThreshold);
1691 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1692 dev->name, np->tx_threshold * 16);
1693 } else
1694 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1695 }
1696 if (intr_status & IntrRxGFPDead) {
1697 dev->stats.rx_fifo_errors++;
1698 dev->stats.rx_errors++;
1699 }
1700 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1701 dev->stats.tx_fifo_errors++;
1702 dev->stats.tx_errors++;
1703 }
1704 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1705 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1706 dev->name, intr_status);
1707 }
1708
1709
get_stats(struct net_device * dev)1710 static struct net_device_stats *get_stats(struct net_device *dev)
1711 {
1712 struct netdev_private *np = netdev_priv(dev);
1713 void __iomem *ioaddr = np->base;
1714
1715 /* This adapter architecture needs no SMP locks. */
1716 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1717 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1718 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1719 dev->stats.tx_aborted_errors =
1720 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1721 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1722 dev->stats.collisions =
1723 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1724
1725 /* The chip only need report frame silently dropped. */
1726 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1727 writew(0, ioaddr + RxDMAStatus);
1728 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1729 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1730 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1731 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1732
1733 return &dev->stats;
1734 }
1735
1736 #ifdef VLAN_SUPPORT
set_vlan_mode(struct netdev_private * np)1737 static u32 set_vlan_mode(struct netdev_private *np)
1738 {
1739 u32 ret = VlanMode;
1740 u16 vid;
1741 void __iomem *filter_addr = np->base + HashTable + 8;
1742 int vlan_count = 0;
1743
1744 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1745 if (vlan_count == 32)
1746 break;
1747 writew(vid, filter_addr);
1748 filter_addr += 16;
1749 vlan_count++;
1750 }
1751 if (vlan_count == 32) {
1752 ret |= PerfectFilterVlan;
1753 while (vlan_count < 32) {
1754 writew(0, filter_addr);
1755 filter_addr += 16;
1756 vlan_count++;
1757 }
1758 }
1759 return ret;
1760 }
1761 #endif /* VLAN_SUPPORT */
1762
set_rx_mode(struct net_device * dev)1763 static void set_rx_mode(struct net_device *dev)
1764 {
1765 struct netdev_private *np = netdev_priv(dev);
1766 void __iomem *ioaddr = np->base;
1767 u32 rx_mode = MinVLANPrio;
1768 struct netdev_hw_addr *ha;
1769 int i;
1770
1771 #ifdef VLAN_SUPPORT
1772 rx_mode |= set_vlan_mode(np);
1773 #endif /* VLAN_SUPPORT */
1774
1775 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1776 rx_mode |= AcceptAll;
1777 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1778 (dev->flags & IFF_ALLMULTI)) {
1779 /* Too many to match, or accept all multicasts. */
1780 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1781 } else if (netdev_mc_count(dev) <= 14) {
1782 /* Use the 16 element perfect filter, skip first two entries. */
1783 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1784 const __be16 *eaddrs;
1785 netdev_for_each_mc_addr(ha, dev) {
1786 eaddrs = (__be16 *) ha->addr;
1787 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1788 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1789 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1790 }
1791 eaddrs = (const __be16 *)dev->dev_addr;
1792 i = netdev_mc_count(dev) + 2;
1793 while (i++ < 16) {
1794 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797 }
1798 rx_mode |= AcceptBroadcast|PerfectFilter;
1799 } else {
1800 /* Must use a multicast hash table. */
1801 void __iomem *filter_addr;
1802 const __be16 *eaddrs;
1803 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1804
1805 memset(mc_filter, 0, sizeof(mc_filter));
1806 netdev_for_each_mc_addr(ha, dev) {
1807 /* The chip uses the upper 9 CRC bits
