1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs 4 * 5 * Copyright (C) 2010 Lantiq Deutschland 6 * Copyright (C) 2012 John Crispin <john@phrozen.org> 7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de> 8 * 9 * The VLAN and bridge model the GSWIP hardware uses does not directly 10 * matches the model DSA uses. 11 * 12 * The hardware has 64 possible table entries for bridges with one VLAN 13 * ID, one flow id and a list of ports for each bridge. All entries which 14 * match the same flow ID are combined in the mac learning table, they 15 * act as one global bridge. 16 * The hardware does not support VLAN filter on the port, but on the 17 * bridge, this driver converts the DSA model to the hardware. 18 * 19 * The CPU gets all the exception frames which do not match any forwarding 20 * rule and the CPU port is also added to all bridges. This makes it possible 21 * to handle all the special cases easily in software. 22 * At the initialization the driver allocates one bridge table entry for 23 * each switch port which is used when the port is used without an 24 * explicit bridge. This prevents the frames from being forwarded 25 * between all LAN ports by default. 26 */ 27 28 #include <linux/clk.h> 29 #include <linux/delay.h> 30 #include <linux/etherdevice.h> 31 #include <linux/firmware.h> 32 #include <linux/if_bridge.h> 33 #include <linux/if_vlan.h> 34 #include <linux/iopoll.h> 35 #include <linux/mfd/syscon.h> 36 #include <linux/module.h> 37 #include <linux/of_mdio.h> 38 #include <linux/of_net.h> 39 #include <linux/of_platform.h> 40 #include <linux/phy.h> 41 #include <linux/phylink.h> 42 #include <linux/platform_device.h> 43 #include <linux/regmap.h> 44 #include <linux/reset.h> 45 #include <net/dsa.h> 46 #include <dt-bindings/mips/lantiq_rcu_gphy.h> 47 48 #include "lantiq_pce.h" 49 50 /* GSWIP MDIO Registers */ 51 #define GSWIP_MDIO_GLOB 0x00 52 #define GSWIP_MDIO_GLOB_ENABLE BIT(15) 53 #define GSWIP_MDIO_CTRL 0x08 54 #define GSWIP_MDIO_CTRL_BUSY BIT(12) 55 #define GSWIP_MDIO_CTRL_RD BIT(11) 56 #define GSWIP_MDIO_CTRL_WR BIT(10) 57 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f 58 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5 59 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f 60 #define GSWIP_MDIO_READ 0x09 61 #define GSWIP_MDIO_WRITE 0x0A 62 #define GSWIP_MDIO_MDC_CFG0 0x0B 63 #define GSWIP_MDIO_MDC_CFG1 0x0C 64 #define GSWIP_MDIO_PHYp(p) (0x15 - (p)) 65 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000 66 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000 67 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000 68 #define GSWIP_MDIO_PHY_LINK_UP 0x2000 69 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800 70 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800 71 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000 72 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800 73 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000 74 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600 75 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000 76 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200 77 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600 78 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180 79 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000 80 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100 81 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180 82 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060 83 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000 84 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020 85 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060 86 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f 87 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \ 88 GSWIP_MDIO_PHY_FCONRX_MASK | \ 89 GSWIP_MDIO_PHY_FCONTX_MASK | \ 90 GSWIP_MDIO_PHY_LINK_MASK | \ 91 GSWIP_MDIO_PHY_SPEED_MASK | \ 92 GSWIP_MDIO_PHY_FDUP_MASK) 93 94 /* GSWIP MII Registers */ 95 #define GSWIP_MII_CFGp(p) (0x2 * (p)) 96 #define GSWIP_MII_CFG_RESET BIT(15) 97 #define GSWIP_MII_CFG_EN BIT(14) 98 #define GSWIP_MII_CFG_ISOLATE BIT(13) 99 #define GSWIP_MII_CFG_LDCLKDIS BIT(12) 100 #define GSWIP_MII_CFG_RGMII_IBS BIT(8) 101 #define GSWIP_MII_CFG_RMII_CLK BIT(7) 102 #define GSWIP_MII_CFG_MODE_MIIP 0x0 103 #define GSWIP_MII_CFG_MODE_MIIM 0x1 104 #define GSWIP_MII_CFG_MODE_RMIIP 0x2 105 #define GSWIP_MII_CFG_MODE_RMIIM 0x3 106 #define GSWIP_MII_CFG_MODE_RGMII 0x4 107 #define GSWIP_MII_CFG_MODE_GMII 0x9 108 #define GSWIP_MII_CFG_MODE_MASK 0xf 109 #define GSWIP_MII_CFG_RATE_M2P5 0x00 110 #define GSWIP_MII_CFG_RATE_M25 0x10 111 #define GSWIP_MII_CFG_RATE_M125 0x20 112 #define GSWIP_MII_CFG_RATE_M50 0x30 113 #define GSWIP_MII_CFG_RATE_AUTO 0x40 114 #define GSWIP_MII_CFG_RATE_MASK 0x70 115 #define GSWIP_MII_PCDU0 0x01 116 #define GSWIP_MII_PCDU1 0x03 117 #define GSWIP_MII_PCDU5 0x05 118 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0) 119 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7) 120 121 /* GSWIP Core Registers */ 122 #define GSWIP_SWRES 0x000 123 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */ 124 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */ 125 #define GSWIP_VERSION 0x013 126 #define GSWIP_VERSION_REV_SHIFT 0 127 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0) 128 #define GSWIP_VERSION_MOD_SHIFT 8 129 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8) 130 #define GSWIP_VERSION_2_0 0x100 131 #define GSWIP_VERSION_2_1 0x021 132 #define GSWIP_VERSION_2_2 0x122 133 #define GSWIP_VERSION_2_2_ETC 0x022 134 135 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x)) 136 #define GSWIP_BM_RAM_ADDR 0x044 137 #define GSWIP_BM_RAM_CTRL 0x045 138 #define GSWIP_BM_RAM_CTRL_BAS BIT(15) 139 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5) 140 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0) 141 #define GSWIP_BM_QUEUE_GCTRL 0x04A 142 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10) 143 /* buffer management Port Configuration Register */ 144 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2)) 145 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */ 146 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */ 147 /* buffer management Port Control Register */ 148 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2)) 149 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */ 150 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */ 151 152 /* PCE */ 153 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x)) 154 #define GSWIP_PCE_TBL_MASK 0x448 155 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x)) 156 #define GSWIP_PCE_TBL_ADDR 0x44E 157 #define GSWIP_PCE_TBL_CTRL 0x44F 158 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15) 159 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13) 160 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12) 161 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11) 162 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7) 163 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5) 164 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00 165 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20 166 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40 167 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60 168 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0) 169 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */ 170 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */ 171 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */ 172 #define GSWIP_PCE_GCTRL_0 0x456 173 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */ 174 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3) 175 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */ 176 #define GSWIP_PCE_GCTRL_1 0x457 177 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */ 178 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */ 179 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA)) 180 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */ 181 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */ 182 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */ 183 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0 184 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1 185 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2 186 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3 187 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7 188 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0) 189 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA)) 190 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */ 191 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */ 192 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */ 193 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */ 194 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */ 195 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA)) 196 197 #define GSWIP_MAC_FLEN 0x8C5 198 #define GSWIP_MAC_CTRL_0p(p) (0x903 + ((p) * 0xC)) 199 #define GSWIP_MAC_CTRL_0_PADEN BIT(8) 200 #define