xref: /linux/drivers/mtd/ubi/wl.c (revision 0ea5c948cb64bab5bc7a5516774eb8536f05aa0d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94 
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97 
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105 
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118 
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124 
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 				 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 			    struct ubi_wl_entry *e);
130 
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 	struct rb_node **p, *parent = NULL;
142 
143 	p = &root->rb_node;
144 	while (*p) {
145 		struct ubi_wl_entry *e1;
146 
147 		parent = *p;
148 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149 
150 		if (e->ec < e1->ec)
151 			p = &(*p)->rb_left;
152 		else if (e->ec > e1->ec)
153 			p = &(*p)->rb_right;
154 		else {
155 			ubi_assert(e->pnum != e1->pnum);
156 			if (e->pnum < e1->pnum)
157 				p = &(*p)->rb_left;
158 			else
159 				p = &(*p)->rb_right;
160 		}
161 	}
162 
163 	rb_link_node(&e->u.rb, parent, p);
164 	rb_insert_color(&e->u.rb, root);
165 }
166 
167 /**
168  * wl_entry_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 	ubi->lookuptbl[e->pnum] = NULL;
178 	kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180 
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  * @executed: whether there is one work is executed
185  *
186  * This function returns zero in case of success and a negative error code in
187  * case of failure. If @executed is not NULL and there is one work executed,
188  * @executed is set as %1, otherwise @executed is set as %0.
189  */
do_work(struct ubi_device * ubi,int * executed)190 static int do_work(struct ubi_device *ubi, int *executed)
191 {
192 	int err;
193 	struct ubi_work *wrk;
194 
195 	cond_resched();
196 
197 	/*
198 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
199 	 * it in read mode, so many of them may be doing works at a time. But
200 	 * the queue flush code has to be sure the whole queue of works is
201 	 * done, and it takes the mutex in write mode.
202 	 */
203 	down_read(&ubi->work_sem);
204 	spin_lock(&ubi->wl_lock);
205 	if (list_empty(&ubi->works)) {
206 		spin_unlock(&ubi->wl_lock);
207 		up_read(&ubi->work_sem);
208 		if (executed)
209 			*executed = 0;
210 		return 0;
211 	}
212 
213 	if (executed)
214 		*executed = 1;
215 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
216 	list_del(&wrk->list);
217 	ubi->works_count -= 1;
218 	ubi_assert(ubi->works_count >= 0);
219 	spin_unlock(&ubi->wl_lock);
220 
221 	/*
222 	 * Call the worker function. Do not touch the work structure
223 	 * after this call as it will have been freed or reused by that
224 	 * time by the worker function.
225 	 */
226 	err = wrk->func(ubi, wrk, 0);
227 	if (err)
228 		ubi_err(ubi, "work failed with error code %d", err);
229 	up_read(&ubi->work_sem);
230 
231 	return err;
232 }
233 
234 /**
235  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
236  * @e: the wear-leveling entry to check
237  * @root: the root of the tree
238  *
239  * This function returns non-zero if @e is in the @root RB-tree and zero if it
240  * is not.
241  */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)242 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
243 {
244 	struct rb_node *p;
245 
246 	p = root->rb_node;
247 	while (p) {
248 		struct ubi_wl_entry *e1;
249 
250 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
251 
252 		if (e->pnum == e1->pnum) {
253 			ubi_assert(e == e1);
254 			return 1;
255 		}
256 
257 		if (e->ec < e1->ec)
258 			p = p->rb_left;
259 		else if (e->ec > e1->ec)
260 			p = p->rb_right;
261 		else {
262 			ubi_assert(e->pnum != e1->pnum);
263 			if (e->pnum < e1->pnum)
264 				p = p->rb_left;
265 			else
266 				p = p->rb_right;
267 		}
268 	}
269 
270 	return 0;
271 }
272 
273 /**
274  * in_pq - check if a wear-leveling entry is present in the protection queue.
275  * @ubi: UBI device description object
276  * @e: the wear-leveling entry to check
277  *
278  * This function returns non-zero if @e is in the protection queue and zero
279  * if it is not.
280  */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)281 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
282 {
283 	struct ubi_wl_entry *p;
284 	int i;
285 
286 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
287 		list_for_each_entry(p, &ubi->pq[i], u.list)
288 			if (p == e)
289 				return 1;
290 
291 	return 0;
292 }
293 
294 /**
295  * prot_queue_add - add physical eraseblock to the protection queue.
296  * @ubi: UBI device description object
297  * @e: the physical eraseblock to add
298  *
299  * This function adds @e to the tail of the protection queue @ubi->pq, where
300  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
301  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
302  * be locked.
303  */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)304 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
305 {
306 	int pq_tail = ubi->pq_head - 1;
307 
308 	if (pq_tail < 0)
309 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
310 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
311 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
312 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
313 }
314 
315 /**
316  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
317  * @ubi: UBI device description object
318  * @root: the RB-tree where to look for
319  * @diff: maximum possible difference from the smallest erase counter
320  * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff'
321  *
322  * This function looks for a wear leveling entry with erase counter closest to
323  * min + @diff, where min is the smallest erase counter.
324  */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff,int pick_max)325 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
326 					  struct rb_root *root, int diff,
327 					  int pick_max)
328 {
329 	struct rb_node *p;
330 	struct ubi_wl_entry *e;
331 	int max;
332 
333 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
334 	max = e->ec + diff;
335 
336 	p = root->rb_node;
337 	while (p) {
338 		struct ubi_wl_entry *e1;
339 
340 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
341 		if (e1->ec >= max) {
342 			if (pick_max)
343 				e = e1;
344 			p = p->rb_left;
345 		} else {
346 			p = p->rb_right;
347 			e = e1;
348 		}
349 	}
350 
351 	return e;
352 }
353 
354 /**
355  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
356  * @ubi: UBI device description object
357  * @root: the RB-tree where to look for
358  *
359  * This function looks for a wear leveling entry with medium erase counter,
360  * but not greater or equivalent than the lowest erase counter plus
361  * %WL_FREE_MAX_DIFF/2.
362  */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)363 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
364 					       struct rb_root *root)
365 {
366 	struct ubi_wl_entry *e, *first, *last;
367 
368 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
369 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
370 
371 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
372 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
373 
374 		/*
375 		 * If no fastmap has been written and fm_anchor is not
376 		 * reserved and this WL entry can be used as anchor PEB
377 		 * hold it back and return the second best WL entry such
378 		 * that fastmap can use the anchor PEB later.
379 		 */
380 		e = may_reserve_for_fm(ubi, e, root);
381 	} else
382 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2, 0);
383 
384 	return e;
385 }
386 
387 /**
388  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
389  * refill_wl_user_pool().
390  * @ubi: UBI device description object
391  *
392  * This function returns a wear leveling entry in case of success and
393  * NULL in case of failure.
394  */
wl_get_wle(struct ubi_device * ubi)395 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
396 {
397 	struct ubi_wl_entry *e;
398 
399 	e = find_mean_wl_entry(ubi, &ubi->free);
400 	if (!e) {
401 		ubi_err(ubi, "no free eraseblocks");
402 		return NULL;
403 	}
404 
405 	self_check_in_wl_tree(ubi, e, &ubi->free);
406 
407 	/*
408 	 * Move the physical eraseblock to the protection queue where it will
409 	 * be protected from being moved for some time.
410 	 */
411 	rb_erase(&e->u.rb, &ubi->free);
412 	ubi->free_count--;
413 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
414 
415 	return e;
416 }
417 
418 /**
419  * prot_queue_del - remove a physical eraseblock from the protection queue.
420  * @ubi: UBI device description object
421  * @pnum: the physical eraseblock to remove
422  *
423  * This function deletes PEB @pnum from the protection queue and returns zero
424  * in case of success and %-ENODEV if the PEB was not found.