1808 as index into the hash table */
1809 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1810 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1811
1812 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1813 }
1814 /* Clear the perfect filter list, skip first two entries. */
1815 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1816 eaddrs = (const __be16 *)dev->dev_addr;
1817 for (i = 2; i < 16; i++) {
1818 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1819 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1820 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1821 }
1822 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1823 writew(mc_filter[i], filter_addr);
1824 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1825 }
1826 writel(rx_mode, ioaddr + RxFilterMode);
1827 }
1828
check_if_running(struct net_device * dev)1829 static int check_if_running(struct net_device *dev)
1830 {
1831 if (!netif_running(dev))
1832 return -EINVAL;
1833 return 0;
1834 }
1835
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1836 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1837 {
1838 struct netdev_private *np = netdev_priv(dev);
1839 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1840 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1841 }
1842
get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1843 static int get_link_ksettings(struct net_device *dev,
1844 struct ethtool_link_ksettings *cmd)
1845 {
1846 struct netdev_private *np = netdev_priv(dev);
1847 spin_lock_irq(&np->lock);
1848 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1849 spin_unlock_irq(&np->lock);
1850 return 0;
1851 }
1852
set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1853 static int set_link_ksettings(struct net_device *dev,
1854 const struct ethtool_link_ksettings *cmd)
1855 {
1856 struct netdev_private *np = netdev_priv(dev);
1857 int res;
1858 spin_lock_irq(&np->lock);
1859 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1860 spin_unlock_irq(&np->lock);
1861 check_duplex(dev);
1862 return res;
1863 }
1864
nway_reset(struct net_device * dev)1865 static int nway_reset(struct net_device *dev)
1866 {
1867 struct netdev_private *np = netdev_priv(dev);
1868 return mii_nway_restart(&np->mii_if);
1869 }
1870
get_link(struct net_device * dev)1871 static u32 get_link(struct net_device *dev)
1872 {
1873 struct netdev_private *np = netdev_priv(dev);
1874 return mii_link_ok(&np->mii_if);
1875 }
1876
get_msglevel(struct net_device * dev)1877 static u32 get_msglevel(struct net_device *dev)
1878 {
1879 return debug;
1880 }
1881
set_msglevel(struct net_device * dev,u32 val)1882 static void set_msglevel(struct net_device *dev, u32 val)
1883 {
1884 debug = val;
1885 }
1886
1887 static const struct ethtool_ops ethtool_ops = {
1888 .begin = check_if_running,
1889 .get_drvinfo = get_drvinfo,
1890 .nway_reset = nway_reset,
1891 .get_link = get_link,
1892 .get_msglevel = get_msglevel,
1893 .set_msglevel = set_msglevel,
1894 .get_link_ksettings = get_link_ksettings,
1895 .set_link_ksettings = set_link_ksettings,
1896 };
1897
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1898 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1899 {
1900 struct netdev_private *np = netdev_priv(dev);
1901 struct mii_ioctl_data *data = if_mii(rq);
1902 int rc;
1903
1904 if (!netif_running(dev))
1905 return -EINVAL;
1906
1907 spin_lock_irq(&np->lock);
1908 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1909 spin_unlock_irq(&np->lock);
1910
1911 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1912 check_duplex(dev);
1913
1914 return rc;
1915 }
1916
netdev_close(struct net_device * dev)1917 static int netdev_close(struct net_device *dev)
1918 {
1919 struct netdev_private *np = netdev_priv(dev);
1920 void __iomem *ioaddr = np->base;
1921 int i;
1922
1923 netif_stop_queue(dev);
1924
1925 napi_disable(&np->napi);
1926
1927 if (debug > 1) {
1928 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1929 dev->name, (int) readl(ioaddr + IntrStatus));