GSWIP_MAC_CTRL_0_FCS_EN BIT(7) 201 #define GSWIP_MAC_CTRL_0_FCON_MASK 0x0070 202 #define GSWIP_MAC_CTRL_0_FCON_AUTO 0x0000 203 #define GSWIP_MAC_CTRL_0_FCON_RX 0x0010 204 #define GSWIP_MAC_CTRL_0_FCON_TX 0x0020 205 #define GSWIP_MAC_CTRL_0_FCON_RXTX 0x0030 206 #define GSWIP_MAC_CTRL_0_FCON_NONE 0x0040 207 #define GSWIP_MAC_CTRL_0_FDUP_MASK 0x000C 208 #define GSWIP_MAC_CTRL_0_FDUP_AUTO 0x0000 209 #define GSWIP_MAC_CTRL_0_FDUP_EN 0x0004 210 #define GSWIP_MAC_CTRL_0_FDUP_DIS 0x000C 211 #define GSWIP_MAC_CTRL_0_GMII_MASK 0x0003 212 #define GSWIP_MAC_CTRL_0_GMII_AUTO 0x0000 213 #define GSWIP_MAC_CTRL_0_GMII_MII 0x0001 214 #define GSWIP_MAC_CTRL_0_GMII_RGMII 0x0002 215 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC)) 216 #define GSWIP_MAC_CTRL_2_LCHKL BIT(2) /* Frame Length Check Long Enable */ 217 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */ 218 219 /* Ethernet Switch Fetch DMA Port Control Register */ 220 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6)) 221 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */ 222 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */ 223 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */ 224 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */ 225 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) 226 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) 227 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) 228 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) 229 230 /* Ethernet Switch Store DMA Port Control Register */ 231 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6)) 232 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */ 233 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */ 234 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(3) /* Pause Frame Forwarding */ 235 236 #define GSWIP_TABLE_ACTIVE_VLAN 0x01 237 #define GSWIP_TABLE_VLAN_MAPPING 0x02 238 #define GSWIP_TABLE_MAC_BRIDGE 0x0b 239 #define GSWIP_TABLE_MAC_BRIDGE_KEY3_FID GENMASK(5, 0) /* Filtering identifier */ 240 #define GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT GENMASK(7, 4) /* Port on learned entries */ 241 #define GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC BIT(0) /* Static, non-aging entry */ 242 243 #define XRX200_GPHY_FW_ALIGN (16 * 1024) 244 245 /* Maximum packet size supported by the switch. In theory this should be 10240, 246 * but long packets currently cause lock-ups with an MTU of over 2526. Medium 247 * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP 248 * over 2526), hence an MTU value of 2400 seems safe. This issue only affects 249 * packet reception. This is probably caused by the PPA engine, which is on the 250 * RX part of the device. Packet transmission works properly up to 10240. 251 */ 252 #define GSWIP_MAX_PACKET_LENGTH 2400 253 254 struct gswip_hw_info { 255 int max_ports; 256 int cpu_port; 257 const struct dsa_switch_ops *ops; 258 }; 259 260 struct xway_gphy_match_data { 261 char *fe_firmware_name; 262 char *ge_firmware_name; 263 }; 264 265 struct gswip_gphy_fw { 266 struct clk *clk_gate; 267 struct reset_control *reset; 268 u32 fw_addr_offset; 269 char *fw_name; 270 }; 271 272 struct gswip_vlan { 273 struct net_device *bridge; 274 u16 vid; 275 u8 fid; 276 }; 277 278 struct gswip_priv { 279 __iomem void *gswip; 280 __iomem void *mdio; 281 __iomem void *mii; 282 const struct gswip_hw_info *hw_info; 283 const struct xway_gphy_match_data *gphy_fw_name_cfg; 284 struct dsa_switch *ds; 285 struct device *dev; 286 struct regmap *rcu_regmap; 287 struct gswip_vlan vlans[64]; 288 int num_gphy_fw; 289 struct gswip_gphy_fw *gphy_fw; 290 u32 port_vlan_filter; 291 struct mutex pce_table_lock; 292 }; 293 294 struct gswip_pce_table_entry { 295 u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index 296 u16 table; // PCE_TBL_CTRL.ADDR = pData->table 297 u16 key[8]; 298 u16 val[5]; 299 u16 mask; 300 u8 gmap; 301 bool type; 302 bool valid; 303 bool key_mode; 304 }; 305 306 struct gswip_rmon_cnt_desc { 307 unsigned int size; 308 unsigned int offset; 309 const char *name; 310 }; 311 312 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name} 313 314 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = { 315 /** Receive Packet Count (only packets that are accepted and not discarded). */ 316 MIB_DESC(1, 0x1F, "RxGoodPkts"), 317 MIB_DESC(1, 0x23, "RxUnicastPkts"), 318 MIB_DESC(1, 0x22, "RxMulticastPkts"), 319 MIB_DESC(1, 0x21, "RxFCSErrorPkts"), 320 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"), 321 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"), 322 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"), 323 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"), 324 MIB_DESC(1, 0x20, "RxGoodPausePkts"), 325 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"), 326 MIB_DESC(1, 0x12, "Rx64BytePkts"), 327 MIB_DESC(1, 0x13, "Rx127BytePkts"), 328 MIB_DESC(1, 0x14, "Rx255BytePkts"), 329 MIB_DESC(1, 0x15, "Rx511BytePkts"), 330 MIB_DESC(1, 0x16, "Rx1023BytePkts"), 331 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */ 332 MIB_DESC(1, 0x17, "RxMaxBytePkts"), 333 MIB_DESC(1, 0x18, "RxDroppedPkts"), 334 MIB_DESC(1, 0x19, "RxFilteredPkts"), 335 MIB_DESC(2, 0x24, "RxGoodBytes"), 336 MIB_DESC(2, 0x26, "RxBadBytes"), 337 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"), 338 MIB_DESC(1, 0x0C, "TxGoodPkts"), 339 MIB_DESC(1, 0x06, "TxUnicastPkts"), 340 MIB_DESC(1, 0x07, "TxMulticastPkts"), 341 MIB_DESC(1, 0x00, "Tx64BytePkts"), 342 MIB_DESC(1, 0x01, "Tx127BytePkts"), 343 MIB_DESC(1, 0x02, "Tx255BytePkts"), 344 MIB_DESC(1, 0x03, "Tx511BytePkts"), 345 MIB_DESC(1, 0x04, "Tx1023BytePkts"), 346 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */ 347 MIB_DESC(1, 0x05, "TxMaxBytePkts"), 348 MIB_DESC(1, 0x08, "TxSingleCollCount"), 349 MIB_DESC(1, 0x09, "TxMultCollCount"), 350 MIB_DESC(1, 0x0A, "TxLateCollCount"), 351 MIB_DESC(1, 0x0B, "TxExcessCollCount"), 352 MIB_DESC(1, 0x0D, "TxPauseCount"), 353 MIB_DESC(1, 0x10, "TxDroppedPkts"), 354 MIB_DESC(2, 0x0E, "TxGoodBytes"), 355 }; 356 357 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset) 358 { 359 return __raw_readl(priv->gswip + (offset * 4)); 360 } 361 362 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset) 363 { 364 __raw_writel(val, priv->gswip + (offset * 4)); 365 } 366 367 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set, 368 u32 offset) 369 { 370 u32 val = gswip_switch_r(priv, offset); 371 372 val &= ~(clear); 373 val |= set; 374 gswip_switch_w(priv, val, offset); 375 } 376 377 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset, 378 u32 cleared) 379 { 380 u32 val; 381 382 return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val, 383 (val & cleared) == 0, 20, 50000); 384 } 385 386 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset) 387 { 388 return __raw_readl(priv->mdio + (offset * 4)); 389 } 390 391 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset) 392 { 393 __raw_writel(val, priv->mdio + (offset * 4)); 394 } 395 396 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set, 397 u32 offset) 398 { 399 u32 val = gswip_mdio_r(priv, offset); 400 401 val &= ~(clear); 402 val |= set; 403 gswip_mdio_w(priv, val, offset); 404 } 405 406 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset) 407 { 408 return __raw_readl(priv->mii + (offset * 4)); 409 } 410 411 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset) 412 { 413 __raw_writel(val, priv->mii + (offset * 4)); 414 } 415 416 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set, 417 u32 offset) 418 { 419 u32 val = gswip_mii_r(priv, offset); 420 421 val &= ~(clear); 422 val |= set; 423 gswip_mii_w(priv, val, offset); 424 } 425 426 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set, 427 int port) 428 { 429 /* There's no MII_CFG register for the CPU port */ 430 if (!dsa_is_cpu_port(priv->ds, port)) 431 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port)); 432 } 433 434 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set, 435 int port) 436 { 437 switch (port) { 438 case 0: 439 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0); 440 break; 441 case 1: 442 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1); 443 break; 444 case 5: 445 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5); 446 break; 447 } 448 } 449 450 static int gswip_mdio_poll(struct gswip_priv *priv) 451 { 452 int cnt = 100; 453 454 while (likely(cnt--)) { 455 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL); 456 457 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0) 458 return 0; 459 usleep_range(20, 40); 460 } 461 462 return -ETIMEDOUT; 463 } 464 465 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val) 466 { 467 struct gswip_priv *priv = bus->priv; 468 int err; 469 470 err = gswip_mdio_poll(priv); 471 if (err) { 472 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); 473 return err; 474 } 475 476 gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE); 477 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR | 478 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) | 479 (reg & GSWIP_MDIO_CTRL_REGAD_MASK), 480 