xref: /linux/drivers/net/dsa/lantiq_gswip.c (revision d754ed2821fd9675d203cb73c4afcd593e28b7d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET		BIT(15)
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
107 #define  GSWIP_MII_CFG_MODE_GMII	0x9
108 #define  GSWIP_MII_CFG_MODE_MASK	0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
110 #define  GSWIP_MII_CFG_RATE_M25	0x10
111 #define  GSWIP_MII_CFG_RATE_M125	0x20
112 #define  GSWIP_MII_CFG_RATE_M50	0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
114 #define  GSWIP_MII_CFG_RATE_MASK	0x70
115 #define GSWIP_MII_PCDU0			0x01
116 #define GSWIP_MII_PCDU1			0x03
117 #define GSWIP_MII_PCDU5			0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
120 
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES			0x000
123 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
125 #define GSWIP_VERSION			0x013
126 #define  GSWIP_VERSION_REV_SHIFT	0
127 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT	8
129 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0		0x100
131 #define   GSWIP_VERSION_2_1		0x021
132 #define   GSWIP_VERSION_2_2		0x122
133 #define   GSWIP_VERSION_2_2_ETC		0x022
134 
135 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR		0x044
137 #define GSWIP_BM_RAM_CTRL		0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL		0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
151 
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK		0x448
155 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR		0x44E
157 #define GSWIP_PCE_TBL_CTRL		0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
170 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0		0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1		0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
196 
197 #define GSWIP_MAC_FLEN			0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
215 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_LCHKL		BIT(2) /* Frame Length Check Long Enable */
217 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
218 
219 /* Ethernet Switch Fetch DMA Port Control Register */
220 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
221 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
222 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229 
230 /* Ethernet Switch Store DMA Port Control Register */
231 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
232 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
233 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
234 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
235 
236 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
237 #define GSWIP_TABLE_VLAN_MAPPING	0x02
238 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
239 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
240 
241 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
242 
243 /* Maximum packet size supported by the switch. In theory this should be 10240,
244  * but long packets currently cause lock-ups with an MTU of over 2526. Medium
245  * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
246  * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
247  * packet reception. This is probably caused by the PPA engine, which is on the
248  * RX part of the device. Packet transmission works properly up to 10240.
249  */
250 #define GSWIP_MAX_PACKET_LENGTH	2400
251 
252 struct gswip_hw_info {
253 	int max_ports;
254 	int cpu_port;
255 	const struct dsa_switch_ops *ops;
256 };
257 
258 struct xway_gphy_match_data {
259 	char *fe_firmware_name;
260 	char *ge_firmware_name;
261 };
262 
263 struct gswip_gphy_fw {
264 	struct clk *clk_gate;
265 	struct reset_control *reset;
266 	u32 fw_addr_offset;
267 	char *fw_name;
268 };
269 
270 struct gswip_vlan {
271 	struct net_device *bridge;
272 	u16 vid;
273 	u8 fid;
274 };
275 
276 struct gswip_priv {
277 	__iomem void *gswip;
278 	__iomem void *mdio;
279 	__iomem void *mii;
280 	const struct gswip_hw_info *hw_info;
281 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
282 	struct dsa_switch *ds;
283 	struct device *dev;
284 	struct regmap *rcu_regmap;
285 	struct gswip_vlan vlans[64];
286 	int num_gphy_fw;
287 	struct gswip_gphy_fw *gphy_fw;
288 	u32 port_vlan_filter;
289 	struct mutex pce_table_lock;
290 };
291 
292 struct gswip_pce_table_entry {
293 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
294 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
295 	u16 key[8];
296 	u16 val[5];
297 	u16 mask;
298 	u8 gmap;
299 	bool type;
300 	bool valid;
301 	bool key_mode;
302 };
303 
304 struct gswip_rmon_cnt_desc {
305 	unsigned int size;
306 	unsigned int offset;
307 	const char *name;
308 };
309 
310 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
311 
312 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
313 	/** Receive Packet Count (only packets that are accepted and not discarded). */
314 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
315 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
316 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
317 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
318 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
319 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
320 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
321 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
322 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
323 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
324 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
325 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
326 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
327 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
328 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
329 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
330 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
331 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
332 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
333 	MIB_DESC(2, 0x24, "RxGoodBytes"),
334 	MIB_DESC(2, 0x26, "RxBadBytes"),
335 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
336 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
337 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
338 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
339 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
340 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
341 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
342 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
343 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
344 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
345 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
346 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
347 	MIB_DESC(1, 0x09, "TxMultCollCount"),
348 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
349 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
350 	MIB_DESC(1, 0x0D, "TxPauseCount"),
351 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
352 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
353 };
354 
355 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
356 {
357 	return __raw_readl(priv->gswip + (offset * 4));
358 }
359 
360 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
361 {
362 	__raw_writel(val, priv->gswip + (offset * 4));
363 }
364 
365 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
366 			      u32 offset)
367 {
368 	u32 val = gswip_switch_r(priv, offset);
369 
370 	val &= ~(clear);
371 	val |= set;
372 	gswip_switch_w(priv, val, offset);
373 }
374 
375 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
376 				  u32 cleared)
377 {
378 	u32 val;
379 
380 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
381 				  (val & cleared) == 0, 20, 50000);
382 }
383 
384 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
385 {
386 	return __raw_readl(priv->mdio + (offset * 4));
387 }
388 
389 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
390 {
391 	__raw_writel(val, priv->mdio + (offset * 4));
392 }
393 
394 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
395 			    u32 offset)
396 {
397 	u32 val = gswip_mdio_r(priv, offset);
398 
399 	val &= ~(clear);
400 	val |= set;
401 	gswip_mdio_w(priv, val, offset);
402 }
403 
404 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
405 {
406 	return __raw_readl(priv->mii + (offset * 4));
407 }
408 
409 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
410 {
411 	__raw_writel(val, priv->mii + (offset * 4));
412 }
413 
414 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
415 			   u32 offset)
416 {
417 	u32 val = gswip_mii_r(priv, offset);
418 
419 	val &= ~(clear);
420 	val |= set;
421 	gswip_mii_w(priv, val, offset);
422 }
423 
424 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
