xref: /linux/drivers/net/dsa/lantiq_gswip.c (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET		BIT(15)
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
107 #define  GSWIP_MII_CFG_MODE_GMII	0x9
108 #define  GSWIP_MII_CFG_MODE_MASK	0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
110 #define  GSWIP_MII_CFG_RATE_M25	0x10
111 #define  GSWIP_MII_CFG_RATE_M125	0x20
112 #define  GSWIP_MII_CFG_RATE_M50	0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
114 #define  GSWIP_MII_CFG_RATE_MASK	0x70
115 #define GSWIP_MII_PCDU0			0x01
116 #define GSWIP_MII_PCDU1			0x03
117 #define GSWIP_MII_PCDU5			0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
120 
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES			0x000
123 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
125 #define GSWIP_VERSION			0x013
126 #define  GSWIP_VERSION_REV_SHIFT	0
127 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT	8
129 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0		0x100
131 #define   GSWIP_VERSION_2_1		0x021
132 #define   GSWIP_VERSION_2_2		0x122
133 #define   GSWIP_VERSION_2_2_ETC		0x022
134 
135 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR		0x044
137 #define GSWIP_BM_RAM_CTRL		0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL		0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
151 
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK		0x448
155 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR		0x44E
157 #define GSWIP_PCE_TBL_CTRL		0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
170 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0		0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1		0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
196 
197 #define GSWIP_MAC_FLEN			0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
215 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_LCHKL		BIT(2) /* Frame Length Check Long Enable */
217 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
218 
219 /* Ethernet Switch Fetch DMA Port Control Register */
220 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
221 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
222 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229 
230 /* Ethernet Switch Store DMA Port Control Register */
231 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
232 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
233 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
234 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
235 
236 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
237 #define GSWIP_TABLE_VLAN_MAPPING	0x02
238 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
239 #define  GSWIP_TABLE_MAC_BRIDGE_KEY3_FID	GENMASK(5, 0)	/* Filtering identifier */
240 #define  GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT	GENMASK(7, 4)	/* Port on learned entries */
241 #define  GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC	BIT(0)		/* Static, non-aging entry */
242 
243 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
244 
245 /* Maximum packet size supported by the switch. In theory this should be 10240,
246  * but long packets currently cause lock-ups with an MTU of over 2526. Medium
247  * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
248  * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
249  * packet reception. This is probably caused by the PPA engine, which is on the
250  * RX part of the device. Packet transmission works properly up to 10240.
251  */
252 #define GSWIP_MAX_PACKET_LENGTH	2400
253 
254 struct gswip_hw_info {
255 	int max_ports;
256 	int cpu_port;
257 	const struct dsa_switch_ops *ops;
258 };
259 
260 struct xway_gphy_match_data {
261 	char *fe_firmware_name;
262 	char *ge_firmware_name;
263 };
264 
265 struct gswip_gphy_fw {
266 	struct clk *clk_gate;
267 	struct reset_control *reset;
268 	u32 fw_addr_offset;
269 	char *fw_name;
270 };
271 
272 struct gswip_vlan {
273 	struct net_device *bridge;
274 	u16 vid;
275 	u8 fid;
276 };
277 
278 struct gswip_priv {
279 	__iomem void *gswip;
280 	__iomem void *mdio;
281 	__iomem void *mii;
282 	const struct gswip_hw_info *hw_info;
283 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
284 	struct dsa_switch *ds;
285 	struct device *dev;
286 	struct regmap *rcu_regmap;
287 	struct gswip_vlan vlans[64];
288 	int num_gphy_fw;
289 	struct gswip_gphy_fw *gphy_fw;
290 	u32 port_vlan_filter;
291 	struct mutex pce_table_lock;
292 };
293 
294 struct gswip_pce_table_entry {
295 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
296 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
297 	u16 key[8];
298 	u16 val[5];
299 	u16 mask;
300 	u8 gmap;
301 	bool type;
302 	bool valid;
303 	bool key_mode;
304 };
305 
306 struct gswip_rmon_cnt_desc {
307 	unsigned int size;
308 	unsigned int offset;
309 	const char *name;
310 };
311 
312 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
313 
314 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
315 	/** Receive Packet Count (only packets that are accepted and not discarded). */
316 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
317 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
318 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
319 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
320 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
321 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
322 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
323 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
324 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
325 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
326 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
327 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
328 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
329 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
330 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
331 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
332 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
333 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
334 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
335 	MIB_DESC(2, 0x24, "RxGoodBytes"),
336 	MIB_DESC(2, 0x26, "RxBadBytes"),
337 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
338 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
339 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
340 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
341 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
342 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
343 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
344 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
345 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
346 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
347 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
348 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
349 	MIB_DESC(1, 0x09, "TxMultCollCount"),
350 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
351 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
352 	MIB_DESC(1, 0x0D, "TxPauseCount"),
353 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
354 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
355 };
356 
357 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
358 {
359 	return __raw_readl(priv->gswip + (offset * 4));
360 }
361 
362 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
363 {
364 	__raw_writel(val, priv->gswip + (offset * 4));
365 }
366 
367 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
368 			      u32 offset)
369 {
370 	u32 val = gswip_switch_r(priv, offset);
371 
372 	val &= ~(clear);
373 	val |= set;
374 	gswip_switch_w(priv, val, offset);
375 }
376 
377 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
378 				  u32 cleared)
379 {
380 	u32 val;
381 
382 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
383 				  (val & cleared) == 0, 20, 50000);
384 }
385 
386 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
387 {
388 	return __raw_readl(priv->mdio + (offset * 4));
389 }
390 
391 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
392 {
393 	__raw_writel(val, priv->mdio + (offset * 4));
394 }
395 
396 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
397 			    u32 offset)
398 {
399 	u32 val = gswip_mdio_r(priv, offset);
400 
401 	val &= ~(clear);
402 	val |= set;
403 	gswip_mdio_w(priv, val, offset);
404 }
405 
406 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
407 {
408 	return __raw_readl(priv->mii + (offset * 4));
409 }
410 
411 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
412 {
413 	__raw_writel(val, priv->mii + (offset * 4));
414 }
415 
416 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
417 			   u32 offset)
418 {
419 	u32 val = gswip_mii_r(priv, offset);
420 
421 	val &= ~(clear);
422 	val |= set;
423 	gswip_mii_w(priv, val, offset);
424 }
425 
426 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
427 			       int port)
428 {
429 	/* There's no MII_CFG register for the CPU port */
430 	if (!dsa_is_cpu_port(priv->ds, port))
431 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
432 }
433 
434 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
435 				int port)
436 {
437 	switch (port) {
438 	case 0:
439 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
440 		break;
441 	case 1:
442 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
443 		break;
444 	case 5:
445 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
446 		break;
447 	}
448 }
449 
450 static int gswip_mdio_poll(struct gswip_priv *priv)
451 {
452 	int cnt = 100;
453 
454 	while (likely(cnt--)) {
455 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
456 
457 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
458 			return 0;
459 		usleep_range(20, 40);
460 	}
461 
462 	return -ETIMEDOUT;
463 }
464 
465 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
466 {
467 	struct gswip_priv *priv = bus->priv;
468 	int err;
469 
470 	err = gswip_mdio_poll(priv);
471 	if (err) {
472 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
473 		return err;
474 	}
475 
476 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
477 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
478 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
479 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
480 		GSWIP_MDIO_CTRL);
481 
482 	return 0;
483 }
484 
485 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
486 {
487 	struct gswip_priv *priv = bus->priv;
488 	int err;
489 
490 	err = gswip_mdio_poll(priv);
491 	if (err) {
492 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
493 		return err;
494 	}
495 
496 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
497 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
498 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
499 		GSWIP_MDIO_CTRL);
500 
501 	err = gswip_mdio_poll(priv);
502 	if (err) {
503 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