GSWIP_MDIO_CTRL); 481 482 return 0; 483 } 484 485 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg) 486 { 487 struct gswip_priv *priv = bus->priv; 488 int err; 489 490 err = gswip_mdio_poll(priv); 491 if (err) { 492 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); 493 return err; 494 } 495 496 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD | 497 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) | 498 (reg & GSWIP_MDIO_CTRL_REGAD_MASK), 499 GSWIP_MDIO_CTRL); 500 501 err = gswip_mdio_poll(priv); 502 if (err) { 503 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); 504 return err; 505 } 506 507 return gswip_mdio_r(priv, GSWIP_MDIO_READ); 508 } 509 510 static int gswip_mdio(struct gswip_priv *priv) 511 { 512 struct device_node *mdio_np, *switch_np = priv->dev->of_node; 513 struct device *dev = priv->dev; 514 struct mii_bus *bus; 515 int err = 0; 516 517 mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio"); 518 if (!of_device_is_available(mdio_np)) 519 goto out_put_node; 520 521 bus = devm_mdiobus_alloc(dev); 522 if (!bus) { 523 err = -ENOMEM; 524 goto out_put_node; 525 } 526 527 bus->priv = priv; 528 bus->read = gswip_mdio_rd; 529 bus->write = gswip_mdio_wr; 530 bus->name = "lantiq,xrx200-mdio"; 531 snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev)); 532 bus->parent = priv->dev; 533 534 err = devm_of_mdiobus_register(dev, bus, mdio_np); 535 536 out_put_node: 537 of_node_put(mdio_np); 538 539 return err; 540 } 541 542 static int gswip_pce_table_entry_read(struct gswip_priv *priv, 543 struct gswip_pce_table_entry *tbl) 544 { 545 int i; 546 int err; 547 u16 crtl; 548 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD : 549 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD; 550 551 mutex_lock(&priv->pce_table_lock); 552 553 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 554 GSWIP_PCE_TBL_CTRL_BAS); 555 if (err) { 556 mutex_unlock(&priv->pce_table_lock); 557 return err; 558 } 559 560 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR); 561 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | 562 GSWIP_PCE_TBL_CTRL_OPMOD_MASK, 563 tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS, 564 GSWIP_PCE_TBL_CTRL); 565 566 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 567 GSWIP_PCE_TBL_CTRL_BAS); 568 if (err) { 569 mutex_unlock(&priv->pce_table_lock); 570 return err; 571 } 572 573 for (i = 0; i < ARRAY_SIZE(tbl->key); i++) 574 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i)); 575 576 for (i = 0; i < ARRAY_SIZE(tbl->val); i++) 577 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i)); 578 579 tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK); 580 581 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL); 582 583 tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE); 584 tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD); 585 tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7; 586 587 mutex_unlock(&priv->pce_table_lock); 588 589 return 0; 590 } 591 592 static int gswip_pce_table_entry_write(struct gswip_priv *priv, 593 struct gswip_pce_table_entry *tbl) 594 { 595 int i; 596 int err; 597 u16 crtl; 598 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR : 599 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR; 600 601 mutex_lock(&priv->pce_table_lock); 602 603 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 604 GSWIP_PCE_TBL_CTRL_BAS); 605 if (err) { 606 mutex_unlock(&priv->pce_table_lock); 607 return err; 608 } 609 610 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR); 611 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | 612 GSWIP_PCE_TBL_CTRL_OPMOD_MASK, 613 tbl->table | addr_mode, 614 GSWIP_PCE_TBL_CTRL); 615 616 for (i = 0; i < ARRAY_SIZE(tbl->key); i++) 617 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i)); 618 619 for (i = 0; i < ARRAY_SIZE(tbl->val); i++) 620 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i)); 621 622 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | 623 GSWIP_PCE_TBL_CTRL_OPMOD_MASK, 624 tbl->table | addr_mode, 625 GSWIP_PCE_TBL_CTRL); 626 627 gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK); 628 629 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL); 630 crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD | 631 GSWIP_PCE_TBL_CTRL_GMAP_MASK); 632 if (tbl->type) 633 crtl |= GSWIP_PCE_TBL_CTRL_TYPE; 634 if (tbl->valid) 635 crtl |= GSWIP_PCE_TBL_CTRL_VLD; 636 crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK; 637 crtl |= GSWIP_PCE_TBL_CTRL_BAS; 638 gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL); 639 640 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 641 GSWIP_PCE_TBL_CTRL_BAS); 642 643 mutex_unlock(&priv->pce_table_lock); 644 645 return err; 646 } 647 648 /* Add the LAN port into a bridge with the CPU port by 649 * default. This prevents automatic forwarding of 650 * packages between the LAN ports when no explicit 651 * bridge is configured. 652 */ 653 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add) 654 { 655 struct gswip_pce_table_entry vlan_active = {0,}; 656 struct gswip_pce_table_entry vlan_mapping = {0,}; 657 unsigned int cpu_port = priv->hw_info->cpu_port; 658 int err; 659 660 vlan_active.index = port + 1; 661 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; 662 vlan_active.key[0] = 0; /* vid */ 663 vlan_active.val[0] = port + 1 /* fid */; 664 vlan_active.valid = add; 665 err = gswip_pce_table_entry_write(priv, &vlan_active); 666 if (err) { 667 dev_err(priv->dev, "failed to write active VLAN: %d\n", err); 668 return err; 669 } 670 671 if (!add) 672 return 0; 673 674 vlan_mapping.index = port + 1; 675 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 676 vlan_mapping.val[0] = 0 /* vid */; 677 vlan_mapping.val[1] = BIT(port) | BIT(cpu_port); 678 vlan_mapping.val[2] = 0; 679 err = gswip_pce_table_entry_write(priv, &vlan_mapping); 680 if (err) { 681 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); 682 return err; 683 } 684 685 return 0; 686 } 687 688 static int gswip_port_enable(struct dsa_switch *ds, int port, 689 struct phy_device *phydev) 690 { 691 struct gswip_priv *priv = ds->priv; 692 int err; 693 694 if (!dsa_is_cpu_port(ds, port)) { 695 u32 mdio_phy = 0; 696 697 err = gswip_add_single_port_br(priv, port, true); 698 if (err) 699 return err; 700 701 if (phydev) 702 mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK; 703 704 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy, 705 GSWIP_MDIO_PHYp(port)); 706 } 707 708 /* RMON Counter Enable for port */ 709 gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port)); 710 711 /* enable port fetch/store dma & VLAN Modification */ 712 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN | 713 GSWIP_FDMA_PCTRL_VLANMOD_BOTH, 714 GSWIP_FDMA_PCTRLp(port)); 715 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN, 716 GSWIP_SDMA_PCTRLp(port)); 717 718 return 0; 719 } 720 721 static void gswip_port_disable(struct dsa_switch *ds, int port) 722 { 723 struct gswip_priv *priv = ds->priv; 724 725 gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0, 726 GSWIP_FDMA_PCTRLp(port)); 727 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0, 728 GSWIP_SDMA_PCTRLp(port)); 729 } 730 731 static int gswip_pce_load_microcode(struct gswip_priv *priv) 732 { 733 int i; 734 int err; 735 736 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | 737 GSWIP_PCE_TBL_CTRL_OPMOD_MASK, 738 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL); 739 gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK); 740 741 for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) { 742 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR); 743 gswip_switch_w(priv, gswip_pce_microcode[i].val_0, 744 GSWIP_PCE_TBL_VAL(0)); 745 gswip_switch_w(priv, gswip_pce_microcode[i].val_1, 746 GSWIP_PCE_TBL_VAL(1)); 747 gswip_switch_w(priv, gswip_pce_microcode[i].val_2, 748 GSWIP_PCE_TBL_VAL(2)); 749 gswip_switch_w(priv, gswip_pce_microcode[i].val_3, 750 GSWIP_PCE_TBL_VAL(3)); 751 752 /* start the table access: */ 753 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS, 754 GSWIP_PCE_TBL_CTRL); 755 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 756 GSWIP_PCE_TBL_CTRL_BAS); 757 if (err) 758 return err; 759 } 760 761 /* tell the switch that the microcode is loaded */ 762 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID, 763 GSWIP_PCE_GCTRL_0); 764 765 return 0; 766 } 767 768 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port, 769 bool vlan_filtering, 770 struct netlink_ext_ack *extack) 771 { 772 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port)); 773 struct gswip_priv *priv = ds->priv; 774 775 /* Do not allow changing the VLAN filtering options while in bridge */ 776 if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) { 777 NL_SET_ERR_MSG_MOD(extack, 778 "Dynamic toggling of vlan_filtering not supported"); 779 return -EIO; 780 } 781 782 if (vlan_filtering) { 783 /* Use tag based VLAN */ 784 gswip_switch_mask(priv, 785 GSWIP_PCE_VCTRL_VSR, 786 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR | 787 GSWIP_PCE_VCTRL_VEMR, 788 