1 /* 2 * @ubi: UBI device description object 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 20 */ 21 22 /* 23 * UBI wear-leveling sub-system. 24 * 25 * This sub-system is responsible for wear-leveling. It works in terms of 26 * physical eraseblocks and erase counters and knows nothing about logical 27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 28 * eraseblocks are of two types - used and free. Used physical eraseblocks are 29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 31 * 32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 33 * header. The rest of the physical eraseblock contains only %0xFF bytes. 34 * 35 * When physical eraseblocks are returned to the WL sub-system by means of the 36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 37 * done asynchronously in context of the per-UBI device background thread, 38 * which is also managed by the WL sub-system. 39 * 40 * The wear-leveling is ensured by means of moving the contents of used 41 * physical eraseblocks with low erase counter to free physical eraseblocks 42 * with high erase counter. 43 * 44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 45 * an "optimal" physical eraseblock. For example, when it is known that the 46 * physical eraseblock will be "put" soon because it contains short-term data, 47 * the WL sub-system may pick a free physical eraseblock with low erase 48 * counter, and so forth. 49 * 50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 51 * bad. 52 * 53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 54 * in a physical eraseblock, it has to be moved. Technically this is the same 55 * as moving it for wear-leveling reasons. 56 * 57 * As it was said, for the UBI sub-system all physical eraseblocks are either 58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 60 * RB-trees, as well as (temporarily) in the @wl->pq queue. 61 * 62 * When the WL sub-system returns a physical eraseblock, the physical 63 * eraseblock is protected from being moved for some "time". For this reason, 64 * the physical eraseblock is not directly moved from the @wl->free tree to the 65 * @wl->used tree. There is a protection queue in between where this 66 * physical eraseblock is temporarily stored (@wl->pq). 67 * 68 * All this protection stuff is needed because: 69 * o we don't want to move physical eraseblocks just after we have given them 70 * to the user; instead, we first want to let users fill them up with data; 71 * 72 * o there is a chance that the user will put the physical eraseblock very 73 * soon, so it makes sense not to move it for some time, but wait; this is 74 * especially important in case of "short term" physical eraseblocks. 75 * 76 * Physical eraseblocks stay protected only for limited time. But the "time" is 77 * measured in erase cycles in this case. This is implemented with help of the 78 * protection queue. Eraseblocks are put to the tail of this queue when they 79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 80 * head of the queue on each erase operation (for any eraseblock). So the 81 * length of the queue defines how may (global) erase cycles PEBs are protected. 82 * 83 * To put it differently, each physical eraseblock has 2 main states: free and 84 * used. The former state corresponds to the @wl->free tree. The latter state 85 * is split up on several sub-states: 86 * o the WL movement is allowed (@wl->used tree); 87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 88 * erroneous - e.g., there was a read error; 89 * o the WL movement is temporarily prohibited (@wl->pq queue); 90 * o scrubbing is needed (@wl->scrub tree). 91 * 92 * Depending on the sub-state, wear-leveling entries of the used physical 93 * eraseblocks may be kept in one of those structures. 94 * 95 * Note, in this implementation, we keep a small in-RAM object for each physical 96 * eraseblock. This is surely not a scalable solution. But it appears to be good 97 * enough for moderately large flashes and it is simple. In future, one may 98 * re-work this sub-system and make it more scalable. 99 * 100 * At the moment this sub-system does not utilize the sequence number, which 101 * was introduced relatively recently. But it would be wise to do this because 102 * the sequence number of a logical eraseblock characterizes how old is it. For 103 * example, when we move a PEB with low erase counter, and we need to pick the 104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 105 * pick target PEB with an average EC if our PEB is not very "old". This is a 106 * room for future re-works of the WL sub-system. 107 */ 108 109 #include <linux/slab.h> 110 #include <linux/crc32.h> 111 #include <linux/freezer.h> 112 #include <linux/kthread.h> 113 #include "ubi.h" 114 115 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 116 #define WL_RESERVED_PEBS 1 117 118 /* 119 * Maximum difference between two erase counters. If this threshold is 120 * exceeded, the WL sub-system starts moving data from used physical 121 * eraseblocks with low erase counter to free physical eraseblocks with high 122 * erase counter. 123 */ 124 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 125 126 /* 127 * When a physical eraseblock is moved, the WL sub-system has to pick the target 128 * physical eraseblock to move to. The simplest way would be just to pick the 129 * one with the highest erase counter. But in certain workloads this could lead 130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 131 * situation when the picked physical eraseblock is constantly erased after the 132 * data is written to it. So, we have a constant which limits the highest erase 133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 134 * does not pick eraseblocks with erase counter greater than the lowest erase 135 * counter plus %WL_FREE_MAX_DIFF. 136 */ 137 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 138 139 /* 140 * Maximum number of consecutive background thread failures which is enough to 141 * switch to read-only mode. 142 */ 143 #define WL_MAX_FAILURES 32 144 145 /** 146 * struct ubi_work - UBI work description data structure. 