1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // flexcan.c - FLEXCAN CAN controller driver
4 //
5 // Copyright (c) 2005-2006 Varma Electronics Oy
6 // Copyright (c) 2009 Sascha Hauer, Pengutronix
7 // Copyright (c) 2010-2017 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
8 // Copyright (c) 2014 David Jander, Protonic Holland
9 //
10 // Based on code originally by Andrey Volkov <avolkov@varma-el.com>
11
12 #include <dt-bindings/firmware/imx/rsrc.h>
13 #include <linux/bitfield.h>
14 #include <linux/can.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/error.h>
17 #include <linux/clk.h>
18 #include <linux/delay.h>
19 #include <linux/firmware/imx/sci.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/can/platform/flexcan.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/regmap.h>
32 #include <linux/regulator/consumer.h>
33
34 #include "flexcan.h"
35
36 #define DRV_NAME "flexcan"
37
38 /* 8 for RX fifo and 2 error handling */
39 #define FLEXCAN_NAPI_WEIGHT (8 + 2)
40
41 /* FLEXCAN module configuration register (CANMCR) bits */
42 #define FLEXCAN_MCR_MDIS BIT(31)
43 #define FLEXCAN_MCR_FRZ BIT(30)
44 #define FLEXCAN_MCR_FEN BIT(29)
45 #define FLEXCAN_MCR_HALT BIT(28)
46 #define FLEXCAN_MCR_NOT_RDY BIT(27)
47 #define FLEXCAN_MCR_WAK_MSK BIT(26)
48 #define FLEXCAN_MCR_SOFTRST BIT(25)
49 #define FLEXCAN_MCR_FRZ_ACK BIT(24)
50 #define FLEXCAN_MCR_SUPV BIT(23)
51 #define FLEXCAN_MCR_SLF_WAK BIT(22)
52 #define FLEXCAN_MCR_WRN_EN BIT(21)
53 #define FLEXCAN_MCR_LPM_ACK BIT(20)
54 #define FLEXCAN_MCR_WAK_SRC BIT(19)
55 #define FLEXCAN_MCR_DOZE BIT(18)
56 #define FLEXCAN_MCR_SRX_DIS BIT(17)
57 #define FLEXCAN_MCR_IRMQ BIT(16)
58 #define FLEXCAN_MCR_LPRIO_EN BIT(13)
59 #define FLEXCAN_MCR_AEN BIT(12)
60 #define FLEXCAN_MCR_FDEN BIT(11)
61 /* MCR_MAXMB: maximum used MBs is MAXMB + 1 */
62 #define FLEXCAN_MCR_MAXMB(x) ((x) & 0x7f)
63 #define FLEXCAN_MCR_IDAM_A (0x0 << 8)
64 #define FLEXCAN_MCR_IDAM_B (0x1 << 8)
65 #define FLEXCAN_MCR_IDAM_C (0x2 << 8)
66 #define FLEXCAN_MCR_IDAM_D (0x3 << 8)
67
68 /* FLEXCAN control register (CANCTRL) bits */
69 #define FLEXCAN_CTRL_PRESDIV(x) (((x) & 0xff) << 24)
70 #define FLEXCAN_CTRL_RJW(x) (((x) & 0x03) << 22)
71 #define FLEXCAN_CTRL_PSEG1(x) (((x) & 0x07) << 19)
72 #define FLEXCAN_CTRL_PSEG2(x) (((x) & 0x07) << 16)
73 #define FLEXCAN_CTRL_BOFF_MSK BIT(15)
74 #define FLEXCAN_CTRL_ERR_MSK BIT(14)
75 #define FLEXCAN_CTRL_CLK_SRC BIT(13)
76 #define FLEXCAN_CTRL_LPB BIT(12)
77 #define FLEXCAN_CTRL_TWRN_MSK BIT(11)
78 #define FLEXCAN_CTRL_RWRN_MSK BIT(10)
79 #define FLEXCAN_CTRL_SMP BIT(7)
80 #define FLEXCAN_CTRL_BOFF_REC BIT(6)
81 #define FLEXCAN_CTRL_TSYN BIT(5)
82 #define FLEXCAN_CTRL_LBUF BIT(4)
83 #define FLEXCAN_CTRL_LOM BIT(3)
84 #define FLEXCAN_CTRL_PROPSEG(x) ((x) & 0x07)
85 #define FLEXCAN_CTRL_ERR_BUS (FLEXCAN_CTRL_ERR_MSK)
86 #define FLEXCAN_CTRL_ERR_STATE \
87 (FLEXCAN_CTRL_TWRN_MSK | FLEXCAN_CTRL_RWRN_MSK | \
88 FLEXCAN_CTRL_BOFF_MSK)
89 #define FLEXCAN_CTRL_ERR_ALL \
90 (FLEXCAN_CTRL_ERR_BUS | FLEXCAN_CTRL_ERR_STATE)
91
92 /* FLEXCAN control register 2 (CTRL2) bits */
93 #define FLEXCAN_CTRL2_ECRWRE BIT(29)
94 #define FLEXCAN_CTRL2_WRMFRZ BIT(28)
95 #define FLEXCAN_CTRL2_RFFN(x) (((x) & 0x0f) << 24)
96 #define FLEXCAN_CTRL2_TASD(x) (((x) & 0x1f) << 19)
97 #define FLEXCAN_CTRL2_MRP BIT(18)
98 #define FLEXCAN_CTRL2_RRS BIT(17)
99 #define FLEXCAN_CTRL2_EACEN BIT(16)
100 #define FLEXCAN_CTRL2_ISOCANFDEN BIT(12)
101
102 /* FLEXCAN memory error control register (MECR) bits */
103 #define FLEXCAN_MECR_ECRWRDIS BIT(31)
104 #define FLEXCAN_MECR_HANCEI_MSK BIT(19)
105 #define FLEXCAN_MECR_FANCEI_MSK BIT(18)
106 #define FLEXCAN_MECR_CEI_MSK BIT(16)
107 #define FLEXCAN_MECR_HAERRIE BIT(15)
108 #define FLEXCAN_MECR_FAERRIE BIT(14)
109 #define FLEXCAN_MECR_EXTERRIE BIT(13)
110 #define FLEXCAN_MECR_RERRDIS BIT(9)
111 #define FLEXCAN_MECR_ECCDIS BIT(8)
112 #define FLEXCAN_MECR_NCEFAFRZ BIT(7)
113
114 /* FLEXCAN error and status register (ESR) bits */
115 #define FLEXCAN_ESR_TWRN_INT BIT(17)
116 #define FLEXCAN_ESR_RWRN_INT BIT(16)
117 #define FLEXCAN_ESR_BIT1_ERR BIT(15)
118 #define FLEXCAN_ESR_BIT0_ERR BIT(14)
119 #define FLEXCAN_ESR_ACK_ERR BIT(13)
120 #define FLEXCAN_ESR_CRC_ERR BIT(12)
121 #define FLEXCAN_ESR_FRM_ERR BIT(11)
122 #define FLEXCAN_ESR_STF_ERR BIT(10)
123 #define FLEXCAN_ESR_TX_WRN BIT(9)
124 #define FLEXCAN_ESR_RX_WRN BIT(8)
125 #define FLEXCAN_ESR_IDLE BIT(7)
126 #define FLEXCAN_ESR_TXRX BIT(6)
127 #define FLEXCAN_EST_FLT_CONF_SHIFT (4)
128 #define FLEXCAN_ESR_FLT_CONF_MASK (0x3 << FLEXCAN_EST_FLT_CONF_SHIFT)
129 #define FLEXCAN_ESR_FLT_CONF_ACTIVE (0x0 << FLEXCAN_EST_FLT_CONF_SHIFT)
130 #define FLEXCAN_ESR_FLT_CONF_PASSIVE (0x1 << FLEXCAN_EST_FLT_CONF_SHIFT)
131 #define FLEXCAN_ESR_BOFF_INT BIT(2)
132 #define FLEXCAN_ESR_ERR_INT BIT(1)
133 #define FLEXCAN_ESR_WAK_INT BIT(0)
134 #define FLEXCAN_ESR_ERR_BUS \
135 (FLEXCAN_ESR_BIT1_ERR | FLEXCAN_ESR_BIT0_ERR | \
136 FLEXCAN_ESR_ACK_ERR | FLEXCAN_ESR_CRC_ERR | \
137 FLEXCAN_ESR_FRM_ERR | FLEXCAN_ESR_STF_ERR)
138 #define FLEXCAN_ESR_ERR_STATE \
139 (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | FLEXCAN_ESR_BOFF_INT)
140 #define FLEXCAN_ESR_ERR_ALL \
141 (FLEXCAN_ESR_ERR_BUS | FLEXCAN_ESR_ERR_STATE)
142 #define FLEXCAN_ESR_ALL_INT \
143 (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | \
144 FLEXCAN_ESR_BOFF_INT | FLEXCAN_ESR_ERR_INT)
145
146 /* FLEXCAN Bit Timing register (CBT) bits */
147 #define FLEXCAN_CBT_BTF BIT(31)
148 #define FLEXCAN_CBT_EPRESDIV_MASK GENMASK(30, 21)
149 #define FLEXCAN_CBT_ERJW_MASK GENMASK(20, 16)
150 #define FLEXCAN_CBT_EPROPSEG_MASK GENMASK(15, 10)
151 #define FLEXCAN_CBT_EPSEG1_MASK GENMASK(9, 5)
152 #define FLEXCAN_CBT_EPSEG2_MASK GENMASK(4, 0)
153
154 /* FLEXCAN FD control register (FDCTRL) bits */
155 #define FLEXCAN_FDCTRL_FDRATE BIT(31)
156 #define FLEXCAN_FDCTRL_MBDSR1 GENMASK(20, 19)
157 #define FLEXCAN_FDCTRL_MBDSR0 GENMASK(17, 16)
158 #define FLEXCAN_FDCTRL_MBDSR_8 0x0
159 #define FLEXCAN_FDCTRL_MBDSR_12 0x1
160 #define FLEXCAN_FDCTRL_MBDSR_32 0x2
161 #define FLEXCAN_FDCTRL_MBDSR_64 0x3
162 #define FLEXCAN_FDCTRL_TDCEN BIT(15)
163 #define FLEXCAN_FDCTRL_TDCFAIL BIT(14)
164 #define FLEXCAN_FDCTRL_TDCOFF GENMASK(12, 8)
165 #define FLEXCAN_FDCTRL_TDCVAL GENMASK(5, 0)
166
167 /* FLEXCAN FD Bit Timing register (FDCBT) bits */
168 #define FLEXCAN_FDCBT_FPRESDIV_MASK GENMASK(29, 20)
169 #define FLEXCAN_FDCBT_FRJW_MASK GENMASK(18, 16)
170 #define FLEXCAN_FDCBT_FPROPSEG_MASK GENMASK(14, 10)
171 #define FLEXCAN_FDCBT_FPSEG1_MASK GENMASK(7, 5)
172 #define FLEXCAN_FDCBT_FPSEG2_MASK GENMASK(2, 0)
173
174 /* FLEXCAN interrupt flag register (IFLAG) bits */
175 /* Errata ERR005829 step7: Reserve first valid MB */
176 #define FLEXCAN_TX_MB_RESERVED_RX_FIFO 8
177 #define FLEXCAN_TX_MB_RESERVED_RX_MAILBOX 0
178 #define FLEXCAN_RX_MB_RX_MAILBOX_FIRST (FLEXCAN_TX_MB_RESERVED_RX_MAILBOX + 1)
179 #define FLEXCAN_IFLAG_MB(x) BIT_ULL(x)
180 #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7)
181 #define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6)
182 #define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5)
183
184 /* FLEXCAN message buffers */
185 #define FLEXCAN_MB_CODE_MASK (0xf << 24)
186 #define FLEXCAN_MB_CODE_RX_BUSY_BIT (0x1 << 24)
187 #define FLEXCAN_MB_CODE_RX_INACTIVE (0x0 << 24)
188 #define FLEXCAN_MB_CODE_RX_EMPTY (0x4 << 24)
189 #define FLEXCAN_MB_CODE_RX_FULL (0x2 << 24)
190 #define FLEXCAN_MB_CODE_RX_OVERRUN (0x6 << 24)
191 #define FLEXCAN_MB_CODE_RX_RANSWER (0xa << 24)
192
193 #define FLEXCAN_MB_CODE_TX_INACTIVE (0x8 << 24)
194 #define FLEXCAN_MB_CODE_TX_ABORT (0x9 << 24)
195 #define FLEXCAN_MB_CODE_TX_DATA (0xc << 24)
196 #define FLEXCAN_MB_CODE_TX_TANSWER (0xe << 24)
197
198 #define FLEXCAN_MB_CNT_EDL BIT(31)
199 #define FLEXCAN_MB_CNT_BRS BIT(30)
200 #define FLEXCAN_MB_CNT_ESI BIT(29)
201 #define FLEXCAN_MB_CNT_SRR BIT(22)
202 #define FLEXCAN_MB_CNT_IDE BIT(21)
203 #define FLEXCAN_MB_CNT_RTR BIT(20)
204 #define FLEXCAN_MB_CNT_LENGTH(x) (((x) & 0xf) << 16)
205 #define FLEXCAN_MB_CNT_TIMESTAMP(x) ((x) & 0xffff)
206
207 #define FLEXCAN_TIMEOUT_US (250)
208
209 /* Structure of the message buffer */
210 struct flexcan_mb {
211 u32 can_ctrl;
212 u32 can_id;
213 u32 data[];
214 };
215
216 /* Structure of the hardware registers */
217 struct flexcan_regs {
218 u32 mcr; /* 0x00 */
219 u32 ctrl; /* 0x04 - Not affected by Soft Reset */
220 u32 timer; /* 0x08 */
221 u32 tcr; /* 0x0c */
222 u32 rxgmask; /* 0x10 - Not affected by Soft Reset */
223 u32 rx14mask; /* 0x14 - Not affected by Soft Reset */
224 u32 rx15mask; /* 0x18 - Not affected by Soft Reset */
225 u32 ecr; /* 0x1c */
226 u32 esr; /* 0x20 */
227 u32 imask2; /* 0x24 */
228 u32 imask1; /* 0x28 */
229 u32 iflag2; /* 0x2c */
230 u32 iflag1; /* 0x30 */
231 union { /* 0x34 */
232 u32 gfwr_mx28; /* MX28, MX53 */
233 u32 ctrl2; /* MX6, VF610 - Not affected by Soft Reset */
234 };
235 u32 esr2; /* 0x38 */
236 u32 imeur; /* 0x3c */
237 u32 lrfr; /* 0x40 */
238 u32 crcr; /* 0x44 */
239 u32 rxfgmask; /* 0x48 */
240 u32 rxfir; /* 0x4c - Not affected by Soft Reset */
241 u32 cbt; /* 0x50 - Not affected by Soft Reset */
242 u32 _reserved2; /* 0x54 */
243 u32 dbg1; /* 0x58 */
244 u32 dbg2; /* 0x5c */
245 u32 _reserved3[8]; /* 0x60 */
246 struct_group(init,
247 u8 mb[2][512]; /* 0x80 - Not affected by Soft Reset */
248 /* FIFO-mode:
249 * MB
250 * 0x080...0x08f 0 RX message buffer
251 * 0x090...0x0df 1-5 reserved
252 * 0x0e0...0x0ff 6-7 8 entry ID table
253 * (mx25, mx28, mx35, mx53)
254 * 0x0e0...0x2df 6-7..37 8..128 entry ID table
255 * size conf'ed via ctrl2::RFFN
256 * (mx6, vf610)
257 */
258 u32 _reserved4[256]; /* 0x480 */
259 u32 rximr[64]; /* 0x880 - Not affected by Soft Reset */
260 u32 _reserved5[24]; /* 0x980 */
261 u32 gfwr_mx6; /* 0x9e0 - MX6 */
262 u32 _reserved6[39]; /* 0x9e4 */
263 u32 _rxfir[6]; /* 0xa80 */
264 u32 _reserved8[2]; /* 0xa98 */
265 u32 _rxmgmask; /* 0xaa0 */
266 u32 _rxfgmask; /* 0xaa4 */
267 u32 _rx14mask; /* 0xaa8 */
268 u32 _rx15mask; /* 0xaac */
269 u32 tx_smb[4]; /* 0xab0 */
270 u32 rx_smb0[4]; /* 0xac0 */
271 u32 rx_smb1[4]; /* 0xad0 */
272 );
273 u32 mecr; /* 0xae0 */
274 u32 erriar; /* 0xae4 */
275 u32 erridpr; /* 0xae8 */
276 u32 errippr; /* 0xaec */
277 u32 rerrar; /* 0xaf0 */
278 u32 rerrdr; /* 0xaf4 */
279 u32 rerrsynr; /* 0xaf8 */
280 u32 errsr; /* 0xafc */
281 u32 _reserved7[64]; /* 0xb00 */