504 		return err;
505 	}
506 
507 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
508 }
509 
510 static int gswip_mdio(struct gswip_priv *priv)
511 {
512 	struct device_node *mdio_np, *switch_np = priv->dev->of_node;
513 	struct device *dev = priv->dev;
514 	struct mii_bus *bus;
515 	int err = 0;
516 
517 	mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
518 	if (!of_device_is_available(mdio_np))
519 		goto out_put_node;
520 
521 	bus = devm_mdiobus_alloc(dev);
522 	if (!bus) {
523 		err = -ENOMEM;
524 		goto out_put_node;
525 	}
526 
527 	bus->priv = priv;
528 	bus->read = gswip_mdio_rd;
529 	bus->write = gswip_mdio_wr;
530 	bus->name = "lantiq,xrx200-mdio";
531 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
532 	bus->parent = priv->dev;
533 
534 	err = devm_of_mdiobus_register(dev, bus, mdio_np);
535 
536 out_put_node:
537 	of_node_put(mdio_np);
538 
539 	return err;
540 }
541 
542 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
543 				      struct gswip_pce_table_entry *tbl)
544 {
545 	int i;
546 	int err;
547 	u16 crtl;
548 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
549 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
550 
551 	mutex_lock(&priv->pce_table_lock);
552 
553 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
554 				     GSWIP_PCE_TBL_CTRL_BAS);
555 	if (err) {
556 		mutex_unlock(&priv->pce_table_lock);
557 		return err;
558 	}
559 
560 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
561 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
562 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
563 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
564 			  GSWIP_PCE_TBL_CTRL);
565 
566 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
567 				     GSWIP_PCE_TBL_CTRL_BAS);
568 	if (err) {
569 		mutex_unlock(&priv->pce_table_lock);
570 		return err;
571 	}
572 
573 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
574 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
575 
576 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
577 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
578 
579 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
580 
581 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
582 
583 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
584 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
585 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
586 
587 	mutex_unlock(&priv->pce_table_lock);
588 
589 	return 0;
590 }
591 
592 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
593 				       struct gswip_pce_table_entry *tbl)
594 {
595 	int i;
596 	int err;
597 	u16 crtl;
598 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
599 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
600 
601 	mutex_lock(&priv->pce_table_lock);
602 
603 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
604 				     GSWIP_PCE_TBL_CTRL_BAS);
605 	if (err) {
606 		mutex_unlock(&priv->pce_table_lock);
607 		return err;
608 	}
609 
610 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
611 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
612 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
613 			  tbl->table | addr_mode,
614 			  GSWIP_PCE_TBL_CTRL);
615 
616 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
617 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
618 
619 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
620 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
621 
622 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
623 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
624 			  tbl->table | addr_mode,
625 			  GSWIP_PCE_TBL_CTRL);
626 
627 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
628 
629 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
630 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
631 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
632 	if (tbl->type)
633 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
634 	if (tbl->valid)
635 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
636 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
637 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
638 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
639 
640 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
641 				     GSWIP_PCE_TBL_CTRL_BAS);
642 
643 	mutex_unlock(&priv->pce_table_lock);
644 
645 	return err;
646 }
647 
648 /* Add the LAN port into a bridge with the CPU port by
649  * default. This prevents automatic forwarding of
650  * packages between the LAN ports when no explicit
651  * bridge is configured.
652  */
653 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
654 {
655 	struct gswip_pce_table_entry vlan_active = {0,};
656 	struct gswip_pce_table_entry vlan_mapping = {0,};
657 	unsigned int cpu_port = priv->hw_info->cpu_port;
658 	int err;
659 
660 	vlan_active.index = port + 1;
661 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
662 	vlan_active.key[0] = 0; /* vid */
663 	vlan_active.val[0] = port + 1 /* fid */;
664 	vlan_active.valid = add;
665 	err = gswip_pce_table_entry_write(priv, &vlan_active);
666 	if (err) {
667 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
668 		return err;
669 	}
670 
671 	if (!add)
672 		return 0;
673 
674 	vlan_mapping.index = port + 1;
675 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
676 	vlan_mapping.val[0] = 0 /* vid */;
677 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
678 	vlan_mapping.val[2] = 0;
679 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
680 	if (err) {
681 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
682 		return err;
683 	}
684 
685 	return 0;
686 }
687 
688 static int gswip_port_enable(struct dsa_switch *ds, int port,
689 			     struct phy_device *phydev)
690 {
691 	struct gswip_priv *priv = ds->priv;
692 	int err;
693 
694 	if (!dsa_is_cpu_port(ds, port)) {
695 		u32 mdio_phy = 0;
696 
697 		err = gswip_add_single_port_br(priv, port, true);
698 		if (err)
699 			return err;
700 
701 		if (phydev)
702 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
703 
704 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
705 				GSWIP_MDIO_PHYp(port));
706 	}
707 
708 	/* RMON Counter Enable for port */
709 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
710 
711 	/* enable port fetch/store dma & VLAN Modification */
712 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
713 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
714 			 GSWIP_FDMA_PCTRLp(port));
715 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
716 			  GSWIP_SDMA_PCTRLp(port));
717 
718 	return 0;
719 }
720 
721 static void gswip_port_disable(struct dsa_switch *ds, int port)
722 {
723 	struct gswip_priv *priv = ds->priv;
724 
725 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
726 			  GSWIP_FDMA_PCTRLp(port));
727 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
728 			  GSWIP_SDMA_PCTRLp(port));
729 }
730 
731 static int gswip_pce_load_microcode(struct gswip_priv *priv)
732 {
733 	int i;
734 	int err;
735 
736 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
737 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
738 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
739 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
740 
741 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
742 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
743 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
744 			       GSWIP_PCE_TBL_VAL(0));
745 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
746 			       GSWIP_PCE_TBL_VAL(1));
747 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
748 			       GSWIP_PCE_TBL_VAL(2));
749 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
750 			       GSWIP_PCE_TBL_VAL(3));
751 
752 		/* start the table access: */
753 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
754 				  GSWIP_PCE_TBL_CTRL);
755 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
756 					     GSWIP_PCE_TBL_CTRL_BAS);
757 		if (err)
758 			return err;
759 	}
760 
761 	/* tell the switch that the microcode is loaded */
762 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
763 			  GSWIP_PCE_GCTRL_0);
764 
765 	return 0;
766 }
767 
768 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
769 				     bool vlan_filtering,
770 				     struct netlink_ext_ack *extack)
771 {
772 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
773 	struct gswip_priv *priv = ds->priv;
774 
775 	/* Do not allow changing the VLAN filtering options while in bridge */
776 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
777 		NL_SET_ERR_MSG_MOD(extack,
778 				   "Dynamic toggling of vlan_filtering not supported");
779 		return -EIO;
780 	}
781 
782 	if (vlan_filtering) {
783 		/* Use tag based VLAN */
784 		gswip_switch_mask(priv,
785 				  GSWIP_PCE_VCTRL_VSR,
786 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
787 				  GSWIP_PCE_VCTRL_VEMR,
788 				  GSWIP_PCE_VCTRL(port));
789 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
790 				  GSWIP_PCE_PCTRL_0p(port));
791 	} else {
792 		/* Use port based VLAN */
793 		gswip_switch_mask(priv,
794 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
795 				  GSWIP_PCE_VCTRL_VEMR,
796 				  GSWIP_PCE_VCTRL_VSR,
797 				  GSWIP_PCE_VCTRL(port));
798 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
799 				  GSWIP_PCE_PCTRL_0p(port));
800 	}
801 
802 	return 0;
803 }
804 
805 static int gswip_setup(struct dsa_switch *ds)
806 {
807 	struct gswip_priv *priv = ds->priv;
808 	unsigned int cpu_port = priv->hw_info->cpu_port;
809 	int i;
810 	int err;
811 
812 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
813 	usleep_range(5000, 10000);
814 	gswip_switch_w(priv, 0, GSWIP_SWRES);
815 
816 	/* disable port fetch/store dma on all ports */
817 	for (i = 0; i < priv->hw_info->max_ports; i++) {
818 		gswip_port_disable(ds, i);
819 		gswip_port_vlan_filtering(ds, i, false, NULL);
820 	}
821 
822 	/* enable Switch */
823 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
824 
825 	err = gswip_pce_load_microcode(priv);
826 	if (err) {
827 		dev_err(priv->dev, "writing PCE microcode failed, %i\n", err);
828 		return err;
829 	}
830 
831 	/* Default unknown Broadcast/Multicast/Unicast port maps */
832 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
833 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
834 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
835 
836 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
837 	 * interoperability problem with this auto polling mechanism because
838 	 * their status registers think that the link is in a different state
839 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
840 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
841 	 * auto polling state machine consider the link being negotiated with
842 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
843 	 * to the switch port being completely dead (RX and TX are both not
844 	 * working).
