xref: /linux/drivers/net/ethernet/adaptec/starfire.c (revision 5c61f59824b5e46516ea5d0543ad7a8871567416)
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 	Written 1998-2000 by Donald Becker.
4 
5 	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 	send all bug reports to me, and not to Donald Becker, as this code
7 	has been heavily modified from Donald's original version.
8 
9 	This software may be used and distributed according to the terms of
10 	the GNU General Public License (GPL), incorporated herein by reference.
11 	Drivers based on or derived from this code fall under the GPL and must
12 	retain the authorship, copyright and license notice.  This file is not
13 	a complete program and may only be used when the entire operating
14 	system is licensed under the GPL.
15 
16 	The information below comes from Donald Becker's original driver:
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 	Support and updates available at
24 	http://www.scyld.com/network/starfire.html
25 	[link no longer provides useful info -jgarzik]
26 
27 */
28 
29 #define DRV_NAME	"starfire"
30 
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kernel.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mm.h>
44 #include <linux/firmware.h>
45 #include <asm/processor.h>		/* Processor type for cache alignment. */
46 #include <linux/uaccess.h>
47 #include <asm/io.h>
48 
49 /*
50  * The current frame processor firmware fails to checksum a fragment
51  * of length 1. If and when this is fixed, the #define below can be removed.
52  */
53 #define HAS_BROKEN_FIRMWARE
54 
55 /*
56  * If using the broken firmware, data must be padded to the next 32-bit boundary.
57  */
58 #ifdef HAS_BROKEN_FIRMWARE
59 #define PADDING_MASK 3
60 #endif
61 
62 /*
63  * Define this if using the driver with the zero-copy patch
64  */
65 #define ZEROCOPY
66 
67 #if IS_ENABLED(CONFIG_VLAN_8021Q)
68 #define VLAN_SUPPORT
69 #endif
70 
71 /* The user-configurable values.
72    These may be modified when a driver module is loaded.*/
73 
74 /* Used for tuning interrupt latency vs. overhead. */
75 static int intr_latency;
76 static int small_frames;
77 
78 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
79 static int max_interrupt_work = 20;
80 static int mtu;
81 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82    The Starfire has a 512 element hash table based on the Ethernet CRC. */
83 static const int multicast_filter_limit = 512;
84 /* Whether to do TCP/UDP checksums in hardware */
85 static int enable_hw_cksum = 1;
86 
87 #define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
88 /*
89  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90  * Setting to > 1518 effectively disables this feature.
91  *
92  * NOTE:
93  * The ia64 doesn't allow for unaligned loads even of integers being
94  * misaligned on a 2 byte boundary. Thus always force copying of
95  * packets as the starfire doesn't allow for misaligned DMAs ;-(
96  * 23/10/2000 - Jes
97  *
98  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99  * at least, having unaligned frames leads to a rather serious performance
100  * penalty. -Ion
101  */
102 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103 static int rx_copybreak = PKT_BUF_SZ;
104 #else
105 static int rx_copybreak /* = 0 */;
106 #endif
107 
108 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
109 #ifdef __sparc__
110 #define DMA_BURST_SIZE 64
111 #else
112 #define DMA_BURST_SIZE 128
113 #endif
114 
115 /* Operational parameters that are set at compile time. */
116 
117 /* The "native" ring sizes are either 256 or 2048.
118    However in some modes a descriptor may be marked to wrap the ring earlier.
119 */
120 #define RX_RING_SIZE	256
121 #define TX_RING_SIZE	32
122 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123 #define DONE_Q_SIZE	1024
124 /* All queues must be aligned on a 256-byte boundary */
125 #define QUEUE_ALIGN	256
126 
127 #if RX_RING_SIZE > 256
128 #define RX_Q_ENTRIES Rx2048QEntries
129 #else
130 #define RX_Q_ENTRIES Rx256QEntries
131 #endif
132 
133 /* Operational parameters that usually are not changed. */
134 /* Time in jiffies before concluding the transmitter is hung. */
135 #define TX_TIMEOUT	(2 * HZ)
136 
137 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138 /* 64-bit dma_addr_t */
139 #define ADDR_64BITS	/* This chip uses 64 bit addresses. */
140 #define netdrv_addr_t __le64
141 #define cpu_to_dma(x) cpu_to_le64(x)
142 #define dma_to_cpu(x) le64_to_cpu(x)
143 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
148 #else  /* 32-bit dma_addr_t */
149 #define netdrv_addr_t __le32
150 #define cpu_to_dma(x) cpu_to_le32(x)
151 #define dma_to_cpu(x) le32_to_cpu(x)
152 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
157 #endif
158 
159 #define skb_first_frag_len(skb)	skb_headlen(skb)
160 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
161 
162 /* Firmware names */
163 #define FIRMWARE_RX	"adaptec/starfire_rx.bin"
164 #define FIRMWARE_TX	"adaptec/starfire_tx.bin"
165 
166 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
167 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168 MODULE_LICENSE("GPL");
169 MODULE_FIRMWARE(FIRMWARE_RX);
170 MODULE_FIRMWARE(FIRMWARE_TX);
171 
172 module_param(max_interrupt_work, int, 0);
173 module_param(mtu, int, 0);
174 module_param(debug, int, 0);
175 module_param(rx_copybreak, int, 0);
176 module_param(intr_latency, int, 0);
177 module_param(small_frames, int, 0);
178 module_param(enable_hw_cksum, int, 0);
179 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180 MODULE_PARM_DESC(mtu, "MTU (all boards)");
181 MODULE_PARM_DESC(debug, "Debug level (0-6)");
182 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
186 
187 /*
188 				Theory of Operation
189 
190 I. Board Compatibility
191 
192 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
193 
194 II. Board-specific settings
195 
196 III. Driver operation
197 
198 IIIa. Ring buffers
199 
200 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
201 ring sizes are set fixed by the hardware, but may optionally be wrapped
202 earlier by the END bit in the descriptor.
203 This driver uses that hardware queue size for the Rx ring, where a large
204 number of entries has no ill effect beyond increases the potential backlog.
205 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206 disables the queue layer priority ordering and we have no mechanism to
207 utilize the hardware two-level priority queue.  When modifying the
208 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
209 levels.
210 
211 IIIb/c. Transmit/Receive Structure
212 
213 See the Adaptec manual for the many possible structures, and options for
214 each structure.  There are far too many to document all of them here.
215 
216 For transmit this driver uses type 0/1 transmit descriptors (depending
217 on the 32/64 bitness of the architecture), and relies on automatic
218 minimum-length padding.  It does not use the completion queue
219 consumer index, but instead checks for non-zero status entries.
220 
221 For receive this driver uses type 2/3 receive descriptors.  The driver
222 allocates full frame size skbuffs for the Rx ring buffers, so all frames
223 should fit in a single descriptor.  The driver does not use the completion
224 queue consumer index, but instead checks for non-zero status entries.
225 
226 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227 is allocated and the frame is copied to the new skbuff.  When the incoming
228 frame is larger, the skbuff is passed directly up the protocol stack.
229 Buffers consumed this way are replaced by newly allocated skbuffs in a later
230 phase of receive.
231 
232 A notable aspect of operation is that unaligned buffers are not permitted by
233 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
234 isn't longword aligned, which may cause problems on some machine
235 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236 the frame into a new skbuff unconditionally. Copied frames are put into the
237 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
238 
239 IIId. Synchronization
240 
241 The driver runs as two independent, single-threaded flows of control.  One
242 is the send-packet routine, which enforces single-threaded use by the
243 dev->tbusy flag.  The other thread is the interrupt handler, which is single
244 threaded by the hardware and interrupt handling software.
245 
246 The send packet thread has partial control over the Tx ring and the netif_queue
247 status. If the number of free Tx slots in the ring falls below a certain number
248 (currently hardcoded to 4), it signals the upper layer to stop the queue.
249 
250 The interrupt handler has exclusive control over the Rx ring and records stats
251 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
252 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253 number of free Tx slow is above the threshold, it signals the upper layer to
254 restart the queue.