282 u32 fdctrl; /* 0xc00 - Not affected by Soft Reset */
283 u32 fdcbt; /* 0xc04 - Not affected by Soft Reset */
284 u32 fdcrc; /* 0xc08 */
285 u32 _reserved9[199]; /* 0xc0c */
286 struct_group(init_fd,
287 u32 tx_smb_fd[18]; /* 0xf28 */
288 u32 rx_smb0_fd[18]; /* 0xf70 */
289 u32 rx_smb1_fd[18]; /* 0xfb8 */
290 );
291 };
292
293 static_assert(sizeof(struct flexcan_regs) == 0x4 * 18 + 0xfb8);
294
295 static const struct flexcan_devtype_data fsl_mcf5441x_devtype_data = {
296 .quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE |
297 FLEXCAN_QUIRK_NR_IRQ_3 | FLEXCAN_QUIRK_NR_MB_16 |
298 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
299 FLEXCAN_QUIRK_SUPPORT_RX_FIFO,
300 };
301
302 static const struct flexcan_devtype_data fsl_p1010_devtype_data = {
303 .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE |
304 FLEXCAN_QUIRK_BROKEN_PERR_STATE |
305 FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN |
306 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
307 FLEXCAN_QUIRK_SUPPORT_RX_FIFO,
308 };
309
310 static const struct flexcan_devtype_data fsl_imx25_devtype_data = {
311 .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE |
312 FLEXCAN_QUIRK_BROKEN_PERR_STATE |
313 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
314 FLEXCAN_QUIRK_SUPPORT_RX_FIFO,
315 };
316
317 static const struct flexcan_devtype_data fsl_imx28_devtype_data = {
318 .quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE |
319 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
320 FLEXCAN_QUIRK_SUPPORT_RX_FIFO,
321 };
322
323 static const struct flexcan_devtype_data fsl_imx6q_devtype_data = {
324 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
325 FLEXCAN_QUIRK_USE_RX_MAILBOX | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
326 FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR |
327 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
328 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR,
329 };
330
331 static const struct flexcan_devtype_data fsl_imx8qm_devtype_data = {
332 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
333 FLEXCAN_QUIRK_USE_RX_MAILBOX | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
334 FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW |
335 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
336 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR,
337 };
338
339 static struct flexcan_devtype_data fsl_imx8mp_devtype_data = {
340 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
341 FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_RX_MAILBOX |
342 FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR |
343 FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SUPPORT_ECC |
344 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
345 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR,
346 };
347
348 static struct flexcan_devtype_data fsl_imx93_devtype_data = {
349 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
350 FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_RX_MAILBOX |
351 FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR |
352 FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SUPPORT_ECC |
353 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
354 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR,
355 };
356
357 static const struct flexcan_devtype_data fsl_imx95_devtype_data = {
358 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
359 FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_RX_MAILBOX |
360 FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SUPPORT_FD |
361 FLEXCAN_QUIRK_SUPPORT_ECC | FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
362 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR | FLEXCAN_QUIRK_SETUP_STOP_MODE_SCMI,
363 };
364
365 static const struct flexcan_devtype_data fsl_vf610_devtype_data = {
366 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
367 FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_RX_MAILBOX |
368 FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SUPPORT_ECC |
369 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
370 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR,
371 };
372
373 static const struct flexcan_devtype_data fsl_ls1021a_r2_devtype_data = {
374 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
375 FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_USE_RX_MAILBOX |
376 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
377 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR,
378 };
379
380 static const struct flexcan_devtype_data fsl_lx2160a_r1_devtype_data = {
381 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
382 FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
383 FLEXCAN_QUIRK_USE_RX_MAILBOX | FLEXCAN_QUIRK_SUPPORT_FD |
384 FLEXCAN_QUIRK_SUPPORT_ECC |
385 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
386 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR,
387 };
388
389 static const struct can_bittiming_const flexcan_bittiming_const = {
390 .name = DRV_NAME,
391 .tseg1_min = 4,
392 .tseg1_max = 16,
393 .tseg2_min = 2,
394 .tseg2_max = 8,
395 .sjw_max = 4,
396 .brp_min = 1,
397 .brp_max = 256,
398 .brp_inc = 1,
399 };
400
401 static const struct can_bittiming_const flexcan_fd_bittiming_const = {
402 .name = DRV_NAME,
403 .tseg1_min = 2,
404 .tseg1_max = 96,
405 .tseg2_min = 2,
406 .tseg2_max = 32,
407 .sjw_max = 16,
408 .brp_min = 1,
409 .brp_max = 1024,
410 .brp_inc = 1,
411 };
412
413 static const struct can_bittiming_const flexcan_fd_data_bittiming_const = {
414 .name = DRV_NAME,
415 .tseg1_min = 2,
416 .tseg1_max = 39,
417 .tseg2_min = 2,
418 .tseg2_max = 8,
419 .sjw_max = 4,
420 .brp_min = 1,
421 .brp_max = 1024,
422 .brp_inc = 1,
423 };
424
425 /* FlexCAN module is essentially modelled as a little-endian IP in most
426 * SoCs, i.e the registers as well as the message buffer areas are
427 * implemented in a little-endian fashion.
428 *
429 * However there are some SoCs (e.g. LS1021A) which implement the FlexCAN
430 * module in a big-endian fashion (i.e the registers as well as the
431 * message buffer areas are implemented in a big-endian way).
432 *
433 * In addition, the FlexCAN module can be found on SoCs having ARM or
434 * PPC cores. So, we need to abstract off the register read/write
435 * functions, ensuring that these cater to all the combinations of module
436 * endianness and underlying CPU endianness.
437 */
flexcan_read_be(void __iomem * addr)438 static inline u32 flexcan_read_be(void __iomem *addr)
439 {
440 return ioread32be(addr);
441 }
442
flexcan_write_be(u32 val,void __iomem * addr)443 static inline void flexcan_write_be(u32 val, void __iomem *addr)
444 {
445 iowrite32be(val, addr);
446 }
447
flexcan_read_le(void __iomem * addr)448 static inline u32 flexcan_read_le(void __iomem *addr)
449 {
450 return ioread32(addr);
451 }
452
flexcan_write_le(u32 val,void __iomem * addr)453 static inline void flexcan_write_le(u32 val, void __iomem *addr)
454 {
455 iowrite32(val, addr);
456 }
457
flexcan_get_mb(const struct flexcan_priv * priv,u8 mb_index)458 static struct flexcan_mb __iomem *flexcan_get_mb(const struct flexcan_priv *priv,
459 u8 mb_index)
460 {
461 u8 bank_size;
462 bool bank;
463
464 if (WARN_ON(mb_index >= priv->mb_count))
465 return NULL;
466
467 bank_size = sizeof(priv->regs->mb[0]) / priv->mb_size;
468
469 bank = mb_index >= bank_size;
470 if (bank)
471 mb_index -= bank_size;
472
473 return (struct flexcan_mb __iomem *)
474 (&priv->regs->mb[bank][priv->mb_size * mb_index]);
475 }
476
flexcan_low_power_enter_ack(struct flexcan_priv * priv)477 static int flexcan_low_power_enter_ack(struct flexcan_priv *priv)
478 {
479 struct flexcan_regs __iomem *regs = priv->regs;
480 unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
481
482 while (timeout-- && !(priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK))
483 udelay(10);
484
485 if (!(priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK))
486 return -ETIMEDOUT;
487
488 return 0;
489 }
490
flexcan_low_power_exit_ack(struct flexcan_priv * priv)491 static int flexcan_low_power_exit_ack(struct flexcan_priv *priv)
492 {
493 struct flexcan_regs __iomem *regs = priv->regs;
494 unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
495
496 while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK))
497 udelay(10);
498
499 if (priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK)
500 return -ETIMEDOUT;
501
502 return 0;
503 }
504
flexcan_enable_wakeup_irq(struct flexcan_priv * priv,bool enable)505 static void flexcan_enable_wakeup_irq(struct flexcan_priv *priv, bool enable)
506 {
507 struct flexcan_regs __iomem *regs = priv->regs;
508 u32 reg_mcr;
509
510 reg_mcr = priv->read(®s->mcr);
511
512 if (enable)
513 reg_mcr |= FLEXCAN_MCR_WAK_MSK;
514 else
515 reg_mcr &= ~FLEXCAN_MCR_WAK_MSK;
516
517 priv->write(reg_mcr, ®s->mcr);
518 }
519
flexcan_stop_mode_enable_scfw(struct flexcan_priv * priv,bool enabled)520 static int flexcan_stop_mode_enable_scfw(struct flexcan_priv *priv, bool enabled)
521 {
522 u8 idx = priv->scu_idx;
523 u32 rsrc_id, val;
524
525 rsrc_id = IMX_SC_R_CAN(idx);
526
527 if (enabled)
528 val = 1;
529 else
530 val = 0;
531
532 /* stop mode request via scu firmware */
533 return imx_sc_misc_set_control(priv->sc_ipc_handle, rsrc_id,
534 IMX_SC_C_IPG_STOP, val);
535 }
536
flexcan_enter_stop_mode(struct flexcan_priv * priv)537 static inline int flexcan_enter_stop_mode(struct flexcan_priv *priv)
538 {
539 struct flexcan_regs __iomem *regs = priv->regs;
540 u32 reg_mcr;
541 int ret;
542
543 reg_mcr = priv->read(®s->mcr);
544 reg_mcr |= FLEXCAN_MCR_SLF_WAK;
545 priv->write(reg_mcr, ®s->mcr);
546
547 /* enable stop request */
548 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW) {
549 ret = flexcan_stop_mode_enable_scfw(priv, true);
550 if (ret < 0)
551 return ret;
552 } else if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR) {
553 regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr,
554 1 << priv->stm.req_bit, 1 << priv->stm.req_bit);
555 } else if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCMI) {
556 /* For the SCMI mode, driver do nothing, ATF will send request to
557 * SM(system manager, M33 core) through SCMI protocol after linux
558 * suspend. Once SM get this request, it will send IPG_STOP signal
559 * to Flex_CAN, let CAN in STOP mode.