GSWIP_PCE_VCTRL(port)); 789 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0, 790 GSWIP_PCE_PCTRL_0p(port)); 791 } else { 792 /* Use port based VLAN */ 793 gswip_switch_mask(priv, 794 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR | 795 GSWIP_PCE_VCTRL_VEMR, 796 GSWIP_PCE_VCTRL_VSR, 797 GSWIP_PCE_VCTRL(port)); 798 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM, 799 GSWIP_PCE_PCTRL_0p(port)); 800 } 801 802 return 0; 803 } 804 805 static int gswip_setup(struct dsa_switch *ds) 806 { 807 struct gswip_priv *priv = ds->priv; 808 unsigned int cpu_port = priv->hw_info->cpu_port; 809 int i; 810 int err; 811 812 gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES); 813 usleep_range(5000, 10000); 814 gswip_switch_w(priv, 0, GSWIP_SWRES); 815 816 /* disable port fetch/store dma on all ports */ 817 for (i = 0; i < priv->hw_info->max_ports; i++) { 818 gswip_port_disable(ds, i); 819 gswip_port_vlan_filtering(ds, i, false, NULL); 820 } 821 822 /* enable Switch */ 823 gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB); 824 825 err = gswip_pce_load_microcode(priv); 826 if (err) { 827 dev_err(priv->dev, "writing PCE microcode failed, %i\n", err); 828 return err; 829 } 830 831 /* Default unknown Broadcast/Multicast/Unicast port maps */ 832 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1); 833 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2); 834 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3); 835 836 /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an 837 * interoperability problem with this auto polling mechanism because 838 * their status registers think that the link is in a different state 839 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set 840 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the 841 * auto polling state machine consider the link being negotiated with 842 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads 843 * to the switch port being completely dead (RX and TX are both not 844 * working). 845 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F 846 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes 847 * it would work fine for a few minutes to hours and then stop, on 848 * other device it would no traffic could be sent or received at all. 849 * Testing shows that when PHY auto polling is disabled these problems 850 * go away. 851 */ 852 gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0); 853 854 /* Configure the MDIO Clock 2.5 MHz */ 855 gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1); 856 857 /* Disable the xMII interface and clear it's isolation bit */ 858 for (i = 0; i < priv->hw_info->max_ports; i++) 859 gswip_mii_mask_cfg(priv, 860 GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE, 861 0, i); 862 863 /* enable special tag insertion on cpu port */ 864 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN, 865 GSWIP_FDMA_PCTRLp(cpu_port)); 866 867 /* accept special tag in ingress direction */ 868 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS, 869 GSWIP_PCE_PCTRL_0p(cpu_port)); 870 871 gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD, 872 GSWIP_BM_QUEUE_GCTRL); 873 874 /* VLAN aware Switching */ 875 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0); 876 877 /* Flush MAC Table */ 878 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0); 879 880 err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0, 881 GSWIP_PCE_GCTRL_0_MTFL); 882 if (err) { 883 dev_err(priv->dev, "MAC flushing didn't finish\n"); 884 return err; 885 } 886 887 ds->mtu_enforcement_ingress = true; 888 889 ds->configure_vlan_while_not_filtering = false; 890 891 return 0; 892 } 893 894 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds, 895 int port, 896 enum dsa_tag_protocol mp) 897 { 898 return DSA_TAG_PROTO_GSWIP; 899 } 900 901 static int gswip_vlan_active_create(struct gswip_priv *priv, 902 struct net_device *bridge, 903 int fid, u16 vid) 904 { 905 struct gswip_pce_table_entry vlan_active = {0,}; 906 unsigned int max_ports = priv->hw_info->max_ports; 907 int idx = -1; 908 int err; 909 int i; 910 911 /* Look for a free slot */ 912 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 913 if (!priv->vlans[i].bridge) { 914 idx = i; 915 break; 916 } 917 } 918 919 if (idx == -1) 920 return -ENOSPC; 921 922 if (fid == -1) 923 fid = idx; 924 925 vlan_active.index = idx; 926 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; 927 vlan_active.key[0] = vid; 928 vlan_active.val[0] = fid; 929 vlan_active.valid = true; 930 931 err = gswip_pce_table_entry_write(priv, &vlan_active); 932 if (err) { 933 dev_err(priv->dev, "failed to write active VLAN: %d\n", err); 934 return err; 935 } 936 937 priv->vlans[idx].bridge = bridge; 938 priv->vlans[idx].vid = vid; 939 priv->vlans[idx].fid = fid; 940 941 return idx; 942 } 943 944 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx) 945 { 946 struct gswip_pce_table_entry vlan_active = {0,}; 947 int err; 948 949 vlan_active.index = idx; 950 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; 951 vlan_active.valid = false; 952 err = gswip_pce_table_entry_write(priv, &vlan_active); 953 if (err) 954 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err); 955 priv->vlans[idx].bridge = NULL; 956 957 return err; 958 } 959 960 static int gswip_vlan_add_unaware(struct gswip_priv *priv, 961 struct net_device *bridge, int port) 962 { 963 struct gswip_pce_table_entry vlan_mapping = {0,}; 964 unsigned int max_ports = priv->hw_info->max_ports; 965 unsigned int cpu_port = priv->hw_info->cpu_port; 966 bool active_vlan_created = false; 967 int idx = -1; 968 int i; 969 int err; 970 971 /* Check if there is already a page for this bridge */ 972 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 973 if (priv->vlans[i].bridge == bridge) { 974 idx = i; 975 break; 976 } 977 } 978 979 /* If this bridge is not programmed yet, add a Active VLAN table 980 * entry in a free slot and prepare the VLAN mapping table entry. 981 */ 982 if (idx == -1) { 983 idx = gswip_vlan_active_create(priv, bridge, -1, 0); 984 if (idx < 0) 985 return idx; 986 active_vlan_created = true; 987 988 vlan_mapping.index = idx; 989 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 990 /* VLAN ID byte, maps to the VLAN ID of vlan active table */ 991 vlan_mapping.val[0] = 0; 992 } else { 993 /* Read the existing VLAN mapping entry from the switch */ 994 vlan_mapping.index = idx; 995 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 996 err = gswip_pce_table_entry_read(priv, &vlan_mapping); 997 if (err) { 998 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", 999 err); 1000 return err; 1001 } 1002 } 1003 1004 /* Update the VLAN mapping entry and write it to the switch */ 1005 vlan_mapping.val[1] |= BIT(cpu_port); 1006 vlan_mapping.val[1] |= BIT(port); 1007 err = gswip_pce_table_entry_write(priv, &vlan_mapping); 1008 if (err) { 1009 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); 1010 /* In case an Active VLAN was creaetd delete it again */ 1011 if (active_vlan_created) 1012 gswip_vlan_active_remove(priv, idx); 1013 return err; 1014 } 1015 1016 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port)); 1017 return 0; 1018 } 1019 1020 static int gswip_vlan_add_aware(struct gswip_priv *priv, 1021 struct net_device *bridge, int port, 1022 u16 vid, bool untagged, 1023 bool pvid) 1024 { 1025 struct gswip_pce_table_entry vlan_mapping = {0,}; 1026 unsigned int max_ports = priv->hw_info->max_ports; 1027 unsigned int cpu_port = priv->hw_info->cpu_port; 1028 bool active_vlan_created = false; 1029 int idx = -1; 1030 int fid = -1; 1031 int i; 1032 int err; 1033 1034 /* Check if there is already a page for this bridge */ 1035 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 1036 if (priv->vlans[i].bridge == bridge) { 1037 if (fid != -1 && fid != priv->vlans[i].fid) 1038 dev_err(priv->dev, "one bridge with multiple flow ids\n"); 1039 fid = priv->vlans[i].fid; 1040 if (priv->vlans[i].vid == vid) { 1041 idx = i; 1042 break; 1043 } 1044 } 1045 } 1046 1047 /* If this bridge is not programmed yet, add a Active VLAN table 1048 * entry in a free slot and prepare the VLAN mapping table entry. 