1 /* 2 * @ubi: UBI device description object 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 20 */ 21 22 /* 23 * UBI wear-leveling sub-system. 24 * 25 * This sub-system is responsible for wear-leveling. It works in terms of 26 * physical eraseblocks and erase counters and knows nothing about logical 27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 28 * eraseblocks are of two types - used and free. Used physical eraseblocks are 29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 31 * 32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 33 * header. The rest of the physical eraseblock contains only %0xFF bytes. 34 * 35 * When physical eraseblocks are returned to the WL sub-system by means of the 36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 37 * done asynchronously in context of the per-UBI device background thread, 38 * which is also managed by the WL sub-system. 39 * 40 * The wear-leveling is ensured by means of moving the contents of used 41 * physical eraseblocks with low erase counter to free physical eraseblocks 42 * with high erase counter. 43 * 44 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 45 * bad. 46 * 47 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 48 * in a physical eraseblock, it has to be moved. Technically this is the same 49 * as moving it for wear-leveling reasons. 50 * 51 * As it was said, for the UBI sub-system all physical eraseblocks are either 52 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 53 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 54 * RB-trees, as well as (temporarily) in the @wl->pq queue. 55 * 56 * When the WL sub-system returns a physical eraseblock, the physical 57 * eraseblock is protected from being moved for some "time". For this reason, 58 * the physical eraseblock is not directly moved from the @wl->free tree to the 59 * @wl->used tree. There is a protection queue in between where this 60 * physical eraseblock is temporarily stored (@wl->pq). 61 * 62 * All this protection stuff is needed because: 63 * o we don't want to move physical eraseblocks just after we have given them 64 * to the user; instead, we first want to let users fill them up with data; 65 * 66 * o there is a chance that the user will put the physical eraseblock very 67 * soon, so it makes sense not to move it for some time, but wait. 68 * 69 * Physical eraseblocks stay protected only for limited time. But the "time" is 70 * measured in erase cycles in this case. This is implemented with help of the 71 * protection queue. Eraseblocks are put to the tail of this queue when they 72 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 73 * head of the queue on each erase operation (for any eraseblock). So the 74 * length of the queue defines how may (global) erase cycles PEBs are protected. 75 * 76 * To put it differently, each physical eraseblock has 2 main states: free and 77 * used. The former state corresponds to the @wl->free tree. The latter state 78 * is split up on several sub-states: 79 * o the WL movement is allowed (@wl->used tree); 80 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 81 * erroneous - e.g., there was a read error; 82 * o the WL movement is temporarily prohibited (@wl->pq queue); 83 * o scrubbing is needed (@wl->scrub tree). 84 * 85 * Depending on the sub-state, wear-leveling entries of the used physical 86 * eraseblocks may be kept in one of those structures. 87 * 88 * Note, in this implementation, we keep a small in-RAM object for each physical 89 * eraseblock. This is surely not a scalable solution. But it appears to be good 90 * enough for moderately large flashes and it is simple. In future, one may 91 * re-work this sub-system and make it more scalable. 92 * 93 * At the moment this sub-system does not utilize the sequence number, which 94 * was introduced relatively recently. But it would be wise to do this because 95 * the sequence number of a logical eraseblock characterizes how old is it. For 96 * example, when we move a PEB with low erase counter, and we need to pick the 97 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 98 * pick target PEB with an average EC if our PEB is not very "old". This is a 99 * room for future re-works of the WL sub-system. 100 */ 101 102 #include <linux/slab.h> 103 #include <linux/crc32.h> 104 #include <linux/freezer.h> 105 #include <linux/kthread.h> 106 #include "ubi.h" 107 108 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 109 #define WL_RESERVED_PEBS 1 110 111 /* 112 * Maximum difference between two erase counters. If this threshold is 113 * exceeded, the WL sub-system starts moving data from used physical 114 * eraseblocks with low erase counter to free physical eraseblocks with high 115 * erase counter. 116 */ 117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 118 119 /* 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target 121 * physical eraseblock to move to. The simplest way would be just to pick the 122 * one with the highest erase counter. But in certain workloads this could lead 123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 124 * situation when the picked physical eraseblock is constantly erased after the 125 * data is written to it. So, we have a constant which limits the highest erase 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 127 * does not pick eraseblocks with erase counter greater than the lowest erase 128 * counter plus %WL_FREE_MAX_DIFF. 129 */ 130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 131 132 /* 133 * Maximum number of consecutive background thread failures which is enough to 134 * switch to read-only mode. 135 */ 136 #define WL_MAX_FAILURES 32 137 138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 139 static int self_check_in_wl_tree(const struct ubi_device *ubi, 140 struct ubi_wl_entry *e, struct rb_root *root); 141 static int self_check_in_pq(const struct ubi_device *ubi, 142 struct ubi_wl_entry *e); 143 144 #ifdef CONFIG_MTD_UBI_FASTMAP 145 /** 146 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue 147 * @wrk: the work description object 148 */ 149 static void update_fastmap_work_fn(struct work_struct *wrk) 150 { 151 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); 152 ubi_update_fastmap(ubi); 153 } 154 155 /** 156 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. 157 * @ubi: UBI device description object 158 * @pnum: the to be checked PEB 159 */ 160 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 161 { 162 int i; 163 164 if (!ubi->fm) 165 return 0; 166 167 for (i = 0; i < ubi->fm->used_blocks; i++) 168 if (ubi->fm->e[i]->pnum == pnum) 169 return 1; 170 171 return 0; 172 } 173 #else 174 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 175 { 176 return 0; 177 } 178 #endif 179 180 /** 181 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 182 * @e: the wear-leveling entry to add 183 * @root: the root of the tree 184 * 185 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 186 * the @ubi->used and @ubi->free RB-trees. 187 */ 188 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 189 { 190 struct rb_node **p, *parent = NULL; 191 192 p = &root->rb_node; 193 while (*p) { 194 struct ubi_wl_entry *e1; 195 196 parent = *p; 197 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 198 199 if (e->ec < e1->ec) 200 p = &(*p)->rb_left; 201 else if (e->ec > e1->ec) 202 p = &(*p)->rb_right; 203 else { 204 ubi_assert(e->pnum != e1->pnum); 205 if (e->pnum < e1->pnum) 206 p = &(*p)->rb_left; 207 else 208 p = &(*p)->rb_right; 209 } 210 } 211 212 rb_link_node(&e->u.rb, parent, p); 213 rb_insert_color(&e->u.rb, root); 214 } 215 216 /** 217 * do_work - do one pending work. 218 * @ubi: UBI device description object 219 * 220 * This function returns zero in case of success and a negative error code in 221 * case of failure. 