560 */
561 return 0;
562 }
563
564 return flexcan_low_power_enter_ack(priv);
565 }
566
flexcan_exit_stop_mode(struct flexcan_priv * priv)567 static inline int flexcan_exit_stop_mode(struct flexcan_priv *priv)
568 {
569 struct flexcan_regs __iomem *regs = priv->regs;
570 u32 reg_mcr;
571 int ret;
572
573 /* Remove stop request, for FLEXCAN_QUIRK_SETUP_STOP_MODE_SCMI,
574 * do nothing here, because ATF already send request to SM before
575 * linux resume. Once SM get this request, it will deassert the
576 * IPG_STOP signal to Flex_CAN.
577 */
578 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW) {
579 ret = flexcan_stop_mode_enable_scfw(priv, false);
580 if (ret < 0)
581 return ret;
582 } else if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR) {
583 regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr,
584 1 << priv->stm.req_bit, 0);
585 }
586
587 reg_mcr = priv->read(®s->mcr);
588 reg_mcr &= ~FLEXCAN_MCR_SLF_WAK;
589 priv->write(reg_mcr, ®s->mcr);
590
591 return flexcan_low_power_exit_ack(priv);
592 }
593
flexcan_error_irq_enable(const struct flexcan_priv * priv)594 static inline void flexcan_error_irq_enable(const struct flexcan_priv *priv)
595 {
596 struct flexcan_regs __iomem *regs = priv->regs;
597 u32 reg_ctrl = (priv->reg_ctrl_default | FLEXCAN_CTRL_ERR_MSK);
598
599 priv->write(reg_ctrl, ®s->ctrl);
600 }
601
flexcan_error_irq_disable(const struct flexcan_priv * priv)602 static inline void flexcan_error_irq_disable(const struct flexcan_priv *priv)
603 {
604 struct flexcan_regs __iomem *regs = priv->regs;
605 u32 reg_ctrl = (priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_MSK);
606
607 priv->write(reg_ctrl, ®s->ctrl);
608 }
609
flexcan_clks_enable(const struct flexcan_priv * priv)610 static int flexcan_clks_enable(const struct flexcan_priv *priv)
611 {
612 int err = 0;
613
614 if (priv->clk_ipg) {
615 err = clk_prepare_enable(priv->clk_ipg);
616 if (err)
617 return err;
618 }
619
620 if (priv->clk_per) {
621 err = clk_prepare_enable(priv->clk_per);
622 if (err)
623 clk_disable_unprepare(priv->clk_ipg);
624 }
625
626 return err;
627 }
628
flexcan_clks_disable(const struct flexcan_priv * priv)629 static void flexcan_clks_disable(const struct flexcan_priv *priv)
630 {
631 clk_disable_unprepare(priv->clk_per);
632 clk_disable_unprepare(priv->clk_ipg);
633 }
634
flexcan_transceiver_enable(const struct flexcan_priv * priv)635 static inline int flexcan_transceiver_enable(const struct flexcan_priv *priv)
636 {
637 if (!priv->reg_xceiver)
638 return 0;
639
640 return regulator_enable(priv->reg_xceiver);
641 }
642
flexcan_transceiver_disable(const struct flexcan_priv * priv)643 static inline int flexcan_transceiver_disable(const struct flexcan_priv *priv)
644 {
645 if (!priv->reg_xceiver)
646 return 0;
647
648 return regulator_disable(priv->reg_xceiver);
649 }
650
flexcan_chip_enable(struct flexcan_priv * priv)651 static int flexcan_chip_enable(struct flexcan_priv *priv)
652 {
653 struct flexcan_regs __iomem *regs = priv->regs;
654 u32 reg;
655
656 reg = priv->read(®s->mcr);
657 reg &= ~FLEXCAN_MCR_MDIS;
658 priv->write(reg, ®s->mcr);
659
660 return flexcan_low_power_exit_ack(priv);
661 }
662
flexcan_chip_disable(struct flexcan_priv * priv)663 static int flexcan_chip_disable(struct flexcan_priv *priv)
664 {
665 struct flexcan_regs __iomem *regs = priv->regs;
666 u32 reg;
667
668 reg = priv->read(®s->mcr);
669 reg |= FLEXCAN_MCR_MDIS;
670 priv->write(reg, ®s->mcr);
671
672 return flexcan_low_power_enter_ack(priv);
673 }
674
flexcan_chip_freeze(struct flexcan_priv * priv)675 static int flexcan_chip_freeze(struct flexcan_priv *priv)
676 {
677 struct flexcan_regs __iomem *regs = priv->regs;
678 unsigned int timeout;
679 u32 bitrate = priv->can.bittiming.bitrate;
680 u32 reg;
681
682 if (bitrate)
683 timeout = 1000 * 1000 * 10 / bitrate;
684 else
685 timeout = FLEXCAN_TIMEOUT_US / 10;
686
687 reg = priv->read(®s->mcr);
688 reg |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT;
689 priv->write(reg, ®s->mcr);
690
691 while (timeout-- && !(priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK))
692 udelay(100);
693
694 if (!(priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK))
695 return -ETIMEDOUT;
696
697 return 0;
698 }
699
flexcan_chip_unfreeze(struct flexcan_priv * priv)700 static int flexcan_chip_unfreeze(struct flexcan_priv *priv)
701 {
702 struct flexcan_regs __iomem *regs = priv->regs;
703 unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
704 u32 reg;
705
706 reg = priv->read(®s->mcr);
707 reg &= ~FLEXCAN_MCR_HALT;
708 priv->write(reg, ®s->mcr);
709
710 while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK))
711 udelay(10);
712
713 if (priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK)
714 return -ETIMEDOUT;
715
716 return 0;
717 }
718
flexcan_chip_softreset(struct flexcan_priv * priv)719 static int flexcan_chip_softreset(struct flexcan_priv *priv)
720 {
721 struct flexcan_regs __iomem *regs = priv->regs;
722 unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
723
724 priv->write(FLEXCAN_MCR_SOFTRST, ®s->mcr);
725 while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_SOFTRST))
726 udelay(10);
727
728 if (priv->read(®s->mcr) & FLEXCAN_MCR_SOFTRST)
729 return -ETIMEDOUT;
730
731 return 0;
732 }
733
__flexcan_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)734 static int __flexcan_get_berr_counter(const struct net_device *dev,
735 struct can_berr_counter *bec)
736 {
737 const struct flexcan_priv *priv = netdev_priv(dev);
738 struct flexcan_regs __iomem *regs = priv->regs;
739 u32 reg = priv->read(®s->ecr);
740
741 bec->txerr = (reg >> 0) & 0xff;
742 bec->rxerr = (reg >> 8) & 0xff;
743
744 return 0;
745 }
746
flexcan_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)747 static int flexcan_get_berr_counter(const struct net_device *dev,
748 struct can_berr_counter *bec)
749 {
750 const struct flexcan_priv *priv = netdev_priv(dev);
751 int err;
752
753 err = pm_runtime_resume_and_get(priv->dev);
754 if (err < 0)
755 return err;
756
757 err = __flexcan_get_berr_counter(dev, bec);
758
759 pm_runtime_put(priv->dev);
760
761 return err;
762 }
763
flexcan_start_xmit(struct sk_buff * skb,struct net_device * dev)764 static netdev_tx_t flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev)
765 {
766 const struct flexcan_priv *priv = netdev_priv(dev);
767 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
768 u32 can_id;
769 u32 data;
770 u32 ctrl = FLEXCAN_MB_CODE_TX_DATA | ((can_fd_len2dlc(cfd->len)) << 16);
771 int i;
772
773 if (can_dev_dropped_skb(dev, skb))
774 return NETDEV_TX_OK;
775
776 netif_stop_queue(dev);
777
778 if (cfd->can_id & CAN_EFF_FLAG) {
779 can_id = cfd->can_id & CAN_EFF_MASK;
780 ctrl |= FLEXCAN_MB_CNT_IDE | FLEXCAN_MB_CNT_SRR;
781 } else {
782 can_id = (cfd->can_id & CAN_SFF_MASK) << 18;
783 }
784
785 if (cfd->can_id & CAN_RTR_FLAG)
786 ctrl |= FLEXCAN_MB_CNT_RTR;
787
788 if (can_is_canfd_skb(skb)) {
789 ctrl |= FLEXCAN_MB_CNT_EDL;
790
791 if (cfd->flags & CANFD_BRS)
792 ctrl |= FLEXCAN_MB_CNT_BRS;
793 }
794
795 for (i = 0; i < cfd->len; i += sizeof(u32)) {
796 data = be32_to_cpup((__be32 *)&cfd->data[i]);
797 priv->write(data, &priv->tx_mb->data[i / sizeof(u32)]);
798 }
799
800 can_put_echo_skb(skb, dev, 0, 0);
801
802 priv->write(can_id, &priv->tx_mb->can_id);
803 priv->write(ctrl, &priv->tx_mb->can_ctrl);
804
805 /* Errata ERR005829 step8:
806 * Write twice INACTIVE(0x8) code to first MB.
807 */
808 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
809 &priv->tx_mb_reserved->can_ctrl);
810 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
811 &priv->tx_mb_reserved->can_ctrl);
812
813 return NETDEV_TX_OK;
814 }
815
flexcan_irq_bus_err(struct net_device * dev,u32 reg_esr)816 static void flexcan_irq_bus_err(struct net_device *dev, u32 reg_esr)
817 {
818 struct flexcan_priv *priv = netdev_priv(dev);
819 struct flexcan_regs __iomem *regs = priv->regs;
820 struct sk_buff *skb;
821 struct can_frame *cf;
822 bool rx_errors = false, tx_errors = false;
823 u32 timestamp;
824 int err;
825
826 timestamp = priv->read(®s->timer) << 16;
827
828 skb = alloc_can_err_skb(dev, &cf);
829 if (unlikely(!skb))
830 return;
831
832 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
833
834 if (reg_esr & FLEXCAN_ESR_BIT1_ERR) {
835 netdev_dbg(dev, "BIT1_ERR irq\n");
836 cf->data[2] |= CAN_ERR_PROT_BIT1;
837 tx_errors = true;
838 }
839 if (reg_esr & FLEXCAN_ESR_BIT0_ERR) {
840 netdev_dbg(dev, "BIT0_ERR irq\n");
841 cf->data[2] |= CAN_ERR_PROT_BIT0;
842 tx_errors = true;
843 }
844 if (reg_esr & FLEXCAN_ESR_ACK_ERR) {
845 netdev_dbg(dev, "ACK_ERR irq\n");
846 cf->can_id |= CAN_ERR_ACK;
847 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
848 tx_errors = true;
849 }
850 if (reg_esr & FLEXCAN_ESR_CRC_ERR) {
851 netdev_dbg(dev, "CRC_ERR irq\n");
852 cf->data[2] |= CAN_ERR_PROT_BIT;
853 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
854 rx_errors = true;
855 }
856 if (reg_esr & FLEXCAN_ESR_FRM_ERR) {
857 netdev_dbg(dev, "FRM_ERR irq\n");
858 cf->data[2] |= CAN_ERR_PROT_FORM;
859 rx_errors = true;
860 }
861 if (reg_esr & FLEXCAN_ESR_STF_ERR) {
862 netdev_dbg(dev, "STF_ERR irq\n");
863 cf->data[2] |= CAN_ERR_PROT_STUFF;
864 rx_errors = true;
865 }
866
867 priv->can.can_stats.bus_error++;
868 if (rx_errors)
869 dev->stats.rx_errors++;
870 if (tx_errors)
871 dev->stats.tx_errors++;
872
873 err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
874 if (err)
875 dev->stats.rx_fifo_errors++;
876 }
877
flexcan_irq_state(struct net_device * dev,u32 reg_esr)878 static void flexcan_irq_state(struct net_device *dev, u32 reg_esr)
879 {
880 struct flexcan_priv *priv = netdev_priv(dev);
881 struct flexcan_regs __iomem *regs = priv->regs;
882 struct sk_buff *skb;
883 struct can_frame *cf;
884 enum can_state new_state, rx_state, tx_state;
885 int flt;
886 struct can_berr_counter bec;
887 u32 timestamp;
888 int err;
889
890 flt = reg_esr & FLEXCAN_ESR_FLT_CONF_MASK;
891 if (likely(flt == FLEXCAN_ESR_FLT_CONF_ACTIVE)) {
892 tx_state = unlikely(reg_esr & FLEXCAN_ESR_TX_WRN) ?
