1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_entry_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188 static int do_work(struct ubi_device *ubi) 189 { 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226 } 227 228 /** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237 { 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265 } 266 267 /** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276 { 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299 { 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307 } 308 309 /** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320 { 321 struct rb_node *p; 322 struct ubi_wl_entry *e; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 e = e1; 338 } 339 } 340 341 return e; 342 } 343 344 /** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355 { 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372 } 373 374 /** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383 { 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403 } 404 405 /** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413 static int prot_queue_del(struct ubi_device *ubi, int pnum) 414 { 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427 } 428 429 /** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440 { 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485 out_free: 486 kfree(ec_hdr); 487 return err; 488 } 489 490 /** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498 static void serve_prot_queue(struct ubi_device *ubi) 499 { 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507 repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532 } 533 534 /** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543 { 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551 } 552 553 /** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562 { 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566 } 567 568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571 /** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * @nested: denotes whether the work_sem is already held in read mode 579 * 580 * This function returns zero in case of success and a %-ENOMEM in case of 581 * failure. 582 */ 583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 584 int vol_id, int lnum, int torture, bool nested) 585 { 586 struct ubi_work *wl_wrk; 587 588 ubi_assert(e); 589 590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 591 e->pnum, e->ec, torture); 592 593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 594 if (!wl_wrk) 595 return -ENOMEM; 596 597 wl_wrk->func = &erase_worker; 598 wl_wrk->e = e; 599 wl_wrk->vol_id = vol_id; 600 wl_wrk->lnum = lnum; 601 wl_wrk->torture = torture; 602 603 if (nested) 604 __schedule_ubi_work(ubi, wl_wrk); 605 else 606 schedule_ubi_work(ubi, wl_wrk); 607 return 0; 608 } 609 610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 611 /** 612 * do_sync_erase - run the erase worker synchronously. 613 * @ubi: UBI device description object 614 * @e: the WL entry of the physical eraseblock to erase 615 * @vol_id: the volume ID that last used this PEB 616 * @lnum: the last used logical eraseblock number for the PEB 617 * @torture: if the physical eraseblock has to be tortured 618 * 619 */ 620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 621 int vol_id, int lnum, int torture) 622 { 623 struct ubi_work wl_wrk; 624 625 dbg_wl("sync erase of PEB %i", e->pnum); 626 627 wl_wrk.e = e; 628 wl_wrk.vol_id = vol_id; 629 wl_wrk.lnum = lnum; 630 wl_wrk.torture = torture; 631 632 return __erase_worker(ubi, &wl_wrk); 633 } 634 635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 636 /** 637 * wear_leveling_worker - wear-leveling worker function. 638 * @ubi: UBI device description object 639 * @wrk: the work object 640 * @shutdown: non-zero if the worker has to free memory and exit 641 * because the WL-subsystem is shutting down 642 * 643 * This function copies a more worn out physical eraseblock to a less worn out 644 * one. Returns zero in case of success and a negative error code in case of 645 * failure. 646 */ 647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 648 int shutdown) 649 { 650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 651 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 652 struct ubi_wl_entry *e1, *e2; 653 struct ubi_vid_io_buf *vidb; 654 struct ubi_vid_hdr *vid_hdr; 655 int dst_leb_clean = 0; 656 657 kfree(wrk); 658 if (shutdown) 659 return 0; 660 661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 662 if (!vidb) 663 return -ENOMEM; 664 665 vid_hdr = ubi_get_vid_hdr(vidb); 666 667 down_read(&ubi->fm_eba_sem); 668 mutex_lock(&ubi->move_mutex); 669 spin_lock(&ubi->wl_lock); 670 ubi_assert(!ubi->move_from && !ubi->move_to); 671 ubi_assert(!ubi->move_to_put); 672 673 #ifdef CONFIG_MTD_UBI_FASTMAP 674 if (!next_peb_for_wl(ubi) || 675 #else 676 if (!ubi->free.rb_node || 677 #endif 678 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 679 /* 680 * No free physical eraseblocks? Well, they must be waiting in 681 * the queue to be erased. Cancel movement - it will be 682 * triggered again when a free physical eraseblock appears. 683 * 684 * No used physical eraseblocks? They must be temporarily 685 * protected from being moved. They will be moved to the 686 * @ubi->used tree later and the wear-leveling will be 687 * triggered again. 688 */ 689 dbg_wl("cancel WL, a list is empty: free %d, used %d", 690 !ubi->free.rb_node, !ubi->used.rb_node); 691 goto out_cancel; 692 } 693 694 #ifdef CONFIG_MTD_UBI_FASTMAP 695 e1 = find_anchor_wl_entry(&ubi->used); 696 if (e1 && ubi->fm_anchor && 697 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { 698 ubi->fm_do_produce_anchor = 1; 699 /* 700 * fm_anchor is no longer considered a good anchor. 