147 * @list: a link in the list of pending works 148 * @func: worker function 149 * @e: physical eraseblock to erase 150 * @torture: if the physical eraseblock has to be tortured 151 * 152 * The @func pointer points to the worker function. If the @cancel argument is 153 * not zero, the worker has to free the resources and exit immediately. The 154 * worker has to return zero in case of success and a negative error code in 155 * case of failure. 156 */ 157 struct ubi_work { 158 struct list_head list; 159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 160 /* The below fields are only relevant to erasure works */ 161 struct ubi_wl_entry *e; 162 int torture; 163 }; 164 165 #ifdef CONFIG_MTD_UBI_DEBUG 166 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 167 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi, 168 struct ubi_wl_entry *e, 169 struct rb_root *root); 170 static int paranoid_check_in_pq(const struct ubi_device *ubi, 171 struct ubi_wl_entry *e); 172 #else 173 #define paranoid_check_ec(ubi, pnum, ec) 0 174 #define paranoid_check_in_wl_tree(ubi, e, root) 175 #define paranoid_check_in_pq(ubi, e) 0 176 #endif 177 178 /** 179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 180 * @e: the wear-leveling entry to add 181 * @root: the root of the tree 182 * 183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 184 * the @ubi->used and @ubi->free RB-trees. 185 */ 186 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 187 { 188 struct rb_node **p, *parent = NULL; 189 190 p = &root->rb_node; 191 while (*p) { 192 struct ubi_wl_entry *e1; 193 194 parent = *p; 195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 196 197 if (e->ec < e1->ec) 198 p = &(*p)->rb_left; 199 else if (e->ec > e1->ec) 200 p = &(*p)->rb_right; 201 else { 202 ubi_assert(e->pnum != e1->pnum); 203 if (e->pnum < e1->pnum) 204 p = &(*p)->rb_left; 205 else 206 p = &(*p)->rb_right; 207 } 208 } 209 210 rb_link_node(&e->u.rb, parent, p); 211 rb_insert_color(&e->u.rb, root); 212 } 213 214 /** 215 * do_work - do one pending work. 216 * @ubi: UBI device description object 217 * 218 * This function returns zero in case of success and a negative error code in 219 * case of failure. 220 */ 221 static int do_work(struct ubi_device *ubi) 222 { 223 int err; 224 struct ubi_work *wrk; 225 226 cond_resched(); 227 228 /* 229 * @ubi->work_sem is used to synchronize with the workers. Workers take 230 * it in read mode, so many of them may be doing works at a time. But 231 * the queue flush code has to be sure the whole queue of works is 232 * done, and it takes the mutex in write mode. 233 */ 234 down_read(&ubi->work_sem); 235 spin_lock(&ubi->wl_lock); 236 if (list_empty(&ubi->works)) { 237 spin_unlock(&ubi->wl_lock); 238 up_read(&ubi->work_sem); 239 return 0; 240 } 241 242 wrk = list_entry(ubi->works.next, struct ubi_work, list); 243 list_del(&wrk->list); 244 ubi->works_count -= 1; 245 ubi_assert(ubi->works_count >= 0); 246 spin_unlock(&ubi->wl_lock); 247 248 /* 249 * Call the worker function. Do not touch the work structure 250 * after this call as it will have been freed or reused by that 251 * time by the worker function. 252 */ 253 err = wrk->func(ubi, wrk, 0); 254 if (err) 255 ubi_err("work failed with error code %d", err); 256 up_read(&ubi->work_sem); 257 258 return err; 259 } 260 261 /** 262 * produce_free_peb - produce a free physical eraseblock. 263 * @ubi: UBI device description object 264 * 265 * This function tries to make a free PEB by means of synchronous execution of 266 * pending works. This may be needed if, for example the background thread is 267 * disabled. Returns zero in case of success and a negative error code in case 268 * of failure. 269 */ 270 static int produce_free_peb(struct ubi_device *ubi) 271 { 272 int err; 273 274 spin_lock(&ubi->wl_lock); 275 while (!ubi->free.rb_node) { 276 spin_unlock(&ubi->wl_lock); 277 278 dbg_wl("do one work synchronously"); 279 err = do_work(ubi); 280 if (err) 281 return err; 282 283 spin_lock(&ubi->wl_lock); 284 } 285 spin_unlock(&ubi->wl_lock); 286 287 return 0; 288 } 289 290 /** 291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 292 * @e: the wear-leveling entry to check 293 * @root: the root of the tree 294 * 295 * This function returns non-zero if @e is in the @root RB-tree and zero if it 296 * is not. 297 */ 298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 299 { 300 struct rb_node *p; 301 302 p = root->rb_node; 303 while (p) { 304 struct ubi_wl_entry *e1; 305 306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 307 308 if (e->pnum == e1->pnum) { 309 ubi_assert(e == e1); 310 return 1; 311 } 312 313 if (e->ec < e1->ec) 314 p = p->rb_left; 315 else if (e->ec > e1->ec) 316 p = p->rb_right; 317 else { 318 ubi_assert(e->pnum != e1->pnum); 319 if (e->pnum < e1->pnum) 320 p = p->rb_left; 321 else 322 p = p->rb_right; 323 } 324 } 325 326 return 0; 327 } 328 329 /** 330 * prot_queue_add - add physical eraseblock to the protection queue. 331 * @ubi: UBI device description object 332 * @e: the physical eraseblock to add 333 * 334 * This function adds @e to the tail of the protection queue @ubi->pq, where 335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 337 * be locked. 338 */ 339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 340 { 341 int pq_tail = ubi->pq_head - 1; 342 343 if (pq_tail < 0) 344 pq_tail = UBI_PROT_QUEUE_LEN - 1; 345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 348 } 349 350 /** 351 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 352 * @root: the RB-tree where to look for 353 * @max: highest possible erase counter 354 * 355 * This function looks for a wear leveling entry with erase counter closest to 356 * @max and less than @max. 357 */ 358 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) 359 { 360 struct rb_node *p; 361 struct ubi_wl_entry *e; 362 363 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 364 max += e->ec; 365 366 p = root->rb_node; 367 while (p) { 368 struct ubi_wl_entry *e1; 369 370 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 371 if (e1->ec >= max) 372 p = p->rb_left; 373 else { 374 p = p->rb_right; 375 e = e1; 376 } 377 } 378 379 return e; 380 } 381 382 /** 383 * ubi_wl_get_peb - get a physical eraseblock. 