845 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
846 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
847 	 * it would work fine for a few minutes to hours and then stop, on
848 	 * other device it would no traffic could be sent or received at all.
849 	 * Testing shows that when PHY auto polling is disabled these problems
850 	 * go away.
851 	 */
852 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
853 
854 	/* Configure the MDIO Clock 2.5 MHz */
855 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
856 
857 	/* Disable the xMII interface and clear it's isolation bit */
858 	for (i = 0; i < priv->hw_info->max_ports; i++)
859 		gswip_mii_mask_cfg(priv,
860 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
861 				   0, i);
862 
863 	/* enable special tag insertion on cpu port */
864 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
865 			  GSWIP_FDMA_PCTRLp(cpu_port));
866 
867 	/* accept special tag in ingress direction */
868 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
869 			  GSWIP_PCE_PCTRL_0p(cpu_port));
870 
871 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
872 			  GSWIP_BM_QUEUE_GCTRL);
873 
874 	/* VLAN aware Switching */
875 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
876 
877 	/* Flush MAC Table */
878 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
879 
880 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
881 				     GSWIP_PCE_GCTRL_0_MTFL);
882 	if (err) {
883 		dev_err(priv->dev, "MAC flushing didn't finish\n");
884 		return err;
885 	}
886 
887 	ds->mtu_enforcement_ingress = true;
888 
889 	ds->configure_vlan_while_not_filtering = false;
890 
891 	return 0;
892 }
893 
894 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
895 						    int port,
896 						    enum dsa_tag_protocol mp)
897 {
898 	return DSA_TAG_PROTO_GSWIP;
899 }
900 
901 static int gswip_vlan_active_create(struct gswip_priv *priv,
902 				    struct net_device *bridge,
903 				    int fid, u16 vid)
904 {
905 	struct gswip_pce_table_entry vlan_active = {0,};
906 	unsigned int max_ports = priv->hw_info->max_ports;
907 	int idx = -1;
908 	int err;
909 	int i;
910 
911 	/* Look for a free slot */
912 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
913 		if (!priv->vlans[i].bridge) {
914 			idx = i;
915 			break;
916 		}
917 	}
918 
919 	if (idx == -1)
920 		return -ENOSPC;
921 
922 	if (fid == -1)
923 		fid = idx;
924 
925 	vlan_active.index = idx;
926 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
927 	vlan_active.key[0] = vid;
928 	vlan_active.val[0] = fid;
929 	vlan_active.valid = true;
930 
931 	err = gswip_pce_table_entry_write(priv, &vlan_active);
932 	if (err) {
933 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
934 		return err;
935 	}
936 
937 	priv->vlans[idx].bridge = bridge;
938 	priv->vlans[idx].vid = vid;
939 	priv->vlans[idx].fid = fid;
940 
941 	return idx;
942 }
943 
944 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
945 {
946 	struct gswip_pce_table_entry vlan_active = {0,};
947 	int err;
948 
949 	vlan_active.index = idx;
950 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
951 	vlan_active.valid = false;
952 	err = gswip_pce_table_entry_write(priv, &vlan_active);
953 	if (err)
954 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
955 	priv->vlans[idx].bridge = NULL;
956 
957 	return err;
958 }
959 
960 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
961 				  struct net_device *bridge, int port)
962 {
963 	struct gswip_pce_table_entry vlan_mapping = {0,};
964 	unsigned int max_ports = priv->hw_info->max_ports;
965 	unsigned int cpu_port = priv->hw_info->cpu_port;
966 	bool active_vlan_created = false;
967 	int idx = -1;
968 	int i;
969 	int err;
970 
971 	/* Check if there is already a page for this bridge */
972 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
973 		if (priv->vlans[i].bridge == bridge) {
974 			idx = i;
975 			break;
976 		}
977 	}
978 
979 	/* If this bridge is not programmed yet, add a Active VLAN table
980 	 * entry in a free slot and prepare the VLAN mapping table entry.
981 	 */
982 	if (idx == -1) {
983 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
984 		if (idx < 0)
985 			return idx;
986 		active_vlan_created = true;
987 
988 		vlan_mapping.index = idx;
989 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
990 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
991 		vlan_mapping.val[0] = 0;
992 	} else {
993 		/* Read the existing VLAN mapping entry from the switch */
994 		vlan_mapping.index = idx;
995 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
996 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
997 		if (err) {
998 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
999 				err);
1000 			return err;
1001 		}
1002 	}
1003 
1004 	/* Update the VLAN mapping entry and write it to the switch */
1005 	vlan_mapping.val[1] |= BIT(cpu_port);
1006 	vlan_mapping.val[1] |= BIT(port);
1007 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1008 	if (err) {
1009 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1010 		/* In case an Active VLAN was creaetd delete it again */
1011 		if (active_vlan_created)
1012 			gswip_vlan_active_remove(priv, idx);
1013 		return err;
1014 	}
1015 
1016 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1017 	return 0;
1018 }
1019 
1020 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1021 				struct net_device *bridge, int port,
1022 				u16 vid, bool untagged,
1023 				bool pvid)
1024 {
1025 	struct gswip_pce_table_entry vlan_mapping = {0,};
1026 	unsigned int max_ports = priv->hw_info->max_ports;
1027 	unsigned int cpu_port = priv->hw_info->cpu_port;
1028 	bool active_vlan_created = false;
1029 	int idx = -1;
1030 	int fid = -1;
1031 	int i;
1032 	int err;
1033 
1034 	/* Check if there is already a page for this bridge */
1035 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1036 		if (priv->vlans[i].bridge == bridge) {
1037 			if (fid != -1 && fid != priv->vlans[i].fid)
1038 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1039 			fid = priv->vlans[i].fid;
1040 			if (priv->vlans[i].vid == vid) {
1041 				idx = i;
1042 				break;
1043 			}
1044 		}
1045 	}
1046 
1047 	/* If this bridge is not programmed yet, add a Active VLAN table
1048 	 * entry in a free slot and prepare the VLAN mapping table entry.
