xref: /linux/drivers/mtd/ubi/wl.c (revision c6bd5bcc4983f1a2d2f87a3769bf309482ee8c04)
1 /*
2  * @ubi: UBI device description object
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20  */
21 
22 /*
23  * UBI wear-leveling sub-system.
24  *
25  * This sub-system is responsible for wear-leveling. It works in terms of
26  * physical eraseblocks and erase counters and knows nothing about logical
27  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28  * eraseblocks are of two types - used and free. Used physical eraseblocks are
29  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31  *
32  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33  * header. The rest of the physical eraseblock contains only %0xFF bytes.
34  *
35  * When physical eraseblocks are returned to the WL sub-system by means of the
36  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37  * done asynchronously in context of the per-UBI device background thread,
38  * which is also managed by the WL sub-system.
39  *
40  * The wear-leveling is ensured by means of moving the contents of used
41  * physical eraseblocks with low erase counter to free physical eraseblocks
42  * with high erase counter.
43  *
44  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
45  * bad.
46  *
47  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
48  * in a physical eraseblock, it has to be moved. Technically this is the same
49  * as moving it for wear-leveling reasons.
50  *
51  * As it was said, for the UBI sub-system all physical eraseblocks are either
52  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
53  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
54  * RB-trees, as well as (temporarily) in the @wl->pq queue.
55  *
56  * When the WL sub-system returns a physical eraseblock, the physical
57  * eraseblock is protected from being moved for some "time". For this reason,
58  * the physical eraseblock is not directly moved from the @wl->free tree to the
59  * @wl->used tree. There is a protection queue in between where this
60  * physical eraseblock is temporarily stored (@wl->pq).
61  *
62  * All this protection stuff is needed because:
63  *  o we don't want to move physical eraseblocks just after we have given them
64  *    to the user; instead, we first want to let users fill them up with data;
65  *
66  *  o there is a chance that the user will put the physical eraseblock very
67  *    soon, so it makes sense not to move it for some time, but wait.
68  *
69  * Physical eraseblocks stay protected only for limited time. But the "time" is
70  * measured in erase cycles in this case. This is implemented with help of the
71  * protection queue. Eraseblocks are put to the tail of this queue when they
72  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
73  * head of the queue on each erase operation (for any eraseblock). So the
74  * length of the queue defines how may (global) erase cycles PEBs are protected.
75  *
76  * To put it differently, each physical eraseblock has 2 main states: free and
77  * used. The former state corresponds to the @wl->free tree. The latter state
78  * is split up on several sub-states:
79  * o the WL movement is allowed (@wl->used tree);
80  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
81  *   erroneous - e.g., there was a read error;
82  * o the WL movement is temporarily prohibited (@wl->pq queue);
83  * o scrubbing is needed (@wl->scrub tree).
84  *
85  * Depending on the sub-state, wear-leveling entries of the used physical
86  * eraseblocks may be kept in one of those structures.
87  *
88  * Note, in this implementation, we keep a small in-RAM object for each physical
89  * eraseblock. This is surely not a scalable solution. But it appears to be good
90  * enough for moderately large flashes and it is simple. In future, one may
91  * re-work this sub-system and make it more scalable.
92  *
93  * At the moment this sub-system does not utilize the sequence number, which
94  * was introduced relatively recently. But it would be wise to do this because
95  * the sequence number of a logical eraseblock characterizes how old is it. For
96  * example, when we move a PEB with low erase counter, and we need to pick the
97  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
98  * pick target PEB with an average EC if our PEB is not very "old". This is a
99  * room for future re-works of the WL sub-system.
100  */
101 
102 #include <linux/slab.h>
103 #include <linux/crc32.h>
104 #include <linux/freezer.h>
105 #include <linux/kthread.h>
106 #include "ubi.h"
107 
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110 
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118 
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131 
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137 
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 				 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 			    struct ubi_wl_entry *e);
143 
144 #ifdef CONFIG_MTD_UBI_FASTMAP
145 /**
146  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
147  * @wrk: the work description object
148  */
149 static void update_fastmap_work_fn(struct work_struct *wrk)
150 {
151 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
152 	ubi_update_fastmap(ubi);
153 }
154 
155 /**
156  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
157  *  @ubi: UBI device description object
158  *  @pnum: the to be checked PEB
159  */
160 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
161 {
162 	int i;
163 
164 	if (!ubi->fm)
165 		return 0;
166 
167 	for (i = 0; i < ubi->fm->used_blocks; i++)
168 		if (ubi->fm->e[i]->pnum == pnum)
169 			return 1;
170 
171 	return 0;
172 }
173 #else
174 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
175 {
176 	return 0;
177 }
178 #endif
179 
180 /**
181  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
182  * @e: the wear-leveling entry to add
183  * @root: the root of the tree
184  *
185  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
186  * the @ubi->used and @ubi->free RB-trees.
187  */
188 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
189 {
190 	struct rb_node **p, *parent = NULL;
191 
192 	p = &root->rb_node;
193 	while (*p) {
194 		struct ubi_wl_entry *e1;
195 
196 		parent = *p;
197 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
198 
199 		if (e->ec < e1->ec)
200 			p = &(*p)->rb_left;
201 		else if (e->ec > e1->ec)
202 			p = &(*p)->rb_right;
203 		else {
204 			ubi_assert(e->pnum != e1->pnum);
205 			if (e->pnum < e1->pnum)
206 				p = &(*p)->rb_left;
207 			else
208 				p = &(*p)->rb_right;
209 		}
210 	}
211 
212 	rb_link_node(&e->u.rb, parent, p);
213 	rb_insert_color(&e->u.rb, root);
214 }
215 
216 /**
217  * do_work - do one pending work.
218  * @ubi: UBI device description object
219  *
220  * This function returns zero in case of success and a negative error code in
221  * case of failure.
222  */
223 static int do_work(struct ubi_device *ubi)
224 {
225 	int err;
226 	struct ubi_work *wrk;
227 
228 	cond_resched();
229 
230 	/*
231 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
232 	 * it in read mode, so many of them may be doing works at a time. But
233 	 * the queue flush code has to be sure the whole queue of works is
234 	 * done, and it takes the mutex in write mode.
235 	 */
236 	down_read(&ubi->work_sem);
237 	spin_lock(&ubi->wl_lock);
238 	if (list_empty(&ubi->works)) {
239 		spin_unlock(&ubi->wl_lock);
240 		up_read(&ubi->work_sem);
241 		return 0;
242 	}
243 
244 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
245 	list_del(&wrk->list);
246 	ubi->works_count -= 1;
247 	ubi_assert(ubi->works_count >= 0);
248 	spin_unlock(&ubi->wl_lock);
249 
250 	/*
251 	 * Call the worker function. Do not touch the work structure
252 	 * after this call as it will have been freed or reused by that
253 	 * time by the worker function.
254 	 */
255 	err = wrk->func(ubi, wrk, 0);
256 	if (err)
257 		ubi_err("work failed with error code %d", err);
258 	up_read(&ubi->work_sem);
259 
260 	return err;
261 }
262 
263 /**
264  * produce_free_peb - produce a free physical eraseblock.