425  */
prot_queue_del(struct ubi_device * ubi,int pnum)426 static int prot_queue_del(struct ubi_device *ubi, int pnum)
427 {
428 	struct ubi_wl_entry *e;
429 
430 	e = ubi->lookuptbl[pnum];
431 	if (!e)
432 		return -ENODEV;
433 
434 	if (self_check_in_pq(ubi, e))
435 		return -ENODEV;
436 
437 	list_del(&e->u.list);
438 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
439 	return 0;
440 }
441 
442 /**
443  * ubi_sync_erase - synchronously erase a physical eraseblock.
444  * @ubi: UBI device description object
445  * @e: the physical eraseblock to erase
446  * @torture: if the physical eraseblock has to be tortured
447  *
448  * This function returns zero in case of success and a negative error code in
449  * case of failure.
450  */
ubi_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)451 int ubi_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
452 {
453 	int err;
454 	struct ubi_ec_hdr *ec_hdr;
455 	unsigned long long ec = e->ec;
456 
457 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
458 
459 	err = self_check_ec(ubi, e->pnum, e->ec);
460 	if (err)
461 		return -EINVAL;
462 
463 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
464 	if (!ec_hdr)
465 		return -ENOMEM;
466 
467 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
468 	if (err < 0)
469 		goto out_free;
470 
471 	ec += err;
472 	if (ec > UBI_MAX_ERASECOUNTER) {
473 		/*
474 		 * Erase counter overflow. Upgrade UBI and use 64-bit
475 		 * erase counters internally.
476 		 */
477 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
478 			e->pnum, ec);
479 		err = -EINVAL;
480 		goto out_free;
481 	}
482 
483 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
484 
485 	ec_hdr->ec = cpu_to_be64(ec);
486 
487 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
488 	if (err)
489 		goto out_free;
490 
491 	e->ec = ec;
492 	spin_lock(&ubi->wl_lock);
493 	if (e->ec > ubi->max_ec)
494 		ubi->max_ec = e->ec;
495 	spin_unlock(&ubi->wl_lock);
496 
497 out_free:
498 	kfree(ec_hdr);
499 	return err;
500 }
501 
502 /**
503  * serve_prot_queue - check if it is time to stop protecting PEBs.
504  * @ubi: UBI device description object
505  *
506  * This function is called after each erase operation and removes PEBs from the
507  * tail of the protection queue. These PEBs have been protected for long enough
508  * and should be moved to the used tree.
509  */
serve_prot_queue(struct ubi_device * ubi)510 static void serve_prot_queue(struct ubi_device *ubi)
511 {
512 	struct ubi_wl_entry *e, *tmp;
513 	int count;
514 
515 	/*
516 	 * There may be several protected physical eraseblock to remove,
517 	 * process them all.
518 	 */
519 repeat:
520 	count = 0;
521 	spin_lock(&ubi->wl_lock);
522 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
523 		dbg_wl("PEB %d EC %d protection over, move to used tree",
524 			e->pnum, e->ec);
525 
526 		list_del(&e->u.list);
527 		wl_tree_add(e, &ubi->used);
528 		if (count++ > 32) {
529 			/*
530 			 * Let's be nice and avoid holding the spinlock for
531 			 * too long.
532 			 */
533 			spin_unlock(&ubi->wl_lock);
534 			cond_resched();
535 			goto repeat;
536 		}
537 	}
538 
539 	ubi->pq_head += 1;
540 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
541 		ubi->pq_head = 0;
542 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
543 	spin_unlock(&ubi->wl_lock);
544 }
545 
546 /**
547  * __schedule_ubi_work - schedule a work.
548  * @ubi: UBI device description object
549  * @wrk: the work to schedule
550  *
551  * This function adds a work defined by @wrk to the tail of the pending works
552  * list. Can only be used if ubi->work_sem is already held in read mode!
553  */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)554 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
555 {
556 	spin_lock(&ubi->wl_lock);
557 	list_add_tail(&wrk->list, &ubi->works);
558 	ubi_assert(ubi->works_count >= 0);
559 	ubi->works_count += 1;
560 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
561 		wake_up_process(ubi->bgt_thread);
562 	spin_unlock(&ubi->wl_lock);
563 }
564 
565 /**
566  * schedule_ubi_work - schedule a work.
567  * @ubi: UBI device description object
568  * @wrk: the work to schedule
569  *
570  * This function adds a work defined by @wrk to the tail of the pending works
571  * list.
572  */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)573 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
574 {
575 	down_read(&ubi->work_sem);
576 	__schedule_ubi_work(ubi, wrk);
577 	up_read(&ubi->work_sem);
578 }
579 
580 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
581 			int shutdown);
582 
583 /**
584  * schedule_erase - schedule an erase work.
585  * @ubi: UBI device description object
586  * @e: the WL entry of the physical eraseblock to erase
587  * @vol_id: the volume ID that last used this PEB
588  * @lnum: the last used logical eraseblock number for the PEB
589  * @torture: if the physical eraseblock has to be tortured
590  * @nested: denotes whether the work_sem is already held
591  *
592  * This function returns zero in case of success and a %-ENOMEM in case of
593  * failure.
594  */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)595 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
596 			  int vol_id, int lnum, int torture, bool nested)
597 {
598 	struct ubi_work *wl_wrk;
599 
600 	ubi_assert(e);
601 
602 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
603 	       e->pnum, e->ec, torture);
604 
605 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
606 	if (!wl_wrk)
607 		return -ENOMEM;
608 
609 	wl_wrk->func = &erase_worker;
610 	wl_wrk->e = e;
611 	wl_wrk->vol_id = vol_id;
612 	wl_wrk->lnum = lnum;
613 	wl_wrk->torture = torture;
614 
615 	if (nested)
616 		__schedule_ubi_work(ubi, wl_wrk);
617 	else
618 		schedule_ubi_work(ubi, wl_wrk);
619 	return 0;
620 }
621 
622 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
623 /**
624  * do_sync_erase - run the erase worker synchronously.
625  * @ubi: UBI device description object
626  * @e: the WL entry of the physical eraseblock to erase
627  * @vol_id: the volume ID that last used this PEB
628  * @lnum: the last used logical eraseblock number for the PEB
629  * @torture: if the physical eraseblock has to be tortured
630  *
631  */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)632 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
633 			 int vol_id, int lnum, int torture)
634 {
635 	struct ubi_work wl_wrk;
636 
637 	dbg_wl("sync erase of PEB %i", e->pnum);
638 
639 	wl_wrk.e = e;
640 	wl_wrk.vol_id = vol_id;
641 	wl_wrk.lnum = lnum;
642 	wl_wrk.torture = torture;
643 
644 	return __erase_worker(ubi, &wl_wrk);
645 }
646 
647 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
648 /**
649  * wear_leveling_worker - wear-leveling worker function.
650  * @ubi: UBI device description object
651  * @wrk: the work object
652  * @shutdown: non-zero if the worker has to free memory and exit
653  * because the WL-subsystem is shutting down
654  *
655  * This function copies a more worn out physical eraseblock to a less worn out
656  * one. Returns zero in case of success and a negative error code in case of
657  * failure.
658  */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)659 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
660 				int shutdown)
661 {
662 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
663 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
664 	struct ubi_wl_entry *e1, *e2;
665 	struct ubi_vid_io_buf *vidb;
666 	struct ubi_vid_hdr *vid_hdr;
667 	int dst_leb_clean = 0;
668 
669 	kfree(wrk);
670 	if (shutdown)
671 		return 0;
672 
673 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
674 	if (!vidb)
675 		return -ENOMEM;
676 
677 	vid_hdr = ubi_get_vid_hdr(vidb);
678 
679 	down_read(&ubi->fm_eba_sem);
680 	mutex_lock(&ubi->move_mutex);
681 	spin_lock(&ubi->wl_lock);
682 	ubi_assert(!ubi->move_from && !ubi->move_to);
683 	ubi_assert(!ubi->move_to_put);
684 
685 #ifdef CONFIG_MTD_UBI_FASTMAP
686 	if (!next_peb_for_wl(ubi) ||
687 #else
688 	if (!ubi->free.rb_node ||
689 #endif
690 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
691 		/*
692 		 * No free physical eraseblocks? Well, they must be waiting in
693 		 * the queue to be erased. Cancel movement - it will be
694 		 * triggered again when a free physical eraseblock appears.