1049 	 */
1050 	if (idx == -1) {
1051 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1052 		if (idx < 0)
1053 			return idx;
1054 		active_vlan_created = true;
1055 
1056 		vlan_mapping.index = idx;
1057 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1058 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1059 		vlan_mapping.val[0] = vid;
1060 	} else {
1061 		/* Read the existing VLAN mapping entry from the switch */
1062 		vlan_mapping.index = idx;
1063 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1064 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1065 		if (err) {
1066 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1067 				err);
1068 			return err;
1069 		}
1070 	}
1071 
1072 	vlan_mapping.val[0] = vid;
1073 	/* Update the VLAN mapping entry and write it to the switch */
1074 	vlan_mapping.val[1] |= BIT(cpu_port);
1075 	vlan_mapping.val[2] |= BIT(cpu_port);
1076 	vlan_mapping.val[1] |= BIT(port);
1077 	if (untagged)
1078 		vlan_mapping.val[2] &= ~BIT(port);
1079 	else
1080 		vlan_mapping.val[2] |= BIT(port);
1081 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1082 	if (err) {
1083 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1084 		/* In case an Active VLAN was creaetd delete it again */
1085 		if (active_vlan_created)
1086 			gswip_vlan_active_remove(priv, idx);
1087 		return err;
1088 	}
1089 
1090 	if (pvid)
1091 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1092 
1093 	return 0;
1094 }
1095 
1096 static int gswip_vlan_remove(struct gswip_priv *priv,
1097 			     struct net_device *bridge, int port,
1098 			     u16 vid, bool pvid, bool vlan_aware)
1099 {
1100 	struct gswip_pce_table_entry vlan_mapping = {0,};
1101 	unsigned int max_ports = priv->hw_info->max_ports;
1102 	unsigned int cpu_port = priv->hw_info->cpu_port;
1103 	int idx = -1;
1104 	int i;
1105 	int err;
1106 
1107 	/* Check if there is already a page for this bridge */
1108 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1109 		if (priv->vlans[i].bridge == bridge &&
1110 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1111 			idx = i;
1112 			break;
1113 		}
1114 	}
1115 
1116 	if (idx == -1) {
1117 		dev_err(priv->dev, "bridge to leave does not exists\n");
1118 		return -ENOENT;
1119 	}
1120 
1121 	vlan_mapping.index = idx;
1122 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1123 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1124 	if (err) {
1125 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1126 		return err;
1127 	}
1128 
1129 	vlan_mapping.val[1] &= ~BIT(port);
1130 	vlan_mapping.val[2] &= ~BIT(port);
1131 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1132 	if (err) {
1133 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1134 		return err;
1135 	}
1136 
1137 	/* In case all ports are removed from the bridge, remove the VLAN */
1138 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1139 		err = gswip_vlan_active_remove(priv, idx);
1140 		if (err) {
1141 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1142 				err);
1143 			return err;
1144 		}
1145 	}
1146 
1147 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1148 	if (pvid)
1149 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1150 
1151 	return 0;
1152 }
1153 
1154 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1155 				  struct dsa_bridge bridge,
1156 				  bool *tx_fwd_offload,
1157 				  struct netlink_ext_ack *extack)
1158 {
1159 	struct net_device *br = bridge.dev;
1160 	struct gswip_priv *priv = ds->priv;
1161 	int err;
1162 
1163 	/* When the bridge uses VLAN filtering we have to configure VLAN
1164 	 * specific bridges. No bridge is configured here.
1165 	 */
1166 	if (!br_vlan_enabled(br)) {
1167 		err = gswip_vlan_add_unaware(priv, br, port);
1168 		if (err)
1169 			return err;
1170 		priv->port_vlan_filter &= ~BIT(port);
1171 	} else {
1172 		priv->port_vlan_filter |= BIT(port);
1173 	}
1174 	return gswip_add_single_port_br(priv, port, false);
1175 }
1176 
1177 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1178 				    struct dsa_bridge bridge)
1179 {
1180 	struct net_device *br = bridge.dev;
1181 	struct gswip_priv *priv = ds->priv;
1182 
1183 	gswip_add_single_port_br(priv, port, true);
1184 
1185 	/* When the bridge uses VLAN filtering we have to configure VLAN
1186 	 * specific bridges. No bridge is configured here.
1187 	 */
1188 	if (!br_vlan_enabled(br))
1189 		gswip_vlan_remove(priv, br, port, 0, true, false);
1190 }
1191 
1192 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1193 				   const struct switchdev_obj_port_vlan *vlan,
1194 				   struct netlink_ext_ack *extack)
1195 {
1196 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1197 	struct gswip_priv *priv = ds->priv;
1198 	unsigned int max_ports = priv->hw_info->max_ports;
1199 	int pos = max_ports;
1200 	int i, idx = -1;
1201 
1202 	/* We only support VLAN filtering on bridges */
1203 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1204 		return -EOPNOTSUPP;
1205 
1206 	/* Check if there is already a page for this VLAN */
1207 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1208 		if (priv->vlans[i].bridge == bridge &&
1209 		    priv->vlans[i].vid == vlan->vid) {
1210 			idx = i;
1211 			break;
1212 		}
1213 	}
1214 
1215 	/* If this VLAN is not programmed yet, we have to reserve
1216 	 * one entry in the VLAN table. Make sure we start at the
1217 	 * next position round.
1218 	 */
1219 	if (idx == -1) {
1220 		/* Look for a free slot */
1221 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1222 			if (!priv->vlans[pos].bridge) {
1223 				idx = pos;
1224 				pos++;
1225 				break;
1226 			}
1227 		}
1228 
1229 		if (idx == -1) {
1230 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1231 			return -ENOSPC;
1232 		}
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1239 			       const struct switchdev_obj_port_vlan *vlan,
1240 			       struct netlink_ext_ack *extack)
1241 {
1242 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1243 	struct gswip_priv *priv = ds->priv;
1244 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1245 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1246 	int err;
1247 
1248 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1249 	if (err)
1250 		return err;
1251 
1252 	/* We have to receive all packets on the CPU port and should not
1253 	 * do any VLAN filtering here. This is also called with bridge
1254 	 * NULL and then we do not know for which bridge to configure
1255 	 * this.
1256 	 */
1257 	if (dsa_is_cpu_port(ds, port))
1258 		return 0;
1259 
1260 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1261 				    untagged, pvid);
1262 }
1263 
1264 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1265 			       const struct switchdev_obj_port_vlan *vlan)
1266 {
1267 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1268 	struct gswip_priv *priv = ds->priv;
1269 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1270 
1271 	/* We have to receive all packets on the CPU port and should not
1272 	 * do any VLAN filtering here. This is also called with bridge
1273 	 * NULL and then we do not know for which bridge to configure
1274 	 * this.