265  * @ubi: UBI device description object
266  *
267  * This function tries to make a free PEB by means of synchronous execution of
268  * pending works. This may be needed if, for example the background thread is
269  * disabled. Returns zero in case of success and a negative error code in case
270  * of failure.
271  */
272 static int produce_free_peb(struct ubi_device *ubi)
273 {
274 	int err;
275 
276 	while (!ubi->free.rb_node) {
277 		spin_unlock(&ubi->wl_lock);
278 
279 		dbg_wl("do one work synchronously");
280 		err = do_work(ubi);
281 
282 		spin_lock(&ubi->wl_lock);
283 		if (err)
284 			return err;
285 	}
286 
287 	return 0;
288 }
289 
290 /**
291  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292  * @e: the wear-leveling entry to check
293  * @root: the root of the tree
294  *
295  * This function returns non-zero if @e is in the @root RB-tree and zero if it
296  * is not.
297  */
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299 {
300 	struct rb_node *p;
301 
302 	p = root->rb_node;
303 	while (p) {
304 		struct ubi_wl_entry *e1;
305 
306 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307 
308 		if (e->pnum == e1->pnum) {
309 			ubi_assert(e == e1);
310 			return 1;
311 		}
312 
313 		if (e->ec < e1->ec)
314 			p = p->rb_left;
315 		else if (e->ec > e1->ec)
316 			p = p->rb_right;
317 		else {
318 			ubi_assert(e->pnum != e1->pnum);
319 			if (e->pnum < e1->pnum)
320 				p = p->rb_left;
321 			else
322 				p = p->rb_right;
323 		}
324 	}
325 
326 	return 0;
327 }
328 
329 /**
330  * prot_queue_add - add physical eraseblock to the protection queue.
331  * @ubi: UBI device description object
332  * @e: the physical eraseblock to add
333  *
334  * This function adds @e to the tail of the protection queue @ubi->pq, where
335  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337  * be locked.
338  */
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 {
341 	int pq_tail = ubi->pq_head - 1;
342 
343 	if (pq_tail < 0)
344 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 }
349 
350 /**
351  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352  * @ubi: UBI device description object
353  * @root: the RB-tree where to look for
354  * @diff: maximum possible difference from the smallest erase counter
355  *
356  * This function looks for a wear leveling entry with erase counter closest to
357  * min + @diff, where min is the smallest erase counter.
358  */
359 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
360 					  struct rb_root *root, int diff)
361 {
362 	struct rb_node *p;
363 	struct ubi_wl_entry *e, *prev_e = NULL;
364 	int max;
365 
366 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
367 	max = e->ec + diff;
368 
369 	p = root->rb_node;
370 	while (p) {
371 		struct ubi_wl_entry *e1;
372 
373 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
374 		if (e1->ec >= max)
375 			p = p->rb_left;
376 		else {
377 			p = p->rb_right;
378 			prev_e = e;
379 			e = e1;
380 		}
381 	}
382 
383 	/* If no fastmap has been written and this WL entry can be used
384 	 * as anchor PEB, hold it back and return the second best WL entry
385 	 * such that fastmap can use the anchor PEB later. */
386 	if (prev_e && !ubi->fm_disabled &&
387 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
388 		return prev_e;
389 
390 	return e;
391 }
392 
393 /**
394  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
395  * @ubi: UBI device description object
396  * @root: the RB-tree where to look for
397  *
398  * This function looks for a wear leveling entry with medium erase counter,
399  * but not greater or equivalent than the lowest erase counter plus
400  * %WL_FREE_MAX_DIFF/2.
401  */
402 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
403 					       struct rb_root *root)
404 {
405 	struct ubi_wl_entry *e, *first, *last;
406 
407 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
408 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
409 
410 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
411 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
412 
413 #ifdef CONFIG_MTD_UBI_FASTMAP
414 		/* If no fastmap has been written and this WL entry can be used
415 		 * as anchor PEB, hold it back and return the second best
416 		 * WL entry such that fastmap can use the anchor PEB later. */
417 		if (e && !ubi->fm_disabled && !ubi->fm &&
418 		    e->pnum < UBI_FM_MAX_START)
419 			e = rb_entry(rb_next(root->rb_node),
420 				     struct ubi_wl_entry, u.rb);
421 #endif
422 	} else
423 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
424 
425 	return e;
426 }
427 
428 #ifdef CONFIG_MTD_UBI_FASTMAP
429 /**
430  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
431  * @root: the RB-tree where to look for
432  */
433 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
434 {
435 	struct rb_node *p;
436 	struct ubi_wl_entry *e, *victim = NULL;
437 	int max_ec = UBI_MAX_ERASECOUNTER;
438 
439 	ubi_rb_for_each_entry(p, e, root, u.rb) {
440 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
441 			victim = e;
442 			max_ec = e->ec;
443 		}
444 	}
445 
446 	return victim;
447 }
448 
449 static int anchor_pebs_avalible(struct rb_root *root)
450 {
451 	struct rb_node *p;
452 	struct ubi_wl_entry *e;
453 
454 	ubi_rb_for_each_entry(p, e, root, u.rb)
455 		if (e->pnum < UBI_FM_MAX_START)
456 			return 1;
457 
458 	return 0;
459 }
460 
461 /**
462  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
463  * @ubi: UBI device description object
464  * @anchor: This PEB will be used as anchor PEB by fastmap
465  *
466  * The function returns a physical erase block with a given maximal number
467  * and removes it from the wl subsystem.
468  * Must be called with wl_lock held!
469  */
470 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
471 {
472 	struct ubi_wl_entry *e = NULL;
473 
474 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
475 		goto out;
476 
477 	if (anchor)
478 		e = find_anchor_wl_entry(&ubi->free);
479 	else
480 		e = find_mean_wl_entry(ubi, &ubi->free);
481 
482 	if (!e)
483 		goto out;
484 
485 	self_check_in_wl_tree(ubi, e, &ubi->free);
486 
487 	/* remove it from the free list,
488 	 * the wl subsystem does no longer know this erase block */
489 	rb_erase(&e->u.rb, &ubi->free);
490 	ubi->free_count--;
491 out:
492 	return e;
493 }
494 #endif
495 
496 /**
497  * __wl_get_peb - get a physical eraseblock.
498  * @ubi: UBI device description object
499  *
500  * This function returns a physical eraseblock in case of success and a
501  * negative error code in case of failure.
502  */
503 static int __wl_get_peb(struct ubi_device *ubi)
504 {
505 	int err;
506 	struct ubi_wl_entry *e;
507 
508 retry:
509 	if (!ubi->free.rb_node) {
510 		if (ubi->works_count == 0) {
511 			ubi_err("no free eraseblocks");
512 			ubi_assert(list_empty(&ubi->works));
513 			return -ENOSPC;
514 		}
515 
516 		err = produce_free_peb(ubi);
517 		if (err < 0)
518 			return err;
519 		goto retry;
520 	}
521 
522 	e = find_mean_wl_entry(ubi, &ubi->free);
523 	if (!e) {
524 		ubi_err("no free eraseblocks");
525 		return -ENOSPC;
526 	}
527 
528 	self_check_in_wl_tree(ubi, e, &ubi->free);
529 
530 	/*
531 	 * Move the physical eraseblock to the protection queue where it will
532 	 * be protected from being moved for some time.