384 * @ubi: UBI device description object 385 * @dtype: type of data which will be stored in this physical eraseblock 386 * 387 * This function returns a physical eraseblock in case of success and a 388 * negative error code in case of failure. Might sleep. 389 */ 390 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 391 { 392 int err, medium_ec; 393 struct ubi_wl_entry *e, *first, *last; 394 395 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 396 dtype == UBI_UNKNOWN); 397 398 retry: 399 spin_lock(&ubi->wl_lock); 400 if (!ubi->free.rb_node) { 401 if (ubi->works_count == 0) { 402 ubi_assert(list_empty(&ubi->works)); 403 ubi_err("no free eraseblocks"); 404 spin_unlock(&ubi->wl_lock); 405 return -ENOSPC; 406 } 407 spin_unlock(&ubi->wl_lock); 408 409 err = produce_free_peb(ubi); 410 if (err < 0) 411 return err; 412 goto retry; 413 } 414 415 switch (dtype) { 416 case UBI_LONGTERM: 417 /* 418 * For long term data we pick a physical eraseblock with high 419 * erase counter. But the highest erase counter we can pick is 420 * bounded by the the lowest erase counter plus 421 * %WL_FREE_MAX_DIFF. 422 */ 423 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 424 break; 425 case UBI_UNKNOWN: 426 /* 427 * For unknown data we pick a physical eraseblock with medium 428 * erase counter. But we by no means can pick a physical 429 * eraseblock with erase counter greater or equivalent than the 430 * lowest erase counter plus %WL_FREE_MAX_DIFF. 431 */ 432 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, 433 u.rb); 434 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb); 435 436 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 437 e = rb_entry(ubi->free.rb_node, 438 struct ubi_wl_entry, u.rb); 439 else { 440 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; 441 e = find_wl_entry(&ubi->free, medium_ec); 442 } 443 break; 444 case UBI_SHORTTERM: 445 /* 446 * For short term data we pick a physical eraseblock with the 447 * lowest erase counter as we expect it will be erased soon. 448 */ 449 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb); 450 break; 451 default: 452 BUG(); 453 } 454 455 paranoid_check_in_wl_tree(ubi, e, &ubi->free); 456 457 /* 458 * Move the physical eraseblock to the protection queue where it will 459 * be protected from being moved for some time. 460 */ 461 rb_erase(&e->u.rb, &ubi->free); 462 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 463 prot_queue_add(ubi, e); 464 spin_unlock(&ubi->wl_lock); 465 466 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 467 ubi->peb_size - ubi->vid_hdr_aloffset); 468 if (err) { 469 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum); 470 return err; 471 } 472 473 return e->pnum; 474 } 475 476 /** 477 * prot_queue_del - remove a physical eraseblock from the protection queue. 478 * @ubi: UBI device description object 479 * @pnum: the physical eraseblock to remove 480 * 481 * This function deletes PEB @pnum from the protection queue and returns zero 482 * in case of success and %-ENODEV if the PEB was not found. 483 */ 484 static int prot_queue_del(struct ubi_device *ubi, int pnum) 485 { 486 struct ubi_wl_entry *e; 487 488 e = ubi->lookuptbl[pnum]; 489 if (!e) 490 return -ENODEV; 491 492 if (paranoid_check_in_pq(ubi, e)) 493 return -ENODEV; 494 495 list_del(&e->u.list); 496 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 497 return 0; 498 } 499 500 /** 501 * sync_erase - synchronously erase a physical eraseblock. 502 * @ubi: UBI device description object 503 * @e: the the physical eraseblock to erase 504 * @torture: if the physical eraseblock has to be tortured 505 * 506 * This function returns zero in case of success and a negative error code in 507 * case of failure. 508 */ 509 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 510 int torture) 511 { 512 int err; 513 struct ubi_ec_hdr *ec_hdr; 514 unsigned long long ec = e->ec; 515 516 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 517 518 err = paranoid_check_ec(ubi, e->pnum, e->ec); 519 if (err) 520 return -EINVAL; 521 522 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 523 if (!ec_hdr) 524 return -ENOMEM; 525 526 err = ubi_io_sync_erase(ubi, e->pnum, torture); 527 if (err < 0) 528 goto out_free; 529 530 ec += err; 531 if (ec > UBI_MAX_ERASECOUNTER) { 532 /* 533 * Erase counter overflow. Upgrade UBI and use 64-bit 534 * erase counters internally. 535 */ 536 ubi_err("erase counter overflow at PEB %d, EC %llu", 537 e->pnum, ec); 538 err = -EINVAL; 539 goto out_free; 540 } 541 542 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 543 544 ec_hdr->ec = cpu_to_be64(ec); 545 546 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 547 if (err) 548 goto out_free; 549 550 e->ec = ec; 551 spin_lock(&ubi->wl_lock); 552 if (e->ec > ubi->max_ec) 553 ubi->max_ec = e->ec; 554 spin_unlock(&ubi->wl_lock); 555 556 out_free: 557 kfree(ec_hdr); 558 return err; 559 } 560 561 /** 562 * serve_prot_queue - check if it is time to stop protecting PEBs. 563 * @ubi: UBI device description object 564 * 565 * This function is called after each erase operation and removes PEBs from the 566 * tail of the protection queue. These PEBs have been protected for long enough 567 * and should be moved to the used tree. 568 */ 569 static void serve_prot_queue(struct ubi_device *ubi) 570 { 571 struct ubi_wl_entry *e, *tmp; 572 int count; 573 574 /* 575 * There may be several protected physical eraseblock to remove, 576 * process them all. 577 */ 578 repeat: 579 count = 0; 580 spin_lock(&ubi->wl_lock); 581 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 582 dbg_wl("PEB %d EC %d protection over, move to used tree", 583 e->pnum, e->ec); 584 585 list_del(&e->u.list); 586 wl_tree_add(e, &ubi->used); 587 if (count++ > 32) { 588 /* 589 * Let's be nice and avoid holding the spinlock for 590 * too long. 591 */ 592 spin_unlock(&ubi->wl_lock); 593 