1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 44 * bad. 45 * 46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 47 * in a physical eraseblock, it has to be moved. Technically this is the same 48 * as moving it for wear-leveling reasons. 49 * 50 * As it was said, for the UBI sub-system all physical eraseblocks are either 51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 53 * RB-trees, as well as (temporarily) in the @wl->pq queue. 54 * 55 * When the WL sub-system returns a physical eraseblock, the physical 56 * eraseblock is protected from being moved for some "time". For this reason, 57 * the physical eraseblock is not directly moved from the @wl->free tree to the 58 * @wl->used tree. There is a protection queue in between where this 59 * physical eraseblock is temporarily stored (@wl->pq). 60 * 61 * All this protection stuff is needed because: 62 * o we don't want to move physical eraseblocks just after we have given them 63 * to the user; instead, we first want to let users fill them up with data; 64 * 65 * o there is a chance that the user will put the physical eraseblock very 66 * soon, so it makes sense not to move it for some time, but wait. 67 * 68 * Physical eraseblocks stay protected only for limited time. But the "time" is 69 * measured in erase cycles in this case. This is implemented with help of the 70 * protection queue. Eraseblocks are put to the tail of this queue when they 71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 72 * head of the queue on each erase operation (for any eraseblock). So the 73 * length of the queue defines how may (global) erase cycles PEBs are protected. 74 * 75 * To put it differently, each physical eraseblock has 2 main states: free and 76 * used. The former state corresponds to the @wl->free tree. The latter state 77 * is split up on several sub-states: 78 * o the WL movement is allowed (@wl->used tree); 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 80 * erroneous - e.g., there was a read error; 81 * o the WL movement is temporarily prohibited (@wl->pq queue); 82 * o scrubbing is needed (@wl->scrub tree). 83 * 84 * Depending on the sub-state, wear-leveling entries of the used physical 85 * eraseblocks may be kept in one of those structures. 86 * 87 * Note, in this implementation, we keep a small in-RAM object for each physical 88 * eraseblock. This is surely not a scalable solution. But it appears to be good 89 * enough for moderately large flashes and it is simple. In future, one may 90 * re-work this sub-system and make it more scalable. 91 * 92 * At the moment this sub-system does not utilize the sequence number, which 93 * was introduced relatively recently. But it would be wise to do this because 94 * the sequence number of a logical eraseblock characterizes how old is it. For 95 * example, when we move a PEB with low erase counter, and we need to pick the 96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 97 * pick target PEB with an average EC if our PEB is not very "old". This is a 98 * room for future re-works of the WL sub-system. 99 */ 100 101 #include <linux/slab.h> 102 #include <linux/crc32.h> 103 #include <linux/freezer.h> 104 #include <linux/kthread.h> 105 #include "ubi.h" 106 #include "wl.h" 107 108 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 109 #define WL_RESERVED_PEBS 1 110 111 /* 112 * Maximum difference between two erase counters. If this threshold is 113 * exceeded, the WL sub-system starts moving data from used physical 114 * eraseblocks with low erase counter to free physical eraseblocks with high 115 * erase counter. 116 */ 117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 118 119 /* 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target 121 * physical eraseblock to move to. The simplest way would be just to pick the 122 * one with the highest erase counter. But in certain workloads this could lead 123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 124 * situation when the picked physical eraseblock is constantly erased after the 125 * data is written to it. So, we have a constant which limits the highest erase 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 127 * does not pick eraseblocks with erase counter greater than the lowest erase 128 * counter plus %WL_FREE_MAX_DIFF. 129 */ 130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 131 132 /* 133 * Maximum number of consecutive background thread failures which is enough to 134 * switch to read-only mode. 135 */ 136 #define WL_MAX_FAILURES 32 137 138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 139 static int self_check_in_wl_tree(const struct ubi_device *ubi, 140 struct ubi_wl_entry *e, struct rb_root *root); 141 static int self_check_in_pq(const struct ubi_device *ubi, 142 struct ubi_wl_entry *e); 143 144 /** 145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 146 * @e: the wear-leveling entry to add 147 * @root: the root of the tree 148 * 149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 150 * the @ubi->used and @ubi->free RB-trees. 151 */ 152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 153 { 154 struct rb_node **p, *parent = NULL; 155 156 p = &root->rb_node; 157 while (*p) { 158 struct ubi_wl_entry *e1; 159 160 parent = *p; 161 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 162 163 if (e->ec < e1->ec) 164 p = &(*p)->rb_left; 165 else if (e->ec > e1->ec) 166 p = &(*p)->rb_right; 167 else { 168 ubi_assert(e->pnum != e1->pnum); 169 if (e->pnum < e1->pnum) 170 p = &(*p)->rb_left; 171 else 172 p = &(*p)->rb_right; 173 } 174 } 175 176 rb_link_node(&e->u.rb, parent, p); 177 rb_insert_color(&e->u.rb, root); 178 } 179 180 /** 181 * wl_tree_destroy - destroy a wear-leveling entry. 182 * @ubi: UBI device description object 183 * @e: the wear-leveling entry to add 184 * 185 * This function destroys a wear leveling entry and removes 186 * the reference from the lookup table. 