533 	 */
534 	rb_erase(&e->u.rb, &ubi->free);
535 	ubi->free_count--;
536 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
537 #ifndef CONFIG_MTD_UBI_FASTMAP
538 	/* We have to enqueue e only if fastmap is disabled,
539 	 * is fastmap enabled prot_queue_add() will be called by
540 	 * ubi_wl_get_peb() after removing e from the pool. */
541 	prot_queue_add(ubi, e);
542 #endif
543 	return e->pnum;
544 }
545 
546 #ifdef CONFIG_MTD_UBI_FASTMAP
547 /**
548  * return_unused_pool_pebs - returns unused PEB to the free tree.
549  * @ubi: UBI device description object
550  * @pool: fastmap pool description object
551  */
552 static void return_unused_pool_pebs(struct ubi_device *ubi,
553 				    struct ubi_fm_pool *pool)
554 {
555 	int i;
556 	struct ubi_wl_entry *e;
557 
558 	for (i = pool->used; i < pool->size; i++) {
559 		e = ubi->lookuptbl[pool->pebs[i]];
560 		wl_tree_add(e, &ubi->free);
561 		ubi->free_count++;
562 	}
563 }
564 
565 /**
566  * refill_wl_pool - refills all the fastmap pool used by the
567  * WL sub-system.
568  * @ubi: UBI device description object
569  */
570 static void refill_wl_pool(struct ubi_device *ubi)
571 {
572 	struct ubi_wl_entry *e;
573 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
574 
575 	return_unused_pool_pebs(ubi, pool);
576 
577 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
578 		if (!ubi->free.rb_node ||
579 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
580 			break;
581 
582 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
583 		self_check_in_wl_tree(ubi, e, &ubi->free);
584 		rb_erase(&e->u.rb, &ubi->free);
585 		ubi->free_count--;
586 
587 		pool->pebs[pool->size] = e->pnum;
588 	}
589 	pool->used = 0;
590 }
591 
592 /**
593  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
594  * @ubi: UBI device description object
595  */
596 static void refill_wl_user_pool(struct ubi_device *ubi)
597 {
598 	struct ubi_fm_pool *pool = &ubi->fm_pool;
599 
600 	return_unused_pool_pebs(ubi, pool);
601 
602 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
603 		if (!ubi->free.rb_node ||
604 		   (ubi->free_count - ubi->beb_rsvd_pebs < 1))
605 			break;
606 
607 		pool->pebs[pool->size] = __wl_get_peb(ubi);
608 		if (pool->pebs[pool->size] < 0)
609 			break;
610 	}
611 	pool->used = 0;
612 }
613 
614 /**
615  * ubi_refill_pools - refills all fastmap PEB pools.
616  * @ubi: UBI device description object
617  */
618 void ubi_refill_pools(struct ubi_device *ubi)
619 {
620 	spin_lock(&ubi->wl_lock);
621 	refill_wl_pool(ubi);
622 	refill_wl_user_pool(ubi);
623 	spin_unlock(&ubi->wl_lock);
624 }
625 
626 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
627  * the fastmap pool.
628  */
629 int ubi_wl_get_peb(struct ubi_device *ubi)
630 {
631 	int ret;
632 	struct ubi_fm_pool *pool = &ubi->fm_pool;
633 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
634 
635 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
636 	    wl_pool->used == wl_pool->size)
637 		ubi_update_fastmap(ubi);
638 
639 	/* we got not a single free PEB */
640 	if (!pool->size)
641 		ret = -ENOSPC;
642 	else {
643 		spin_lock(&ubi->wl_lock);
644 		ret = pool->pebs[pool->used++];
645 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
646 		spin_unlock(&ubi->wl_lock);
647 	}
648 
649 	return ret;
650 }
651 
652 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
653  *
654  * @ubi: UBI device description object
655  */
656 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
657 {
658 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
659 	int pnum;
660 
661 	if (pool->used == pool->size || !pool->size) {
662 		/* We cannot update the fastmap here because this
663 		 * function is called in atomic context.
664 		 * Let's fail here and refill/update it as soon as possible. */
665 		schedule_work(&ubi->fm_work);
666 		return NULL;
667 	} else {
668 		pnum = pool->pebs[pool->used++];
669 		return ubi->lookuptbl[pnum];
670 	}
671 }
672 #else
673 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
674 {
675 	struct ubi_wl_entry *e;
676 
677 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
678 	self_check_in_wl_tree(ubi, e, &ubi->free);
679 	rb_erase(&e->u.rb, &ubi->free);
680 
681 	return e;
682 }
683 
684 int ubi_wl_get_peb(struct ubi_device *ubi)
685 {
686 	int peb, err;
687 
688 	spin_lock(&ubi->wl_lock);
689 	peb = __wl_get_peb(ubi);
690 	spin_unlock(&ubi->wl_lock);
691 
692 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
693 				    ubi->peb_size - ubi->vid_hdr_aloffset);
694 	if (err) {
695 		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
696 		return err;
697 	}
698 
699 	return peb;
700 }
701 #endif
702 
703 /**
704  * prot_queue_del - remove a physical eraseblock from the protection queue.
705  * @ubi: UBI device description object
706  * @pnum: the physical eraseblock to remove
707  *
708  * This function deletes PEB @pnum from the protection queue and returns zero
709  * in case of success and %-ENODEV if the PEB was not found.
710  */
711 static int prot_queue_del(struct ubi_device *ubi, int pnum)
712 {
713 	struct ubi_wl_entry *e;
714 
715 	e = ubi->lookuptbl[pnum];
716 	if (!e)
717 		return -ENODEV;
718 
719 	if (self_check_in_pq(ubi, e))
720 		return -ENODEV;
721 
722 	list_del(&e->u.list);
723 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
724 	return 0;
725 }
726 
727 /**
728  * sync_erase - synchronously erase a physical eraseblock.
729  * @ubi: UBI device description object
730  * @e: the the physical eraseblock to erase
731  * @torture: if the physical eraseblock has to be tortured
732  *
733  * This function returns zero in case of success and a negative error code in
734  * case of failure.
735  */
736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
737 		      int torture)
738 {
739 	int err;
740 	struct ubi_ec_hdr *ec_hdr;
741 	unsigned long long ec = e->ec;
742 
743 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
744 
745 	err = self_check_ec(ubi, e->pnum, e->ec);
746 	if (err)
747 		return -EINVAL;
748 
749 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
750 	if (!ec_hdr)
751 		return -ENOMEM;
752 
753 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
754 	if (err < 0)
755 		goto out_free;
756 
757 	ec += err;
758 	if (ec > UBI_MAX_ERASECOUNTER) {
759 		/*
760 		 * Erase counter overflow. Upgrade UBI and use 64-bit
761 		 * erase counters internally.