222 */ 223 static int do_work(struct ubi_device *ubi) 224 { 225 int err; 226 struct ubi_work *wrk; 227 228 cond_resched(); 229 230 /* 231 * @ubi->work_sem is used to synchronize with the workers. Workers take 232 * it in read mode, so many of them may be doing works at a time. But 233 * the queue flush code has to be sure the whole queue of works is 234 * done, and it takes the mutex in write mode. 235 */ 236 down_read(&ubi->work_sem); 237 spin_lock(&ubi->wl_lock); 238 if (list_empty(&ubi->works)) { 239 spin_unlock(&ubi->wl_lock); 240 up_read(&ubi->work_sem); 241 return 0; 242 } 243 244 wrk = list_entry(ubi->works.next, struct ubi_work, list); 245 list_del(&wrk->list); 246 ubi->works_count -= 1; 247 ubi_assert(ubi->works_count >= 0); 248 spin_unlock(&ubi->wl_lock); 249 250 /* 251 * Call the worker function. Do not touch the work structure 252 * after this call as it will have been freed or reused by that 253 * time by the worker function. 254 */ 255 err = wrk->func(ubi, wrk, 0); 256 if (err) 257 ubi_err("work failed with error code %d", err); 258 up_read(&ubi->work_sem); 259 260 return err; 261 } 262 263 /** 264 * produce_free_peb - produce a free physical eraseblock. 265 * @ubi: UBI device description object 266 * 267 * This function tries to make a free PEB by means of synchronous execution of 268 * pending works. This may be needed if, for example the background thread is 269 * disabled. Returns zero in case of success and a negative error code in case 270 * of failure. 271 */ 272 static int produce_free_peb(struct ubi_device *ubi) 273 { 274 int err; 275 276 while (!ubi->free.rb_node) { 277 spin_unlock(&ubi->wl_lock); 278 279 dbg_wl("do one work synchronously"); 280 err = do_work(ubi); 281 282 spin_lock(&ubi->wl_lock); 283 if (err) 284 return err; 285 } 286 287 return 0; 288 } 289 290 /** 291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 292 * @e: the wear-leveling entry to check 293 * @root: the root of the tree 294 * 295 * This function returns non-zero if @e is in the @root RB-tree and zero if it 296 * is not. 297 */ 298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 299 { 300 struct rb_node *p; 301 302 p = root->rb_node; 303 while (p) { 304 struct ubi_wl_entry *e1; 305 306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 307 308 if (e->pnum == e1->pnum) { 309 ubi_assert(e == e1); 310 return 1; 311 } 312 313 if (e->ec < e1->ec) 314 p = p->rb_left; 315 else if (e->ec > e1->ec) 316 p = p->rb_right; 317 else { 318 ubi_assert(e->pnum != e1->pnum); 319 if (e->pnum < e1->pnum) 320 p = p->rb_left; 321 else 322 p = p->rb_right; 323 } 324 } 325 326 return 0; 327 } 328 329 /** 330 * prot_queue_add - add physical eraseblock to the protection queue. 331 * @ubi: UBI device description object 332 * @e: the physical eraseblock to add 333 * 334 * This function adds @e to the tail of the protection queue @ubi->pq, where 335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 337 * be locked. 338 */ 339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 340 { 341 int pq_tail = ubi->pq_head - 1; 342 343 if (pq_tail < 0) 344 pq_tail = UBI_PROT_QUEUE_LEN - 1; 345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 348 } 349 350 /** 351 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 352 * @ubi: UBI device description object 353 * @root: the RB-tree where to look for 354 * @diff: maximum possible difference from the smallest erase counter 355 * 356 * This function looks for a wear leveling entry with erase counter closest to 357 * min + @diff, where min is the smallest erase counter. 358 */ 359 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 360 struct rb_root *root, int diff) 361 { 362 struct rb_node *p; 363 struct ubi_wl_entry *e, *prev_e = NULL; 364 int max; 365 366 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 367 max = e->ec + diff; 368 369 p = root->rb_node; 370 while (p) { 371 struct ubi_wl_entry *e1; 372 373 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 374 if (e1->ec >= max) 375 p = p->rb_left; 376 else { 377 p = p->rb_right; 378 prev_e = e; 379 e = e1; 380 } 381 } 382 383 /* If no fastmap has been written and this WL entry can be used 384 * as anchor PEB, hold it back and return the second best WL entry 385 * such that fastmap can use the anchor PEB later. */ 386 if (prev_e && !ubi->fm_disabled && 387 !ubi->fm && e->pnum < UBI_FM_MAX_START) 388 return prev_e; 389 390 return e; 391 } 392 393 /** 394 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 395 * @ubi: UBI device description object 396 * @root: the RB-tree where to look for 397 * 398 * This function looks for a wear leveling entry with medium erase counter, 399 * but not greater or equivalent than the lowest erase counter plus 400 * %WL_FREE_MAX_DIFF/2. 401 */ 402 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 403 struct rb_root *root) 404 { 405 struct ubi_wl_entry *e, *first, *last; 406 407 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 408 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 409 410 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 411 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 412 413 #ifdef CONFIG_MTD_UBI_FASTMAP 414 /* If no fastmap has been written and this WL entry can be used 415 * as anchor PEB, hold it back and return the second best 416 * WL entry such that fastmap can use the anchor PEB later. */ 417 if (e && !ubi->fm_disabled && !ubi->fm && 418 e->pnum < UBI_FM_MAX_START) 419 e = rb_entry(rb_next(root->rb_node), 420 struct ubi_wl_entry, u.rb); 421 #endif 422 } else 423 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 424 425 return e; 426 } 427 428 #ifdef CONFIG_MTD_UBI_FASTMAP 429 /** 430 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. 431 * @root: the RB-tree where to look for 432 */ 433 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) 434 { 435 struct rb_node *p; 436 struct ubi_wl_entry *e, *victim = NULL; 437 int max_ec = UBI_MAX_ERASECOUNTER; 438 439 ubi_rb_for_each_entry(p, e, root, u.rb) { 440 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { 441 victim = e; 442 max_ec = e->ec; 443 } 444 } 445 446 return victim; 447 } 448 449 static int anchor_pebs_avalible(struct rb_root *root) 450 { 451 struct rb_node *p; 452 struct ubi_wl_entry *e; 453 454 ubi_rb_for_each_entry(p, e, root, u.rb) 455 if (e->pnum < UBI_FM_MAX_START) 456 return 1; 457 458 return 0; 459 } 460 461 /** 462 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. 463 * @ubi: UBI device description object 464 * @anchor: This PEB will be used as anchor PEB by fastmap 465 * 466 * The function returns a physical erase block with a given maximal number 467 * and removes it from the wl subsystem. 468 * Must be called with wl_lock held! 469 */ 470 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) 471 { 472 struct ubi_wl_entry *e = NULL; 473 474 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 475 goto out; 476 477 if (anchor) 478 e = find_anchor_wl_entry(&ubi->free); 479 else 480 e = find_mean_wl_entry(ubi, &ubi->free); 481 482 if (!e) 483 goto out; 484 485 self_check_in_wl_tree(ubi, e, &ubi->free); 486 487 /* remove it from the free list, 488 * the wl subsystem does no longer know this erase block */ 489 rb_erase(&e->u.rb, &ubi->free); 490 ubi->free_count--; 491 out: 492 return e; 493 } 494 #endif 495 496 /** 497 * __wl_get_peb - get a physical eraseblock. 