1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4 *
5 * Copyright (C) 2010 Lantiq Deutschland
6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8 *
9 * The VLAN and bridge model the GSWIP hardware uses does not directly
10 * matches the model DSA uses.
11 *
12 * The hardware has 64 possible table entries for bridges with one VLAN
13 * ID, one flow id and a list of ports for each bridge. All entries which
14 * match the same flow ID are combined in the mac learning table, they
15 * act as one global bridge.
16 * The hardware does not support VLAN filter on the port, but on the
17 * bridge, this driver converts the DSA model to the hardware.
18 *
19 * The CPU gets all the exception frames which do not match any forwarding
20 * rule and the CPU port is also added to all bridges. This makes it possible
21 * to handle all the special cases easily in software.
22 * At the initialization the driver allocates one bridge table entry for
23 * each switch port which is used when the port is used without an
24 * explicit bridge. This prevents the frames from being forwarded
25 * between all LAN ports by default.
26 */
27
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47
48 #include "lantiq_pce.h"
49
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB 0x00
52 #define GSWIP_MDIO_GLOB_ENABLE BIT(15)
53 #define GSWIP_MDIO_CTRL 0x08
54 #define GSWIP_MDIO_CTRL_BUSY BIT(12)
55 #define GSWIP_MDIO_CTRL_RD BIT(11)
56 #define GSWIP_MDIO_CTRL_WR BIT(10)
57 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f
58 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5
59 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f
60 #define GSWIP_MDIO_READ 0x09
61 #define GSWIP_MDIO_WRITE 0x0A
62 #define GSWIP_MDIO_MDC_CFG0 0x0B
63 #define GSWIP_MDIO_MDC_CFG1 0x0C
64 #define GSWIP_MDIO_PHYp(p) (0x15 - (p))
65 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000
66 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000
67 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000
68 #define GSWIP_MDIO_PHY_LINK_UP 0x2000
69 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800
70 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800
71 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000
72 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800
73 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000
74 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600
75 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000
76 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200
77 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600
78 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180
79 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000
80 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100
81 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180
82 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060
83 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000
84 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020
85 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060
86 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f
87 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \
88 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 GSWIP_MDIO_PHY_LINK_MASK | \
91 GSWIP_MDIO_PHY_SPEED_MASK | \
92 GSWIP_MDIO_PHY_FDUP_MASK)
93
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p) (0x2 * (p))
96 #define GSWIP_MII_CFG_RESET BIT(15)
97 #define GSWIP_MII_CFG_EN BIT(14)
98 #define GSWIP_MII_CFG_ISOLATE BIT(13)
99 #define GSWIP_MII_CFG_LDCLKDIS BIT(12)
100 #define GSWIP_MII_CFG_RGMII_IBS BIT(8)
101 #define GSWIP_MII_CFG_RMII_CLK BIT(7)
102 #define GSWIP_MII_CFG_MODE_MIIP 0x0
103 #define GSWIP_MII_CFG_MODE_MIIM 0x1
104 #define GSWIP_MII_CFG_MODE_RMIIP 0x2
105 #define GSWIP_MII_CFG_MODE_RMIIM 0x3
106 #define GSWIP_MII_CFG_MODE_RGMII 0x4
107 #define GSWIP_MII_CFG_MODE_GMII 0x9
108 #define GSWIP_MII_CFG_MODE_MASK 0xf
109 #define GSWIP_MII_CFG_RATE_M2P5 0x00
110 #define GSWIP_MII_CFG_RATE_M25 0x10
111 #define GSWIP_MII_CFG_RATE_M125 0x20
112 #define GSWIP_MII_CFG_RATE_M50 0x30
113 #define GSWIP_MII_CFG_RATE_AUTO 0x40
114 #define GSWIP_MII_CFG_RATE_MASK 0x70
115 #define GSWIP_MII_PCDU0 0x01
116 #define GSWIP_MII_PCDU1 0x03
117 #define GSWIP_MII_PCDU5 0x05
118 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0)
119 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7)
120
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES 0x000
123 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */
124 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */
125 #define GSWIP_VERSION 0x013
126 #define GSWIP_VERSION_REV_SHIFT 0
127 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0)
128 #define GSWIP_VERSION_MOD_SHIFT 8
129 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8)
130 #define GSWIP_VERSION_2_0 0x100
131 #define GSWIP_VERSION_2_1 0x021
132 #define GSWIP_VERSION_2_2 0x122
133 #define GSWIP_VERSION_2_2_ETC 0x022
134
135 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR 0x044
137 #define GSWIP_BM_RAM_CTRL 0x045
138 #define GSWIP_BM_RAM_CTRL_BAS BIT(15)
139 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5)
140 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL 0x04A
142 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2))
145 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */
146 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2))
149 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */
150 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */
151
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK 0x448
155 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR 0x44E
157 #define GSWIP_PCE_TBL_CTRL 0x44F
158 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15)
159 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13)
160 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12)
161 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11)
162 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7)
163 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5)
164 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00
165 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20
166 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40
167 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60
168 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */
170 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0 0x456
173 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */
174 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3)
175 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1 0x457
177 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */
178 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA))
180 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */
181 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */
182 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */
183 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0
184 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1
185 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2
186 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3
187 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7
188 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA))
190 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */
191 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */
192 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */
193 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */
194 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA))
196
197 #define GSWIP_MAC_FLEN 0x8C5
198 #define GSWIP_MAC_CTRL_0p(p) (0x903 + ((p) * 0xC))
199 #define GSWIP_MAC_CTRL_0_PADEN BIT(8)
200 #define GSWIP_MAC_CTRL_0_FCS_EN BIT(7)
201 #define GSWIP_MAC_CTRL_0_FCON_MASK 0x0070
202 #define GSWIP_MAC_CTRL_0_FCON_AUTO 0x0000
203 #define GSWIP_MAC_CTRL_0_FCON_RX 0x0010
204 #define GSWIP_MAC_CTRL_0_FCON_TX 0x0020
205 #define GSWIP_MAC_CTRL_0_FCON_RXTX 0x0030
206 #define GSWIP_MAC_CTRL_0_FCON_NONE 0x0040
207 #define GSWIP_MAC_CTRL_0_FDUP_MASK 0x000C
208 #define GSWIP_MAC_CTRL_0_FDUP_AUTO 0x0000
209 #define GSWIP_MAC_CTRL_0_FDUP_EN 0x0004
210 #define GSWIP_MAC_CTRL_0_FDUP_DIS 0x000C
211 #define GSWIP_MAC_CTRL_0_GMII_MASK 0x0003
212 #define GSWIP_MAC_CTRL_0_GMII_AUTO 0x0000
213 #define GSWIP_MAC_CTRL_0_GMII_MII 0x0001
214 #define GSWIP_MAC_CTRL_0_GMII_RGMII 0x0002
215 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_LCHKL BIT(2) /* Frame Length Check Long Enable */
217 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */
218
219 /* Ethernet Switch Fetch DMA Port Control Register */
220 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6))
221 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */
222 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */
223 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */
224 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */
225 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229
230 /* Ethernet Switch Store DMA Port Control Register */
231 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6))
232 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */
233 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */
234 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(3) /* Pause Frame Forwarding */
235
236 #define GSWIP_TABLE_ACTIVE_VLAN 0x01
237 #define GSWIP_TABLE_VLAN_MAPPING 0x02
238 #define GSWIP_TABLE_MAC_BRIDGE 0x0b
239 #define GSWIP_TABLE_MAC_BRIDGE_KEY3_FID GENMASK(5, 0) /* Filtering identifier */
240 #define GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT GENMASK(7, 4) /* Port on learned entries */
241 #define GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC BIT(0) /* Static, non-aging entry */
242
243 #define XRX200_GPHY_FW_ALIGN (16 * 1024)
244
245 /* Maximum packet size supported by the switch. In theory this should be 10240,
246 * but long packets currently cause lock-ups with an MTU of over 2526. Medium
247 * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
248 * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
249 * packet reception. This is probably caused by the PPA engine, which is on the
250 * RX part of the device. Packet transmission works properly up to 10240.