1049 */ 1050 if (idx == -1) { 1051 idx = gswip_vlan_active_create(priv, bridge, fid, vid); 1052 if (idx < 0) 1053 return idx; 1054 active_vlan_created = true; 1055 1056 vlan_mapping.index = idx; 1057 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 1058 /* VLAN ID byte, maps to the VLAN ID of vlan active table */ 1059 vlan_mapping.val[0] = vid; 1060 } else { 1061 /* Read the existing VLAN mapping entry from the switch */ 1062 vlan_mapping.index = idx; 1063 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 1064 err = gswip_pce_table_entry_read(priv, &vlan_mapping); 1065 if (err) { 1066 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", 1067 err); 1068 return err; 1069 } 1070 } 1071 1072 vlan_mapping.val[0] = vid; 1073 /* Update the VLAN mapping entry and write it to the switch */ 1074 vlan_mapping.val[1] |= BIT(cpu_port); 1075 vlan_mapping.val[2] |= BIT(cpu_port); 1076 vlan_mapping.val[1] |= BIT(port); 1077 if (untagged) 1078 vlan_mapping.val[2] &= ~BIT(port); 1079 else 1080 vlan_mapping.val[2] |= BIT(port); 1081 err = gswip_pce_table_entry_write(priv, &vlan_mapping); 1082 if (err) { 1083 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); 1084 /* In case an Active VLAN was creaetd delete it again */ 1085 if (active_vlan_created) 1086 gswip_vlan_active_remove(priv, idx); 1087 return err; 1088 } 1089 1090 if (pvid) 1091 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port)); 1092 1093 return 0; 1094 } 1095 1096 static int gswip_vlan_remove(struct gswip_priv *priv, 1097 struct net_device *bridge, int port, 1098 u16 vid, bool pvid, bool vlan_aware) 1099 { 1100 struct gswip_pce_table_entry vlan_mapping = {0,}; 1101 unsigned int max_ports = priv->hw_info->max_ports; 1102 unsigned int cpu_port = priv->hw_info->cpu_port; 1103 int idx = -1; 1104 int i; 1105 int err; 1106 1107 /* Check if there is already a page for this bridge */ 1108 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 1109 if (priv->vlans[i].bridge == bridge && 1110 (!vlan_aware || priv->vlans[i].vid == vid)) { 1111 idx = i; 1112 break; 1113 } 1114 } 1115 1116 if (idx == -1) { 1117 dev_err(priv->dev, "bridge to leave does not exists\n"); 1118 return -ENOENT; 1119 } 1120 1121 vlan_mapping.index = idx; 1122 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 1123 err = gswip_pce_table_entry_read(priv, &vlan_mapping); 1124 if (err) { 1125 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err); 1126 return err; 1127 } 1128 1129 vlan_mapping.val[1] &= ~BIT(port); 1130 vlan_mapping.val[2] &= ~BIT(port); 1131 err = gswip_pce_table_entry_write(priv, &vlan_mapping); 1132 if (err) { 1133 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); 1134 return err; 1135 } 1136 1137 /* In case all ports are removed from the bridge, remove the VLAN */ 1138 if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) { 1139 err = gswip_vlan_active_remove(priv, idx); 1140 if (err) { 1141 dev_err(priv->dev, "failed to write active VLAN: %d\n", 1142 err); 1143 return err; 1144 } 1145 } 1146 1147 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */ 1148 if (pvid) 1149 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port)); 1150 1151 return 0; 1152 } 1153 1154 static int gswip_port_bridge_join(struct dsa_switch *ds, int port, 1155 struct dsa_bridge bridge, 1156 bool *tx_fwd_offload, 1157 struct netlink_ext_ack *extack) 1158 { 1159 struct net_device *br = bridge.dev; 1160 struct gswip_priv *priv = ds->priv; 1161 int err; 1162 1163 /* When the bridge uses VLAN filtering we have to configure VLAN 1164 * specific bridges. No bridge is configured here. 1165 */ 1166 if (!br_vlan_enabled(br)) { 1167 err = gswip_vlan_add_unaware(priv, br, port); 1168 if (err) 1169 return err; 1170 priv->port_vlan_filter &= ~BIT(port); 1171 } else { 1172 priv->port_vlan_filter |= BIT(port); 1173 } 1174 return gswip_add_single_port_br(priv, port, false); 1175 } 1176 1177 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port, 1178 struct dsa_bridge bridge) 1179 { 1180 struct net_device *br = bridge.dev; 1181 struct gswip_priv *priv = ds->priv; 1182 1183 gswip_add_single_port_br(priv, port, true); 1184 1185 /* When the bridge uses VLAN filtering we have to configure VLAN 1186 * specific bridges. No bridge is configured here. 1187 */ 1188 if (!br_vlan_enabled(br)) 1189 gswip_vlan_remove(priv, br, port, 0, true, false); 1190 } 1191 1192 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port, 1193 const struct switchdev_obj_port_vlan *vlan, 1194 struct netlink_ext_ack *extack) 1195 { 1196 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port)); 1197 struct gswip_priv *priv = ds->priv; 1198 unsigned int max_ports = priv->hw_info->max_ports; 1199 int pos = max_ports; 1200 int i, idx = -1; 1201 1202 /* We only support VLAN filtering on bridges */ 1203 if (!dsa_is_cpu_port(ds, port) && !bridge) 1204 return -EOPNOTSUPP; 1205 1206 /* Check if there is already a page for this VLAN */ 1207 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 1208 if (priv->vlans[i].bridge == bridge && 1209 priv->vlans[i].vid == vlan->vid) { 1210 idx = i; 1211 break; 1212 } 1213 } 1214 1215 /* If this VLAN is not programmed yet, we have to reserve 1216 * one entry in the VLAN table. Make sure we start at the 1217 * next position round. 1218 */ 1219 if (idx == -1) { 1220 /* Look for a free slot */ 1221 for (; pos < ARRAY_SIZE(priv->vlans); pos++) { 1222 if (!priv->vlans[pos].bridge) { 1223 idx = pos; 1224 pos++; 1225 break; 1226 } 1227 } 1228 1229 if (idx == -1) { 1230 NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table"); 1231 return -ENOSPC; 1232 } 1233 } 1234 1235 return 0; 1236 } 1237 1238 static int gswip_port_vlan_add(struct dsa_switch *ds, int port, 1239 const struct switchdev_obj_port_vlan *vlan, 1240 struct netlink_ext_ack *extack) 1241 { 1242 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port)); 1243 struct gswip_priv *priv = ds->priv; 1244 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1245 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1246 int err; 1247 1248 err = gswip_port_vlan_prepare(ds, port, vlan, extack); 1249 if (err) 1250 return err; 1251 1252 /* We have to receive all packets on the CPU port and should not 1253 * do any VLAN filtering here. This is also called with bridge 1254 * NULL and then we do not know for which bridge to configure 1255 * this. 1256 */ 1257 if (dsa_is_cpu_port(ds, port)) 1258 return 0; 1259 1260 return gswip_vlan_add_aware(priv, bridge, port, vlan->vid, 1261 untagged, pvid); 1262 } 1263 1264 static int gswip_port_vlan_del(struct dsa_switch *ds, int port, 1265 const struct switchdev_obj_port_vlan *vlan) 1266 { 1267 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port)); 1268 struct gswip_priv *priv = ds->priv; 1269 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1270 1271 /* We have to receive all packets on the CPU port and should not 1272 * do any VLAN filtering here. This is also called with bridge 1273 * NULL and then we do not know for which bridge to configure 1274 * this. 1275 */ 1276 if (dsa_is_cpu_port(ds, port)) 1277 return 0; 1278 1279 return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true); 1280 } 1281 1282 static void gswip_port_fast_age(struct dsa_switch *ds, int port) 1283 { 1284 struct gswip_priv *priv = ds->priv; 1285 struct gswip_pce_table_entry mac_bridge = {0,}; 1286 int i; 1287 int err; 1288 1289 for (i = 0; i < 2048; i++) { 1290 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; 1291 mac_bridge.index = i; 1292 1293 err = gswip_pce_table_entry_read(priv, &mac_bridge); 1294 if (err) { 1295 dev_err(priv->dev, "failed to read mac bridge: %d\n", 1296 err); 1297 return; 1298 } 1299 1300 if (!mac_bridge.valid) 1301 continue; 1302 1303 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC) 1304 continue; 1305 1306 if (port != FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT, 1307 mac_bridge.val[0])) 1308 continue; 1309 1310 mac_bridge.valid = false; 1311 err = gswip_pce_table_entry_write(priv, &mac_bridge); 1312 if (err) { 1313 dev_err(priv->dev, "failed to write mac bridge: %d\n", 1314 err); 1315 return; 1316 } 1317 } 1318 } 1319 1320 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1321 { 1322 struct gswip_priv *priv = ds->priv; 1323 u32 stp_state; 1324 1325 switch (state) { 1326 case BR_STATE_DISABLED: 1327 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0, 1328 GSWIP_SDMA_PCTRLp(port)); 1329 return; 1330 case BR_STATE_BLOCKING: 1331 case BR_STATE_LISTENING: 1332 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN; 1333 break; 1334 case BR_STATE_LEARNING: 1335 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING; 1336 break; 1337 case BR_STATE_FORWARDING: 1338 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING; 1339 break; 1340 default: 1341 dev_err(priv->dev, "invalid STP state: %d\n", state); 1342 return; 1343 } 1344 1345 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN, 1346 GSWIP_SDMA_PCTRLp(port)); 1347 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state, 1348 GSWIP_PCE_PCTRL_0p(port)); 1349 } 1350 1351 static int gswip_port_fdb(struct dsa_switch *ds, int port, 1352 const unsigned char *addr, u16 vid, bool add) 1353 { 1354 struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port)); 1355 struct gswip_priv *priv = ds->priv; 1356 struct gswip_pce_table_entry mac_bridge = {0,}; 1357 unsigned int max_ports = priv->hw_info->max_ports; 1358 int fid = -1; 1359 int i; 1360 int err; 1361 1362 if (!bridge) 1363 return -EINVAL; 1364 1365 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 1366 if (priv->vlans[i].bridge == bridge) { 1367 fid = priv->vlans[i].fid; 1368 break; 1369 } 1370 } 1371 1372 if (fid == -1) { 1373 dev_err(priv->dev, "no FID found for bridge %s\n", 1374 bridge->name); 1375 return -EINVAL; 1376 } 1377 1378 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; 1379 mac_bridge.key_mode = true; 1380 mac_bridge.key[0] = addr[5] | (addr[4] << 8); 1381 mac_bridge.key[1] = addr[3] | (addr[2] << 8); 1382 mac_bridge.key[2] = addr[1] | (addr[0] << 