cond_resched(); 594 goto repeat; 595 } 596 } 597 598 ubi->pq_head += 1; 599 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 600 ubi->pq_head = 0; 601 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 602 spin_unlock(&ubi->wl_lock); 603 } 604 605 /** 606 * schedule_ubi_work - schedule a work. 607 * @ubi: UBI device description object 608 * @wrk: the work to schedule 609 * 610 * This function adds a work defined by @wrk to the tail of the pending works 611 * list. 612 */ 613 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 614 { 615 spin_lock(&ubi->wl_lock); 616 list_add_tail(&wrk->list, &ubi->works); 617 ubi_assert(ubi->works_count >= 0); 618 ubi->works_count += 1; 619 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 620 wake_up_process(ubi->bgt_thread); 621 spin_unlock(&ubi->wl_lock); 622 } 623 624 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 625 int cancel); 626 627 /** 628 * schedule_erase - schedule an erase work. 629 * @ubi: UBI device description object 630 * @e: the WL entry of the physical eraseblock to erase 631 * @torture: if the physical eraseblock has to be tortured 632 * 633 * This function returns zero in case of success and a %-ENOMEM in case of 634 * failure. 635 */ 636 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 637 int torture) 638 { 639 struct ubi_work *wl_wrk; 640 641 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 642 e->pnum, e->ec, torture); 643 644 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 645 if (!wl_wrk) 646 return -ENOMEM; 647 648 wl_wrk->func = &erase_worker; 649 wl_wrk->e = e; 650 wl_wrk->torture = torture; 651 652 schedule_ubi_work(ubi, wl_wrk); 653 return 0; 654 } 655 656 /** 657 * wear_leveling_worker - wear-leveling worker function. 658 * @ubi: UBI device description object 659 * @wrk: the work object 660 * @cancel: non-zero if the worker has to free memory and exit 661 * 662 * This function copies a more worn out physical eraseblock to a less worn out 663 * one. Returns zero in case of success and a negative error code in case of 664 * failure. 665 */ 666 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 667 int cancel) 668 { 669 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 670 int vol_id = -1, uninitialized_var(lnum); 671 struct ubi_wl_entry *e1, *e2; 672 struct ubi_vid_hdr *vid_hdr; 673 674 kfree(wrk); 675 if (cancel) 676 return 0; 677 678 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 679 if (!vid_hdr) 680 return -ENOMEM; 681 682 mutex_lock(&ubi->move_mutex); 683 spin_lock(&ubi->wl_lock); 684 ubi_assert(!ubi->move_from && !ubi->move_to); 685 ubi_assert(!ubi->move_to_put); 686 687 if (!ubi->free.rb_node || 688 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 689 /* 690 * No free physical eraseblocks? Well, they must be waiting in 691 * the queue to be erased. Cancel movement - it will be 692 * triggered again when a free physical eraseblock appears. 693 * 694 * No used physical eraseblocks? They must be temporarily 695 * protected from being moved. They will be moved to the 696 * @ubi->used tree later and the wear-leveling will be 697 * triggered again. 698 */ 699 dbg_wl("cancel WL, a list is empty: free %d, used %d", 700 !ubi->free.rb_node, !ubi->used.rb_node); 701 goto out_cancel; 702 } 703 704 if (!ubi->scrub.rb_node) { 705 /* 706 * Now pick the least worn-out used physical eraseblock and a 707 * highly worn-out free physical eraseblock. If the erase 708 * counters differ much enough, start wear-leveling. 709 */ 710 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 711 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 712 713 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 714 dbg_wl("no WL needed: min used EC %d, max free EC %d", 715 e1->ec, e2->ec); 716 goto out_cancel; 717 } 718 paranoid_check_in_wl_tree(ubi, e1, &ubi->used); 719 rb_erase(&e1->u.rb, &ubi->used); 720 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 721 e1->pnum, e1->ec, e2->pnum, e2->ec); 722 } else { 723 /* Perform scrubbing */ 724 scrubbing = 1; 725 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 726 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 727 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub); 728 rb_erase(&e1->u.rb, &ubi->scrub); 729 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 730 } 731 732 paranoid_check_in_wl_tree(ubi, e2, &ubi->free); 733 rb_erase(&e2->u.rb, &ubi->free); 734 ubi->move_from = e1; 735 ubi->move_to = e2; 736 spin_unlock(&ubi->wl_lock); 737 738 /* 739 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 740 * We so far do not know which logical eraseblock our physical 741 * eraseblock (@e1) belongs to. We have to read the volume identifier 742 * header first. 743 * 744 * Note, we are protected from this PEB being unmapped and erased. The 745 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 746 * which is being moved was unmapped. 747 */ 748 749 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 750 if (err && err != UBI_IO_BITFLIPS) { 751 if (err == UBI_IO_FF) { 752 /* 753 * We are trying to move PEB without a VID header. UBI 754 * always write VID headers shortly after the PEB was 755 * given, so we have a situation when it has not yet 756 * had a chance to write it, because it was preempted. 757 * So add this PEB to the protection queue so far, 758 * because presumably more data will be written there 759 * (including the missing VID header), and then we'll 760 * move it. 761 */ 762 dbg_wl("PEB %d has no VID header", e1->pnum); 763 protect = 1; 764 goto out_not_moved; 765 } else if (err == UBI_IO_FF_BITFLIPS) { 766 /* 767 * The same situation as %UBI_IO_FF, but bit-flips were 768 * detected. It is better to schedule this PEB for 769 * scrubbing. 770 */ 771 dbg_wl("PEB %d has no VID header but has bit-flips", 772 e1->pnum); 773 scrubbing = 1; 774 goto out_not_moved; 775 } 776 777 ubi_err("error %d while reading VID header from PEB %d", 778 err, e1->pnum); 779 goto out_error; 780 } 781 782 vol_id = be32_to_cpu(vid_hdr->vol_id); 783 lnum = be32_to_cpu(vid_hdr->lnum); 784 785 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 786 if (err) { 787 if (err == MOVE_CANCEL_RACE) { 788 /* 789 * The LEB has not been moved because the volume is 790 * being deleted or the PEB has been put meanwhile. We 791 * should prevent this PEB from being selected for 792 * wear-leveling movement again, so put it to the 793 * protection queue. 