251 */
252 #define GSWIP_MAX_PACKET_LENGTH 2400
253
254 struct gswip_hw_info {
255 int max_ports;
256 int cpu_port;
257 const struct dsa_switch_ops *ops;
258 };
259
260 struct xway_gphy_match_data {
261 char *fe_firmware_name;
262 char *ge_firmware_name;
263 };
264
265 struct gswip_gphy_fw {
266 struct clk *clk_gate;
267 struct reset_control *reset;
268 u32 fw_addr_offset;
269 char *fw_name;
270 };
271
272 struct gswip_vlan {
273 struct net_device *bridge;
274 u16 vid;
275 u8 fid;
276 };
277
278 struct gswip_priv {
279 __iomem void *gswip;
280 __iomem void *mdio;
281 __iomem void *mii;
282 const struct gswip_hw_info *hw_info;
283 const struct xway_gphy_match_data *gphy_fw_name_cfg;
284 struct dsa_switch *ds;
285 struct device *dev;
286 struct regmap *rcu_regmap;
287 struct gswip_vlan vlans[64];
288 int num_gphy_fw;
289 struct gswip_gphy_fw *gphy_fw;
290 u32 port_vlan_filter;
291 struct mutex pce_table_lock;
292 };
293
294 struct gswip_pce_table_entry {
295 u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index
296 u16 table; // PCE_TBL_CTRL.ADDR = pData->table
297 u16 key[8];
298 u16 val[5];
299 u16 mask;
300 u8 gmap;
301 bool type;
302 bool valid;
303 bool key_mode;
304 };
305
306 struct gswip_rmon_cnt_desc {
307 unsigned int size;
308 unsigned int offset;
309 const char *name;
310 };
311
312 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
313
314 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
315 /** Receive Packet Count (only packets that are accepted and not discarded). */
316 MIB_DESC(1, 0x1F, "RxGoodPkts"),
317 MIB_DESC(1, 0x23, "RxUnicastPkts"),
318 MIB_DESC(1, 0x22, "RxMulticastPkts"),
319 MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
320 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
321 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
322 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
323 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
324 MIB_DESC(1, 0x20, "RxGoodPausePkts"),
325 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
326 MIB_DESC(1, 0x12, "Rx64BytePkts"),
327 MIB_DESC(1, 0x13, "Rx127BytePkts"),
328 MIB_DESC(1, 0x14, "Rx255BytePkts"),
329 MIB_DESC(1, 0x15, "Rx511BytePkts"),
330 MIB_DESC(1, 0x16, "Rx1023BytePkts"),
331 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
332 MIB_DESC(1, 0x17, "RxMaxBytePkts"),
333 MIB_DESC(1, 0x18, "RxDroppedPkts"),
334 MIB_DESC(1, 0x19, "RxFilteredPkts"),
335 MIB_DESC(2, 0x24, "RxGoodBytes"),
336 MIB_DESC(2, 0x26, "RxBadBytes"),
337 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
338 MIB_DESC(1, 0x0C, "TxGoodPkts"),
339 MIB_DESC(1, 0x06, "TxUnicastPkts"),
340 MIB_DESC(1, 0x07, "TxMulticastPkts"),
341 MIB_DESC(1, 0x00, "Tx64BytePkts"),
342 MIB_DESC(1, 0x01, "Tx127BytePkts"),
343 MIB_DESC(1, 0x02, "Tx255BytePkts"),
344 MIB_DESC(1, 0x03, "Tx511BytePkts"),
345 MIB_DESC(1, 0x04, "Tx1023BytePkts"),
346 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
347 MIB_DESC(1, 0x05, "TxMaxBytePkts"),
348 MIB_DESC(1, 0x08, "TxSingleCollCount"),
349 MIB_DESC(1, 0x09, "TxMultCollCount"),
350 MIB_DESC(1, 0x0A, "TxLateCollCount"),
351 MIB_DESC(1, 0x0B, "TxExcessCollCount"),
352 MIB_DESC(1, 0x0D, "TxPauseCount"),
353 MIB_DESC(1, 0x10, "TxDroppedPkts"),
354 MIB_DESC(2, 0x0E, "TxGoodBytes"),
355 };
356
gswip_switch_r(struct gswip_priv * priv,u32 offset)357 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
358 {
359 return __raw_readl(priv->gswip + (offset * 4));
360 }
361
gswip_switch_w(struct gswip_priv * priv,u32 val,u32 offset)362 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
363 {
364 __raw_writel(val, priv->gswip + (offset * 4));
365 }
366
gswip_switch_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)367 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
368 u32 offset)
369 {
370 u32 val = gswip_switch_r(priv, offset);
371
372 val &= ~(clear);
373 val |= set;
374 gswip_switch_w(priv, val, offset);
375 }
376
gswip_switch_r_timeout(struct gswip_priv * priv,u32 offset,u32 cleared)377 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
378 u32 cleared)
379 {
380 u32 val;
381
382 return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
383 (val & cleared) == 0, 20, 50000);
384 }
385
gswip_mdio_r(struct gswip_priv * priv,u32 offset)386 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
387 {
388 return __raw_readl(priv->mdio + (offset * 4));
389 }
390
gswip_mdio_w(struct gswip_priv * priv,u32 val,u32 offset)391 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
392 {
393 __raw_writel(val, priv->mdio + (offset * 4));
394 }
395
gswip_mdio_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)396 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
397 u32 offset)
398 {
399 u32 val = gswip_mdio_r(priv, offset);
400
401 val &= ~(clear);
402 val |= set;
403 gswip_mdio_w(priv, val, offset);
404 }
405
gswip_mii_r(struct gswip_priv * priv,u32 offset)406 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
407 {
408 return __raw_readl(priv->mii + (offset * 4));
409 }
410
gswip_mii_w(struct gswip_priv * priv,u32 val,u32 offset)411 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
412 {
413 __raw_writel(val, priv->mii + (offset * 4));
414 }
415
gswip_mii_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)416 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
417 u32 offset)
418 {
419 u32 val = gswip_mii_r(priv, offset);
420
421 val &= ~(clear);
422 val |= set;
423 gswip_mii_w(priv, val, offset);
424 }
425
gswip_mii_mask_cfg(struct gswip_priv * priv,u32 clear,u32 set,int port)426 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
427 int port)
428 {
429 /* There's no MII_CFG register for the CPU port */
430 if (!dsa_is_cpu_port(priv->ds, port))
431 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
432 }
433
gswip_mii_mask_pcdu(struct gswip_priv * priv,u32 clear,u32 set,int port)434 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
435 int port)
436 {
437 switch (port) {
438 case 0:
439 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
440 break;
441 case 1:
442 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
443 break;
444 case 5:
445 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
446 break;
447 }
448 }
449
gswip_mdio_poll(struct gswip_priv * priv)450 static int gswip_mdio_poll(struct gswip_priv *priv)
451 {
452 int cnt = 100;
453
454 while (likely(cnt--)) {
455 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
456
457 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
458 return 0;
459 usleep_range(20, 40);
460 }
461
462 return -ETIMEDOUT;
463 }
464
gswip_mdio_wr(struct mii_bus * bus,int addr,int reg,u16 val)465 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
466 {
467 struct gswip_priv *priv = bus->priv;
468 int err;
469
470 err = gswip_mdio_poll(priv);
471 if (err) {
472 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
473 return err;
474 }
475
476 gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
477 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
478 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
479 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
480 GSWIP_MDIO_CTRL);
481
482 return 0;
483 }
484
gswip_mdio_rd(struct mii_bus * bus,int addr,int reg)485 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
486 {
487 struct gswip_priv *priv = bus->priv;
488 int err;
489
490 err = gswip_mdio_poll(priv);
491 if (err) {
492 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
493 return err;
494 }
495
496 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
497 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
498 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
499 GSWIP_MDIO_CTRL);
500
501 err = gswip_mdio_poll(priv);
502 if (err) {
503 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
504 return err;
505 }
506
507 return gswip_mdio_r(priv, GSWIP_MDIO_READ);
508 }
509
gswip_mdio(struct gswip_priv * priv)510 static int gswip_mdio(struct gswip_priv *priv)
511 {
512 struct device_node *mdio_np, *switch_np = priv->dev->of_node;
513 struct device *dev = priv->dev;
514 struct mii_bus *bus;
515 int err = 0;
516
517 mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
518 if (!of_device_is_available(mdio_np))
519 goto out_put_node;
520
521 bus = devm_mdiobus_alloc(dev);
522 if (!bus) {
523 err = -ENOMEM;
524 goto out_put_node;
525 }
526
527 bus->priv = priv;
528 bus->read = gswip_mdio_rd;
529 bus->write = gswip_mdio_wr;
530 bus->name = "lantiq,xrx200-mdio";
531 snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
532 bus->parent = priv->dev;
533
534 err = devm_of_mdiobus_register(dev, bus, mdio_np);
535
536 out_put_node:
537 of_node_put(mdio_np);
538
539 return err;
540 }
541
gswip_pce_table_entry_read(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)542 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
543 struct gswip_pce_table_entry *tbl)
544 {
545 int i;
546 int err;
547 u16 crtl;
548 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
549 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
550
551 mutex_lock(&priv->pce_table_lock);
552
553 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
554 GSWIP_PCE_TBL_CTRL_BAS);
555 if (err) {
556 mutex_unlock(&priv->pce_table_lock);
557 return err;
558 }
559
560 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
561 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
562 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
563 tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
564 GSWIP_PCE_TBL_CTRL);
565
566 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
567 GSWIP_PCE_TBL_CTRL_BAS);
568 if (err) {
569 mutex_unlock(&priv->pce_table_lock);
570 return err;
571 }
572
573 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
574 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
575
576 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
577 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
578
579 tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
580
581 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
582
583 tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
584 tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
585 tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
586
587 mutex_unlock(&priv->pce_table_lock);
588
589 return 0;
590 }
591
gswip_pce_table_entry_write(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)592 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
593 struct gswip_pce_table_entry *tbl)
594 {
595 int i;
596 int err;
597 u16 crtl;
598 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
599 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
600
601 mutex_lock(&priv->pce_table_lock);
602
603 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
604 GSWIP_PCE_TBL_CTRL_BAS);
605 if (err) {
606 mutex_unlock(&priv->pce_table_lock);
607 return err;
608 }
609
610 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
611 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
612 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
613 tbl->table | addr_mode,
614 GSWIP_PCE_TBL_CTRL);
615
616 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
617 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
618
619 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
620 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
621
622 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
623 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
624 tbl->table | addr_mode,
625 GSWIP_PCE_TBL_CTRL);
626
627 gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
628
629 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
630 crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
631 GSWIP_PCE_TBL_CTRL_GMAP_MASK);
632 if (tbl->type)
633 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
634 if (tbl->valid)
635 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
636 crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
637 crtl |= GSWIP_PCE_TBL_CTRL_BAS;
638 gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
639
640 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
641 GSWIP_PCE_TBL_CTRL_BAS);
642
643 mutex_unlock(&priv->pce_table_lock);
644
645 return err;
646 }
647
648 /* Add the LAN port into a bridge with the CPU port by
649 * default. This prevents automatic forwarding of
650 * packages between the LAN ports when no explicit
651 * bridge is configured.