701 * NULL assignment also prevents multiple wear level checks 702 * of this PEB. 703 */ 704 wl_tree_add(ubi->fm_anchor, &ubi->free); 705 ubi->fm_anchor = NULL; 706 ubi->free_count++; 707 } 708 709 if (ubi->fm_do_produce_anchor) { 710 if (!e1) 711 goto out_cancel; 712 e2 = get_peb_for_wl(ubi); 713 if (!e2) 714 goto out_cancel; 715 716 self_check_in_wl_tree(ubi, e1, &ubi->used); 717 rb_erase(&e1->u.rb, &ubi->used); 718 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 719 ubi->fm_do_produce_anchor = 0; 720 } else if (!ubi->scrub.rb_node) { 721 #else 722 if (!ubi->scrub.rb_node) { 723 #endif 724 /* 725 * Now pick the least worn-out used physical eraseblock and a 726 * highly worn-out free physical eraseblock. If the erase 727 * counters differ much enough, start wear-leveling. 728 */ 729 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 730 e2 = get_peb_for_wl(ubi); 731 if (!e2) 732 goto out_cancel; 733 734 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 735 dbg_wl("no WL needed: min used EC %d, max free EC %d", 736 e1->ec, e2->ec); 737 738 /* Give the unused PEB back */ 739 wl_tree_add(e2, &ubi->free); 740 ubi->free_count++; 741 goto out_cancel; 742 } 743 self_check_in_wl_tree(ubi, e1, &ubi->used); 744 rb_erase(&e1->u.rb, &ubi->used); 745 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 746 e1->pnum, e1->ec, e2->pnum, e2->ec); 747 } else { 748 /* Perform scrubbing */ 749 scrubbing = 1; 750 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 751 e2 = get_peb_for_wl(ubi); 752 if (!e2) 753 goto out_cancel; 754 755 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 756 rb_erase(&e1->u.rb, &ubi->scrub); 757 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 758 } 759 760 ubi->move_from = e1; 761 ubi->move_to = e2; 762 spin_unlock(&ubi->wl_lock); 763 764 /* 765 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 766 * We so far do not know which logical eraseblock our physical 767 * eraseblock (@e1) belongs to. We have to read the volume identifier 768 * header first. 769 * 770 * Note, we are protected from this PEB being unmapped and erased. The 771 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 772 * which is being moved was unmapped. 773 */ 774 775 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 776 if (err && err != UBI_IO_BITFLIPS) { 777 dst_leb_clean = 1; 778 if (err == UBI_IO_FF) { 779 /* 780 * We are trying to move PEB without a VID header. UBI 781 * always write VID headers shortly after the PEB was 782 * given, so we have a situation when it has not yet 783 * had a chance to write it, because it was preempted. 784 * So add this PEB to the protection queue so far, 785 * because presumably more data will be written there 786 * (including the missing VID header), and then we'll 787 * move it. 788 */ 789 dbg_wl("PEB %d has no VID header", e1->pnum); 790 protect = 1; 791 goto out_not_moved; 792 } else if (err == UBI_IO_FF_BITFLIPS) { 793 /* 794 * The same situation as %UBI_IO_FF, but bit-flips were 795 * detected. It is better to schedule this PEB for 796 * scrubbing. 797 */ 798 dbg_wl("PEB %d has no VID header but has bit-flips", 799 e1->pnum); 800 scrubbing = 1; 801 goto out_not_moved; 802 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 803 /* 804 * While a full scan would detect interrupted erasures 805 * at attach time we can face them here when attached from 806 * Fastmap. 807 */ 808 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 809 e1->pnum); 810 erase = 1; 811 goto out_not_moved; 812 } 813 814 ubi_err(ubi, "error %d while reading VID header from PEB %d", 815 err, e1->pnum); 816 goto out_error; 817 } 818 819 vol_id = be32_to_cpu(vid_hdr->vol_id); 820 lnum = be32_to_cpu(vid_hdr->lnum); 821 822 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 823 if (err) { 824 if (err == MOVE_CANCEL_RACE) { 825 /* 826 * The LEB has not been moved because the volume is 827 * being deleted or the PEB has been put meanwhile. We 828 * should prevent this PEB from being selected for 829 * wear-leveling movement again, so put it to the 830 * protection queue. 831 */ 832 protect = 1; 833 dst_leb_clean = 1; 834 goto out_not_moved; 835 } 836 if (err == MOVE_RETRY) { 837 scrubbing = 1; 838 dst_leb_clean = 1; 839 goto out_not_moved; 840 } 841 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 842 err == MOVE_TARGET_RD_ERR) { 843 /* 844 * Target PEB had bit-flips or write error - torture it. 845 */ 846 torture = 1; 847 keep = 1; 848 goto out_not_moved; 849 } 850 851 if (err == MOVE_SOURCE_RD_ERR) { 852 /* 853 * An error happened while reading the source PEB. Do 854 * not switch to R/O mode in this case, and give the 855 * upper layers a possibility to recover from this, 856 * e.g. by unmapping corresponding LEB. Instead, just 857 * put this PEB to the @ubi->erroneous list to prevent 858 * UBI from trying to move it over and over again. 859 */ 860 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 861 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 862 ubi->erroneous_peb_count); 863 goto out_error; 864 } 865 dst_leb_clean = 1; 866 erroneous = 1; 867 goto out_not_moved; 868 } 869 870 if (err < 0) 871 goto out_error; 872 873 ubi_assert(0); 874 } 875 876 /* The PEB has been successfully moved */ 877 if (scrubbing) 878 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 879 e1->pnum, vol_id, lnum, e2->pnum); 880 ubi_free_vid_buf(vidb); 881 882 spin_lock(&ubi->wl_lock); 883 if (!ubi->move_to_put) { 884 wl_tree_add(e2, &ubi->used); 885 e2 = NULL; 886 } 887 ubi->move_from = ubi->move_to = NULL; 888 ubi->move_to_put = ubi->wl_scheduled = 0; 889 spin_unlock(&ubi->wl_lock); 890 891 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 892 if (err) { 893 if (e2) { 894 spin_lock(&ubi->wl_lock); 895 wl_entry_destroy(ubi, e2); 896 spin_unlock(&ubi->wl_lock); 897 } 898 goto out_ro; 899 } 900 901 if (e2) { 902 /* 903 * Well, the target PEB was put meanwhile, schedule it for 904 * erasure. 