762 		 */
763 		ubi_err("erase counter overflow at PEB %d, EC %llu",
764 			e->pnum, ec);
765 		err = -EINVAL;
766 		goto out_free;
767 	}
768 
769 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
770 
771 	ec_hdr->ec = cpu_to_be64(ec);
772 
773 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
774 	if (err)
775 		goto out_free;
776 
777 	e->ec = ec;
778 	spin_lock(&ubi->wl_lock);
779 	if (e->ec > ubi->max_ec)
780 		ubi->max_ec = e->ec;
781 	spin_unlock(&ubi->wl_lock);
782 
783 out_free:
784 	kfree(ec_hdr);
785 	return err;
786 }
787 
788 /**
789  * serve_prot_queue - check if it is time to stop protecting PEBs.
790  * @ubi: UBI device description object
791  *
792  * This function is called after each erase operation and removes PEBs from the
793  * tail of the protection queue. These PEBs have been protected for long enough
794  * and should be moved to the used tree.
795  */
796 static void serve_prot_queue(struct ubi_device *ubi)
797 {
798 	struct ubi_wl_entry *e, *tmp;
799 	int count;
800 
801 	/*
802 	 * There may be several protected physical eraseblock to remove,
803 	 * process them all.
804 	 */
805 repeat:
806 	count = 0;
807 	spin_lock(&ubi->wl_lock);
808 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
809 		dbg_wl("PEB %d EC %d protection over, move to used tree",
810 			e->pnum, e->ec);
811 
812 		list_del(&e->u.list);
813 		wl_tree_add(e, &ubi->used);
814 		if (count++ > 32) {
815 			/*
816 			 * Let's be nice and avoid holding the spinlock for
817 			 * too long.
818 			 */
819 			spin_unlock(&ubi->wl_lock);
820 			cond_resched();
821 			goto repeat;
822 		}
823 	}
824 
825 	ubi->pq_head += 1;
826 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
827 		ubi->pq_head = 0;
828 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
829 	spin_unlock(&ubi->wl_lock);
830 }
831 
832 /**
833  * __schedule_ubi_work - schedule a work.
834  * @ubi: UBI device description object
835  * @wrk: the work to schedule
836  *
837  * This function adds a work defined by @wrk to the tail of the pending works
838  * list. Can only be used of ubi->work_sem is already held in read mode!
839  */
840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
841 {
842 	spin_lock(&ubi->wl_lock);
843 	list_add_tail(&wrk->list, &ubi->works);
844 	ubi_assert(ubi->works_count >= 0);
845 	ubi->works_count += 1;
846 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
847 		wake_up_process(ubi->bgt_thread);
848 	spin_unlock(&ubi->wl_lock);
849 }
850 
851 /**
852  * schedule_ubi_work - schedule a work.
853  * @ubi: UBI device description object
854  * @wrk: the work to schedule
855  *
856  * This function adds a work defined by @wrk to the tail of the pending works
857  * list.
858  */
859 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
860 {
861 	down_read(&ubi->work_sem);
862 	__schedule_ubi_work(ubi, wrk);
863 	up_read(&ubi->work_sem);
864 }
865 
866 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
867 			int cancel);
868 
869 #ifdef CONFIG_MTD_UBI_FASTMAP
870 /**
871  * ubi_is_erase_work - checks whether a work is erase work.
872  * @wrk: The work object to be checked
873  */
874 int ubi_is_erase_work(struct ubi_work *wrk)
875 {
876 	return wrk->func == erase_worker;
877 }
878 #endif
879 
880 /**
881  * schedule_erase - schedule an erase work.
882  * @ubi: UBI device description object
883  * @e: the WL entry of the physical eraseblock to erase
884  * @vol_id: the volume ID that last used this PEB
885  * @lnum: the last used logical eraseblock number for the PEB
886  * @torture: if the physical eraseblock has to be tortured
887  *
888  * This function returns zero in case of success and a %-ENOMEM in case of
889  * failure.
890  */
891 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
892 			  int vol_id, int lnum, int torture)
893 {
894 	struct ubi_work *wl_wrk;
895 
896 	ubi_assert(e);
897 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
898 
899 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
900 	       e->pnum, e->ec, torture);
901 
902 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
903 	if (!wl_wrk)
904 		return -ENOMEM;
905 
906 	wl_wrk->func = &erase_worker;
907 	wl_wrk->e = e;
908 	wl_wrk->vol_id = vol_id;
909 	wl_wrk->lnum = lnum;
910 	wl_wrk->torture = torture;
911 
912 	schedule_ubi_work(ubi, wl_wrk);
913 	return 0;
914 }
915 
916 /**
917  * do_sync_erase - run the erase worker synchronously.
918  * @ubi: UBI device description object
919  * @e: the WL entry of the physical eraseblock to erase
920  * @vol_id: the volume ID that last used this PEB
921  * @lnum: the last used logical eraseblock number for the PEB
922  * @torture: if the physical eraseblock has to be tortured
923  *
924  */
925 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
926 			 int vol_id, int lnum, int torture)
927 {
928 	struct ubi_work *wl_wrk;
929 
930 	dbg_wl("sync erase of PEB %i", e->pnum);
931 
932 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
933 	if (!wl_wrk)
934 		return -ENOMEM;
935 
936 	wl_wrk->e = e;
937 	wl_wrk->vol_id = vol_id;
938 	wl_wrk->lnum = lnum;
939 	wl_wrk->torture = torture;
940 
941 	return erase_worker(ubi, wl_wrk, 0);
942 }
943 
944 #ifdef CONFIG_MTD_UBI_FASTMAP
945 /**
946  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
947  * sub-system.
948  * see: ubi_wl_put_peb()
949  *
950  * @ubi: UBI device description object
951  * @fm_e: physical eraseblock to return
952  * @lnum: the last used logical eraseblock number for the PEB
953  * @torture: if this physical eraseblock has to be tortured
954  */
955 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
956 		      int lnum, int torture)
957 {
958 	struct ubi_wl_entry *e;
959 	int vol_id, pnum = fm_e->pnum;
960 
961 	dbg_wl("PEB %d", pnum);
962 
963 	ubi_assert(pnum >= 0);
964 	ubi_assert(pnum < ubi->peb_count);
965 
966 	spin_lock(&ubi->wl_lock);
967 	e = ubi->lookuptbl[pnum];
968 
969 	/* This can happen if we recovered from a fastmap the very
970 	 * first time and writing now a new one. In this case the wl system
971 	 * has never seen any PEB used by the original fastmap.
972 	 */
973 	if (!e) {
974 		e = fm_e;
975 		ubi_assert(e->ec >= 0);
976 		ubi->lookuptbl[pnum] = e;
977 	} else {
978 		e->ec = fm_e->ec;
979 		kfree(fm_e);
980 	}
981 
982 	spin_unlock(&ubi->wl_lock);
983 
984 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
985 	return schedule_erase(ubi, e, vol_id, lnum, torture);
986 }
987 #endif
988 
989 /**
990  * wear_leveling_worker - wear-leveling worker function.
991  * @ubi: UBI device description object
992  * @wrk: the work object
993  * @cancel: non-zero if the worker has to free memory and exit
994  *
995  * This function copies a more worn out physical eraseblock to a less worn out
996  * one. Returns zero in case of success and a negative error code in case of
997  * failure.