794 */ 795 protect = 1; 796 goto out_not_moved; 797 } 798 799 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR || 800 err == MOVE_TARGET_RD_ERR) { 801 /* 802 * Target PEB had bit-flips or write error - torture it. 803 */ 804 torture = 1; 805 goto out_not_moved; 806 } 807 808 if (err == MOVE_SOURCE_RD_ERR) { 809 /* 810 * An error happened while reading the source PEB. Do 811 * not switch to R/O mode in this case, and give the 812 * upper layers a possibility to recover from this, 813 * e.g. by unmapping corresponding LEB. Instead, just 814 * put this PEB to the @ubi->erroneous list to prevent 815 * UBI from trying to move it over and over again. 816 */ 817 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 818 ubi_err("too many erroneous eraseblocks (%d)", 819 ubi->erroneous_peb_count); 820 goto out_error; 821 } 822 erroneous = 1; 823 goto out_not_moved; 824 } 825 826 if (err < 0) 827 goto out_error; 828 829 ubi_assert(0); 830 } 831 832 /* The PEB has been successfully moved */ 833 if (scrubbing) 834 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 835 e1->pnum, vol_id, lnum, e2->pnum); 836 ubi_free_vid_hdr(ubi, vid_hdr); 837 838 spin_lock(&ubi->wl_lock); 839 if (!ubi->move_to_put) { 840 wl_tree_add(e2, &ubi->used); 841 e2 = NULL; 842 } 843 ubi->move_from = ubi->move_to = NULL; 844 ubi->move_to_put = ubi->wl_scheduled = 0; 845 spin_unlock(&ubi->wl_lock); 846 847 err = schedule_erase(ubi, e1, 0); 848 if (err) { 849 kmem_cache_free(ubi_wl_entry_slab, e1); 850 if (e2) 851 kmem_cache_free(ubi_wl_entry_slab, e2); 852 goto out_ro; 853 } 854 855 if (e2) { 856 /* 857 * Well, the target PEB was put meanwhile, schedule it for 858 * erasure. 859 */ 860 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 861 e2->pnum, vol_id, lnum); 862 err = schedule_erase(ubi, e2, 0); 863 if (err) { 864 kmem_cache_free(ubi_wl_entry_slab, e2); 865 goto out_ro; 866 } 867 } 868 869 dbg_wl("done"); 870 mutex_unlock(&ubi->move_mutex); 871 return 0; 872 873 /* 874 * For some reasons the LEB was not moved, might be an error, might be 875 * something else. @e1 was not changed, so return it back. @e2 might 876 * have been changed, schedule it for erasure. 877 */ 878 out_not_moved: 879 if (vol_id != -1) 880 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 881 e1->pnum, vol_id, lnum, e2->pnum, err); 882 else 883 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 884 e1->pnum, e2->pnum, err); 885 spin_lock(&ubi->wl_lock); 886 if (protect) 887 prot_queue_add(ubi, e1); 888 else if (erroneous) { 889 wl_tree_add(e1, &ubi->erroneous); 890 ubi->erroneous_peb_count += 1; 891 } else if (scrubbing) 892 wl_tree_add(e1, &ubi->scrub); 893 else 894 wl_tree_add(e1, &ubi->used); 895 ubi_assert(!ubi->move_to_put); 896 ubi->move_from = ubi->move_to = NULL; 897 ubi->wl_scheduled = 0; 898 spin_unlock(&ubi->wl_lock); 899 900 ubi_free_vid_hdr(ubi, vid_hdr); 901 err = schedule_erase(ubi, e2, torture); 902 if (err) { 903 kmem_cache_free(ubi_wl_entry_slab, e2); 904 goto out_ro; 905 } 906 mutex_unlock(&ubi->move_mutex); 907 return 0; 908 909 out_error: 910 if (vol_id != -1) 911 ubi_err("error %d while moving PEB %d to PEB %d", 912 err, e1->pnum, e2->pnum); 913 else 914 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 915 err, e1->pnum, vol_id, lnum, e2->pnum); 916 spin_lock(&ubi->wl_lock); 917 ubi->move_from = ubi->move_to = NULL; 918 ubi->move_to_put = ubi->wl_scheduled = 0; 919 spin_unlock(&ubi->wl_lock); 920 921 ubi_free_vid_hdr(ubi, vid_hdr); 922 kmem_cache_free(ubi_wl_entry_slab, e1); 923 kmem_cache_free(ubi_wl_entry_slab, e2); 924 925 out_ro: 926 ubi_ro_mode(ubi); 927 mutex_unlock(&ubi->move_mutex); 928 ubi_assert(err != 0); 929 return err < 0 ? err : -EIO; 930 931 out_cancel: 932 ubi->wl_scheduled = 0; 933 spin_unlock(&ubi->wl_lock); 934 mutex_unlock(&ubi->move_mutex); 935 ubi_free_vid_hdr(ubi, vid_hdr); 936 return 0; 937 } 938 939 /** 940 * ensure_wear_leveling - schedule wear-leveling if it is needed. 941 * @ubi: UBI device description object 942 * 943 * This function checks if it is time to start wear-leveling and schedules it 944 * if yes. This function returns zero in case of success and a negative error 945 * code in case of failure. 946 */ 947 static int ensure_wear_leveling(struct ubi_device *ubi) 948 { 949 int err = 0; 950 struct ubi_wl_entry *e1; 951 struct ubi_wl_entry *e2; 952 struct ubi_work *wrk; 953 954 spin_lock(&ubi->wl_lock); 955 if (ubi->wl_scheduled) 956 /* Wear-leveling is already in the work queue */ 957 goto out_unlock; 958 959 /* 960 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 961 * the WL worker has to be scheduled anyway. 962 */ 963 if (!ubi->scrub.rb_node) { 964 if (!ubi->used.rb_node || !ubi->free.rb_node) 965 /* No physical eraseblocks - no deal */ 966 goto out_unlock; 967 968 /* 969 * We schedule wear-leveling only if the difference between the 970 * lowest erase counter of used physical eraseblocks and a high 971 * erase counter of free physical eraseblocks is greater than 972 * %UBI_WL_THRESHOLD. 973 */ 974 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 975 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 976 977 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 978 goto out_unlock; 979 dbg_wl("schedule wear-leveling"); 980 } else 981 dbg_wl("schedule scrubbing"); 982 983 ubi->wl_scheduled = 1; 984 spin_unlock(&ubi->wl_lock); 985 986 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 987 if (!wrk) { 988 err = -ENOMEM; 989 goto out_cancel; 990 } 991 992 wrk->func = &wear_leveling_worker; 993 schedule_ubi_work(ubi, wrk); 994 return err; 995 996 out_cancel: 997 spin_lock(&ubi->wl_lock); 998 ubi->wl_scheduled = 0; 999 out_unlock: 1000 spin_unlock(&ubi->wl_lock); 1001 return err; 1002 } 1003 1004 /** 1005 * erase_worker - physical eraseblock erase worker function. 