652 */
gswip_add_single_port_br(struct gswip_priv * priv,int port,bool add)653 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
654 {
655 struct gswip_pce_table_entry vlan_active = {0,};
656 struct gswip_pce_table_entry vlan_mapping = {0,};
657 unsigned int cpu_port = priv->hw_info->cpu_port;
658 int err;
659
660 vlan_active.index = port + 1;
661 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
662 vlan_active.key[0] = 0; /* vid */
663 vlan_active.val[0] = port + 1 /* fid */;
664 vlan_active.valid = add;
665 err = gswip_pce_table_entry_write(priv, &vlan_active);
666 if (err) {
667 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
668 return err;
669 }
670
671 if (!add)
672 return 0;
673
674 vlan_mapping.index = port + 1;
675 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
676 vlan_mapping.val[0] = 0 /* vid */;
677 vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
678 vlan_mapping.val[2] = 0;
679 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
680 if (err) {
681 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
682 return err;
683 }
684
685 return 0;
686 }
687
gswip_port_enable(struct dsa_switch * ds,int port,struct phy_device * phydev)688 static int gswip_port_enable(struct dsa_switch *ds, int port,
689 struct phy_device *phydev)
690 {
691 struct gswip_priv *priv = ds->priv;
692 int err;
693
694 if (!dsa_is_cpu_port(ds, port)) {
695 u32 mdio_phy = 0;
696
697 err = gswip_add_single_port_br(priv, port, true);
698 if (err)
699 return err;
700
701 if (phydev)
702 mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
703
704 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
705 GSWIP_MDIO_PHYp(port));
706 }
707
708 /* RMON Counter Enable for port */
709 gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
710
711 /* enable port fetch/store dma & VLAN Modification */
712 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
713 GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
714 GSWIP_FDMA_PCTRLp(port));
715 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
716 GSWIP_SDMA_PCTRLp(port));
717
718 return 0;
719 }
720
gswip_port_disable(struct dsa_switch * ds,int port)721 static void gswip_port_disable(struct dsa_switch *ds, int port)
722 {
723 struct gswip_priv *priv = ds->priv;
724
725 gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
726 GSWIP_FDMA_PCTRLp(port));
727 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
728 GSWIP_SDMA_PCTRLp(port));
729 }
730
gswip_pce_load_microcode(struct gswip_priv * priv)731 static int gswip_pce_load_microcode(struct gswip_priv *priv)
732 {
733 int i;
734 int err;
735
736 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
737 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
738 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
739 gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
740
741 for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
742 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
743 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
744 GSWIP_PCE_TBL_VAL(0));
745 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
746 GSWIP_PCE_TBL_VAL(1));
747 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
748 GSWIP_PCE_TBL_VAL(2));
749 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
750 GSWIP_PCE_TBL_VAL(3));
751
752 /* start the table access: */
753 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
754 GSWIP_PCE_TBL_CTRL);
755 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
756 GSWIP_PCE_TBL_CTRL_BAS);
757 if (err)
758 return err;
759 }
760
761 /* tell the switch that the microcode is loaded */
762 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
763 GSWIP_PCE_GCTRL_0);
764
765 return 0;
766 }
767
gswip_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)768 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
769 bool vlan_filtering,
770 struct netlink_ext_ack *extack)
771 {
772 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
773 struct gswip_priv *priv = ds->priv;
774
775 /* Do not allow changing the VLAN filtering options while in bridge */
776 if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
777 NL_SET_ERR_MSG_MOD(extack,
778 "Dynamic toggling of vlan_filtering not supported");
779 return -EIO;
780 }
781
782 if (vlan_filtering) {
783 /* Use tag based VLAN */
784 gswip_switch_mask(priv,
785 GSWIP_PCE_VCTRL_VSR,
786 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
787 GSWIP_PCE_VCTRL_VEMR,
788 GSWIP_PCE_VCTRL(port));
789 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
790 GSWIP_PCE_PCTRL_0p(port));
791 } else {
792 /* Use port based VLAN */
793 gswip_switch_mask(priv,
794 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
795 GSWIP_PCE_VCTRL_VEMR,
796 GSWIP_PCE_VCTRL_VSR,
797 GSWIP_PCE_VCTRL(port));
798 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
799 GSWIP_PCE_PCTRL_0p(port));
800 }
801
802 return 0;
803 }
804
gswip_setup(struct dsa_switch * ds)805 static int gswip_setup(struct dsa_switch *ds)
806 {
807 struct gswip_priv *priv = ds->priv;
808 unsigned int cpu_port = priv->hw_info->cpu_port;
809 int i;
810 int err;
811
812 gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
813 usleep_range(5000, 10000);
814 gswip_switch_w(priv, 0, GSWIP_SWRES);
815
816 /* disable port fetch/store dma on all ports */
817 for (i = 0; i < priv->hw_info->max_ports; i++) {
818 gswip_port_disable(ds, i);
819 gswip_port_vlan_filtering(ds, i, false, NULL);
820 }
821
822 /* enable Switch */
823 gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
824
825 err = gswip_pce_load_microcode(priv);
826 if (err) {
827 dev_err(priv->dev, "writing PCE microcode failed, %i\n", err);
828 return err;
829 }
830
831 /* Default unknown Broadcast/Multicast/Unicast port maps */
832 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
833 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
834 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
835
836 /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
837 * interoperability problem with this auto polling mechanism because
838 * their status registers think that the link is in a different state
839 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
840 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
841 * auto polling state machine consider the link being negotiated with
842 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
843 * to the switch port being completely dead (RX and TX are both not
844 * working).
845 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
846 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
847 * it would work fine for a few minutes to hours and then stop, on
848 * other device it would no traffic could be sent or received at all.
849 * Testing shows that when PHY auto polling is disabled these problems
850 * go away.