1275 	 */
1276 	if (dsa_is_cpu_port(ds, port))
1277 		return 0;
1278 
1279 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1280 }
1281 
1282 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1283 {
1284 	struct gswip_priv *priv = ds->priv;
1285 	struct gswip_pce_table_entry mac_bridge = {0,};
1286 	int i;
1287 	int err;
1288 
1289 	for (i = 0; i < 2048; i++) {
1290 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1291 		mac_bridge.index = i;
1292 
1293 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1294 		if (err) {
1295 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1296 				err);
1297 			return;
1298 		}
1299 
1300 		if (!mac_bridge.valid)
1301 			continue;
1302 
1303 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC)
1304 			continue;
1305 
1306 		if (port != FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1307 				      mac_bridge.val[0]))
1308 			continue;
1309 
1310 		mac_bridge.valid = false;
1311 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1312 		if (err) {
1313 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1314 				err);
1315 			return;
1316 		}
1317 	}
1318 }
1319 
1320 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1321 {
1322 	struct gswip_priv *priv = ds->priv;
1323 	u32 stp_state;
1324 
1325 	switch (state) {
1326 	case BR_STATE_DISABLED:
1327 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1328 				  GSWIP_SDMA_PCTRLp(port));
1329 		return;
1330 	case BR_STATE_BLOCKING:
1331 	case BR_STATE_LISTENING:
1332 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1333 		break;
1334 	case BR_STATE_LEARNING:
1335 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1336 		break;
1337 	case BR_STATE_FORWARDING:
1338 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1339 		break;
1340 	default:
1341 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1342 		return;
1343 	}
1344 
1345 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1346 			  GSWIP_SDMA_PCTRLp(port));
1347 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1348 			  GSWIP_PCE_PCTRL_0p(port));
1349 }
1350 
1351 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1352 			  const unsigned char *addr, u16 vid, bool add)
1353 {
1354 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1355 	struct gswip_priv *priv = ds->priv;
1356 	struct gswip_pce_table_entry mac_bridge = {0,};
1357 	unsigned int max_ports = priv->hw_info->max_ports;
1358 	int fid = -1;
1359 	int i;
1360 	int err;
1361 
1362 	if (!bridge)
1363 		return -EINVAL;
1364 
1365 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1366 		if (priv->vlans[i].bridge == bridge) {
1367 			fid = priv->vlans[i].fid;
1368 			break;
1369 		}
1370 	}
1371 
1372 	if (fid == -1) {
1373 		dev_err(priv->dev, "no FID found for bridge %s\n",
1374 			bridge->name);
1375 		return -EINVAL;
1376 	}
1377 
1378 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1379 	mac_bridge.key_mode = true;
1380 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1381 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1382 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1383 	mac_bridge.key[3] = FIELD_PREP(GSWIP_TABLE_MAC_BRIDGE_KEY3_FID, fid);
1384 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1385 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC;
1386 	mac_bridge.valid = add;
1387 
1388 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1389 	if (err)
1390 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1391 
1392 	return err;
1393 }
1394 
1395 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1396 			      const unsigned char *addr, u16 vid,
1397 			      struct dsa_db db)
1398 {
1399 	return gswip_port_fdb(ds, port, addr, vid, true);
1400 }
1401 
1402 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1403 			      const unsigned char *addr, u16 vid,
1404 			      struct dsa_db db)
1405 {
1406 	return gswip_port_fdb(ds, port, addr, vid, false);
1407 }
1408 
1409 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1410 			       dsa_fdb_dump_cb_t *cb, void *data)
1411 {
1412 	struct gswip_priv *priv = ds->priv;
1413 	struct gswip_pce_table_entry mac_bridge = {0,};
1414 	unsigned char addr[ETH_ALEN];
1415 	int i;
1416 	int err;
1417 
1418 	for (i = 0; i < 2048; i++) {
1419 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1420 		mac_bridge.index = i;
1421 
1422 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1423 		if (err) {
1424 			dev_err(priv->dev,
1425 				"failed to read mac bridge entry %d: %d\n",
1426 				i, err);
1427 			return err;
1428 		}
1429 
1430 		if (!mac_bridge.valid)
1431 			continue;
1432 
1433 		addr[5] = mac_bridge.key[0] & 0xff;
1434 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1435 		addr[3] = mac_bridge.key[1] & 0xff;
1436 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1437 		addr[1] = mac_bridge.key[2] & 0xff;
1438 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1439 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC) {
1440 			if (mac_bridge.val[0] & BIT(port)) {
1441 				err = cb(addr, 0, true, data);
1442 				if (err)
1443 					return err;
1444 			}
1445 		} else {
1446 			if (port == FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
1447 					      mac_bridge.val[0])) {
1448 				err = cb(addr, 0, false, data);
1449 				if (err)
1450 					return err;
1451 			}
1452 		}
1453 	}
1454 	return 0;
1455 }
1456 
1457 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1458 {
1459 	/* Includes 8 bytes for special header. */
1460 	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1461 }
1462 
1463 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1464 {
1465 	struct gswip_priv *priv = ds->priv;
1466 
1467 	/* CPU port always has maximum mtu of user ports, so use it to set
1468 	 * switch frame size, including 8 byte special header.
1469 	 */
1470 	if (dsa_is_cpu_port(ds, port)) {
1471 		new_mtu += 8;
1472 		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1473 			       GSWIP_MAC_FLEN);
1474 	}
1475 
1476 	/* Enable MLEN for ports with non-standard MTUs, including the special
1477 	 * header on the CPU port added above.