8); 1383 mac_bridge.key[3] = FIELD_PREP(GSWIP_TABLE_MAC_BRIDGE_KEY3_FID, fid); 1384 mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */ 1385 mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC; 1386 mac_bridge.valid = add; 1387 1388 err = gswip_pce_table_entry_write(priv, &mac_bridge); 1389 if (err) 1390 dev_err(priv->dev, "failed to write mac bridge: %d\n", err); 1391 1392 return err; 1393 } 1394 1395 static int gswip_port_fdb_add(struct dsa_switch *ds, int port, 1396 const unsigned char *addr, u16 vid, 1397 struct dsa_db db) 1398 { 1399 return gswip_port_fdb(ds, port, addr, vid, true); 1400 } 1401 1402 static int gswip_port_fdb_del(struct dsa_switch *ds, int port, 1403 const unsigned char *addr, u16 vid, 1404 struct dsa_db db) 1405 { 1406 return gswip_port_fdb(ds, port, addr, vid, false); 1407 } 1408 1409 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port, 1410 dsa_fdb_dump_cb_t *cb, void *data) 1411 { 1412 struct gswip_priv *priv = ds->priv; 1413 struct gswip_pce_table_entry mac_bridge = {0,}; 1414 unsigned char addr[ETH_ALEN]; 1415 int i; 1416 int err; 1417 1418 for (i = 0; i < 2048; i++) { 1419 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; 1420 mac_bridge.index = i; 1421 1422 err = gswip_pce_table_entry_read(priv, &mac_bridge); 1423 if (err) { 1424 dev_err(priv->dev, 1425 "failed to read mac bridge entry %d: %d\n", 1426 i, err); 1427 return err; 1428 } 1429 1430 if (!mac_bridge.valid) 1431 continue; 1432 1433 addr[5] = mac_bridge.key[0] & 0xff; 1434 addr[4] = (mac_bridge.key[0] >> 8) & 0xff; 1435 addr[3] = mac_bridge.key[1] & 0xff; 1436 addr[2] = (mac_bridge.key[1] >> 8) & 0xff; 1437 addr[1] = mac_bridge.key[2] & 0xff; 1438 addr[0] = (mac_bridge.key[2] >> 8) & 0xff; 1439 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC) { 1440 if (mac_bridge.val[0] & BIT(port)) { 1441 err = cb(addr, 0, true, data); 1442 if (err) 1443 return err; 1444 } 1445 } else { 1446 if (port == FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT, 1447 mac_bridge.val[0])) { 1448 err = cb(addr, 0, false, data); 1449 if (err) 1450 return err; 1451 } 1452 } 1453 } 1454 return 0; 1455 } 1456 1457 static int gswip_port_max_mtu(struct dsa_switch *ds, int port) 1458 { 1459 /* Includes 8 bytes for special header. */ 1460 return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN; 1461 } 1462 1463 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1464 { 1465 struct gswip_priv *priv = ds->priv; 1466 1467 /* CPU port always has maximum mtu of user ports, so use it to set 1468 * switch frame size, including 8 byte special header. 1469 */ 1470 if (dsa_is_cpu_port(ds, port)) { 1471 new_mtu += 8; 1472 gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN, 1473 GSWIP_MAC_FLEN); 1474 } 1475 1476 /* Enable MLEN for ports with non-standard MTUs, including the special 1477 * header on the CPU port added above. 1478 */ 1479 if (new_mtu != ETH_DATA_LEN) 1480 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN, 1481 GSWIP_MAC_CTRL_2p(port)); 1482 else 1483 gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0, 1484 GSWIP_MAC_CTRL_2p(port)); 1485 1486 return 0; 1487 } 1488 1489 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port, 1490 struct phylink_config *config) 1491 { 1492 switch (port) { 1493 case 0: 1494 case 1: 1495 phy_interface_set_rgmii(config->supported_interfaces); 1496 __set_bit(PHY_INTERFACE_MODE_MII, 1497 config->supported_interfaces); 1498 __set_bit(PHY_INTERFACE_MODE_REVMII, 1499 config->supported_interfaces); 1500 __set_bit(PHY_INTERFACE_MODE_RMII, 1501 config->supported_interfaces); 1502 break; 1503 1504 case 2: 1505 case 3: 1506 case 4: 1507 case 6: 1508 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 1509 config->supported_interfaces); 1510 break; 1511 1512 case 5: 1513 phy_interface_set_rgmii(config->supported_interfaces); 1514 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 1515 config->supported_interfaces); 1516 break; 1517 } 1518 1519 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 1520 MAC_10 | MAC_100 | MAC_1000; 1521 } 1522 1523 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port, 1524 struct phylink_config *config) 1525 { 1526 switch (port) { 1527 case 0: 1528 phy_interface_set_rgmii(config->supported_interfaces); 1529 __set_bit(PHY_INTERFACE_MODE_GMII, 1530 config->supported_interfaces); 1531 __set_bit(PHY_INTERFACE_MODE_RMII, 1532 config->supported_interfaces); 1533 break; 1534 1535 case 1: 1536 case 2: 1537 case 3: 1538 case 4: 1539 case 6: 1540 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 1541 config->supported_interfaces); 1542 break; 1543 1544 case 5: 1545 phy_interface_set_rgmii(config->supported_interfaces); 1546 __set_bit(PHY_INTERFACE_MODE_INTERNAL, 1547 config->supported_interfaces); 1548 __set_bit(PHY_INTERFACE_MODE_RMII, 1549 config->supported_interfaces); 1550 break; 1551 } 1552 1553 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 1554 MAC_10 | MAC_100 | MAC_1000; 1555 } 1556 1557 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link) 1558 { 1559 u32 mdio_phy; 1560 1561 if (link) 1562 mdio_phy = GSWIP_MDIO_PHY_LINK_UP; 1563 else 1564 mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN; 1565 1566 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy, 1567 GSWIP_MDIO_PHYp(port)); 1568 } 1569 1570 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed, 1571 phy_interface_t interface) 1572 { 1573 u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0; 1574 1575 switch (speed) { 1576 case SPEED_10: 1577 mdio_phy = GSWIP_MDIO_PHY_SPEED_M10; 1578 1579 if (interface == PHY_INTERFACE_MODE_RMII) 1580 mii_cfg = GSWIP_MII_CFG_RATE_M50; 1581 else 1582 mii_cfg = GSWIP_MII_CFG_RATE_M2P5; 1583 1584 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII; 1585 break; 1586 1587 case SPEED_100: 1588 mdio_phy = GSWIP_MDIO_PHY_SPEED_M100; 1589 1590 if (interface == PHY_INTERFACE_MODE_RMII) 1591 mii_cfg = GSWIP_MII_CFG_RATE_M50; 1592 else 1593 mii_cfg = GSWIP_MII_CFG_RATE_M25; 1594 1595 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII; 1596 break; 1597 1598 case SPEED_1000: 1599 mdio_phy = GSWIP_MDIO_PHY_SPEED_G1; 1600 1601 mii_cfg = GSWIP_MII_CFG_RATE_M125; 1602 1603 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII; 1604 break; 1605 } 1606 1607 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy, 1608 GSWIP_MDIO_PHYp(port)); 1609 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port); 1610 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0, 1611 GSWIP_MAC_CTRL_0p(port)); 1612 } 1613 1614 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex) 1615 { 1616 u32 mac_ctrl_0, mdio_phy; 1617 1618 if (duplex == DUPLEX_FULL) { 1619 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN; 1620 mdio_phy = GSWIP_MDIO_PHY_FDUP_EN; 1621 } else { 1622 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS; 1623 mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS; 1624 } 1625 1626 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0, 1627 GSWIP_MAC_CTRL_0p(port)); 1628 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy, 1629 GSWIP_MDIO_PHYp(port)); 1630 } 1631 1632 static void gswip_port_set_pause(struct gswip_priv *priv, int port, 1633 bool tx_pause, bool rx_pause) 1634 { 1635 u32 mac_ctrl_0, mdio_phy; 1636 1637 if (tx_pause && rx_pause) { 1638 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX; 1639 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN | 1640 GSWIP_MDIO_PHY_FCONRX_EN; 1641 } else if (tx_pause) { 1642 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX; 1643 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN | 1644 GSWIP_MDIO_PHY_FCONRX_DIS; 1645 } else if (rx_pause) { 1646 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX; 1647 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS | 1648 GSWIP_MDIO_PHY_FCONRX_EN; 1649 } else { 1650 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE; 1651 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS | 1652 GSWIP_MDIO_PHY_FCONRX_DIS; 1653 } 1654 1655 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK, 1656 mac_ctrl_0, GSWIP_MAC_CTRL_0p(port)); 1657 gswip_mdio_mask(priv, 1658 GSWIP_MDIO_PHY_FCONTX_MASK | 1659 GSWIP_MDIO_PHY_FCONRX_MASK, 1660 mdio_phy, GSWIP_MDIO_PHYp(port)); 1661 } 1662 1663 static void gswip_phylink_mac_config(struct phylink_config *config, 1664 unsigned int mode, 1665 const struct phylink_link_state *state) 1666 { 1667 struct dsa_port *dp = dsa_phylink_to_port(config); 1668 struct gswip_priv *priv = dp->ds->priv; 1669 int port = dp->index; 1670 u32 miicfg = 0; 1671 1672 miicfg |= GSWIP_MII_CFG_LDCLKDIS; 1673 1674 switch (state->interface) { 1675 case PHY_INTERFACE_MODE_MII: 1676 case PHY_INTERFACE_MODE_INTERNAL: 1677 miicfg |= GSWIP_MII_CFG_MODE_MIIM; 1678 break; 1679 case PHY_INTERFACE_MODE_REVMII: 1680 miicfg |= GSWIP_MII_CFG_MODE_MIIP; 1681 break; 1682 case PHY_INTERFACE_MODE_RMII: 1683 miicfg |= GSWIP_MII_CFG_MODE_RMIIM; 1684 break; 1685 case PHY_INTERFACE_MODE_RGMII: 1686 case PHY_INTERFACE_MODE_RGMII_ID: 1687 case PHY_INTERFACE_MODE_RGMII_RXID: 1688 case PHY_INTERFACE_MODE_RGMII_TXID: 