425 			       int port)
426 {
427 	/* There's no MII_CFG register for the CPU port */
428 	if (!dsa_is_cpu_port(priv->ds, port))
429 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
430 }
431 
432 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
433 				int port)
434 {
435 	switch (port) {
436 	case 0:
437 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
438 		break;
439 	case 1:
440 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
441 		break;
442 	case 5:
443 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
444 		break;
445 	}
446 }
447 
448 static int gswip_mdio_poll(struct gswip_priv *priv)
449 {
450 	int cnt = 100;
451 
452 	while (likely(cnt--)) {
453 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
454 
455 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
456 			return 0;
457 		usleep_range(20, 40);
458 	}
459 
460 	return -ETIMEDOUT;
461 }
462 
463 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
464 {
465 	struct gswip_priv *priv = bus->priv;
466 	int err;
467 
468 	err = gswip_mdio_poll(priv);
469 	if (err) {
470 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
471 		return err;
472 	}
473 
474 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
475 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
476 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
477 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
478 		GSWIP_MDIO_CTRL);
479 
480 	return 0;
481 }
482 
483 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
484 {
485 	struct gswip_priv *priv = bus->priv;
486 	int err;
487 
488 	err = gswip_mdio_poll(priv);
489 	if (err) {
490 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491 		return err;
492 	}
493 
494 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
495 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
496 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
497 		GSWIP_MDIO_CTRL);
498 
499 	err = gswip_mdio_poll(priv);
500 	if (err) {
501 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
502 		return err;
503 	}
504 
505 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
506 }
507 
508 static int gswip_mdio(struct gswip_priv *priv)
509 {
510 	struct device_node *mdio_np, *switch_np = priv->dev->of_node;
511 	struct device *dev = priv->dev;
512 	struct mii_bus *bus;
513 	int err = 0;
514 
515 	mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
516 	if (!of_device_is_available(mdio_np))
517 		goto out_put_node;
518 
519 	bus = devm_mdiobus_alloc(dev);
520 	if (!bus) {
521 		err = -ENOMEM;
522 		goto out_put_node;
523 	}
524 
525 	bus->priv = priv;
526 	bus->read = gswip_mdio_rd;
527 	bus->write = gswip_mdio_wr;
528 	bus->name = "lantiq,xrx200-mdio";
529 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
530 	bus->parent = priv->dev;
531 
532 	err = devm_of_mdiobus_register(dev, bus, mdio_np);
533 
534 out_put_node:
535 	of_node_put(mdio_np);
536 
537 	return err;
538 }
539 
540 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
541 				      struct gswip_pce_table_entry *tbl)
542 {
543 	int i;
544 	int err;
545 	u16 crtl;
546 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
547 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
548 
549 	mutex_lock(&priv->pce_table_lock);
550 
551 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
552 				     GSWIP_PCE_TBL_CTRL_BAS);
553 	if (err) {
554 		mutex_unlock(&priv->pce_table_lock);
555 		return err;
556 	}
557 
558 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
559 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
560 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
561 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
562 			  GSWIP_PCE_TBL_CTRL);
563 
564 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
565 				     GSWIP_PCE_TBL_CTRL_BAS);
566 	if (err) {
567 		mutex_unlock(&priv->pce_table_lock);
568 		return err;
569 	}
570 
571 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
572 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
573 
574 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
575 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
576 
577 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
578 
579 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
580 
581 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
582 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
583 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
584 
585 	mutex_unlock(&priv->pce_table_lock);
586 
587 	return 0;
588 }
589 
590 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
591 				       struct gswip_pce_table_entry *tbl)
592 {
593 	int i;
594 	int err;
595 	u16 crtl;
596 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
597 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
598 
599 	mutex_lock(&priv->pce_table_lock);
600 
601 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
602 				     GSWIP_PCE_TBL_CTRL_BAS);
603 	if (err) {
604 		mutex_unlock(&priv->pce_table_lock);
605 		return err;
606 	}
607 
608 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
609 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
610 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
611 			  tbl->table | addr_mode,
612 			  GSWIP_PCE_TBL_CTRL);
613 
614 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
615 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
616 
617 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
618 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
619 
620 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
621 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
622 			  tbl->table | addr_mode,
623 			  GSWIP_PCE_TBL_CTRL);
624 
625 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
626 
627 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
628 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
629 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
630 	if (tbl->type)
631 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
632 	if (tbl->valid)
633 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
634 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
635 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
636 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
637 
638 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
639 				     GSWIP_PCE_TBL_CTRL_BAS);
640 
641 	mutex_unlock(&priv->pce_table_lock);
642 
643 	return err;
644 }
645 
646 /* Add the LAN port into a bridge with the CPU port by
647  * default. This prevents automatic forwarding of
648  * packages between the LAN ports when no explicit
649  * bridge is configured.
650  */
651 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
652 {
653 	struct gswip_pce_table_entry vlan_active = {0,};
654 	struct gswip_pce_table_entry vlan_mapping = {0,};
655 	unsigned int cpu_port = priv->hw_info->cpu_port;
656 	unsigned int max_ports = priv->hw_info->max_ports;
657 	int err;
658 
659 	if (port >= max_ports) {
660 		dev_err(priv->dev, "single port for %i supported\n", port);
661 		return -EIO;
662 	}
663 
664 	vlan_active.index = port + 1;
665 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
666 	vlan_active.key[0] = 0; /* vid */
667 	vlan_active.val[0] = port + 1 /* fid */;
668 	vlan_active.valid = add;
669 	err = gswip_pce_table_entry_write(priv, &vlan_active);
670 	if (err) {
671 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
672 		return err;
673 	}
674 
675 	if (!add)
676 		return 0;
677 
678 	vlan_mapping.index = port + 1;
679 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
680 	vlan_mapping.val[0] = 0 /* vid */;
681 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
682 	vlan_mapping.val[2] = 0;
683 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
684 	if (err) {
685 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
686 		return err;
687 	}
688 
689 	return 0;
690 }
691 
692 static int gswip_port_enable(struct dsa_switch *ds, int port,
693 			     struct phy_device *phydev)
694 {
695 	struct gswip_priv *priv = ds->priv;
696 	int err;
697 
698 	if (!dsa_is_user_port(ds, port))
699 		return 0;
700 
701 	if (!dsa_is_cpu_port(ds, port)) {
702 		err = gswip_add_single_port_br(priv, port, true);
703 		if (err)
704 			return err;
705 	}
706 
707 	/* RMON Counter Enable for port */
708 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
709 
710 	/* enable port fetch/store dma & VLAN Modification */
711 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
712 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
713 			 GSWIP_FDMA_PCTRLp(port));
714 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
715 			  GSWIP_SDMA_PCTRLp(port));
716 
717 	if (!dsa_is_cpu_port(ds, port)) {
718 		u32 mdio_phy = 0;
719 
720 		if (phydev)