1478 	 */
1479 	if (new_mtu != ETH_DATA_LEN)
1480 		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1481 				  GSWIP_MAC_CTRL_2p(port));
1482 	else
1483 		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1484 				  GSWIP_MAC_CTRL_2p(port));
1485 
1486 	return 0;
1487 }
1488 
1489 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1490 					  struct phylink_config *config)
1491 {
1492 	switch (port) {
1493 	case 0:
1494 	case 1:
1495 		phy_interface_set_rgmii(config->supported_interfaces);
1496 		__set_bit(PHY_INTERFACE_MODE_MII,
1497 			  config->supported_interfaces);
1498 		__set_bit(PHY_INTERFACE_MODE_REVMII,
1499 			  config->supported_interfaces);
1500 		__set_bit(PHY_INTERFACE_MODE_RMII,
1501 			  config->supported_interfaces);
1502 		break;
1503 
1504 	case 2:
1505 	case 3:
1506 	case 4:
1507 	case 6:
1508 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1509 			  config->supported_interfaces);
1510 		break;
1511 
1512 	case 5:
1513 		phy_interface_set_rgmii(config->supported_interfaces);
1514 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1515 			  config->supported_interfaces);
1516 		break;
1517 	}
1518 
1519 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1520 		MAC_10 | MAC_100 | MAC_1000;
1521 }
1522 
1523 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1524 					  struct phylink_config *config)
1525 {
1526 	switch (port) {
1527 	case 0:
1528 		phy_interface_set_rgmii(config->supported_interfaces);
1529 		__set_bit(PHY_INTERFACE_MODE_GMII,
1530 			  config->supported_interfaces);
1531 		__set_bit(PHY_INTERFACE_MODE_RMII,
1532 			  config->supported_interfaces);
1533 		break;
1534 
1535 	case 1:
1536 	case 2:
1537 	case 3:
1538 	case 4:
1539 	case 6:
1540 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1541 			  config->supported_interfaces);
1542 		break;
1543 
1544 	case 5:
1545 		phy_interface_set_rgmii(config->supported_interfaces);
1546 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1547 			  config->supported_interfaces);
1548 		__set_bit(PHY_INTERFACE_MODE_RMII,
1549 			  config->supported_interfaces);
1550 		break;
1551 	}
1552 
1553 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1554 		MAC_10 | MAC_100 | MAC_1000;
1555 }
1556 
1557 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1558 {
1559 	u32 mdio_phy;
1560 
1561 	if (link)
1562 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1563 	else
1564 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1565 
1566 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1567 			GSWIP_MDIO_PHYp(port));
1568 }
1569 
1570 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1571 				 phy_interface_t interface)
1572 {
1573 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1574 
1575 	switch (speed) {
1576 	case SPEED_10:
1577 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1578 
1579 		if (interface == PHY_INTERFACE_MODE_RMII)
1580 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1581 		else
1582 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1583 
1584 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1585 		break;
1586 
1587 	case SPEED_100:
1588 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1589 
1590 		if (interface == PHY_INTERFACE_MODE_RMII)
1591 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1592 		else
1593 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1594 
1595 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1596 		break;
1597 
1598 	case SPEED_1000:
1599 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1600 
1601 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1602 
1603 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1604 		break;
1605 	}
1606 
1607 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1608 			GSWIP_MDIO_PHYp(port));
1609 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1610 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1611 			  GSWIP_MAC_CTRL_0p(port));
1612 }
1613 
1614 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1615 {
1616 	u32 mac_ctrl_0, mdio_phy;
1617 
1618 	if (duplex == DUPLEX_FULL) {
1619 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1620 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1621 	} else {
1622 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1623 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1624 	}
1625 
1626 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1627 			  GSWIP_MAC_CTRL_0p(port));
1628 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1629 			GSWIP_MDIO_PHYp(port));
1630 }
1631 
1632 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1633 				 bool tx_pause, bool rx_pause)
1634 {
1635 	u32 mac_ctrl_0, mdio_phy;
1636 
1637 	if (tx_pause && rx_pause) {
1638 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1639 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1640 			   GSWIP_MDIO_PHY_FCONRX_EN;
1641 	} else if (tx_pause) {
1642 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1643 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1644 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1645 	} else if (rx_pause) {
1646 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1647 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1648 			   GSWIP_MDIO_PHY_FCONRX_EN;
1649 	} else {
1650 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1651 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1652 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1653 	}
1654 
1655 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1656 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1657 	gswip_mdio_mask(priv,
1658 			GSWIP_MDIO_PHY_FCONTX_MASK |
1659 			GSWIP_MDIO_PHY_FCONRX_MASK,
1660 			mdio_phy, GSWIP_MDIO_PHYp(port));
1661 }
1662 
1663 static void gswip_phylink_mac_config(struct phylink_config *config,
1664 				     unsigned int mode,
1665 				     const struct phylink_link_state *state)
1666 {
1667 	struct dsa_port *dp = dsa_phylink_to_port(config);
1668 	struct gswip_priv *priv = dp->ds->priv;
1669 	int port = dp->index;
1670 	u32 miicfg = 0;
1671 
1672 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1673 
1674 	switch (state->interface) {
1675 	case PHY_INTERFACE_MODE_MII:
1676 	case PHY_INTERFACE_MODE_INTERNAL:
1677 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1678 		break;
1679 	case PHY_INTERFACE_MODE_REVMII:
1680 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1681 		break;
1682 	case PHY_INTERFACE_MODE_RMII:
1683 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1684 		break;
1685 	case PHY_INTERFACE_MODE_RGMII:
1686 	case PHY_INTERFACE_MODE_RGMII_ID:
1687 	case PHY_INTERFACE_MODE_RGMII_RXID:
1688 	case PHY_INTERFACE_MODE_RGMII_TXID:
1689 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1690 		break;
1691 	case PHY_INTERFACE_MODE_GMII:
1692 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1693 		break;
1694 	default:
1695 		dev_err(dp->ds->dev,
1696 			"Unsupported interface: %d\n", state->interface);
1697 		return;
1698 	}
1699 
1700 	gswip_mii_mask_cfg(priv,
1701 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1702 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1703 			   miicfg, port);
1704 
1705 	switch (state->interface) {
1706 	case PHY_INTERFACE_MODE_RGMII_ID:
1707 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1708 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1709 		break;
1710 	case PHY_INTERFACE_MODE_RGMII_RXID:
1711 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1712 		break;
1713 	case PHY_INTERFACE_MODE_RGMII_TXID:
1714 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1715 		break;
1716 	default:
1717 		break;
1718 	}
1719 }
1720 
1721 static void gswip_phylink_mac_link_down(struct phylink_config *config,
1722 					unsigned int mode,
1723 					phy_interface_t interface)
1724 {
1725 	struct dsa_port *dp = dsa_phylink_to_port(config);
1726 	struct gswip_priv *priv = dp->ds->priv;
1727 	int port = dp->index;
1728 
1729 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1730 
1731 	if (!dsa_port_is_cpu(dp))
1732 		gswip_port_set_link(priv, port, false);
1733 }
1734 
1735 static void gswip_phylink_mac_link_up(struct phylink_config *config,
1736 				      struct phy_device *phydev,
1737 				      unsigned int mode,
1738 				      phy_interface_t interface,
1739 				      int speed, int duplex,
1740 				      bool tx_pause, bool rx_pause)
1741 {
1742 	struct dsa_port *dp = dsa_phylink_to_port(config);
1743 	struct gswip_priv *priv = dp->ds->priv;
1744 	int port = dp->index;
1745 
1746 	if (!dsa_port_is_cpu(dp)) {
1747 		gswip_port_set_link(priv, port, true);
1748 		gswip_port_set_speed(priv, port, speed, interface);
1749 		gswip_port_set_duplex(priv, port, duplex);
1750 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1751 	}
1752 
1753 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1754 }
1755 
1756 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1757 			      uint8_t *data)