851 */
852 gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
853
854 /* Configure the MDIO Clock 2.5 MHz */
855 gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
856
857 /* Disable the xMII interface and clear it's isolation bit */
858 for (i = 0; i < priv->hw_info->max_ports; i++)
859 gswip_mii_mask_cfg(priv,
860 GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
861 0, i);
862
863 /* enable special tag insertion on cpu port */
864 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
865 GSWIP_FDMA_PCTRLp(cpu_port));
866
867 /* accept special tag in ingress direction */
868 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
869 GSWIP_PCE_PCTRL_0p(cpu_port));
870
871 gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
872 GSWIP_BM_QUEUE_GCTRL);
873
874 /* VLAN aware Switching */
875 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
876
877 /* Flush MAC Table */
878 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
879
880 err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
881 GSWIP_PCE_GCTRL_0_MTFL);
882 if (err) {
883 dev_err(priv->dev, "MAC flushing didn't finish\n");
884 return err;
885 }
886
887 ds->mtu_enforcement_ingress = true;
888
889 ds->configure_vlan_while_not_filtering = false;
890
891 return 0;
892 }
893
gswip_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)894 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
895 int port,
896 enum dsa_tag_protocol mp)
897 {
898 return DSA_TAG_PROTO_GSWIP;
899 }
900
gswip_vlan_active_create(struct gswip_priv * priv,struct net_device * bridge,int fid,u16 vid)901 static int gswip_vlan_active_create(struct gswip_priv *priv,
902 struct net_device *bridge,
903 int fid, u16 vid)
904 {
905 struct gswip_pce_table_entry vlan_active = {0,};
906 unsigned int max_ports = priv->hw_info->max_ports;
907 int idx = -1;
908 int err;
909 int i;
910
911 /* Look for a free slot */
912 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
913 if (!priv->vlans[i].bridge) {
914 idx = i;
915 break;
916 }
917 }
918
919 if (idx == -1)
920 return -ENOSPC;
921
922 if (fid == -1)
923 fid = idx;
924
925 vlan_active.index = idx;
926 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
927 vlan_active.key[0] = vid;
928 vlan_active.val[0] = fid;
929 vlan_active.valid = true;
930
931 err = gswip_pce_table_entry_write(priv, &vlan_active);
932 if (err) {
933 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
934 return err;
935 }
936
937 priv->vlans[idx].bridge = bridge;
938 priv->vlans[idx].vid = vid;
939 priv->vlans[idx].fid = fid;
940
941 return idx;
942 }
943
gswip_vlan_active_remove(struct gswip_priv * priv,int idx)944 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
945 {
946 struct gswip_pce_table_entry vlan_active = {0,};
947 int err;
948
949 vlan_active.index = idx;
950 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
951 vlan_active.valid = false;
952 err = gswip_pce_table_entry_write(priv, &vlan_active);
953 if (err)
954 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
955 priv->vlans[idx].bridge = NULL;
956
957 return err;
958 }
959
gswip_vlan_add_unaware(struct gswip_priv * priv,struct net_device * bridge,int port)960 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
961 struct net_device *bridge, int port)
962 {
963 struct gswip_pce_table_entry vlan_mapping = {0,};
964 unsigned int max_ports = priv->hw_info->max_ports;
965 unsigned int cpu_port = priv->hw_info->cpu_port;
966 bool active_vlan_created = false;
967 int idx = -1;
968 int i;
969 int err;
970
971 /* Check if there is already a page for this bridge */
972 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
973 if (priv->vlans[i].bridge == bridge) {
974 idx = i;
975 break;
976 }
977 }
978
979 /* If this bridge is not programmed yet, add a Active VLAN table
980 * entry in a free slot and prepare the VLAN mapping table entry.
981 */
982 if (idx == -1) {
983 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
984 if (idx < 0)
985 return idx;
986 active_vlan_created = true;
987
988 vlan_mapping.index = idx;
989 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
990 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
991 vlan_mapping.val[0] = 0;
992 } else {
993 /* Read the existing VLAN mapping entry from the switch */
994 vlan_mapping.index = idx;
995 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
996 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
997 if (err) {
998 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
999 err);
1000 return err;
1001 }
1002 }
1003
1004 /* Update the VLAN mapping entry and write it to the switch */
1005 vlan_mapping.val[1] |= BIT(cpu_port);
1006 vlan_mapping.val[1] |= BIT(port);
1007 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1008 if (err) {
1009 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1010 /* In case an Active VLAN was creaetd delete it again */
1011 if (active_vlan_created)
1012 gswip_vlan_active_remove(priv, idx);
1013 return err;
1014 }
1015
1016 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1017 return 0;
1018 }
1019
gswip_vlan_add_aware(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool untagged,bool pvid)1020 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1021 struct net_device *bridge, int port,
1022 u16 vid, bool untagged,
1023 bool pvid)
1024 {
1025 struct gswip_pce_table_entry vlan_mapping = {0,};
1026 unsigned int max_ports = priv->hw_info->max_ports;
1027 unsigned int cpu_port = priv->hw_info->cpu_port;
1028 bool active_vlan_created = false;
1029 int idx = -1;
1030 int fid = -1;
1031 int i;
1032 int err;
1033
1034 /* Check if there is already a page for this bridge */
1035 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1036 if (priv->vlans[i].bridge == bridge) {
1037 if (fid != -1 && fid != priv->vlans[i].fid)
1038 dev_err(priv->dev, "one bridge with multiple flow ids\n");
1039 fid = priv->vlans[i].fid;
1040 if (priv->vlans[i].vid == vid) {
1041 idx = i;
1042 break;
1043 }
1044 }
1045 }
1046
1047 /* If this bridge is not programmed yet, add a Active VLAN table
1048 * entry in a free slot and prepare the VLAN mapping table entry.
1049 */
1050 if (idx == -1) {
1051 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1052 if (idx < 0)
1053 return idx;
1054 active_vlan_created = true;
1055
1056 vlan_mapping.index = idx;
1057 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1058 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1059 vlan_mapping.val[0] = vid;
1060 } else {
1061 /* Read the existing VLAN mapping entry from the switch */
1062 vlan_mapping.index = idx;
1063 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1064 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1065 if (err) {
1066 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1067 err);
1068 return err;
1069 }
1070 }
1071
1072 vlan_mapping.val[0] = vid;
1073 /* Update the VLAN mapping entry and write it to the switch */
1074 vlan_mapping.val[1] |= BIT(cpu_port);
1075 vlan_mapping.val[2] |= BIT(cpu_port);
1076 vlan_mapping.val[1] |= BIT(port);
1077 if (untagged)
1078 vlan_mapping.val[2] &= ~BIT(port);
1079 else
1080 vlan_mapping.val[2] |= BIT(port);
1081 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1082 if (err) {
1083 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1084 /* In case an Active VLAN was creaetd delete it again */
1085 if (active_vlan_created)
1086 gswip_vlan_active_remove(priv, idx);
1087 return err;
1088 }
1089
1090 if (pvid)
1091 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1092
1093 return 0;
1094 }
1095
gswip_vlan_remove(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool pvid,bool vlan_aware)1096 static int gswip_vlan_remove(struct gswip_priv *priv,
1097 struct net_device *bridge, int port,
1098 u16 vid, bool pvid, bool vlan_aware)
1099 {
1100 struct gswip_pce_table_entry vlan_mapping = {0,};
1101 unsigned int max_ports = priv->hw_info->max_ports;
1102 unsigned int cpu_port = priv->hw_info->cpu_port;
1103 int idx = -1;
1104 int i;
1105 int err;
1106
1107 /* Check if there is already a page for this bridge */
1108 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1109 if (priv->vlans[i].bridge == bridge &&
1110 (!vlan_aware || priv->vlans[i].vid == vid)) {
1111 idx = i;
1112 break;
1113 }
1114 }
1115
1116 if (idx == -1) {
1117 dev_err(priv->dev, "bridge to leave does not exists\n");
1118 return -ENOENT;
1119 }
1120
1121 vlan_mapping.index = idx;
1122 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1123 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1124 if (err) {
1125 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1126 return err;
1127 }
1128
1129 vlan_mapping.val[1] &= ~BIT(port);
1130 vlan_mapping.val[2] &= ~BIT(port);
1131 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1132 if (err) {
1133 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1134 return err;
1135 }
1136
1137 /* In case all ports are removed from the bridge, remove the VLAN */
1138 if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1139 err = gswip_vlan_active_remove(priv, idx);
1140 if (err) {
1141 dev_err(priv->dev, "failed to write active VLAN: %d\n",
1142 err);
1143 return err;
1144 }
1145 }
1146
1147 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1148 if (pvid)
1149 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1150
1151 return 0;
1152 }
1153
gswip_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)1154 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1155 struct dsa_bridge bridge,
1156 bool *tx_fwd_offload,
1157 struct netlink_ext_ack *extack)
1158 {
1159 struct net_device *br = bridge.dev;
1160 struct gswip_priv *priv = ds->priv;
1161 int err;
1162
1163 /* When the bridge uses VLAN filtering we have to configure VLAN
1164 * specific bridges. No bridge is configured here.