255 
256 IV. Notes
257 
258 IVb. References
259 
260 The Adaptec Starfire manuals, available only from Adaptec.
261 http://www.scyld.com/expert/100mbps.html
262 http://www.scyld.com/expert/NWay.html
263 
264 IVc. Errata
265 
266 - StopOnPerr is broken, don't enable
267 - Hardware ethernet padding exposes random data, perform software padding
268   instead (unverified -- works correctly for all the hardware I have)
269 
270 */
271 
272 
273 
274 enum chip_capability_flags {CanHaveMII=1, };
275 
276 enum chipset {
277 	CH_6915 = 0,
278 };
279 
280 static const struct pci_device_id starfire_pci_tbl[] = {
281 	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
282 	{ 0, }
283 };
284 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
285 
286 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287 static const struct chip_info {
288 	const char *name;
289 	int drv_flags;
290 } netdrv_tbl[] = {
291 	{ "Adaptec Starfire 6915", CanHaveMII },
292 };
293 
294 
295 /* Offsets to the device registers.
296    Unlike software-only systems, device drivers interact with complex hardware.
297    It's not useful to define symbolic names for every register bit in the
298    device.  The name can only partially document the semantics and make
299    the driver longer and more difficult to read.
300    In general, only the important configuration values or bits changed
301    multiple times should be defined symbolically.
302 */
303 enum register_offsets {
304 	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305 	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306 	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307 	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308 	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309 	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
310 	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
311 	TxThreshold=0x500B0,
312 	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313 	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314 	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315 	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316 	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317 	TxMode=0x55000, VlanType=0x55064,
318 	PerfFilterTable=0x56000, HashTable=0x56100,
319 	TxGfpMem=0x58000, RxGfpMem=0x5a000,
320 };
321 
322 /*
323  * Bits in the interrupt status/mask registers.
324  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325  * enables all the interrupt sources that are or'ed into those status bits.
326  */
327 enum intr_status_bits {
328 	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329 	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330 	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331 	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332 	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333 	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334 	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335 	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336 	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337 	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338 	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339 	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340 	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341 	IntrTxGfp=0x02, IntrPCIPad=0x01,
342 	/* not quite bits */
343 	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344 	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345 	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
346 };
347 
348 /* Bits in the RxFilterMode register. */
349 enum rx_mode_bits {
350 	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351 	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352 	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
353 	WakeupOnGFP=0x0800,
354 };
355 
356 /* Bits in the TxMode register */
357 enum tx_mode_bits {
358 	MiiSoftReset=0x8000, MIILoopback=0x4000,
359 	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360 	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
361 };
362 
363 /* Bits in the TxDescCtrl register. */
364 enum tx_ctrl_bits {
365 	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366 	TxDescSpace128=0x30, TxDescSpace256=0x40,
367 	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368 	TxDescType3=0x03, TxDescType4=0x04,
369 	TxNoDMACompletion=0x08,
370 	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371 	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372 	TxDMABurstSizeShift=8,
373 };
374 
375 /* Bits in the RxDescQCtrl register. */
376 enum rx_ctrl_bits {
377 	RxBufferLenShift=16, RxMinDescrThreshShift=0,
378 	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379 	Rx2048QEntries=0x4000, Rx256QEntries=0,
380 	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381 	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382 	RxDescSpace4=0x000, RxDescSpace8=0x100,
383 	RxDescSpace16=0x200, RxDescSpace32=0x300,
384 	RxDescSpace64=0x400, RxDescSpace128=0x500,
385 	RxConsumerWrEn=0x80,
386 };
387 
388 /* Bits in the RxDMACtrl register. */
389 enum rx_dmactrl_bits {
390 	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391 	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392 	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393 	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394 	RxChecksumRejectTCPOnly=0x01000000,
395 	RxCompletionQ2Enable=0x800000,
396 	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397 	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398 	RxDMAQ2NonIP=0x400000,
399 	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400 	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
401 	RxBurstSizeShift=0,
402 };
403 
404 /* Bits in the RxCompletionAddr register */
405 enum rx_compl_bits {
406 	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407 	RxComplProducerWrEn=0x40,
408 	RxComplType0=0x00, RxComplType1=0x10,
409 	RxComplType2=0x20, RxComplType3=0x30,
410 	RxComplThreshShift=0,
411 };
412 
413 /* Bits in the TxCompletionAddr register */
414 enum tx_compl_bits {
415 	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416 	TxComplProducerWrEn=0x40,
417 	TxComplIntrStatus=0x20,
418 	CommonQueueMode=0x10,
419 	TxComplThreshShift=0,
420 };
421 
422 /* Bits in the GenCtrl register */
423 enum gen_ctrl_bits {
424 	RxEnable=0x05, TxEnable=0x0a,
425 	RxGFPEnable=0x10, TxGFPEnable=0x20,
426 };
427 
428 /* Bits in the IntrTimerCtrl register */
429 enum intr_ctrl_bits {
430 	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431 	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432 	IntrLatencyMask=0x1f,
433 };
434 
435 /* The Rx and Tx buffer descriptors. */
436 struct starfire_rx_desc {
437 	netdrv_addr_t rxaddr;
438 };
439 enum rx_desc_bits {
440 	RxDescValid=1, RxDescEndRing=2,
441 };
442 
443 /* Completion queue entry. */
444 struct csum_rx_done_desc {
445 	__le32 status;			/* Low 16 bits is length. */
446 	__le16 csum;			/* Partial checksum */
447 	__le16 status2;
448 };
449 struct full_rx_done_desc {
450 	__le32 status;			/* Low 16 bits is length. */
451 	__le16 status3;
452 	__le16 status2;
453 	__le16 vlanid;
454 	__le16 csum;			/* partial checksum */
455 	__le32 timestamp;
456 };
457 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
458 #ifdef VLAN_SUPPORT
459 typedef struct full_rx_done_desc rx_done_desc;
460 #define RxComplType RxComplType3
461 #else  /* not VLAN_SUPPORT */
462 typedef struct csum_rx_done_desc rx_done_desc;
463 #define RxComplType RxComplType2
464 #endif /* not VLAN_SUPPORT */
465 
466 enum rx_done_bits {
467 	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
468 };
469 
470 /* Type 1 Tx descriptor. */
471 struct starfire_tx_desc_1 {
472 	__le32 status;			/* Upper bits are status, lower 16 length. */
473 	__le32 addr;
474 };
475 
476 /* Type 2 Tx descriptor. */
477 struct starfire_tx_desc_2 {
478 	__le32 status;			/* Upper bits are status, lower 16 length. */
479 	__le32 reserved;
480 	__le64 addr;
481 };
482 
483 #ifdef ADDR_64BITS
484 typedef struct starfire_tx_desc_2 starfire_tx_desc;
485 #define TX_DESC_TYPE TxDescType2
486 #else  /* not ADDR_64BITS */
487 typedef struct starfire_tx_desc_1 starfire_tx_desc;
488 #define TX_DESC_TYPE TxDescType1
489 #endif /* not ADDR_64BITS */
490 #define TX_DESC_SPACING TxDescSpaceUnlim
491 
492 enum tx_desc_bits {
493 	TxDescID=0xB0000000,
494 	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
495 	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
496 };
497 struct tx_done_desc {
498 	__le32 status;			/* timestamp, index. */
499 #if 0
500 	__le32 intrstatus;		/* interrupt status */
501 #endif
502 };
503 
504 struct rx_ring_info {
505 	struct sk_buff *skb;
506 	dma_addr_t mapping;
507 };
508 struct tx_ring_info {
509 	struct sk_buff *skb;
510 	dma_addr_t mapping;
511 	unsigned int used_slots;
512 };
513 
514 #define PHY_CNT		2
515 struct netdev_private {
516 	/* Descriptor rings first for alignment. */
517 	struct starfire_rx_desc *rx_ring;
518 	starfire_tx_desc *tx_ring;
519 	dma_addr_t rx_ring_dma;
520 	dma_addr_t tx_ring_dma;
521 	/* The addresses of rx/tx-in-place skbuffs. */
522 	struct rx_ring_info rx_info[RX_RING_SIZE];
523 	struct tx_ring_info tx_info[TX_RING_SIZE];
524 	/* Pointers to completion queues (full pages). */
525 	rx_done_desc *rx_done_q;
526 	dma_addr_t rx_done_q_dma;
527 	unsigned int rx_done;