1758 {
1759 	int i;
1760 
1761 	if (stringset != ETH_SS_STATS)
1762 		return;
1763 
1764 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1765 		ethtool_puts(&data, gswip_rmon_cnt[i].name);
1766 }
1767 
1768 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1769 				    u32 index)
1770 {
1771 	u32 result;
1772 	int err;
1773 
1774 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1775 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1776 				GSWIP_BM_RAM_CTRL_OPMOD,
1777 			      table | GSWIP_BM_RAM_CTRL_BAS,
1778 			      GSWIP_BM_RAM_CTRL);
1779 
1780 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1781 				     GSWIP_BM_RAM_CTRL_BAS);
1782 	if (err) {
1783 		dev_err(priv->dev, "timeout while reading table: %u, index: %u\n",
1784 			table, index);
1785 		return 0;
1786 	}
1787 
1788 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1789 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1790 
1791 	return result;
1792 }
1793 
1794 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1795 				    uint64_t *data)
1796 {
1797 	struct gswip_priv *priv = ds->priv;
1798 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1799 	int i;
1800 	u64 high;
1801 
1802 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1803 		rmon_cnt = &gswip_rmon_cnt[i];
1804 
1805 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1806 						   rmon_cnt->offset);
1807 		if (rmon_cnt->size == 2) {
1808 			high = gswip_bcm_ram_entry_read(priv, port,
1809 							rmon_cnt->offset + 1);
1810 			data[i] |= high << 32;
1811 		}
1812 	}
1813 }
1814 
1815 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1816 {
1817 	if (sset != ETH_SS_STATS)
1818 		return 0;
1819 
1820 	return ARRAY_SIZE(gswip_rmon_cnt);
1821 }
1822 
1823 static const struct phylink_mac_ops gswip_phylink_mac_ops = {
1824 	.mac_config	= gswip_phylink_mac_config,
1825 	.mac_link_down	= gswip_phylink_mac_link_down,
1826 	.mac_link_up	= gswip_phylink_mac_link_up,
1827 };
1828 
1829 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1830 	.get_tag_protocol	= gswip_get_tag_protocol,
1831 	.setup			= gswip_setup,
1832 	.port_enable		= gswip_port_enable,
1833 	.port_disable		= gswip_port_disable,
1834 	.port_bridge_join	= gswip_port_bridge_join,
1835 	.port_bridge_leave	= gswip_port_bridge_leave,
1836 	.port_fast_age		= gswip_port_fast_age,
1837 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1838 	.port_vlan_add		= gswip_port_vlan_add,
1839 	.port_vlan_del		= gswip_port_vlan_del,
1840 	.port_stp_state_set	= gswip_port_stp_state_set,
1841 	.port_fdb_add		= gswip_port_fdb_add,
1842 	.port_fdb_del		= gswip_port_fdb_del,
1843 	.port_fdb_dump		= gswip_port_fdb_dump,
1844 	.port_change_mtu	= gswip_port_change_mtu,
1845 	.port_max_mtu		= gswip_port_max_mtu,
1846 	.phylink_get_caps	= gswip_xrx200_phylink_get_caps,
1847 	.get_strings		= gswip_get_strings,
1848 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1849 	.get_sset_count		= gswip_get_sset_count,
1850 };
1851 
1852 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1853 	.get_tag_protocol	= gswip_get_tag_protocol,
1854 	.setup			= gswip_setup,
1855 	.port_enable		= gswip_port_enable,
1856 	.port_disable		= gswip_port_disable,
1857 	.port_bridge_join	= gswip_port_bridge_join,
1858 	.port_bridge_leave	= gswip_port_bridge_leave,
1859 	.port_fast_age		= gswip_port_fast_age,
1860 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1861 	.port_vlan_add		= gswip_port_vlan_add,
1862 	.port_vlan_del		= gswip_port_vlan_del,
1863 	.port_stp_state_set	= gswip_port_stp_state_set,
1864 	.port_fdb_add		= gswip_port_fdb_add,
1865 	.port_fdb_del		= gswip_port_fdb_del,
1866 	.port_fdb_dump		= gswip_port_fdb_dump,
1867 	.port_change_mtu	= gswip_port_change_mtu,
1868 	.port_max_mtu		= gswip_port_max_mtu,
1869 	.phylink_get_caps	= gswip_xrx300_phylink_get_caps,
1870 	.get_strings		= gswip_get_strings,
1871 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1872 	.get_sset_count		= gswip_get_sset_count,
1873 };
1874 
1875 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1876 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1877 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1878 };
1879 
1880 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1881 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1882 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1883 };
1884 
1885 static const struct xway_gphy_match_data xrx300_gphy_data = {
1886 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1887 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1888 };
1889 
1890 static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1891 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1892 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1893 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1894 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1895 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1896 	{},
1897 };
1898 
1899 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1900 {
1901 	struct device *dev = priv->dev;
1902 	const struct firmware *fw;
1903 	void *fw_addr;
1904 	dma_addr_t dma_addr;
1905 	dma_addr_t dev_addr;
1906 	size_t size;
1907 	int ret;
1908 
1909 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1910 	if (ret)
1911 		return ret;
1912 
1913 	reset_control_assert(gphy_fw->reset);
1914 
1915 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1916 	 * Without this some users are observing that the PHY is not coming up
1917 	 * on the MDIO bus.
1918 	 */
1919 	msleep(200);
1920 
1921 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1922 	if (ret)
1923 		return dev_err_probe(dev, ret, "failed to load firmware: %s\n",
1924 				     gphy_fw->fw_name);
1925 
1926 	/* GPHY cores need the firmware code in a persistent and contiguous
1927 	 * memory area with a 16 kB boundary aligned start address.
1928 	 */
1929 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1930 
1931 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1932 	if (fw_addr) {
1933 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1934 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1935 		memcpy(fw_addr, fw->data, fw->size);
1936 	} else {
1937 		release_firmware(fw);
1938 		return dev_err_probe(dev, -ENOMEM,
1939 				     "failed to alloc firmware memory\n");
1940 	}
1941 
1942 	release_firmware(fw);
1943 
1944 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1945 	if (ret)
1946 		return ret;
1947 
1948 	reset_control_deassert(gphy_fw->reset);
1949 
1950 	return ret;
1951 }
1952 
1953 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1954 			       struct gswip_gphy_fw *gphy_fw,
1955 			       struct device_node *gphy_fw_np, int i)
1956 {
1957 	struct device *dev = priv->dev;
1958 	u32 gphy_mode;
1959 	int ret;
1960 	char gphyname[10];
1961 
1962 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1963 
1964 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1965 	if (IS_ERR(gphy_fw->clk_gate)) {
1966 		return dev_err_probe(dev, PTR_ERR(gphy_fw->clk_gate),
1967 				     "Failed to lookup gate clock\n");
1968 	}
1969 
1970 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1971 	if (ret)
1972 		return ret;
1973 
1974 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1975 	/* Default to GE mode */
1976 	if (ret)
1977 		gphy_mode = GPHY_MODE_GE;
1978 
1979 	switch (gphy_mode) {
1980 	case GPHY_MODE_FE:
1981 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1982 		break;
1983 	case GPHY_MODE_GE:
1984 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1985 		break;
1986 	default:
1987 		return dev_err_probe(dev, -EINVAL, "Unknown GPHY mode %d\n",
1988 				     gphy_mode);
1989 	}
1990 
1991 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1992 	if (IS_ERR(gphy_fw->reset))
1993 		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
1994 				     "Failed to lookup gphy reset\n");
1995 
1996 	return gswip_gphy_fw_load(priv, gphy_fw);
1997 }
1998 
1999 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2000 				 struct gswip_gphy_fw *gphy_fw)
2001 {
2002 	int ret;
2003 
2004 	/* check if the device was fully probed */
2005 	if (!gphy_fw->fw_name)
2006 		return;
2007 
2008 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2009 	if (ret)
2010 		dev_err(priv->dev, "can not reset GPHY FW pointer\n");
2011 
2012 	clk_disable_unprepare(gphy_fw->clk_gate);
2013 
2014 	reset_control_put(gphy_fw->reset);
2015 }
2016 
2017 static int gswip_gphy_fw_list(struct gswip_priv *priv,
2018 			      struct device_node *gphy_fw_list_np, u32 version)
2019 {
2020 	struct device *dev = priv->dev;
2021 	struct device_node *gphy_fw_np;
2022 	const struct of_device_id *match;
2023 	int err;
2024 	int i = 0;
2025 
2026 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2027 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2028 	 * needs a different GPHY firmware.