721 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
722 
723 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
724 				GSWIP_MDIO_PHYp(port));
725 	}
726 
727 	return 0;
728 }
729 
730 static void gswip_port_disable(struct dsa_switch *ds, int port)
731 {
732 	struct gswip_priv *priv = ds->priv;
733 
734 	if (!dsa_is_user_port(ds, port))
735 		return;
736 
737 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
738 			  GSWIP_FDMA_PCTRLp(port));
739 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
740 			  GSWIP_SDMA_PCTRLp(port));
741 }
742 
743 static int gswip_pce_load_microcode(struct gswip_priv *priv)
744 {
745 	int i;
746 	int err;
747 
748 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
749 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
750 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
751 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
752 
753 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
754 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
755 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
756 			       GSWIP_PCE_TBL_VAL(0));
757 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
758 			       GSWIP_PCE_TBL_VAL(1));
759 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
760 			       GSWIP_PCE_TBL_VAL(2));
761 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
762 			       GSWIP_PCE_TBL_VAL(3));
763 
764 		/* start the table access: */
765 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
766 				  GSWIP_PCE_TBL_CTRL);
767 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
768 					     GSWIP_PCE_TBL_CTRL_BAS);
769 		if (err)
770 			return err;
771 	}
772 
773 	/* tell the switch that the microcode is loaded */
774 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
775 			  GSWIP_PCE_GCTRL_0);
776 
777 	return 0;
778 }
779 
780 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
781 				     bool vlan_filtering,
782 				     struct netlink_ext_ack *extack)
783 {
784 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
785 	struct gswip_priv *priv = ds->priv;
786 
787 	/* Do not allow changing the VLAN filtering options while in bridge */
788 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
789 		NL_SET_ERR_MSG_MOD(extack,
790 				   "Dynamic toggling of vlan_filtering not supported");
791 		return -EIO;
792 	}
793 
794 	if (vlan_filtering) {
795 		/* Use port based VLAN tag */
796 		gswip_switch_mask(priv,
797 				  GSWIP_PCE_VCTRL_VSR,
798 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
799 				  GSWIP_PCE_VCTRL_VEMR,
800 				  GSWIP_PCE_VCTRL(port));
801 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
802 				  GSWIP_PCE_PCTRL_0p(port));
803 	} else {
804 		/* Use port based VLAN tag */
805 		gswip_switch_mask(priv,
806 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
807 				  GSWIP_PCE_VCTRL_VEMR,
808 				  GSWIP_PCE_VCTRL_VSR,
809 				  GSWIP_PCE_VCTRL(port));
810 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
811 				  GSWIP_PCE_PCTRL_0p(port));
812 	}
813 
814 	return 0;
815 }
816 
817 static int gswip_setup(struct dsa_switch *ds)
818 {
819 	struct gswip_priv *priv = ds->priv;
820 	unsigned int cpu_port = priv->hw_info->cpu_port;
821 	int i;
822 	int err;
823 
824 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
825 	usleep_range(5000, 10000);
826 	gswip_switch_w(priv, 0, GSWIP_SWRES);
827 
828 	/* disable port fetch/store dma on all ports */
829 	for (i = 0; i < priv->hw_info->max_ports; i++) {
830 		gswip_port_disable(ds, i);
831 		gswip_port_vlan_filtering(ds, i, false, NULL);
832 	}
833 
834 	/* enable Switch */
835 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
836 
837 	err = gswip_pce_load_microcode(priv);
838 	if (err) {
839 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
840 		return err;
841 	}
842 
843 	/* Default unknown Broadcast/Multicast/Unicast port maps */
844 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
845 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
846 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
847 
848 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
849 	 * interoperability problem with this auto polling mechanism because
850 	 * their status registers think that the link is in a different state
851 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
852 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
853 	 * auto polling state machine consider the link being negotiated with
854 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
855 	 * to the switch port being completely dead (RX and TX are both not
856 	 * working).
857 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
858 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
859 	 * it would work fine for a few minutes to hours and then stop, on
860 	 * other device it would no traffic could be sent or received at all.
861 	 * Testing shows that when PHY auto polling is disabled these problems
862 	 * go away.
863 	 */
864 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
865 
866 	/* Configure the MDIO Clock 2.5 MHz */
867 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
868 
869 	/* Disable the xMII interface and clear it's isolation bit */
870 	for (i = 0; i < priv->hw_info->max_ports; i++)
871 		gswip_mii_mask_cfg(priv,
872 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
873 				   0, i);
874 
875 	/* enable special tag insertion on cpu port */
876 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
877 			  GSWIP_FDMA_PCTRLp(cpu_port));
878 
879 	/* accept special tag in ingress direction */
880 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
881 			  GSWIP_PCE_PCTRL_0p(cpu_port));
882 
883 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
884 			  GSWIP_BM_QUEUE_GCTRL);
885 
886 	/* VLAN aware Switching */
887 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
888 
889 	/* Flush MAC Table */
890 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
891 
892 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
893 				     GSWIP_PCE_GCTRL_0_MTFL);
894 	if (err) {
895 		dev_err(priv->dev, "MAC flushing didn't finish\n");
896 		return err;
897 	}
898 
899 	ds->mtu_enforcement_ingress = true;
900 
901 	gswip_port_enable(ds, cpu_port, NULL);
902 
903 	ds->configure_vlan_while_not_filtering = false;
904 
905 	return 0;
906 }
907 
908 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
909 						    int port,
910 						    enum dsa_tag_protocol mp)
911 {
912 	return DSA_TAG_PROTO_GSWIP;
913 }
914 
915 static int gswip_vlan_active_create(struct gswip_priv *priv,
916 				    struct net_device *bridge,
917 				    int fid, u16 vid)
918 {
919 	struct gswip_pce_table_entry vlan_active = {0,};
920 	unsigned int max_ports = priv->hw_info->max_ports;
921 	int idx = -1;
922 	int err;
923 	int i;
924 
925 	/* Look for a free slot */
926 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
927 		if (!priv->vlans[i].bridge) {
928 			idx = i;
929 			break;
930 		}
931 	}
932 
933 	if (idx == -1)
934 		return -ENOSPC;
935 
936 	if (fid == -1)
937 		fid = idx;
938 
939 	vlan_active.index = idx;
940 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
941 	vlan_active.key[0] = vid;
942 	vlan_active.val[0] = fid;
943 	vlan_active.valid = true;
944 
945 	err = gswip_pce_table_entry_write(priv, &vlan_active);
946 	if (err) {
947 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
948 		return err;
949 	}
950 
951 	priv->vlans[idx].bridge = bridge;
952 	priv->vlans[idx].vid = vid;
953 	priv->vlans[idx].fid = fid;
954 
955 	return idx;
956 }
957 
958 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
959 {
960 	struct gswip_pce_table_entry vlan_active = {0,};
961 	int err;
962 
963 	vlan_active.index = idx;
964 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
965 	vlan_active.valid = false;
966 	err = gswip_pce_table_entry_write(priv, &vlan_active);
967 	if (err)
968 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
969 	priv->vlans[idx].bridge = NULL;
970 
971 	return err;
972 }
973 
974 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
975 				  struct net_device *bridge, int port)
976 {
977 	struct gswip_pce_table_entry vlan_mapping = {0,};
978 	unsigned int max_ports = priv->hw_info->max_ports;
979 	unsigned int cpu_port = priv->hw_info->cpu_port;
980 	bool active_vlan_created = false;
981 	int idx = -1;
982 	int i;
983 	int err;
984 
985 	/* Check if there is already a page for this bridge */
986 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
987 		if (priv->vlans[i].bridge == bridge) {
988 			idx = i;
989 			break;
990 		}
991 	}
992 
993 	/* If this bridge is not programmed yet, add a Active VLAN table
994 	 * entry in a free slot and prepare the VLAN mapping table entry.