998  */
999 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1000 				int cancel)
1001 {
1002 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1003 	int vol_id = -1, uninitialized_var(lnum);
1004 #ifdef CONFIG_MTD_UBI_FASTMAP
1005 	int anchor = wrk->anchor;
1006 #endif
1007 	struct ubi_wl_entry *e1, *e2;
1008 	struct ubi_vid_hdr *vid_hdr;
1009 
1010 	kfree(wrk);
1011 	if (cancel)
1012 		return 0;
1013 
1014 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1015 	if (!vid_hdr)
1016 		return -ENOMEM;
1017 
1018 	mutex_lock(&ubi->move_mutex);
1019 	spin_lock(&ubi->wl_lock);
1020 	ubi_assert(!ubi->move_from && !ubi->move_to);
1021 	ubi_assert(!ubi->move_to_put);
1022 
1023 	if (!ubi->free.rb_node ||
1024 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1025 		/*
1026 		 * No free physical eraseblocks? Well, they must be waiting in
1027 		 * the queue to be erased. Cancel movement - it will be
1028 		 * triggered again when a free physical eraseblock appears.
1029 		 *
1030 		 * No used physical eraseblocks? They must be temporarily
1031 		 * protected from being moved. They will be moved to the
1032 		 * @ubi->used tree later and the wear-leveling will be
1033 		 * triggered again.
1034 		 */
1035 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1036 		       !ubi->free.rb_node, !ubi->used.rb_node);
1037 		goto out_cancel;
1038 	}
1039 
1040 #ifdef CONFIG_MTD_UBI_FASTMAP
1041 	/* Check whether we need to produce an anchor PEB */
1042 	if (!anchor)
1043 		anchor = !anchor_pebs_avalible(&ubi->free);
1044 
1045 	if (anchor) {
1046 		e1 = find_anchor_wl_entry(&ubi->used);
1047 		if (!e1)
1048 			goto out_cancel;
1049 		e2 = get_peb_for_wl(ubi);
1050 		if (!e2)
1051 			goto out_cancel;
1052 
1053 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1054 		rb_erase(&e1->u.rb, &ubi->used);
1055 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1056 	} else if (!ubi->scrub.rb_node) {
1057 #else
1058 	if (!ubi->scrub.rb_node) {
1059 #endif
1060 		/*
1061 		 * Now pick the least worn-out used physical eraseblock and a
1062 		 * highly worn-out free physical eraseblock. If the erase
1063 		 * counters differ much enough, start wear-leveling.
1064 		 */
1065 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1066 		e2 = get_peb_for_wl(ubi);
1067 		if (!e2)
1068 			goto out_cancel;
1069 
1070 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1071 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1072 			       e1->ec, e2->ec);
1073 			goto out_cancel;
1074 		}
1075 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1076 		rb_erase(&e1->u.rb, &ubi->used);
1077 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1078 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1079 	} else {
1080 		/* Perform scrubbing */
1081 		scrubbing = 1;
1082 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1083 		e2 = get_peb_for_wl(ubi);
1084 		if (!e2)
1085 			goto out_cancel;
1086 
1087 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1088 		rb_erase(&e1->u.rb, &ubi->scrub);
1089 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1090 	}
1091 
1092 	ubi->move_from = e1;
1093 	ubi->move_to = e2;
1094 	spin_unlock(&ubi->wl_lock);
1095 
1096 	/*
1097 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1098 	 * We so far do not know which logical eraseblock our physical
1099 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1100 	 * header first.
1101 	 *
1102 	 * Note, we are protected from this PEB being unmapped and erased. The
1103 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1104 	 * which is being moved was unmapped.
1105 	 */
1106 
1107 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1108 	if (err && err != UBI_IO_BITFLIPS) {
1109 		if (err == UBI_IO_FF) {
1110 			/*
1111 			 * We are trying to move PEB without a VID header. UBI
1112 			 * always write VID headers shortly after the PEB was
1113 			 * given, so we have a situation when it has not yet
1114 			 * had a chance to write it, because it was preempted.
1115 			 * So add this PEB to the protection queue so far,
1116 			 * because presumably more data will be written there
1117 			 * (including the missing VID header), and then we'll
1118 			 * move it.
1119 			 */
1120 			dbg_wl("PEB %d has no VID header", e1->pnum);
1121 			protect = 1;
1122 			goto out_not_moved;
1123 		} else if (err == UBI_IO_FF_BITFLIPS) {
1124 			/*
1125 			 * The same situation as %UBI_IO_FF, but bit-flips were
1126 			 * detected. It is better to schedule this PEB for
1127 			 * scrubbing.
1128 			 */
1129 			dbg_wl("PEB %d has no VID header but has bit-flips",
1130 			       e1->pnum);
1131 			scrubbing = 1;
1132 			goto out_not_moved;
1133 		}
1134 
1135 		ubi_err("error %d while reading VID header from PEB %d",
1136 			err, e1->pnum);
1137 		goto out_error;
1138 	}
1139 
1140 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1141 	lnum = be32_to_cpu(vid_hdr->lnum);
1142 
1143 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1144 	if (err) {
1145 		if (err == MOVE_CANCEL_RACE) {
1146 			/*
1147 			 * The LEB has not been moved because the volume is
1148 			 * being deleted or the PEB has been put meanwhile. We
1149 			 * should prevent this PEB from being selected for
1150 			 * wear-leveling movement again, so put it to the
1151 			 * protection queue.
1152 			 */
1153 			protect = 1;
1154 			goto out_not_moved;
1155 		}
1156 		if (err == MOVE_RETRY) {
1157 			scrubbing = 1;
1158 			goto out_not_moved;
1159 		}
1160 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1161 		    err == MOVE_TARGET_RD_ERR) {
1162 			/*
1163 			 * Target PEB had bit-flips or write error - torture it.
1164 			 */
1165 			torture = 1;
1166 			goto out_not_moved;
1167 		}
1168 
1169 		if (err == MOVE_SOURCE_RD_ERR) {
1170 			/*
1171 			 * An error happened while reading the source PEB. Do
1172 			 * not switch to R/O mode in this case, and give the
1173 			 * upper layers a possibility to recover from this,
1174 			 * e.g. by unmapping corresponding LEB. Instead, just
1175 			 * put this PEB to the @ubi->erroneous list to prevent
1176 			 * UBI from trying to move it over and over again.
1177 			 */
1178 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1179 				ubi_err("too many erroneous eraseblocks (%d)",
1180 					ubi->erroneous_peb_count);
1181 				goto out_error;
1182 			}
1183 			erroneous = 1;
1184 			goto out_not_moved;
1185 		}
1186 
1187 		if (err < 0)
1188 			goto out_error;
1189 
1190 		ubi_assert(0);
1191 	}
1192 
1193 	/* The PEB has been successfully moved */
1194 	if (scrubbing)
1195 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1196 			e1->pnum, vol_id, lnum, e2->pnum);
1197 	ubi_free_vid_hdr(ubi, vid_hdr);
1198 
1199 	spin_lock(&ubi->wl_lock);
1200 	if (!ubi->move_to_put) {
1201 		wl_tree_add(e2, &ubi->used);
1202 		e2 = NULL;
1203 	}
1204 	ubi->move_from = ubi->move_to = NULL;
1205 	ubi->move_to_put = ubi->wl_scheduled = 0;
1206 	spin_unlock(&ubi->wl_lock);
1207 
1208 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1209 	if (err) {
1210 		kmem_cache_free(ubi_wl_entry_slab, e1);
1211 		if (e2)
1212 			kmem_cache_free(ubi_wl_entry_slab, e2);
1213 		goto out_ro;
1214 	}
1215 
1216 	if (e2) {
1217 		/*
1218 		 * Well, the target PEB was put meanwhile, schedule it for
1219 		 * erasure.