528 	struct tx_done_desc *tx_done_q;
529 	dma_addr_t tx_done_q_dma;
530 	unsigned int tx_done;
531 	struct napi_struct napi;
532 	struct net_device *dev;
533 	struct pci_dev *pci_dev;
534 #ifdef VLAN_SUPPORT
535 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
536 #endif
537 	void *queue_mem;
538 	dma_addr_t queue_mem_dma;
539 	size_t queue_mem_size;
540 
541 	/* Frequently used values: keep some adjacent for cache effect. */
542 	spinlock_t lock;
543 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
544 	unsigned int cur_tx, dirty_tx, reap_tx;
545 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
546 	/* These values keep track of the transceiver/media in use. */
547 	int speed100;			/* Set if speed == 100MBit. */
548 	u32 tx_mode;
549 	u32 intr_timer_ctrl;
550 	u8 tx_threshold;
551 	/* MII transceiver section. */
552 	struct mii_if_info mii_if;		/* MII lib hooks/info */
553 	int phy_cnt;			/* MII device addresses. */
554 	unsigned char phys[PHY_CNT];	/* MII device addresses. */
555 	void __iomem *base;
556 };
557 
558 
559 static int	mdio_read(struct net_device *dev, int phy_id, int location);
560 static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
561 static int	netdev_open(struct net_device *dev);
562 static void	check_duplex(struct net_device *dev);
563 static void	tx_timeout(struct net_device *dev, unsigned int txqueue);
564 static void	init_ring(struct net_device *dev);
565 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
566 static irqreturn_t intr_handler(int irq, void *dev_instance);
567 static void	netdev_error(struct net_device *dev, int intr_status);
568 static int	__netdev_rx(struct net_device *dev, int *quota);
569 static int	netdev_poll(struct napi_struct *napi, int budget);
570 static void	refill_rx_ring(struct net_device *dev);
571 static void	netdev_error(struct net_device *dev, int intr_status);
572 static void	set_rx_mode(struct net_device *dev);
573 static struct net_device_stats *get_stats(struct net_device *dev);
574 static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
575 static int	netdev_close(struct net_device *dev);
576 static void	netdev_media_change(struct net_device *dev);
577 static const struct ethtool_ops ethtool_ops;
578 
579 
580 #ifdef VLAN_SUPPORT
581 static int netdev_vlan_rx_add_vid(struct net_device *dev,
582 				  __be16 proto, u16 vid)
583 {
584 	struct netdev_private *np = netdev_priv(dev);
585 
586 	spin_lock(&np->lock);
587 	if (debug > 1)
588 		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
589 	set_bit(vid, np->active_vlans);
590 	set_rx_mode(dev);
591 	spin_unlock(&np->lock);
592 
593 	return 0;
594 }
595 
596 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
597 				   __be16 proto, u16 vid)
598 {
599 	struct netdev_private *np = netdev_priv(dev);
600 
601 	spin_lock(&np->lock);
602 	if (debug > 1)
603 		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
604 	clear_bit(vid, np->active_vlans);
605 	set_rx_mode(dev);
606 	spin_unlock(&np->lock);
607 
608 	return 0;
609 }
610 #endif /* VLAN_SUPPORT */
611 
612 
613 static const struct net_device_ops netdev_ops = {
614 	.ndo_open		= netdev_open,
615 	.ndo_stop		= netdev_close,
616 	.ndo_start_xmit		= start_tx,
617 	.ndo_tx_timeout		= tx_timeout,
618 	.ndo_get_stats		= get_stats,
619 	.ndo_set_rx_mode	= set_rx_mode,
620 	.ndo_eth_ioctl		= netdev_ioctl,
621 	.ndo_set_mac_address	= eth_mac_addr,
622 	.ndo_validate_addr	= eth_validate_addr,
623 #ifdef VLAN_SUPPORT
624 	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
625 	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
626 #endif
627 };
628 
629 static int starfire_init_one(struct pci_dev *pdev,
630 			     const struct pci_device_id *ent)
631 {
632 	struct device *d = &pdev->dev;
633 	struct netdev_private *np;
634 	int i, irq, chip_idx = ent->driver_data;
635 	struct net_device *dev;
636 	u8 addr[ETH_ALEN];
637 	long ioaddr;
638 	void __iomem *base;
639 	int drv_flags, io_size;
640 	int boguscnt;
641 
642 	if (pci_enable_device (pdev))
643 		return -EIO;
644 
645 	ioaddr = pci_resource_start(pdev, 0);
646 	io_size = pci_resource_len(pdev, 0);
647 	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
648 		dev_err(d, "no PCI MEM resources, aborting\n");
649 		return -ENODEV;
650 	}
651 
652 	dev = alloc_etherdev(sizeof(*np));
653 	if (!dev)
654 		return -ENOMEM;
655 
656 	SET_NETDEV_DEV(dev, &pdev->dev);
657 
658 	irq = pdev->irq;
659 
660 	if (pci_request_regions (pdev, DRV_NAME)) {
661 		dev_err(d, "cannot reserve PCI resources, aborting\n");
662 		goto err_out_free_netdev;
663 	}
664 
665 	base = ioremap(ioaddr, io_size);
666 	if (!base) {
667 		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
668 			io_size, ioaddr);
669 		goto err_out_free_res;
670 	}
671 
672 	pci_set_master(pdev);
673 
674 	/* enable MWI -- it vastly improves Rx performance on sparc64 */
675 	pci_try_set_mwi(pdev);
676 
677 #ifdef ZEROCOPY
678 	/* Starfire can do TCP/UDP checksumming */
679 	if (enable_hw_cksum)
680 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
681 #endif /* ZEROCOPY */
682 
683 #ifdef VLAN_SUPPORT
684 	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
685 #endif /* VLAN_RX_KILL_VID */
686 #ifdef ADDR_64BITS
687 	dev->features |= NETIF_F_HIGHDMA;
688 #endif /* ADDR_64BITS */
689 
690 	/* Serial EEPROM reads are hidden by the hardware. */
691 	for (i = 0; i < 6; i++)
692 		addr[i] = readb(base + EEPROMCtrl + 20 - i);
693 	eth_hw_addr_set(dev, addr);
694 
695 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
696 	if (debug > 4)
697 		for (i = 0; i < 0x20; i++)
698 			printk("%2.2x%s",
699 			       (unsigned int)readb(base + EEPROMCtrl + i),
700 			       i % 16 != 15 ? " " : "\n");
701 #endif
702 
703 	/* Issue soft reset */
704 	writel(MiiSoftReset, base + TxMode);
705 	udelay(1000);
706 	writel(0, base + TxMode);
707 
708 	/* Reset the chip to erase previous misconfiguration. */
709 	writel(1, base + PCIDeviceConfig);
710 	boguscnt = 1000;
711 	while (--boguscnt > 0) {
712 		udelay(10);
713 		if ((readl(base + PCIDeviceConfig) & 1) == 0)
714 			break;
715 	}
716 	if (boguscnt == 0)
717 		printk("%s: chipset reset never completed!\n", dev->name);
718 	/* wait a little longer */
719 	udelay(1000);
720 
721 	np = netdev_priv(dev);
722 	np->dev = dev;
723 	np->base = base;
724 	spin_lock_init(&np->lock);
725 	pci_set_drvdata(pdev, dev);
726 
727 	np->pci_dev = pdev;
728 
729 	np->mii_if.dev = dev;
730 	np->mii_if.mdio_read = mdio_read;
731 	np->mii_if.mdio_write = mdio_write;
732 	np->mii_if.phy_id_mask = 0x1f;
733 	np->mii_if.reg_num_mask = 0x1f;
734 
735 	drv_flags = netdrv_tbl[chip_idx].drv_flags;
736 
737 	np->speed100 = 1;
738 
739 	/* timer resolution is 128 * 0.8us */
740 	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
741 		Timer10X | EnableIntrMasking;
742 
743 	if (small_frames > 0) {
744 		np->intr_timer_ctrl |= SmallFrameBypass;
745 		switch (small_frames) {
746 		case 1 ... 64:
747 			np->intr_timer_ctrl |= SmallFrame64;
748 			break;
749 		case 65 ... 128:
750 			np->intr_timer_ctrl |= SmallFrame128;
751 			break;
752 		case 129 ... 256:
753 			np->intr_timer_ctrl |= SmallFrame256;
754 			break;
755 		default:
756 			np->intr_timer_ctrl |= SmallFrame512;
757 			if (small_frames > 512)
758 				printk("Adjusting small_frames down to 512\n");
759 			break;
760 		}
761 	}
762 
763 	dev->netdev_ops = &netdev_ops;
764 	dev->watchdog_timeo = TX_TIMEOUT;
765 	dev->ethtool_ops = &ethtool_ops;
766 
767 	netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
768 
769 	if (mtu)
770 		dev->mtu = mtu;
771 
772 	if (register_netdev(dev))
773 		goto err_out_cleardev;
774 
775 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
776 	       dev->name, netdrv_tbl[chip_idx].name, base,
777 	       dev->dev_addr, irq);
778 
779 	if (drv_flags & CanHaveMII) {
780 		int phy, phy_idx = 0;
781 		int mii_status;
782 		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
783 			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
784 			msleep(100);
785 			boguscnt = 1000;
786 			while (--boguscnt > 0)
787 				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
788 					break;
789 			if (boguscnt == 0) {
790 				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
791 				continue;
792 			}
793 			mii_status = mdio_read(dev, phy, MII_BMSR);
794 			if (mii_status != 0) {
795 				np->phys[phy_idx++] = phy;
796 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
797 				printk(KERN_INFO "%s: MII PHY found at address %d, status "
798 					   "%#4.4x advertising %#4.4x.\n",
799 					   dev->name, phy, mii_status, np->mii_if.advertising);
800 				/* there can be only one PHY on-board */
801 				break;
802 			}
803 		}
804 		np->phy_cnt = phy_idx;
805 		if (np->phy_cnt > 0)
806 			np->mii_if.phy_id = np->phys[0];
807 		else
808 			memset(&np->mii_if, 0, sizeof(np->mii_if));
809 	}
810 
811 	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
812 	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
813 	return 0;
814 
815 err_out_cleardev:
816 	iounmap(base);
817 err_out_free_res:
818 	pci_release_regions (pdev);
819 err_out_free_netdev:
820 	free_netdev(dev);
821 	return -ENODEV;
822 }
823 
824 
825 /* Read the MII Management Data I/O (MDIO) interfaces. */
826 static int mdio_read(struct net_device *dev, int phy_id, int location)
827 {
828 	struct netdev_private *np = netdev_priv(dev);