995 	 */
996 	if (idx == -1) {
997 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
998 		if (idx < 0)
999 			return idx;
1000 		active_vlan_created = true;
1001 
1002 		vlan_mapping.index = idx;
1003 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1004 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1005 		vlan_mapping.val[0] = 0;
1006 	} else {
1007 		/* Read the existing VLAN mapping entry from the switch */
1008 		vlan_mapping.index = idx;
1009 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1010 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1011 		if (err) {
1012 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1013 				err);
1014 			return err;
1015 		}
1016 	}
1017 
1018 	/* Update the VLAN mapping entry and write it to the switch */
1019 	vlan_mapping.val[1] |= BIT(cpu_port);
1020 	vlan_mapping.val[1] |= BIT(port);
1021 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1022 	if (err) {
1023 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1024 		/* In case an Active VLAN was creaetd delete it again */
1025 		if (active_vlan_created)
1026 			gswip_vlan_active_remove(priv, idx);
1027 		return err;
1028 	}
1029 
1030 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1031 	return 0;
1032 }
1033 
1034 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1035 				struct net_device *bridge, int port,
1036 				u16 vid, bool untagged,
1037 				bool pvid)
1038 {
1039 	struct gswip_pce_table_entry vlan_mapping = {0,};
1040 	unsigned int max_ports = priv->hw_info->max_ports;
1041 	unsigned int cpu_port = priv->hw_info->cpu_port;
1042 	bool active_vlan_created = false;
1043 	int idx = -1;
1044 	int fid = -1;
1045 	int i;
1046 	int err;
1047 
1048 	/* Check if there is already a page for this bridge */
1049 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1050 		if (priv->vlans[i].bridge == bridge) {
1051 			if (fid != -1 && fid != priv->vlans[i].fid)
1052 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1053 			fid = priv->vlans[i].fid;
1054 			if (priv->vlans[i].vid == vid) {
1055 				idx = i;
1056 				break;
1057 			}
1058 		}
1059 	}
1060 
1061 	/* If this bridge is not programmed yet, add a Active VLAN table
1062 	 * entry in a free slot and prepare the VLAN mapping table entry.
1063 	 */
1064 	if (idx == -1) {
1065 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1066 		if (idx < 0)
1067 			return idx;
1068 		active_vlan_created = true;
1069 
1070 		vlan_mapping.index = idx;
1071 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1072 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1073 		vlan_mapping.val[0] = vid;
1074 	} else {
1075 		/* Read the existing VLAN mapping entry from the switch */
1076 		vlan_mapping.index = idx;
1077 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1078 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1079 		if (err) {
1080 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1081 				err);
1082 			return err;
1083 		}
1084 	}
1085 
1086 	vlan_mapping.val[0] = vid;
1087 	/* Update the VLAN mapping entry and write it to the switch */
1088 	vlan_mapping.val[1] |= BIT(cpu_port);
1089 	vlan_mapping.val[2] |= BIT(cpu_port);
1090 	vlan_mapping.val[1] |= BIT(port);
1091 	if (untagged)
1092 		vlan_mapping.val[2] &= ~BIT(port);
1093 	else
1094 		vlan_mapping.val[2] |= BIT(port);
1095 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1096 	if (err) {
1097 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1098 		/* In case an Active VLAN was creaetd delete it again */
1099 		if (active_vlan_created)
1100 			gswip_vlan_active_remove(priv, idx);
1101 		return err;
1102 	}
1103 
1104 	if (pvid)
1105 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1106 
1107 	return 0;
1108 }
1109 
1110 static int gswip_vlan_remove(struct gswip_priv *priv,
1111 			     struct net_device *bridge, int port,
1112 			     u16 vid, bool pvid, bool vlan_aware)
1113 {
1114 	struct gswip_pce_table_entry vlan_mapping = {0,};
1115 	unsigned int max_ports = priv->hw_info->max_ports;
1116 	unsigned int cpu_port = priv->hw_info->cpu_port;
1117 	int idx = -1;
1118 	int i;
1119 	int err;
1120 
1121 	/* Check if there is already a page for this bridge */
1122 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1123 		if (priv->vlans[i].bridge == bridge &&
1124 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1125 			idx = i;
1126 			break;
1127 		}
1128 	}
1129 
1130 	if (idx == -1) {
1131 		dev_err(priv->dev, "bridge to leave does not exists\n");
1132 		return -ENOENT;
1133 	}
1134 
1135 	vlan_mapping.index = idx;
1136 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1137 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1138 	if (err) {
1139 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1140 		return err;
1141 	}
1142 
1143 	vlan_mapping.val[1] &= ~BIT(port);
1144 	vlan_mapping.val[2] &= ~BIT(port);
1145 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1146 	if (err) {
1147 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1148 		return err;
1149 	}
1150 
1151 	/* In case all ports are removed from the bridge, remove the VLAN */
1152 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1153 		err = gswip_vlan_active_remove(priv, idx);
1154 		if (err) {
1155 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1156 				err);
1157 			return err;
1158 		}
1159 	}
1160 
1161 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1162 	if (pvid)
1163 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1164 
1165 	return 0;
1166 }
1167 
1168 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1169 				  struct dsa_bridge bridge,
1170 				  bool *tx_fwd_offload,
1171 				  struct netlink_ext_ack *extack)
1172 {
1173 	struct net_device *br = bridge.dev;
1174 	struct gswip_priv *priv = ds->priv;
1175 	int err;
1176 
1177 	/* When the bridge uses VLAN filtering we have to configure VLAN
1178 	 * specific bridges. No bridge is configured here.
1179 	 */
1180 	if (!br_vlan_enabled(br)) {
1181 		err = gswip_vlan_add_unaware(priv, br, port);
1182 		if (err)
1183 			return err;
1184 		priv->port_vlan_filter &= ~BIT(port);
1185 	} else {
1186 		priv->port_vlan_filter |= BIT(port);
1187 	}
1188 	return gswip_add_single_port_br(priv, port, false);
1189 }
1190 
1191 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1192 				    struct dsa_bridge bridge)
1193 {
1194 	struct net_device *br = bridge.dev;
1195 	struct gswip_priv *priv = ds->priv;
1196 
1197 	gswip_add_single_port_br(priv, port, true);
1198 
1199 	/* When the bridge uses VLAN filtering we have to configure VLAN
1200 	 * specific bridges. No bridge is configured here.
1201 	 */
1202 	if (!br_vlan_enabled(br))
1203 		gswip_vlan_remove(priv, br, port, 0, true, false);
1204 }
1205 
1206 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1207 				   const struct switchdev_obj_port_vlan *vlan,
1208 				   struct netlink_ext_ack *extack)
1209 {
1210 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1211 	struct gswip_priv *priv = ds->priv;
1212 	unsigned int max_ports = priv->hw_info->max_ports;
1213 	int pos = max_ports;
1214 	int i, idx = -1;
1215 
1216 	/* We only support VLAN filtering on bridges */
1217 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1218 		return -EOPNOTSUPP;
1219 
1220 	/* Check if there is already a page for this VLAN */
1221 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1222 		if (priv->vlans[i].bridge == bridge &&
1223 		    priv->vlans[i].vid == vlan->vid) {
1224 			idx = i;
1225 			break;
1226 		}
1227 	}
1228 
1229 	/* If this VLAN is not programmed yet, we have to reserve
1230 	 * one entry in the VLAN table. Make sure we start at the
1231 	 * next position round.
1232 	 */
1233 	if (idx == -1) {
1234 		/* Look for a free slot */
1235 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1236 			if (!priv->vlans[pos].bridge) {
1237 				idx = pos;
1238 				pos++;
1239 				break;
1240 			}
1241 		}
1242 
1243 		if (idx == -1) {
1244 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1245 			return -ENOSPC;
1246 		}
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1253 			       const struct switchdev_obj_port_vlan *vlan,
1254 			       struct netlink_ext_ack *extack)
1255 {
1256 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1257 	struct gswip_priv *priv = ds->priv;
1258 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1259 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1260 	int err;
1261 
1262 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1263 	if (err)
1264 		return err;
1265 
1266 	/* We have to receive all packets on the CPU port and should not
1267 	 * do any VLAN filtering here. This is also called with bridge
1268 	 * NULL and then we do not know for which bridge to configure
1269 	 * this.