1220 		 */
1221 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1222 		       e2->pnum, vol_id, lnum);
1223 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1224 		if (err) {
1225 			kmem_cache_free(ubi_wl_entry_slab, e2);
1226 			goto out_ro;
1227 		}
1228 	}
1229 
1230 	dbg_wl("done");
1231 	mutex_unlock(&ubi->move_mutex);
1232 	return 0;
1233 
1234 	/*
1235 	 * For some reasons the LEB was not moved, might be an error, might be
1236 	 * something else. @e1 was not changed, so return it back. @e2 might
1237 	 * have been changed, schedule it for erasure.
1238 	 */
1239 out_not_moved:
1240 	if (vol_id != -1)
1241 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1242 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1243 	else
1244 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1245 		       e1->pnum, e2->pnum, err);
1246 	spin_lock(&ubi->wl_lock);
1247 	if (protect)
1248 		prot_queue_add(ubi, e1);
1249 	else if (erroneous) {
1250 		wl_tree_add(e1, &ubi->erroneous);
1251 		ubi->erroneous_peb_count += 1;
1252 	} else if (scrubbing)
1253 		wl_tree_add(e1, &ubi->scrub);
1254 	else
1255 		wl_tree_add(e1, &ubi->used);
1256 	ubi_assert(!ubi->move_to_put);
1257 	ubi->move_from = ubi->move_to = NULL;
1258 	ubi->wl_scheduled = 0;
1259 	spin_unlock(&ubi->wl_lock);
1260 
1261 	ubi_free_vid_hdr(ubi, vid_hdr);
1262 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1263 	if (err) {
1264 		kmem_cache_free(ubi_wl_entry_slab, e2);
1265 		goto out_ro;
1266 	}
1267 	mutex_unlock(&ubi->move_mutex);
1268 	return 0;
1269 
1270 out_error:
1271 	if (vol_id != -1)
1272 		ubi_err("error %d while moving PEB %d to PEB %d",
1273 			err, e1->pnum, e2->pnum);
1274 	else
1275 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1276 			err, e1->pnum, vol_id, lnum, e2->pnum);
1277 	spin_lock(&ubi->wl_lock);
1278 	ubi->move_from = ubi->move_to = NULL;
1279 	ubi->move_to_put = ubi->wl_scheduled = 0;
1280 	spin_unlock(&ubi->wl_lock);
1281 
1282 	ubi_free_vid_hdr(ubi, vid_hdr);
1283 	kmem_cache_free(ubi_wl_entry_slab, e1);
1284 	kmem_cache_free(ubi_wl_entry_slab, e2);
1285 
1286 out_ro:
1287 	ubi_ro_mode(ubi);
1288 	mutex_unlock(&ubi->move_mutex);
1289 	ubi_assert(err != 0);
1290 	return err < 0 ? err : -EIO;
1291 
1292 out_cancel:
1293 	ubi->wl_scheduled = 0;
1294 	spin_unlock(&ubi->wl_lock);
1295 	mutex_unlock(&ubi->move_mutex);
1296 	ubi_free_vid_hdr(ubi, vid_hdr);
1297 	return 0;
1298 }
1299 
1300 /**
1301  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1302  * @ubi: UBI device description object
1303  * @nested: set to non-zero if this function is called from UBI worker
1304  *
1305  * This function checks if it is time to start wear-leveling and schedules it
1306  * if yes. This function returns zero in case of success and a negative error
1307  * code in case of failure.
1308  */
1309 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1310 {
1311 	int err = 0;
1312 	struct ubi_wl_entry *e1;
1313 	struct ubi_wl_entry *e2;
1314 	struct ubi_work *wrk;
1315 
1316 	spin_lock(&ubi->wl_lock);
1317 	if (ubi->wl_scheduled)
1318 		/* Wear-leveling is already in the work queue */
1319 		goto out_unlock;
1320 
1321 	/*
1322 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1323 	 * the WL worker has to be scheduled anyway.
1324 	 */
1325 	if (!ubi->scrub.rb_node) {
1326 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1327 			/* No physical eraseblocks - no deal */
1328 			goto out_unlock;
1329 
1330 		/*
1331 		 * We schedule wear-leveling only if the difference between the
1332 		 * lowest erase counter of used physical eraseblocks and a high
1333 		 * erase counter of free physical eraseblocks is greater than
1334 		 * %UBI_WL_THRESHOLD.
1335 		 */
1336 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1337 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1338 
1339 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1340 			goto out_unlock;
1341 		dbg_wl("schedule wear-leveling");
1342 	} else
1343 		dbg_wl("schedule scrubbing");
1344 
1345 	ubi->wl_scheduled = 1;
1346 	spin_unlock(&ubi->wl_lock);
1347 
1348 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1349 	if (!wrk) {
1350 		err = -ENOMEM;
1351 		goto out_cancel;
1352 	}
1353 
1354 	wrk->anchor = 0;
1355 	wrk->func = &wear_leveling_worker;
1356 	if (nested)
1357 		__schedule_ubi_work(ubi, wrk);
1358 	else
1359 		schedule_ubi_work(ubi, wrk);
1360 	return err;
1361 
1362 out_cancel:
1363 	spin_lock(&ubi->wl_lock);
1364 	ubi->wl_scheduled = 0;
1365 out_unlock:
1366 	spin_unlock(&ubi->wl_lock);
1367 	return err;
1368 }
1369 
1370 #ifdef CONFIG_MTD_UBI_FASTMAP
1371 /**
1372  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1373  * @ubi: UBI device description object
1374  */
1375 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1376 {
1377 	struct ubi_work *wrk;
1378 
1379 	spin_lock(&ubi->wl_lock);
1380 	if (ubi->wl_scheduled) {
1381 		spin_unlock(&ubi->wl_lock);
1382 		return 0;
1383 	}
1384 	ubi->wl_scheduled = 1;
1385 	spin_unlock(&ubi->wl_lock);
1386 
1387 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1388 	if (!wrk) {
1389 		spin_lock(&ubi->wl_lock);
1390 		ubi->wl_scheduled = 0;
1391 		spin_unlock(&ubi->wl_lock);
1392 		return -ENOMEM;
1393 	}
1394 
1395 	wrk->anchor = 1;
1396 	wrk->func = &wear_leveling_worker;
1397 	schedule_ubi_work(ubi, wrk);
1398 	return 0;
1399 }
1400 #endif
1401 
1402 /**
1403  * erase_worker - physical eraseblock erase worker function.