1689 miicfg |= GSWIP_MII_CFG_MODE_RGMII; 1690 break; 1691 case PHY_INTERFACE_MODE_GMII: 1692 miicfg |= GSWIP_MII_CFG_MODE_GMII; 1693 break; 1694 default: 1695 dev_err(dp->ds->dev, 1696 "Unsupported interface: %d\n", state->interface); 1697 return; 1698 } 1699 1700 gswip_mii_mask_cfg(priv, 1701 GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK | 1702 GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS, 1703 miicfg, port); 1704 1705 switch (state->interface) { 1706 case PHY_INTERFACE_MODE_RGMII_ID: 1707 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK | 1708 GSWIP_MII_PCDU_RXDLY_MASK, 0, port); 1709 break; 1710 case PHY_INTERFACE_MODE_RGMII_RXID: 1711 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port); 1712 break; 1713 case PHY_INTERFACE_MODE_RGMII_TXID: 1714 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port); 1715 break; 1716 default: 1717 break; 1718 } 1719 } 1720 1721 static void gswip_phylink_mac_link_down(struct phylink_config *config, 1722 unsigned int mode, 1723 phy_interface_t interface) 1724 { 1725 struct dsa_port *dp = dsa_phylink_to_port(config); 1726 struct gswip_priv *priv = dp->ds->priv; 1727 int port = dp->index; 1728 1729 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port); 1730 1731 if (!dsa_port_is_cpu(dp)) 1732 gswip_port_set_link(priv, port, false); 1733 } 1734 1735 static void gswip_phylink_mac_link_up(struct phylink_config *config, 1736 struct phy_device *phydev, 1737 unsigned int mode, 1738 phy_interface_t interface, 1739 int speed, int duplex, 1740 bool tx_pause, bool rx_pause) 1741 { 1742 struct dsa_port *dp = dsa_phylink_to_port(config); 1743 struct gswip_priv *priv = dp->ds->priv; 1744 int port = dp->index; 1745 1746 if (!dsa_port_is_cpu(dp)) { 1747 gswip_port_set_link(priv, port, true); 1748 gswip_port_set_speed(priv, port, speed, interface); 1749 gswip_port_set_duplex(priv, port, duplex); 1750 gswip_port_set_pause(priv, port, tx_pause, rx_pause); 1751 } 1752 1753 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port); 1754 } 1755 1756 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset, 1757 uint8_t *data) 1758 { 1759 int i; 1760 1761 if (stringset != ETH_SS_STATS) 1762 return; 1763 1764 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) 1765 ethtool_puts(&data, gswip_rmon_cnt[i].name); 1766 } 1767 1768 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table, 1769 u32 index) 1770 { 1771 u32 result; 1772 int err; 1773 1774 gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR); 1775 gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK | 1776 GSWIP_BM_RAM_CTRL_OPMOD, 1777 table | GSWIP_BM_RAM_CTRL_BAS, 1778 GSWIP_BM_RAM_CTRL); 1779 1780 err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL, 1781 GSWIP_BM_RAM_CTRL_BAS); 1782 if (err) { 1783 dev_err(priv->dev, "timeout while reading table: %u, index: %u\n", 1784 table, index); 1785 return 0; 1786 } 1787 1788 result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0)); 1789 result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16; 1790 1791 return result; 1792 } 1793 1794 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port, 1795 uint64_t *data) 1796 { 1797 struct gswip_priv *priv = ds->priv; 1798 const struct gswip_rmon_cnt_desc *rmon_cnt; 1799 int i; 1800 u64 high; 1801 1802 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) { 1803 rmon_cnt = &gswip_rmon_cnt[i]; 1804 1805 data[i] = gswip_bcm_ram_entry_read(priv, port, 1806 rmon_cnt->offset); 1807 if (rmon_cnt->size == 2) { 1808 high = gswip_bcm_ram_entry_read(priv, port, 1809 rmon_cnt->offset + 1); 1810 data[i] |= high << 32; 1811 } 1812 } 1813 } 1814 1815 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset) 1816 { 1817 if (sset != ETH_SS_STATS) 1818 return 0; 1819 1820 return ARRAY_SIZE(gswip_rmon_cnt); 1821 } 1822 1823 static const struct phylink_mac_ops gswip_phylink_mac_ops = { 1824 .mac_config = gswip_phylink_mac_config, 1825 .mac_link_down = gswip_phylink_mac_link_down, 1826 .mac_link_up = gswip_phylink_mac_link_up, 1827 }; 1828 1829 static const struct dsa_switch_ops gswip_xrx200_switch_ops = { 1830 .get_tag_protocol = gswip_get_tag_protocol, 1831 .setup = gswip_setup, 1832 .port_enable = gswip_port_enable, 1833 .port_disable = gswip_port_disable, 1834 .port_bridge_join = gswip_port_bridge_join, 1835 .port_bridge_leave = gswip_port_bridge_leave, 1836 .port_fast_age = gswip_port_fast_age, 1837 .port_vlan_filtering = gswip_port_vlan_filtering, 1838 .port_vlan_add = gswip_port_vlan_add, 1839 .port_vlan_del = gswip_port_vlan_del, 1840 .port_stp_state_set = gswip_port_stp_state_set, 1841 .port_fdb_add = gswip_port_fdb_add, 1842 .port_fdb_del = gswip_port_fdb_del, 1843 .port_fdb_dump = gswip_port_fdb_dump, 1844 .port_change_mtu = gswip_port_change_mtu, 1845 .port_max_mtu = gswip_port_max_mtu, 1846 .phylink_get_caps = gswip_xrx200_phylink_get_caps, 1847 .get_strings = gswip_get_strings, 1848 .get_ethtool_stats = gswip_get_ethtool_stats, 1849 .get_sset_count = gswip_get_sset_count, 1850 }; 1851 1852 static const struct dsa_switch_ops gswip_xrx300_switch_ops = { 1853 .get_tag_protocol = gswip_get_tag_protocol, 1854 .setup = gswip_setup, 1855 .port_enable = gswip_port_enable, 1856 .port_disable = gswip_port_disable, 1857 .port_bridge_join = gswip_port_bridge_join, 1858 .port_bridge_leave = gswip_port_bridge_leave, 1859 .port_fast_age = gswip_port_fast_age, 1860 .port_vlan_filtering = gswip_port_vlan_filtering, 1861 .port_vlan_add = gswip_port_vlan_add, 1862 .port_vlan_del = gswip_port_vlan_del, 1863 .port_stp_state_set = gswip_port_stp_state_set, 1864 .port_fdb_add = gswip_port_fdb_add, 1865 .port_fdb_del = gswip_port_fdb_del, 1866 .port_fdb_dump = gswip_port_fdb_dump, 1867 .port_change_mtu = gswip_port_change_mtu, 1868 .port_max_mtu = gswip_port_max_mtu, 1869 .phylink_get_caps = gswip_xrx300_phylink_get_caps, 1870 .get_strings = gswip_get_strings, 1871 .get_ethtool_stats = gswip_get_ethtool_stats, 1872 .get_sset_count = gswip_get_sset_count, 1873 }; 1874 1875 static const struct xway_gphy_match_data xrx200a1x_gphy_data = { 1876 .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin", 1877 .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin", 1878 }; 1879 1880 static const struct xway_gphy_match_data xrx200a2x_gphy_data = { 1881 .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin", 1882 .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin", 1883 }; 1884 1885 static const struct xway_gphy_match_data xrx300_gphy_data = { 1886 .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin", 1887 .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin", 1888 }; 1889 1890 static const struct of_device_id xway_gphy_match[] __maybe_unused = { 1891 { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL }, 1892 { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data }, 1893 { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data }, 1894 { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data }, 1895 { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data }, 1896 {}, 1897 }; 1898 1899 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw) 1900 { 1901 struct device *dev = priv->dev; 1902 const struct firmware *fw; 1903 void *fw_addr; 1904 dma_addr_t dma_addr; 1905 dma_addr_t dev_addr; 1906 size_t size; 1907 int ret; 1908 1909 ret = clk_prepare_enable(gphy_fw->clk_gate); 1910 if (ret) 1911 return ret; 1912 1913 reset_control_assert(gphy_fw->reset); 1914 1915 /* The vendor BSP uses a 200ms delay after asserting the reset line. 1916 * Without this some users are observing that the PHY is not coming up 1917 * on the MDIO bus. 1918 */ 1919 msleep(200); 1920 1921 ret = request_firmware(&fw, gphy_fw->fw_name, dev); 1922 if (ret) 1923 return dev_err_probe(dev, ret, "failed to load firmware: %s\n", 1924 gphy_fw->fw_name); 1925 1926 /* GPHY cores need the firmware code in a persistent and contiguous 1927 * memory area with a 16 kB boundary aligned start address. 