1270 	 */
1271 	if (dsa_is_cpu_port(ds, port))
1272 		return 0;
1273 
1274 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1275 				    untagged, pvid);
1276 }
1277 
1278 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1279 			       const struct switchdev_obj_port_vlan *vlan)
1280 {
1281 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1282 	struct gswip_priv *priv = ds->priv;
1283 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1284 
1285 	/* We have to receive all packets on the CPU port and should not
1286 	 * do any VLAN filtering here. This is also called with bridge
1287 	 * NULL and then we do not know for which bridge to configure
1288 	 * this.
1289 	 */
1290 	if (dsa_is_cpu_port(ds, port))
1291 		return 0;
1292 
1293 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1294 }
1295 
1296 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1297 {
1298 	struct gswip_priv *priv = ds->priv;
1299 	struct gswip_pce_table_entry mac_bridge = {0,};
1300 	int i;
1301 	int err;
1302 
1303 	for (i = 0; i < 2048; i++) {
1304 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1305 		mac_bridge.index = i;
1306 
1307 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1308 		if (err) {
1309 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1310 				err);
1311 			return;
1312 		}
1313 
1314 		if (!mac_bridge.valid)
1315 			continue;
1316 
1317 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1318 			continue;
1319 
1320 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1321 			continue;
1322 
1323 		mac_bridge.valid = false;
1324 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1325 		if (err) {
1326 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1327 				err);
1328 			return;
1329 		}
1330 	}
1331 }
1332 
1333 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1334 {
1335 	struct gswip_priv *priv = ds->priv;
1336 	u32 stp_state;
1337 
1338 	switch (state) {
1339 	case BR_STATE_DISABLED:
1340 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1341 				  GSWIP_SDMA_PCTRLp(port));
1342 		return;
1343 	case BR_STATE_BLOCKING:
1344 	case BR_STATE_LISTENING:
1345 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1346 		break;
1347 	case BR_STATE_LEARNING:
1348 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1349 		break;
1350 	case BR_STATE_FORWARDING:
1351 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1352 		break;
1353 	default:
1354 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1355 		return;
1356 	}
1357 
1358 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1359 			  GSWIP_SDMA_PCTRLp(port));
1360 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1361 			  GSWIP_PCE_PCTRL_0p(port));
1362 }
1363 
1364 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1365 			  const unsigned char *addr, u16 vid, bool add)
1366 {
1367 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1368 	struct gswip_priv *priv = ds->priv;
1369 	struct gswip_pce_table_entry mac_bridge = {0,};
1370 	unsigned int max_ports = priv->hw_info->max_ports;
1371 	int fid = -1;
1372 	int i;
1373 	int err;
1374 
1375 	if (!bridge)
1376 		return -EINVAL;
1377 
1378 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1379 		if (priv->vlans[i].bridge == bridge) {
1380 			fid = priv->vlans[i].fid;
1381 			break;
1382 		}
1383 	}
1384 
1385 	if (fid == -1) {
1386 		dev_err(priv->dev, "Port not part of a bridge\n");
1387 		return -EINVAL;
1388 	}
1389 
1390 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1391 	mac_bridge.key_mode = true;
1392 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1393 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1394 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1395 	mac_bridge.key[3] = fid;
1396 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1397 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1398 	mac_bridge.valid = add;
1399 
1400 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1401 	if (err)
1402 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1403 
1404 	return err;
1405 }
1406 
1407 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1408 			      const unsigned char *addr, u16 vid,
1409 			      struct dsa_db db)
1410 {
1411 	return gswip_port_fdb(ds, port, addr, vid, true);
1412 }
1413 
1414 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1415 			      const unsigned char *addr, u16 vid,
1416 			      struct dsa_db db)
1417 {
1418 	return gswip_port_fdb(ds, port, addr, vid, false);
1419 }
1420 
1421 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1422 			       dsa_fdb_dump_cb_t *cb, void *data)
1423 {
1424 	struct gswip_priv *priv = ds->priv;
1425 	struct gswip_pce_table_entry mac_bridge = {0,};
1426 	unsigned char addr[6];
1427 	int i;
1428 	int err;
1429 
1430 	for (i = 0; i < 2048; i++) {
1431 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1432 		mac_bridge.index = i;
1433 
1434 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1435 		if (err) {
1436 			dev_err(priv->dev,
1437 				"failed to read mac bridge entry %d: %d\n",
1438 				i, err);
1439 			return err;
1440 		}
1441 
1442 		if (!mac_bridge.valid)
1443 			continue;
1444 
1445 		addr[5] = mac_bridge.key[0] & 0xff;
1446 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1447 		addr[3] = mac_bridge.key[1] & 0xff;
1448 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1449 		addr[1] = mac_bridge.key[2] & 0xff;
1450 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1451 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1452 			if (mac_bridge.val[0] & BIT(port)) {
1453 				err = cb(addr, 0, true, data);
1454 				if (err)
1455 					return err;
1456 			}
1457 		} else {
1458 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1459 				err = cb(addr, 0, false, data);
1460 				if (err)
1461 					return err;
1462 			}
1463 		}
1464 	}
1465 	return 0;
1466 }
1467 
1468 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1469 {
1470 	/* Includes 8 bytes for special header. */
1471 	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1472 }
1473 
1474 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1475 {
1476 	struct gswip_priv *priv = ds->priv;
1477 	int cpu_port = priv->hw_info->cpu_port;
1478 
1479 	/* CPU port always has maximum mtu of user ports, so use it to set
1480 	 * switch frame size, including 8 byte special header.
1481 	 */
1482 	if (port == cpu_port) {
1483 		new_mtu += 8;
1484 		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1485 			       GSWIP_MAC_FLEN);
1486 	}
1487 
1488 	/* Enable MLEN for ports with non-standard MTUs, including the special
1489 	 * header on the CPU port added above.