905 */ 906 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 907 e2->pnum, vol_id, lnum); 908 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 909 if (err) 910 goto out_ro; 911 } 912 913 dbg_wl("done"); 914 mutex_unlock(&ubi->move_mutex); 915 up_read(&ubi->fm_eba_sem); 916 return 0; 917 918 /* 919 * For some reasons the LEB was not moved, might be an error, might be 920 * something else. @e1 was not changed, so return it back. @e2 might 921 * have been changed, schedule it for erasure. 922 */ 923 out_not_moved: 924 if (vol_id != -1) 925 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 926 e1->pnum, vol_id, lnum, e2->pnum, err); 927 else 928 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 929 e1->pnum, e2->pnum, err); 930 spin_lock(&ubi->wl_lock); 931 if (protect) 932 prot_queue_add(ubi, e1); 933 else if (erroneous) { 934 wl_tree_add(e1, &ubi->erroneous); 935 ubi->erroneous_peb_count += 1; 936 } else if (scrubbing) 937 wl_tree_add(e1, &ubi->scrub); 938 else if (keep) 939 wl_tree_add(e1, &ubi->used); 940 if (dst_leb_clean) { 941 wl_tree_add(e2, &ubi->free); 942 ubi->free_count++; 943 } 944 945 ubi_assert(!ubi->move_to_put); 946 ubi->move_from = ubi->move_to = NULL; 947 ubi->wl_scheduled = 0; 948 spin_unlock(&ubi->wl_lock); 949 950 ubi_free_vid_buf(vidb); 951 if (dst_leb_clean) { 952 ensure_wear_leveling(ubi, 1); 953 } else { 954 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 955 if (err) 956 goto out_ro; 957 } 958 959 if (erase) { 960 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 961 if (err) 962 goto out_ro; 963 } 964 965 mutex_unlock(&ubi->move_mutex); 966 up_read(&ubi->fm_eba_sem); 967 return 0; 968 969 out_error: 970 if (vol_id != -1) 971 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 972 err, e1->pnum, e2->pnum); 973 else 974 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 975 err, e1->pnum, vol_id, lnum, e2->pnum); 976 spin_lock(&ubi->wl_lock); 977 ubi->move_from = ubi->move_to = NULL; 978 ubi->move_to_put = ubi->wl_scheduled = 0; 979 wl_entry_destroy(ubi, e1); 980 wl_entry_destroy(ubi, e2); 981 spin_unlock(&ubi->wl_lock); 982 983 ubi_free_vid_buf(vidb); 984 985 out_ro: 986 ubi_ro_mode(ubi); 987 mutex_unlock(&ubi->move_mutex); 988 up_read(&ubi->fm_eba_sem); 989 ubi_assert(err != 0); 990 return err < 0 ? err : -EIO; 991 992 out_cancel: 993 ubi->wl_scheduled = 0; 994 spin_unlock(&ubi->wl_lock); 995 mutex_unlock(&ubi->move_mutex); 996 up_read(&ubi->fm_eba_sem); 997 ubi_free_vid_buf(vidb); 998 return 0; 999 } 1000 1001 /** 1002 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1003 * @ubi: UBI device description object 1004 * @nested: set to non-zero if this function is called from UBI worker 1005 * 1006 * This function checks if it is time to start wear-leveling and schedules it 1007 * if yes. This function returns zero in case of success and a negative error 1008 * code in case of failure. 1009 */ 1010 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1011 { 1012 int err = 0; 1013 struct ubi_work *wrk; 1014 1015 spin_lock(&ubi->wl_lock); 1016 if (ubi->wl_scheduled) 1017 /* Wear-leveling is already in the work queue */ 1018 goto out_unlock; 1019 1020 /* 1021 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1022 * WL worker has to be scheduled anyway. 1023 */ 1024 if (!ubi->scrub.rb_node) { 1025 #ifdef CONFIG_MTD_UBI_FASTMAP 1026 if (!need_wear_leveling(ubi)) 1027 goto out_unlock; 1028 #else 1029 struct ubi_wl_entry *e1; 1030 struct ubi_wl_entry *e2; 1031 1032 if (!ubi->used.rb_node || !ubi->free.rb_node) 1033 /* No physical eraseblocks - no deal */ 1034 goto out_unlock; 1035 1036 /* 1037 * We schedule wear-leveling only if the difference between the 1038 * lowest erase counter of used physical eraseblocks and a high 1039 * erase counter of free physical eraseblocks is greater than 1040 * %UBI_WL_THRESHOLD. 1041 */ 1042 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1043 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1044 1045 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1046 goto out_unlock; 1047 #endif 1048 dbg_wl("schedule wear-leveling"); 1049 } else 1050 dbg_wl("schedule scrubbing"); 1051 1052 ubi->wl_scheduled = 1; 1053 spin_unlock(&ubi->wl_lock); 1054 1055 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1056 if (!wrk) { 1057 err = -ENOMEM; 1058 goto out_cancel; 1059 } 1060 1061 wrk->func = &wear_leveling_worker; 1062 if (nested) 1063 __schedule_ubi_work(ubi, wrk); 1064 else 1065 schedule_ubi_work(ubi, wrk); 1066 return err; 1067 1068 out_cancel: 1069 spin_lock(&ubi->wl_lock); 1070 ubi->wl_scheduled = 0; 1071 out_unlock: 1072 spin_unlock(&ubi->wl_lock); 1073 return err; 1074 } 1075 1076 /** 1077 * __erase_worker - physical eraseblock erase worker function. 1078 * @ubi: UBI device description object 1079 * @wl_wrk: the work object 1080 * 1081 * This function erases a physical eraseblock and perform torture testing if 1082 * needed. It also takes care about marking the physical eraseblock bad if 1083 * needed. Returns zero in case of success and a negative error code in case of 1084 * failure. 1085 */ 1086 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1087 { 1088 struct ubi_wl_entry *e = wl_wrk->e; 1089 int pnum = e->pnum; 1090 int vol_id = wl_wrk->vol_id; 1091 int lnum = wl_wrk->lnum; 1092 int err, available_consumed = 0; 1093 1094 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1095 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1096 1097 err = sync_erase(ubi, e, wl_wrk->torture); 1098 if (!err) { 1099 spin_lock(&ubi->wl_lock); 1100 1101 if (!ubi->fm_disabled && !ubi->fm_anchor && 1102 e->pnum < UBI_FM_MAX_START) { 1103 /* 1104 * Abort anchor production, if needed it will be 1105 * enabled again in the wear leveling started below. 