695 		 *
696 		 * No used physical eraseblocks? They must be temporarily
697 		 * protected from being moved. They will be moved to the
698 		 * @ubi->used tree later and the wear-leveling will be
699 		 * triggered again.
700 		 */
701 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
702 		       !ubi->free.rb_node, !ubi->used.rb_node);
703 		goto out_cancel;
704 	}
705 
706 #ifdef CONFIG_MTD_UBI_FASTMAP
707 	e1 = find_anchor_wl_entry(&ubi->used);
708 	if (e1 && ubi->fm_anchor &&
709 	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
710 		ubi->fm_do_produce_anchor = 1;
711 		/*
712 		 * fm_anchor is no longer considered a good anchor.
713 		 * NULL assignment also prevents multiple wear level checks
714 		 * of this PEB.
715 		 */
716 		wl_tree_add(ubi->fm_anchor, &ubi->free);
717 		ubi->fm_anchor = NULL;
718 		ubi->free_count++;
719 	}
720 
721 	if (ubi->fm_do_produce_anchor) {
722 		if (!e1)
723 			goto out_cancel;
724 		e2 = get_peb_for_wl(ubi);
725 		if (!e2)
726 			goto out_cancel;
727 
728 		self_check_in_wl_tree(ubi, e1, &ubi->used);
729 		rb_erase(&e1->u.rb, &ubi->used);
730 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
731 		ubi->fm_do_produce_anchor = 0;
732 	} else if (!ubi->scrub.rb_node) {
733 #else
734 	if (!ubi->scrub.rb_node) {
735 #endif
736 		/*
737 		 * Now pick the least worn-out used physical eraseblock and a
738 		 * highly worn-out free physical eraseblock. If the erase
739 		 * counters differ much enough, start wear-leveling.
740 		 */
741 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
742 		e2 = get_peb_for_wl(ubi);
743 		if (!e2)
744 			goto out_cancel;
745 
746 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
747 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
748 			       e1->ec, e2->ec);
749 
750 			/* Give the unused PEB back */
751 			wl_tree_add(e2, &ubi->free);
752 			ubi->free_count++;
753 			goto out_cancel;
754 		}
755 		self_check_in_wl_tree(ubi, e1, &ubi->used);
756 		rb_erase(&e1->u.rb, &ubi->used);
757 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
758 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
759 	} else {
760 		/* Perform scrubbing */
761 		scrubbing = 1;
762 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
763 		e2 = get_peb_for_wl(ubi);
764 		if (!e2)
765 			goto out_cancel;
766 
767 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
768 		rb_erase(&e1->u.rb, &ubi->scrub);
769 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
770 	}
771 
772 	ubi->move_from = e1;
773 	ubi->move_to = e2;
774 	spin_unlock(&ubi->wl_lock);
775 
776 	/*
777 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
778 	 * We so far do not know which logical eraseblock our physical
779 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
780 	 * header first.
781 	 *
782 	 * Note, we are protected from this PEB being unmapped and erased. The
783 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
784 	 * which is being moved was unmapped.
785 	 */
786 
787 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
788 	if (err && err != UBI_IO_BITFLIPS) {
789 		dst_leb_clean = 1;
790 		if (err == UBI_IO_FF) {
791 			/*
792 			 * We are trying to move PEB without a VID header. UBI
793 			 * always write VID headers shortly after the PEB was
794 			 * given, so we have a situation when it has not yet
795 			 * had a chance to write it, because it was preempted.
796 			 * So add this PEB to the protection queue so far,
797 			 * because presumably more data will be written there
798 			 * (including the missing VID header), and then we'll
799 			 * move it.
800 			 */
801 			dbg_wl("PEB %d has no VID header", e1->pnum);
802 			protect = 1;
803 			goto out_not_moved;
804 		} else if (err == UBI_IO_FF_BITFLIPS) {
805 			/*
806 			 * The same situation as %UBI_IO_FF, but bit-flips were
807 			 * detected. It is better to schedule this PEB for
808 			 * scrubbing.
809 			 */
810 			dbg_wl("PEB %d has no VID header but has bit-flips",
811 			       e1->pnum);
812 			scrubbing = 1;
813 			goto out_not_moved;
814 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
815 			/*
816 			 * While a full scan would detect interrupted erasures
817 			 * at attach time we can face them here when attached from
818 			 * Fastmap.
819 			 */
820 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
821 			       e1->pnum);
822 			erase = 1;
823 			goto out_not_moved;
824 		}
825 
826 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
827 			err, e1->pnum);
828 		goto out_error;
829 	}
830 
831 	vol_id = be32_to_cpu(vid_hdr->vol_id);
832 	lnum = be32_to_cpu(vid_hdr->lnum);
833 
834 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
835 	if (err) {
836 		if (err == MOVE_CANCEL_RACE) {
837 			/*
838 			 * The LEB has not been moved because the volume is
839 			 * being deleted or the PEB has been put meanwhile. We
840 			 * should prevent this PEB from being selected for
841 			 * wear-leveling movement again, so put it to the
842 			 * protection queue.
843 			 */
844 			protect = 1;
845 			dst_leb_clean = 1;
846 			goto out_not_moved;
847 		}
848 		if (err == MOVE_RETRY) {
849 			scrubbing = 1;
850 			dst_leb_clean = 1;
851 			goto out_not_moved;
852 		}
853 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
854 		    err == MOVE_TARGET_RD_ERR) {
855 			/*
856 			 * Target PEB had bit-flips or write error - torture it.
857 			 */
858 			torture = 1;
859 			keep = 1;
860 			goto out_not_moved;
861 		}
862 
863 		if (err == MOVE_SOURCE_RD_ERR) {
864 			/*
865 			 * An error happened while reading the source PEB. Do
866 			 * not switch to R/O mode in this case, and give the
867 			 * upper layers a possibility to recover from this,
868 			 * e.g. by unmapping corresponding LEB. Instead, just
869 			 * put this PEB to the @ubi->erroneous list to prevent
870 			 * UBI from trying to move it over and over again.
871 			 */
872 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
873 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
874 					ubi->erroneous_peb_count);
875 				goto out_error;
876 			}
877 			dst_leb_clean = 1;
878 			erroneous = 1;
879 			goto out_not_moved;
880 		}
881 
882 		if (err < 0)
883 			goto out_error;
884 
885 		ubi_assert(0);
886 	}
887 
888 	/* The PEB has been successfully moved */
889 	if (scrubbing)
890 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
891 			e1->pnum, vol_id, lnum, e2->pnum);
892 	ubi_free_vid_buf(vidb);
893 
894 	spin_lock(&ubi->wl_lock);
895 	if (!ubi->move_to_put) {
896 		wl_tree_add(e2, &ubi->used);
897 		e2 = NULL;
898 	}
899 	ubi->move_from = ubi->move_to = NULL;
900 	ubi->move_to_put = ubi->wl_scheduled = 0;
901 	spin_unlock(&ubi->wl_lock);
902 
903 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
904 	if (err) {
905 		if (e2) {
906 			spin_lock(&ubi->wl_lock);
907 			wl_entry_destroy(ubi, e2);
908 			spin_unlock(&ubi->wl_lock);
909 		}
910 		goto out_ro;
911 	}
912 
913 	if (e2) {
914 		/*
915 		 * Well, the target PEB was put meanwhile, schedule it for
916 		 * erasure.
917 		 */
918 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
919 		       e2->pnum, vol_id, lnum);
920 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
921 		if (err)
922 			goto out_ro;
923 	}
924 
925 	dbg_wl("done");
926 	mutex_unlock(&ubi->move_mutex);
927 	up_read(&ubi->fm_eba_sem);
928 	return 0;
929 
930 	/*
931 	 * For some reasons the LEB was not moved, might be an error, might be
932 	 * something else. @e1 was not changed, so return it back. @e2 might
933 	 * have been changed, schedule it for erasure.