829 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
830 	int result, boguscnt=1000;
831 	/* ??? Should we add a busy-wait here? */
832 	do {
833 		result = readl(mdio_addr);
834 	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
835 	if (boguscnt == 0)
836 		return 0;
837 	if ((result & 0xffff) == 0xffff)
838 		return 0;
839 	return result & 0xffff;
840 }
841 
842 
843 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
844 {
845 	struct netdev_private *np = netdev_priv(dev);
846 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
847 	writel(value, mdio_addr);
848 	/* The busy-wait will occur before a read. */
849 }
850 
851 
852 static int netdev_open(struct net_device *dev)
853 {
854 	const struct firmware *fw_rx, *fw_tx;
855 	const __be32 *fw_rx_data, *fw_tx_data;
856 	struct netdev_private *np = netdev_priv(dev);
857 	void __iomem *ioaddr = np->base;
858 	const int irq = np->pci_dev->irq;
859 	int i, retval;
860 	size_t tx_size, rx_size;
861 	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
862 
863 	/* Do we ever need to reset the chip??? */
864 
865 	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
866 	if (retval)
867 		return retval;
868 
869 	/* Disable the Rx and Tx, and reset the chip. */
870 	writel(0, ioaddr + GenCtrl);
871 	writel(1, ioaddr + PCIDeviceConfig);
872 	if (debug > 1)
873 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
874 		       dev->name, irq);
875 
876 	/* Allocate the various queues. */
877 	if (!np->queue_mem) {
878 		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
879 		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
880 		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
881 		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
882 		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
883 		np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
884 						   np->queue_mem_size,
885 						   &np->queue_mem_dma, GFP_ATOMIC);
886 		if (np->queue_mem == NULL) {
887 			free_irq(irq, dev);
888 			return -ENOMEM;
889 		}
890 
891 		np->tx_done_q     = np->queue_mem;
892 		np->tx_done_q_dma = np->queue_mem_dma;
893 		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
894 		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
895 		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
896 		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
897 		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
898 		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
899 	}
900 
901 	/* Start with no carrier, it gets adjusted later */
902 	netif_carrier_off(dev);
903 	init_ring(dev);
904 	/* Set the size of the Rx buffers. */
905 	writel((np->rx_buf_sz << RxBufferLenShift) |
906 	       (0 << RxMinDescrThreshShift) |
907 	       RxPrefetchMode | RxVariableQ |
908 	       RX_Q_ENTRIES |
909 	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
910 	       RxDescSpace4,
911 	       ioaddr + RxDescQCtrl);
912 
913 	/* Set up the Rx DMA controller. */
914 	writel(RxChecksumIgnore |
915 	       (0 << RxEarlyIntThreshShift) |
916 	       (6 << RxHighPrioThreshShift) |
917 	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
918 	       ioaddr + RxDMACtrl);
919 
920 	/* Set Tx descriptor */
921 	writel((2 << TxHiPriFIFOThreshShift) |
922 	       (0 << TxPadLenShift) |
923 	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
924 	       TX_DESC_Q_ADDR_SIZE |
925 	       TX_DESC_SPACING | TX_DESC_TYPE,
926 	       ioaddr + TxDescCtrl);
927 
928 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
929 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
930 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
931 	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
932 	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
933 
934 	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
935 	writel(np->rx_done_q_dma |
936 	       RxComplType |
937 	       (0 << RxComplThreshShift),
938 	       ioaddr + RxCompletionAddr);
939 
940 	if (debug > 1)
941 		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
942 
943 	/* Fill both the Tx SA register and the Rx perfect filter. */
944 	for (i = 0; i < 6; i++)
945 		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
946 	/* The first entry is special because it bypasses the VLAN filter.
947 	   Don't use it. */
948 	writew(0, ioaddr + PerfFilterTable);
949 	writew(0, ioaddr + PerfFilterTable + 4);
950 	writew(0, ioaddr + PerfFilterTable + 8);
951 	for (i = 1; i < 16; i++) {
952 		const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
953 		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
954 		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
955 		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
956 		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
957 	}
958 
959 	/* Initialize other registers. */
960 	/* Configure the PCI bus bursts and FIFO thresholds. */
961 	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
962 	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
963 	udelay(1000);
964 	writel(np->tx_mode, ioaddr + TxMode);
965 	np->tx_threshold = 4;
966 	writel(np->tx_threshold, ioaddr + TxThreshold);
967 
968 	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
969 
970 	napi_enable(&np->napi);
971 
972 	netif_start_queue(dev);
973 
974 	if (debug > 1)
975 		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
976 	set_rx_mode(dev);
977 
978 	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
979 	check_duplex(dev);
980 
981 	/* Enable GPIO interrupts on link change */
982 	writel(0x0f00ff00, ioaddr + GPIOCtrl);
983 
984 	/* Set the interrupt mask */
985 	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
986 	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
987 	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
988 	       ioaddr + IntrEnable);
989 	/* Enable PCI interrupts. */
990 	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
991 	       ioaddr + PCIDeviceConfig);
992 
993 #ifdef VLAN_SUPPORT
994 	/* Set VLAN type to 802.1q */
995 	writel(ETH_P_8021Q, ioaddr + VlanType);
996 #endif /* VLAN_SUPPORT */
997 
998 	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
999 	if (retval) {
1000 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1001 		       FIRMWARE_RX);
1002 		goto out_init;
1003 	}
1004 	if (fw_rx->size % 4) {
1005 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1006 		       fw_rx->size, FIRMWARE_RX);
1007 		retval = -EINVAL;
1008 		goto out_rx;
1009 	}
1010 	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1011 	if (retval) {
1012 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1013 		       FIRMWARE_TX);
1014 		goto out_rx;
1015 	}
1016 	if (fw_tx->size % 4) {
1017 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1018 		       fw_tx->size, FIRMWARE_TX);
1019 		retval = -EINVAL;
1020 		goto out_tx;
1021 	}
1022 	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1023 	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1024 	rx_size = fw_rx->size / 4;
1025 	tx_size = fw_tx->size / 4;
1026 
1027 	/* Load Rx/Tx firmware into the frame processors */
1028 	for (i = 0; i < rx_size; i++)
1029 		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1030 	for (i = 0; i < tx_size; i++)
1031 		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1032 	if (enable_hw_cksum)
1033 		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1034 		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1035 	else
1036 		/* Enable the Rx and Tx units only. */
1037 		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1038 
1039 	if (debug > 1)
1040 		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1041 		       dev->name);
1042 
1043 out_tx:
1044 	release_firmware(fw_tx);
1045 out_rx:
1046 	release_firmware(fw_rx);
1047 out_init:
1048 	if (retval)
1049 		netdev_close(dev);
1050 	return retval;
1051 }
1052 
1053 
1054 static void check_duplex(struct net_device *dev)
1055 {
1056 	struct netdev_private *np = netdev_priv(dev);
1057 	u16 reg0;
1058 	int silly_count = 1000;
1059 
1060 	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1061 	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1062 	udelay(500);
1063 	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1064 		/* do nothing */;
1065 	if (!silly_count) {
1066 		printk("%s: MII reset failed!\n", dev->name);
1067 		return;
1068 	}
1069 
1070 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1071 
1072 	if (!np->mii_if.force_media) {
1073 		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1074 	} else {
1075 		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1076 		if (np->speed100)
1077 			reg0 |= BMCR_SPEED100;
1078 		if (np->mii_if.full_duplex)
1079 			reg0 |= BMCR_FULLDPLX;
1080 		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1081 		       dev->name,
1082 		       np->speed100 ? "100" : "10",
1083 		       np->mii_if.full_duplex ? "full" : "half");
1084 	}
1085 	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1086 }
1087 
1088 
1089 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1090 {
1091 	struct netdev_private *np = netdev_priv(dev);
1092 	void __iomem *ioaddr = np->base;
1093 	int old_debug;
1094 
1095 	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1096 	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1097 
1098 	/* Perhaps we should reinitialize the hardware here. */
1099 
1100 	/*
1101 	 * Stop and restart the interface.