498 * @ubi: UBI device description object 499 * 500 * This function returns a physical eraseblock in case of success and a 501 * negative error code in case of failure. Might sleep. 502 */ 503 static int __wl_get_peb(struct ubi_device *ubi) 504 { 505 int err; 506 struct ubi_wl_entry *e; 507 508 retry: 509 if (!ubi->free.rb_node) { 510 if (ubi->works_count == 0) { 511 ubi_err("no free eraseblocks"); 512 ubi_assert(list_empty(&ubi->works)); 513 return -ENOSPC; 514 } 515 516 err = produce_free_peb(ubi); 517 if (err < 0) 518 return err; 519 goto retry; 520 } 521 522 e = find_mean_wl_entry(ubi, &ubi->free); 523 if (!e) { 524 ubi_err("no free eraseblocks"); 525 return -ENOSPC; 526 } 527 528 self_check_in_wl_tree(ubi, e, &ubi->free); 529 530 /* 531 * Move the physical eraseblock to the protection queue where it will 532 * be protected from being moved for some time. 533 */ 534 rb_erase(&e->u.rb, &ubi->free); 535 ubi->free_count--; 536 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 537 #ifndef CONFIG_MTD_UBI_FASTMAP 538 /* We have to enqueue e only if fastmap is disabled, 539 * is fastmap enabled prot_queue_add() will be called by 540 * ubi_wl_get_peb() after removing e from the pool. */ 541 prot_queue_add(ubi, e); 542 #endif 543 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 544 ubi->peb_size - ubi->vid_hdr_aloffset); 545 if (err) { 546 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum); 547 return err; 548 } 549 550 return e->pnum; 551 } 552 553 #ifdef CONFIG_MTD_UBI_FASTMAP 554 /** 555 * return_unused_pool_pebs - returns unused PEB to the free tree. 556 * @ubi: UBI device description object 557 * @pool: fastmap pool description object 558 */ 559 static void return_unused_pool_pebs(struct ubi_device *ubi, 560 struct ubi_fm_pool *pool) 561 { 562 int i; 563 struct ubi_wl_entry *e; 564 565 for (i = pool->used; i < pool->size; i++) { 566 e = ubi->lookuptbl[pool->pebs[i]]; 567 wl_tree_add(e, &ubi->free); 568 ubi->free_count++; 569 } 570 } 571 572 /** 573 * refill_wl_pool - refills all the fastmap pool used by the 574 * WL sub-system. 575 * @ubi: UBI device description object 576 */ 577 static void refill_wl_pool(struct ubi_device *ubi) 578 { 579 struct ubi_wl_entry *e; 580 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 581 582 return_unused_pool_pebs(ubi, pool); 583 584 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 585 if (!ubi->free.rb_node || 586 (ubi->free_count - ubi->beb_rsvd_pebs < 5)) 587 break; 588 589 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 590 self_check_in_wl_tree(ubi, e, &ubi->free); 591 rb_erase(&e->u.rb, &ubi->free); 592 ubi->free_count--; 593 594 pool->pebs[pool->size] = e->pnum; 595 } 596 pool->used = 0; 597 } 598 599 /** 600 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. 601 * @ubi: UBI device description object 602 */ 603 static void refill_wl_user_pool(struct ubi_device *ubi) 604 { 605 struct ubi_fm_pool *pool = &ubi->fm_pool; 606 607 return_unused_pool_pebs(ubi, pool); 608 609 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 610 if (!ubi->free.rb_node || 611 (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 612 break; 613 614 pool->pebs[pool->size] = __wl_get_peb(ubi); 615 if (pool->pebs[pool->size] < 0) 616 break; 617 } 618 pool->used = 0; 619 } 620 621 /** 622 * ubi_refill_pools - refills all fastmap PEB pools. 623 * @ubi: UBI device description object 624 */ 625 void ubi_refill_pools(struct ubi_device *ubi) 626 { 627 spin_lock(&ubi->wl_lock); 628 refill_wl_pool(ubi); 629 refill_wl_user_pool(ubi); 630 spin_unlock(&ubi->wl_lock); 631 } 632 633 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of 634 * the fastmap pool. 635 */ 636 int ubi_wl_get_peb(struct ubi_device *ubi) 637 { 638 int ret; 639 struct ubi_fm_pool *pool = &ubi->fm_pool; 640 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; 641 642 if (!pool->size || !wl_pool->size || pool->used == pool->size || 643 wl_pool->used == wl_pool->size) 644 ubi_update_fastmap(ubi); 645 646 /* we got not a single free PEB */ 647 if (!pool->size) 648 ret = -ENOSPC; 649 else { 650 spin_lock(&ubi->wl_lock); 651 ret = pool->pebs[pool->used++]; 652 prot_queue_add(ubi, ubi->lookuptbl[ret]); 653 spin_unlock(&ubi->wl_lock); 654 } 655 656 return ret; 657 } 658 659 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. 660 * 661 * @ubi: UBI device description object 662 */ 663 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 664 { 665 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 666 int pnum; 667 668 if (pool->used == pool->size || !pool->size) { 669 /* We cannot update the fastmap here because this 670 * function is called in atomic context. 671 * Let's fail here and refill/update it as soon as possible. */ 672 schedule_work(&ubi->fm_work); 673 return NULL; 674 } else { 675 pnum = pool->pebs[pool->used++]; 676 return ubi->lookuptbl[pnum]; 677 } 678 } 679 #else 680 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 681 { 682 return find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 683 } 684 685 int ubi_wl_get_peb(struct ubi_device *ubi) 686 { 687 int peb; 688 689 spin_lock(&ubi->wl_lock); 690 peb = __wl_get_peb(ubi); 691 spin_unlock(&ubi->wl_lock); 692 693 return peb; 694 } 695 #endif 696 697 /** 698 * prot_queue_del - remove a physical eraseblock from the protection queue. 699 * @ubi: UBI device description object 700 * @pnum: the physical eraseblock to remove 701 * 702 * This function deletes PEB @pnum from the protection queue and returns zero 703 * in case of success and %-ENODEV if the PEB was not found. 704 */ 705 static int prot_queue_del(struct ubi_device *ubi, int pnum) 706 { 707 struct ubi_wl_entry *e; 708 709 e = ubi->lookuptbl[pnum]; 710 if (!e) 711 return -ENODEV; 712 713 if (self_check_in_pq(ubi, e)) 714 return -ENODEV; 715 716 list_del(&e->u.list); 717 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 718 return 0; 719 } 720 721 /** 722 * sync_erase - synchronously erase a physical eraseblock. 723 * @ubi: UBI device description object 724 * @e: the the physical eraseblock to erase 725 * @torture: if the physical eraseblock has to be tortured 726 * 727 * This function returns zero in case of success and a negative error code in 728 * case of failure. 729 */ 730 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 731 int torture) 732 { 733 int err; 734 struct ubi_ec_hdr *ec_hdr; 735 unsigned long long ec = e->ec; 736 737 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 738 739 err = self_check_ec(ubi, e->pnum, e->ec); 740 if (err) 741 return -EINVAL; 742 743 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 744 if (!ec_hdr) 745 return -ENOMEM; 746 747 err = ubi_io_sync_erase(ubi, e->pnum, torture); 748 if (err < 0) 749 goto out_free; 750 751 ec += err; 752 if (ec > UBI_MAX_ERASECOUNTER) { 753 /* 754 * Erase counter overflow. Upgrade UBI and use 64-bit 755 * erase counters internally. 