1106 */ 1107 ubi->fm_anchor = e; 1108 ubi->fm_do_produce_anchor = 0; 1109 } else { 1110 wl_tree_add(e, &ubi->free); 1111 ubi->free_count++; 1112 } 1113 1114 spin_unlock(&ubi->wl_lock); 1115 1116 /* 1117 * One more erase operation has happened, take care about 1118 * protected physical eraseblocks. 1119 */ 1120 serve_prot_queue(ubi); 1121 1122 /* And take care about wear-leveling */ 1123 err = ensure_wear_leveling(ubi, 1); 1124 return err; 1125 } 1126 1127 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1128 1129 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1130 err == -EBUSY) { 1131 int err1; 1132 1133 /* Re-schedule the LEB for erasure */ 1134 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1135 if (err1) { 1136 spin_lock(&ubi->wl_lock); 1137 wl_entry_destroy(ubi, e); 1138 spin_unlock(&ubi->wl_lock); 1139 err = err1; 1140 goto out_ro; 1141 } 1142 return err; 1143 } 1144 1145 spin_lock(&ubi->wl_lock); 1146 wl_entry_destroy(ubi, e); 1147 spin_unlock(&ubi->wl_lock); 1148 if (err != -EIO) 1149 /* 1150 * If this is not %-EIO, we have no idea what to do. Scheduling 1151 * this physical eraseblock for erasure again would cause 1152 * errors again and again. Well, lets switch to R/O mode. 1153 */ 1154 goto out_ro; 1155 1156 /* It is %-EIO, the PEB went bad */ 1157 1158 if (!ubi->bad_allowed) { 1159 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1160 goto out_ro; 1161 } 1162 1163 spin_lock(&ubi->volumes_lock); 1164 if (ubi->beb_rsvd_pebs == 0) { 1165 if (ubi->avail_pebs == 0) { 1166 spin_unlock(&ubi->volumes_lock); 1167 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1168 goto out_ro; 1169 } 1170 ubi->avail_pebs -= 1; 1171 available_consumed = 1; 1172 } 1173 spin_unlock(&ubi->volumes_lock); 1174 1175 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1176 err = ubi_io_mark_bad(ubi, pnum); 1177 if (err) 1178 goto out_ro; 1179 1180 spin_lock(&ubi->volumes_lock); 1181 if (ubi->beb_rsvd_pebs > 0) { 1182 if (available_consumed) { 1183 /* 1184 * The amount of reserved PEBs increased since we last 1185 * checked. 1186 */ 1187 ubi->avail_pebs += 1; 1188 available_consumed = 0; 1189 } 1190 ubi->beb_rsvd_pebs -= 1; 1191 } 1192 ubi->bad_peb_count += 1; 1193 ubi->good_peb_count -= 1; 1194 ubi_calculate_reserved(ubi); 1195 if (available_consumed) 1196 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1197 else if (ubi->beb_rsvd_pebs) 1198 ubi_msg(ubi, "%d PEBs left in the reserve", 1199 ubi->beb_rsvd_pebs); 1200 else 1201 ubi_warn(ubi, "last PEB from the reserve was used"); 1202 spin_unlock(&ubi->volumes_lock); 1203 1204 return err; 1205 1206 out_ro: 1207 if (available_consumed) { 1208 spin_lock(&ubi->volumes_lock); 1209 ubi->avail_pebs += 1; 1210 spin_unlock(&ubi->volumes_lock); 1211 } 1212 ubi_ro_mode(ubi); 1213 return err; 1214 } 1215 1216 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1217 int shutdown) 1218 { 1219 int ret; 1220 1221 if (shutdown) { 1222 struct ubi_wl_entry *e = wl_wrk->e; 1223 1224 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1225 kfree(wl_wrk); 1226 wl_entry_destroy(ubi, e); 1227 return 0; 1228 } 1229 1230 ret = __erase_worker(ubi, wl_wrk); 1231 kfree(wl_wrk); 1232 return ret; 1233 } 1234 1235 /** 1236 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1237 * @ubi: UBI device description object 1238 * @vol_id: the volume ID that last used this PEB 1239 * @lnum: the last used logical eraseblock number for the PEB 1240 * @pnum: physical eraseblock to return 1241 * @torture: if this physical eraseblock has to be tortured 1242 * 1243 * This function is called to return physical eraseblock @pnum to the pool of 1244 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1245 * occurred to this @pnum and it has to be tested. This function returns zero 1246 * in case of success, and a negative error code in case of failure. 1247 */ 1248 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1249 int pnum, int torture) 1250 { 1251 int err; 1252 struct ubi_wl_entry *e; 1253 1254 dbg_wl("PEB %d", pnum); 1255 ubi_assert(pnum >= 0); 1256 ubi_assert(pnum < ubi->peb_count); 1257 1258 down_read(&ubi->fm_protect); 1259 1260 retry: 1261 spin_lock(&ubi->wl_lock); 1262 e = ubi->lookuptbl[pnum]; 1263 if (!e) { 1264 /* 1265 * This wl entry has been removed for some errors by other 1266 * process (eg. wear leveling worker), corresponding process 1267 * (except __erase_worker, which cannot concurrent with 1268 * ubi_wl_put_peb) will set ubi ro_mode at the same time, 1269 * just ignore this wl entry. 1270 */ 1271 spin_unlock(&ubi->wl_lock); 1272 up_read(&ubi->fm_protect); 1273 return 0; 1274 } 1275 if (e == ubi->move_from) { 1276 /* 1277 * User is putting the physical eraseblock which was selected to 1278 * be moved. It will be scheduled for erasure in the 1279 * wear-leveling worker. 1280 */ 1281 dbg_wl("PEB %d is being moved, wait", pnum); 1282 spin_unlock(&ubi->wl_lock); 1283 1284 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1285 mutex_lock(&ubi->move_mutex); 1286 mutex_unlock(&ubi->move_mutex); 1287 goto retry; 1288 } else if (e == ubi->move_to) { 1289 /* 1290 * User is putting the physical eraseblock which was selected 1291 * as the target the data is moved to. It may happen if the EBA 1292 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1293 * but the WL sub-system has not put the PEB to the "used" tree 1294 * yet, but it is about to do this. So we just set a flag which 1295 * will tell the WL worker that the PEB is not needed anymore 1296 * and should be scheduled for erasure. 