1102 	 * Cheat and increase the debug level temporarily.
1103 	 */
1104 	old_debug = debug;
1105 	debug = 2;
1106 	netdev_close(dev);
1107 	netdev_open(dev);
1108 	debug = old_debug;
1109 
1110 	/* Trigger an immediate transmit demand. */
1111 
1112 	netif_trans_update(dev); /* prevent tx timeout */
1113 	dev->stats.tx_errors++;
1114 	netif_wake_queue(dev);
1115 }
1116 
1117 
1118 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1119 static void init_ring(struct net_device *dev)
1120 {
1121 	struct netdev_private *np = netdev_priv(dev);
1122 	int i;
1123 
1124 	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1125 	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1126 
1127 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1128 
1129 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1130 	for (i = 0; i < RX_RING_SIZE; i++) {
1131 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1132 		np->rx_info[i].skb = skb;
1133 		if (skb == NULL)
1134 			break;
1135 		np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1136 							skb->data,
1137 							np->rx_buf_sz,
1138 							DMA_FROM_DEVICE);
1139 		if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1140 			dev_kfree_skb(skb);
1141 			np->rx_info[i].skb = NULL;
1142 			break;
1143 		}
1144 		/* Grrr, we cannot offset to correctly align the IP header. */
1145 		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1146 	}
1147 	writew(i - 1, np->base + RxDescQIdx);
1148 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1149 
1150 	/* Clear the remainder of the Rx buffer ring. */
1151 	for (  ; i < RX_RING_SIZE; i++) {
1152 		np->rx_ring[i].rxaddr = 0;
1153 		np->rx_info[i].skb = NULL;
1154 		np->rx_info[i].mapping = 0;
1155 	}
1156 	/* Mark the last entry as wrapping the ring. */
1157 	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1158 
1159 	/* Clear the completion rings. */
1160 	for (i = 0; i < DONE_Q_SIZE; i++) {
1161 		np->rx_done_q[i].status = 0;
1162 		np->tx_done_q[i].status = 0;
1163 	}
1164 
1165 	for (i = 0; i < TX_RING_SIZE; i++)
1166 		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1167 }
1168 
1169 
1170 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1171 {
1172 	struct netdev_private *np = netdev_priv(dev);
1173 	unsigned int entry;
1174 	unsigned int prev_tx;
1175 	u32 status;
1176 	int i, j;
1177 
1178 	/*
1179 	 * be cautious here, wrapping the queue has weird semantics
1180 	 * and we may not have enough slots even when it seems we do.
1181 	 */
1182 	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1183 		netif_stop_queue(dev);
1184 		return NETDEV_TX_BUSY;
1185 	}
1186 
1187 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1188 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1189 		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1190 			return NETDEV_TX_OK;
1191 	}
1192 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1193 
1194 	prev_tx = np->cur_tx;
1195 	entry = np->cur_tx % TX_RING_SIZE;
1196 	for (i = 0; i < skb_num_frags(skb); i++) {
1197 		int wrap_ring = 0;
1198 		status = TxDescID;
1199 
1200 		if (i == 0) {
1201 			np->tx_info[entry].skb = skb;
1202 			status |= TxCRCEn;
1203 			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1204 				status |= TxRingWrap;
1205 				wrap_ring = 1;
1206 			}
1207 			if (np->reap_tx) {
1208 				status |= TxDescIntr;
1209 				np->reap_tx = 0;
1210 			}
1211 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1212 				status |= TxCalTCP;
1213 				dev->stats.tx_compressed++;
1214 			}
1215 			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1216 
1217 			np->tx_info[entry].mapping =
1218 				dma_map_single(&np->pci_dev->dev, skb->data,
1219 					       skb_first_frag_len(skb),
1220 					       DMA_TO_DEVICE);
1221 		} else {
1222 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1223 			status |= skb_frag_size(this_frag);
1224 			np->tx_info[entry].mapping =
1225 				dma_map_single(&np->pci_dev->dev,
1226 					       skb_frag_address(this_frag),
1227 					       skb_frag_size(this_frag),
1228 					       DMA_TO_DEVICE);
1229 		}
1230 		if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1231 			dev->stats.tx_dropped++;
1232 			goto err_out;
1233 		}
1234 
1235 		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1236 		np->tx_ring[entry].status = cpu_to_le32(status);
1237 		if (debug > 3)
1238 			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1239 			       dev->name, np->cur_tx, np->dirty_tx,
1240 			       entry, status);
1241 		if (wrap_ring) {
1242 			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1243 			np->cur_tx += np->tx_info[entry].used_slots;
1244 			entry = 0;
1245 		} else {
1246 			np->tx_info[entry].used_slots = 1;
1247 			np->cur_tx += np->tx_info[entry].used_slots;
1248 			entry++;
1249 		}
1250 		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1251 		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1252 			np->reap_tx = 1;
1253 	}
1254 
1255 	/* Non-x86: explicitly flush descriptor cache lines here. */
1256 	/* Ensure all descriptors are written back before the transmit is
1257 	   initiated. - Jes */
1258 	wmb();
1259 
1260 	/* Update the producer index. */
1261 	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1262 
1263 	/* 4 is arbitrary, but should be ok */
1264 	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1265 		netif_stop_queue(dev);
1266 
1267 	return NETDEV_TX_OK;
1268 
1269 err_out:
1270 	entry = prev_tx % TX_RING_SIZE;
1271 	np->tx_info[entry].skb = NULL;
1272 	if (i > 0) {
1273 		dma_unmap_single(&np->pci_dev->dev,
1274 				 np->tx_info[entry].mapping,
1275 				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1276 		np->tx_info[entry].mapping = 0;
1277 		entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1278 		for (j = 1; j < i; j++) {
1279 			dma_unmap_single(&np->pci_dev->dev,
1280 					 np->tx_info[entry].mapping,
1281 					 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1282 					 DMA_TO_DEVICE);
1283 			entry++;
1284 		}
1285 	}
1286 	dev_kfree_skb_any(skb);
1287 	np->cur_tx = prev_tx;
1288 	return NETDEV_TX_OK;
1289 }
1290 
1291 /* The interrupt handler does all of the Rx thread work and cleans up
1292    after the Tx thread. */
1293 static irqreturn_t intr_handler(int irq, void *dev_instance)
1294 {
1295 	struct net_device *dev = dev_instance;
1296 	struct netdev_private *np = netdev_priv(dev);
1297 	void __iomem *ioaddr = np->base;
1298 	int boguscnt = max_interrupt_work;
1299 	int consumer;
1300 	int tx_status;
1301 	int handled = 0;
1302 
1303 	do {
1304 		u32 intr_status = readl(ioaddr + IntrClear);
1305 
1306 		if (debug > 4)
1307 			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1308 			       dev->name, intr_status);
1309 
1310 		if (intr_status == 0 || intr_status == (u32) -1)
1311 			break;
1312 
1313 		handled = 1;
1314 
1315 		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1316 			u32 enable;
1317 
1318 			if (likely(napi_schedule_prep(&np->napi))) {
1319 				__napi_schedule(&np->napi);
1320 				enable = readl(ioaddr + IntrEnable);
1321 				enable &= ~(IntrRxDone | IntrRxEmpty);
1322 				writel(enable, ioaddr + IntrEnable);
1323 				/* flush PCI posting buffers */
1324 				readl(ioaddr + IntrEnable);
1325 			} else {
1326 				/* Paranoia check */
1327 				enable = readl(ioaddr + IntrEnable);
1328 				if (enable & (IntrRxDone | IntrRxEmpty)) {
1329 					printk(KERN_INFO
1330 					       "%s: interrupt while in poll!\n",
1331 					       dev->name);
1332 					enable &= ~(IntrRxDone | IntrRxEmpty);
1333 					writel(enable, ioaddr + IntrEnable);
1334 				}
1335 			}
1336 		}
1337 
1338 		/* Scavenge the skbuff list based on the Tx-done queue.