1490 	 */
1491 	if (new_mtu != ETH_DATA_LEN)
1492 		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1493 				  GSWIP_MAC_CTRL_2p(port));
1494 	else
1495 		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1496 				  GSWIP_MAC_CTRL_2p(port));
1497 
1498 	return 0;
1499 }
1500 
1501 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1502 					  struct phylink_config *config)
1503 {
1504 	switch (port) {
1505 	case 0:
1506 	case 1:
1507 		phy_interface_set_rgmii(config->supported_interfaces);
1508 		__set_bit(PHY_INTERFACE_MODE_MII,
1509 			  config->supported_interfaces);
1510 		__set_bit(PHY_INTERFACE_MODE_REVMII,
1511 			  config->supported_interfaces);
1512 		__set_bit(PHY_INTERFACE_MODE_RMII,
1513 			  config->supported_interfaces);
1514 		break;
1515 
1516 	case 2:
1517 	case 3:
1518 	case 4:
1519 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1520 			  config->supported_interfaces);
1521 		break;
1522 
1523 	case 5:
1524 		phy_interface_set_rgmii(config->supported_interfaces);
1525 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1526 			  config->supported_interfaces);
1527 		break;
1528 	}
1529 
1530 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1531 		MAC_10 | MAC_100 | MAC_1000;
1532 }
1533 
1534 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1535 					  struct phylink_config *config)
1536 {
1537 	switch (port) {
1538 	case 0:
1539 		phy_interface_set_rgmii(config->supported_interfaces);
1540 		__set_bit(PHY_INTERFACE_MODE_GMII,
1541 			  config->supported_interfaces);
1542 		__set_bit(PHY_INTERFACE_MODE_RMII,
1543 			  config->supported_interfaces);
1544 		break;
1545 
1546 	case 1:
1547 	case 2:
1548 	case 3:
1549 	case 4:
1550 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1551 			  config->supported_interfaces);
1552 		break;
1553 
1554 	case 5:
1555 		phy_interface_set_rgmii(config->supported_interfaces);
1556 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1557 			  config->supported_interfaces);
1558 		__set_bit(PHY_INTERFACE_MODE_RMII,
1559 			  config->supported_interfaces);
1560 		break;
1561 	}
1562 
1563 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1564 		MAC_10 | MAC_100 | MAC_1000;
1565 }
1566 
1567 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1568 {
1569 	u32 mdio_phy;
1570 
1571 	if (link)
1572 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1573 	else
1574 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1575 
1576 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1577 			GSWIP_MDIO_PHYp(port));
1578 }
1579 
1580 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1581 				 phy_interface_t interface)
1582 {
1583 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1584 
1585 	switch (speed) {
1586 	case SPEED_10:
1587 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1588 
1589 		if (interface == PHY_INTERFACE_MODE_RMII)
1590 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1591 		else
1592 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1593 
1594 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1595 		break;
1596 
1597 	case SPEED_100:
1598 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1599 
1600 		if (interface == PHY_INTERFACE_MODE_RMII)
1601 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1602 		else
1603 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1604 
1605 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1606 		break;
1607 
1608 	case SPEED_1000:
1609 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1610 
1611 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1612 
1613 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1614 		break;
1615 	}
1616 
1617 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1618 			GSWIP_MDIO_PHYp(port));
1619 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1620 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1621 			  GSWIP_MAC_CTRL_0p(port));
1622 }
1623 
1624 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1625 {
1626 	u32 mac_ctrl_0, mdio_phy;
1627 
1628 	if (duplex == DUPLEX_FULL) {
1629 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1630 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1631 	} else {
1632 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1633 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1634 	}
1635 
1636 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1637 			  GSWIP_MAC_CTRL_0p(port));
1638 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1639 			GSWIP_MDIO_PHYp(port));
1640 }
1641 
1642 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1643 				 bool tx_pause, bool rx_pause)
1644 {
1645 	u32 mac_ctrl_0, mdio_phy;
1646 
1647 	if (tx_pause && rx_pause) {
1648 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1649 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1650 			   GSWIP_MDIO_PHY_FCONRX_EN;
1651 	} else if (tx_pause) {
1652 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1653 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1654 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1655 	} else if (rx_pause) {
1656 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1657 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1658 			   GSWIP_MDIO_PHY_FCONRX_EN;
1659 	} else {
1660 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1661 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1662 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1663 	}
1664 
1665 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1666 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1667 	gswip_mdio_mask(priv,
1668 			GSWIP_MDIO_PHY_FCONTX_MASK |
1669 			GSWIP_MDIO_PHY_FCONRX_MASK,
1670 			mdio_phy, GSWIP_MDIO_PHYp(port));
1671 }
1672 
1673 static void gswip_phylink_mac_config(struct phylink_config *config,
1674 				     unsigned int mode,
1675 				     const struct phylink_link_state *state)
1676 {
1677 	struct dsa_port *dp = dsa_phylink_to_port(config);
1678 	struct gswip_priv *priv = dp->ds->priv;
1679 	int port = dp->index;
1680 	u32 miicfg = 0;
1681 
1682 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1683 
1684 	switch (state->interface) {
1685 	case PHY_INTERFACE_MODE_MII:
1686 	case PHY_INTERFACE_MODE_INTERNAL:
1687 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1688 		break;
1689 	case PHY_INTERFACE_MODE_REVMII:
1690 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1691 		break;
1692 	case PHY_INTERFACE_MODE_RMII:
1693 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1694 		break;
1695 	case PHY_INTERFACE_MODE_RGMII:
1696 	case PHY_INTERFACE_MODE_RGMII_ID:
1697 	case PHY_INTERFACE_MODE_RGMII_RXID:
1698 	case PHY_INTERFACE_MODE_RGMII_TXID:
1699 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1700 		break;
1701 	case PHY_INTERFACE_MODE_GMII:
1702 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1703 		break;
1704 	default:
1705 		dev_err(dp->ds->dev,
1706 			"Unsupported interface: %d\n", state->interface);
1707 		return;
1708 	}
1709 
1710 	gswip_mii_mask_cfg(priv,
1711 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1712 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1713 			   miicfg, port);
1714 
1715 	switch (state->interface) {
1716 	case PHY_INTERFACE_MODE_RGMII_ID:
1717 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1718 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1719 		break;
1720 	case PHY_INTERFACE_MODE_RGMII_RXID:
1721 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1722 		break;
1723 	case PHY_INTERFACE_MODE_RGMII_TXID:
1724 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1725 		break;
1726 	default:
1727 		break;
1728 	}
1729 }
1730 
1731 static void gswip_phylink_mac_link_down(struct phylink_config *config,
1732 					unsigned int mode,
1733 					phy_interface_t interface)
1734 {
1735 	struct dsa_port *dp = dsa_phylink_to_port(config);
1736 	struct gswip_priv *priv = dp->ds->priv;
1737 	int port = dp->index;
1738 
1739 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1740 
1741 	if (!dsa_port_is_cpu(dp))
1742 		gswip_port_set_link(priv, port, false);
1743 }
1744 
1745 static void gswip_phylink_mac_link_up(struct phylink_config *config,
1746 				      struct phy_device *phydev,
1747 				      unsigned int mode,
1748 				      phy_interface_t interface,
1749 				      int speed, int duplex,
1750 				      bool tx_pause, bool rx_pause)
1751 {
1752 	struct dsa_port *dp = dsa_phylink_to_port(config);
1753 	struct gswip_priv *priv = dp->ds->priv;
1754 	int port = dp->index;
1755 
1756 	if (!dsa_port_is_cpu(dp)) {
1757 		gswip_port_set_link(priv, port, true);
1758 		gswip_port_set_speed(priv, port, speed, interface);
1759 		gswip_port_set_duplex(priv, port, duplex);
1760 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1761 	}
1762 
1763 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1764 }
1765 
1766 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1767 			      uint8_t *data)