934 	 */
935 out_not_moved:
936 	if (vol_id != -1)
937 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
938 		       e1->pnum, vol_id, lnum, e2->pnum, err);
939 	else
940 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
941 		       e1->pnum, e2->pnum, err);
942 	spin_lock(&ubi->wl_lock);
943 	if (protect)
944 		prot_queue_add(ubi, e1);
945 	else if (erroneous) {
946 		wl_tree_add(e1, &ubi->erroneous);
947 		ubi->erroneous_peb_count += 1;
948 	} else if (scrubbing)
949 		wl_tree_add(e1, &ubi->scrub);
950 	else if (keep)
951 		wl_tree_add(e1, &ubi->used);
952 	if (dst_leb_clean) {
953 		wl_tree_add(e2, &ubi->free);
954 		ubi->free_count++;
955 	}
956 
957 	ubi_assert(!ubi->move_to_put);
958 	ubi->move_from = ubi->move_to = NULL;
959 	ubi->wl_scheduled = 0;
960 	spin_unlock(&ubi->wl_lock);
961 
962 	ubi_free_vid_buf(vidb);
963 	if (dst_leb_clean) {
964 		ensure_wear_leveling(ubi, 1);
965 	} else {
966 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
967 		if (err)
968 			goto out_ro;
969 	}
970 
971 	if (erase) {
972 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
973 		if (err)
974 			goto out_ro;
975 	}
976 
977 	mutex_unlock(&ubi->move_mutex);
978 	up_read(&ubi->fm_eba_sem);
979 	return 0;
980 
981 out_error:
982 	if (vol_id != -1)
983 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
984 			err, e1->pnum, e2->pnum);
985 	else
986 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
987 			err, e1->pnum, vol_id, lnum, e2->pnum);
988 	spin_lock(&ubi->wl_lock);
989 	ubi->move_from = ubi->move_to = NULL;
990 	ubi->move_to_put = ubi->wl_scheduled = 0;
991 	wl_entry_destroy(ubi, e1);
992 	wl_entry_destroy(ubi, e2);
993 	spin_unlock(&ubi->wl_lock);
994 
995 	ubi_free_vid_buf(vidb);
996 
997 out_ro:
998 	ubi_ro_mode(ubi);
999 	mutex_unlock(&ubi->move_mutex);
1000 	up_read(&ubi->fm_eba_sem);
1001 	ubi_assert(err != 0);
1002 	return err < 0 ? err : -EIO;
1003 
1004 out_cancel:
1005 	ubi->wl_scheduled = 0;
1006 	spin_unlock(&ubi->wl_lock);
1007 	mutex_unlock(&ubi->move_mutex);
1008 	up_read(&ubi->fm_eba_sem);
1009 	ubi_free_vid_buf(vidb);
1010 	return 0;
1011 }
1012 
1013 /**
1014  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1015  * @ubi: UBI device description object
1016  * @nested: set to non-zero if this function is called from UBI worker
1017  *
1018  * This function checks if it is time to start wear-leveling and schedules it
1019  * if yes. This function returns zero in case of success and a negative error
1020  * code in case of failure.
1021  */
1022 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1023 {
1024 	int err = 0;
1025 	struct ubi_work *wrk;
1026 
1027 	spin_lock(&ubi->wl_lock);
1028 	if (ubi->wl_scheduled)
1029 		/* Wear-leveling is already in the work queue */
1030 		goto out_unlock;
1031 
1032 	/*
1033 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1034 	 * WL worker has to be scheduled anyway.
1035 	 */
1036 	if (!ubi->scrub.rb_node) {
1037 #ifdef CONFIG_MTD_UBI_FASTMAP
1038 		if (!need_wear_leveling(ubi))
1039 			goto out_unlock;
1040 #else
1041 		struct ubi_wl_entry *e1;
1042 		struct ubi_wl_entry *e2;
1043 
1044 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1045 			/* No physical eraseblocks - no deal */
1046 			goto out_unlock;
1047 
1048 		/*
1049 		 * We schedule wear-leveling only if the difference between the
1050 		 * lowest erase counter of used physical eraseblocks and a high
1051 		 * erase counter of free physical eraseblocks is greater than
1052 		 * %UBI_WL_THRESHOLD.
1053 		 */
1054 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1055 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
1056 
1057 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1058 			goto out_unlock;
1059 #endif
1060 		dbg_wl("schedule wear-leveling");
1061 	} else
1062 		dbg_wl("schedule scrubbing");
1063 
1064 	ubi->wl_scheduled = 1;
1065 	spin_unlock(&ubi->wl_lock);
1066 
1067 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1068 	if (!wrk) {
1069 		err = -ENOMEM;
1070 		goto out_cancel;
1071 	}
1072 
1073 	wrk->func = &wear_leveling_worker;
1074 	if (nested)
1075 		__schedule_ubi_work(ubi, wrk);
1076 	else
1077 		schedule_ubi_work(ubi, wrk);
1078 	return err;
1079 
1080 out_cancel:
1081 	spin_lock(&ubi->wl_lock);
1082 	ubi->wl_scheduled = 0;
1083 out_unlock:
1084 	spin_unlock(&ubi->wl_lock);
1085 	return err;
1086 }
1087 
1088 /**
1089  * __erase_worker - physical eraseblock erase worker function.
1090  * @ubi: UBI device description object
1091  * @wl_wrk: the work object
1092  *
1093  * This function erases a physical eraseblock and perform torture testing if
1094  * needed. It also takes care about marking the physical eraseblock bad if
1095  * needed. Returns zero in case of success and a negative error code in case of
1096  * failure.
1097  */
1098 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1099 {
1100 	struct ubi_wl_entry *e = wl_wrk->e;
1101 	int pnum = e->pnum;
1102 	int vol_id = wl_wrk->vol_id;
1103 	int lnum = wl_wrk->lnum;
1104 	int err, available_consumed = 0;
1105 
1106 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1107 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1108 
1109 	err = ubi_sync_erase(ubi, e, wl_wrk->torture);
1110 	if (!err) {
1111 		spin_lock(&ubi->wl_lock);
1112 
1113 		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1114 		    e->pnum < UBI_FM_MAX_START) {
1115 			/*
1116 			 * Abort anchor production, if needed it will be
1117 			 * enabled again in the wear leveling started below.
1118 			 */
1119 			ubi->fm_anchor = e;
1120 			ubi->fm_do_produce_anchor = 0;
1121 		} else {
1122 			wl_tree_add(e, &ubi->free);
1123 			ubi->free_count++;
1124 		}
1125 
1126 		spin_unlock(&ubi->wl_lock);
1127 
1128 		/*
1129 		 * One more erase operation has happened, take care about
1130 		 * protected physical eraseblocks.
1131 		 */
1132 		serve_prot_queue(ubi);
1133 
1134 		/* And take care about wear-leveling */
1135 		err = ensure_wear_leveling(ubi, 1);
1136 		return err;
1137 	}
1138 
1139 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1140 
1141 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1142 	    err == -EBUSY) {
1143 		int err1;
1144 
1145 		/* Re-schedule the LEB for erasure */
1146 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1147 		if (err1) {
1148 			spin_lock(&ubi->wl_lock);
1149 			wl_entry_destroy(ubi, e);
1150 			spin_unlock(&ubi->wl_lock);
1151 			err = err1;
1152 			goto out_ro;
1153 		}
1154 		return err;
1155 	}
1156 
1157 	spin_lock(&ubi->wl_lock);
1158 	wl_entry_destroy(ubi, e);
1159 	spin_unlock(&ubi->wl_lock);
1160 	if (err != -EIO)
1161 		/*
1162 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1163 		 * this physical eraseblock for erasure again would cause
1164 		 * errors again and again. Well, lets switch to R/O mode.