1404  * @ubi: UBI device description object
1405  * @wl_wrk: the work object
1406  * @cancel: non-zero if the worker has to free memory and exit
1407  *
1408  * This function erases a physical eraseblock and perform torture testing if
1409  * needed. It also takes care about marking the physical eraseblock bad if
1410  * needed. Returns zero in case of success and a negative error code in case of
1411  * failure.
1412  */
1413 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1414 			int cancel)
1415 {
1416 	struct ubi_wl_entry *e = wl_wrk->e;
1417 	int pnum = e->pnum;
1418 	int vol_id = wl_wrk->vol_id;
1419 	int lnum = wl_wrk->lnum;
1420 	int err, available_consumed = 0;
1421 
1422 	if (cancel) {
1423 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1424 		kfree(wl_wrk);
1425 		kmem_cache_free(ubi_wl_entry_slab, e);
1426 		return 0;
1427 	}
1428 
1429 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1430 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1431 
1432 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1433 
1434 	err = sync_erase(ubi, e, wl_wrk->torture);
1435 	if (!err) {
1436 		/* Fine, we've erased it successfully */
1437 		kfree(wl_wrk);
1438 
1439 		spin_lock(&ubi->wl_lock);
1440 		wl_tree_add(e, &ubi->free);
1441 		ubi->free_count++;
1442 		spin_unlock(&ubi->wl_lock);
1443 
1444 		/*
1445 		 * One more erase operation has happened, take care about
1446 		 * protected physical eraseblocks.
1447 		 */
1448 		serve_prot_queue(ubi);
1449 
1450 		/* And take care about wear-leveling */
1451 		err = ensure_wear_leveling(ubi, 1);
1452 		return err;
1453 	}
1454 
1455 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1456 	kfree(wl_wrk);
1457 
1458 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1459 	    err == -EBUSY) {
1460 		int err1;
1461 
1462 		/* Re-schedule the LEB for erasure */
1463 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1464 		if (err1) {
1465 			err = err1;
1466 			goto out_ro;
1467 		}
1468 		return err;
1469 	}
1470 
1471 	kmem_cache_free(ubi_wl_entry_slab, e);
1472 	if (err != -EIO)
1473 		/*
1474 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1475 		 * this physical eraseblock for erasure again would cause
1476 		 * errors again and again. Well, lets switch to R/O mode.
1477 		 */
1478 		goto out_ro;
1479 
1480 	/* It is %-EIO, the PEB went bad */
1481 
1482 	if (!ubi->bad_allowed) {
1483 		ubi_err("bad physical eraseblock %d detected", pnum);
1484 		goto out_ro;
1485 	}
1486 
1487 	spin_lock(&ubi->volumes_lock);
1488 	if (ubi->beb_rsvd_pebs == 0) {
1489 		if (ubi->avail_pebs == 0) {
1490 			spin_unlock(&ubi->volumes_lock);
1491 			ubi_err("no reserved/available physical eraseblocks");
1492 			goto out_ro;
1493 		}
1494 		ubi->avail_pebs -= 1;
1495 		available_consumed = 1;
1496 	}
1497 	spin_unlock(&ubi->volumes_lock);
1498 
1499 	ubi_msg("mark PEB %d as bad", pnum);
1500 	err = ubi_io_mark_bad(ubi, pnum);
1501 	if (err)
1502 		goto out_ro;
1503 
1504 	spin_lock(&ubi->volumes_lock);
1505 	if (ubi->beb_rsvd_pebs > 0) {
1506 		if (available_consumed) {
1507 			/*
1508 			 * The amount of reserved PEBs increased since we last
1509 			 * checked.
1510 			 */
1511 			ubi->avail_pebs += 1;
1512 			available_consumed = 0;
1513 		}
1514 		ubi->beb_rsvd_pebs -= 1;
1515 	}
1516 	ubi->bad_peb_count += 1;
1517 	ubi->good_peb_count -= 1;
1518 	ubi_calculate_reserved(ubi);
1519 	if (available_consumed)
1520 		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1521 	else if (ubi->beb_rsvd_pebs)
1522 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1523 	else
1524 		ubi_warn("last PEB from the reserve was used");
1525 	spin_unlock(&ubi->volumes_lock);
1526 
1527 	return err;
1528 
1529 out_ro:
1530 	if (available_consumed) {
1531 		spin_lock(&ubi->volumes_lock);
1532 		ubi->avail_pebs += 1;
1533 		spin_unlock(&ubi->volumes_lock);
1534 	}
1535 	ubi_ro_mode(ubi);
1536 	return err;
1537 }
1538 
1539 /**
1540  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1541  * @ubi: UBI device description object
1542  * @vol_id: the volume ID that last used this PEB
1543  * @lnum: the last used logical eraseblock number for the PEB
1544  * @pnum: physical eraseblock to return
1545  * @torture: if this physical eraseblock has to be tortured
1546  *
1547  * This function is called to return physical eraseblock @pnum to the pool of
1548  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1549  * occurred to this @pnum and it has to be tested. This function returns zero
1550  * in case of success, and a negative error code in case of failure.
1551  */
1552 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1553 		   int pnum, int torture)
1554 {
1555 	int err;
1556 	struct ubi_wl_entry *e;
1557 
1558 	dbg_wl("PEB %d", pnum);
1559 	ubi_assert(pnum >= 0);
1560 	ubi_assert(pnum < ubi->peb_count);
1561 
1562 retry:
1563 	spin_lock(&ubi->wl_lock);
1564 	e = ubi->lookuptbl[pnum];
1565 	if (e == ubi->move_from) {
1566 		/*
1567 		 * User is putting the physical eraseblock which was selected to
1568 		 * be moved. It will be scheduled for erasure in the
1569 		 * wear-leveling worker.
1570 		 */
1571 		dbg_wl("PEB %d is being moved, wait", pnum);
1572 		spin_unlock(&ubi->wl_lock);
1573 
1574 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1575 		mutex_lock(&ubi->move_mutex);
1576 		mutex_unlock(&ubi->move_mutex);
1577 		goto retry;
1578 	} else if (e == ubi->move_to) {
1579 		/*
1580 		 * User is putting the physical eraseblock which was selected
1581 		 * as the target the data is moved to. It may happen if the EBA
1582 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1583 		 * but the WL sub-system has not put the PEB to the "used" tree
1584 		 * yet, but it is about to do this. So we just set a flag which
1585 		 * will tell the WL worker that the PEB is not needed anymore
1586 		 * and should be scheduled for erasure.