1297 */ 1298 dbg_wl("PEB %d is the target of data moving", pnum); 1299 ubi_assert(!ubi->move_to_put); 1300 ubi->move_to_put = 1; 1301 spin_unlock(&ubi->wl_lock); 1302 up_read(&ubi->fm_protect); 1303 return 0; 1304 } else { 1305 if (in_wl_tree(e, &ubi->used)) { 1306 self_check_in_wl_tree(ubi, e, &ubi->used); 1307 rb_erase(&e->u.rb, &ubi->used); 1308 } else if (in_wl_tree(e, &ubi->scrub)) { 1309 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1310 rb_erase(&e->u.rb, &ubi->scrub); 1311 } else if (in_wl_tree(e, &ubi->erroneous)) { 1312 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1313 rb_erase(&e->u.rb, &ubi->erroneous); 1314 ubi->erroneous_peb_count -= 1; 1315 ubi_assert(ubi->erroneous_peb_count >= 0); 1316 /* Erroneous PEBs should be tortured */ 1317 torture = 1; 1318 } else { 1319 err = prot_queue_del(ubi, e->pnum); 1320 if (err) { 1321 ubi_err(ubi, "PEB %d not found", pnum); 1322 ubi_ro_mode(ubi); 1323 spin_unlock(&ubi->wl_lock); 1324 up_read(&ubi->fm_protect); 1325 return err; 1326 } 1327 } 1328 } 1329 spin_unlock(&ubi->wl_lock); 1330 1331 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1332 if (err) { 1333 spin_lock(&ubi->wl_lock); 1334 wl_tree_add(e, &ubi->used); 1335 spin_unlock(&ubi->wl_lock); 1336 } 1337 1338 up_read(&ubi->fm_protect); 1339 return err; 1340 } 1341 1342 /** 1343 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1344 * @ubi: UBI device description object 1345 * @pnum: the physical eraseblock to schedule 1346 * 1347 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1348 * needs scrubbing. This function schedules a physical eraseblock for 1349 * scrubbing which is done in background. This function returns zero in case of 1350 * success and a negative error code in case of failure. 1351 */ 1352 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1353 { 1354 struct ubi_wl_entry *e; 1355 1356 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1357 1358 retry: 1359 spin_lock(&ubi->wl_lock); 1360 e = ubi->lookuptbl[pnum]; 1361 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1362 in_wl_tree(e, &ubi->erroneous)) { 1363 spin_unlock(&ubi->wl_lock); 1364 return 0; 1365 } 1366 1367 if (e == ubi->move_to) { 1368 /* 1369 * This physical eraseblock was used to move data to. The data 1370 * was moved but the PEB was not yet inserted to the proper 1371 * tree. We should just wait a little and let the WL worker 1372 * proceed. 1373 */ 1374 spin_unlock(&ubi->wl_lock); 1375 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1376 yield(); 1377 goto retry; 1378 } 1379 1380 if (in_wl_tree(e, &ubi->used)) { 1381 self_check_in_wl_tree(ubi, e, &ubi->used); 1382 rb_erase(&e->u.rb, &ubi->used); 1383 } else { 1384 int err; 1385 1386 err = prot_queue_del(ubi, e->pnum); 1387 if (err) { 1388 ubi_err(ubi, "PEB %d not found", pnum); 1389 ubi_ro_mode(ubi); 1390 spin_unlock(&ubi->wl_lock); 1391 return err; 1392 } 1393 } 1394 1395 wl_tree_add(e, &ubi->scrub); 1396 spin_unlock(&ubi->wl_lock); 1397 1398 /* 1399 * Technically scrubbing is the same as wear-leveling, so it is done 1400 * by the WL worker. 1401 */ 1402 return ensure_wear_leveling(ubi, 0); 1403 } 1404 1405 /** 1406 * ubi_wl_flush - flush all pending works. 1407 * @ubi: UBI device description object 1408 * @vol_id: the volume id to flush for 1409 * @lnum: the logical eraseblock number to flush for 1410 * 1411 * This function executes all pending works for a particular volume id / 1412 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1413 * acts as a wildcard for all of the corresponding volume numbers or logical 1414 * eraseblock numbers. It returns zero in case of success and a negative error 1415 * code in case of failure. 1416 */ 1417 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1418 { 1419 int err = 0; 1420 int found = 1; 1421 1422 /* 1423 * Erase while the pending works queue is not empty, but not more than 1424 * the number of currently pending works. 1425 */ 1426 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1427 vol_id, lnum, ubi->works_count); 1428 1429 while (found) { 1430 struct ubi_work *wrk, *tmp; 1431 found = 0; 1432 1433 down_read(&ubi->work_sem); 1434 spin_lock(&ubi->wl_lock); 1435 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1436 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1437 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1438 list_del(&wrk->list); 1439 ubi->works_count -= 1; 1440 ubi_assert(ubi->works_count >= 0); 1441 spin_unlock(&ubi->wl_lock); 1442 1443 err = wrk->func(ubi, wrk, 0); 1444 if (err) { 1445 up_read(&ubi->work_sem); 1446 return err; 1447 } 1448 1449 spin_lock(&ubi->wl_lock); 1450 found = 1; 1451 break; 1452 } 1453 } 1454 spin_unlock(&ubi->wl_lock); 1455 up_read(&ubi->work_sem); 1456 } 1457 1458 /* 1459 * Make sure all the works which have been done in parallel are 1460 * finished. 1461 */ 1462 down_write(&ubi->work_sem); 1463 up_write(&ubi->work_sem); 1464 1465 return err; 1466 } 1467 1468 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1469 { 1470 if (in_wl_tree(e, &ubi->scrub)) 1471 return false; 1472 else if (in_wl_tree(e, &ubi->erroneous)) 1473 return false; 1474 else if (ubi->move_from == e) 1475 return false; 1476 else if (ubi->move_to == e) 1477 return false; 1478 1479 return true; 1480 } 1481 1482 /** 1483 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1484 * @ubi: UBI device description object 1485 * @pnum: the physical eraseblock to schedule 1486 * @force: don't read the block, assume bitflips happened and take action. 1487 * 1488 * This function reads the given eraseblock and checks if bitflips occured. 