1165 		 */
1166 		goto out_ro;
1167 
1168 	/* It is %-EIO, the PEB went bad */
1169 
1170 	if (!ubi->bad_allowed) {
1171 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1172 		goto out_ro;
1173 	}
1174 
1175 	spin_lock(&ubi->volumes_lock);
1176 	if (ubi->beb_rsvd_pebs == 0) {
1177 		if (ubi->avail_pebs == 0) {
1178 			spin_unlock(&ubi->volumes_lock);
1179 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1180 			goto out_ro;
1181 		}
1182 		ubi->avail_pebs -= 1;
1183 		available_consumed = 1;
1184 	}
1185 	spin_unlock(&ubi->volumes_lock);
1186 
1187 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1188 	err = ubi_io_mark_bad(ubi, pnum);
1189 	if (err)
1190 		goto out_ro;
1191 
1192 	spin_lock(&ubi->volumes_lock);
1193 	if (ubi->beb_rsvd_pebs > 0) {
1194 		if (available_consumed) {
1195 			/*
1196 			 * The amount of reserved PEBs increased since we last
1197 			 * checked.
1198 			 */
1199 			ubi->avail_pebs += 1;
1200 			available_consumed = 0;
1201 		}
1202 		ubi->beb_rsvd_pebs -= 1;
1203 	}
1204 	ubi->bad_peb_count += 1;
1205 	ubi->good_peb_count -= 1;
1206 	ubi_calculate_reserved(ubi);
1207 	if (available_consumed)
1208 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1209 	else if (ubi->beb_rsvd_pebs)
1210 		ubi_msg(ubi, "%d PEBs left in the reserve",
1211 			ubi->beb_rsvd_pebs);
1212 	else
1213 		ubi_warn(ubi, "last PEB from the reserve was used");
1214 	spin_unlock(&ubi->volumes_lock);
1215 
1216 	return err;
1217 
1218 out_ro:
1219 	if (available_consumed) {
1220 		spin_lock(&ubi->volumes_lock);
1221 		ubi->avail_pebs += 1;
1222 		spin_unlock(&ubi->volumes_lock);
1223 	}
1224 	ubi_ro_mode(ubi);
1225 	return err;
1226 }
1227 
1228 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1229 			  int shutdown)
1230 {
1231 	int ret;
1232 
1233 	if (shutdown) {
1234 		struct ubi_wl_entry *e = wl_wrk->e;
1235 
1236 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1237 		kfree(wl_wrk);
1238 		wl_entry_destroy(ubi, e);
1239 		return 0;
1240 	}
1241 
1242 	ret = __erase_worker(ubi, wl_wrk);
1243 	kfree(wl_wrk);
1244 	return ret;
1245 }
1246 
1247 /**
1248  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1249  * @ubi: UBI device description object
1250  * @vol_id: the volume ID that last used this PEB
1251  * @lnum: the last used logical eraseblock number for the PEB
1252  * @pnum: physical eraseblock to return
1253  * @torture: if this physical eraseblock has to be tortured
1254  *
1255  * This function is called to return physical eraseblock @pnum to the pool of
1256  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1257  * occurred to this @pnum and it has to be tested. This function returns zero
1258  * in case of success, and a negative error code in case of failure.
1259  */
1260 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1261 		   int pnum, int torture)
1262 {
1263 	int err;
1264 	struct ubi_wl_entry *e;
1265 
1266 	dbg_wl("PEB %d", pnum);
1267 	ubi_assert(pnum >= 0);
1268 	ubi_assert(pnum < ubi->peb_count);
1269 
1270 	down_read(&ubi->fm_protect);
1271 
1272 retry:
1273 	spin_lock(&ubi->wl_lock);
1274 	e = ubi->lookuptbl[pnum];
1275 	if (!e) {
1276 		/*
1277 		 * This wl entry has been removed for some errors by other
1278 		 * process (eg. wear leveling worker), corresponding process
1279 		 * (except __erase_worker, which cannot concurrent with
1280 		 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1281 		 * just ignore this wl entry.
1282 		 */
1283 		spin_unlock(&ubi->wl_lock);
1284 		up_read(&ubi->fm_protect);
1285 		return 0;
1286 	}
1287 	if (e == ubi->move_from) {
1288 		/*
1289 		 * User is putting the physical eraseblock which was selected to
1290 		 * be moved. It will be scheduled for erasure in the
1291 		 * wear-leveling worker.
1292 		 */
1293 		dbg_wl("PEB %d is being moved, wait", pnum);
1294 		spin_unlock(&ubi->wl_lock);
1295 
1296 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1297 		mutex_lock(&ubi->move_mutex);
1298 		mutex_unlock(&ubi->move_mutex);
1299 		goto retry;
1300 	} else if (e == ubi->move_to) {
1301 		/*
1302 		 * User is putting the physical eraseblock which was selected
1303 		 * as the target the data is moved to. It may happen if the EBA
1304 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1305 		 * but the WL sub-system has not put the PEB to the "used" tree
1306 		 * yet, but it is about to do this. So we just set a flag which
1307 		 * will tell the WL worker that the PEB is not needed anymore
1308 		 * and should be scheduled for erasure.
1309 		 */
1310 		dbg_wl("PEB %d is the target of data moving", pnum);
1311 		ubi_assert(!ubi->move_to_put);
1312 		ubi->move_to_put = 1;
1313 		spin_unlock(&ubi->wl_lock);
1314 		up_read(&ubi->fm_protect);
1315 		return 0;
1316 	} else {
1317 		if (in_wl_tree(e, &ubi->used)) {
1318 			self_check_in_wl_tree(ubi, e, &ubi->used);
1319 			rb_erase(&e->u.rb, &ubi->used);
1320 		} else if (in_wl_tree(e, &ubi->scrub)) {
1321 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1322 			rb_erase(&e->u.rb, &ubi->scrub);
1323 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1324 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1325 			rb_erase(&e->u.rb, &ubi->erroneous);
1326 			ubi->erroneous_peb_count -= 1;
1327 			ubi_assert(ubi->erroneous_peb_count >= 0);
1328 			/* Erroneous PEBs should be tortured */
1329 			torture = 1;
1330 		} else {
1331 			err = prot_queue_del(ubi, e->pnum);
1332 			if (err) {
1333 				ubi_err(ubi, "PEB %d not found", pnum);
1334 				ubi_ro_mode(ubi);
1335 				spin_unlock(&ubi->wl_lock);
1336 				up_read(&ubi->fm_protect);
1337 				return err;
1338 			}
1339 		}
1340 	}
1341 	spin_unlock(&ubi->wl_lock);
1342 
1343 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1344 	if (err) {
1345 		spin_lock(&ubi->wl_lock);
1346 		wl_tree_add(e, &ubi->used);
1347 		spin_unlock(&ubi->wl_lock);
1348 	}
1349 
1350 	up_read(&ubi->fm_protect);
1351 	return err;
1352 }
1353 
1354 /**
1355  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1356  * @ubi: UBI device description object
1357  * @pnum: the physical eraseblock to schedule
1358  *
1359  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1360  * needs scrubbing. This function schedules a physical eraseblock for
1361  * scrubbing which is done in background. This function returns zero in case of
1362  * success and a negative error code in case of failure.
1363  */
1364 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1365 {
1366 	struct ubi_wl_entry *e;
1367 
1368 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1369 
1370 retry:
1371 	spin_lock(&ubi->wl_lock);
1372 	e = ubi->lookuptbl[pnum];
1373 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1374 				   in_wl_tree(e, &ubi->erroneous)) {
1375 		spin_unlock(&ubi->wl_lock);
1376 		return 0;
1377 	}
1378 
1379 	if (e == ubi->move_to) {
1380 		/*
1381 		 * This physical eraseblock was used to move data to. The data
1382 		 * was moved but the PEB was not yet inserted to the proper
1383 		 * tree. We should just wait a little and let the WL worker
1384 		 * proceed.
1385 		 */
1386 		spin_unlock(&ubi->wl_lock);
1387 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1388 		yield();
1389 		goto retry;
1390 	}
1391 
1392 	if (in_wl_tree(e, &ubi->used)) {
1393 		self_check_in_wl_tree(ubi, e, &ubi->used);
1394 		rb_erase(&e->u.rb, &ubi->used);
1395 	} else {
1396 		int err;
1397 
1398 		err = prot_queue_del(ubi, e->pnum);
1399 		if (err) {
1400 			ubi_err(ubi, "PEB %d not found", pnum);
1401 			ubi_ro_mode(ubi);
1402 			spin_unlock(&ubi->wl_lock);
1403 			return err;
1404 		}
1405 	}
1406 
1407 	wl_tree_add(e, &ubi->scrub);
1408 	spin_unlock(&ubi->wl_lock);
1409 
1410 	/*
1411 	 * Technically scrubbing is the same as wear-leveling, so it is done
1412 	 * by the WL worker.