187 */ 188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 189 { 190 ubi->lookuptbl[e->pnum] = NULL; 191 kmem_cache_free(ubi_wl_entry_slab, e); 192 } 193 194 /** 195 * do_work - do one pending work. 196 * @ubi: UBI device description object 197 * 198 * This function returns zero in case of success and a negative error code in 199 * case of failure. 200 */ 201 static int do_work(struct ubi_device *ubi) 202 { 203 int err; 204 struct ubi_work *wrk; 205 206 cond_resched(); 207 208 /* 209 * @ubi->work_sem is used to synchronize with the workers. Workers take 210 * it in read mode, so many of them may be doing works at a time. But 211 * the queue flush code has to be sure the whole queue of works is 212 * done, and it takes the mutex in write mode. 213 */ 214 down_read(&ubi->work_sem); 215 spin_lock(&ubi->wl_lock); 216 if (list_empty(&ubi->works)) { 217 spin_unlock(&ubi->wl_lock); 218 up_read(&ubi->work_sem); 219 return 0; 220 } 221 222 wrk = list_entry(ubi->works.next, struct ubi_work, list); 223 list_del(&wrk->list); 224 ubi->works_count -= 1; 225 ubi_assert(ubi->works_count >= 0); 226 spin_unlock(&ubi->wl_lock); 227 228 /* 229 * Call the worker function. Do not touch the work structure 230 * after this call as it will have been freed or reused by that 231 * time by the worker function. 232 */ 233 err = wrk->func(ubi, wrk, 0); 234 if (err) 235 ubi_err(ubi, "work failed with error code %d", err); 236 up_read(&ubi->work_sem); 237 238 return err; 239 } 240 241 /** 242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 243 * @e: the wear-leveling entry to check 244 * @root: the root of the tree 245 * 246 * This function returns non-zero if @e is in the @root RB-tree and zero if it 247 * is not. 248 */ 249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 250 { 251 struct rb_node *p; 252 253 p = root->rb_node; 254 while (p) { 255 struct ubi_wl_entry *e1; 256 257 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 258 259 if (e->pnum == e1->pnum) { 260 ubi_assert(e == e1); 261 return 1; 262 } 263 264 if (e->ec < e1->ec) 265 p = p->rb_left; 266 else if (e->ec > e1->ec) 267 p = p->rb_right; 268 else { 269 ubi_assert(e->pnum != e1->pnum); 270 if (e->pnum < e1->pnum) 271 p = p->rb_left; 272 else 273 p = p->rb_right; 274 } 275 } 276 277 return 0; 278 } 279 280 /** 281 * prot_queue_add - add physical eraseblock to the protection queue. 282 * @ubi: UBI device description object 283 * @e: the physical eraseblock to add 284 * 285 * This function adds @e to the tail of the protection queue @ubi->pq, where 286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 288 * be locked. 289 */ 290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 291 { 292 int pq_tail = ubi->pq_head - 1; 293 294 if (pq_tail < 0) 295 pq_tail = UBI_PROT_QUEUE_LEN - 1; 296 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 297 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 298 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 299 } 300 301 /** 302 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 303 * @ubi: UBI device description object 304 * @root: the RB-tree where to look for 305 * @diff: maximum possible difference from the smallest erase counter 306 * 307 * This function looks for a wear leveling entry with erase counter closest to 308 * min + @diff, where min is the smallest erase counter. 309 */ 310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 311 struct rb_root *root, int diff) 312 { 313 struct rb_node *p; 314 struct ubi_wl_entry *e, *prev_e = NULL; 315 int max; 316 317 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 318 max = e->ec + diff; 319 320 p = root->rb_node; 321 while (p) { 322 struct ubi_wl_entry *e1; 323 324 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 325 if (e1->ec >= max) 326 p = p->rb_left; 327 else { 328 p = p->rb_right; 329 prev_e = e; 330 e = e1; 331 } 332 } 333 334 /* If no fastmap has been written and this WL entry can be used 335 * as anchor PEB, hold it back and return the second best WL entry 336 * such that fastmap can use the anchor PEB later. */ 337 if (prev_e && !ubi->fm_disabled && 338 !ubi->fm && e->pnum < UBI_FM_MAX_START) 339 return prev_e; 340 341 return e; 342 } 343 344 /** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355 { 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372 } 373 374 /** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383 { 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403 } 404 405 /** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413 static int prot_queue_del(struct ubi_device *ubi, int pnum) 414 { 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427 } 428 429 /** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440 { 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485 out_free: 486 kfree(ec_hdr); 487 return err; 488 } 489 490 /** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498 static void serve_prot_queue(struct ubi_device *ubi) 499 { 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507 repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532 } 533 534 /** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543 { 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551 } 552 553 /** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562 { 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566 } 567 568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571 /** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * 579 * This function returns zero in case of success and a %-ENOMEM in case of 580 * failure. 