1006 * @ubi: UBI device description object 1007 * @wl_wrk: the work object 1008 * @cancel: non-zero if the worker has to free memory and exit 1009 * 1010 * This function erases a physical eraseblock and perform torture testing if 1011 * needed. It also takes care about marking the physical eraseblock bad if 1012 * needed. Returns zero in case of success and a negative error code in case of 1013 * failure. 1014 */ 1015 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1016 int cancel) 1017 { 1018 struct ubi_wl_entry *e = wl_wrk->e; 1019 int pnum = e->pnum, err, need; 1020 1021 if (cancel) { 1022 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1023 kfree(wl_wrk); 1024 kmem_cache_free(ubi_wl_entry_slab, e); 1025 return 0; 1026 } 1027 1028 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 1029 1030 err = sync_erase(ubi, e, wl_wrk->torture); 1031 if (!err) { 1032 /* Fine, we've erased it successfully */ 1033 kfree(wl_wrk); 1034 1035 spin_lock(&ubi->wl_lock); 1036 wl_tree_add(e, &ubi->free); 1037 spin_unlock(&ubi->wl_lock); 1038 1039 /* 1040 * One more erase operation has happened, take care about 1041 * protected physical eraseblocks. 1042 */ 1043 serve_prot_queue(ubi); 1044 1045 /* And take care about wear-leveling */ 1046 err = ensure_wear_leveling(ubi); 1047 return err; 1048 } 1049 1050 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1051 kfree(wl_wrk); 1052 kmem_cache_free(ubi_wl_entry_slab, e); 1053 1054 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1055 err == -EBUSY) { 1056 int err1; 1057 1058 /* Re-schedule the LEB for erasure */ 1059 err1 = schedule_erase(ubi, e, 0); 1060 if (err1) { 1061 err = err1; 1062 goto out_ro; 1063 } 1064 return err; 1065 } else if (err != -EIO) { 1066 /* 1067 * If this is not %-EIO, we have no idea what to do. Scheduling 1068 * this physical eraseblock for erasure again would cause 1069 * errors again and again. Well, lets switch to R/O mode. 1070 */ 1071 goto out_ro; 1072 } 1073 1074 /* It is %-EIO, the PEB went bad */ 1075 1076 if (!ubi->bad_allowed) { 1077 ubi_err("bad physical eraseblock %d detected", pnum); 1078 goto out_ro; 1079 } 1080 1081 spin_lock(&ubi->volumes_lock); 1082 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1083 if (need > 0) { 1084 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1085 ubi->avail_pebs -= need; 1086 ubi->rsvd_pebs += need; 1087 ubi->beb_rsvd_pebs += need; 1088 if (need > 0) 1089 ubi_msg("reserve more %d PEBs", need); 1090 } 1091 1092 if (ubi->beb_rsvd_pebs == 0) { 1093 spin_unlock(&ubi->volumes_lock); 1094 ubi_err("no reserved physical eraseblocks"); 1095 goto out_ro; 1096 } 1097 spin_unlock(&ubi->volumes_lock); 1098 1099 ubi_msg("mark PEB %d as bad", pnum); 1100 err = ubi_io_mark_bad(ubi, pnum); 1101 if (err) 1102 goto out_ro; 1103 1104 spin_lock(&ubi->volumes_lock); 1105 ubi->beb_rsvd_pebs -= 1; 1106 ubi->bad_peb_count += 1; 1107 ubi->good_peb_count -= 1; 1108 ubi_calculate_reserved(ubi); 1109 if (ubi->beb_rsvd_pebs) 1110 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1111 else 1112 ubi_warn("last PEB from the reserved pool was used"); 1113 spin_unlock(&ubi->volumes_lock); 1114 1115 return err; 1116 1117 out_ro: 1118 ubi_ro_mode(ubi); 1119 return err; 1120 } 1121 1122 /** 1123 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1124 * @ubi: UBI device description object 1125 * @pnum: physical eraseblock to return 1126 * @torture: if this physical eraseblock has to be tortured 1127 * 1128 * This function is called to return physical eraseblock @pnum to the pool of 1129 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1130 * occurred to this @pnum and it has to be tested. This function returns zero 1131 * in case of success, and a negative error code in case of failure. 1132 */ 1133 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1134 { 1135 int err; 1136 struct ubi_wl_entry *e; 1137 1138 dbg_wl("PEB %d", pnum); 1139 ubi_assert(pnum >= 0); 1140 ubi_assert(pnum < ubi->peb_count); 1141 1142 retry: 1143 spin_lock(&ubi->wl_lock); 1144 e = ubi->lookuptbl[pnum]; 1145 if (e == ubi->move_from) { 1146 /* 1147 * User is putting the physical eraseblock which was selected to 1148 * be moved. It will be scheduled for erasure in the 1149 * wear-leveling worker. 1150 */ 1151 dbg_wl("PEB %d is being moved, wait", pnum); 1152 spin_unlock(&ubi->wl_lock); 1153 1154 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1155 mutex_lock(&ubi->move_mutex); 1156 mutex_unlock(&ubi->move_mutex); 1157 goto retry; 1158 } else if (e == ubi->move_to) { 1159 /* 1160 * User is putting the physical eraseblock which was selected 1161 * as the target the data is moved to. It may happen if the EBA 1162 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1163 * but the WL sub-system has not put the PEB to the "used" tree 1164 * yet, but it is about to do this. So we just set a flag which 1165 * will tell the WL worker that the PEB is not needed anymore 1166 * and should be scheduled for erasure. 1167 */ 1168 dbg_wl("PEB %d is the target of data moving", pnum); 1169 ubi_assert(!ubi->move_to_put); 1170 ubi->move_to_put = 1; 1171 spin_unlock(&ubi->wl_lock); 1172 return 0; 1173 } else { 1174 if (in_wl_tree(e, &ubi->used)) { 1175 paranoid_check_in_wl_tree(ubi, e, &ubi->used); 1176 rb_erase(&e->u.rb, &ubi->used); 1177 } else if (in_wl_tree(e, &ubi->scrub)) { 1178 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub); 1179 rb_erase(&e->u.rb, &ubi->scrub); 1180 } else if (in_wl_tree(e, &ubi->erroneous)) { 1181 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous); 1182 rb_erase(&e->u.rb, &ubi->erroneous); 1183 ubi->erroneous_peb_count -= 1; 1184 ubi_assert(ubi->erroneous_peb_count >= 0); 1185 /* Erroneous PEBs should be tortured */ 1186 torture = 1; 1187 } else { 1188 err = prot_queue_del(ubi, e->pnum); 1189 if (err) { 1190 ubi_err("PEB %d not found", pnum); 1191 ubi_ro_mode(ubi); 1192 spin_unlock(&ubi->wl_lock); 1193 return err; 1194 } 1195 } 1196 } 1197 spin_unlock(&ubi->wl_lock); 1198 1199 err = schedule_erase(ubi, e, torture); 1200 if (err) { 1201 spin_lock(&ubi->wl_lock); 1202 wl_tree_add(e, &ubi->used); 1203 spin_unlock(&ubi->wl_lock); 1204 } 1205 1206 return err; 1207 } 1208 1209 /** 1210 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1211 * @ubi: UBI device description object 1212 * @pnum: the physical eraseblock to schedule 1213 * 1214 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1215 * needs scrubbing. This function schedules a physical eraseblock for 1216 * scrubbing which is done in background. This function returns zero in case of 1217 * success and a negative error code in case of failure. 