1930 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1931 dev->name, np->cur_tx, np->dirty_tx,
1932 np->cur_rx, np->dirty_rx);
1933 }
1934
1935 /* Disable interrupts by clearing the interrupt mask. */
1936 writel(0, ioaddr + IntrEnable);
1937
1938 /* Stop the chip's Tx and Rx processes. */
1939 writel(0, ioaddr + GenCtrl);
1940 readl(ioaddr + GenCtrl);
1941
1942 if (debug > 5) {
1943 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1944 (long long) np->tx_ring_dma);
1945 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1946 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1947 i, le32_to_cpu(np->tx_ring[i].status),
1948 (long long) dma_to_cpu(np->tx_ring[i].addr),
1949 le32_to_cpu(np->tx_done_q[i].status));
1950 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1951 (long long) np->rx_ring_dma, np->rx_done_q);
1952 if (np->rx_done_q)
1953 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1954 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1955 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1956 }
1957 }
1958
1959 free_irq(np->pci_dev->irq, dev);
1960
1961 /* Free all the skbuffs in the Rx queue. */
1962 for (i = 0; i < RX_RING_SIZE; i++) {
1963 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1964 if (np->rx_info[i].skb != NULL) {
1965 dma_unmap_single(&np->pci_dev->dev,
1966 np->rx_info[i].mapping,
1967 np->rx_buf_sz, DMA_FROM_DEVICE);
1968 dev_kfree_skb(np->rx_info[i].skb);
1969 }
1970 np->rx_info[i].skb = NULL;
1971 np->rx_info[i].mapping = 0;
1972 }
1973 for (i = 0; i < TX_RING_SIZE; i++) {
1974 struct sk_buff *skb = np->tx_info[i].skb;
1975 if (skb == NULL)
1976 continue;
1977 dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1978 skb_first_frag_len(skb), DMA_TO_DEVICE);
1979 np->tx_info[i].mapping = 0;
1980 dev_kfree_skb(skb);
1981 np->tx_info[i].skb = NULL;
1982 }
1983
1984 return 0;
1985 }
1986
starfire_suspend(struct device * dev_d)1987 static int __maybe_unused starfire_suspend(struct device *dev_d)
1988 {
1989 struct net_device *dev = dev_get_drvdata(dev_d);
1990
1991 if (netif_running(dev)) {
1992 netif_device_detach(dev);
1993 netdev_close(dev);
1994 }
1995
1996 return 0;
1997 }
1998
starfire_resume(struct device * dev_d)1999 static int __maybe_unused starfire_resume(struct device *dev_d)
2000 {
2001 struct net_device *dev = dev_get_drvdata(dev_d);
2002
2003 if (netif_running(dev)) {
2004 netdev_open(dev);
2005 netif_device_attach(dev);
2006 }
2007
2008 return 0;
2009 }
2010
starfire_remove_one(struct pci_dev * pdev)2011 static void starfire_remove_one(struct pci_dev *pdev)
2012 {
2013 struct net_device *dev = pci_get_drvdata(pdev);
2014 struct netdev_private *np = netdev_priv(dev);
2015
2016 BUG_ON(!dev);
2017
2018 unregister_netdev(dev);
2019
2020 if (np->queue_mem)
2021 dma_free_coherent(&pdev->dev, np->queue_mem_size,
2022 np->queue_mem, np->queue_mem_dma);
2023
2024
2025 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2026 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2027 pci_disable_device(pdev);
2028
2029 iounmap(np->base);
2030 pci_release_regions(pdev);
2031
2032 free_netdev(dev); /* Will also free np!! */
2033 }
2034
2035 static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2036
2037 static struct pci_driver starfire_driver = {
2038 .name = DRV_NAME,
2039 .probe = starfire_init_one,
2040 .remove = starfire_remove_one,
2041 .driver.pm = &starfire_pm_ops,
2042 .id_table = starfire_pci_tbl,
2043 };
2044
2045
starfire_init(void)2046 static int __init starfire_init (void)
2047 {
2048 /* when a module, this is printed whether or not devices are found in probe */
2049 #ifdef MODULE
2050 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2051 #endif
2052
2053 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2054
2055 return pci_register_driver(&starfire_driver);
2056 }
2057
2058
starfire_cleanup(void)2059 static void __exit starfire_cleanup (void)
2060 {
2061 pci_unregister_driver (&starfire_driver);
2062 }
2063
2064
2065 module_init(starfire_init);
2066 module_exit(starfire_cleanup);
2067