581 */ 582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 583 int vol_id, int lnum, int torture) 584 { 585 struct ubi_work *wl_wrk; 586 587 ubi_assert(e); 588 589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 590 e->pnum, e->ec, torture); 591 592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 593 if (!wl_wrk) 594 return -ENOMEM; 595 596 wl_wrk->func = &erase_worker; 597 wl_wrk->e = e; 598 wl_wrk->vol_id = vol_id; 599 wl_wrk->lnum = lnum; 600 wl_wrk->torture = torture; 601 602 schedule_ubi_work(ubi, wl_wrk); 603 return 0; 604 } 605 606 /** 607 * do_sync_erase - run the erase worker synchronously. 608 * @ubi: UBI device description object 609 * @e: the WL entry of the physical eraseblock to erase 610 * @vol_id: the volume ID that last used this PEB 611 * @lnum: the last used logical eraseblock number for the PEB 612 * @torture: if the physical eraseblock has to be tortured 613 * 614 */ 615 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 616 int vol_id, int lnum, int torture) 617 { 618 struct ubi_work *wl_wrk; 619 620 dbg_wl("sync erase of PEB %i", e->pnum); 621 622 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 623 if (!wl_wrk) 624 return -ENOMEM; 625 626 wl_wrk->e = e; 627 wl_wrk->vol_id = vol_id; 628 wl_wrk->lnum = lnum; 629 wl_wrk->torture = torture; 630 631 return erase_worker(ubi, wl_wrk, 0); 632 } 633 634 /** 635 * wear_leveling_worker - wear-leveling worker function. 636 * @ubi: UBI device description object 637 * @wrk: the work object 638 * @shutdown: non-zero if the worker has to free memory and exit 639 * because the WL-subsystem is shutting down 640 * 641 * This function copies a more worn out physical eraseblock to a less worn out 642 * one. Returns zero in case of success and a negative error code in case of 643 * failure. 644 */ 645 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 646 int shutdown) 647 { 648 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 649 int vol_id = -1, lnum = -1; 650 #ifdef CONFIG_MTD_UBI_FASTMAP 651 int anchor = wrk->anchor; 652 #endif 653 struct ubi_wl_entry *e1, *e2; 654 struct ubi_vid_hdr *vid_hdr; 655 656 kfree(wrk); 657 if (shutdown) 658 return 0; 659 660 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 661 if (!vid_hdr) 662 return -ENOMEM; 663 664 mutex_lock(&ubi->move_mutex); 665 spin_lock(&ubi->wl_lock); 666 ubi_assert(!ubi->move_from && !ubi->move_to); 667 ubi_assert(!ubi->move_to_put); 668 669 if (!ubi->free.rb_node || 670 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 671 /* 672 * No free physical eraseblocks? Well, they must be waiting in 673 * the queue to be erased. Cancel movement - it will be 674 * triggered again when a free physical eraseblock appears. 675 * 676 * No used physical eraseblocks? They must be temporarily 677 * protected from being moved. They will be moved to the 678 * @ubi->used tree later and the wear-leveling will be 679 * triggered again. 680 */ 681 dbg_wl("cancel WL, a list is empty: free %d, used %d", 682 !ubi->free.rb_node, !ubi->used.rb_node); 683 goto out_cancel; 684 } 685 686 #ifdef CONFIG_MTD_UBI_FASTMAP 687 /* Check whether we need to produce an anchor PEB */ 688 if (!anchor) 689 anchor = !anchor_pebs_avalible(&ubi->free); 690 691 if (anchor) { 692 e1 = find_anchor_wl_entry(&ubi->used); 693 if (!e1) 694 goto out_cancel; 695 e2 = get_peb_for_wl(ubi); 696 if (!e2) 697 goto out_cancel; 698 699 self_check_in_wl_tree(ubi, e1, &ubi->used); 700 rb_erase(&e1->u.rb, &ubi->used); 701 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 702 } else if (!ubi->scrub.rb_node) { 703 #else 704 if (!ubi->scrub.rb_node) { 705 #endif 706 /* 707 * Now pick the least worn-out used physical eraseblock and a 708 * highly worn-out free physical eraseblock. If the erase 709 * counters differ much enough, start wear-leveling. 710 */ 711 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 712 e2 = get_peb_for_wl(ubi); 713 if (!e2) 714 goto out_cancel; 715 716 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 717 dbg_wl("no WL needed: min used EC %d, max free EC %d", 718 e1->ec, e2->ec); 719 720 /* Give the unused PEB back */ 721 wl_tree_add(e2, &ubi->free); 722 ubi->free_count++; 723 goto out_cancel; 724 } 725 self_check_in_wl_tree(ubi, e1, &ubi->used); 726 rb_erase(&e1->u.rb, &ubi->used); 727 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 728 e1->pnum, e1->ec, e2->pnum, e2->ec); 729 } else { 730 /* Perform scrubbing */ 731 scrubbing = 1; 732 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 733 e2 = get_peb_for_wl(ubi); 734 if (!e2) 735 goto out_cancel; 736 737 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 738 rb_erase(&e1->u.rb, &ubi->scrub); 739 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 740 } 741 742 ubi->move_from = e1; 743 ubi->move_to = e2; 744 spin_unlock(&ubi->wl_lock); 745 746 /* 747 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 748 * We so far do not know which logical eraseblock our physical 749 * eraseblock (@e1) belongs to. We have to read the volume identifier 750 * header first. 751 * 752 * Note, we are protected from this PEB being unmapped and erased. The 753 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 754 * which is being moved was unmapped. 755 */ 756 757 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 758 if (err && err != UBI_IO_BITFLIPS) { 759 if (err == UBI_IO_FF) { 760 /* 761 * We are trying to move PEB without a VID header. UBI 762 * always write VID headers shortly after the PEB was 763 * given, so we have a situation when it has not yet 764 * had a chance to write it, because it was preempted. 765 * So add this PEB to the protection queue so far, 766 * because presumably more data will be written there 767 * (including the missing VID header), and then we'll 768 * move it. 769 */ 770 dbg_wl("PEB %d has no VID header", e1->pnum); 771 protect = 1; 772 goto out_not_moved; 773 } else if (err == UBI_IO_FF_BITFLIPS) { 774 /* 775 * The same situation as %UBI_IO_FF, but bit-flips were 776 * detected. It is better to schedule this PEB for 777 * scrubbing. 