1413 	 */
1414 	return ensure_wear_leveling(ubi, 0);
1415 }
1416 
1417 /**
1418  * ubi_wl_flush - flush all pending works.
1419  * @ubi: UBI device description object
1420  * @vol_id: the volume id to flush for
1421  * @lnum: the logical eraseblock number to flush for
1422  *
1423  * This function executes all pending works for a particular volume id /
1424  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1425  * acts as a wildcard for all of the corresponding volume numbers or logical
1426  * eraseblock numbers. It returns zero in case of success and a negative error
1427  * code in case of failure.
1428  */
1429 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1430 {
1431 	int err = 0;
1432 	int found = 1;
1433 
1434 	/*
1435 	 * Erase while the pending works queue is not empty, but not more than
1436 	 * the number of currently pending works.
1437 	 */
1438 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1439 	       vol_id, lnum, ubi->works_count);
1440 
1441 	while (found) {
1442 		struct ubi_work *wrk, *tmp;
1443 		found = 0;
1444 
1445 		down_read(&ubi->work_sem);
1446 		spin_lock(&ubi->wl_lock);
1447 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1448 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1449 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1450 				list_del(&wrk->list);
1451 				ubi->works_count -= 1;
1452 				ubi_assert(ubi->works_count >= 0);
1453 				spin_unlock(&ubi->wl_lock);
1454 
1455 				err = wrk->func(ubi, wrk, 0);
1456 				if (err) {
1457 					up_read(&ubi->work_sem);
1458 					return err;
1459 				}
1460 
1461 				spin_lock(&ubi->wl_lock);
1462 				found = 1;
1463 				break;
1464 			}
1465 		}
1466 		spin_unlock(&ubi->wl_lock);
1467 		up_read(&ubi->work_sem);
1468 	}
1469 
1470 	/*
1471 	 * Make sure all the works which have been done in parallel are
1472 	 * finished.
1473 	 */
1474 	down_write(&ubi->work_sem);
1475 	up_write(&ubi->work_sem);
1476 
1477 	return err;
1478 }
1479 
1480 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1481 {
1482 	if (in_wl_tree(e, &ubi->scrub))
1483 		return false;
1484 	else if (in_wl_tree(e, &ubi->erroneous))
1485 		return false;
1486 	else if (ubi->move_from == e)
1487 		return false;
1488 	else if (ubi->move_to == e)
1489 		return false;
1490 
1491 	return true;
1492 }
1493 
1494 /**
1495  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1496  * @ubi: UBI device description object
1497  * @pnum: the physical eraseblock to schedule
1498  * @force: don't read the block, assume bitflips happened and take action.
1499  *
1500  * This function reads the given eraseblock and checks if bitflips occured.
1501  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1502  * If scrubbing is forced with @force, the eraseblock is not read,
1503  * but scheduled for scrubbing right away.
1504  *
1505  * Returns:
1506  * %EINVAL, PEB is out of range
1507  * %ENOENT, PEB is no longer used by UBI
1508  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1509  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1510  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1511  * %0, no bit flips detected
1512  */
1513 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1514 {
1515 	int err = 0;
1516 	struct ubi_wl_entry *e;
1517 
1518 	if (pnum < 0 || pnum >= ubi->peb_count) {
1519 		err = -EINVAL;
1520 		goto out;
1521 	}
1522 
1523 	/*
1524 	 * Pause all parallel work, otherwise it can happen that the
1525 	 * erase worker frees a wl entry under us.
1526 	 */
1527 	down_write(&ubi->work_sem);
1528 
1529 	/*
1530 	 * Make sure that the wl entry does not change state while
1531 	 * inspecting it.
1532 	 */
1533 	spin_lock(&ubi->wl_lock);
1534 	e = ubi->lookuptbl[pnum];
1535 	if (!e) {
1536 		spin_unlock(&ubi->wl_lock);
1537 		err = -ENOENT;
1538 		goto out_resume;
1539 	}
1540 
1541 	/*
1542 	 * Does it make sense to check this PEB?
1543 	 */
1544 	if (!scrub_possible(ubi, e)) {
1545 		spin_unlock(&ubi->wl_lock);
1546 		err = -EBUSY;
1547 		goto out_resume;
1548 	}
1549 	spin_unlock(&ubi->wl_lock);
1550 
1551 	if (!force) {
1552 		mutex_lock(&ubi->buf_mutex);
1553 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1554 		mutex_unlock(&ubi->buf_mutex);
1555 	}
1556 
1557 	if (force || err == UBI_IO_BITFLIPS) {
1558 		/*
1559 		 * Okay, bit flip happened, let's figure out what we can do.
1560 		 */
1561 		spin_lock(&ubi->wl_lock);
1562 
1563 		/*
1564 		 * Recheck. We released wl_lock, UBI might have killed the
1565 		 * wl entry under us.
1566 		 */
1567 		e = ubi->lookuptbl[pnum];
1568 		if (!e) {
1569 			spin_unlock(&ubi->wl_lock);
1570 			err = -ENOENT;
1571 			goto out_resume;
1572 		}
1573 
1574 		/*
1575 		 * Need to re-check state
1576 		 */
1577 		if (!scrub_possible(ubi, e)) {
1578 			spin_unlock(&ubi->wl_lock);
1579 			err = -EBUSY;
1580 			goto out_resume;
1581 		}
1582 
1583 		if (in_pq(ubi, e)) {
1584 			prot_queue_del(ubi, e->pnum);
1585 			wl_tree_add(e, &ubi->scrub);
1586 			spin_unlock(&ubi->wl_lock);
1587 
1588 			err = ensure_wear_leveling(ubi, 1);
1589 		} else if (in_wl_tree(e, &ubi->used)) {
1590 			rb_erase(&e->u.rb, &ubi->used);
1591 			wl_tree_add(e, &ubi->scrub);
1592 			spin_unlock(&ubi->wl_lock);
1593 
1594 			err = ensure_wear_leveling(ubi, 1);
1595 		} else if (in_wl_tree(e, &ubi->free)) {
1596 			rb_erase(&e->u.rb, &ubi->free);
1597 			ubi->free_count--;
1598 			spin_unlock(&ubi->wl_lock);
1599 
1600 			/*
1601 			 * This PEB is empty we can schedule it for
1602 			 * erasure right away. No wear leveling needed.
1603 			 */
1604 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1605 					     force ? 0 : 1, true);
1606 		} else {
1607 			spin_unlock(&ubi->wl_lock);
1608 			err = -EAGAIN;
1609 		}
1610 
1611 		if (!err && !force)
1612 			err = -EUCLEAN;
1613 	} else {
1614 		err = 0;
1615 	}
1616 
1617 out_resume:
1618 	up_write(&ubi->work_sem);
1619 out:
1620 
1621 	return err;
1622 }
1623 
1624 /**
1625  * tree_destroy - destroy an RB-tree.
1626  * @ubi: UBI device description object
1627  * @root: the root of the tree to destroy
1628  */
1629 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1630 {
1631 	struct rb_node *rb;
1632 	struct ubi_wl_entry *e;
1633 
1634 	rb = root->rb_node;
1635 	while (rb) {
1636 		if (rb->rb_left)
1637 			rb = rb->rb_left;
1638 		else if (rb->rb_right)
1639 			rb = rb->rb_right;
1640 		else {
1641 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1642 
1643 			rb = rb_parent(rb);
1644 			if (rb) {
1645 				if (rb->rb_left == &e->u.rb)
1646 					rb->rb_left = NULL;
1647 				else
1648 					rb->rb_right = NULL;
1649 			}
1650 
1651 			wl_entry_destroy(ubi, e);
1652 		}
1653 	}
1654 }
1655 
1656 /**
1657  * ubi_thread - UBI background thread.