1165 */
1166 if (!br_vlan_enabled(br)) {
1167 err = gswip_vlan_add_unaware(priv, br, port);
1168 if (err)
1169 return err;
1170 priv->port_vlan_filter &= ~BIT(port);
1171 } else {
1172 priv->port_vlan_filter |= BIT(port);
1173 }
1174 return gswip_add_single_port_br(priv, port, false);
1175 }
1176
gswip_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)1177 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1178 struct dsa_bridge bridge)
1179 {
1180 struct net_device *br = bridge.dev;
1181 struct gswip_priv *priv = ds->priv;
1182
1183 gswip_add_single_port_br(priv, port, true);
1184
1185 /* When the bridge uses VLAN filtering we have to configure VLAN
1186 * specific bridges. No bridge is configured here.
1187 */
1188 if (!br_vlan_enabled(br))
1189 gswip_vlan_remove(priv, br, port, 0, true, false);
1190 }
1191
gswip_port_vlan_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1192 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1193 const struct switchdev_obj_port_vlan *vlan,
1194 struct netlink_ext_ack *extack)
1195 {
1196 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1197 struct gswip_priv *priv = ds->priv;
1198 unsigned int max_ports = priv->hw_info->max_ports;
1199 int pos = max_ports;
1200 int i, idx = -1;
1201
1202 /* We only support VLAN filtering on bridges */
1203 if (!dsa_is_cpu_port(ds, port) && !bridge)
1204 return -EOPNOTSUPP;
1205
1206 /* Check if there is already a page for this VLAN */
1207 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1208 if (priv->vlans[i].bridge == bridge &&
1209 priv->vlans[i].vid == vlan->vid) {
1210 idx = i;
1211 break;
1212 }
1213 }
1214
1215 /* If this VLAN is not programmed yet, we have to reserve
1216 * one entry in the VLAN table. Make sure we start at the
1217 * next position round.
1218 */
1219 if (idx == -1) {
1220 /* Look for a free slot */
1221 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1222 if (!priv->vlans[pos].bridge) {
1223 idx = pos;
1224 pos++;
1225 break;
1226 }
1227 }
1228
1229 if (idx == -1) {
1230 NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1231 return -ENOSPC;
1232 }
1233 }
1234
1235 return 0;
1236 }
1237
gswip_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1238 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1239 const struct switchdev_obj_port_vlan *vlan,
1240 struct netlink_ext_ack *extack)
1241 {
1242 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1243 struct gswip_priv *priv = ds->priv;
1244 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1245 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1246 int err;
1247
1248 err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1249 if (err)
1250 return err;
1251
1252 /* We have to receive all packets on the CPU port and should not
1253 * do any VLAN filtering here. This is also called with bridge
1254 * NULL and then we do not know for which bridge to configure
1255 * this.
1256 */
1257 if (dsa_is_cpu_port(ds, port))
1258 return 0;
1259
1260 return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1261 untagged, pvid);
1262 }
1263
gswip_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1264 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1265 const struct switchdev_obj_port_vlan *vlan)
1266 {
1267 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1268 struct gswip_priv *priv = ds->priv;
1269 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1270
1271 /* We have to receive all packets on the CPU port and should not
1272 * do any VLAN filtering here. This is also called with bridge
1273 * NULL and then we do not know for which bridge to configure
1274 * this.
1275 */
1276 if (dsa_is_cpu_port(ds, port))
1277 return 0;
1278
1279 return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1280 }
1281
gswip_port_fast_age(struct dsa_switch * ds,int port)1282 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1283 {
1284 struct gswip_priv *priv = ds->priv;
1285 struct gswip_pce_table_entry mac_bridge = {0,};
1286 int i;
1287 int err;
1288
1289 for (i = 0; i < 2048; i++) {
1290 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1291 mac_bridge.index = i;
1292
1293 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1294 if (err) {
1295 dev_err(priv->dev, "failed to read mac bridge: %d\n",
1296 err);
1297 return;
1298 }
1299
1300 if (!mac_bridge.valid)
1301 continue;
1302
1303 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC)
1304 continue;
1305
1306 if (port != FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1307 mac_bridge.val[0]))
1308 continue;
1309
1310 mac_bridge.valid = false;
1311 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1312 if (err) {
1313 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1314 err);
1315 return;
1316 }
1317 }
1318 }
1319
gswip_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)1320 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1321 {
1322 struct gswip_priv *priv = ds->priv;
1323 u32 stp_state;
1324
1325 switch (state) {
1326 case BR_STATE_DISABLED:
1327 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1328 GSWIP_SDMA_PCTRLp(port));
1329 return;
1330 case BR_STATE_BLOCKING:
1331 case BR_STATE_LISTENING:
1332 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1333 break;
1334 case BR_STATE_LEARNING:
1335 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1336 break;
1337 case BR_STATE_FORWARDING:
1338 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1339 break;
1340 default:
1341 dev_err(priv->dev, "invalid STP state: %d\n", state);
1342 return;
1343 }
1344
1345 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1346 GSWIP_SDMA_PCTRLp(port));
1347 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1348 GSWIP_PCE_PCTRL_0p(port));
1349 }
1350
gswip_port_fdb(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,bool add)1351 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1352 const unsigned char *addr, u16 vid, bool add)
1353 {
1354 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1355 struct gswip_priv *priv = ds->priv;
1356 struct gswip_pce_table_entry mac_bridge = {0,};
1357 unsigned int max_ports = priv->hw_info->max_ports;
1358 int fid = -1;
1359 int i;
1360 int err;
1361
1362 if (!bridge)
1363 return -EINVAL;
1364
1365 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1366 if (priv->vlans[i].bridge == bridge) {
1367 fid = priv->vlans[i].fid;
1368 break;
1369 }
1370 }
1371
1372 if (fid == -1) {
1373 dev_err(priv->dev, "no FID found for bridge %s\n",
1374 bridge->name);
1375 return -EINVAL;
1376 }
1377
1378 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1379 mac_bridge.key_mode = true;
1380 mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1381 mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1382 mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1383 mac_bridge.key[3] = FIELD_PREP(GSWIP_TABLE_MAC_BRIDGE_KEY3_FID, fid);
1384 mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1385 mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC;
1386 mac_bridge.valid = add;
1387
1388 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1389 if (err)
1390 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1391
1392 return err;
1393 }
1394
gswip_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1395 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1396 const unsigned char *addr, u16 vid,
1397 struct dsa_db db)
1398 {
1399 return gswip_port_fdb(ds, port, addr, vid, true);
1400 }
1401
gswip_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1402 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1403 const unsigned char *addr, u16 vid,
1404 struct dsa_db db)
1405 {
1406 return gswip_port_fdb(ds, port, addr, vid, false);
1407 }
1408
gswip_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1409 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1410 dsa_fdb_dump_cb_t *cb, void *data)
1411 {
1412 struct gswip_priv *priv = ds->priv;
1413 struct gswip_pce_table_entry mac_bridge = {0,};
1414 unsigned char addr[ETH_ALEN];
1415 int i;
1416 int err;
1417
1418 for (i = 0; i < 2048; i++) {
1419 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1420 mac_bridge.index = i;
1421
1422 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1423 if (err) {
1424 dev_err(priv->dev,
1425 "failed to read mac bridge entry %d: %d\n",
1426 i, err);
1427 return err;
1428 }
1429
1430 if (!mac_bridge.valid)
1431 continue;
1432
1433 addr[5] = mac_bridge.key[0] & 0xff;
1434 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1435 addr[3] = mac_bridge.key[1] & 0xff;
1436 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1437 addr[1] = mac_bridge.key[2] & 0xff;
1438 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1439 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC) {
1440 if (mac_bridge.val[0] & BIT(port)) {
1441 err = cb(addr, 0, true, data);
1442 if (err)
1443 return err;
1444 }
1445 } else {
1446 if (port == FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1447 mac_bridge.val[0])) {
1448 err = cb(addr, 0, false, data);
1449 if (err)
1450 return err;
1451 }
1452 }
1453 }
1454 return 0;
1455 }
1456
gswip_port_max_mtu(struct dsa_switch * ds,int port)1457 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1458 {
1459 /* Includes 8 bytes for special header. */
1460 return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1461 }
1462
gswip_port_change_mtu(struct dsa_switch * ds,int port,int new_mtu)1463 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1464 {
1465 struct gswip_priv *priv = ds->priv;
1466
1467 /* CPU port always has maximum mtu of user ports, so use it to set
1468 * switch frame size, including 8 byte special header.