756 */ 757 ubi_err("erase counter overflow at PEB %d, EC %llu", 758 e->pnum, ec); 759 err = -EINVAL; 760 goto out_free; 761 } 762 763 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 764 765 ec_hdr->ec = cpu_to_be64(ec); 766 767 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 768 if (err) 769 goto out_free; 770 771 e->ec = ec; 772 spin_lock(&ubi->wl_lock); 773 if (e->ec > ubi->max_ec) 774 ubi->max_ec = e->ec; 775 spin_unlock(&ubi->wl_lock); 776 777 out_free: 778 kfree(ec_hdr); 779 return err; 780 } 781 782 /** 783 * serve_prot_queue - check if it is time to stop protecting PEBs. 784 * @ubi: UBI device description object 785 * 786 * This function is called after each erase operation and removes PEBs from the 787 * tail of the protection queue. These PEBs have been protected for long enough 788 * and should be moved to the used tree. 789 */ 790 static void serve_prot_queue(struct ubi_device *ubi) 791 { 792 struct ubi_wl_entry *e, *tmp; 793 int count; 794 795 /* 796 * There may be several protected physical eraseblock to remove, 797 * process them all. 798 */ 799 repeat: 800 count = 0; 801 spin_lock(&ubi->wl_lock); 802 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 803 dbg_wl("PEB %d EC %d protection over, move to used tree", 804 e->pnum, e->ec); 805 806 list_del(&e->u.list); 807 wl_tree_add(e, &ubi->used); 808 if (count++ > 32) { 809 /* 810 * Let's be nice and avoid holding the spinlock for 811 * too long. 812 */ 813 spin_unlock(&ubi->wl_lock); 814 cond_resched(); 815 goto repeat; 816 } 817 } 818 819 ubi->pq_head += 1; 820 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 821 ubi->pq_head = 0; 822 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 823 spin_unlock(&ubi->wl_lock); 824 } 825 826 /** 827 * __schedule_ubi_work - schedule a work. 828 * @ubi: UBI device description object 829 * @wrk: the work to schedule 830 * 831 * This function adds a work defined by @wrk to the tail of the pending works 832 * list. Can only be used of ubi->work_sem is already held in read mode! 833 */ 834 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 835 { 836 spin_lock(&ubi->wl_lock); 837 list_add_tail(&wrk->list, &ubi->works); 838 ubi_assert(ubi->works_count >= 0); 839 ubi->works_count += 1; 840 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 841 wake_up_process(ubi->bgt_thread); 842 spin_unlock(&ubi->wl_lock); 843 } 844 845 /** 846 * schedule_ubi_work - schedule a work. 847 * @ubi: UBI device description object 848 * @wrk: the work to schedule 849 * 850 * This function adds a work defined by @wrk to the tail of the pending works 851 * list. 852 */ 853 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 854 { 855 down_read(&ubi->work_sem); 856 __schedule_ubi_work(ubi, wrk); 857 up_read(&ubi->work_sem); 858 } 859 860 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 861 int cancel); 862 863 #ifdef CONFIG_MTD_UBI_FASTMAP 864 /** 865 * ubi_is_erase_work - checks whether a work is erase work. 866 * @wrk: The work object to be checked 867 */ 868 int ubi_is_erase_work(struct ubi_work *wrk) 869 { 870 return wrk->func == erase_worker; 871 } 872 #endif 873 874 /** 875 * schedule_erase - schedule an erase work. 876 * @ubi: UBI device description object 877 * @e: the WL entry of the physical eraseblock to erase 878 * @vol_id: the volume ID that last used this PEB 879 * @lnum: the last used logical eraseblock number for the PEB 880 * @torture: if the physical eraseblock has to be tortured 881 * 882 * This function returns zero in case of success and a %-ENOMEM in case of 883 * failure. 884 */ 885 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 886 int vol_id, int lnum, int torture) 887 { 888 struct ubi_work *wl_wrk; 889 890 ubi_assert(e); 891 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 892 893 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 894 e->pnum, e->ec, torture); 895 896 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 897 if (!wl_wrk) 898 return -ENOMEM; 899 900 wl_wrk->func = &erase_worker; 901 wl_wrk->e = e; 902 wl_wrk->vol_id = vol_id; 903 wl_wrk->lnum = lnum; 904 wl_wrk->torture = torture; 905 906 schedule_ubi_work(ubi, wl_wrk); 907 return 0; 908 } 909 910 /** 911 * do_sync_erase - run the erase worker synchronously. 912 * @ubi: UBI device description object 913 * @e: the WL entry of the physical eraseblock to erase 914 * @vol_id: the volume ID that last used this PEB 915 * @lnum: the last used logical eraseblock number for the PEB 916 * @torture: if the physical eraseblock has to be tortured 917 * 918 */ 919 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 920 int vol_id, int lnum, int torture) 921 { 922 struct ubi_work *wl_wrk; 923 924 dbg_wl("sync erase of PEB %i", e->pnum); 925 926 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 927 if (!wl_wrk) 928 return -ENOMEM; 929 930 wl_wrk->e = e; 931 wl_wrk->vol_id = vol_id; 932 wl_wrk->lnum = lnum; 933 wl_wrk->torture = torture; 934 935 return erase_worker(ubi, wl_wrk, 0); 936 } 937 938 #ifdef CONFIG_MTD_UBI_FASTMAP 939 /** 940 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling 941 * sub-system. 942 * see: ubi_wl_put_peb() 943 * 944 * @ubi: UBI device description object 945 * @fm_e: physical eraseblock to return 946 * @lnum: the last used logical eraseblock number for the PEB 947 * @torture: if this physical eraseblock has to be tortured 948 */ 949 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, 950 int lnum, int torture) 951 { 952 struct ubi_wl_entry *e; 953 int vol_id, pnum = fm_e->pnum; 954 955 dbg_wl("PEB %d", pnum); 956 957 ubi_assert(pnum >= 0); 958 ubi_assert(pnum < ubi->peb_count); 959 960 spin_lock(&ubi->wl_lock); 961 e = ubi->lookuptbl[pnum]; 962 963 /* This can happen if we recovered from a fastmap the very 964 * first time and writing now a new one. In this case the wl system 965 * has never seen any PEB used by the original fastmap. 966 */ 967 if (!e) { 968 e = fm_e; 969 ubi_assert(e->ec >= 0); 970 ubi->lookuptbl[pnum] = e; 971 } else { 972 e->ec = fm_e->ec; 973 kfree(fm_e); 974 } 975 976 spin_unlock(&ubi->wl_lock); 977 978 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; 979 return schedule_erase(ubi, e, vol_id, lnum, torture); 980 } 981 #endif 982 983 /** 984 * wear_leveling_worker - wear-leveling worker function. 985 * @ubi: UBI device description object 986 * @wrk: the work object 987 * @cancel: non-zero if the worker has to free memory and exit 988 * 989 * This function copies a more worn out physical eraseblock to a less worn out 990 * one. Returns zero in case of success and a negative error code in case of 991 * failure. 992 */ 993 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 994 int cancel) 995 { 996 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 997 int vol_id = -1, uninitialized_var(lnum); 998 #ifdef CONFIG_MTD_UBI_FASTMAP 999 int anchor = wrk->anchor; 1000 #endif 1001 struct ubi_wl_entry *e1, *e2; 1002 struct ubi_vid_hdr *vid_hdr; 1003 1004 kfree(wrk); 1005 if (cancel) 1006 return 0; 1007 1008 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1009 if (!vid_hdr) 1010 return -ENOMEM; 1011 1012 mutex_lock(&ubi->move_mutex); 1013 spin_lock(&ubi->wl_lock); 1014 ubi_assert(!ubi->move_from && !ubi->move_to); 1015 ubi_assert(!ubi->move_to_put); 1016 1017 if (!ubi->free.rb_node || 1018 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 1019 /* 1020 * No free physical eraseblocks? Well, they must be waiting in 1021 * the queue to be erased. Cancel movement - it will be 1022 * triggered again when a free physical eraseblock appears. 1023 * 1024 * No used physical eraseblocks? They must be temporarily 1025 * protected from being moved. They will be moved to the 1026 * @ubi->used tree later and the wear-leveling will be 1027 * triggered again. 1028 */ 1029 dbg_wl("cancel WL, a list is empty: free %d, used %d", 1030 !ubi->free.rb_node, !ubi->used.rb_node); 1031 goto out_cancel; 1032 } 1033 1034 #ifdef CONFIG_MTD_UBI_FASTMAP 1035 /* Check whether we need to produce an anchor PEB */ 1036 if (!anchor) 1037 anchor = !anchor_pebs_avalible(&ubi->free); 1038 1039 if (anchor) { 1040 e1 = find_anchor_wl_entry(&ubi->used); 1041 if (!e1) 1042 goto out_cancel; 1043 e2 = get_peb_for_wl(ubi); 1044 if (!e2) 1045 goto out_cancel; 1046 1047 self_check_in_wl_tree(ubi, e1, &ubi->used); 1048 rb_erase(&e1->u.rb, &ubi->used); 1049 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 1050 } else if (!ubi->scrub.rb_node) { 1051 #else 1052 if (!ubi->scrub.rb_node) { 1053 #endif 1054 /* 1055 * Now pick the least worn-out used physical eraseblock and a 1056 * highly worn-out free physical eraseblock. If the erase 1057 * counters differ much enough, start wear-leveling. 