778 */ 779 dbg_wl("PEB %d has no VID header but has bit-flips", 780 e1->pnum); 781 scrubbing = 1; 782 goto out_not_moved; 783 } 784 785 ubi_err(ubi, "error %d while reading VID header from PEB %d", 786 err, e1->pnum); 787 goto out_error; 788 } 789 790 vol_id = be32_to_cpu(vid_hdr->vol_id); 791 lnum = be32_to_cpu(vid_hdr->lnum); 792 793 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 794 if (err) { 795 if (err == MOVE_CANCEL_RACE) { 796 /* 797 * The LEB has not been moved because the volume is 798 * being deleted or the PEB has been put meanwhile. We 799 * should prevent this PEB from being selected for 800 * wear-leveling movement again, so put it to the 801 * protection queue. 802 */ 803 protect = 1; 804 goto out_not_moved; 805 } 806 if (err == MOVE_RETRY) { 807 scrubbing = 1; 808 goto out_not_moved; 809 } 810 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 811 err == MOVE_TARGET_RD_ERR) { 812 /* 813 * Target PEB had bit-flips or write error - torture it. 814 */ 815 torture = 1; 816 goto out_not_moved; 817 } 818 819 if (err == MOVE_SOURCE_RD_ERR) { 820 /* 821 * An error happened while reading the source PEB. Do 822 * not switch to R/O mode in this case, and give the 823 * upper layers a possibility to recover from this, 824 * e.g. by unmapping corresponding LEB. Instead, just 825 * put this PEB to the @ubi->erroneous list to prevent 826 * UBI from trying to move it over and over again. 827 */ 828 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 829 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 830 ubi->erroneous_peb_count); 831 goto out_error; 832 } 833 erroneous = 1; 834 goto out_not_moved; 835 } 836 837 if (err < 0) 838 goto out_error; 839 840 ubi_assert(0); 841 } 842 843 /* The PEB has been successfully moved */ 844 if (scrubbing) 845 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 846 e1->pnum, vol_id, lnum, e2->pnum); 847 ubi_free_vid_hdr(ubi, vid_hdr); 848 849 spin_lock(&ubi->wl_lock); 850 if (!ubi->move_to_put) { 851 wl_tree_add(e2, &ubi->used); 852 e2 = NULL; 853 } 854 ubi->move_from = ubi->move_to = NULL; 855 ubi->move_to_put = ubi->wl_scheduled = 0; 856 spin_unlock(&ubi->wl_lock); 857 858 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 859 if (err) { 860 if (e2) 861 wl_entry_destroy(ubi, e2); 862 goto out_ro; 863 } 864 865 if (e2) { 866 /* 867 * Well, the target PEB was put meanwhile, schedule it for 868 * erasure. 869 */ 870 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 871 e2->pnum, vol_id, lnum); 872 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 873 if (err) 874 goto out_ro; 875 } 876 877 dbg_wl("done"); 878 mutex_unlock(&ubi->move_mutex); 879 return 0; 880 881 /* 882 * For some reasons the LEB was not moved, might be an error, might be 883 * something else. @e1 was not changed, so return it back. @e2 might 884 * have been changed, schedule it for erasure. 885 */ 886 out_not_moved: 887 if (vol_id != -1) 888 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 889 e1->pnum, vol_id, lnum, e2->pnum, err); 890 else 891 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 892 e1->pnum, e2->pnum, err); 893 spin_lock(&ubi->wl_lock); 894 if (protect) 895 prot_queue_add(ubi, e1); 896 else if (erroneous) { 897 wl_tree_add(e1, &ubi->erroneous); 898 ubi->erroneous_peb_count += 1; 899 } else if (scrubbing) 900 wl_tree_add(e1, &ubi->scrub); 901 else 902 wl_tree_add(e1, &ubi->used); 903 ubi_assert(!ubi->move_to_put); 904 ubi->move_from = ubi->move_to = NULL; 905 ubi->wl_scheduled = 0; 906 spin_unlock(&ubi->wl_lock); 907 908 ubi_free_vid_hdr(ubi, vid_hdr); 909 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 910 if (err) 911 goto out_ro; 912 913 mutex_unlock(&ubi->move_mutex); 914 return 0; 915 916 out_error: 917 if (vol_id != -1) 918 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 919 err, e1->pnum, e2->pnum); 920 else 921 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 922 err, e1->pnum, vol_id, lnum, e2->pnum); 923 spin_lock(&ubi->wl_lock); 924 ubi->move_from = ubi->move_to = NULL; 925 ubi->move_to_put = ubi->wl_scheduled = 0; 926 spin_unlock(&ubi->wl_lock); 927 928 ubi_free_vid_hdr(ubi, vid_hdr); 929 wl_entry_destroy(ubi, e1); 930 wl_entry_destroy(ubi, e2); 931 932 out_ro: 933 ubi_ro_mode(ubi); 934 mutex_unlock(&ubi->move_mutex); 935 ubi_assert(err != 0); 936 return err < 0 ? err : -EIO; 937 938 out_cancel: 939 ubi->wl_scheduled = 0; 940 spin_unlock(&ubi->wl_lock); 941 mutex_unlock(&ubi->move_mutex); 942 ubi_free_vid_hdr(ubi, vid_hdr); 943 return 0; 944 } 945 946 /** 947 * ensure_wear_leveling - schedule wear-leveling if it is needed. 948 * @ubi: UBI device description object 949 * @nested: set to non-zero if this function is called from UBI worker 950 * 951 * This function checks if it is time to start wear-leveling and schedules it 952 * if yes. This function returns zero in case of success and a negative error 953 * code in case of failure. 954 */ 955 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 956 { 957 int err = 0; 958 struct ubi_wl_entry *e1; 959 struct ubi_wl_entry *e2; 960 struct ubi_work *wrk; 961 962 spin_lock(&ubi->wl_lock); 963 if (ubi->wl_scheduled) 964 /* Wear-leveling is already in the work queue */ 965 goto out_unlock; 966 967 /* 968 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 969 * the WL worker has to be scheduled anyway. 970 */ 971 if (!ubi->scrub.rb_node) { 972 if (!ubi->used.rb_node || !ubi->free.rb_node) 973 /* No physical eraseblocks - no deal */ 974 goto out_unlock; 975 976 /* 977 * We schedule wear-leveling only if the difference between the 978 * lowest erase counter of used physical eraseblocks and a high 979 * erase counter of free physical eraseblocks is greater than 980 * %UBI_WL_THRESHOLD. 