1469 */
1470 if (dsa_is_cpu_port(ds, port)) {
1471 new_mtu += 8;
1472 gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1473 GSWIP_MAC_FLEN);
1474 }
1475
1476 /* Enable MLEN for ports with non-standard MTUs, including the special
1477 * header on the CPU port added above.
1478 */
1479 if (new_mtu != ETH_DATA_LEN)
1480 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1481 GSWIP_MAC_CTRL_2p(port));
1482 else
1483 gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1484 GSWIP_MAC_CTRL_2p(port));
1485
1486 return 0;
1487 }
1488
gswip_xrx200_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)1489 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1490 struct phylink_config *config)
1491 {
1492 switch (port) {
1493 case 0:
1494 case 1:
1495 phy_interface_set_rgmii(config->supported_interfaces);
1496 __set_bit(PHY_INTERFACE_MODE_MII,
1497 config->supported_interfaces);
1498 __set_bit(PHY_INTERFACE_MODE_REVMII,
1499 config->supported_interfaces);
1500 __set_bit(PHY_INTERFACE_MODE_RMII,
1501 config->supported_interfaces);
1502 break;
1503
1504 case 2:
1505 case 3:
1506 case 4:
1507 case 6:
1508 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1509 config->supported_interfaces);
1510 break;
1511
1512 case 5:
1513 phy_interface_set_rgmii(config->supported_interfaces);
1514 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1515 config->supported_interfaces);
1516 break;
1517 }
1518
1519 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1520 MAC_10 | MAC_100 | MAC_1000;
1521 }
1522
gswip_xrx300_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)1523 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1524 struct phylink_config *config)
1525 {
1526 switch (port) {
1527 case 0:
1528 phy_interface_set_rgmii(config->supported_interfaces);
1529 __set_bit(PHY_INTERFACE_MODE_GMII,
1530 config->supported_interfaces);
1531 __set_bit(PHY_INTERFACE_MODE_RMII,
1532 config->supported_interfaces);
1533 break;
1534
1535 case 1:
1536 case 2:
1537 case 3:
1538 case 4:
1539 case 6:
1540 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1541 config->supported_interfaces);
1542 break;
1543
1544 case 5:
1545 phy_interface_set_rgmii(config->supported_interfaces);
1546 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1547 config->supported_interfaces);
1548 __set_bit(PHY_INTERFACE_MODE_RMII,
1549 config->supported_interfaces);
1550 break;
1551 }
1552
1553 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1554 MAC_10 | MAC_100 | MAC_1000;
1555 }
1556
gswip_port_set_link(struct gswip_priv * priv,int port,bool link)1557 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1558 {
1559 u32 mdio_phy;
1560
1561 if (link)
1562 mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1563 else
1564 mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1565
1566 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1567 GSWIP_MDIO_PHYp(port));
1568 }
1569
gswip_port_set_speed(struct gswip_priv * priv,int port,int speed,phy_interface_t interface)1570 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1571 phy_interface_t interface)
1572 {
1573 u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1574
1575 switch (speed) {
1576 case SPEED_10:
1577 mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1578
1579 if (interface == PHY_INTERFACE_MODE_RMII)
1580 mii_cfg = GSWIP_MII_CFG_RATE_M50;
1581 else
1582 mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1583
1584 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1585 break;
1586
1587 case SPEED_100:
1588 mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1589
1590 if (interface == PHY_INTERFACE_MODE_RMII)
1591 mii_cfg = GSWIP_MII_CFG_RATE_M50;
1592 else
1593 mii_cfg = GSWIP_MII_CFG_RATE_M25;
1594
1595 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1596 break;
1597
1598 case SPEED_1000:
1599 mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1600
1601 mii_cfg = GSWIP_MII_CFG_RATE_M125;
1602
1603 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1604 break;
1605 }
1606
1607 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1608 GSWIP_MDIO_PHYp(port));
1609 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1610 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1611 GSWIP_MAC_CTRL_0p(port));
1612 }
1613
gswip_port_set_duplex(struct gswip_priv * priv,int port,int duplex)1614 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1615 {
1616 u32 mac_ctrl_0, mdio_phy;
1617
1618 if (duplex == DUPLEX_FULL) {
1619 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1620 mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1621 } else {
1622 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1623 mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1624 }
1625
1626 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1627 GSWIP_MAC_CTRL_0p(port));
1628 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1629 GSWIP_MDIO_PHYp(port));
1630 }
1631
gswip_port_set_pause(struct gswip_priv * priv,int port,bool tx_pause,bool rx_pause)1632 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1633 bool tx_pause, bool rx_pause)
1634 {
1635 u32 mac_ctrl_0, mdio_phy;
1636
1637 if (tx_pause && rx_pause) {
1638 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1639 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1640 GSWIP_MDIO_PHY_FCONRX_EN;
1641 } else if (tx_pause) {
1642 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1643 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1644 GSWIP_MDIO_PHY_FCONRX_DIS;
1645 } else if (rx_pause) {
1646 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1647 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1648 GSWIP_MDIO_PHY_FCONRX_EN;
1649 } else {
1650 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1651 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1652 GSWIP_MDIO_PHY_FCONRX_DIS;
1653 }
1654
1655 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1656 mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1657 gswip_mdio_mask(priv,
1658 GSWIP_MDIO_PHY_FCONTX_MASK |
1659 GSWIP_MDIO_PHY_FCONRX_MASK,
1660 mdio_phy, GSWIP_MDIO_PHYp(port));
1661 }
1662
gswip_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)1663 static void gswip_phylink_mac_config(struct phylink_config *config,
1664 unsigned int mode,
1665 const struct phylink_link_state *state)
1666 {
1667 struct dsa_port *dp = dsa_phylink_to_port(config);
1668 struct gswip_priv *priv = dp->ds->priv;
1669 int port = dp->index;
1670 u32 miicfg = 0;
1671
1672 miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1673
1674 switch (state->interface) {
1675 case PHY_INTERFACE_MODE_MII:
1676 case PHY_INTERFACE_MODE_INTERNAL:
1677 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1678 break;
1679 case PHY_INTERFACE_MODE_REVMII:
1680 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1681 break;
1682 case PHY_INTERFACE_MODE_RMII:
1683 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1684 break;
1685 case PHY_INTERFACE_MODE_RGMII:
1686 case PHY_INTERFACE_MODE_RGMII_ID:
1687 case PHY_INTERFACE_MODE_RGMII_RXID:
1688 case PHY_INTERFACE_MODE_RGMII_TXID:
1689 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1690 break;
1691 case PHY_INTERFACE_MODE_GMII:
1692 miicfg |= GSWIP_MII_CFG_MODE_GMII;
1693 break;
1694 default:
1695 dev_err(dp->ds->dev,
1696 "Unsupported interface: %d\n", state->interface);
1697 return;
1698 }
1699
1700 gswip_mii_mask_cfg(priv,
1701 GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1702 GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1703 miicfg, port);
1704
1705 switch (state->interface) {
1706 case PHY_INTERFACE_MODE_RGMII_ID:
1707 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1708 GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1709 break;
1710 case PHY_INTERFACE_MODE_RGMII_RXID:
1711 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1712 break;
1713 case PHY_INTERFACE_MODE_RGMII_TXID:
1714 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1715 break;
1716 default:
1717 break;
1718 }
1719 }
1720
gswip_phylink_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)1721 static void gswip_phylink_mac_link_down(struct phylink_config *config,
1722 unsigned int mode,
1723 phy_interface_t interface)
1724 {
1725 struct dsa_port *dp = dsa_phylink_to_port(config);
1726 struct gswip_priv *priv = dp->ds->priv;
1727 int port = dp->index;
1728
1729 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1730
1731 if (!dsa_port_is_cpu(dp))
1732 gswip_port_set_link(priv, port, false);
1733 }
1734
gswip_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1735 static void gswip_phylink_mac_link_up(struct phylink_config *config,
1736 struct phy_device *phydev,
1737 unsigned int mode,
1738 phy_interface_t interface,
1739 int speed, int duplex,
1740 bool tx_pause, bool rx_pause)
1741 {
1742 struct dsa_port *dp = dsa_phylink_to_port(config);
1743 struct gswip_priv *priv = dp->ds->priv;
1744 int port = dp->index;
1745
1746 if (!dsa_port_is_cpu(dp)) {
1747 gswip_port_set_link(priv, port, true);
1748 gswip_port_set_speed(priv, port, speed, interface);
1749 gswip_port_set_duplex(priv, port, duplex);
1750 gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1751 }
1752
1753 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1754 }