893 CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE;
894 rx_state = unlikely(reg_esr & FLEXCAN_ESR_RX_WRN) ?
895 CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE;
896 new_state = max(tx_state, rx_state);
897 } else {
898 __flexcan_get_berr_counter(dev, &bec);
899 new_state = flt == FLEXCAN_ESR_FLT_CONF_PASSIVE ?
900 CAN_STATE_ERROR_PASSIVE : CAN_STATE_BUS_OFF;
901 rx_state = bec.rxerr >= bec.txerr ? new_state : 0;
902 tx_state = bec.rxerr <= bec.txerr ? new_state : 0;
903 }
904
905 /* state hasn't changed */
906 if (likely(new_state == priv->can.state))
907 return;
908
909 timestamp = priv->read(®s->timer) << 16;
910
911 skb = alloc_can_err_skb(dev, &cf);
912 if (unlikely(!skb))
913 return;
914
915 can_change_state(dev, cf, tx_state, rx_state);
916
917 if (unlikely(new_state == CAN_STATE_BUS_OFF))
918 can_bus_off(dev);
919
920 err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
921 if (err)
922 dev->stats.rx_fifo_errors++;
923 }
924
flexcan_read64_mask(struct flexcan_priv * priv,void __iomem * addr,u64 mask)925 static inline u64 flexcan_read64_mask(struct flexcan_priv *priv, void __iomem *addr, u64 mask)
926 {
927 u64 reg = 0;
928
929 if (upper_32_bits(mask))
930 reg = (u64)priv->read(addr - 4) << 32;
931 if (lower_32_bits(mask))
932 reg |= priv->read(addr);
933
934 return reg & mask;
935 }
936
flexcan_write64(struct flexcan_priv * priv,u64 val,void __iomem * addr)937 static inline void flexcan_write64(struct flexcan_priv *priv, u64 val, void __iomem *addr)
938 {
939 if (upper_32_bits(val))
940 priv->write(upper_32_bits(val), addr - 4);
941 if (lower_32_bits(val))
942 priv->write(lower_32_bits(val), addr);
943 }
944
flexcan_read_reg_iflag_rx(struct flexcan_priv * priv)945 static inline u64 flexcan_read_reg_iflag_rx(struct flexcan_priv *priv)
946 {
947 return flexcan_read64_mask(priv, &priv->regs->iflag1, priv->rx_mask);
948 }
949
flexcan_read_reg_iflag_tx(struct flexcan_priv * priv)950 static inline u64 flexcan_read_reg_iflag_tx(struct flexcan_priv *priv)
951 {
952 return flexcan_read64_mask(priv, &priv->regs->iflag1, priv->tx_mask);
953 }
954
rx_offload_to_priv(struct can_rx_offload * offload)955 static inline struct flexcan_priv *rx_offload_to_priv(struct can_rx_offload *offload)
956 {
957 return container_of(offload, struct flexcan_priv, offload);
958 }
959
flexcan_mailbox_read(struct can_rx_offload * offload,unsigned int n,u32 * timestamp,bool drop)960 static struct sk_buff *flexcan_mailbox_read(struct can_rx_offload *offload,
961 unsigned int n, u32 *timestamp,
962 bool drop)
963 {
964 struct flexcan_priv *priv = rx_offload_to_priv(offload);
965 struct flexcan_regs __iomem *regs = priv->regs;
966 struct flexcan_mb __iomem *mb;
967 struct sk_buff *skb;
968 struct canfd_frame *cfd;
969 u32 reg_ctrl, reg_id, reg_iflag1;
970 int i;
971
972 mb = flexcan_get_mb(priv, n);
973
974 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
975 u32 code;
976
977 do {
978 reg_ctrl = priv->read(&mb->can_ctrl);
979 } while (reg_ctrl & FLEXCAN_MB_CODE_RX_BUSY_BIT);
980
981 /* is this MB empty? */
982 code = reg_ctrl & FLEXCAN_MB_CODE_MASK;
983 if ((code != FLEXCAN_MB_CODE_RX_FULL) &&
984 (code != FLEXCAN_MB_CODE_RX_OVERRUN))
985 return NULL;
986
987 if (code == FLEXCAN_MB_CODE_RX_OVERRUN) {
988 /* This MB was overrun, we lost data */
989 offload->dev->stats.rx_over_errors++;
990 offload->dev->stats.rx_errors++;
991 }
992 } else {
993 reg_iflag1 = priv->read(®s->iflag1);
994 if (!(reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE))
995 return NULL;
996
997 reg_ctrl = priv->read(&mb->can_ctrl);
998 }
999
1000 if (unlikely(drop)) {
1001 skb = ERR_PTR(-ENOBUFS);
1002 goto mark_as_read;
1003 }
1004
1005 if (reg_ctrl & FLEXCAN_MB_CNT_EDL)
1006 skb = alloc_canfd_skb(offload->dev, &cfd);
1007 else
1008 skb = alloc_can_skb(offload->dev, (struct can_frame **)&cfd);
1009 if (unlikely(!skb)) {
1010 skb = ERR_PTR(-ENOMEM);
1011 goto mark_as_read;
1012 }
1013
1014 /* increase timstamp to full 32 bit */
1015 *timestamp = reg_ctrl << 16;
1016
1017 reg_id = priv->read(&mb->can_id);
1018 if (reg_ctrl & FLEXCAN_MB_CNT_IDE)
1019 cfd->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG;
1020 else
1021 cfd->can_id = (reg_id >> 18) & CAN_SFF_MASK;
1022
1023 if (reg_ctrl & FLEXCAN_MB_CNT_EDL) {
1024 cfd->len = can_fd_dlc2len((reg_ctrl >> 16) & 0xf);
1025
1026 if (reg_ctrl & FLEXCAN_MB_CNT_BRS)
1027 cfd->flags |= CANFD_BRS;
1028 } else {
1029 cfd->len = can_cc_dlc2len((reg_ctrl >> 16) & 0xf);
1030
1031 if (reg_ctrl & FLEXCAN_MB_CNT_RTR)
1032 cfd->can_id |= CAN_RTR_FLAG;
1033 }
1034
1035 if (reg_ctrl & FLEXCAN_MB_CNT_ESI)
1036 cfd->flags |= CANFD_ESI;
1037
1038 for (i = 0; i < cfd->len; i += sizeof(u32)) {
1039 __be32 data = cpu_to_be32(priv->read(&mb->data[i / sizeof(u32)]));
1040 *(__be32 *)(cfd->data + i) = data;
1041 }
1042
1043 mark_as_read:
1044 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX)
1045 flexcan_write64(priv, FLEXCAN_IFLAG_MB(n), ®s->iflag1);
1046 else
1047 priv->write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, ®s->iflag1);
1048
1049 /* Read the Free Running Timer. It is optional but recommended
1050 * to unlock Mailbox as soon as possible and make it available
1051 * for reception.
1052 */
1053 priv->read(®s->timer);
1054
1055 return skb;
1056 }
1057
flexcan_irq(int irq,void * dev_id)1058 static irqreturn_t flexcan_irq(int irq, void *dev_id)
1059 {
1060 struct net_device *dev = dev_id;
1061 struct net_device_stats *stats = &dev->stats;
1062 struct flexcan_priv *priv = netdev_priv(dev);
1063 struct flexcan_regs __iomem *regs = priv->regs;
1064 irqreturn_t handled = IRQ_NONE;
1065 u64 reg_iflag_tx;
1066 u32 reg_esr;
1067 enum can_state last_state = priv->can.state;
1068
1069 /* reception interrupt */
1070 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
1071 u64 reg_iflag_rx;
1072 int ret;
1073
1074 while ((reg_iflag_rx = flexcan_read_reg_iflag_rx(priv))) {
1075 handled = IRQ_HANDLED;
1076 ret = can_rx_offload_irq_offload_timestamp(&priv->offload,
1077 reg_iflag_rx);
1078 if (!ret)
1079 break;
1080 }
1081 } else {
1082 u32 reg_iflag1;
1083
1084 reg_iflag1 = priv->read(®s->iflag1);
1085 if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) {
1086 handled = IRQ_HANDLED;
1087 can_rx_offload_irq_offload_fifo(&priv->offload);
1088 }
1089
1090 /* FIFO overflow interrupt */
1091 if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) {
1092 handled = IRQ_HANDLED;
1093 priv->write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW,
1094 ®s->iflag1);
1095 dev->stats.rx_over_errors++;
1096 dev->stats.rx_errors++;
1097 }
1098 }
1099
1100 reg_iflag_tx = flexcan_read_reg_iflag_tx(priv);
1101
1102 /* transmission complete interrupt */
1103 if (reg_iflag_tx & priv->tx_mask) {
1104 u32 reg_ctrl = priv->read(&priv->tx_mb->can_ctrl);
1105
1106 handled = IRQ_HANDLED;
1107 stats->tx_bytes +=
1108 can_rx_offload_get_echo_skb_queue_timestamp(&priv->offload, 0,
1109 reg_ctrl << 16, NULL);
1110 stats->tx_packets++;
1111
1112 /* after sending a RTR frame MB is in RX mode */
1113 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
1114 &priv->tx_mb->can_ctrl);
1115 flexcan_write64(priv, priv->tx_mask, ®s->iflag1);
1116 netif_wake_queue(dev);
1117 }
1118
1119 reg_esr = priv->read(®s->esr);
1120
1121 /* ACK all bus error, state change and wake IRQ sources */
1122 if (reg_esr & (FLEXCAN_ESR_ALL_INT | FLEXCAN_ESR_WAK_INT)) {
1123 handled = IRQ_HANDLED;
1124 priv->write(reg_esr & (FLEXCAN_ESR_ALL_INT | FLEXCAN_ESR_WAK_INT), ®s->esr);
1125 }
1126
1127 /* state change interrupt or broken error state quirk fix is enabled */
1128 if ((reg_esr & FLEXCAN_ESR_ERR_STATE) ||
1129 (priv->devtype_data.quirks & (FLEXCAN_QUIRK_BROKEN_WERR_STATE |
1130 FLEXCAN_QUIRK_BROKEN_PERR_STATE)))
1131 flexcan_irq_state(dev, reg_esr);
1132
1133 /* bus error IRQ - handle if bus error reporting is activated */
1134 if ((reg_esr & FLEXCAN_ESR_ERR_BUS) &&
1135 (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1136 flexcan_irq_bus_err(dev, reg_esr);
1137
1138 /* availability of error interrupt among state transitions in case
1139 * bus error reporting is de-activated and
1140 * FLEXCAN_QUIRK_BROKEN_PERR_STATE is enabled:
1141 * +--------------------------------------------------------------+
1142 * | +----------------------------------------------+ [stopped / |
1143 * | | | sleeping] -+
1144 * +-+-> active <-> warning <-> passive -> bus off -+
1145 * ___________^^^^^^^^^^^^_______________________________
1146 * disabled(1) enabled disabled
1147 *
1148 * (1): enabled if FLEXCAN_QUIRK_BROKEN_WERR_STATE is enabled
1149 */
1150 if ((last_state != priv->can.state) &&
1151 (priv->devtype_data.quirks & FLEXCAN_QUIRK_BROKEN_PERR_STATE) &&
1152 !(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1153 switch (priv->can.state) {
1154 case CAN_STATE_ERROR_ACTIVE:
1155 if (priv->devtype_data.quirks &
1156 FLEXCAN_QUIRK_BROKEN_WERR_STATE)
1157 flexcan_error_irq_enable(priv);
1158 else
1159 flexcan_error_irq_disable(priv);
1160 break;
1161
1162 case CAN_STATE_ERROR_WARNING:
1163 flexcan_error_irq_enable(priv);
1164 break;
1165
1166 case CAN_STATE_ERROR_PASSIVE:
1167 case CAN_STATE_BUS_OFF:
1168 flexcan_error_irq_disable(priv);
1169 break;
1170
1171 default:
1172 break;
1173 }
1174 }
1175
1176 if (handled)
1177 can_rx_offload_irq_finish(&priv->offload);
1178
1179 return handled;
1180 }
1181
flexcan_set_bittiming_ctrl(const struct net_device * dev)1182 static void flexcan_set_bittiming_ctrl(const struct net_device *dev)
1183 {
1184 const struct flexcan_priv *priv = netdev_priv(dev);
1185 const struct can_bittiming *bt = &priv->can.bittiming;
1186 struct flexcan_regs __iomem *regs = priv->regs;
1187 u32 reg;
1188
1189 reg = priv->read(®s->ctrl);
1190 reg &= ~(FLEXCAN_CTRL_PRESDIV(0xff) |
1191 FLEXCAN_CTRL_RJW(0x3) |
1192 FLEXCAN_CTRL_PSEG1(0x7) |
1193 FLEXCAN_CTRL_PSEG2(0x7) |
1194 FLEXCAN_CTRL_PROPSEG(0x7));
1195
1196 reg |= FLEXCAN_CTRL_PRESDIV(bt->brp - 1) |
1197 FLEXCAN_CTRL_PSEG1(bt->phase_seg1 - 1) |
1198 FLEXCAN_CTRL_PSEG2(bt->phase_seg2 - 1) |
1199 FLEXCAN_CTRL_RJW(bt->sjw - 1) |
1200 FLEXCAN_CTRL_PROPSEG(bt->prop_seg - 1);
1201
1202 netdev_dbg(dev, "writing ctrl=0x%08x\n", reg);
1203 priv->write(reg, ®s->ctrl);
1204
1205 /* print chip status */
1206 netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x\n", __func__,
1207 priv->read(®s->mcr), priv->read(®s->ctrl));
1208 }
1209
flexcan_set_bittiming_cbt(const struct net_device * dev)1210 static void flexcan_set_bittiming_cbt(const struct net_device *dev)
1211 {
1212 struct flexcan_priv *priv = netdev_priv(dev);
1213 struct can_bittiming *bt = &priv->can.bittiming;
1214 struct can_bittiming *dbt = &priv->can.data_bittiming;
1215 struct flexcan_regs __iomem *regs = priv->regs;
1216 u32 reg_cbt, reg_fdctrl;
1217
1218 /* CBT */
1219 /* CBT[EPSEG1] is 5 bit long and CBT[EPROPSEG] is 6 bit
1220 * long. The can_calc_bittiming() tries to divide the tseg1
1221 * equally between phase_seg1 and prop_seg, which may not fit
1222 * in CBT register. Therefore, if phase_seg1 is more than
1223 * possible value, increase prop_seg and decrease phase_seg1.