1768 {
1769 	int i;
1770 
1771 	if (stringset != ETH_SS_STATS)
1772 		return;
1773 
1774 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1775 		ethtool_puts(&data, gswip_rmon_cnt[i].name);
1776 }
1777 
1778 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1779 				    u32 index)
1780 {
1781 	u32 result;
1782 	int err;
1783 
1784 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1785 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1786 				GSWIP_BM_RAM_CTRL_OPMOD,
1787 			      table | GSWIP_BM_RAM_CTRL_BAS,
1788 			      GSWIP_BM_RAM_CTRL);
1789 
1790 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1791 				     GSWIP_BM_RAM_CTRL_BAS);
1792 	if (err) {
1793 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1794 			table, index);
1795 		return 0;
1796 	}
1797 
1798 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1799 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1800 
1801 	return result;
1802 }
1803 
1804 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1805 				    uint64_t *data)
1806 {
1807 	struct gswip_priv *priv = ds->priv;
1808 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1809 	int i;
1810 	u64 high;
1811 
1812 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1813 		rmon_cnt = &gswip_rmon_cnt[i];
1814 
1815 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1816 						   rmon_cnt->offset);
1817 		if (rmon_cnt->size == 2) {
1818 			high = gswip_bcm_ram_entry_read(priv, port,
1819 							rmon_cnt->offset + 1);
1820 			data[i] |= high << 32;
1821 		}
1822 	}
1823 }
1824 
1825 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1826 {
1827 	if (sset != ETH_SS_STATS)
1828 		return 0;
1829 
1830 	return ARRAY_SIZE(gswip_rmon_cnt);
1831 }
1832 
1833 static const struct phylink_mac_ops gswip_phylink_mac_ops = {
1834 	.mac_config	= gswip_phylink_mac_config,
1835 	.mac_link_down	= gswip_phylink_mac_link_down,
1836 	.mac_link_up	= gswip_phylink_mac_link_up,
1837 };
1838 
1839 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1840 	.get_tag_protocol	= gswip_get_tag_protocol,
1841 	.setup			= gswip_setup,
1842 	.port_enable		= gswip_port_enable,
1843 	.port_disable		= gswip_port_disable,
1844 	.port_bridge_join	= gswip_port_bridge_join,
1845 	.port_bridge_leave	= gswip_port_bridge_leave,
1846 	.port_fast_age		= gswip_port_fast_age,
1847 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1848 	.port_vlan_add		= gswip_port_vlan_add,
1849 	.port_vlan_del		= gswip_port_vlan_del,
1850 	.port_stp_state_set	= gswip_port_stp_state_set,
1851 	.port_fdb_add		= gswip_port_fdb_add,
1852 	.port_fdb_del		= gswip_port_fdb_del,
1853 	.port_fdb_dump		= gswip_port_fdb_dump,
1854 	.port_change_mtu	= gswip_port_change_mtu,
1855 	.port_max_mtu		= gswip_port_max_mtu,
1856 	.phylink_get_caps	= gswip_xrx200_phylink_get_caps,
1857 	.get_strings		= gswip_get_strings,
1858 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1859 	.get_sset_count		= gswip_get_sset_count,
1860 };
1861 
1862 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1863 	.get_tag_protocol	= gswip_get_tag_protocol,
1864 	.setup			= gswip_setup,
1865 	.port_enable		= gswip_port_enable,
1866 	.port_disable		= gswip_port_disable,
1867 	.port_bridge_join	= gswip_port_bridge_join,
1868 	.port_bridge_leave	= gswip_port_bridge_leave,
1869 	.port_fast_age		= gswip_port_fast_age,
1870 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1871 	.port_vlan_add		= gswip_port_vlan_add,
1872 	.port_vlan_del		= gswip_port_vlan_del,
1873 	.port_stp_state_set	= gswip_port_stp_state_set,
1874 	.port_fdb_add		= gswip_port_fdb_add,
1875 	.port_fdb_del		= gswip_port_fdb_del,
1876 	.port_fdb_dump		= gswip_port_fdb_dump,
1877 	.port_change_mtu	= gswip_port_change_mtu,
1878 	.port_max_mtu		= gswip_port_max_mtu,
1879 	.phylink_get_caps	= gswip_xrx300_phylink_get_caps,
1880 	.get_strings		= gswip_get_strings,
1881 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1882 	.get_sset_count		= gswip_get_sset_count,
1883 };
1884 
1885 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1886 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1887 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1888 };
1889 
1890 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1891 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1892 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1893 };
1894 
1895 static const struct xway_gphy_match_data xrx300_gphy_data = {
1896 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1897 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1898 };
1899 
1900 static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1901 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1902 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1903 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1904 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1905 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1906 	{},
1907 };
1908 
1909 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1910 {
1911 	struct device *dev = priv->dev;
1912 	const struct firmware *fw;
1913 	void *fw_addr;
1914 	dma_addr_t dma_addr;
1915 	dma_addr_t dev_addr;
1916 	size_t size;
1917 	int ret;
1918 
1919 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1920 	if (ret)
1921 		return ret;
1922 
1923 	reset_control_assert(gphy_fw->reset);
1924 
1925 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1926 	 * Without this some users are observing that the PHY is not coming up
1927 	 * on the MDIO bus.
1928 	 */
1929 	msleep(200);
1930 
1931 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1932 	if (ret) {
1933 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1934 			gphy_fw->fw_name, ret);
1935 		return ret;
1936 	}
1937 
1938 	/* GPHY cores need the firmware code in a persistent and contiguous
1939 	 * memory area with a 16 kB boundary aligned start address.
1940 	 */
1941 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1942 
1943 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1944 	if (fw_addr) {
1945 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1946 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1947 		memcpy(fw_addr, fw->data, fw->size);
1948 	} else {
1949 		dev_err(dev, "failed to alloc firmware memory\n");
1950 		release_firmware(fw);
1951 		return -ENOMEM;
1952 	}
1953 
1954 	release_firmware(fw);
1955 
1956 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1957 	if (ret)
1958 		return ret;
1959 
1960 	reset_control_deassert(gphy_fw->reset);
1961 
1962 	return ret;
1963 }
1964 
1965 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1966 			       struct gswip_gphy_fw *gphy_fw,
1967 			       struct device_node *gphy_fw_np, int i)
1968 {
1969 	struct device *dev = priv->dev;
1970 	u32 gphy_mode;
1971 	int ret;
1972 	char gphyname[10];
1973 
1974 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1975 
1976 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1977 	if (IS_ERR(gphy_fw->clk_gate)) {
1978 		dev_err(dev, "Failed to lookup gate clock\n");
1979 		return PTR_ERR(gphy_fw->clk_gate);
1980 	}
1981 
1982 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1983 	if (ret)
1984 		return ret;
1985 
1986 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1987 	/* Default to GE mode */
1988 	if (ret)
1989 		gphy_mode = GPHY_MODE_GE;
1990 
1991 	switch (gphy_mode) {
1992 	case GPHY_MODE_FE:
1993 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1994 		break;
1995 	case GPHY_MODE_GE:
1996 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1997 		break;
1998 	default:
1999 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
2000 		return -EINVAL;
2001 	}
2002 
2003 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
2004 	if (IS_ERR(gphy_fw->reset))
2005 		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
2006 				     "Failed to lookup gphy reset\n");
2007 
2008 	return gswip_gphy_fw_load(priv, gphy_fw);
2009 }
2010 
2011 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2012 				 struct gswip_gphy_fw *gphy_fw)
2013 {
2014 	int ret;
2015 
2016 	/* check if the device was fully probed */
2017 	if (!gphy_fw->fw_name)
2018 		return;
2019 
2020 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2021 	if (ret)
2022 		dev_err(priv->dev, "can not reset GPHY FW pointer");
2023 
2024 	clk_disable_unprepare(gphy_fw->clk_gate);
2025 
2026 	reset_control_put(gphy_fw->reset);
2027 }
2028 
2029 static int gswip_gphy_fw_list(struct gswip_priv *priv,
2030 			      struct device_node *gphy_fw_list_np, u32 version)
2031 {
2032 	struct device *dev = priv->dev;
2033 	struct device_node *gphy_fw_np;
2034 	const struct of_device_id *match;
2035 	int err;
2036 	int i = 0;
2037 
2038 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2039 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2040 	 * needs a different GPHY firmware.