1218 */ 1219 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1220 { 1221 struct ubi_wl_entry *e; 1222 1223 dbg_msg("schedule PEB %d for scrubbing", pnum); 1224 1225 retry: 1226 spin_lock(&ubi->wl_lock); 1227 e = ubi->lookuptbl[pnum]; 1228 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1229 in_wl_tree(e, &ubi->erroneous)) { 1230 spin_unlock(&ubi->wl_lock); 1231 return 0; 1232 } 1233 1234 if (e == ubi->move_to) { 1235 /* 1236 * This physical eraseblock was used to move data to. The data 1237 * was moved but the PEB was not yet inserted to the proper 1238 * tree. We should just wait a little and let the WL worker 1239 * proceed. 1240 */ 1241 spin_unlock(&ubi->wl_lock); 1242 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1243 yield(); 1244 goto retry; 1245 } 1246 1247 if (in_wl_tree(e, &ubi->used)) { 1248 paranoid_check_in_wl_tree(ubi, e, &ubi->used); 1249 rb_erase(&e->u.rb, &ubi->used); 1250 } else { 1251 int err; 1252 1253 err = prot_queue_del(ubi, e->pnum); 1254 if (err) { 1255 ubi_err("PEB %d not found", pnum); 1256 ubi_ro_mode(ubi); 1257 spin_unlock(&ubi->wl_lock); 1258 return err; 1259 } 1260 } 1261 1262 wl_tree_add(e, &ubi->scrub); 1263 spin_unlock(&ubi->wl_lock); 1264 1265 /* 1266 * Technically scrubbing is the same as wear-leveling, so it is done 1267 * by the WL worker. 1268 */ 1269 return ensure_wear_leveling(ubi); 1270 } 1271 1272 /** 1273 * ubi_wl_flush - flush all pending works. 1274 * @ubi: UBI device description object 1275 * 1276 * This function returns zero in case of success and a negative error code in 1277 * case of failure. 1278 */ 1279 int ubi_wl_flush(struct ubi_device *ubi) 1280 { 1281 int err; 1282 1283 /* 1284 * Erase while the pending works queue is not empty, but not more than 1285 * the number of currently pending works. 1286 */ 1287 dbg_wl("flush (%d pending works)", ubi->works_count); 1288 while (ubi->works_count) { 1289 err = do_work(ubi); 1290 if (err) 1291 return err; 1292 } 1293 1294 /* 1295 * Make sure all the works which have been done in parallel are 1296 * finished. 1297 */ 1298 down_write(&ubi->work_sem); 1299 up_write(&ubi->work_sem); 1300 1301 /* 1302 * And in case last was the WL worker and it canceled the LEB 1303 * movement, flush again. 1304 */ 1305 while (ubi->works_count) { 1306 dbg_wl("flush more (%d pending works)", ubi->works_count); 1307 err = do_work(ubi); 1308 if (err) 1309 return err; 1310 } 1311 1312 return 0; 1313 } 1314 1315 /** 1316 * tree_destroy - destroy an RB-tree. 1317 * @root: the root of the tree to destroy 1318 */ 1319 static void tree_destroy(struct rb_root *root) 1320 { 1321 struct rb_node *rb; 1322 struct ubi_wl_entry *e; 1323 1324 rb = root->rb_node; 1325 while (rb) { 1326 if (rb->rb_left) 1327 rb = rb->rb_left; 1328 else if (rb->rb_right) 1329 rb = rb->rb_right; 1330 else { 1331 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1332 1333 rb = rb_parent(rb); 1334 if (rb) { 1335 if (rb->rb_left == &e->u.rb) 1336 rb->rb_left = NULL; 1337 else 1338 rb->rb_right = NULL; 1339 } 1340 1341 kmem_cache_free(ubi_wl_entry_slab, e); 1342 } 1343 } 1344 } 1345 1346 /** 1347 * ubi_thread - UBI background thread. 1348 * @u: the UBI device description object pointer 1349 */ 1350 int ubi_thread(void *u) 1351 { 1352 int failures = 0; 1353 struct ubi_device *ubi = u; 1354 1355 ubi_msg("background thread \"%s\" started, PID %d", 1356 ubi->bgt_name, task_pid_nr(current)); 1357 1358 set_freezable(); 1359 for (;;) { 1360 int err; 1361 1362 if (kthread_should_stop()) 1363 break; 1364 1365 if (try_to_freeze()) 1366 continue; 1367 1368 spin_lock(&ubi->wl_lock); 1369 if (list_empty(&ubi->works) || ubi->ro_mode || 1370 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1371 set_current_state(TASK_INTERRUPTIBLE); 1372 spin_unlock(&ubi->wl_lock); 1373 schedule(); 1374 continue; 1375 } 1376 spin_unlock(&ubi->wl_lock); 1377 1378 err = do_work(ubi); 1379 if (err) { 1380 ubi_err("%s: work failed with error code %d", 1381 ubi->bgt_name, err); 1382 if (failures++ > WL_MAX_FAILURES) { 1383 /* 1384 * Too many failures, disable the thread and 1385 * switch to read-only mode. 1386 */ 1387 ubi_msg("%s: %d consecutive failures", 1388 ubi->bgt_name, WL_MAX_FAILURES); 1389 ubi_ro_mode(ubi); 1390 ubi->thread_enabled = 0; 1391 continue; 1392 } 1393 } else 1394 failures = 0; 1395 1396 cond_resched(); 1397 } 1398 1399 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1400 return 0; 1401 } 1402 1403 /** 1404 * cancel_pending - cancel all pending works. 1405 * @ubi: UBI device description object 1406 */ 1407 static void cancel_pending(struct ubi_device *ubi) 1408 { 1409 while (!list_empty(&ubi->works)) { 1410 struct ubi_work *wrk; 1411 1412 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1413 list_del(&wrk->list); 1414 wrk->func(ubi, wrk, 1); 1415 ubi->works_count -= 1; 1416 ubi_assert(ubi->works_count >= 0); 1417 } 1418 } 1419 1420 /** 1421 * ubi_wl_init_scan - initialize the WL sub-system using scanning information. 1422 * @ubi: UBI device description object 1423 * @si: scanning information 1424 * 1425 * This function returns zero in case of success, and a negative error code in 1426 * case of failure. 