981 */ 982 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 983 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 984 985 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 986 goto out_unlock; 987 dbg_wl("schedule wear-leveling"); 988 } else 989 dbg_wl("schedule scrubbing"); 990 991 ubi->wl_scheduled = 1; 992 spin_unlock(&ubi->wl_lock); 993 994 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 995 if (!wrk) { 996 err = -ENOMEM; 997 goto out_cancel; 998 } 999 1000 wrk->anchor = 0; 1001 wrk->func = &wear_leveling_worker; 1002 if (nested) 1003 __schedule_ubi_work(ubi, wrk); 1004 else 1005 schedule_ubi_work(ubi, wrk); 1006 return err; 1007 1008 out_cancel: 1009 spin_lock(&ubi->wl_lock); 1010 ubi->wl_scheduled = 0; 1011 out_unlock: 1012 spin_unlock(&ubi->wl_lock); 1013 return err; 1014 } 1015 1016 /** 1017 * erase_worker - physical eraseblock erase worker function. 1018 * @ubi: UBI device description object 1019 * @wl_wrk: the work object 1020 * @shutdown: non-zero if the worker has to free memory and exit 1021 * because the WL sub-system is shutting down 1022 * 1023 * This function erases a physical eraseblock and perform torture testing if 1024 * needed. It also takes care about marking the physical eraseblock bad if 1025 * needed. Returns zero in case of success and a negative error code in case of 1026 * failure. 1027 */ 1028 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1029 int shutdown) 1030 { 1031 struct ubi_wl_entry *e = wl_wrk->e; 1032 int pnum = e->pnum; 1033 int vol_id = wl_wrk->vol_id; 1034 int lnum = wl_wrk->lnum; 1035 int err, available_consumed = 0; 1036 1037 if (shutdown) { 1038 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1039 kfree(wl_wrk); 1040 wl_entry_destroy(ubi, e); 1041 return 0; 1042 } 1043 1044 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1045 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1046 1047 err = sync_erase(ubi, e, wl_wrk->torture); 1048 if (!err) { 1049 /* Fine, we've erased it successfully */ 1050 kfree(wl_wrk); 1051 1052 spin_lock(&ubi->wl_lock); 1053 wl_tree_add(e, &ubi->free); 1054 ubi->free_count++; 1055 spin_unlock(&ubi->wl_lock); 1056 1057 /* 1058 * One more erase operation has happened, take care about 1059 * protected physical eraseblocks. 1060 */ 1061 serve_prot_queue(ubi); 1062 1063 /* And take care about wear-leveling */ 1064 err = ensure_wear_leveling(ubi, 1); 1065 return err; 1066 } 1067 1068 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1069 kfree(wl_wrk); 1070 1071 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1072 err == -EBUSY) { 1073 int err1; 1074 1075 /* Re-schedule the LEB for erasure */ 1076 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1077 if (err1) { 1078 err = err1; 1079 goto out_ro; 1080 } 1081 return err; 1082 } 1083 1084 wl_entry_destroy(ubi, e); 1085 if (err != -EIO) 1086 /* 1087 * If this is not %-EIO, we have no idea what to do. Scheduling 1088 * this physical eraseblock for erasure again would cause 1089 * errors again and again. Well, lets switch to R/O mode. 1090 */ 1091 goto out_ro; 1092 1093 /* It is %-EIO, the PEB went bad */ 1094 1095 if (!ubi->bad_allowed) { 1096 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1097 goto out_ro; 1098 } 1099 1100 spin_lock(&ubi->volumes_lock); 1101 if (ubi->beb_rsvd_pebs == 0) { 1102 if (ubi->avail_pebs == 0) { 1103 spin_unlock(&ubi->volumes_lock); 1104 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1105 goto out_ro; 1106 } 1107 ubi->avail_pebs -= 1; 1108 available_consumed = 1; 1109 } 1110 spin_unlock(&ubi->volumes_lock); 1111 1112 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1113 err = ubi_io_mark_bad(ubi, pnum); 1114 if (err) 1115 goto out_ro; 1116 1117 spin_lock(&ubi->volumes_lock); 1118 if (ubi->beb_rsvd_pebs > 0) { 1119 if (available_consumed) { 1120 /* 1121 * The amount of reserved PEBs increased since we last 1122 * checked. 1123 */ 1124 ubi->avail_pebs += 1; 1125 available_consumed = 0; 1126 } 1127 ubi->beb_rsvd_pebs -= 1; 1128 } 1129 ubi->bad_peb_count += 1; 1130 ubi->good_peb_count -= 1; 1131 ubi_calculate_reserved(ubi); 1132 if (available_consumed) 1133 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1134 else if (ubi->beb_rsvd_pebs) 1135 ubi_msg(ubi, "%d PEBs left in the reserve", 1136 ubi->beb_rsvd_pebs); 1137 else 1138 ubi_warn(ubi, "last PEB from the reserve was used"); 1139 spin_unlock(&ubi->volumes_lock); 1140 1141 return err; 1142 1143 out_ro: 1144 if (available_consumed) { 1145 spin_lock(&ubi->volumes_lock); 1146 ubi->avail_pebs += 1; 1147 spin_unlock(&ubi->volumes_lock); 1148 } 1149 ubi_ro_mode(ubi); 1150 return err; 1151 } 1152 1153 /** 1154 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1155 * @ubi: UBI device description object 1156 * @vol_id: the volume ID that last used this PEB 1157 * @lnum: the last used logical eraseblock number for the PEB 1158 * @pnum: physical eraseblock to return 1159 * @torture: if this physical eraseblock has to be tortured 1160 * 1161 * This function is called to return physical eraseblock @pnum to the pool of 1162 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1163 * occurred to this @pnum and it has to be tested. This function returns zero 1164 * in case of success, and a negative error code in case of failure. 1165 */ 1166 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1167 int pnum, int torture) 1168 { 1169 int err; 1170 struct ubi_wl_entry *e; 1171 1172 dbg_wl("PEB %d", pnum); 1173 ubi_assert(pnum >= 0); 1174 ubi_assert(pnum < ubi->peb_count); 1175 1176 down_read(&ubi->fm_protect); 1177 1178 retry: 1179 spin_lock(&ubi->wl_lock); 1180 e = ubi->lookuptbl[pnum]; 1181 if (e == ubi->move_from) { 1182 /* 1183 * User is putting the physical eraseblock which was selected to 1184 * be moved. It will be scheduled for erasure in the 1185 * wear-leveling worker. 