1755
gswip_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1756 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1757 uint8_t *data)
1758 {
1759 int i;
1760
1761 if (stringset != ETH_SS_STATS)
1762 return;
1763
1764 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1765 ethtool_puts(&data, gswip_rmon_cnt[i].name);
1766 }
1767
gswip_bcm_ram_entry_read(struct gswip_priv * priv,u32 table,u32 index)1768 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1769 u32 index)
1770 {
1771 u32 result;
1772 int err;
1773
1774 gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1775 gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1776 GSWIP_BM_RAM_CTRL_OPMOD,
1777 table | GSWIP_BM_RAM_CTRL_BAS,
1778 GSWIP_BM_RAM_CTRL);
1779
1780 err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1781 GSWIP_BM_RAM_CTRL_BAS);
1782 if (err) {
1783 dev_err(priv->dev, "timeout while reading table: %u, index: %u\n",
1784 table, index);
1785 return 0;
1786 }
1787
1788 result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1789 result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1790
1791 return result;
1792 }
1793
gswip_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1794 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1795 uint64_t *data)
1796 {
1797 struct gswip_priv *priv = ds->priv;
1798 const struct gswip_rmon_cnt_desc *rmon_cnt;
1799 int i;
1800 u64 high;
1801
1802 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1803 rmon_cnt = &gswip_rmon_cnt[i];
1804
1805 data[i] = gswip_bcm_ram_entry_read(priv, port,
1806 rmon_cnt->offset);
1807 if (rmon_cnt->size == 2) {
1808 high = gswip_bcm_ram_entry_read(priv, port,
1809 rmon_cnt->offset + 1);
1810 data[i] |= high << 32;
1811 }
1812 }
1813 }
1814
gswip_get_sset_count(struct dsa_switch * ds,int port,int sset)1815 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1816 {
1817 if (sset != ETH_SS_STATS)
1818 return 0;
1819
1820 return ARRAY_SIZE(gswip_rmon_cnt);
1821 }
1822
1823 static const struct phylink_mac_ops gswip_phylink_mac_ops = {
1824 .mac_config = gswip_phylink_mac_config,
1825 .mac_link_down = gswip_phylink_mac_link_down,
1826 .mac_link_up = gswip_phylink_mac_link_up,
1827 };
1828
1829 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1830 .get_tag_protocol = gswip_get_tag_protocol,
1831 .setup = gswip_setup,
1832 .port_enable = gswip_port_enable,
1833 .port_disable = gswip_port_disable,
1834 .port_bridge_join = gswip_port_bridge_join,
1835 .port_bridge_leave = gswip_port_bridge_leave,
1836 .port_fast_age = gswip_port_fast_age,
1837 .port_vlan_filtering = gswip_port_vlan_filtering,
1838 .port_vlan_add = gswip_port_vlan_add,
1839 .port_vlan_del = gswip_port_vlan_del,
1840 .port_stp_state_set = gswip_port_stp_state_set,
1841 .port_fdb_add = gswip_port_fdb_add,
1842 .port_fdb_del = gswip_port_fdb_del,
1843 .port_fdb_dump = gswip_port_fdb_dump,
1844 .port_change_mtu = gswip_port_change_mtu,
1845 .port_max_mtu = gswip_port_max_mtu,
1846 .phylink_get_caps = gswip_xrx200_phylink_get_caps,
1847 .get_strings = gswip_get_strings,
1848 .get_ethtool_stats = gswip_get_ethtool_stats,
1849 .get_sset_count = gswip_get_sset_count,
1850 };
1851
1852 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1853 .get_tag_protocol = gswip_get_tag_protocol,
1854 .setup = gswip_setup,
1855 .port_enable = gswip_port_enable,
1856 .port_disable = gswip_port_disable,
1857 .port_bridge_join = gswip_port_bridge_join,
1858 .port_bridge_leave = gswip_port_bridge_leave,
1859 .port_fast_age = gswip_port_fast_age,
1860 .port_vlan_filtering = gswip_port_vlan_filtering,
1861 .port_vlan_add = gswip_port_vlan_add,
1862 .port_vlan_del = gswip_port_vlan_del,
1863 .port_stp_state_set = gswip_port_stp_state_set,
1864 .port_fdb_add = gswip_port_fdb_add,
1865 .port_fdb_del = gswip_port_fdb_del,
1866 .port_fdb_dump = gswip_port_fdb_dump,
1867 .port_change_mtu = gswip_port_change_mtu,
1868 .port_max_mtu = gswip_port_max_mtu,
1869 .phylink_get_caps = gswip_xrx300_phylink_get_caps,
1870 .get_strings = gswip_get_strings,
1871 .get_ethtool_stats = gswip_get_ethtool_stats,
1872 .get_sset_count = gswip_get_sset_count,
1873 };
1874
1875 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1876 .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1877 .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1878 };
1879
1880 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1881 .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1882 .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1883 };
1884
1885 static const struct xway_gphy_match_data xrx300_gphy_data = {
1886 .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1887 .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1888 };
1889
1890 static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1891 { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1892 { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1893 { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1894 { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1895 { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1896 {},
1897 };
1898
gswip_gphy_fw_load(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1899 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1900 {
1901 struct device *dev = priv->dev;
1902 const struct firmware *fw;
1903 void *fw_addr;
1904 dma_addr_t dma_addr;
1905 dma_addr_t dev_addr;
1906 size_t size;
1907 int ret;
1908
1909 ret = clk_prepare_enable(gphy_fw->clk_gate);
1910 if (ret)
1911 return ret;
1912
1913 reset_control_assert(gphy_fw->reset);
1914
1915 /* The vendor BSP uses a 200ms delay after asserting the reset line.
1916 * Without this some users are observing that the PHY is not coming up
1917 * on the MDIO bus.
1918 */
1919 msleep(200);
1920
1921 ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1922 if (ret)
1923 return dev_err_probe(dev, ret, "failed to load firmware: %s\n",
1924 gphy_fw->fw_name);
1925
1926 /* GPHY cores need the firmware code in a persistent and contiguous
1927 * memory area with a 16 kB boundary aligned start address.
1928 */
1929 size = fw->size + XRX200_GPHY_FW_ALIGN;
1930
1931 fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1932 if (fw_addr) {
1933 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1934 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1935 memcpy(fw_addr, fw->data, fw->size);
1936 } else {
1937 release_firmware(fw);
1938 return dev_err_probe(dev, -ENOMEM,
1939 "failed to alloc firmware memory\n");
1940 }
1941
1942 release_firmware(fw);
1943
1944 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1945 if (ret)
1946 return ret;
1947
1948 reset_control_deassert(gphy_fw->reset);
1949
1950 return ret;
1951 }
1952
gswip_gphy_fw_probe(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw,struct device_node * gphy_fw_np,int i)1953 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1954 struct gswip_gphy_fw *gphy_fw,
1955 struct device_node *gphy_fw_np, int i)
1956 {
1957 struct device *dev = priv->dev;
1958 u32 gphy_mode;
1959 int ret;
1960 char gphyname[10];
1961
1962 snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1963
1964 gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1965 if (IS_ERR(gphy_fw->clk_gate)) {
1966 return dev_err_probe(dev, PTR_ERR(gphy_fw->clk_gate),
1967 "Failed to lookup gate clock\n");
1968 }
1969
1970 ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1971 if (ret)
1972 return ret;
1973
1974 ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1975 /* Default to GE mode */
1976 if (ret)
1977 gphy_mode = GPHY_MODE_GE;
1978
1979 switch (gphy_mode) {
1980 case GPHY_MODE_FE:
1981 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1982 break;
1983 case GPHY_MODE_GE:
1984 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1985 break;
1986 default:
1987 return dev_err_probe(dev, -EINVAL, "Unknown GPHY mode %d\n",
1988 gphy_mode);
1989 }
1990
1991 gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1992 if (IS_ERR(gphy_fw->reset))
1993 return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
1994 "Failed to lookup gphy reset\n");
1995
1996 return gswip_gphy_fw_load(priv, gphy_fw);
1997 }
1998
gswip_gphy_fw_remove(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1999 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2000 struct gswip_gphy_fw *gphy_fw)
2001 {
2002 int ret;
2003
2004 /* check if the device was fully probed */
2005 if (!gphy_fw->fw_name)
2006 return;
2007
2008 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2009 if (ret)
2010 dev_err(priv->dev, "can not reset GPHY FW pointer\n");
2011
2012 clk_disable_unprepare(gphy_fw->clk_gate);
2013
2014 reset_control_put(gphy_fw->reset);
2015 }
2016
gswip_gphy_fw_list(struct gswip_priv * priv,struct device_node * gphy_fw_list_np,u32 version)2017 static int gswip_gphy_fw_list(struct gswip_priv *priv,
2018 struct device_node *gphy_fw_list_np, u32 version)
2019 {
2020 struct device *dev = priv->dev;
2021 struct device_node *gphy_fw_np;
2022 const struct of_device_id *match;
2023 int err;
2024 int i = 0;
2025
2026 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2027 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2028 * needs a different GPHY firmware.