1058 */ 1059 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1060 e2 = get_peb_for_wl(ubi); 1061 if (!e2) 1062 goto out_cancel; 1063 1064 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 1065 dbg_wl("no WL needed: min used EC %d, max free EC %d", 1066 e1->ec, e2->ec); 1067 goto out_cancel; 1068 } 1069 self_check_in_wl_tree(ubi, e1, &ubi->used); 1070 rb_erase(&e1->u.rb, &ubi->used); 1071 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 1072 e1->pnum, e1->ec, e2->pnum, e2->ec); 1073 } else { 1074 /* Perform scrubbing */ 1075 scrubbing = 1; 1076 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 1077 e2 = get_peb_for_wl(ubi); 1078 if (!e2) 1079 goto out_cancel; 1080 1081 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 1082 rb_erase(&e1->u.rb, &ubi->scrub); 1083 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 1084 } 1085 1086 ubi->move_from = e1; 1087 ubi->move_to = e2; 1088 spin_unlock(&ubi->wl_lock); 1089 1090 /* 1091 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 1092 * We so far do not know which logical eraseblock our physical 1093 * eraseblock (@e1) belongs to. We have to read the volume identifier 1094 * header first. 1095 * 1096 * Note, we are protected from this PEB being unmapped and erased. The 1097 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 1098 * which is being moved was unmapped. 1099 */ 1100 1101 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 1102 if (err && err != UBI_IO_BITFLIPS) { 1103 if (err == UBI_IO_FF) { 1104 /* 1105 * We are trying to move PEB without a VID header. UBI 1106 * always write VID headers shortly after the PEB was 1107 * given, so we have a situation when it has not yet 1108 * had a chance to write it, because it was preempted. 1109 * So add this PEB to the protection queue so far, 1110 * because presumably more data will be written there 1111 * (including the missing VID header), and then we'll 1112 * move it. 1113 */ 1114 dbg_wl("PEB %d has no VID header", e1->pnum); 1115 protect = 1; 1116 goto out_not_moved; 1117 } else if (err == UBI_IO_FF_BITFLIPS) { 1118 /* 1119 * The same situation as %UBI_IO_FF, but bit-flips were 1120 * detected. It is better to schedule this PEB for 1121 * scrubbing. 1122 */ 1123 dbg_wl("PEB %d has no VID header but has bit-flips", 1124 e1->pnum); 1125 scrubbing = 1; 1126 goto out_not_moved; 1127 } 1128 1129 ubi_err("error %d while reading VID header from PEB %d", 1130 err, e1->pnum); 1131 goto out_error; 1132 } 1133 1134 vol_id = be32_to_cpu(vid_hdr->vol_id); 1135 lnum = be32_to_cpu(vid_hdr->lnum); 1136 1137 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 1138 if (err) { 1139 if (err == MOVE_CANCEL_RACE) { 1140 /* 1141 * The LEB has not been moved because the volume is 1142 * being deleted or the PEB has been put meanwhile. We 1143 * should prevent this PEB from being selected for 1144 * wear-leveling movement again, so put it to the 1145 * protection queue. 1146 */ 1147 protect = 1; 1148 goto out_not_moved; 1149 } 1150 if (err == MOVE_RETRY) { 1151 scrubbing = 1; 1152 goto out_not_moved; 1153 } 1154 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 1155 err == MOVE_TARGET_RD_ERR) { 1156 /* 1157 * Target PEB had bit-flips or write error - torture it. 1158 */ 1159 torture = 1; 1160 goto out_not_moved; 1161 } 1162 1163 if (err == MOVE_SOURCE_RD_ERR) { 1164 /* 1165 * An error happened while reading the source PEB. Do 1166 * not switch to R/O mode in this case, and give the 1167 * upper layers a possibility to recover from this, 1168 * e.g. by unmapping corresponding LEB. Instead, just 1169 * put this PEB to the @ubi->erroneous list to prevent 1170 * UBI from trying to move it over and over again. 1171 */ 1172 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 1173 ubi_err("too many erroneous eraseblocks (%d)", 1174 ubi->erroneous_peb_count); 1175 goto out_error; 1176 } 1177 erroneous = 1; 1178 goto out_not_moved; 1179 } 1180 1181 if (err < 0) 1182 goto out_error; 1183 1184 ubi_assert(0); 1185 } 1186 1187 /* The PEB has been successfully moved */ 1188 if (scrubbing) 1189 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 1190 e1->pnum, vol_id, lnum, e2->pnum); 1191 ubi_free_vid_hdr(ubi, vid_hdr); 1192 1193 spin_lock(&ubi->wl_lock); 1194 if (!ubi->move_to_put) { 1195 wl_tree_add(e2, &ubi->used); 1196 e2 = NULL; 1197 } 1198 ubi->move_from = ubi->move_to = NULL; 1199 ubi->move_to_put = ubi->wl_scheduled = 0; 1200 spin_unlock(&ubi->wl_lock); 1201 1202 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 1203 if (err) { 1204 kmem_cache_free(ubi_wl_entry_slab, e1); 1205 if (e2) 1206 kmem_cache_free(ubi_wl_entry_slab, e2); 1207 goto out_ro; 1208 } 1209 1210 if (e2) { 1211 /* 1212 * Well, the target PEB was put meanwhile, schedule it for 1213 * erasure. 1214 */ 1215 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 1216 e2->pnum, vol_id, lnum); 1217 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 1218 if (err) { 1219 kmem_cache_free(ubi_wl_entry_slab, e2); 1220 goto out_ro; 1221 } 1222 } 1223 1224 dbg_wl("done"); 1225 mutex_unlock(&ubi->move_mutex); 1226 return 0; 1227 1228 /* 1229 * For some reasons the LEB was not moved, might be an error, might be 1230 * something else. @e1 was not changed, so return it back. @e2 might 1231 * have been changed, schedule it for erasure. 1232 */ 1233 out_not_moved: 1234 if (vol_id != -1) 1235 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 1236 e1->pnum, vol_id, lnum, e2->pnum, err); 1237 else 1238 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 1239 e1->pnum, e2->pnum, err); 1240 spin_lock(&ubi->wl_lock); 1241 if (protect) 1242 prot_queue_add(ubi, e1); 1243 else if (erroneous) { 1244 wl_tree_add(e1, &ubi->erroneous); 1245 ubi->erroneous_peb_count += 1; 1246 } else if (scrubbing) 1247 wl_tree_add(e1, &ubi->scrub); 1248 else 1249 wl_tree_add(e1, &ubi->used); 1250 ubi_assert(!ubi->move_to_put); 1251 ubi->move_from = ubi->move_to = NULL; 1252 ubi->wl_scheduled = 0; 1253 spin_unlock(&ubi->wl_lock); 1254 1255 ubi_free_vid_hdr(ubi, vid_hdr); 1256 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 1257 if (err) { 1258 kmem_cache_free(ubi_wl_entry_slab, e2); 1259 goto out_ro; 1260 } 1261 mutex_unlock(&ubi->move_mutex); 1262 return 0; 1263 1264 out_error: 1265 if (vol_id != -1) 1266 ubi_err("error %d while moving PEB %d to PEB %d", 1267 err, e1->pnum, e2->pnum); 1268 else 1269 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 1270 err, e1->pnum, vol_id, lnum, e2->pnum); 1271 spin_lock(&ubi->wl_lock); 1272 ubi->move_from = ubi->move_to = NULL; 1273 ubi->move_to_put = ubi->wl_scheduled = 0; 1274 spin_unlock(&ubi->wl_lock); 1275 1276 ubi_free_vid_hdr(ubi, vid_hdr); 1277 kmem_cache_free(ubi_wl_entry_slab, e1); 1278 kmem_cache_free(ubi_wl_entry_slab, e2); 1279 1280 out_ro: 1281 ubi_ro_mode(ubi); 1282 mutex_unlock(&ubi->move_mutex); 1283 ubi_assert(err != 0); 1284 return err < 0 ? err : -EIO; 1285 1286 out_cancel: 1287 ubi->wl_scheduled = 0; 1288 spin_unlock(&ubi->wl_lock); 1289 mutex_unlock(&ubi->move_mutex); 1290 ubi_free_vid_hdr(ubi, vid_hdr); 1291 return 0; 1292 } 1293 1294 /** 1295 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1296 * @ubi: UBI device description object 1297 * @nested: set to non-zero if this function is called from UBI worker 1298 * 1299 * This function checks if it is time to start wear-leveling and schedules it 1300 * if yes. This function returns zero in case of success and a negative error 1301 * code in case of failure. 