2041 	 */
2042 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2043 		switch (version) {
2044 		case GSWIP_VERSION_2_0:
2045 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2046 			break;
2047 		case GSWIP_VERSION_2_1:
2048 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2049 			break;
2050 		default:
2051 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
2052 			return -ENOENT;
2053 		}
2054 	}
2055 
2056 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2057 	if (match && match->data)
2058 		priv->gphy_fw_name_cfg = match->data;
2059 
2060 	if (!priv->gphy_fw_name_cfg) {
2061 		dev_err(dev, "GPHY compatible type not supported");
2062 		return -ENOENT;
2063 	}
2064 
2065 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2066 	if (!priv->num_gphy_fw)
2067 		return -ENOENT;
2068 
2069 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2070 							   "lantiq,rcu");
2071 	if (IS_ERR(priv->rcu_regmap))
2072 		return PTR_ERR(priv->rcu_regmap);
2073 
2074 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2075 					   sizeof(*priv->gphy_fw),
2076 					   GFP_KERNEL | __GFP_ZERO);
2077 	if (!priv->gphy_fw)
2078 		return -ENOMEM;
2079 
2080 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2081 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2082 					  gphy_fw_np, i);
2083 		if (err) {
2084 			of_node_put(gphy_fw_np);
2085 			goto remove_gphy;
2086 		}
2087 		i++;
2088 	}
2089 
2090 	/* The standalone PHY11G requires 300ms to be fully
2091 	 * initialized and ready for any MDIO communication after being
2092 	 * taken out of reset. For the SoC-internal GPHY variant there
2093 	 * is no (known) documentation for the minimum time after a
2094 	 * reset. Use the same value as for the standalone variant as
2095 	 * some users have reported internal PHYs not being detected
2096 	 * without any delay.
2097 	 */
2098 	msleep(300);
2099 
2100 	return 0;
2101 
2102 remove_gphy:
2103 	for (i = 0; i < priv->num_gphy_fw; i++)
2104 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2105 	return err;
2106 }
2107 
2108 static int gswip_probe(struct platform_device *pdev)
2109 {
2110 	struct device_node *np, *gphy_fw_np;
2111 	struct device *dev = &pdev->dev;
2112 	struct gswip_priv *priv;
2113 	int err;
2114 	int i;
2115 	u32 version;
2116 
2117 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2118 	if (!priv)
2119 		return -ENOMEM;
2120 
2121 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2122 	if (IS_ERR(priv->gswip))
2123 		return PTR_ERR(priv->gswip);
2124 
2125 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2126 	if (IS_ERR(priv->mdio))
2127 		return PTR_ERR(priv->mdio);
2128 
2129 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2130 	if (IS_ERR(priv->mii))
2131 		return PTR_ERR(priv->mii);
2132 
2133 	priv->hw_info = of_device_get_match_data(dev);
2134 	if (!priv->hw_info)
2135 		return -EINVAL;
2136 
2137 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2138 	if (!priv->ds)
2139 		return -ENOMEM;
2140 
2141 	priv->ds->dev = dev;
2142 	priv->ds->num_ports = priv->hw_info->max_ports;
2143 	priv->ds->priv = priv;
2144 	priv->ds->ops = priv->hw_info->ops;
2145 	priv->ds->phylink_mac_ops = &gswip_phylink_mac_ops;
2146 	priv->dev = dev;
2147 	mutex_init(&priv->pce_table_lock);
2148 	version = gswip_switch_r(priv, GSWIP_VERSION);
2149 
2150 	np = dev->of_node;
2151 	switch (version) {
2152 	case GSWIP_VERSION_2_0:
2153 	case GSWIP_VERSION_2_1:
2154 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2155 			return -EINVAL;
2156 		break;
2157 	case GSWIP_VERSION_2_2:
2158 	case GSWIP_VERSION_2_2_ETC:
2159 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2160 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2161 			return -EINVAL;
2162 		break;
2163 	default:
2164 		dev_err(dev, "unknown GSWIP version: 0x%x", version);
2165 		return -ENOENT;
2166 	}
2167 
2168 	/* bring up the mdio bus */
2169 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2170 	if (gphy_fw_np) {
2171 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2172 		of_node_put(gphy_fw_np);
2173 		if (err) {
2174 			dev_err(dev, "gphy fw probe failed\n");
2175 			return err;
2176 		}
2177 	}
2178 
2179 	/* bring up the mdio bus */
2180 	err = gswip_mdio(priv);
2181 	if (err) {
2182 		dev_err(dev, "mdio probe failed\n");
2183 		goto gphy_fw_remove;
2184 	}
2185 
2186 	err = dsa_register_switch(priv->ds);
2187 	if (err) {
2188 		dev_err(dev, "dsa switch register failed: %i\n", err);
2189 		goto gphy_fw_remove;
2190 	}
2191 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2192 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2193 			priv->hw_info->cpu_port);
2194 		err = -EINVAL;
2195 		goto disable_switch;
2196 	}
2197 
2198 	platform_set_drvdata(pdev, priv);
2199 
2200 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2201 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2202 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2203 	return 0;
2204 
2205 disable_switch:
2206 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2207 	dsa_unregister_switch(priv->ds);
2208 gphy_fw_remove:
2209 	for (i = 0; i < priv->num_gphy_fw; i++)
2210 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2211 	return err;
2212 }
2213 
2214 static void gswip_remove(struct platform_device *pdev)
2215 {
2216 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2217 	int i;
2218 
2219 	if (!priv)
2220 		return;
2221 
2222 	/* disable the switch */
2223 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2224 
2225 	dsa_unregister_switch(priv->ds);
2226 
2227 	for (i = 0; i < priv->num_gphy_fw; i++)
2228 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2229 }
2230 
2231 static void gswip_shutdown(struct platform_device *pdev)
2232 {
2233 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2234 
2235 	if (!priv)
2236 		return;
2237 
2238 	dsa_switch_shutdown(priv->ds);
2239 
2240 	platform_set_drvdata(pdev, NULL);
2241 }
2242 
2243 static const struct gswip_hw_info gswip_xrx200 = {
2244 	.max_ports = 7,
2245 	.cpu_port = 6,
2246 	.ops = &gswip_xrx200_switch_ops,
2247 };
2248 
2249 static const struct gswip_hw_info gswip_xrx300 = {
2250 	.max_ports = 7,
2251 	.cpu_port = 6,
2252 	.ops = &gswip_xrx300_switch_ops,
2253 };
2254 
2255 static const struct of_device_id gswip_of_match[] = {
2256 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2257 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2258 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2259 	{},
2260 };
2261 MODULE_DEVICE_TABLE(of, gswip_of_match);
2262 
2263 static struct platform_driver gswip_driver = {
2264 	.probe = gswip_probe,
2265 	.remove_new = gswip_remove,
2266 	.shutdown = gswip_shutdown,
2267 	.driver = {
2268 		.name = "gswip",
2269 		.of_match_table = gswip_of_match,
2270 	},
2271 };
2272 
2273 module_platform_driver(gswip_driver);
2274 
2275 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2276 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2277 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2278 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2279 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2280 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2281 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2282 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2283 MODULE_LICENSE("GPL v2");
2284