1658  * @u: the UBI device description object pointer
1659  */
1660 int ubi_thread(void *u)
1661 {
1662 	int failures = 0;
1663 	struct ubi_device *ubi = u;
1664 
1665 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1666 		ubi->bgt_name, task_pid_nr(current));
1667 
1668 	set_freezable();
1669 	for (;;) {
1670 		int err;
1671 
1672 		if (kthread_should_stop())
1673 			break;
1674 
1675 		if (try_to_freeze())
1676 			continue;
1677 
1678 		spin_lock(&ubi->wl_lock);
1679 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1680 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1681 			set_current_state(TASK_INTERRUPTIBLE);
1682 			spin_unlock(&ubi->wl_lock);
1683 
1684 			/*
1685 			 * Check kthread_should_stop() after we set the task
1686 			 * state to guarantee that we either see the stop bit
1687 			 * and exit or the task state is reset to runnable such
1688 			 * that it's not scheduled out indefinitely and detects
1689 			 * the stop bit at kthread_should_stop().
1690 			 */
1691 			if (kthread_should_stop()) {
1692 				set_current_state(TASK_RUNNING);
1693 				break;
1694 			}
1695 
1696 			schedule();
1697 			continue;
1698 		}
1699 		spin_unlock(&ubi->wl_lock);
1700 
1701 		err = do_work(ubi, NULL);
1702 		if (err) {
1703 			ubi_err(ubi, "%s: work failed with error code %d",
1704 				ubi->bgt_name, err);
1705 			if (failures++ > WL_MAX_FAILURES) {
1706 				/*
1707 				 * Too many failures, disable the thread and
1708 				 * switch to read-only mode.
1709 				 */
1710 				ubi_msg(ubi, "%s: %d consecutive failures",
1711 					ubi->bgt_name, WL_MAX_FAILURES);
1712 				ubi_ro_mode(ubi);
1713 				ubi->thread_enabled = 0;
1714 				continue;
1715 			}
1716 		} else
1717 			failures = 0;
1718 
1719 		cond_resched();
1720 	}
1721 
1722 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1723 	ubi->thread_enabled = 0;
1724 	return 0;
1725 }
1726 
1727 /**
1728  * shutdown_work - shutdown all pending works.
1729  * @ubi: UBI device description object
1730  */
1731 static void shutdown_work(struct ubi_device *ubi)
1732 {
1733 	while (!list_empty(&ubi->works)) {
1734 		struct ubi_work *wrk;
1735 
1736 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1737 		list_del(&wrk->list);
1738 		wrk->func(ubi, wrk, 1);
1739 		ubi->works_count -= 1;
1740 		ubi_assert(ubi->works_count >= 0);
1741 	}
1742 }
1743 
1744 /**
1745  * erase_aeb - erase a PEB given in UBI attach info PEB
1746  * @ubi: UBI device description object
1747  * @aeb: UBI attach info PEB
1748  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1749  */
1750 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1751 {
1752 	struct ubi_wl_entry *e;
1753 	int err;
1754 
1755 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1756 	if (!e)
1757 		return -ENOMEM;
1758 
1759 	e->pnum = aeb->pnum;
1760 	e->ec = aeb->ec;
1761 	ubi->lookuptbl[e->pnum] = e;
1762 
1763 	if (sync) {
1764 		err = ubi_sync_erase(ubi, e, false);
1765 		if (err)
1766 			goto out_free;
1767 
1768 		wl_tree_add(e, &ubi->free);
1769 		ubi->free_count++;
1770 	} else {
1771 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1772 		if (err)
1773 			goto out_free;
1774 	}
1775 
1776 	return 0;
1777 
1778 out_free:
1779 	wl_entry_destroy(ubi, e);
1780 
1781 	return err;
1782 }
1783 
1784 /**
1785  * ubi_wl_init - initialize the WL sub-system using attaching information.
1786  * @ubi: UBI device description object
1787  * @ai: attaching information
1788  *
1789  * This function returns zero in case of success, and a negative error code in
1790  * case of failure.
1791  */
1792 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1793 {
1794 	int err, i, reserved_pebs, found_pebs = 0;
1795 	struct rb_node *rb1, *rb2;
1796 	struct ubi_ainf_volume *av;
1797 	struct ubi_ainf_peb *aeb, *tmp;
1798 	struct ubi_wl_entry *e;
1799 
1800 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1801 	spin_lock_init(&ubi->wl_lock);
1802 	mutex_init(&ubi->move_mutex);
1803 	init_rwsem(&ubi->work_sem);
1804 	ubi->max_ec = ai->max_ec;
1805 	INIT_LIST_HEAD(&ubi->works);
1806 
1807 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1808 
1809 	err = -ENOMEM;
1810 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1811 	if (!ubi->lookuptbl)
1812 		return err;
1813 
1814 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1815 		INIT_LIST_HEAD(&ubi->pq[i]);
1816 	ubi->pq_head = 0;
1817 
1818 	ubi->free_count = 0;
1819 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1820 		cond_resched();
1821 
1822 		err = erase_aeb(ubi, aeb, false);
1823 		if (err)
1824 			goto out_free;
1825 
1826 		found_pebs++;
1827 	}
1828 
1829 	list_for_each_entry(aeb, &ai->free, u.list) {
1830 		cond_resched();
1831 
1832 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1833 		if (!e) {
1834 			err = -ENOMEM;
1835 			goto out_free;
1836 		}
1837 
1838 		e->pnum = aeb->pnum;
1839 		e->ec = aeb->ec;
1840 		ubi_assert(e->ec >= 0);
1841 
1842 		wl_tree_add(e, &ubi->free);
1843 		ubi->free_count++;
1844 
1845 		ubi->lookuptbl[e->pnum] = e;
1846 
1847 		found_pebs++;
1848 	}
1849 
1850 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1851 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1852 			cond_resched();
1853 
1854 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1855 			if (!e) {
1856 				err = -ENOMEM;
1857 				goto out_free;
1858 			}
1859 
1860 			e->pnum = aeb->pnum;
1861 			e->ec = aeb->ec;
1862 			ubi->lookuptbl[e->pnum] = e;
1863 
1864 			if (!aeb->scrub) {
1865 				dbg_wl("add PEB %d EC %d to the used tree",
1866 				       e->pnum, e->ec);
1867 				wl_tree_add(e, &ubi->used);
1868 			} else {
1869 				dbg_wl("add PEB %d EC %d to the scrub tree",
1870 				       e->pnum, e->ec);
1871 				wl_tree_add(e, &ubi->scrub);
1872 			}
1873 
1874 			found_pebs++;
1875 		}
1876 	}
1877 
1878 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1879 		cond_resched();
1880 
1881 		e = ubi_find_fm_block(ubi, aeb->pnum);
1882 
1883 		if (e) {
1884 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1885 			ubi->lookuptbl[e->pnum] = e;
1886 		} else {
1887 			bool sync = false;
1888 
1889 			/*
1890 			 * Usually old Fastmap PEBs are scheduled for erasure
1891 			 * and we don't have to care about them but if we face
1892 			 * an power cut before scheduling them we need to
1893 			 * take care of them here.
1894 			 */
1895 			if (ubi->lookuptbl[aeb->pnum])
1896 				continue;
1897 
1898 			/*
1899 			 * The fastmap update code might not find a free PEB for
1900 			 * writing the fastmap anchor to and then reuses the
1901 			 * current fastmap anchor PEB. When this PEB gets erased
1902 			 * and a power cut happens before it is written again we
1903 			 * must make sure that the fastmap attach code doesn't
1904 			 * find any outdated fastmap anchors, hence we erase the
1905 			 * outdated fastmap anchor PEBs synchronously here.