1489 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1490 * If scrubbing is forced with @force, the eraseblock is not read, 1491 * but scheduled for scrubbing right away. 1492 * 1493 * Returns: 1494 * %EINVAL, PEB is out of range 1495 * %ENOENT, PEB is no longer used by UBI 1496 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1497 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1498 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1499 * %0, no bit flips detected 1500 */ 1501 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1502 { 1503 int err = 0; 1504 struct ubi_wl_entry *e; 1505 1506 if (pnum < 0 || pnum >= ubi->peb_count) { 1507 err = -EINVAL; 1508 goto out; 1509 } 1510 1511 /* 1512 * Pause all parallel work, otherwise it can happen that the 1513 * erase worker frees a wl entry under us. 1514 */ 1515 down_write(&ubi->work_sem); 1516 1517 /* 1518 * Make sure that the wl entry does not change state while 1519 * inspecting it. 1520 */ 1521 spin_lock(&ubi->wl_lock); 1522 e = ubi->lookuptbl[pnum]; 1523 if (!e) { 1524 spin_unlock(&ubi->wl_lock); 1525 err = -ENOENT; 1526 goto out_resume; 1527 } 1528 1529 /* 1530 * Does it make sense to check this PEB? 1531 */ 1532 if (!scrub_possible(ubi, e)) { 1533 spin_unlock(&ubi->wl_lock); 1534 err = -EBUSY; 1535 goto out_resume; 1536 } 1537 spin_unlock(&ubi->wl_lock); 1538 1539 if (!force) { 1540 mutex_lock(&ubi->buf_mutex); 1541 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1542 mutex_unlock(&ubi->buf_mutex); 1543 } 1544 1545 if (force || err == UBI_IO_BITFLIPS) { 1546 /* 1547 * Okay, bit flip happened, let's figure out what we can do. 1548 */ 1549 spin_lock(&ubi->wl_lock); 1550 1551 /* 1552 * Recheck. We released wl_lock, UBI might have killed the 1553 * wl entry under us. 1554 */ 1555 e = ubi->lookuptbl[pnum]; 1556 if (!e) { 1557 spin_unlock(&ubi->wl_lock); 1558 err = -ENOENT; 1559 goto out_resume; 1560 } 1561 1562 /* 1563 * Need to re-check state 1564 */ 1565 if (!scrub_possible(ubi, e)) { 1566 spin_unlock(&ubi->wl_lock); 1567 err = -EBUSY; 1568 goto out_resume; 1569 } 1570 1571 if (in_pq(ubi, e)) { 1572 prot_queue_del(ubi, e->pnum); 1573 wl_tree_add(e, &ubi->scrub); 1574 spin_unlock(&ubi->wl_lock); 1575 1576 err = ensure_wear_leveling(ubi, 1); 1577 } else if (in_wl_tree(e, &ubi->used)) { 1578 rb_erase(&e->u.rb, &ubi->used); 1579 wl_tree_add(e, &ubi->scrub); 1580 spin_unlock(&ubi->wl_lock); 1581 1582 err = ensure_wear_leveling(ubi, 1); 1583 } else if (in_wl_tree(e, &ubi->free)) { 1584 rb_erase(&e->u.rb, &ubi->free); 1585 ubi->free_count--; 1586 spin_unlock(&ubi->wl_lock); 1587 1588 /* 1589 * This PEB is empty we can schedule it for 1590 * erasure right away. No wear leveling needed. 1591 */ 1592 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1593 force ? 0 : 1, true); 1594 } else { 1595 spin_unlock(&ubi->wl_lock); 1596 err = -EAGAIN; 1597 } 1598 1599 if (!err && !force) 1600 err = -EUCLEAN; 1601 } else { 1602 err = 0; 1603 } 1604 1605 out_resume: 1606 up_write(&ubi->work_sem); 1607 out: 1608 1609 return err; 1610 } 1611 1612 /** 1613 * tree_destroy - destroy an RB-tree. 1614 * @ubi: UBI device description object 1615 * @root: the root of the tree to destroy 1616 */ 1617 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1618 { 1619 struct rb_node *rb; 1620 struct ubi_wl_entry *e; 1621 1622 rb = root->rb_node; 1623 while (rb) { 1624 if (rb->rb_left) 1625 rb = rb->rb_left; 1626 else if (rb->rb_right) 1627 rb = rb->rb_right; 1628 else { 1629 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1630 1631 rb = rb_parent(rb); 1632 if (rb) { 1633 if (rb->rb_left == &e->u.rb) 1634 rb->rb_left = NULL; 1635 else 1636 rb->rb_right = NULL; 1637 } 1638 1639 wl_entry_destroy(ubi, e); 1640 } 1641 } 1642 } 1643 1644 /** 1645 * ubi_thread - UBI background thread. 1646 * @u: the UBI device description object pointer 1647 */ 1648 int ubi_thread(void *u) 1649 { 1650 int failures = 0; 1651 struct ubi_device *ubi = u; 1652 1653 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1654 ubi->bgt_name, task_pid_nr(current)); 1655 1656 set_freezable(); 1657 for (;;) { 1658 int err; 1659 1660 if (kthread_should_stop()) 1661 break; 1662 1663 if (try_to_freeze()) 1664 continue; 1665 1666 spin_lock(&ubi->wl_lock); 1667 if (list_empty(&ubi->works) || ubi->ro_mode || 1668 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1669 set_current_state(TASK_INTERRUPTIBLE); 1670 spin_unlock(&ubi->wl_lock); 1671 1672 /* 1673 * Check kthread_should_stop() after we set the task 1674 * state to guarantee that we either see the stop bit 1675 * and exit or the task state is reset to runnable such 1676 * that it's not scheduled out indefinitely and detects 1677 * the stop bit at kthread_should_stop(). 1678 */ 1679 if (kthread_should_stop()) { 1680 set_current_state(TASK_RUNNING); 1681 break; 1682 } 1683 1684 schedule(); 1685 continue; 1686 } 1687 spin_unlock(&ubi->wl_lock); 1688 1689 err = do_work(ubi); 1690 if (err) { 1691 ubi_err(ubi, "%s: work failed with error code %d", 1692 ubi->bgt_name, err); 1693 if (failures++ > WL_MAX_FAILURES) { 1694 /* 1695 * Too many failures, disable the thread and 1696 * switch to read-only mode. 1697 */ 1698 ubi_msg(ubi, "%s: %d consecutive failures", 1699 ubi->bgt_name, WL_MAX_FAILURES); 1700 ubi_ro_mode(ubi); 1701 ubi->thread_enabled = 0; 1702 continue; 1703 } 1704 } else 1705 failures = 0; 1706 1707 cond_resched(); 1708 } 1709 1710 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1711 ubi->thread_enabled = 0; 1712 return 0; 1713 } 1714 1715 /** 1716 * shutdown_work - shutdown all pending works. 