1302 */ 1303 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1304 { 1305 int err = 0; 1306 struct ubi_wl_entry *e1; 1307 struct ubi_wl_entry *e2; 1308 struct ubi_work *wrk; 1309 1310 spin_lock(&ubi->wl_lock); 1311 if (ubi->wl_scheduled) 1312 /* Wear-leveling is already in the work queue */ 1313 goto out_unlock; 1314 1315 /* 1316 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1317 * the WL worker has to be scheduled anyway. 1318 */ 1319 if (!ubi->scrub.rb_node) { 1320 if (!ubi->used.rb_node || !ubi->free.rb_node) 1321 /* No physical eraseblocks - no deal */ 1322 goto out_unlock; 1323 1324 /* 1325 * We schedule wear-leveling only if the difference between the 1326 * lowest erase counter of used physical eraseblocks and a high 1327 * erase counter of free physical eraseblocks is greater than 1328 * %UBI_WL_THRESHOLD. 1329 */ 1330 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1331 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1332 1333 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1334 goto out_unlock; 1335 dbg_wl("schedule wear-leveling"); 1336 } else 1337 dbg_wl("schedule scrubbing"); 1338 1339 ubi->wl_scheduled = 1; 1340 spin_unlock(&ubi->wl_lock); 1341 1342 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1343 if (!wrk) { 1344 err = -ENOMEM; 1345 goto out_cancel; 1346 } 1347 1348 wrk->anchor = 0; 1349 wrk->func = &wear_leveling_worker; 1350 if (nested) 1351 __schedule_ubi_work(ubi, wrk); 1352 else 1353 schedule_ubi_work(ubi, wrk); 1354 return err; 1355 1356 out_cancel: 1357 spin_lock(&ubi->wl_lock); 1358 ubi->wl_scheduled = 0; 1359 out_unlock: 1360 spin_unlock(&ubi->wl_lock); 1361 return err; 1362 } 1363 1364 #ifdef CONFIG_MTD_UBI_FASTMAP 1365 /** 1366 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. 1367 * @ubi: UBI device description object 1368 */ 1369 int ubi_ensure_anchor_pebs(struct ubi_device *ubi) 1370 { 1371 struct ubi_work *wrk; 1372 1373 spin_lock(&ubi->wl_lock); 1374 if (ubi->wl_scheduled) { 1375 spin_unlock(&ubi->wl_lock); 1376 return 0; 1377 } 1378 ubi->wl_scheduled = 1; 1379 spin_unlock(&ubi->wl_lock); 1380 1381 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1382 if (!wrk) { 1383 spin_lock(&ubi->wl_lock); 1384 ubi->wl_scheduled = 0; 1385 spin_unlock(&ubi->wl_lock); 1386 return -ENOMEM; 1387 } 1388 1389 wrk->anchor = 1; 1390 wrk->func = &wear_leveling_worker; 1391 schedule_ubi_work(ubi, wrk); 1392 return 0; 1393 } 1394 #endif 1395 1396 /** 1397 * erase_worker - physical eraseblock erase worker function. 1398 * @ubi: UBI device description object 1399 * @wl_wrk: the work object 1400 * @cancel: non-zero if the worker has to free memory and exit 1401 * 1402 * This function erases a physical eraseblock and perform torture testing if 1403 * needed. It also takes care about marking the physical eraseblock bad if 1404 * needed. Returns zero in case of success and a negative error code in case of 1405 * failure. 1406 */ 1407 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1408 int cancel) 1409 { 1410 struct ubi_wl_entry *e = wl_wrk->e; 1411 int pnum = e->pnum; 1412 int vol_id = wl_wrk->vol_id; 1413 int lnum = wl_wrk->lnum; 1414 int err, available_consumed = 0; 1415 1416 if (cancel) { 1417 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1418 kfree(wl_wrk); 1419 kmem_cache_free(ubi_wl_entry_slab, e); 1420 return 0; 1421 } 1422 1423 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1424 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1425 1426 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1427 1428 err = sync_erase(ubi, e, wl_wrk->torture); 1429 if (!err) { 1430 /* Fine, we've erased it successfully */ 1431 kfree(wl_wrk); 1432 1433 spin_lock(&ubi->wl_lock); 1434 wl_tree_add(e, &ubi->free); 1435 ubi->free_count++; 1436 spin_unlock(&ubi->wl_lock); 1437 1438 /* 1439 * One more erase operation has happened, take care about 1440 * protected physical eraseblocks. 1441 */ 1442 serve_prot_queue(ubi); 1443 1444 /* And take care about wear-leveling */ 1445 err = ensure_wear_leveling(ubi, 1); 1446 return err; 1447 } 1448 1449 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1450 kfree(wl_wrk); 1451 1452 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1453 err == -EBUSY) { 1454 int err1; 1455 1456 /* Re-schedule the LEB for erasure */ 1457 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1458 if (err1) { 1459 err = err1; 1460 goto out_ro; 1461 } 1462 return err; 1463 } 1464 1465 kmem_cache_free(ubi_wl_entry_slab, e); 1466 if (err != -EIO) 1467 /* 1468 * If this is not %-EIO, we have no idea what to do. Scheduling 1469 * this physical eraseblock for erasure again would cause 1470 * errors again and again. Well, lets switch to R/O mode. 1471 */ 1472 goto out_ro; 1473 1474 /* It is %-EIO, the PEB went bad */ 1475 1476 if (!ubi->bad_allowed) { 1477 ubi_err("bad physical eraseblock %d detected", pnum); 1478 goto out_ro; 1479 } 1480 1481 spin_lock(&ubi->volumes_lock); 1482 if (ubi->beb_rsvd_pebs == 0) { 1483 if (ubi->avail_pebs == 0) { 1484 spin_unlock(&ubi->volumes_lock); 1485 ubi_err("no reserved/available physical eraseblocks"); 1486 goto out_ro; 1487 } 1488 ubi->avail_pebs -= 1; 1489 available_consumed = 1; 1490 } 1491 spin_unlock(&ubi->volumes_lock); 1492 1493 ubi_msg("mark PEB %d as bad", pnum); 1494 err = ubi_io_mark_bad(ubi, pnum); 1495 if (err) 1496 goto out_ro; 1497 1498 spin_lock(&ubi->volumes_lock); 1499 if (ubi->beb_rsvd_pebs > 0) { 1500 if (available_consumed) { 1501 /* 1502 * The amount of reserved PEBs increased since we last 1503 * checked. 1504 */ 1505 ubi->avail_pebs += 1; 1506 available_consumed = 0; 1507 } 1508 ubi->beb_rsvd_pebs -= 1; 1509 } 1510 ubi->bad_peb_count += 1; 1511 ubi->good_peb_count -= 1; 1512 ubi_calculate_reserved(ubi); 1513 if (available_consumed) 1514 ubi_warn("no PEBs in the reserved pool, used an available PEB"); 1515 else if (ubi->beb_rsvd_pebs) 1516 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1517 else 1518 ubi_warn("last PEB from the reserve was used"); 1519 spin_unlock(&ubi->volumes_lock); 1520 1521 return err; 1522 1523 out_ro: 1524 if (available_consumed) { 1525 spin_lock(&ubi->volumes_lock); 1526 ubi->avail_pebs += 1; 1527 spin_unlock(&ubi->volumes_lock); 1528 } 1529 ubi_ro_mode(ubi); 1530 return err; 1531 } 1532 1533 /** 1534 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1535 * @ubi: UBI device description object 1536 * @vol_id: the volume ID that last used this PEB 1537 * @lnum: the last used logical eraseblock number for the PEB 1538 * @pnum: physical eraseblock to return 1539 * @torture: if this physical eraseblock has to be tortured 1540 * 1541 * This function is called to return physical eraseblock @pnum to the pool of 1542 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1543 * occurred to this @pnum and it has to be tested. This function returns zero 1544 * in case of success, and a negative error code in case of failure. 1545 */ 1546 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1547 int pnum, int torture) 1548 { 1549 int err; 1550 struct ubi_wl_entry *e; 1551 1552 dbg_wl("PEB %d", pnum); 1553 ubi_assert(pnum >= 0); 1554 ubi_assert(pnum < ubi->peb_count); 1555 1556 retry: 1557 spin_lock(&ubi->wl_lock); 1558 e = ubi->lookuptbl[pnum]; 1559 if (e == ubi->move_from) { 1560 /* 1561 * User is putting the physical eraseblock which was selected to 1562 * be moved. It will be scheduled for erasure in the 1563 * wear-leveling worker. 