1906 			 */
1907 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1908 				sync = true;
1909 
1910 			err = erase_aeb(ubi, aeb, sync);
1911 			if (err)
1912 				goto out_free;
1913 		}
1914 
1915 		found_pebs++;
1916 	}
1917 
1918 	dbg_wl("found %i PEBs", found_pebs);
1919 
1920 	ubi_assert(ubi->good_peb_count == found_pebs);
1921 
1922 	reserved_pebs = WL_RESERVED_PEBS;
1923 	ubi_fastmap_init(ubi, &reserved_pebs);
1924 
1925 	if (ubi->avail_pebs < reserved_pebs) {
1926 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1927 			ubi->avail_pebs, reserved_pebs);
1928 		if (ubi->corr_peb_count)
1929 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1930 				ubi->corr_peb_count);
1931 		err = -ENOSPC;
1932 		goto out_free;
1933 	}
1934 	ubi->avail_pebs -= reserved_pebs;
1935 	ubi->rsvd_pebs += reserved_pebs;
1936 
1937 	/* Schedule wear-leveling if needed */
1938 	err = ensure_wear_leveling(ubi, 0);
1939 	if (err)
1940 		goto out_free;
1941 
1942 #ifdef CONFIG_MTD_UBI_FASTMAP
1943 	if (!ubi->ro_mode && !ubi->fm_disabled)
1944 		ubi_ensure_anchor_pebs(ubi);
1945 #endif
1946 	return 0;
1947 
1948 out_free:
1949 	shutdown_work(ubi);
1950 	tree_destroy(ubi, &ubi->used);
1951 	tree_destroy(ubi, &ubi->free);
1952 	tree_destroy(ubi, &ubi->scrub);
1953 	kfree(ubi->lookuptbl);
1954 	return err;
1955 }
1956 
1957 /**
1958  * protection_queue_destroy - destroy the protection queue.
1959  * @ubi: UBI device description object
1960  */
1961 static void protection_queue_destroy(struct ubi_device *ubi)
1962 {
1963 	int i;
1964 	struct ubi_wl_entry *e, *tmp;
1965 
1966 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1967 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1968 			list_del(&e->u.list);
1969 			wl_entry_destroy(ubi, e);
1970 		}
1971 	}
1972 }
1973 
1974 /**
1975  * ubi_wl_close - close the wear-leveling sub-system.
1976  * @ubi: UBI device description object
1977  */
1978 void ubi_wl_close(struct ubi_device *ubi)
1979 {
1980 	dbg_wl("close the WL sub-system");
1981 	ubi_fastmap_close(ubi);
1982 	shutdown_work(ubi);
1983 	protection_queue_destroy(ubi);
1984 	tree_destroy(ubi, &ubi->used);
1985 	tree_destroy(ubi, &ubi->erroneous);
1986 	tree_destroy(ubi, &ubi->free);
1987 	tree_destroy(ubi, &ubi->scrub);
1988 	kfree(ubi->lookuptbl);
1989 }
1990 
1991 /**
1992  * self_check_ec - make sure that the erase counter of a PEB is correct.
1993  * @ubi: UBI device description object
1994  * @pnum: the physical eraseblock number to check
1995  * @ec: the erase counter to check
1996  *
1997  * This function returns zero if the erase counter of physical eraseblock @pnum
1998  * is equivalent to @ec, and a negative error code if not or if an error
1999  * occurred.
2000  */
2001 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2002 {
2003 	int err;
2004 	long long read_ec;
2005 	struct ubi_ec_hdr *ec_hdr;
2006 
2007 	if (!ubi_dbg_chk_gen(ubi))
2008 		return 0;
2009 
2010 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2011 	if (!ec_hdr)
2012 		return -ENOMEM;
2013 
2014 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2015 	if (err && err != UBI_IO_BITFLIPS) {
2016 		/* The header does not have to exist */
2017 		err = 0;
2018 		goto out_free;
2019 	}
2020 
2021 	read_ec = be64_to_cpu(ec_hdr->ec);
2022 	if (ec != read_ec && read_ec - ec > 1) {
2023 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2024 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2025 		dump_stack();
2026 		err = 1;
2027 	} else
2028 		err = 0;
2029 
2030 out_free:
2031 	kfree(ec_hdr);
2032 	return err;
2033 }
2034 
2035 /**
2036  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2037  * @ubi: UBI device description object
2038  * @e: the wear-leveling entry to check
2039  * @root: the root of the tree
2040  *
2041  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2042  * is not.
2043  */
2044 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2045 				 struct ubi_wl_entry *e, struct rb_root *root)
2046 {
2047 	if (!ubi_dbg_chk_gen(ubi))
2048 		return 0;
2049 
2050 	if (in_wl_tree(e, root))
2051 		return 0;
2052 
2053 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2054 		e->pnum, e->ec, root);
2055 	dump_stack();
2056 	return -EINVAL;
2057 }
2058 
2059 /**
2060  * self_check_in_pq - check if wear-leveling entry is in the protection
2061  *                        queue.
2062  * @ubi: UBI device description object
2063  * @e: the wear-leveling entry to check
2064  *
2065  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2066  */
2067 static int self_check_in_pq(const struct ubi_device *ubi,
2068 			    struct ubi_wl_entry *e)
2069 {
2070 	if (!ubi_dbg_chk_gen(ubi))
2071 		return 0;
2072 
2073 	if (in_pq(ubi, e))
2074 		return 0;
2075 
2076 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2077 		e->pnum, e->ec);
2078 	dump_stack();
2079 	return -EINVAL;
2080 }
2081 #ifndef CONFIG_MTD_UBI_FASTMAP
2082 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2083 {
2084 	struct ubi_wl_entry *e;
2085 
2086 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
2087 	self_check_in_wl_tree(ubi, e, &ubi->free);
2088 	ubi->free_count--;
2089 	ubi_assert(ubi->free_count >= 0);
2090 	rb_erase(&e->u.rb, &ubi->free);
2091 
2092 	return e;
2093 }
2094 
2095 /**
2096  * produce_free_peb - produce a free physical eraseblock.
2097  * @ubi: UBI device description object
2098  *
2099  * This function tries to make a free PEB by means of synchronous execution of
2100  * pending works. This may be needed if, for example the background thread is
2101  * disabled. Returns zero in case of success and a negative error code in case
2102  * of failure.
2103  */
2104 static int produce_free_peb(struct ubi_device *ubi)
2105 {
2106 	int err;
2107 
2108 	while (!ubi->free.rb_node && ubi->works_count) {
2109 		spin_unlock(&ubi->wl_lock);
2110 
2111 		dbg_wl("do one work synchronously");
2112 		err = do_work(ubi, NULL);
2113 
2114 		spin_lock(&ubi->wl_lock);
2115 		if (err)
2116 			return err;
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 /**
2123  * ubi_wl_get_peb - get a physical eraseblock.
2124  * @ubi: UBI device description object
2125  *
2126  * This function returns a physical eraseblock in case of success and a
2127  * negative error code in case of failure.
2128  * Returns with ubi->fm_eba_sem held in read mode!
2129  */
2130 int ubi_wl_get_peb(struct ubi_device *ubi)
2131 {
2132 	int err;
2133 	struct ubi_wl_entry *e;
2134 
2135 retry:
2136 	down_read(&ubi->fm_eba_sem);
2137 	spin_lock(&ubi->wl_lock);
2138 	if (!ubi->free.rb_node) {
2139 		if (ubi->works_count == 0) {
2140 			ubi_err(ubi, "no free eraseblocks");
2141 			ubi_assert(list_empty(&ubi->works));
2142 			spin_unlock(&ubi->wl_lock);
2143 			return -ENOSPC;
2144 		}
2145 
2146 		err = produce_free_peb(ubi);
2147 		if (err < 0) {
2148 			spin_unlock(&ubi->wl_lock);
2149 			return err;
2150 		}
2151 		spin_unlock(&ubi->wl_lock);
2152 		up_read(&ubi->fm_eba_sem);
2153 		goto retry;
2154 
2155 	}
2156 	e = wl_get_wle(ubi);
2157 	prot_queue_add(ubi, e);
2158 	spin_unlock(&ubi->wl_lock);
2159 
2160 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2161 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2162 	if (err) {
2163 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2164 		return err;
2165 	}
2166 
2167 	return e->pnum;
2168 }
2169 #else
2170 #include "fastmap-wl.c"
2171 #endif
2172