2029 	 */
2030 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2031 		switch (version) {
2032 		case GSWIP_VERSION_2_0:
2033 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2034 			break;
2035 		case GSWIP_VERSION_2_1:
2036 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2037 			break;
2038 		default:
2039 			return dev_err_probe(dev, -ENOENT,
2040 					     "unknown GSWIP version: 0x%x\n",
2041 					     version);
2042 		}
2043 	}
2044 
2045 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2046 	if (match && match->data)
2047 		priv->gphy_fw_name_cfg = match->data;
2048 
2049 	if (!priv->gphy_fw_name_cfg)
2050 		return dev_err_probe(dev, -ENOENT,
2051 				     "GPHY compatible type not supported\n");
2052 
2053 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2054 	if (!priv->num_gphy_fw)
2055 		return -ENOENT;
2056 
2057 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2058 							   "lantiq,rcu");
2059 	if (IS_ERR(priv->rcu_regmap))
2060 		return PTR_ERR(priv->rcu_regmap);
2061 
2062 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2063 					   sizeof(*priv->gphy_fw),
2064 					   GFP_KERNEL | __GFP_ZERO);
2065 	if (!priv->gphy_fw)
2066 		return -ENOMEM;
2067 
2068 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2069 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2070 					  gphy_fw_np, i);
2071 		if (err) {
2072 			of_node_put(gphy_fw_np);
2073 			goto remove_gphy;
2074 		}
2075 		i++;
2076 	}
2077 
2078 	/* The standalone PHY11G requires 300ms to be fully
2079 	 * initialized and ready for any MDIO communication after being
2080 	 * taken out of reset. For the SoC-internal GPHY variant there
2081 	 * is no (known) documentation for the minimum time after a
2082 	 * reset. Use the same value as for the standalone variant as
2083 	 * some users have reported internal PHYs not being detected
2084 	 * without any delay.
2085 	 */
2086 	msleep(300);
2087 
2088 	return 0;
2089 
2090 remove_gphy:
2091 	for (i = 0; i < priv->num_gphy_fw; i++)
2092 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2093 	return err;
2094 }
2095 
2096 static int gswip_probe(struct platform_device *pdev)
2097 {
2098 	struct device_node *np, *gphy_fw_np;
2099 	struct device *dev = &pdev->dev;
2100 	struct gswip_priv *priv;
2101 	int err;
2102 	int i;
2103 	u32 version;
2104 
2105 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2106 	if (!priv)
2107 		return -ENOMEM;
2108 
2109 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2110 	if (IS_ERR(priv->gswip))
2111 		return PTR_ERR(priv->gswip);
2112 
2113 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2114 	if (IS_ERR(priv->mdio))
2115 		return PTR_ERR(priv->mdio);
2116 
2117 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2118 	if (IS_ERR(priv->mii))
2119 		return PTR_ERR(priv->mii);
2120 
2121 	priv->hw_info = of_device_get_match_data(dev);
2122 	if (!priv->hw_info)
2123 		return -EINVAL;
2124 
2125 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2126 	if (!priv->ds)
2127 		return -ENOMEM;
2128 
2129 	priv->ds->dev = dev;
2130 	priv->ds->num_ports = priv->hw_info->max_ports;
2131 	priv->ds->priv = priv;
2132 	priv->ds->ops = priv->hw_info->ops;
2133 	priv->ds->phylink_mac_ops = &gswip_phylink_mac_ops;
2134 	priv->dev = dev;
2135 	mutex_init(&priv->pce_table_lock);
2136 	version = gswip_switch_r(priv, GSWIP_VERSION);
2137 
2138 	np = dev->of_node;
2139 	switch (version) {
2140 	case GSWIP_VERSION_2_0:
2141 	case GSWIP_VERSION_2_1:
2142 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2143 			return -EINVAL;
2144 		break;
2145 	case GSWIP_VERSION_2_2:
2146 	case GSWIP_VERSION_2_2_ETC:
2147 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2148 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2149 			return -EINVAL;
2150 		break;
2151 	default:
2152 		return dev_err_probe(dev, -ENOENT,
2153 				     "unknown GSWIP version: 0x%x\n", version);
2154 	}
2155 
2156 	/* bring up the mdio bus */
2157 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2158 	if (gphy_fw_np) {
2159 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2160 		of_node_put(gphy_fw_np);
2161 		if (err)
2162 			return dev_err_probe(dev, err,
2163 					     "gphy fw probe failed\n");
2164 	}
2165 
2166 	/* bring up the mdio bus */
2167 	err = gswip_mdio(priv);
2168 	if (err) {
2169 		dev_err_probe(dev, err, "mdio probe failed\n");
2170 		goto gphy_fw_remove;
2171 	}
2172 
2173 	err = dsa_register_switch(priv->ds);
2174 	if (err) {
2175 		dev_err_probe(dev, err, "dsa switch registration failed\n");
2176 		goto gphy_fw_remove;
2177 	}
2178 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2179 		err = dev_err_probe(dev, -EINVAL,
2180 				    "wrong CPU port defined, HW only supports port: %i\n",
2181 				    priv->hw_info->cpu_port);
2182 		goto disable_switch;
2183 	}
2184 
2185 	platform_set_drvdata(pdev, priv);
2186 
2187 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2188 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2189 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2190 	return 0;
2191 
2192 disable_switch:
2193 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2194 	dsa_unregister_switch(priv->ds);
2195 gphy_fw_remove:
2196 	for (i = 0; i < priv->num_gphy_fw; i++)
2197 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2198 	return err;
2199 }
2200 
2201 static void gswip_remove(struct platform_device *pdev)
2202 {
2203 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2204 	int i;
2205 
2206 	if (!priv)
2207 		return;
2208 
2209 	/* disable the switch */
2210 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2211 
2212 	dsa_unregister_switch(priv->ds);
2213 
2214 	for (i = 0; i < priv->num_gphy_fw; i++)
2215 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2216 }
2217 
2218 static void gswip_shutdown(struct platform_device *pdev)
2219 {
2220 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2221 
2222 	if (!priv)
2223 		return;
2224 
2225 	dsa_switch_shutdown(priv->ds);
2226 
2227 	platform_set_drvdata(pdev, NULL);
2228 }
2229 
2230 static const struct gswip_hw_info gswip_xrx200 = {
2231 	.max_ports = 7,
2232 	.cpu_port = 6,
2233 	.ops = &gswip_xrx200_switch_ops,
2234 };
2235 
2236 static const struct gswip_hw_info gswip_xrx300 = {
2237 	.max_ports = 7,
2238 	.cpu_port = 6,
2239 	.ops = &gswip_xrx300_switch_ops,
2240 };
2241 
2242 static const struct of_device_id gswip_of_match[] = {
2243 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2244 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2245 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2246 	{},
2247 };
2248 MODULE_DEVICE_TABLE(of, gswip_of_match);
2249 
2250 static struct platform_driver gswip_driver = {
2251 	.probe = gswip_probe,
2252 	.remove = gswip_remove,
2253 	.shutdown = gswip_shutdown,
2254 	.driver = {
2255 		.name = "gswip",
2256 		.of_match_table = gswip_of_match,
2257 	},
2258 };
2259 
2260 module_platform_driver(gswip_driver);
2261 
2262 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2263 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2264 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2265 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2266 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2267 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2268 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2269 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2270 MODULE_LICENSE("GPL v2");
2271