1717 * @ubi: UBI device description object 1718 */ 1719 static void shutdown_work(struct ubi_device *ubi) 1720 { 1721 while (!list_empty(&ubi->works)) { 1722 struct ubi_work *wrk; 1723 1724 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1725 list_del(&wrk->list); 1726 wrk->func(ubi, wrk, 1); 1727 ubi->works_count -= 1; 1728 ubi_assert(ubi->works_count >= 0); 1729 } 1730 } 1731 1732 /** 1733 * erase_aeb - erase a PEB given in UBI attach info PEB 1734 * @ubi: UBI device description object 1735 * @aeb: UBI attach info PEB 1736 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1737 */ 1738 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1739 { 1740 struct ubi_wl_entry *e; 1741 int err; 1742 1743 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1744 if (!e) 1745 return -ENOMEM; 1746 1747 e->pnum = aeb->pnum; 1748 e->ec = aeb->ec; 1749 ubi->lookuptbl[e->pnum] = e; 1750 1751 if (sync) { 1752 err = sync_erase(ubi, e, false); 1753 if (err) 1754 goto out_free; 1755 1756 wl_tree_add(e, &ubi->free); 1757 ubi->free_count++; 1758 } else { 1759 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1760 if (err) 1761 goto out_free; 1762 } 1763 1764 return 0; 1765 1766 out_free: 1767 wl_entry_destroy(ubi, e); 1768 1769 return err; 1770 } 1771 1772 /** 1773 * ubi_wl_init - initialize the WL sub-system using attaching information. 1774 * @ubi: UBI device description object 1775 * @ai: attaching information 1776 * 1777 * This function returns zero in case of success, and a negative error code in 1778 * case of failure. 1779 */ 1780 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1781 { 1782 int err, i, reserved_pebs, found_pebs = 0; 1783 struct rb_node *rb1, *rb2; 1784 struct ubi_ainf_volume *av; 1785 struct ubi_ainf_peb *aeb, *tmp; 1786 struct ubi_wl_entry *e; 1787 1788 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1789 spin_lock_init(&ubi->wl_lock); 1790 mutex_init(&ubi->move_mutex); 1791 init_rwsem(&ubi->work_sem); 1792 ubi->max_ec = ai->max_ec; 1793 INIT_LIST_HEAD(&ubi->works); 1794 1795 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1796 1797 err = -ENOMEM; 1798 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1799 if (!ubi->lookuptbl) 1800 return err; 1801 1802 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1803 INIT_LIST_HEAD(&ubi->pq[i]); 1804 ubi->pq_head = 0; 1805 1806 ubi->free_count = 0; 1807 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1808 cond_resched(); 1809 1810 err = erase_aeb(ubi, aeb, false); 1811 if (err) 1812 goto out_free; 1813 1814 found_pebs++; 1815 } 1816 1817 list_for_each_entry(aeb, &ai->free, u.list) { 1818 cond_resched(); 1819 1820 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1821 if (!e) { 1822 err = -ENOMEM; 1823 goto out_free; 1824 } 1825 1826 e->pnum = aeb->pnum; 1827 e->ec = aeb->ec; 1828 ubi_assert(e->ec >= 0); 1829 1830 wl_tree_add(e, &ubi->free); 1831 ubi->free_count++; 1832 1833 ubi->lookuptbl[e->pnum] = e; 1834 1835 found_pebs++; 1836 } 1837 1838 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1839 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1840 cond_resched(); 1841 1842 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1843 if (!e) { 1844 err = -ENOMEM; 1845 goto out_free; 1846 } 1847 1848 e->pnum = aeb->pnum; 1849 e->ec = aeb->ec; 1850 ubi->lookuptbl[e->pnum] = e; 1851 1852 if (!aeb->scrub) { 1853 dbg_wl("add PEB %d EC %d to the used tree", 1854 e->pnum, e->ec); 1855 wl_tree_add(e, &ubi->used); 1856 } else { 1857 dbg_wl("add PEB %d EC %d to the scrub tree", 1858 e->pnum, e->ec); 1859 wl_tree_add(e, &ubi->scrub); 1860 } 1861 1862 found_pebs++; 1863 } 1864 } 1865 1866 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1867 cond_resched(); 1868 1869 e = ubi_find_fm_block(ubi, aeb->pnum); 1870 1871 if (e) { 1872 ubi_assert(!ubi->lookuptbl[e->pnum]); 1873 ubi->lookuptbl[e->pnum] = e; 1874 } else { 1875 bool sync = false; 1876 1877 /* 1878 * Usually old Fastmap PEBs are scheduled for erasure 1879 * and we don't have to care about them but if we face 1880 * an power cut before scheduling them we need to 1881 * take care of them here. 1882 */ 1883 if (ubi->lookuptbl[aeb->pnum]) 1884 continue; 1885 1886 /* 1887 * The fastmap update code might not find a free PEB for 1888 * writing the fastmap anchor to and then reuses the 1889 * current fastmap anchor PEB. When this PEB gets erased 1890 * and a power cut happens before it is written again we 1891 * must make sure that the fastmap attach code doesn't 1892 * find any outdated fastmap anchors, hence we erase the 1893 * outdated fastmap anchor PEBs synchronously here. 1894 */ 1895 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1896 sync = true; 1897 1898 err = erase_aeb(ubi, aeb, sync); 1899 if (err) 1900 goto out_free; 1901 } 1902 1903 found_pebs++; 1904 } 1905 1906 dbg_wl("found %i PEBs", found_pebs); 1907 1908 ubi_assert(ubi->good_peb_count == found_pebs); 1909 1910 reserved_pebs = WL_RESERVED_PEBS; 1911 ubi_fastmap_init(ubi, &reserved_pebs); 1912 1913 if (ubi->avail_pebs < reserved_pebs) { 1914 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1915 ubi->avail_pebs, reserved_pebs); 1916 if (ubi->corr_peb_count) 1917 ubi_err(ubi, "%d PEBs are corrupted and not used", 1918 ubi->corr_peb_count); 1919 err = -ENOSPC; 1920 goto out_free; 1921 } 1922 ubi->avail_pebs -= reserved_pebs; 1923 ubi->rsvd_pebs += reserved_pebs; 1924 1925 /* Schedule wear-leveling if needed */ 1926 err = ensure_wear_leveling(ubi, 0); 1927 if (err) 1928 goto out_free; 1929 1930 #ifdef CONFIG_MTD_UBI_FASTMAP 1931 if (!ubi->ro_mode && !ubi->fm_disabled) 1932 ubi_ensure_anchor_pebs(ubi); 1933 #endif 1934 return 0; 1935 1936 out_free: 1937 shutdown_work(ubi); 1938 tree_destroy(ubi, &ubi->used); 1939 tree_destroy(ubi, &ubi->free); 1940 tree_destroy(ubi, &ubi->scrub); 1941 kfree(ubi->lookuptbl); 1942 return err; 1943 } 1944 1945 /** 1946 * protection_queue_destroy - destroy the protection queue. 