1186 */ 1187 dbg_wl("PEB %d is being moved, wait", pnum); 1188 spin_unlock(&ubi->wl_lock); 1189 1190 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1191 mutex_lock(&ubi->move_mutex); 1192 mutex_unlock(&ubi->move_mutex); 1193 goto retry; 1194 } else if (e == ubi->move_to) { 1195 /* 1196 * User is putting the physical eraseblock which was selected 1197 * as the target the data is moved to. It may happen if the EBA 1198 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1199 * but the WL sub-system has not put the PEB to the "used" tree 1200 * yet, but it is about to do this. So we just set a flag which 1201 * will tell the WL worker that the PEB is not needed anymore 1202 * and should be scheduled for erasure. 1203 */ 1204 dbg_wl("PEB %d is the target of data moving", pnum); 1205 ubi_assert(!ubi->move_to_put); 1206 ubi->move_to_put = 1; 1207 spin_unlock(&ubi->wl_lock); 1208 up_read(&ubi->fm_protect); 1209 return 0; 1210 } else { 1211 if (in_wl_tree(e, &ubi->used)) { 1212 self_check_in_wl_tree(ubi, e, &ubi->used); 1213 rb_erase(&e->u.rb, &ubi->used); 1214 } else if (in_wl_tree(e, &ubi->scrub)) { 1215 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1216 rb_erase(&e->u.rb, &ubi->scrub); 1217 } else if (in_wl_tree(e, &ubi->erroneous)) { 1218 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1219 rb_erase(&e->u.rb, &ubi->erroneous); 1220 ubi->erroneous_peb_count -= 1; 1221 ubi_assert(ubi->erroneous_peb_count >= 0); 1222 /* Erroneous PEBs should be tortured */ 1223 torture = 1; 1224 } else { 1225 err = prot_queue_del(ubi, e->pnum); 1226 if (err) { 1227 ubi_err(ubi, "PEB %d not found", pnum); 1228 ubi_ro_mode(ubi); 1229 spin_unlock(&ubi->wl_lock); 1230 up_read(&ubi->fm_protect); 1231 return err; 1232 } 1233 } 1234 } 1235 spin_unlock(&ubi->wl_lock); 1236 1237 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1238 if (err) { 1239 spin_lock(&ubi->wl_lock); 1240 wl_tree_add(e, &ubi->used); 1241 spin_unlock(&ubi->wl_lock); 1242 } 1243 1244 up_read(&ubi->fm_protect); 1245 return err; 1246 } 1247 1248 /** 1249 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1250 * @ubi: UBI device description object 1251 * @pnum: the physical eraseblock to schedule 1252 * 1253 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1254 * needs scrubbing. This function schedules a physical eraseblock for 1255 * scrubbing which is done in background. This function returns zero in case of 1256 * success and a negative error code in case of failure. 1257 */ 1258 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1259 { 1260 struct ubi_wl_entry *e; 1261 1262 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1263 1264 retry: 1265 spin_lock(&ubi->wl_lock); 1266 e = ubi->lookuptbl[pnum]; 1267 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1268 in_wl_tree(e, &ubi->erroneous)) { 1269 spin_unlock(&ubi->wl_lock); 1270 return 0; 1271 } 1272 1273 if (e == ubi->move_to) { 1274 /* 1275 * This physical eraseblock was used to move data to. The data 1276 * was moved but the PEB was not yet inserted to the proper 1277 * tree. We should just wait a little and let the WL worker 1278 * proceed. 1279 */ 1280 spin_unlock(&ubi->wl_lock); 1281 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1282 yield(); 1283 goto retry; 1284 } 1285 1286 if (in_wl_tree(e, &ubi->used)) { 1287 self_check_in_wl_tree(ubi, e, &ubi->used); 1288 rb_erase(&e->u.rb, &ubi->used); 1289 } else { 1290 int err; 1291 1292 err = prot_queue_del(ubi, e->pnum); 1293 if (err) { 1294 ubi_err(ubi, "PEB %d not found", pnum); 1295 ubi_ro_mode(ubi); 1296 spin_unlock(&ubi->wl_lock); 1297 return err; 1298 } 1299 } 1300 1301 wl_tree_add(e, &ubi->scrub); 1302 spin_unlock(&ubi->wl_lock); 1303 1304 /* 1305 * Technically scrubbing is the same as wear-leveling, so it is done 1306 * by the WL worker. 1307 */ 1308 return ensure_wear_leveling(ubi, 0); 1309 } 1310 1311 /** 1312 * ubi_wl_flush - flush all pending works. 1313 * @ubi: UBI device description object 1314 * @vol_id: the volume id to flush for 1315 * @lnum: the logical eraseblock number to flush for 1316 * 1317 * This function executes all pending works for a particular volume id / 1318 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1319 * acts as a wildcard for all of the corresponding volume numbers or logical 1320 * eraseblock numbers. It returns zero in case of success and a negative error 1321 * code in case of failure. 1322 */ 1323 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1324 { 1325 int err = 0; 1326 int found = 1; 1327 1328 /* 1329 * Erase while the pending works queue is not empty, but not more than 1330 * the number of currently pending works. 1331 */ 1332 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1333 vol_id, lnum, ubi->works_count); 1334 1335 while (found) { 1336 struct ubi_work *wrk, *tmp; 1337 found = 0; 1338 1339 down_read(&ubi->work_sem); 1340 spin_lock(&ubi->wl_lock); 1341 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1342 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1343 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1344 list_del(&wrk->list); 1345 ubi->works_count -= 1; 1346 ubi_assert(ubi->works_count >= 0); 1347 spin_unlock(&ubi->wl_lock); 1348 1349 err = wrk->func(ubi, wrk, 0); 1350 if (err) { 1351 up_read(&ubi->work_sem); 1352 return err; 1353 } 1354 1355 spin_lock(&ubi->wl_lock); 1356 found = 1; 1357 break; 1358 } 1359 } 1360 spin_unlock(&ubi->wl_lock); 1361 up_read(&ubi->work_sem); 1362 } 1363 1364 /* 1365 * Make sure all the works which have been done in parallel are 1366 * finished. 1367 */ 1368 down_write(&ubi->work_sem); 1369 up_write(&ubi->work_sem); 1370 1371 return err; 1372 } 1373 1374 /** 1375 * tree_destroy - destroy an RB-tree. 1376 * @ubi: UBI device description object 1377 * @root: the root of the tree to destroy 1378 */ 1379 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1380 { 1381 struct rb_node *rb; 1382 struct ubi_wl_entry *e; 1383 1384 rb = root->rb_node; 1385 while (rb) { 1386 if (rb->rb_left) 1387 rb = rb->rb_left; 1388 else if (rb->rb_right) 1389 rb = rb->rb_right; 1390 else { 1391 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1392 1393 rb = rb_parent(rb); 1394 if (rb) { 1395 if (rb->rb_left == &e->u.rb) 1396 rb->rb_left = NULL; 1397 else 1398 rb->rb_right = NULL; 1399 } 1400 1401 wl_entry_destroy(ubi, e); 1402 } 1403 } 1404 } 1405 1406 /** 1407 * ubi_thread - UBI background thread. 