1224 */
1225 if (bt->phase_seg1 > 0x20) {
1226 bt->prop_seg += (bt->phase_seg1 - 0x20);
1227 bt->phase_seg1 = 0x20;
1228 }
1229
1230 reg_cbt = FLEXCAN_CBT_BTF |
1231 FIELD_PREP(FLEXCAN_CBT_EPRESDIV_MASK, bt->brp - 1) |
1232 FIELD_PREP(FLEXCAN_CBT_ERJW_MASK, bt->sjw - 1) |
1233 FIELD_PREP(FLEXCAN_CBT_EPROPSEG_MASK, bt->prop_seg - 1) |
1234 FIELD_PREP(FLEXCAN_CBT_EPSEG1_MASK, bt->phase_seg1 - 1) |
1235 FIELD_PREP(FLEXCAN_CBT_EPSEG2_MASK, bt->phase_seg2 - 1);
1236
1237 netdev_dbg(dev, "writing cbt=0x%08x\n", reg_cbt);
1238 priv->write(reg_cbt, ®s->cbt);
1239
1240 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1241 u32 reg_fdcbt, reg_ctrl2;
1242
1243 if (bt->brp != dbt->brp)
1244 netdev_warn(dev, "Data brp=%d and brp=%d don't match, this may result in a phase error. Consider using different bitrate and/or data bitrate.\n",
1245 dbt->brp, bt->brp);
1246
1247 /* FDCBT */
1248 /* FDCBT[FPSEG1] is 3 bit long and FDCBT[FPROPSEG] is
1249 * 5 bit long. The can_calc_bittiming tries to divide
1250 * the tseg1 equally between phase_seg1 and prop_seg,
1251 * which may not fit in FDCBT register. Therefore, if
1252 * phase_seg1 is more than possible value, increase
1253 * prop_seg and decrease phase_seg1
1254 */
1255 if (dbt->phase_seg1 > 0x8) {
1256 dbt->prop_seg += (dbt->phase_seg1 - 0x8);
1257 dbt->phase_seg1 = 0x8;
1258 }
1259
1260 reg_fdcbt = priv->read(®s->fdcbt);
1261 reg_fdcbt &= ~(FIELD_PREP(FLEXCAN_FDCBT_FPRESDIV_MASK, 0x3ff) |
1262 FIELD_PREP(FLEXCAN_FDCBT_FRJW_MASK, 0x7) |
1263 FIELD_PREP(FLEXCAN_FDCBT_FPROPSEG_MASK, 0x1f) |
1264 FIELD_PREP(FLEXCAN_FDCBT_FPSEG1_MASK, 0x7) |
1265 FIELD_PREP(FLEXCAN_FDCBT_FPSEG2_MASK, 0x7));
1266
1267 reg_fdcbt |= FIELD_PREP(FLEXCAN_FDCBT_FPRESDIV_MASK, dbt->brp - 1) |
1268 FIELD_PREP(FLEXCAN_FDCBT_FRJW_MASK, dbt->sjw - 1) |
1269 FIELD_PREP(FLEXCAN_FDCBT_FPROPSEG_MASK, dbt->prop_seg) |
1270 FIELD_PREP(FLEXCAN_FDCBT_FPSEG1_MASK, dbt->phase_seg1 - 1) |
1271 FIELD_PREP(FLEXCAN_FDCBT_FPSEG2_MASK, dbt->phase_seg2 - 1);
1272
1273 netdev_dbg(dev, "writing fdcbt=0x%08x\n", reg_fdcbt);
1274 priv->write(reg_fdcbt, ®s->fdcbt);
1275
1276 /* CTRL2 */
1277 reg_ctrl2 = priv->read(®s->ctrl2);
1278 reg_ctrl2 &= ~FLEXCAN_CTRL2_ISOCANFDEN;
1279 if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO))
1280 reg_ctrl2 |= FLEXCAN_CTRL2_ISOCANFDEN;
1281
1282 netdev_dbg(dev, "writing ctrl2=0x%08x\n", reg_ctrl2);
1283 priv->write(reg_ctrl2, ®s->ctrl2);
1284 }
1285
1286 /* FDCTRL */
1287 reg_fdctrl = priv->read(®s->fdctrl);
1288 reg_fdctrl &= ~(FLEXCAN_FDCTRL_FDRATE |
1289 FIELD_PREP(FLEXCAN_FDCTRL_TDCOFF, 0x1f));
1290
1291 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1292 reg_fdctrl |= FLEXCAN_FDCTRL_FDRATE;
1293
1294 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1295 /* TDC must be disabled for Loop Back mode */
1296 reg_fdctrl &= ~FLEXCAN_FDCTRL_TDCEN;
1297 } else {
1298 reg_fdctrl |= FLEXCAN_FDCTRL_TDCEN |
1299 FIELD_PREP(FLEXCAN_FDCTRL_TDCOFF,
1300 ((dbt->phase_seg1 - 1) +
1301 dbt->prop_seg + 2) *
1302 ((dbt->brp - 1 ) + 1));
1303 }
1304 }
1305
1306 netdev_dbg(dev, "writing fdctrl=0x%08x\n", reg_fdctrl);
1307 priv->write(reg_fdctrl, ®s->fdctrl);
1308
1309 netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x ctrl2=0x%08x fdctrl=0x%08x cbt=0x%08x fdcbt=0x%08x\n",
1310 __func__,
1311 priv->read(®s->mcr), priv->read(®s->ctrl),
1312 priv->read(®s->ctrl2), priv->read(®s->fdctrl),
1313 priv->read(®s->cbt), priv->read(®s->fdcbt));
1314 }
1315
flexcan_set_bittiming(struct net_device * dev)1316 static void flexcan_set_bittiming(struct net_device *dev)
1317 {
1318 const struct flexcan_priv *priv = netdev_priv(dev);
1319 struct flexcan_regs __iomem *regs = priv->regs;
1320 u32 reg;
1321
1322 reg = priv->read(®s->ctrl);
1323 reg &= ~(FLEXCAN_CTRL_LPB | FLEXCAN_CTRL_SMP |
1324 FLEXCAN_CTRL_LOM);
1325
1326 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
1327 reg |= FLEXCAN_CTRL_LPB;
1328 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1329 reg |= FLEXCAN_CTRL_LOM;
1330 if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
1331 reg |= FLEXCAN_CTRL_SMP;
1332
1333 netdev_dbg(dev, "writing ctrl=0x%08x\n", reg);
1334 priv->write(reg, ®s->ctrl);
1335
1336 if (priv->can.ctrlmode_supported & CAN_CTRLMODE_FD)
1337 return flexcan_set_bittiming_cbt(dev);
1338 else
1339 return flexcan_set_bittiming_ctrl(dev);
1340 }
1341
flexcan_ram_init(struct net_device * dev)1342 static void flexcan_ram_init(struct net_device *dev)
1343 {
1344 struct flexcan_priv *priv = netdev_priv(dev);
1345 struct flexcan_regs __iomem *regs = priv->regs;
1346 u32 reg_ctrl2;
1347
1348 /* 11.8.3.13 Detection and correction of memory errors:
1349 * CTRL2[WRMFRZ] grants write access to all memory positions
1350 * that require initialization, ranging from 0x080 to 0xADF
1351 * and from 0xF28 to 0xFFF when the CAN FD feature is enabled.
1352 * The RXMGMASK, RX14MASK, RX15MASK, and RXFGMASK registers
1353 * need to be initialized as well. MCR[RFEN] must not be set
1354 * during memory initialization.