1947 * @ubi: UBI device description object 1948 */ 1949 static void protection_queue_destroy(struct ubi_device *ubi) 1950 { 1951 int i; 1952 struct ubi_wl_entry *e, *tmp; 1953 1954 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1955 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1956 list_del(&e->u.list); 1957 wl_entry_destroy(ubi, e); 1958 } 1959 } 1960 } 1961 1962 /** 1963 * ubi_wl_close - close the wear-leveling sub-system. 1964 * @ubi: UBI device description object 1965 */ 1966 void ubi_wl_close(struct ubi_device *ubi) 1967 { 1968 dbg_wl("close the WL sub-system"); 1969 ubi_fastmap_close(ubi); 1970 shutdown_work(ubi); 1971 protection_queue_destroy(ubi); 1972 tree_destroy(ubi, &ubi->used); 1973 tree_destroy(ubi, &ubi->erroneous); 1974 tree_destroy(ubi, &ubi->free); 1975 tree_destroy(ubi, &ubi->scrub); 1976 kfree(ubi->lookuptbl); 1977 } 1978 1979 /** 1980 * self_check_ec - make sure that the erase counter of a PEB is correct. 1981 * @ubi: UBI device description object 1982 * @pnum: the physical eraseblock number to check 1983 * @ec: the erase counter to check 1984 * 1985 * This function returns zero if the erase counter of physical eraseblock @pnum 1986 * is equivalent to @ec, and a negative error code if not or if an error 1987 * occurred. 1988 */ 1989 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1990 { 1991 int err; 1992 long long read_ec; 1993 struct ubi_ec_hdr *ec_hdr; 1994 1995 if (!ubi_dbg_chk_gen(ubi)) 1996 return 0; 1997 1998 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1999 if (!ec_hdr) 2000 return -ENOMEM; 2001 2002 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2003 if (err && err != UBI_IO_BITFLIPS) { 2004 /* The header does not have to exist */ 2005 err = 0; 2006 goto out_free; 2007 } 2008 2009 read_ec = be64_to_cpu(ec_hdr->ec); 2010 if (ec != read_ec && read_ec - ec > 1) { 2011 ubi_err(ubi, "self-check failed for PEB %d", pnum); 2012 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 2013 dump_stack(); 2014 err = 1; 2015 } else 2016 err = 0; 2017 2018 out_free: 2019 kfree(ec_hdr); 2020 return err; 2021 } 2022 2023 /** 2024 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2025 * @ubi: UBI device description object 2026 * @e: the wear-leveling entry to check 2027 * @root: the root of the tree 2028 * 2029 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2030 * is not. 2031 */ 2032 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2033 struct ubi_wl_entry *e, struct rb_root *root) 2034 { 2035 if (!ubi_dbg_chk_gen(ubi)) 2036 return 0; 2037 2038 if (in_wl_tree(e, root)) 2039 return 0; 2040 2041 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2042 e->pnum, e->ec, root); 2043 dump_stack(); 2044 return -EINVAL; 2045 } 2046 2047 /** 2048 * self_check_in_pq - check if wear-leveling entry is in the protection 2049 * queue. 2050 * @ubi: UBI device description object 2051 * @e: the wear-leveling entry to check 2052 * 2053 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2054 */ 2055 static int self_check_in_pq(const struct ubi_device *ubi, 2056 struct ubi_wl_entry *e) 2057 { 2058 if (!ubi_dbg_chk_gen(ubi)) 2059 return 0; 2060 2061 if (in_pq(ubi, e)) 2062 return 0; 2063 2064 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2065 e->pnum, e->ec); 2066 dump_stack(); 2067 return -EINVAL; 2068 } 2069 #ifndef CONFIG_MTD_UBI_FASTMAP 2070 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2071 { 2072 struct ubi_wl_entry *e; 2073 2074 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2075 self_check_in_wl_tree(ubi, e, &ubi->free); 2076 ubi->free_count--; 2077 ubi_assert(ubi->free_count >= 0); 2078 rb_erase(&e->u.rb, &ubi->free); 2079 2080 return e; 2081 } 2082 2083 /** 2084 * produce_free_peb - produce a free physical eraseblock. 2085 * @ubi: UBI device description object 2086 * 2087 * This function tries to make a free PEB by means of synchronous execution of 2088 * pending works. This may be needed if, for example the background thread is 2089 * disabled. Returns zero in case of success and a negative error code in case 2090 * of failure. 2091 */ 2092 static int produce_free_peb(struct ubi_device *ubi) 2093 { 2094 int err; 2095 2096 while (!ubi->free.rb_node && ubi->works_count) { 2097 spin_unlock(&ubi->wl_lock); 2098 2099 dbg_wl("do one work synchronously"); 2100 err = do_work(ubi); 2101 2102 spin_lock(&ubi->wl_lock); 2103 if (err) 2104 return err; 2105 } 2106 2107 return 0; 2108 } 2109 2110 /** 2111 * ubi_wl_get_peb - get a physical eraseblock. 2112 * @ubi: UBI device description object 2113 * 2114 * This function returns a physical eraseblock in case of success and a 2115 * negative error code in case of failure. 2116 * Returns with ubi->fm_eba_sem held in read mode! 2117 */ 2118 int ubi_wl_get_peb(struct ubi_device *ubi) 2119 { 2120 int err; 2121 struct ubi_wl_entry *e; 2122 2123 retry: 2124 down_read(&ubi->fm_eba_sem); 2125 spin_lock(&ubi->wl_lock); 2126 if (!ubi->free.rb_node) { 2127 if (ubi->works_count == 0) { 2128 ubi_err(ubi, "no free eraseblocks"); 2129 ubi_assert(list_empty(&ubi->works)); 2130 spin_unlock(&ubi->wl_lock); 2131 return -ENOSPC; 2132 } 2133 2134 err = produce_free_peb(ubi); 2135 if (err < 0) { 2136 spin_unlock(&ubi->wl_lock); 2137 return err; 2138 } 2139 spin_unlock(&ubi->wl_lock); 2140 up_read(&ubi->fm_eba_sem); 2141 goto retry; 2142 2143 } 2144 e = wl_get_wle(ubi); 2145 prot_queue_add(ubi, e); 2146 spin_unlock(&ubi->wl_lock); 2147 2148 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2149 ubi->peb_size - ubi->vid_hdr_aloffset); 2150 if (err) { 2151 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2152 return err; 2153 } 2154 2155 return e->pnum; 2156 } 2157 #else 2158 #include "fastmap-wl.c" 2159 #endif 2160