2029 */
2030 if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2031 switch (version) {
2032 case GSWIP_VERSION_2_0:
2033 priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2034 break;
2035 case GSWIP_VERSION_2_1:
2036 priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2037 break;
2038 default:
2039 return dev_err_probe(dev, -ENOENT,
2040 "unknown GSWIP version: 0x%x\n",
2041 version);
2042 }
2043 }
2044
2045 match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2046 if (match && match->data)
2047 priv->gphy_fw_name_cfg = match->data;
2048
2049 if (!priv->gphy_fw_name_cfg)
2050 return dev_err_probe(dev, -ENOENT,
2051 "GPHY compatible type not supported\n");
2052
2053 priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2054 if (!priv->num_gphy_fw)
2055 return -ENOENT;
2056
2057 priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2058 "lantiq,rcu");
2059 if (IS_ERR(priv->rcu_regmap))
2060 return PTR_ERR(priv->rcu_regmap);
2061
2062 priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2063 sizeof(*priv->gphy_fw),
2064 GFP_KERNEL | __GFP_ZERO);
2065 if (!priv->gphy_fw)
2066 return -ENOMEM;
2067
2068 for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2069 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2070 gphy_fw_np, i);
2071 if (err) {
2072 of_node_put(gphy_fw_np);
2073 goto remove_gphy;
2074 }
2075 i++;
2076 }
2077
2078 /* The standalone PHY11G requires 300ms to be fully
2079 * initialized and ready for any MDIO communication after being
2080 * taken out of reset. For the SoC-internal GPHY variant there
2081 * is no (known) documentation for the minimum time after a
2082 * reset. Use the same value as for the standalone variant as
2083 * some users have reported internal PHYs not being detected
2084 * without any delay.
2085 */
2086 msleep(300);
2087
2088 return 0;
2089
2090 remove_gphy:
2091 for (i = 0; i < priv->num_gphy_fw; i++)
2092 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2093 return err;
2094 }
2095
gswip_probe(struct platform_device * pdev)2096 static int gswip_probe(struct platform_device *pdev)
2097 {
2098 struct device_node *np, *gphy_fw_np;
2099 struct device *dev = &pdev->dev;
2100 struct gswip_priv *priv;
2101 int err;
2102 int i;
2103 u32 version;
2104
2105 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2106 if (!priv)
2107 return -ENOMEM;
2108
2109 priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2110 if (IS_ERR(priv->gswip))
2111 return PTR_ERR(priv->gswip);
2112
2113 priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2114 if (IS_ERR(priv->mdio))
2115 return PTR_ERR(priv->mdio);
2116
2117 priv->mii = devm_platform_ioremap_resource(pdev, 2);
2118 if (IS_ERR(priv->mii))
2119 return PTR_ERR(priv->mii);
2120
2121 priv->hw_info = of_device_get_match_data(dev);
2122 if (!priv->hw_info)
2123 return -EINVAL;
2124
2125 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2126 if (!priv->ds)
2127 return -ENOMEM;
2128
2129 priv->ds->dev = dev;
2130 priv->ds->num_ports = priv->hw_info->max_ports;
2131 priv->ds->priv = priv;
2132 priv->ds->ops = priv->hw_info->ops;
2133 priv->ds->phylink_mac_ops = &gswip_phylink_mac_ops;
2134 priv->dev = dev;
2135 mutex_init(&priv->pce_table_lock);
2136 version = gswip_switch_r(priv, GSWIP_VERSION);
2137
2138 np = dev->of_node;
2139 switch (version) {
2140 case GSWIP_VERSION_2_0:
2141 case GSWIP_VERSION_2_1:
2142 if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2143 return -EINVAL;
2144 break;
2145 case GSWIP_VERSION_2_2:
2146 case GSWIP_VERSION_2_2_ETC:
2147 if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2148 !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2149 return -EINVAL;
2150 break;
2151 default:
2152 return dev_err_probe(dev, -ENOENT,
2153 "unknown GSWIP version: 0x%x\n", version);
2154 }
2155
2156 /* bring up the mdio bus */
2157 gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2158 if (gphy_fw_np) {
2159 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2160 of_node_put(gphy_fw_np);
2161 if (err)
2162 return dev_err_probe(dev, err,
2163 "gphy fw probe failed\n");
2164 }
2165
2166 /* bring up the mdio bus */
2167 err = gswip_mdio(priv);
2168 if (err) {
2169 dev_err_probe(dev, err, "mdio probe failed\n");
2170 goto gphy_fw_remove;
2171 }
2172
2173 err = dsa_register_switch(priv->ds);
2174 if (err) {
2175 dev_err_probe(dev, err, "dsa switch registration failed\n");
2176 goto gphy_fw_remove;
2177 }
2178 if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2179 err = dev_err_probe(dev, -EINVAL,
2180 "wrong CPU port defined, HW only supports port: %i\n",
2181 priv->hw_info->cpu_port);
2182 goto disable_switch;
2183 }
2184
2185 platform_set_drvdata(pdev, priv);
2186
2187 dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2188 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2189 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2190 return 0;
2191
2192 disable_switch:
2193 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2194 dsa_unregister_switch(priv->ds);
2195 gphy_fw_remove:
2196 for (i = 0; i < priv->num_gphy_fw; i++)
2197 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2198 return err;
2199 }
2200
gswip_remove(struct platform_device * pdev)2201 static void gswip_remove(struct platform_device *pdev)
2202 {
2203 struct gswip_priv *priv = platform_get_drvdata(pdev);
2204 int i;
2205
2206 if (!priv)
2207 return;
2208
2209 /* disable the switch */
2210 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2211
2212 dsa_unregister_switch(priv->ds);
2213
2214 for (i = 0; i < priv->num_gphy_fw; i++)
2215 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2216 }
2217
gswip_shutdown(struct platform_device * pdev)2218 static void gswip_shutdown(struct platform_device *pdev)
2219 {
2220 struct gswip_priv *priv = platform_get_drvdata(pdev);
2221
2222 if (!priv)
2223 return;
2224
2225 dsa_switch_shutdown(priv->ds);
2226
2227 platform_set_drvdata(pdev, NULL);
2228 }
2229
2230 static const struct gswip_hw_info gswip_xrx200 = {
2231 .max_ports = 7,
2232 .cpu_port = 6,
2233 .ops = &gswip_xrx200_switch_ops,
2234 };
2235
2236 static const struct gswip_hw_info gswip_xrx300 = {
2237 .max_ports = 7,
2238 .cpu_port = 6,
2239 .ops = &gswip_xrx300_switch_ops,
2240 };
2241
2242 static const struct of_device_id gswip_of_match[] = {
2243 { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2244 { .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2245 { .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2246 {},
2247 };
2248 MODULE_DEVICE_TABLE(of, gswip_of_match);
2249
2250 static struct platform_driver gswip_driver = {
2251 .probe = gswip_probe,
2252 .remove_new = gswip_remove,
2253 .shutdown = gswip_shutdown,
2254 .driver = {
2255 .name = "gswip",
2256 .of_match_table = gswip_of_match,
2257 },
2258 };
2259
2260 module_platform_driver(gswip_driver);
2261
2262 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2263 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2264 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2265 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2266 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2267 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2268 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2269 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2270 MODULE_LICENSE("GPL v2");
2271