1564 */ 1565 dbg_wl("PEB %d is being moved, wait", pnum); 1566 spin_unlock(&ubi->wl_lock); 1567 1568 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1569 mutex_lock(&ubi->move_mutex); 1570 mutex_unlock(&ubi->move_mutex); 1571 goto retry; 1572 } else if (e == ubi->move_to) { 1573 /* 1574 * User is putting the physical eraseblock which was selected 1575 * as the target the data is moved to. It may happen if the EBA 1576 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1577 * but the WL sub-system has not put the PEB to the "used" tree 1578 * yet, but it is about to do this. So we just set a flag which 1579 * will tell the WL worker that the PEB is not needed anymore 1580 * and should be scheduled for erasure. 1581 */ 1582 dbg_wl("PEB %d is the target of data moving", pnum); 1583 ubi_assert(!ubi->move_to_put); 1584 ubi->move_to_put = 1; 1585 spin_unlock(&ubi->wl_lock); 1586 return 0; 1587 } else { 1588 if (in_wl_tree(e, &ubi->used)) { 1589 self_check_in_wl_tree(ubi, e, &ubi->used); 1590 rb_erase(&e->u.rb, &ubi->used); 1591 } else if (in_wl_tree(e, &ubi->scrub)) { 1592 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1593 rb_erase(&e->u.rb, &ubi->scrub); 1594 } else if (in_wl_tree(e, &ubi->erroneous)) { 1595 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1596 rb_erase(&e->u.rb, &ubi->erroneous); 1597 ubi->erroneous_peb_count -= 1; 1598 ubi_assert(ubi->erroneous_peb_count >= 0); 1599 /* Erroneous PEBs should be tortured */ 1600 torture = 1; 1601 } else { 1602 err = prot_queue_del(ubi, e->pnum); 1603 if (err) { 1604 ubi_err("PEB %d not found", pnum); 1605 ubi_ro_mode(ubi); 1606 spin_unlock(&ubi->wl_lock); 1607 return err; 1608 } 1609 } 1610 } 1611 spin_unlock(&ubi->wl_lock); 1612 1613 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1614 if (err) { 1615 spin_lock(&ubi->wl_lock); 1616 wl_tree_add(e, &ubi->used); 1617 spin_unlock(&ubi->wl_lock); 1618 } 1619 1620 return err; 1621 } 1622 1623 /** 1624 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1625 * @ubi: UBI device description object 1626 * @pnum: the physical eraseblock to schedule 1627 * 1628 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1629 * needs scrubbing. This function schedules a physical eraseblock for 1630 * scrubbing which is done in background. This function returns zero in case of 1631 * success and a negative error code in case of failure. 1632 */ 1633 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1634 { 1635 struct ubi_wl_entry *e; 1636 1637 ubi_msg("schedule PEB %d for scrubbing", pnum); 1638 1639 retry: 1640 spin_lock(&ubi->wl_lock); 1641 e = ubi->lookuptbl[pnum]; 1642 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1643 in_wl_tree(e, &ubi->erroneous)) { 1644 spin_unlock(&ubi->wl_lock); 1645 return 0; 1646 } 1647 1648 if (e == ubi->move_to) { 1649 /* 1650 * This physical eraseblock was used to move data to. The data 1651 * was moved but the PEB was not yet inserted to the proper 1652 * tree. We should just wait a little and let the WL worker 1653 * proceed. 1654 */ 1655 spin_unlock(&ubi->wl_lock); 1656 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1657 yield(); 1658 goto retry; 1659 } 1660 1661 if (in_wl_tree(e, &ubi->used)) { 1662 self_check_in_wl_tree(ubi, e, &ubi->used); 1663 rb_erase(&e->u.rb, &ubi->used); 1664 } else { 1665 int err; 1666 1667 err = prot_queue_del(ubi, e->pnum); 1668 if (err) { 1669 ubi_err("PEB %d not found", pnum); 1670 ubi_ro_mode(ubi); 1671 spin_unlock(&ubi->wl_lock); 1672 return err; 1673 } 1674 } 1675 1676 wl_tree_add(e, &ubi->scrub); 1677 spin_unlock(&ubi->wl_lock); 1678 1679 /* 1680 * Technically scrubbing is the same as wear-leveling, so it is done 1681 * by the WL worker. 1682 */ 1683 return ensure_wear_leveling(ubi, 0); 1684 } 1685 1686 /** 1687 * ubi_wl_flush - flush all pending works. 1688 * @ubi: UBI device description object 1689 * @vol_id: the volume id to flush for 1690 * @lnum: the logical eraseblock number to flush for 1691 * 1692 * This function executes all pending works for a particular volume id / 1693 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1694 * acts as a wildcard for all of the corresponding volume numbers or logical 1695 * eraseblock numbers. It returns zero in case of success and a negative error 1696 * code in case of failure. 1697 */ 1698 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1699 { 1700 int err = 0; 1701 int found = 1; 1702 1703 /* 1704 * Erase while the pending works queue is not empty, but not more than 1705 * the number of currently pending works. 1706 */ 1707 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1708 vol_id, lnum, ubi->works_count); 1709 1710 while (found) { 1711 struct ubi_work *wrk; 1712 found = 0; 1713 1714 down_read(&ubi->work_sem); 1715 spin_lock(&ubi->wl_lock); 1716 list_for_each_entry(wrk, &ubi->works, list) { 1717 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1718 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1719 list_del(&wrk->list); 1720 ubi->works_count -= 1; 1721 ubi_assert(ubi->works_count >= 0); 1722 spin_unlock(&ubi->wl_lock); 1723 1724 err = wrk->func(ubi, wrk, 0); 1725 if (err) { 1726 up_read(&ubi->work_sem); 1727 return err; 1728 } 1729 1730 spin_lock(&ubi->wl_lock); 1731 found = 1; 1732 break; 1733 } 1734 } 1735 spin_unlock(&ubi->wl_lock); 1736 up_read(&ubi->work_sem); 1737 } 1738 1739 /* 1740 * Make sure all the works which have been done in parallel are 1741 * finished. 1742 */ 1743 down_write(&ubi->work_sem); 1744 up_write(&ubi->work_sem); 1745 1746 return err; 1747 } 1748 1749 /** 1750 * tree_destroy - destroy an RB-tree. 1751 * @root: the root of the tree to destroy 1752 */ 1753 static void tree_destroy(struct rb_root *root) 1754 { 1755 struct rb_node *rb; 1756 struct ubi_wl_entry *e; 1757 1758 rb = root->rb_node; 1759 while (rb) { 1760 if (rb->rb_left) 1761 rb = rb->rb_left; 1762 else if (rb->rb_right) 1763 rb = rb->rb_right; 1764 else { 1765 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1766 1767 rb = rb_parent(rb); 1768 if (rb) { 1769 if (rb->rb_left == &e->u.rb) 1770 rb->rb_left = NULL; 1771 else 1772 rb->rb_right = NULL; 1773 } 1774 1775 kmem_cache_free(ubi_wl_entry_slab, e); 1776 } 1777 } 1778 } 1779 1780 /** 1781 * ubi_thread - UBI background thread. 1782 * @u: the UBI device description object pointer 1783 */ 1784 int ubi_thread(void *u) 1785 { 1786 int failures = 0; 1787 struct ubi_device *ubi = u; 1788 1789 ubi_msg("background thread \"%s\" started, PID %d", 1790 ubi->bgt_name, task_pid_nr(current)); 1791 1792 set_freezable(); 1793 for (;;) { 1794 int err; 1795 1796 if (kthread_should_stop()) 1797 break; 1798 1799 if (try_to_freeze()) 1800 continue; 1801 1802 spin_lock(&ubi->wl_lock); 1803 if (list_empty(&ubi->works) || ubi->ro_mode || 1804 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1805 set_current_state(TASK_INTERRUPTIBLE); 1806 spin_unlock(&ubi->wl_lock); 1807 schedule(); 1808 continue; 1809 } 1810 spin_unlock(&ubi->wl_lock); 1811 1812 err = do_work(ubi); 1813 if (err) { 1814 ubi_err("%s: work failed with error code %d", 1815 ubi->bgt_name, err); 1816 if (failures++ > WL_MAX_FAILURES) { 1817 /* 1818 * Too many failures, disable the thread and 1819 * switch to read-only mode. 1820 */ 1821 ubi_msg("%s: %d consecutive failures", 1822 ubi->bgt_name, WL_MAX_FAILURES); 1823 ubi_ro_mode(ubi); 1824 ubi->thread_enabled = 0; 1825 continue; 1826 } 1827 } else 1828 failures = 0; 1829 1830 cond_resched(); 1831 } 1832 1833 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1834 return 0; 1835 } 1836 1837 /** 1838 * cancel_pending - cancel all pending works. 