1355 */
1356 reg_ctrl2 = priv->read(®s->ctrl2);
1357 reg_ctrl2 |= FLEXCAN_CTRL2_WRMFRZ;
1358 priv->write(reg_ctrl2, ®s->ctrl2);
1359
1360 memset_io(®s->init, 0, sizeof(regs->init));
1361
1362 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1363 memset_io(®s->init_fd, 0, sizeof(regs->init_fd));
1364
1365 reg_ctrl2 &= ~FLEXCAN_CTRL2_WRMFRZ;
1366 priv->write(reg_ctrl2, ®s->ctrl2);
1367 }
1368
flexcan_rx_offload_setup(struct net_device * dev)1369 static int flexcan_rx_offload_setup(struct net_device *dev)
1370 {
1371 struct flexcan_priv *priv = netdev_priv(dev);
1372 int err;
1373
1374 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1375 priv->mb_size = sizeof(struct flexcan_mb) + CANFD_MAX_DLEN;
1376 else
1377 priv->mb_size = sizeof(struct flexcan_mb) + CAN_MAX_DLEN;
1378
1379 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_NR_MB_16)
1380 priv->mb_count = 16;
1381 else
1382 priv->mb_count = (sizeof(priv->regs->mb[0]) / priv->mb_size) +
1383 (sizeof(priv->regs->mb[1]) / priv->mb_size);
1384
1385 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX)
1386 priv->tx_mb_reserved =
1387 flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_RX_MAILBOX);
1388 else
1389 priv->tx_mb_reserved =
1390 flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_RX_FIFO);
1391 priv->tx_mb_idx = priv->mb_count - 1;
1392 priv->tx_mb = flexcan_get_mb(priv, priv->tx_mb_idx);
1393 priv->tx_mask = FLEXCAN_IFLAG_MB(priv->tx_mb_idx);
1394
1395 priv->offload.mailbox_read = flexcan_mailbox_read;
1396
1397 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
1398 priv->offload.mb_first = FLEXCAN_RX_MB_RX_MAILBOX_FIRST;
1399 priv->offload.mb_last = priv->mb_count - 2;
1400
1401 priv->rx_mask = GENMASK_ULL(priv->offload.mb_last,
1402 priv->offload.mb_first);
1403 err = can_rx_offload_add_timestamp(dev, &priv->offload);
1404 } else {
1405 priv->rx_mask = FLEXCAN_IFLAG_RX_FIFO_OVERFLOW |
1406 FLEXCAN_IFLAG_RX_FIFO_AVAILABLE;
1407 err = can_rx_offload_add_fifo(dev, &priv->offload,
1408 FLEXCAN_NAPI_WEIGHT);
1409 }
1410
1411 return err;
1412 }
1413
flexcan_chip_interrupts_enable(const struct net_device * dev)1414 static void flexcan_chip_interrupts_enable(const struct net_device *dev)
1415 {
1416 const struct flexcan_priv *priv = netdev_priv(dev);
1417 struct flexcan_regs __iomem *regs = priv->regs;
1418 u64 reg_imask;
1419
1420 disable_irq(dev->irq);
1421 priv->write(priv->reg_ctrl_default, ®s->ctrl);
1422 reg_imask = priv->rx_mask | priv->tx_mask;
1423 priv->write(upper_32_bits(reg_imask), ®s->imask2);
1424 priv->write(lower_32_bits(reg_imask), ®s->imask1);
1425 enable_irq(dev->irq);
1426 }
1427
flexcan_chip_interrupts_disable(const struct net_device * dev)1428 static void flexcan_chip_interrupts_disable(const struct net_device *dev)
1429 {
1430 const struct flexcan_priv *priv = netdev_priv(dev);
1431 struct flexcan_regs __iomem *regs = priv->regs;
1432
1433 priv->write(0, ®s->imask2);
1434 priv->write(0, ®s->imask1);
1435 priv->write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL,
1436 ®s->ctrl);
1437 }
1438
1439 /* flexcan_chip_start
1440 *
1441 * this functions is entered with clocks enabled
1442 *
1443 */
flexcan_chip_start(struct net_device * dev)1444 static int flexcan_chip_start(struct net_device *dev)
1445 {
1446 struct flexcan_priv *priv = netdev_priv(dev);
1447 struct flexcan_regs __iomem *regs = priv->regs;
1448 u32 reg_mcr, reg_ctrl, reg_ctrl2, reg_mecr;
1449 int err, i;
1450 struct flexcan_mb __iomem *mb;
1451
1452 /* enable module */
1453 err = flexcan_chip_enable(priv);
1454 if (err)
1455 return err;
1456
1457 /* soft reset */
1458 err = flexcan_chip_softreset(priv);
1459 if (err)
1460 goto out_chip_disable;
1461
1462 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SUPPORT_ECC)
1463 flexcan_ram_init(dev);
1464
1465 flexcan_set_bittiming(dev);
1466
1467 /* set freeze, halt */
1468 err = flexcan_chip_freeze(priv);
1469 if (err)
1470 goto out_chip_disable;
1471
1472 /* MCR
1473 *
1474 * only supervisor access
1475 * enable warning int
1476 * enable individual RX masking
1477 * choose format C
1478 * set max mailbox number
1479 */
1480 reg_mcr = priv->read(®s->mcr);
1481 reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff);
1482 reg_mcr |= FLEXCAN_MCR_SUPV | FLEXCAN_MCR_WRN_EN | FLEXCAN_MCR_IRMQ |
1483 FLEXCAN_MCR_IDAM_C | FLEXCAN_MCR_MAXMB(priv->tx_mb_idx);
1484
1485 /* MCR
1486 *
1487 * FIFO:
1488 * - disable for mailbox mode
1489 * - enable for FIFO mode
1490 */
1491 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX)
1492 reg_mcr &= ~FLEXCAN_MCR_FEN;
1493 else
1494 reg_mcr |= FLEXCAN_MCR_FEN;
1495
1496 /* MCR
1497 *
1498 * NOTE: In loopback mode, the CAN_MCR[SRXDIS] cannot be
1499 * asserted because this will impede the self reception
1500 * of a transmitted message. This is not documented in
1501 * earlier versions of flexcan block guide.
1502 *
1503 * Self Reception:
1504 * - enable Self Reception for loopback mode
1505 * (by clearing "Self Reception Disable" bit)
1506 * - disable for normal operation
1507 */
1508 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
1509 reg_mcr &= ~FLEXCAN_MCR_SRX_DIS;
1510 else
1511 reg_mcr |= FLEXCAN_MCR_SRX_DIS;
1512
1513 /* MCR - CAN-FD */
1514 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1515 reg_mcr |= FLEXCAN_MCR_FDEN;
1516 else
1517 reg_mcr &= ~FLEXCAN_MCR_FDEN;
1518
1519 netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr);
1520 priv->write(reg_mcr, ®s->mcr);
1521
1522 /* CTRL
1523 *
1524 * disable timer sync feature
1525 *
1526 * disable auto busoff recovery
1527 * transmit lowest buffer first
1528 *
1529 * enable tx and rx warning interrupt
1530 * enable bus off interrupt
1531 * (== FLEXCAN_CTRL_ERR_STATE)
1532 */
1533 reg_ctrl = priv->read(®s->ctrl);
1534 reg_ctrl &= ~FLEXCAN_CTRL_TSYN;
1535 reg_ctrl |= FLEXCAN_CTRL_BOFF_REC | FLEXCAN_CTRL_LBUF |
1536 FLEXCAN_CTRL_ERR_STATE;
1537
1538 /* enable the "error interrupt" (FLEXCAN_CTRL_ERR_MSK),
1539 * on most Flexcan cores, too. Otherwise we don't get
1540 * any error warning or passive interrupts.
1541 */
1542 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE ||
1543 priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
1544 reg_ctrl |= FLEXCAN_CTRL_ERR_MSK;
1545 else
1546 reg_ctrl &= ~FLEXCAN_CTRL_ERR_MSK;
1547
1548 /* save for later use */
1549 priv->reg_ctrl_default = reg_ctrl;
1550 /* leave interrupts disabled for now */
1551 reg_ctrl &= ~FLEXCAN_CTRL_ERR_ALL;
1552 netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl);
1553 priv->write(reg_ctrl, ®s->ctrl);
1554
1555 if ((priv->devtype_data.quirks & FLEXCAN_QUIRK_ENABLE_EACEN_RRS)) {
1556 reg_ctrl2 = priv->read(®s->ctrl2);
1557 reg_ctrl2 |= FLEXCAN_CTRL2_EACEN | FLEXCAN_CTRL2_RRS;
1558 priv->write(reg_ctrl2, ®s->ctrl2);
1559 }
1560
1561 if (priv->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1562 u32 reg_fdctrl;
1563
1564 reg_fdctrl = priv->read(®s->fdctrl);
1565 reg_fdctrl &= ~(FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1, 0x3) |
1566 FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0, 0x3));
1567
1568 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1569 reg_fdctrl |=
1570 FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1,
1571 FLEXCAN_FDCTRL_MBDSR_64) |
1572 FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0,
1573 FLEXCAN_FDCTRL_MBDSR_64);
1574 } else {
1575 reg_fdctrl |=
1576 FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1,
1577 FLEXCAN_FDCTRL_MBDSR_8) |
1578 FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0,
1579 FLEXCAN_FDCTRL_MBDSR_8);
1580 }
1581
1582 netdev_dbg(dev, "%s: writing fdctrl=0x%08x",
1583 __func__, reg_fdctrl);
1584 priv->write(reg_fdctrl, ®s->fdctrl);
1585 }
1586
1587 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_USE_RX_MAILBOX) {
1588 for (i = priv->offload.mb_first; i <= priv->offload.mb_last; i++) {
1589 mb = flexcan_get_mb(priv, i);
1590 priv->write(FLEXCAN_MB_CODE_RX_EMPTY,
1591 &mb->can_ctrl);
1592 }
1593 } else {
1594 /* clear and invalidate unused mailboxes first */
1595 for (i = FLEXCAN_TX_MB_RESERVED_RX_FIFO; i < priv->mb_count; i++) {
1596 mb = flexcan_get_mb(priv, i);
1597 priv->write(FLEXCAN_MB_CODE_RX_INACTIVE,
1598 &mb->can_ctrl);
1599 }
1600 }
1601
1602 /* Errata ERR005829: mark first TX mailbox as INACTIVE */
1603 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
1604 &priv->tx_mb_reserved->can_ctrl);
1605
1606 /* mark TX mailbox as INACTIVE */
1607 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
1608 &priv->tx_mb->can_ctrl);
1609
1610 /* acceptance mask/acceptance code (accept everything) */
1611 priv->write(0x0, ®s->rxgmask);
1612 priv->write(0x0, ®s->rx14mask);
1613 priv->write(0x0, ®s->rx15mask);
1614
1615 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_DISABLE_RXFG)
1616 priv->write(0x0, ®s->rxfgmask);
1617
1618 /* clear acceptance filters */
1619 for (i = 0; i < priv->mb_count; i++)
1620 priv->write(0, ®s->rximr[i]);
1621
1622 /* On Vybrid, disable non-correctable errors interrupt and
1623 * freeze mode. It still can correct the correctable errors
1624 * when HW supports ECC.
1625 *
1626 * This also works around errata e5295 which generates false
1627 * positive memory errors and put the device in freeze mode.
1628 */
1629 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_DISABLE_MECR) {
1630 /* Follow the protocol as described in "Detection
1631 * and Correction of Memory Errors" to write to
1632 * MECR register (step 1 - 5)
1633 *
1634 * 1. By default, CTRL2[ECRWRE] = 0, MECR[ECRWRDIS] = 1
1635 * 2. set CTRL2[ECRWRE]
1636 */
1637 reg_ctrl2 = priv->read(®s->ctrl2);
1638 reg_ctrl2 |= FLEXCAN_CTRL2_ECRWRE;
1639 priv->write(reg_ctrl2, ®s->ctrl2);
1640
1641 /* 3. clear MECR[ECRWRDIS] */
1642 reg_mecr = priv->read(®s->mecr);
1643 reg_mecr &= ~FLEXCAN_MECR_ECRWRDIS;
1644 priv->write(reg_mecr, ®s->mecr);
1645
1646 /* 4. all writes to MECR must keep MECR[ECRWRDIS] cleared */
1647 reg_mecr &= ~(FLEXCAN_MECR_NCEFAFRZ | FLEXCAN_MECR_HANCEI_MSK |
1648 FLEXCAN_MECR_FANCEI_MSK);
1649 priv->write(reg_mecr, ®s->mecr);
1650
1651 /* 5. after configuration done, lock MECR by either
1652 * setting MECR[ECRWRDIS] or clearing CTRL2[ECRWRE]
1653 */
1654 reg_mecr |= FLEXCAN_MECR_ECRWRDIS;
1655 priv->write(reg_mecr, ®s->mecr);
1656