1408 * @u: the UBI device description object pointer 1409 */ 1410 int ubi_thread(void *u) 1411 { 1412 int failures = 0; 1413 struct ubi_device *ubi = u; 1414 1415 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1416 ubi->bgt_name, task_pid_nr(current)); 1417 1418 set_freezable(); 1419 for (;;) { 1420 int err; 1421 1422 if (kthread_should_stop()) 1423 break; 1424 1425 if (try_to_freeze()) 1426 continue; 1427 1428 spin_lock(&ubi->wl_lock); 1429 if (list_empty(&ubi->works) || ubi->ro_mode || 1430 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1431 set_current_state(TASK_INTERRUPTIBLE); 1432 spin_unlock(&ubi->wl_lock); 1433 schedule(); 1434 continue; 1435 } 1436 spin_unlock(&ubi->wl_lock); 1437 1438 err = do_work(ubi); 1439 if (err) { 1440 ubi_err(ubi, "%s: work failed with error code %d", 1441 ubi->bgt_name, err); 1442 if (failures++ > WL_MAX_FAILURES) { 1443 /* 1444 * Too many failures, disable the thread and 1445 * switch to read-only mode. 1446 */ 1447 ubi_msg(ubi, "%s: %d consecutive failures", 1448 ubi->bgt_name, WL_MAX_FAILURES); 1449 ubi_ro_mode(ubi); 1450 ubi->thread_enabled = 0; 1451 continue; 1452 } 1453 } else 1454 failures = 0; 1455 1456 cond_resched(); 1457 } 1458 1459 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1460 return 0; 1461 } 1462 1463 /** 1464 * shutdown_work - shutdown all pending works. 1465 * @ubi: UBI device description object 1466 */ 1467 static void shutdown_work(struct ubi_device *ubi) 1468 { 1469 #ifdef CONFIG_MTD_UBI_FASTMAP 1470 flush_work(&ubi->fm_work); 1471 #endif 1472 while (!list_empty(&ubi->works)) { 1473 struct ubi_work *wrk; 1474 1475 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1476 list_del(&wrk->list); 1477 wrk->func(ubi, wrk, 1); 1478 ubi->works_count -= 1; 1479 ubi_assert(ubi->works_count >= 0); 1480 } 1481 } 1482 1483 /** 1484 * ubi_wl_init - initialize the WL sub-system using attaching information. 1485 * @ubi: UBI device description object 1486 * @ai: attaching information 1487 * 1488 * This function returns zero in case of success, and a negative error code in 1489 * case of failure. 1490 */ 1491 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1492 { 1493 int err, i, reserved_pebs, found_pebs = 0; 1494 struct rb_node *rb1, *rb2; 1495 struct ubi_ainf_volume *av; 1496 struct ubi_ainf_peb *aeb, *tmp; 1497 struct ubi_wl_entry *e; 1498 1499 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1500 spin_lock_init(&ubi->wl_lock); 1501 mutex_init(&ubi->move_mutex); 1502 init_rwsem(&ubi->work_sem); 1503 ubi->max_ec = ai->max_ec; 1504 INIT_LIST_HEAD(&ubi->works); 1505 1506 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1507 1508 err = -ENOMEM; 1509 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1510 if (!ubi->lookuptbl) 1511 return err; 1512 1513 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1514 INIT_LIST_HEAD(&ubi->pq[i]); 1515 ubi->pq_head = 0; 1516 1517 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1518 cond_resched(); 1519 1520 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1521 if (!e) 1522 goto out_free; 1523 1524 e->pnum = aeb->pnum; 1525 e->ec = aeb->ec; 1526 ubi->lookuptbl[e->pnum] = e; 1527 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1528 wl_entry_destroy(ubi, e); 1529 goto out_free; 1530 } 1531 1532 found_pebs++; 1533 } 1534 1535 ubi->free_count = 0; 1536 list_for_each_entry(aeb, &ai->free, u.list) { 1537 cond_resched(); 1538 1539 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1540 if (!e) 1541 goto out_free; 1542 1543 e->pnum = aeb->pnum; 1544 e->ec = aeb->ec; 1545 ubi_assert(e->ec >= 0); 1546 1547 wl_tree_add(e, &ubi->free); 1548 ubi->free_count++; 1549 1550 ubi->lookuptbl[e->pnum] = e; 1551 1552 found_pebs++; 1553 } 1554 1555 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1556 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1557 cond_resched(); 1558 1559 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1560 if (!e) 1561 goto out_free; 1562 1563 e->pnum = aeb->pnum; 1564 e->ec = aeb->ec; 1565 ubi->lookuptbl[e->pnum] = e; 1566 1567 if (!aeb->scrub) { 1568 dbg_wl("add PEB %d EC %d to the used tree", 1569 e->pnum, e->ec); 1570 wl_tree_add(e, &ubi->used); 1571 } else { 1572 dbg_wl("add PEB %d EC %d to the scrub tree", 1573 e->pnum, e->ec); 1574 wl_tree_add(e, &ubi->scrub); 1575 } 1576 1577 found_pebs++; 1578 } 1579 } 1580 1581 dbg_wl("found %i PEBs", found_pebs); 1582 1583 if (ubi->fm) { 1584 ubi_assert(ubi->good_peb_count == 1585 found_pebs + ubi->fm->used_blocks); 1586 1587 for (i = 0; i < ubi->fm->used_blocks; i++) { 1588 e = ubi->fm->e[i]; 1589 ubi->lookuptbl[e->pnum] = e; 1590 } 1591 } 1592 else 1593 ubi_assert(ubi->good_peb_count == found_pebs); 1594 1595 reserved_pebs = WL_RESERVED_PEBS; 1596 ubi_fastmap_init(ubi, &reserved_pebs); 1597 1598 if (ubi->avail_pebs < reserved_pebs) { 1599 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1600 ubi->avail_pebs, reserved_pebs); 1601 if (ubi->corr_peb_count) 1602 ubi_err(ubi, "%d PEBs are corrupted and not used", 1603 ubi->corr_peb_count); 1604 err = -ENOSPC; 1605 goto out_free; 1606 } 1607 ubi->avail_pebs -= reserved_pebs; 1608 ubi->rsvd_pebs += reserved_pebs; 1609 1610 /* Schedule wear-leveling if needed */ 1611 err = ensure_wear_leveling(ubi, 0); 1612 if (err) 1613 goto out_free; 1614 1615 return 0; 1616 1617 out_free: 1618 shutdown_work(ubi); 1619 tree_destroy(ubi, &ubi->used); 1620 tree_destroy(ubi, &ubi->free); 1621 tree_destroy(ubi, &ubi->scrub); 1622 kfree(ubi->lookuptbl); 1623 return err; 1624 } 1625 1626 /** 1627 * protection_queue_destroy - destroy the protection queue. 