1427 */ 1428 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1429 { 1430 int err, i; 1431 struct rb_node *rb1, *rb2; 1432 struct ubi_scan_volume *sv; 1433 struct ubi_scan_leb *seb, *tmp; 1434 struct ubi_wl_entry *e; 1435 1436 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1437 spin_lock_init(&ubi->wl_lock); 1438 mutex_init(&ubi->move_mutex); 1439 init_rwsem(&ubi->work_sem); 1440 ubi->max_ec = si->max_ec; 1441 INIT_LIST_HEAD(&ubi->works); 1442 1443 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1444 1445 err = -ENOMEM; 1446 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1447 if (!ubi->lookuptbl) 1448 return err; 1449 1450 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1451 INIT_LIST_HEAD(&ubi->pq[i]); 1452 ubi->pq_head = 0; 1453 1454 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1455 cond_resched(); 1456 1457 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1458 if (!e) 1459 goto out_free; 1460 1461 e->pnum = seb->pnum; 1462 e->ec = seb->ec; 1463 ubi->lookuptbl[e->pnum] = e; 1464 if (schedule_erase(ubi, e, 0)) { 1465 kmem_cache_free(ubi_wl_entry_slab, e); 1466 goto out_free; 1467 } 1468 } 1469 1470 list_for_each_entry(seb, &si->free, u.list) { 1471 cond_resched(); 1472 1473 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1474 if (!e) 1475 goto out_free; 1476 1477 e->pnum = seb->pnum; 1478 e->ec = seb->ec; 1479 ubi_assert(e->ec >= 0); 1480 wl_tree_add(e, &ubi->free); 1481 ubi->lookuptbl[e->pnum] = e; 1482 } 1483 1484 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1485 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1486 cond_resched(); 1487 1488 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1489 if (!e) 1490 goto out_free; 1491 1492 e->pnum = seb->pnum; 1493 e->ec = seb->ec; 1494 ubi->lookuptbl[e->pnum] = e; 1495 if (!seb->scrub) { 1496 dbg_wl("add PEB %d EC %d to the used tree", 1497 e->pnum, e->ec); 1498 wl_tree_add(e, &ubi->used); 1499 } else { 1500 dbg_wl("add PEB %d EC %d to the scrub tree", 1501 e->pnum, e->ec); 1502 wl_tree_add(e, &ubi->scrub); 1503 } 1504 } 1505 } 1506 1507 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1508 ubi_err("no enough physical eraseblocks (%d, need %d)", 1509 ubi->avail_pebs, WL_RESERVED_PEBS); 1510 if (ubi->corr_peb_count) 1511 ubi_err("%d PEBs are corrupted and not used", 1512 ubi->corr_peb_count); 1513 goto out_free; 1514 } 1515 ubi->avail_pebs -= WL_RESERVED_PEBS; 1516 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1517 1518 /* Schedule wear-leveling if needed */ 1519 err = ensure_wear_leveling(ubi); 1520 if (err) 1521 goto out_free; 1522 1523 return 0; 1524 1525 out_free: 1526 cancel_pending(ubi); 1527 tree_destroy(&ubi->used); 1528 tree_destroy(&ubi->free); 1529 tree_destroy(&ubi->scrub); 1530 kfree(ubi->lookuptbl); 1531 return err; 1532 } 1533 1534 /** 1535 * protection_queue_destroy - destroy the protection queue. 1536 * @ubi: UBI device description object 1537 */ 1538 static void protection_queue_destroy(struct ubi_device *ubi) 1539 { 1540 int i; 1541 struct ubi_wl_entry *e, *tmp; 1542 1543 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1544 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1545 list_del(&e->u.list); 1546 kmem_cache_free(ubi_wl_entry_slab, e); 1547 } 1548 } 1549 } 1550 1551 /** 1552 * ubi_wl_close - close the wear-leveling sub-system. 1553 * @ubi: UBI device description object 1554 */ 1555 void ubi_wl_close(struct ubi_device *ubi) 1556 { 1557 dbg_wl("close the WL sub-system"); 1558 cancel_pending(ubi); 1559 protection_queue_destroy(ubi); 1560 tree_destroy(&ubi->used); 1561 tree_destroy(&ubi->erroneous); 1562 tree_destroy(&ubi->free); 1563 tree_destroy(&ubi->scrub); 1564 kfree(ubi->lookuptbl); 1565 } 1566 1567 #ifdef CONFIG_MTD_UBI_DEBUG 1568 1569 /** 1570 * paranoid_check_ec - make sure that the erase counter of a PEB is correct. 1571 * @ubi: UBI device description object 1572 * @pnum: the physical eraseblock number to check 1573 * @ec: the erase counter to check 1574 * 1575 * This function returns zero if the erase counter of physical eraseblock @pnum 1576 * is equivalent to @ec, and a negative error code if not or if an error 1577 * occurred. 1578 */ 1579 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1580 { 1581 int err; 1582 long long read_ec; 1583 struct ubi_ec_hdr *ec_hdr; 1584 1585 if (!ubi->dbg->chk_gen) 1586 return 0; 1587 1588 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1589 if (!ec_hdr) 1590 return -ENOMEM; 1591 1592 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1593 if (err && err != UBI_IO_BITFLIPS) { 1594 /* The header does not have to exist */ 1595 err = 0; 1596 goto out_free; 1597 } 1598 1599 read_ec = be64_to_cpu(ec_hdr->ec); 1600 if (ec != read_ec) { 1601 ubi_err("paranoid check failed for PEB %d", pnum); 1602 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1603 ubi_dbg_dump_stack(); 1604 err = 1; 1605 } else 1606 err = 0; 1607 1608 out_free: 1609 kfree(ec_hdr); 1610 return err; 1611 } 1612 1613 /** 1614 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1615 * @ubi: UBI device description object 1616 * @e: the wear-leveling entry to check 1617 * @root: the root of the tree 1618 * 1619 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1620 * is not. 1621 */ 1622 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi, 1623 struct ubi_wl_entry *e, 1624 struct rb_root *root) 1625 { 1626 if (!ubi->dbg->chk_gen) 1627 return 0; 1628 1629 if (in_wl_tree(e, root)) 1630 return 0; 1631 1632 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1633 e->pnum, e->ec, root); 1634 ubi_dbg_dump_stack(); 1635 return -EINVAL; 1636 } 1637 1638 /** 1639 * paranoid_check_in_pq - check if wear-leveling entry is in the protection 1640 * queue. 1641 * @ubi: UBI device description object 1642 * @e: the wear-leveling entry to check 1643 * 1644 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1645 */ 1646 static int paranoid_check_in_pq(const struct ubi_device *ubi, 1647 struct ubi_wl_entry *e) 1648 { 1649 struct ubi_wl_entry *p; 1650 int i; 1651 1652 if (!ubi->dbg->chk_gen) 1653 return 0; 1654 1655 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1656 list_for_each_entry(p, &ubi->pq[i], u.list) 1657 if (p == e) 1658 return 0; 1659 1660 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue", 1661 e->pnum, e->ec); 1662 ubi_dbg_dump_stack(); 1663 return -EINVAL; 1664 } 1665 1666 #endif /* CONFIG_MTD_UBI_DEBUG */ 1667