1339 		   There are redundant checks here that may be cleaned up
1340 		   after the driver has proven to be reliable. */
1341 		consumer = readl(ioaddr + TxConsumerIdx);
1342 		if (debug > 3)
1343 			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1344 			       dev->name, consumer);
1345 
1346 		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1347 			if (debug > 3)
1348 				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1349 				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1350 			if ((tx_status & 0xe0000000) == 0xa0000000) {
1351 				dev->stats.tx_packets++;
1352 			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1353 				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1354 				struct sk_buff *skb = np->tx_info[entry].skb;
1355 				np->tx_info[entry].skb = NULL;
1356 				dma_unmap_single(&np->pci_dev->dev,
1357 						 np->tx_info[entry].mapping,
1358 						 skb_first_frag_len(skb),
1359 						 DMA_TO_DEVICE);
1360 				np->tx_info[entry].mapping = 0;
1361 				np->dirty_tx += np->tx_info[entry].used_slots;
1362 				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1363 				{
1364 					int i;
1365 					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1366 						dma_unmap_single(&np->pci_dev->dev,
1367 								 np->tx_info[entry].mapping,
1368 								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1369 								 DMA_TO_DEVICE);
1370 						np->dirty_tx++;
1371 						entry++;
1372 					}
1373 				}
1374 
1375 				dev_consume_skb_irq(skb);
1376 			}
1377 			np->tx_done_q[np->tx_done].status = 0;
1378 			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1379 		}
1380 		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1381 
1382 		if (netif_queue_stopped(dev) &&
1383 		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1384 			/* The ring is no longer full, wake the queue. */
1385 			netif_wake_queue(dev);
1386 		}
1387 
1388 		/* Stats overflow */
1389 		if (intr_status & IntrStatsMax)
1390 			get_stats(dev);
1391 
1392 		/* Media change interrupt. */
1393 		if (intr_status & IntrLinkChange)
1394 			netdev_media_change(dev);
1395 
1396 		/* Abnormal error summary/uncommon events handlers. */
1397 		if (intr_status & IntrAbnormalSummary)
1398 			netdev_error(dev, intr_status);
1399 
1400 		if (--boguscnt < 0) {
1401 			if (debug > 1)
1402 				printk(KERN_WARNING "%s: Too much work at interrupt, "
1403 				       "status=%#8.8x.\n",
1404 				       dev->name, intr_status);
1405 			break;
1406 		}
1407 	} while (1);
1408 
1409 	if (debug > 4)
1410 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1411 		       dev->name, (int) readl(ioaddr + IntrStatus));
1412 	return IRQ_RETVAL(handled);
1413 }
1414 
1415 
1416 /*
1417  * This routine is logically part of the interrupt/poll handler, but separated
1418  * for clarity and better register allocation.
1419  */
1420 static int __netdev_rx(struct net_device *dev, int *quota)
1421 {
1422 	struct netdev_private *np = netdev_priv(dev);
1423 	u32 desc_status;
1424 	int retcode = 0;
1425 
1426 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1427 	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1428 		struct sk_buff *skb;
1429 		u16 pkt_len;
1430 		int entry;
1431 		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1432 
1433 		if (debug > 4)
1434 			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1435 		if (!(desc_status & RxOK)) {
1436 			/* There was an error. */
1437 			if (debug > 2)
1438 				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1439 			dev->stats.rx_errors++;
1440 			if (desc_status & RxFIFOErr)
1441 				dev->stats.rx_fifo_errors++;
1442 			goto next_rx;
1443 		}
1444 
1445 		if (*quota <= 0) {	/* out of rx quota */
1446 			retcode = 1;
1447 			goto out;
1448 		}
1449 		(*quota)--;
1450 
1451 		pkt_len = desc_status;	/* Implicitly Truncate */
1452 		entry = (desc_status >> 16) & 0x7ff;
1453 
1454 		if (debug > 4)
1455 			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1456 		/* Check if the packet is long enough to accept without copying
1457 		   to a minimally-sized skbuff. */
1458 		if (pkt_len < rx_copybreak &&
1459 		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1460 			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1461 			dma_sync_single_for_cpu(&np->pci_dev->dev,
1462 						np->rx_info[entry].mapping,
1463 						pkt_len, DMA_FROM_DEVICE);
1464 			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1465 			dma_sync_single_for_device(&np->pci_dev->dev,
1466 						   np->rx_info[entry].mapping,
1467 						   pkt_len, DMA_FROM_DEVICE);
1468 			skb_put(skb, pkt_len);
1469 		} else {
1470 			dma_unmap_single(&np->pci_dev->dev,
1471 					 np->rx_info[entry].mapping,
1472 					 np->rx_buf_sz, DMA_FROM_DEVICE);
1473 			skb = np->rx_info[entry].skb;
1474 			skb_put(skb, pkt_len);
1475 			np->rx_info[entry].skb = NULL;
1476 			np->rx_info[entry].mapping = 0;
1477 		}
1478 #ifndef final_version			/* Remove after testing. */
1479 		/* You will want this info for the initial debug. */
1480 		if (debug > 5) {
1481 			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1482 			       skb->data, skb->data + 6,
1483 			       skb->data[12], skb->data[13]);
1484 		}
1485 #endif
1486 
1487 		skb->protocol = eth_type_trans(skb, dev);
1488 #ifdef VLAN_SUPPORT
1489 		if (debug > 4)
1490 			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1491 #endif
1492 		if (le16_to_cpu(desc->status2) & 0x0100) {
1493 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1494 			dev->stats.rx_compressed++;
1495 		}
1496 		/*
1497 		 * This feature doesn't seem to be working, at least
1498 		 * with the two firmware versions I have. If the GFP sees
1499 		 * an IP fragment, it either ignores it completely, or reports
1500 		 * "bad checksum" on it.
1501 		 *
1502 		 * Maybe I missed something -- corrections are welcome.