1928 */ 1929 size = fw->size + XRX200_GPHY_FW_ALIGN; 1930 1931 fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL); 1932 if (fw_addr) { 1933 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN); 1934 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN); 1935 memcpy(fw_addr, fw->data, fw->size); 1936 } else { 1937 release_firmware(fw); 1938 return dev_err_probe(dev, -ENOMEM, 1939 "failed to alloc firmware memory\n"); 1940 } 1941 1942 release_firmware(fw); 1943 1944 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr); 1945 if (ret) 1946 return ret; 1947 1948 reset_control_deassert(gphy_fw->reset); 1949 1950 return ret; 1951 } 1952 1953 static int gswip_gphy_fw_probe(struct gswip_priv *priv, 1954 struct gswip_gphy_fw *gphy_fw, 1955 struct device_node *gphy_fw_np, int i) 1956 { 1957 struct device *dev = priv->dev; 1958 u32 gphy_mode; 1959 int ret; 1960 char gphyname[10]; 1961 1962 snprintf(gphyname, sizeof(gphyname), "gphy%d", i); 1963 1964 gphy_fw->clk_gate = devm_clk_get(dev, gphyname); 1965 if (IS_ERR(gphy_fw->clk_gate)) { 1966 return dev_err_probe(dev, PTR_ERR(gphy_fw->clk_gate), 1967 "Failed to lookup gate clock\n"); 1968 } 1969 1970 ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset); 1971 if (ret) 1972 return ret; 1973 1974 ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode); 1975 /* Default to GE mode */ 1976 if (ret) 1977 gphy_mode = GPHY_MODE_GE; 1978 1979 switch (gphy_mode) { 1980 case GPHY_MODE_FE: 1981 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name; 1982 break; 1983 case GPHY_MODE_GE: 1984 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name; 1985 break; 1986 default: 1987 return dev_err_probe(dev, -EINVAL, "Unknown GPHY mode %d\n", 1988 gphy_mode); 1989 } 1990 1991 gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np); 1992 if (IS_ERR(gphy_fw->reset)) 1993 return dev_err_probe(dev, PTR_ERR(gphy_fw->reset), 1994 "Failed to lookup gphy reset\n"); 1995 1996 return gswip_gphy_fw_load(priv, gphy_fw); 1997 } 1998 1999 static void gswip_gphy_fw_remove(struct gswip_priv *priv, 2000 struct gswip_gphy_fw *gphy_fw) 2001 { 2002 int ret; 2003 2004 /* check if the device was fully probed */ 2005 if (!gphy_fw->fw_name) 2006 return; 2007 2008 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0); 2009 if (ret) 2010 dev_err(priv->dev, "can not reset GPHY FW pointer\n"); 2011 2012 clk_disable_unprepare(gphy_fw->clk_gate); 2013 2014 reset_control_put(gphy_fw->reset); 2015 } 2016 2017 static int gswip_gphy_fw_list(struct gswip_priv *priv, 2018 struct device_node *gphy_fw_list_np, u32 version) 2019 { 2020 struct device *dev = priv->dev; 2021 struct device_node *gphy_fw_np; 2022 const struct of_device_id *match; 2023 int err; 2024 int i = 0; 2025 2026 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older 2027 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also 2028 * needs a different GPHY firmware. 2029 */ 2030 if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) { 2031 switch (version) { 2032 case GSWIP_VERSION_2_0: 2033 priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data; 2034 break; 2035 case GSWIP_VERSION_2_1: 2036 priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data; 2037 break; 2038 default: 2039 return dev_err_probe(dev, -ENOENT, 2040 "unknown GSWIP version: 0x%x\n", 2041 version); 2042 } 2043 } 2044 2045 match = of_match_node(xway_gphy_match, gphy_fw_list_np); 2046 if (match && match->data) 2047 priv->gphy_fw_name_cfg = match->data; 2048 2049 if (!priv->gphy_fw_name_cfg) 2050 return dev_err_probe(dev, -ENOENT, 2051 "GPHY compatible type not supported\n"); 2052 2053 priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np); 2054 if (!priv->num_gphy_fw) 2055 return -ENOENT; 2056 2057 priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np, 2058 "lantiq,rcu"); 2059 if (IS_ERR(priv->rcu_regmap)) 2060 return PTR_ERR(priv->rcu_regmap); 2061 2062 priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw, 2063 sizeof(*priv->gphy_fw), 2064 GFP_KERNEL | __GFP_ZERO); 2065 if (!priv->gphy_fw) 2066 return -ENOMEM; 2067 2068 for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) { 2069 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i], 2070 gphy_fw_np, i); 2071 if (err) { 2072 of_node_put(gphy_fw_np); 2073 goto remove_gphy; 2074 } 2075 i++; 2076 } 2077 2078 /* The standalone PHY11G requires 300ms to be fully 2079 * initialized and ready for any MDIO communication after being 2080 * taken out of reset. For the SoC-internal GPHY variant there 2081 * is no (known) documentation for the minimum time after a 2082 * reset. Use the same value as for the standalone variant as 2083 * some users have reported internal PHYs not being detected 2084 * without any delay. 2085 */ 2086 msleep(300); 2087 2088 return 0; 2089 2090 remove_gphy: 2091 for (i = 0; i < priv->num_gphy_fw; i++) 2092 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); 2093 return err; 2094 } 2095 2096 static int gswip_probe(struct platform_device *pdev) 2097 { 2098 struct device_node *np, *gphy_fw_np; 2099 struct device *dev = &pdev->dev; 2100 struct gswip_priv *priv; 2101 int err; 2102 int i; 2103 u32 version; 2104 2105 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 2106 if (!priv) 2107 return -ENOMEM; 2108 2109 priv->gswip = devm_platform_ioremap_resource(pdev, 0); 2110 if (IS_ERR(priv->gswip)) 2111 return PTR_ERR(priv->gswip); 2112 2113 priv->mdio = devm_platform_ioremap_resource(pdev, 1); 2114 if (IS_ERR(priv->mdio)) 2115 return PTR_ERR(priv->mdio); 2116 2117 priv->mii = devm_platform_ioremap_resource(pdev, 2); 2118 if (IS_ERR(priv->mii)) 2119 return PTR_ERR(priv->mii); 2120 2121 priv->hw_info = of_device_get_match_data(dev); 2122 if (!priv->hw_info) 2123 return -EINVAL; 2124 2125 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL); 2126 if (!priv->ds) 2127 return -ENOMEM; 2128 2129 priv->ds->dev = dev; 2130 priv->ds->num_ports = priv->hw_info->max_ports; 2131 priv->ds->priv = priv; 2132 priv->ds->ops = priv->hw_info->ops; 2133 priv->ds->phylink_mac_ops = &gswip_phylink_mac_ops; 2134 priv->dev = dev; 2135 mutex_init(&priv->pce_table_lock); 2136 version = gswip_switch_r(priv, GSWIP_VERSION); 2137 2138 np = dev->of_node; 2139 switch (version) { 2140 case GSWIP_VERSION_2_0: 2141 case GSWIP_VERSION_2_1: 2142 if (!of_device_is_compatible(np, "lantiq,xrx200-gswip")) 2143 return -EINVAL; 2144 break; 2145 case GSWIP_VERSION_2_2: 2146 case GSWIP_VERSION_2_2_ETC: 2147 if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") && 2148 !of_device_is_compatible(np, "lantiq,xrx330-gswip")) 2149 return -EINVAL; 2150 break; 2151 default: 2152 return dev_err_probe(dev, -ENOENT, 2153 "unknown GSWIP version: 0x%x\n", version); 2154 } 2155 2156 /* bring up the mdio bus */ 2157 gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw"); 2158 if (gphy_fw_np) { 2159 err = gswip_gphy_fw_list(priv, gphy_fw_np, version); 2160 of_node_put(gphy_fw_np); 2161 if (err) 2162 return dev_err_probe(dev, err, 2163 "gphy fw probe failed\n"); 2164 } 2165 2166 /* bring up the mdio bus */ 2167 err = gswip_mdio(priv); 2168 if (err) { 2169 dev_err_probe(dev, err, "mdio probe failed\n"); 2170 goto gphy_fw_remove; 2171 } 2172 2173 err = dsa_register_switch(priv->ds); 2174 if (err) { 2175 dev_err_probe(dev, err, "dsa switch registration failed\n"); 2176 goto gphy_fw_remove; 2177 } 2178 if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) { 2179 err = dev_err_probe(dev, -EINVAL, 2180 "wrong CPU port defined, HW only supports port: %i\n", 2181 priv->hw_info->cpu_port); 2182 goto disable_switch; 2183 } 2184 2185 platform_set_drvdata(pdev, priv); 2186 2187 dev_info(dev, "probed GSWIP version %lx mod %lx\n", 2188 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT, 2189 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT); 2190 return 0; 2191 2192 disable_switch: 2193 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB); 2194 dsa_unregister_switch(priv->ds); 2195 gphy_fw_remove: 2196 for (i = 0; i < priv->num_gphy_fw; i++) 2197 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); 2198 return err; 2199 } 2200 2201 static void gswip_remove(struct platform_device *pdev) 2202 { 2203 struct gswip_priv *priv = platform_get_drvdata(pdev); 2204 int i; 2205 2206 if (!priv) 2207 return; 2208 2209 /* disable the switch */ 2210 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB); 2211 2212 dsa_unregister_switch(priv->ds); 2213 2214 for (i = 0; i < priv->num_gphy_fw; i++) 2215 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); 2216 } 2217 2218 static void gswip_shutdown(struct platform_device *pdev) 2219 { 2220 struct gswip_priv *priv = platform_get_drvdata(pdev); 2221 2222 if (!priv) 2223 return; 2224 2225 dsa_switch_shutdown(priv->ds); 2226 2227 platform_set_drvdata(pdev, NULL); 2228 } 2229 2230 static const struct gswip_hw_info gswip_xrx200 = { 2231 .max_ports = 7, 2232 .cpu_port = 6, 2233 .ops = &gswip_xrx200_switch_ops, 2234 }; 2235 2236 static const struct gswip_hw_info gswip_xrx300 = { 2237 .max_ports = 7, 2238 .cpu_port = 6, 2239 .ops = &gswip_xrx300_switch_ops, 2240 }; 2241 2242 static const struct of_device_id gswip_of_match[] = { 2243 { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 }, 2244 { .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 }, 2245 { .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 }, 2246 {}, 2247 }; 2248 MODULE_DEVICE_TABLE(of, gswip_of_match); 2249 2250 static struct platform_driver gswip_driver = { 2251 .probe = gswip_probe, 2252 .remove = gswip_remove, 2253 .shutdown = gswip_shutdown, 2254 .driver = { 2255 .name = "gswip", 2256 .of_match_table = gswip_of_match, 2257 }, 2258 }; 2259 2260 module_platform_driver(gswip_driver); 2261 2262 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin"); 2263 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin"); 2264 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin"); 2265 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin"); 2266 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin"); 2267 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin"); 2268 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>"); 2269 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver"); 2270 MODULE_LICENSE("GPL v2"); 2271