1657 reg_ctrl2 &= ~FLEXCAN_CTRL2_ECRWRE;
1658 priv->write(reg_ctrl2, ®s->ctrl2);
1659 }
1660
1661 /* synchronize with the can bus */
1662 err = flexcan_chip_unfreeze(priv);
1663 if (err)
1664 goto out_chip_disable;
1665
1666 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1667
1668 /* print chip status */
1669 netdev_dbg(dev, "%s: reading mcr=0x%08x ctrl=0x%08x\n", __func__,
1670 priv->read(®s->mcr), priv->read(®s->ctrl));
1671
1672 return 0;
1673
1674 out_chip_disable:
1675 flexcan_chip_disable(priv);
1676 return err;
1677 }
1678
1679 /* __flexcan_chip_stop
1680 *
1681 * this function is entered with clocks enabled
1682 */
__flexcan_chip_stop(struct net_device * dev,bool disable_on_error)1683 static int __flexcan_chip_stop(struct net_device *dev, bool disable_on_error)
1684 {
1685 struct flexcan_priv *priv = netdev_priv(dev);
1686 int err;
1687
1688 /* freeze + disable module */
1689 err = flexcan_chip_freeze(priv);
1690 if (err && !disable_on_error)
1691 return err;
1692 err = flexcan_chip_disable(priv);
1693 if (err && !disable_on_error)
1694 goto out_chip_unfreeze;
1695
1696 priv->can.state = CAN_STATE_STOPPED;
1697
1698 return 0;
1699
1700 out_chip_unfreeze:
1701 flexcan_chip_unfreeze(priv);
1702
1703 return err;
1704 }
1705
flexcan_chip_stop_disable_on_error(struct net_device * dev)1706 static inline int flexcan_chip_stop_disable_on_error(struct net_device *dev)
1707 {
1708 return __flexcan_chip_stop(dev, true);
1709 }
1710
flexcan_chip_stop(struct net_device * dev)1711 static inline int flexcan_chip_stop(struct net_device *dev)
1712 {
1713 return __flexcan_chip_stop(dev, false);
1714 }
1715
flexcan_open(struct net_device * dev)1716 static int flexcan_open(struct net_device *dev)
1717 {
1718 struct flexcan_priv *priv = netdev_priv(dev);
1719 int err;
1720
1721 if ((priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) &&
1722 (priv->can.ctrlmode & CAN_CTRLMODE_FD)) {
1723 netdev_err(dev, "Three Samples mode and CAN-FD mode can't be used together\n");
1724 return -EINVAL;
1725 }
1726
1727 err = pm_runtime_resume_and_get(priv->dev);
1728 if (err < 0)
1729 return err;
1730
1731 err = open_candev(dev);
1732 if (err)
1733 goto out_runtime_put;
1734
1735 err = flexcan_transceiver_enable(priv);
1736 if (err)
1737 goto out_close;
1738
1739 err = flexcan_rx_offload_setup(dev);
1740 if (err)
1741 goto out_transceiver_disable;
1742
1743 err = flexcan_chip_start(dev);
1744 if (err)
1745 goto out_can_rx_offload_del;
1746
1747 can_rx_offload_enable(&priv->offload);
1748
1749 err = request_irq(dev->irq, flexcan_irq, IRQF_SHARED, dev->name, dev);
1750 if (err)
1751 goto out_can_rx_offload_disable;
1752
1753 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_NR_IRQ_3) {
1754 err = request_irq(priv->irq_boff,
1755 flexcan_irq, IRQF_SHARED, dev->name, dev);
1756 if (err)
1757 goto out_free_irq;
1758
1759 err = request_irq(priv->irq_err,
1760 flexcan_irq, IRQF_SHARED, dev->name, dev);
1761 if (err)
1762 goto out_free_irq_boff;
1763 }
1764
1765 flexcan_chip_interrupts_enable(dev);
1766
1767 netif_start_queue(dev);
1768
1769 return 0;
1770
1771 out_free_irq_boff:
1772 free_irq(priv->irq_boff, dev);
1773 out_free_irq:
1774 free_irq(dev->irq, dev);
1775 out_can_rx_offload_disable:
1776 can_rx_offload_disable(&priv->offload);
1777 flexcan_chip_stop(dev);
1778 out_can_rx_offload_del:
1779 can_rx_offload_del(&priv->offload);
1780 out_transceiver_disable:
1781 flexcan_transceiver_disable(priv);
1782 out_close:
1783 close_candev(dev);
1784 out_runtime_put:
1785 pm_runtime_put(priv->dev);
1786
1787 return err;
1788 }
1789
flexcan_close(struct net_device * dev)1790 static int flexcan_close(struct net_device *dev)
1791 {
1792 struct flexcan_priv *priv = netdev_priv(dev);
1793
1794 netif_stop_queue(dev);
1795 flexcan_chip_interrupts_disable(dev);
1796
1797 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_NR_IRQ_3) {
1798 free_irq(priv->irq_err, dev);
1799 free_irq(priv->irq_boff, dev);
1800 }
1801
1802 free_irq(dev->irq, dev);
1803 can_rx_offload_disable(&priv->offload);
1804 flexcan_chip_stop_disable_on_error(dev);
1805
1806 can_rx_offload_del(&priv->offload);
1807 flexcan_transceiver_disable(priv);
1808 close_candev(dev);
1809
1810 pm_runtime_put(priv->dev);
1811
1812 return 0;
1813 }
1814
flexcan_set_mode(struct net_device * dev,enum can_mode mode)1815 static int flexcan_set_mode(struct net_device *dev, enum can_mode mode)
1816 {
1817 int err;
1818
1819 switch (mode) {
1820 case CAN_MODE_START:
1821 err = flexcan_chip_start(dev);
1822 if (err)
1823 return err;
1824
1825 flexcan_chip_interrupts_enable(dev);
1826
1827 netif_wake_queue(dev);
1828 break;
1829
1830 default:
1831 return -EOPNOTSUPP;
1832 }
1833
1834 return 0;
1835 }
1836
1837 static const struct net_device_ops flexcan_netdev_ops = {
1838 .ndo_open = flexcan_open,
1839 .ndo_stop = flexcan_close,
1840 .ndo_start_xmit = flexcan_start_xmit,
1841 .ndo_change_mtu = can_change_mtu,
1842 };
1843
register_flexcandev(struct net_device * dev)1844 static int register_flexcandev(struct net_device *dev)
1845 {
1846 struct flexcan_priv *priv = netdev_priv(dev);
1847 struct flexcan_regs __iomem *regs = priv->regs;
1848 u32 reg, err;
1849
1850 err = flexcan_clks_enable(priv);
1851 if (err)
1852 return err;
1853
1854 /* select "bus clock", chip must be disabled */
1855 err = flexcan_chip_disable(priv);
1856 if (err)
1857 goto out_clks_disable;
1858
1859 reg = priv->read(®s->ctrl);
1860 if (priv->clk_src)
1861 reg |= FLEXCAN_CTRL_CLK_SRC;
1862 else
1863 reg &= ~FLEXCAN_CTRL_CLK_SRC;
1864 priv->write(reg, ®s->ctrl);
1865
1866 err = flexcan_chip_enable(priv);
1867 if (err)
1868 goto out_chip_disable;
1869
1870 /* set freeze, halt */
1871 err = flexcan_chip_freeze(priv);
1872 if (err)
1873 goto out_chip_disable;
1874
1875 /* activate FIFO, restrict register access */
1876 reg = priv->read(®s->mcr);
1877 reg |= FLEXCAN_MCR_FEN | FLEXCAN_MCR_SUPV;
1878 priv->write(reg, ®s->mcr);
1879
1880 /* Currently we only support newer versions of this core
1881 * featuring a RX hardware FIFO (although this driver doesn't
1882 * make use of it on some cores). Older cores, found on some
1883 * Coldfire derivates are not tested.
1884 */
1885 reg = priv->read(®s->mcr);
1886 if (!(reg & FLEXCAN_MCR_FEN)) {
1887 netdev_err(dev, "Could not enable RX FIFO, unsupported core\n");
1888 err = -ENODEV;
1889 goto out_chip_disable;
1890 }
1891
1892 err = register_candev(dev);
1893 if (err)
1894 goto out_chip_disable;
1895
1896 /* Disable core and let pm_runtime_put() disable the clocks.
1897 * If CONFIG_PM is not enabled, the clocks will stay powered.
1898 */
1899 flexcan_chip_disable(priv);
1900 pm_runtime_put(priv->dev);
1901
1902 return 0;
1903
1904 out_chip_disable:
1905 flexcan_chip_disable(priv);
1906 out_clks_disable:
1907 flexcan_clks_disable(priv);
1908 return err;
1909 }
1910
unregister_flexcandev(struct net_device * dev)1911 static void unregister_flexcandev(struct net_device *dev)
1912 {
1913 unregister_candev(dev);
1914 }
1915
flexcan_setup_stop_mode_gpr(struct platform_device * pdev)1916 static int flexcan_setup_stop_mode_gpr(struct platform_device *pdev)
1917 {
1918 struct net_device *dev = platform_get_drvdata(pdev);
1919 struct device_node *np = pdev->dev.of_node;
1920 struct device_node *gpr_np;
1921 struct flexcan_priv *priv;
1922 phandle phandle;
1923 u32 out_val[3];
1924 int ret;
1925
1926 if (!np)
1927 return -EINVAL;
1928
1929 /* stop mode property format is:
1930 * <&gpr req_gpr req_bit>.
1931 */
1932 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
1933 ARRAY_SIZE(out_val));
1934 if (ret) {
1935 dev_dbg(&pdev->dev, "no stop-mode property\n");
1936 return ret;
1937 }
1938 phandle = *out_val;
1939
1940 gpr_np = of_find_node_by_phandle(phandle);
1941 if (!gpr_np) {
1942 dev_dbg(&pdev->dev, "could not find gpr node by phandle\n");
1943 return -ENODEV;
1944 }
1945
1946 priv = netdev_priv(dev);
1947 priv->stm.gpr = syscon_node_to_regmap(gpr_np);
1948 if (IS_ERR(priv->stm.gpr)) {
1949 dev_dbg(&pdev->dev, "could not find gpr regmap\n");
1950 ret = PTR_ERR(priv->stm.gpr);
1951 goto out_put_node;
1952 }
1953
1954 priv->stm.req_gpr = out_val[1];
1955 priv->stm.req_bit = out_val[2];
1956
1957 dev_dbg(&pdev->dev,
1958 "gpr %s req_gpr=0x02%x req_bit=%u\n",
1959 gpr_np->full_name, priv->stm.req_gpr, priv->stm.req_bit);
1960
1961 return 0;
1962
1963 out_put_node:
1964 of_node_put(gpr_np);
1965 return ret;
1966 }
1967
flexcan_setup_stop_mode_scfw(struct platform_device * pdev)1968 static int flexcan_setup_stop_mode_scfw(struct platform_device *pdev)
1969 {
1970 struct net_device *dev = platform_get_drvdata(pdev);
1971 struct flexcan_priv *priv;
1972 u8 scu_idx;
1973 int ret;
1974
1975 ret = of_property_read_u8(pdev->dev.of_node, "fsl,scu-index", &scu_idx);
1976 if (ret < 0) {
1977 dev_dbg(&pdev->dev, "failed to get scu index\n");
1978 return ret;
1979 }
1980
1981 priv = netdev_priv(dev);
1982 priv->scu_idx = scu_idx;
1983
1984 /* this function could be deferred probe, return -EPROBE_DEFER */
1985 return imx_scu_get_handle(&priv->sc_ipc_handle);
1986 }
1987
1988 /* flexcan_setup_stop_mode - Setup stop mode for wakeup
1989 *
1990 * Return: = 0 setup stop mode successfully or doesn't support this feature
1991 * < 0 fail to setup stop mode (could be deferred probe)
1992 */
flexcan_setup_stop_mode(struct platform_device * pdev)1993 static int flexcan_setup_stop_mode(struct platform_device *pdev)
1994 {
1995 struct net_device *dev = platform_get_drvdata(pdev);
1996 struct flexcan_priv *priv;
1997 int ret;
1998
1999 priv = netdev_priv(dev);
2000
2001 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCFW)
2002 ret = flexcan_setup_stop_mode_scfw(pdev);
2003 else if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR)
2004 ret = flexcan_setup_stop_mode_gpr(pdev);
2005 else if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCMI)
2006 /* ATF will handle all STOP_IPG related work */
2007 ret = 0;
2008 else
2009 /* return 0 directly if doesn't support stop mode feature */
2010 return 0;
2011
2012 /* If ret is -EINVAL, this means SoC claim to support stop mode, but
2013 * dts file lack the stop mode property definition. For this case,
2014 * directly return 0, this will skip the wakeup capable setting and
2015 * will not block the driver probe.