1503 		 * Until then, the printk stays. :-) -Ion
1504 		 */
1505 		else if (le16_to_cpu(desc->status2) & 0x0040) {
1506 			skb->ip_summed = CHECKSUM_COMPLETE;
1507 			skb->csum = le16_to_cpu(desc->csum);
1508 			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1509 		}
1510 #ifdef VLAN_SUPPORT
1511 		if (le16_to_cpu(desc->status2) & 0x0200) {
1512 			u16 vlid = le16_to_cpu(desc->vlanid);
1513 
1514 			if (debug > 4) {
1515 				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1516 				       vlid);
1517 			}
1518 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1519 		}
1520 #endif /* VLAN_SUPPORT */
1521 		netif_receive_skb(skb);
1522 		dev->stats.rx_packets++;
1523 
1524 	next_rx:
1525 		np->cur_rx++;
1526 		desc->status = 0;
1527 		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1528 	}
1529 
1530 	if (*quota == 0) {	/* out of rx quota */
1531 		retcode = 1;
1532 		goto out;
1533 	}
1534 	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1535 
1536  out:
1537 	refill_rx_ring(dev);
1538 	if (debug > 5)
1539 		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1540 		       retcode, np->rx_done, desc_status);
1541 	return retcode;
1542 }
1543 
1544 static int netdev_poll(struct napi_struct *napi, int budget)
1545 {
1546 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1547 	struct net_device *dev = np->dev;
1548 	u32 intr_status;
1549 	void __iomem *ioaddr = np->base;
1550 	int quota = budget;
1551 
1552 	do {
1553 		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1554 
1555 		if (__netdev_rx(dev, &quota))
1556 			goto out;
1557 
1558 		intr_status = readl(ioaddr + IntrStatus);
1559 	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1560 
1561 	napi_complete(napi);
1562 	intr_status = readl(ioaddr + IntrEnable);
1563 	intr_status |= IntrRxDone | IntrRxEmpty;
1564 	writel(intr_status, ioaddr + IntrEnable);
1565 
1566  out:
1567 	if (debug > 5)
1568 		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1569 		       budget - quota);
1570 
1571 	/* Restart Rx engine if stopped. */
1572 	return budget - quota;
1573 }
1574 
1575 static void refill_rx_ring(struct net_device *dev)
1576 {
1577 	struct netdev_private *np = netdev_priv(dev);
1578 	struct sk_buff *skb;
1579 	int entry = -1;
1580 
1581 	/* Refill the Rx ring buffers. */
1582 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1583 		entry = np->dirty_rx % RX_RING_SIZE;
1584 		if (np->rx_info[entry].skb == NULL) {
1585 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1586 			np->rx_info[entry].skb = skb;
1587 			if (skb == NULL)
1588 				break;	/* Better luck next round. */
1589 			np->rx_info[entry].mapping =
1590 				dma_map_single(&np->pci_dev->dev, skb->data,
1591 					       np->rx_buf_sz, DMA_FROM_DEVICE);
1592 			if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1593 				dev_kfree_skb(skb);
1594 				np->rx_info[entry].skb = NULL;
1595 				break;
1596 			}
1597 			np->rx_ring[entry].rxaddr =
1598 				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1599 		}
1600 		if (entry == RX_RING_SIZE - 1)
1601 			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1602 	}
1603 	if (entry >= 0)
1604 		writew(entry, np->base + RxDescQIdx);
1605 }
1606 
1607 
1608 static void netdev_media_change(struct net_device *dev)
1609 {
1610 	struct netdev_private *np = netdev_priv(dev);
1611 	void __iomem *ioaddr = np->base;
1612 	u16 reg0, reg1, reg4, reg5;
1613 	u32 new_tx_mode;
1614 	u32 new_intr_timer_ctrl;
1615 
1616 	/* reset status first */
1617 	mdio_read(dev, np->phys[0], MII_BMCR);
1618 	mdio_read(dev, np->phys[0], MII_BMSR);
1619 
1620 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1621 	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1622 
1623 	if (reg1 & BMSR_LSTATUS) {
1624 		/* link is up */
1625 		if (reg0 & BMCR_ANENABLE) {
1626 			/* autonegotiation is enabled */
1627 			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1628 			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1629 			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1630 				np->speed100 = 1;
1631 				np->mii_if.full_duplex = 1;
1632 			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1633 				np->speed100 = 1;
1634 				np->mii_if.full_duplex = 0;
1635 			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1636 				np->speed100 = 0;
1637 				np->mii_if.full_duplex = 1;
1638 			} else {
1639 				np->speed100 = 0;
1640 				np->mii_if.full_duplex = 0;
1641 			}
1642 		} else {
1643 			/* autonegotiation is disabled */
1644 			if (reg0 & BMCR_SPEED100)
1645 				np->speed100 = 1;
1646 			else
1647 				np->speed100 = 0;
1648 			if (reg0 & BMCR_FULLDPLX)
1649 				np->mii_if.full_duplex = 1;
1650 			else
1651 				np->mii_if.full_duplex = 0;
1652 		}
1653 		netif_carrier_on(dev);
1654 		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1655 		       dev->name,
1656 		       np->speed100 ? "100" : "10",
1657 		       np->mii_if.full_duplex ? "full" : "half");
1658 
1659 		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1660 		if (np->mii_if.full_duplex)
1661 			new_tx_mode |= FullDuplex;
1662 		if (np->tx_mode != new_tx_mode) {
1663 			np->tx_mode = new_tx_mode;
1664 			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1665 			udelay(1000);
1666 			writel(np->tx_mode, ioaddr + TxMode);
1667 		}
1668 
1669 		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1670 		if (np->speed100)
1671 			new_intr_timer_ctrl |= Timer10X;
1672 		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1673 			np->intr_timer_ctrl = new_intr_timer_ctrl;
1674 			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1675 		}
1676 	} else {
1677 		netif_carrier_off(dev);
1678 		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1679 	}
1680 }
1681 
1682 
1683 static void netdev_error(struct net_device *dev, int intr_status)
1684 {
1685 	struct netdev_private *np = netdev_priv(dev);
1686 
1687 	/* Came close to underrunning the Tx FIFO, increase threshold. */
1688 	if (intr_status & IntrTxDataLow) {
1689 		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1690 			writel(++np->tx_threshold, np->base + TxThreshold);
1691 			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1692 			       dev->name, np->tx_threshold * 16);
1693 		} else
1694 			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1695 	}
1696 	if (intr_status & IntrRxGFPDead) {
1697 		dev->stats.rx_fifo_errors++;
1698 		dev->stats.rx_errors++;
1699 	}
1700 	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1701 		dev->stats.tx_fifo_errors++;
1702 		dev->stats.tx_errors++;
1703 	}
1704 	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1705 		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1706 		       dev->name, intr_status);
1707 }
1708 
1709 
1710 static struct net_device_stats *get_stats(struct net_device *dev)
1711 {
1712 	struct netdev_private *np = netdev_priv(dev);
1713 	void __iomem *ioaddr = np->base;
1714 
1715 	/* This adapter architecture needs no SMP locks. */
1716 	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1717 	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1718 	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1719 	dev->stats.tx_aborted_errors =
1720 		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1721 	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1722 	dev->stats.collisions =
1723 		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1724 
1725 	/* The chip only need report frame silently dropped. */
1726 	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1727 	writew(0, ioaddr + RxDMAStatus);
1728 	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1729 	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1730 	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1731 	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1732 
1733 	return &dev->stats;
1734 }
1735 
1736 #ifdef VLAN_SUPPORT
1737 static u32 set_vlan_mode(struct netdev_private *np)
1738 {
1739 	u32 ret = VlanMode;
1740 	u16 vid;
1741 	void __iomem *filter_addr = np->base + HashTable + 8;
1742 	int vlan_count = 0;
1743 
1744 	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1745 		if (vlan_count == 32)
1746 			break;
1747 		writew(vid, filter_addr);
1748 		filter_addr += 16;
1749 		vlan_count++;
1750 	}
1751 	if (vlan_count == 32) {
1752 		ret |= PerfectFilterVlan;
1753 		while (vlan_count < 32) {
1754 			writew(0, filter_addr);
1755 			filter_addr += 16;
1756 			vlan_count++;
1757 		}
1758 	}
1759 	return ret;
1760 }
1761 #endif /* VLAN_SUPPORT */
1762 
1763 static void set_rx_mode(struct net_device *dev)
1764 {
1765 	struct netdev_private *np = netdev_priv(dev);
1766 	void __iomem *ioaddr = np->base;
1767 	u32 rx_mode = MinVLANPrio;
1768 	struct netdev_hw_addr *ha;
1769 	int i;
1770 
1771 #ifdef VLAN_SUPPORT
1772 	rx_mode |= set_vlan_mode(np);
1773 #endif /* VLAN_SUPPORT */
1774 
1775 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1776 		rx_mode |= AcceptAll;
1777 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1778 		   (dev->flags & IFF_ALLMULTI)) {