1628 * @ubi: UBI device description object 1629 */ 1630 static void protection_queue_destroy(struct ubi_device *ubi) 1631 { 1632 int i; 1633 struct ubi_wl_entry *e, *tmp; 1634 1635 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1636 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1637 list_del(&e->u.list); 1638 wl_entry_destroy(ubi, e); 1639 } 1640 } 1641 } 1642 1643 /** 1644 * ubi_wl_close - close the wear-leveling sub-system. 1645 * @ubi: UBI device description object 1646 */ 1647 void ubi_wl_close(struct ubi_device *ubi) 1648 { 1649 dbg_wl("close the WL sub-system"); 1650 ubi_fastmap_close(ubi); 1651 shutdown_work(ubi); 1652 protection_queue_destroy(ubi); 1653 tree_destroy(ubi, &ubi->used); 1654 tree_destroy(ubi, &ubi->erroneous); 1655 tree_destroy(ubi, &ubi->free); 1656 tree_destroy(ubi, &ubi->scrub); 1657 kfree(ubi->lookuptbl); 1658 } 1659 1660 /** 1661 * self_check_ec - make sure that the erase counter of a PEB is correct. 1662 * @ubi: UBI device description object 1663 * @pnum: the physical eraseblock number to check 1664 * @ec: the erase counter to check 1665 * 1666 * This function returns zero if the erase counter of physical eraseblock @pnum 1667 * is equivalent to @ec, and a negative error code if not or if an error 1668 * occurred. 1669 */ 1670 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1671 { 1672 int err; 1673 long long read_ec; 1674 struct ubi_ec_hdr *ec_hdr; 1675 1676 if (!ubi_dbg_chk_gen(ubi)) 1677 return 0; 1678 1679 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1680 if (!ec_hdr) 1681 return -ENOMEM; 1682 1683 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1684 if (err && err != UBI_IO_BITFLIPS) { 1685 /* The header does not have to exist */ 1686 err = 0; 1687 goto out_free; 1688 } 1689 1690 read_ec = be64_to_cpu(ec_hdr->ec); 1691 if (ec != read_ec && read_ec - ec > 1) { 1692 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1693 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1694 dump_stack(); 1695 err = 1; 1696 } else 1697 err = 0; 1698 1699 out_free: 1700 kfree(ec_hdr); 1701 return err; 1702 } 1703 1704 /** 1705 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1706 * @ubi: UBI device description object 1707 * @e: the wear-leveling entry to check 1708 * @root: the root of the tree 1709 * 1710 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1711 * is not. 1712 */ 1713 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1714 struct ubi_wl_entry *e, struct rb_root *root) 1715 { 1716 if (!ubi_dbg_chk_gen(ubi)) 1717 return 0; 1718 1719 if (in_wl_tree(e, root)) 1720 return 0; 1721 1722 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 1723 e->pnum, e->ec, root); 1724 dump_stack(); 1725 return -EINVAL; 1726 } 1727 1728 /** 1729 * self_check_in_pq - check if wear-leveling entry is in the protection 1730 * queue. 1731 * @ubi: UBI device description object 1732 * @e: the wear-leveling entry to check 1733 * 1734 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1735 */ 1736 static int self_check_in_pq(const struct ubi_device *ubi, 1737 struct ubi_wl_entry *e) 1738 { 1739 struct ubi_wl_entry *p; 1740 int i; 1741 1742 if (!ubi_dbg_chk_gen(ubi)) 1743 return 0; 1744 1745 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1746 list_for_each_entry(p, &ubi->pq[i], u.list) 1747 if (p == e) 1748 return 0; 1749 1750 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 1751 e->pnum, e->ec); 1752 dump_stack(); 1753 return -EINVAL; 1754 } 1755 #ifndef CONFIG_MTD_UBI_FASTMAP 1756 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 1757 { 1758 struct ubi_wl_entry *e; 1759 1760 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1761 self_check_in_wl_tree(ubi, e, &ubi->free); 1762 ubi->free_count--; 1763 ubi_assert(ubi->free_count >= 0); 1764 rb_erase(&e->u.rb, &ubi->free); 1765 1766 return e; 1767 } 1768 1769 /** 1770 * produce_free_peb - produce a free physical eraseblock. 1771 * @ubi: UBI device description object 1772 * 1773 * This function tries to make a free PEB by means of synchronous execution of 1774 * pending works. This may be needed if, for example the background thread is 1775 * disabled. Returns zero in case of success and a negative error code in case 1776 * of failure. 1777 */ 1778 static int produce_free_peb(struct ubi_device *ubi) 1779 { 1780 int err; 1781 1782 while (!ubi->free.rb_node && ubi->works_count) { 1783 spin_unlock(&ubi->wl_lock); 1784 1785 dbg_wl("do one work synchronously"); 1786 err = do_work(ubi); 1787 1788 spin_lock(&ubi->wl_lock); 1789 if (err) 1790 return err; 1791 } 1792 1793 return 0; 1794 } 1795 1796 /** 1797 * ubi_wl_get_peb - get a physical eraseblock. 1798 * @ubi: UBI device description object 1799 * 1800 * This function returns a physical eraseblock in case of success and a 1801 * negative error code in case of failure. 1802 * Returns with ubi->fm_eba_sem held in read mode! 1803 */ 1804 int ubi_wl_get_peb(struct ubi_device *ubi) 1805 { 1806 int err; 1807 struct ubi_wl_entry *e; 1808 1809 retry: 1810 down_read(&ubi->fm_eba_sem); 1811 spin_lock(&ubi->wl_lock); 1812 if (!ubi->free.rb_node) { 1813 if (ubi->works_count == 0) { 1814 ubi_err(ubi, "no free eraseblocks"); 1815 ubi_assert(list_empty(&ubi->works)); 1816 spin_unlock(&ubi->wl_lock); 1817 return -ENOSPC; 1818 } 1819 1820 err = produce_free_peb(ubi); 1821 if (err < 0) { 1822 spin_unlock(&ubi->wl_lock); 1823 return err; 1824 } 1825 spin_unlock(&ubi->wl_lock); 1826 up_read(&ubi->fm_eba_sem); 1827 goto retry; 1828 1829 } 1830 e = wl_get_wle(ubi); 1831 prot_queue_add(ubi, e); 1832 spin_unlock(&ubi->wl_lock); 1833 1834 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 1835 ubi->peb_size - ubi->vid_hdr_aloffset); 1836 if (err) { 1837 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 1838 return err; 1839 } 1840 1841 return e->pnum; 1842 } 1843 #else 1844 #include "fastmap-wl.c" 1845 #endif 1846