2016 */
2017 if (ret == -EINVAL)
2018 return 0;
2019 else if (ret)
2020 return ret;
2021
2022 device_set_wakeup_capable(&pdev->dev, true);
2023
2024 if (of_property_read_bool(pdev->dev.of_node, "wakeup-source"))
2025 device_set_wakeup_enable(&pdev->dev, true);
2026
2027 return 0;
2028 }
2029
2030 static const struct of_device_id flexcan_of_match[] = {
2031 { .compatible = "fsl,imx8qm-flexcan", .data = &fsl_imx8qm_devtype_data, },
2032 { .compatible = "fsl,imx8mp-flexcan", .data = &fsl_imx8mp_devtype_data, },
2033 { .compatible = "fsl,imx93-flexcan", .data = &fsl_imx93_devtype_data, },
2034 { .compatible = "fsl,imx95-flexcan", .data = &fsl_imx95_devtype_data, },
2035 { .compatible = "fsl,imx6q-flexcan", .data = &fsl_imx6q_devtype_data, },
2036 { .compatible = "fsl,imx28-flexcan", .data = &fsl_imx28_devtype_data, },
2037 { .compatible = "fsl,imx53-flexcan", .data = &fsl_imx25_devtype_data, },
2038 { .compatible = "fsl,imx35-flexcan", .data = &fsl_imx25_devtype_data, },
2039 { .compatible = "fsl,imx25-flexcan", .data = &fsl_imx25_devtype_data, },
2040 { .compatible = "fsl,p1010-flexcan", .data = &fsl_p1010_devtype_data, },
2041 { .compatible = "fsl,vf610-flexcan", .data = &fsl_vf610_devtype_data, },
2042 { .compatible = "fsl,ls1021ar2-flexcan", .data = &fsl_ls1021a_r2_devtype_data, },
2043 { .compatible = "fsl,lx2160ar1-flexcan", .data = &fsl_lx2160a_r1_devtype_data, },
2044 { /* sentinel */ },
2045 };
2046 MODULE_DEVICE_TABLE(of, flexcan_of_match);
2047
2048 static const struct platform_device_id flexcan_id_table[] = {
2049 {
2050 .name = "flexcan-mcf5441x",
2051 .driver_data = (kernel_ulong_t)&fsl_mcf5441x_devtype_data,
2052 }, {
2053 /* sentinel */
2054 },
2055 };
2056 MODULE_DEVICE_TABLE(platform, flexcan_id_table);
2057
flexcan_probe(struct platform_device * pdev)2058 static int flexcan_probe(struct platform_device *pdev)
2059 {
2060 const struct flexcan_devtype_data *devtype_data;
2061 struct net_device *dev;
2062 struct flexcan_priv *priv;
2063 struct regulator *reg_xceiver;
2064 struct clk *clk_ipg = NULL, *clk_per = NULL;
2065 struct flexcan_regs __iomem *regs;
2066 struct flexcan_platform_data *pdata;
2067 int err, irq;
2068 u8 clk_src = 1;
2069 u32 clock_freq = 0;
2070
2071 reg_xceiver = devm_regulator_get_optional(&pdev->dev, "xceiver");
2072 if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER)
2073 return -EPROBE_DEFER;
2074 else if (PTR_ERR(reg_xceiver) == -ENODEV)
2075 reg_xceiver = NULL;
2076 else if (IS_ERR(reg_xceiver))
2077 return PTR_ERR(reg_xceiver);
2078
2079 if (pdev->dev.of_node) {
2080 of_property_read_u32(pdev->dev.of_node,
2081 "clock-frequency", &clock_freq);
2082 of_property_read_u8(pdev->dev.of_node,
2083 "fsl,clk-source", &clk_src);
2084 } else {
2085 pdata = dev_get_platdata(&pdev->dev);
2086 if (pdata) {
2087 clock_freq = pdata->clock_frequency;
2088 clk_src = pdata->clk_src;
2089 }
2090 }
2091
2092 if (!clock_freq) {
2093 clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2094 if (IS_ERR(clk_ipg)) {
2095 dev_err(&pdev->dev, "no ipg clock defined\n");
2096 return PTR_ERR(clk_ipg);
2097 }
2098
2099 clk_per = devm_clk_get(&pdev->dev, "per");
2100 if (IS_ERR(clk_per)) {
2101 dev_err(&pdev->dev, "no per clock defined\n");
2102 return PTR_ERR(clk_per);
2103 }
2104 clock_freq = clk_get_rate(clk_per);
2105 }
2106
2107 irq = platform_get_irq(pdev, 0);
2108 if (irq < 0)
2109 return irq;
2110
2111 regs = devm_platform_ioremap_resource(pdev, 0);
2112 if (IS_ERR(regs))
2113 return PTR_ERR(regs);
2114
2115 devtype_data = device_get_match_data(&pdev->dev);
2116
2117 if ((devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_FD) &&
2118 !((devtype_data->quirks &
2119 (FLEXCAN_QUIRK_USE_RX_MAILBOX |
2120 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
2121 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR |
2122 FLEXCAN_QUIRK_SUPPORT_RX_FIFO)) ==
2123 (FLEXCAN_QUIRK_USE_RX_MAILBOX |
2124 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
2125 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR))) {
2126 dev_err(&pdev->dev, "CAN-FD mode doesn't work in RX-FIFO mode!\n");
2127 return -EINVAL;
2128 }
2129
2130 if ((devtype_data->quirks &
2131 (FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX |
2132 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR)) ==
2133 FLEXCAN_QUIRK_SUPPORT_RX_MAILBOX_RTR) {
2134 dev_err(&pdev->dev,
2135 "Quirks (0x%08x) inconsistent: RX_MAILBOX_RX supported but not RX_MAILBOX\n",
2136 devtype_data->quirks);
2137 return -EINVAL;
2138 }
2139
2140 dev = alloc_candev(sizeof(struct flexcan_priv), 1);
2141 if (!dev)
2142 return -ENOMEM;
2143
2144 platform_set_drvdata(pdev, dev);
2145 SET_NETDEV_DEV(dev, &pdev->dev);
2146
2147 dev->netdev_ops = &flexcan_netdev_ops;
2148 dev->ethtool_ops = &flexcan_ethtool_ops;
2149 dev->irq = irq;
2150 dev->flags |= IFF_ECHO;
2151
2152 priv = netdev_priv(dev);
2153 priv->devtype_data = *devtype_data;
2154
2155 if (of_property_read_bool(pdev->dev.of_node, "big-endian") ||
2156 priv->devtype_data.quirks & FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN) {
2157 priv->read = flexcan_read_be;
2158 priv->write = flexcan_write_be;
2159 } else {
2160 priv->read = flexcan_read_le;
2161 priv->write = flexcan_write_le;
2162 }
2163
2164 priv->dev = &pdev->dev;
2165 priv->can.clock.freq = clock_freq;
2166 priv->can.do_set_mode = flexcan_set_mode;
2167 priv->can.do_get_berr_counter = flexcan_get_berr_counter;
2168 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
2169 CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_3_SAMPLES |
2170 CAN_CTRLMODE_BERR_REPORTING;
2171 priv->regs = regs;
2172 priv->clk_ipg = clk_ipg;
2173 priv->clk_per = clk_per;
2174 priv->clk_src = clk_src;
2175 priv->reg_xceiver = reg_xceiver;
2176
2177 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_NR_IRQ_3) {
2178 priv->irq_boff = platform_get_irq(pdev, 1);
2179 if (priv->irq_boff < 0) {
2180 err = priv->irq_boff;
2181 goto failed_platform_get_irq;
2182 }
2183 priv->irq_err = platform_get_irq(pdev, 2);
2184 if (priv->irq_err < 0) {
2185 err = priv->irq_err;
2186 goto failed_platform_get_irq;
2187 }
2188 }
2189
2190 if (priv->devtype_data.quirks & FLEXCAN_QUIRK_SUPPORT_FD) {
2191 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
2192 CAN_CTRLMODE_FD_NON_ISO;
2193 priv->can.bittiming_const = &flexcan_fd_bittiming_const;
2194 priv->can.data_bittiming_const =
2195 &flexcan_fd_data_bittiming_const;
2196 } else {
2197 priv->can.bittiming_const = &flexcan_bittiming_const;
2198 }
2199
2200 pm_runtime_get_noresume(&pdev->dev);
2201 pm_runtime_set_active(&pdev->dev);
2202 pm_runtime_enable(&pdev->dev);
2203
2204 err = register_flexcandev(dev);
2205 if (err) {
2206 dev_err(&pdev->dev, "registering netdev failed\n");
2207 goto failed_register;
2208 }
2209
2210 err = flexcan_setup_stop_mode(pdev);
2211 if (err < 0) {
2212 dev_err_probe(&pdev->dev, err, "setup stop mode failed\n");
2213 goto failed_setup_stop_mode;
2214 }
2215
2216 of_can_transceiver(dev);
2217
2218 return 0;
2219
2220 failed_setup_stop_mode:
2221 unregister_flexcandev(dev);
2222 failed_register:
2223 pm_runtime_put_noidle(&pdev->dev);
2224 pm_runtime_disable(&pdev->dev);
2225 failed_platform_get_irq:
2226 free_candev(dev);
2227 return err;
2228 }
2229
flexcan_remove(struct platform_device * pdev)2230 static void flexcan_remove(struct platform_device *pdev)
2231 {
2232 struct net_device *dev = platform_get_drvdata(pdev);
2233
2234 device_set_wakeup_enable(&pdev->dev, false);
2235 device_set_wakeup_capable(&pdev->dev, false);
2236 unregister_flexcandev(dev);
2237 pm_runtime_disable(&pdev->dev);
2238 free_candev(dev);
2239 }
2240
flexcan_suspend(struct device * device)2241 static int __maybe_unused flexcan_suspend(struct device *device)
2242 {
2243 struct net_device *dev = dev_get_drvdata(device);
2244 struct flexcan_priv *priv = netdev_priv(dev);
2245 int err;
2246
2247 if (netif_running(dev)) {
2248 /* if wakeup is enabled, enter stop mode
2249 * else enter disabled mode.
2250 */
2251 if (device_may_wakeup(device)) {
2252 enable_irq_wake(dev->irq);
2253 err = flexcan_enter_stop_mode(priv);
2254 if (err)
2255 return err;
2256 } else {
2257 err = flexcan_chip_stop(dev);
2258 if (err)
2259 return err;
2260
2261 flexcan_chip_interrupts_disable(dev);
2262
2263 err = pinctrl_pm_select_sleep_state(device);
2264 if (err)
2265 return err;
2266 }
2267 netif_stop_queue(dev);
2268 netif_device_detach(dev);
2269 }
2270 priv->can.state = CAN_STATE_SLEEPING;
2271
2272 return 0;
2273 }
2274
flexcan_resume(struct device * device)2275 static int __maybe_unused flexcan_resume(struct device *device)
2276 {
2277 struct net_device *dev = dev_get_drvdata(device);
2278 struct flexcan_priv *priv = netdev_priv(dev);
2279 int err;
2280
2281 priv->can.state = CAN_STATE_ERROR_ACTIVE;
2282 if (netif_running(dev)) {
2283 netif_device_attach(dev);
2284 netif_start_queue(dev);
2285 if (device_may_wakeup(device)) {
2286 disable_irq_wake(dev->irq);
2287 err = flexcan_exit_stop_mode(priv);
2288 if (err)
2289 return err;
2290 } else {
2291 err = pinctrl_pm_select_default_state(device);
2292 if (err)
2293 return err;
2294
2295 err = flexcan_chip_start(dev);
2296 if (err)
2297 return err;
2298
2299 flexcan_chip_interrupts_enable(dev);
2300 }
2301 }
2302
2303 return 0;
2304 }
2305
flexcan_runtime_suspend(struct device * device)2306 static int __maybe_unused flexcan_runtime_suspend(struct device *device)
2307 {
2308 struct net_device *dev = dev_get_drvdata(device);
2309 struct flexcan_priv *priv = netdev_priv(dev);
2310
2311 flexcan_clks_disable(priv);
2312
2313 return 0;
2314 }
2315
flexcan_runtime_resume(struct device * device)2316 static int __maybe_unused flexcan_runtime_resume(struct device *device)
2317 {
2318 struct net_device *dev = dev_get_drvdata(device);
2319 struct flexcan_priv *priv = netdev_priv(dev);
2320
2321 return flexcan_clks_enable(priv);
2322 }
2323
flexcan_noirq_suspend(struct device * device)2324 static int __maybe_unused flexcan_noirq_suspend(struct device *device)
2325 {
2326 struct net_device *dev = dev_get_drvdata(device);
2327 struct flexcan_priv *priv = netdev_priv(dev);
2328
2329 if (netif_running(dev)) {
2330 int err;
2331
2332 if (device_may_wakeup(device))
2333 flexcan_enable_wakeup_irq(priv, true);
2334
2335 /* For FLEXCAN_QUIRK_SETUP_STOP_MODE_SCMI, it need ATF to send
2336 * to SM through SCMI protocol, SM will assert the IPG_STOP
2337 * signal. But all this works need the CAN clocks keep on.
2338 * After the CAN module get the IPG_STOP mode, and switch to
2339 * STOP mode, whether still keep the CAN clocks on or gate them
2340 * off depend on the Hardware design.
2341 */
2342 if (!(device_may_wakeup(device) &&
2343 priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCMI)) {
2344 err = pm_runtime_force_suspend(device);
2345 if (err)
2346 return err;
2347 }
2348 }
2349
2350 return 0;
2351 }
2352
flexcan_noirq_resume(struct device * device)2353 static int __maybe_unused flexcan_noirq_resume(struct device *device)
2354 {
2355 struct net_device *dev = dev_get_drvdata(device);
2356 struct flexcan_priv *priv = netdev_priv(dev);
2357
2358 if (netif_running(dev)) {
2359 int err;
2360
2361 if (!(device_may_wakeup(device) &&
2362 priv->devtype_data.quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_SCMI)) {
2363 err = pm_runtime_force_resume(device);
2364 if (err)
2365 return err;
2366 }
2367
2368 if (device_may_wakeup(device))
2369 flexcan_enable_wakeup_irq(priv, false);
2370 }
2371
2372 return 0;
2373 }
2374
2375 static const struct dev_pm_ops flexcan_pm_ops = {
2376 SET_SYSTEM_SLEEP_PM_OPS(flexcan_suspend, flexcan_resume)
2377 SET_RUNTIME_PM_OPS(flexcan_runtime_suspend, flexcan_runtime_resume, NULL)
2378 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(flexcan_noirq_suspend, flexcan_noirq_resume)
2379 };
2380
2381 static struct platform_driver flexcan_driver = {
2382 .driver = {
2383 .name = DRV_NAME,
2384 .pm = &flexcan_pm_ops,
2385 .of_match_table = flexcan_of_match,
2386 },
2387 .probe = flexcan_probe,
2388 .remove = flexcan_remove,
2389 .id_table = flexcan_id_table,
2390 };
2391
2392 module_platform_driver(flexcan_driver);
2393
2394 MODULE_AUTHOR("Sascha Hauer <kernel@pengutronix.de>, "
2395 "Marc Kleine-Budde <kernel@pengutronix.de>");
2396 MODULE_LICENSE("GPL v2");
2397 MODULE_DESCRIPTION("CAN port driver for flexcan based chip");
2398