1779 		/* Too many to match, or accept all multicasts. */
1780 		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1781 	} else if (netdev_mc_count(dev) <= 14) {
1782 		/* Use the 16 element perfect filter, skip first two entries. */
1783 		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1784 		const __be16 *eaddrs;
1785 		netdev_for_each_mc_addr(ha, dev) {
1786 			eaddrs = (__be16 *) ha->addr;
1787 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1788 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1789 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1790 		}
1791 		eaddrs = (const __be16 *)dev->dev_addr;
1792 		i = netdev_mc_count(dev) + 2;
1793 		while (i++ < 16) {
1794 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797 		}
1798 		rx_mode |= AcceptBroadcast|PerfectFilter;
1799 	} else {
1800 		/* Must use a multicast hash table. */
1801 		void __iomem *filter_addr;
1802 		const __be16 *eaddrs;
1803 		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1804 
1805 		memset(mc_filter, 0, sizeof(mc_filter));
1806 		netdev_for_each_mc_addr(ha, dev) {
1807 			/* The chip uses the upper 9 CRC bits
1808 			   as index into the hash table */
1809 			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1810 			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1811 
1812 			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1813 		}
1814 		/* Clear the perfect filter list, skip first two entries. */
1815 		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1816 		eaddrs = (const __be16 *)dev->dev_addr;
1817 		for (i = 2; i < 16; i++) {
1818 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1819 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1820 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1821 		}
1822 		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1823 			writew(mc_filter[i], filter_addr);
1824 		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1825 	}
1826 	writel(rx_mode, ioaddr + RxFilterMode);
1827 }
1828 
1829 static int check_if_running(struct net_device *dev)
1830 {
1831 	if (!netif_running(dev))
1832 		return -EINVAL;
1833 	return 0;
1834 }
1835 
1836 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1837 {
1838 	struct netdev_private *np = netdev_priv(dev);
1839 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1840 	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1841 }
1842 
1843 static int get_link_ksettings(struct net_device *dev,
1844 			      struct ethtool_link_ksettings *cmd)
1845 {
1846 	struct netdev_private *np = netdev_priv(dev);
1847 	spin_lock_irq(&np->lock);
1848 	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1849 	spin_unlock_irq(&np->lock);
1850 	return 0;
1851 }
1852 
1853 static int set_link_ksettings(struct net_device *dev,
1854 			      const struct ethtool_link_ksettings *cmd)
1855 {
1856 	struct netdev_private *np = netdev_priv(dev);
1857 	int res;
1858 	spin_lock_irq(&np->lock);
1859 	res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1860 	spin_unlock_irq(&np->lock);
1861 	check_duplex(dev);
1862 	return res;
1863 }
1864 
1865 static int nway_reset(struct net_device *dev)
1866 {
1867 	struct netdev_private *np = netdev_priv(dev);
1868 	return mii_nway_restart(&np->mii_if);
1869 }
1870 
1871 static u32 get_link(struct net_device *dev)
1872 {
1873 	struct netdev_private *np = netdev_priv(dev);
1874 	return mii_link_ok(&np->mii_if);
1875 }
1876 
1877 static u32 get_msglevel(struct net_device *dev)
1878 {
1879 	return debug;
1880 }
1881 
1882 static void set_msglevel(struct net_device *dev, u32 val)
1883 {
1884 	debug = val;
1885 }
1886 
1887 static const struct ethtool_ops ethtool_ops = {
1888 	.begin = check_if_running,
1889 	.get_drvinfo = get_drvinfo,
1890 	.nway_reset = nway_reset,
1891 	.get_link = get_link,
1892 	.get_msglevel = get_msglevel,
1893 	.set_msglevel = set_msglevel,
1894 	.get_link_ksettings = get_link_ksettings,
1895 	.set_link_ksettings = set_link_ksettings,
1896 };
1897 
1898 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1899 {
1900 	struct netdev_private *np = netdev_priv(dev);
1901 	struct mii_ioctl_data *data = if_mii(rq);
1902 	int rc;
1903 
1904 	if (!netif_running(dev))
1905 		return -EINVAL;
1906 
1907 	spin_lock_irq(&np->lock);
1908 	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1909 	spin_unlock_irq(&np->lock);
1910 
1911 	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1912 		check_duplex(dev);
1913 
1914 	return rc;
1915 }
1916 
1917 static int netdev_close(struct net_device *dev)
1918 {
1919 	struct netdev_private *np = netdev_priv(dev);
1920 	void __iomem *ioaddr = np->base;
1921 	int i;
1922 
1923 	netif_stop_queue(dev);
1924 
1925 	napi_disable(&np->napi);
1926 
1927 	if (debug > 1) {
1928 		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1929 			   dev->name, (int) readl(ioaddr + IntrStatus));
1930 		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1931 		       dev->name, np->cur_tx, np->dirty_tx,
1932 		       np->cur_rx, np->dirty_rx);
1933 	}
1934 
1935 	/* Disable interrupts by clearing the interrupt mask. */
1936 	writel(0, ioaddr + IntrEnable);
1937 
1938 	/* Stop the chip's Tx and Rx processes. */
1939 	writel(0, ioaddr + GenCtrl);
1940 	readl(ioaddr + GenCtrl);
1941 
1942 	if (debug > 5) {
1943 		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1944 		       (long long) np->tx_ring_dma);
1945 		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1946 			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1947 			       i, le32_to_cpu(np->tx_ring[i].status),
1948 			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1949 			       le32_to_cpu(np->tx_done_q[i].status));
1950 		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1951 		       (long long) np->rx_ring_dma, np->rx_done_q);
1952 		if (np->rx_done_q)
1953 			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1954 				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1955 				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1956 		}
1957 	}
1958 
1959 	free_irq(np->pci_dev->irq, dev);
1960 
1961 	/* Free all the skbuffs in the Rx queue. */
1962 	for (i = 0; i < RX_RING_SIZE; i++) {
1963 		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1964 		if (np->rx_info[i].skb != NULL) {
1965 			dma_unmap_single(&np->pci_dev->dev,
1966 					 np->rx_info[i].mapping,
1967 					 np->rx_buf_sz, DMA_FROM_DEVICE);
1968 			dev_kfree_skb(np->rx_info[i].skb);
1969 		}
1970 		np->rx_info[i].skb = NULL;
1971 		np->rx_info[i].mapping = 0;
1972 	}
1973 	for (i = 0; i < TX_RING_SIZE; i++) {
1974 		struct sk_buff *skb = np->tx_info[i].skb;
1975 		if (skb == NULL)
1976 			continue;
1977 		dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1978 				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1979 		np->tx_info[i].mapping = 0;
1980 		dev_kfree_skb(skb);
1981 		np->tx_info[i].skb = NULL;
1982 	}
1983 
1984 	return 0;
1985 }
1986 
1987 static int __maybe_unused starfire_suspend(struct device *dev_d)
1988 {
1989 	struct net_device *dev = dev_get_drvdata(dev_d);
1990 
1991 	if (netif_running(dev)) {
1992 		netif_device_detach(dev);
1993 		netdev_close(dev);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static int __maybe_unused starfire_resume(struct device *dev_d)
2000 {
2001 	struct net_device *dev = dev_get_drvdata(dev_d);
2002 
2003 	if (netif_running(dev)) {
2004 		netdev_open(dev);
2005 		netif_device_attach(dev);
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static void starfire_remove_one(struct pci_dev *pdev)
2012 {
2013 	struct net_device *dev = pci_get_drvdata(pdev);
2014 	struct netdev_private *np = netdev_priv(dev);
2015 
2016 	BUG_ON(!dev);
2017 
2018 	unregister_netdev(dev);
2019 
2020 	if (np->queue_mem)
2021 		dma_free_coherent(&pdev->dev, np->queue_mem_size,
2022 				  np->queue_mem, np->queue_mem_dma);
2023 
2024 
2025 	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2026 	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2027 	pci_disable_device(pdev);
2028 
2029 	iounmap(np->base);
2030 	pci_release_regions(pdev);
2031 
2032 	free_netdev(dev);			/* Will also free np!! */
2033 }
2034 
2035 static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2036 
2037 static struct pci_driver starfire_driver = {
2038 	.name		= DRV_NAME,
2039 	.probe		= starfire_init_one,
2040 	.remove		= starfire_remove_one,
2041 	.driver.pm	= &starfire_pm_ops,
2042 	.id_table	= starfire_pci_tbl,
2043 };
2044 
2045 
2046 static int __init starfire_init (void)
2047 {
2048 /* when a module, this is printed whether or not devices are found in probe */
2049 #ifdef MODULE
2050 	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2051 #endif
2052 
2053 	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2054 
2055 	return pci_register_driver(&starfire_driver);
2056 }
2057 
2058 
2059 static void __exit starfire_cleanup (void)
2060 {
2061 	pci_unregister_driver (&starfire_driver);
2062 }
2063 
2064 
2065 module_init(starfire_init);
2066 module_exit(starfire_cleanup);
2067