1839 * @ubi: UBI device description object 1840 */ 1841 static void cancel_pending(struct ubi_device *ubi) 1842 { 1843 while (!list_empty(&ubi->works)) { 1844 struct ubi_work *wrk; 1845 1846 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1847 list_del(&wrk->list); 1848 wrk->func(ubi, wrk, 1); 1849 ubi->works_count -= 1; 1850 ubi_assert(ubi->works_count >= 0); 1851 } 1852 } 1853 1854 /** 1855 * ubi_wl_init - initialize the WL sub-system using attaching information. 1856 * @ubi: UBI device description object 1857 * @ai: attaching information 1858 * 1859 * This function returns zero in case of success, and a negative error code in 1860 * case of failure. 1861 */ 1862 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1863 { 1864 int err, i, reserved_pebs, found_pebs = 0; 1865 struct rb_node *rb1, *rb2; 1866 struct ubi_ainf_volume *av; 1867 struct ubi_ainf_peb *aeb, *tmp; 1868 struct ubi_wl_entry *e; 1869 1870 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1871 spin_lock_init(&ubi->wl_lock); 1872 mutex_init(&ubi->move_mutex); 1873 init_rwsem(&ubi->work_sem); 1874 ubi->max_ec = ai->max_ec; 1875 INIT_LIST_HEAD(&ubi->works); 1876 #ifdef CONFIG_MTD_UBI_FASTMAP 1877 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); 1878 #endif 1879 1880 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1881 1882 err = -ENOMEM; 1883 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1884 if (!ubi->lookuptbl) 1885 return err; 1886 1887 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1888 INIT_LIST_HEAD(&ubi->pq[i]); 1889 ubi->pq_head = 0; 1890 1891 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1892 cond_resched(); 1893 1894 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1895 if (!e) 1896 goto out_free; 1897 1898 e->pnum = aeb->pnum; 1899 e->ec = aeb->ec; 1900 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1901 ubi->lookuptbl[e->pnum] = e; 1902 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1903 kmem_cache_free(ubi_wl_entry_slab, e); 1904 goto out_free; 1905 } 1906 1907 found_pebs++; 1908 } 1909 1910 ubi->free_count = 0; 1911 list_for_each_entry(aeb, &ai->free, u.list) { 1912 cond_resched(); 1913 1914 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1915 if (!e) 1916 goto out_free; 1917 1918 e->pnum = aeb->pnum; 1919 e->ec = aeb->ec; 1920 ubi_assert(e->ec >= 0); 1921 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1922 1923 wl_tree_add(e, &ubi->free); 1924 ubi->free_count++; 1925 1926 ubi->lookuptbl[e->pnum] = e; 1927 1928 found_pebs++; 1929 } 1930 1931 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1932 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1933 cond_resched(); 1934 1935 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1936 if (!e) 1937 goto out_free; 1938 1939 e->pnum = aeb->pnum; 1940 e->ec = aeb->ec; 1941 ubi->lookuptbl[e->pnum] = e; 1942 1943 if (!aeb->scrub) { 1944 dbg_wl("add PEB %d EC %d to the used tree", 1945 e->pnum, e->ec); 1946 wl_tree_add(e, &ubi->used); 1947 } else { 1948 dbg_wl("add PEB %d EC %d to the scrub tree", 1949 e->pnum, e->ec); 1950 wl_tree_add(e, &ubi->scrub); 1951 } 1952 1953 found_pebs++; 1954 } 1955 } 1956 1957 dbg_wl("found %i PEBs", found_pebs); 1958 1959 if (ubi->fm) 1960 ubi_assert(ubi->good_peb_count == \ 1961 found_pebs + ubi->fm->used_blocks); 1962 else 1963 ubi_assert(ubi->good_peb_count == found_pebs); 1964 1965 reserved_pebs = WL_RESERVED_PEBS; 1966 #ifdef CONFIG_MTD_UBI_FASTMAP 1967 /* Reserve enough LEBs to store two fastmaps. */ 1968 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; 1969 #endif 1970 1971 if (ubi->avail_pebs < reserved_pebs) { 1972 ubi_err("no enough physical eraseblocks (%d, need %d)", 1973 ubi->avail_pebs, reserved_pebs); 1974 if (ubi->corr_peb_count) 1975 ubi_err("%d PEBs are corrupted and not used", 1976 ubi->corr_peb_count); 1977 goto out_free; 1978 } 1979 ubi->avail_pebs -= reserved_pebs; 1980 ubi->rsvd_pebs += reserved_pebs; 1981 1982 /* Schedule wear-leveling if needed */ 1983 err = ensure_wear_leveling(ubi, 0); 1984 if (err) 1985 goto out_free; 1986 1987 return 0; 1988 1989 out_free: 1990 cancel_pending(ubi); 1991 tree_destroy(&ubi->used); 1992 tree_destroy(&ubi->free); 1993 tree_destroy(&ubi->scrub); 1994 kfree(ubi->lookuptbl); 1995 return err; 1996 } 1997 1998 /** 1999 * protection_queue_destroy - destroy the protection queue. 2000 * @ubi: UBI device description object 2001 */ 2002 static void protection_queue_destroy(struct ubi_device *ubi) 2003 { 2004 int i; 2005 struct ubi_wl_entry *e, *tmp; 2006 2007 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 2008 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 2009 list_del(&e->u.list); 2010 kmem_cache_free(ubi_wl_entry_slab, e); 2011 } 2012 } 2013 } 2014 2015 /** 2016 * ubi_wl_close - close the wear-leveling sub-system. 2017 * @ubi: UBI device description object 2018 */ 2019 void ubi_wl_close(struct ubi_device *ubi) 2020 { 2021 dbg_wl("close the WL sub-system"); 2022 cancel_pending(ubi); 2023 protection_queue_destroy(ubi); 2024 tree_destroy(&ubi->used); 2025 tree_destroy(&ubi->erroneous); 2026 tree_destroy(&ubi->free); 2027 tree_destroy(&ubi->scrub); 2028 kfree(ubi->lookuptbl); 2029 } 2030 2031 /** 2032 * self_check_ec - make sure that the erase counter of a PEB is correct. 2033 * @ubi: UBI device description object 2034 * @pnum: the physical eraseblock number to check 2035 * @ec: the erase counter to check 2036 * 2037 * This function returns zero if the erase counter of physical eraseblock @pnum 2038 * is equivalent to @ec, and a negative error code if not or if an error 2039 * occurred. 2040 */ 2041 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2042 { 2043 int err; 2044 long long read_ec; 2045 struct ubi_ec_hdr *ec_hdr; 2046 2047 if (!ubi->dbg->chk_gen) 2048 return 0; 2049 2050 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2051 if (!ec_hdr) 2052 return -ENOMEM; 2053 2054 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2055 if (err && err != UBI_IO_BITFLIPS) { 2056 /* The header does not have to exist */ 2057 err = 0; 2058 goto out_free; 2059 } 2060 2061 read_ec = be64_to_cpu(ec_hdr->ec); 2062 if (ec != read_ec && read_ec - ec > 1) { 2063 ubi_err("self-check failed for PEB %d", pnum); 2064 ubi_err("read EC is %lld, should be %d", read_ec, ec); 2065 dump_stack(); 2066 err = 1; 2067 } else 2068 err = 0; 2069 2070 out_free: 2071 kfree(ec_hdr); 2072 return err; 2073 } 2074 2075 /** 2076 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2077 * @ubi: UBI device description object 2078 * @e: the wear-leveling entry to check 2079 * @root: the root of the tree 2080 * 2081 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2082 * is not. 2083 */ 2084 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2085 struct ubi_wl_entry *e, struct rb_root *root) 2086 { 2087 if (!ubi->dbg->chk_gen) 2088 return 0; 2089 2090 if (in_wl_tree(e, root)) 2091 return 0; 2092 2093 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ", 2094 e->pnum, e->ec, root); 2095 dump_stack(); 2096 return -EINVAL; 2097 } 2098 2099 /** 2100 * self_check_in_pq - check if wear-leveling entry is in the protection 2101 * queue. 2102 * @ubi: UBI device description object 2103 * @e: the wear-leveling entry to check 2104 * 2105 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2106 */ 2107 static int self_check_in_pq(const struct ubi_device *ubi, 2108 struct ubi_wl_entry *e) 2109 { 2110 struct ubi_wl_entry *p; 2111 int i; 2112 2113 if (!ubi->dbg->chk_gen) 2114 return 0; 2115 2116 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 2117 list_for_each_entry(p, &ubi->pq[i], u.list) 2118 if (p == e) 2119 return 0; 2120 2121 ubi_err("self-check failed for PEB %d, EC %d, Protect queue", 2122 e->pnum, e->ec); 2123 dump_stack(); 2124 return -EINVAL; 2125 } 2126