1587 		 */
1588 		dbg_wl("PEB %d is the target of data moving", pnum);
1589 		ubi_assert(!ubi->move_to_put);
1590 		ubi->move_to_put = 1;
1591 		spin_unlock(&ubi->wl_lock);
1592 		return 0;
1593 	} else {
1594 		if (in_wl_tree(e, &ubi->used)) {
1595 			self_check_in_wl_tree(ubi, e, &ubi->used);
1596 			rb_erase(&e->u.rb, &ubi->used);
1597 		} else if (in_wl_tree(e, &ubi->scrub)) {
1598 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1599 			rb_erase(&e->u.rb, &ubi->scrub);
1600 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1601 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1602 			rb_erase(&e->u.rb, &ubi->erroneous);
1603 			ubi->erroneous_peb_count -= 1;
1604 			ubi_assert(ubi->erroneous_peb_count >= 0);
1605 			/* Erroneous PEBs should be tortured */
1606 			torture = 1;
1607 		} else {
1608 			err = prot_queue_del(ubi, e->pnum);
1609 			if (err) {
1610 				ubi_err("PEB %d not found", pnum);
1611 				ubi_ro_mode(ubi);
1612 				spin_unlock(&ubi->wl_lock);
1613 				return err;
1614 			}
1615 		}
1616 	}
1617 	spin_unlock(&ubi->wl_lock);
1618 
1619 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1620 	if (err) {
1621 		spin_lock(&ubi->wl_lock);
1622 		wl_tree_add(e, &ubi->used);
1623 		spin_unlock(&ubi->wl_lock);
1624 	}
1625 
1626 	return err;
1627 }
1628 
1629 /**
1630  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1631  * @ubi: UBI device description object
1632  * @pnum: the physical eraseblock to schedule
1633  *
1634  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1635  * needs scrubbing. This function schedules a physical eraseblock for
1636  * scrubbing which is done in background. This function returns zero in case of
1637  * success and a negative error code in case of failure.
1638  */
1639 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1640 {
1641 	struct ubi_wl_entry *e;
1642 
1643 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1644 
1645 retry:
1646 	spin_lock(&ubi->wl_lock);
1647 	e = ubi->lookuptbl[pnum];
1648 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1649 				   in_wl_tree(e, &ubi->erroneous)) {
1650 		spin_unlock(&ubi->wl_lock);
1651 		return 0;
1652 	}
1653 
1654 	if (e == ubi->move_to) {
1655 		/*
1656 		 * This physical eraseblock was used to move data to. The data
1657 		 * was moved but the PEB was not yet inserted to the proper
1658 		 * tree. We should just wait a little and let the WL worker
1659 		 * proceed.
1660 		 */
1661 		spin_unlock(&ubi->wl_lock);
1662 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1663 		yield();
1664 		goto retry;
1665 	}
1666 
1667 	if (in_wl_tree(e, &ubi->used)) {
1668 		self_check_in_wl_tree(ubi, e, &ubi->used);
1669 		rb_erase(&e->u.rb, &ubi->used);
1670 	} else {
1671 		int err;
1672 
1673 		err = prot_queue_del(ubi, e->pnum);
1674 		if (err) {
1675 			ubi_err("PEB %d not found", pnum);
1676 			ubi_ro_mode(ubi);
1677 			spin_unlock(&ubi->wl_lock);
1678 			return err;
1679 		}
1680 	}
1681 
1682 	wl_tree_add(e, &ubi->scrub);
1683 	spin_unlock(&ubi->wl_lock);
1684 
1685 	/*
1686 	 * Technically scrubbing is the same as wear-leveling, so it is done
1687 	 * by the WL worker.
1688 	 */
1689 	return ensure_wear_leveling(ubi, 0);
1690 }
1691 
1692 /**
1693  * ubi_wl_flush - flush all pending works.
1694  * @ubi: UBI device description object
1695  * @vol_id: the volume id to flush for
1696  * @lnum: the logical eraseblock number to flush for
1697  *
1698  * This function executes all pending works for a particular volume id /
1699  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1700  * acts as a wildcard for all of the corresponding volume numbers or logical
1701  * eraseblock numbers. It returns zero in case of success and a negative error
1702  * code in case of failure.
1703  */
1704 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1705 {
1706 	int err = 0;
1707 	int found = 1;
1708 
1709 	/*
1710 	 * Erase while the pending works queue is not empty, but not more than
1711 	 * the number of currently pending works.
1712 	 */
1713 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1714 	       vol_id, lnum, ubi->works_count);
1715 
1716 	while (found) {
1717 		struct ubi_work *wrk;
1718 		found = 0;
1719 
1720 		down_read(&ubi->work_sem);
1721 		spin_lock(&ubi->wl_lock);
1722 		list_for_each_entry(wrk, &ubi->works, list) {
1723 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1724 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1725 				list_del(&wrk->list);
1726 				ubi->works_count -= 1;
1727 				ubi_assert(ubi->works_count >= 0);
1728 				spin_unlock(&ubi->wl_lock);
1729 
1730 				err = wrk->func(ubi, wrk, 0);
1731 				if (err) {
1732 					up_read(&ubi->work_sem);
1733 					return err;
1734 				}
1735 
1736 				spin_lock(&ubi->wl_lock);
1737 				found = 1;
1738 				break;
1739 			}
1740 		}
1741 		spin_unlock(&ubi->wl_lock);
1742 		up_read(&ubi->work_sem);
1743 	}
1744 
1745 	/*
1746 	 * Make sure all the works which have been done in parallel are
1747 	 * finished.
1748 	 */
1749 	down_write(&ubi->work_sem);
1750 	up_write(&ubi->work_sem);
1751 
1752 	return err;
1753 }
1754 
1755 /**
1756  * tree_destroy - destroy an RB-tree.
1757  * @root: the root of the tree to destroy
1758  */
1759 static void tree_destroy(struct rb_root *root)
1760 {
1761 	struct rb_node *rb;
1762 	struct ubi_wl_entry *e;
1763 
1764 	rb = root->rb_node;
1765 	while (rb) {
1766 		if (rb->rb_left)
1767 			rb = rb->rb_left;
1768 		else if (rb->rb_right)
1769 			rb = rb->rb_right;
1770 		else {
1771 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1772 
1773 			rb = rb_parent(rb);
1774 			if (rb) {
1775 				if (rb->rb_left == &e->u.rb)
1776 					rb->rb_left = NULL;
1777 				else
1778 					rb->rb_right = NULL;
1779 			}
1780 
1781 			kmem_cache_free(ubi_wl_entry_slab, e);
1782 		}
1783 	}
1784 }
1785 
1786 /**
1787  * ubi_thread - UBI background thread.
1788  * @u: the UBI device description object pointer
1789  */
1790 int ubi_thread(void *u)
1791 {
1792 	int failures = 0;
1793 	struct ubi_device *ubi = u;
1794 
1795 	ubi_msg("background thread \"%s\" started, PID %d",
1796 		ubi->bgt_name, task_pid_nr(current));
1797 
1798 	set_freezable();
1799 	for (;;) {
1800 		int err;
1801 
1802 		if (kthread_should_stop())
1803 			break;
1804 
1805 		if (try_to_freeze())
1806 			continue;
1807 
1808 		spin_lock(&ubi->wl_lock);
1809 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1810 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1811 			set_current_state(TASK_INTERRUPTIBLE);
1812 			spin_unlock(&ubi->wl_lock);
1813 			schedule();
1814 			continue;
1815 		}
1816 		spin_unlock(&ubi->wl_lock);
1817 
1818 		err = do_work(ubi);
1819 		if (err) {
1820 			ubi_err("%s: work failed with error code %d",
1821 				ubi->bgt_name, err);
1822 			if (failures++ > WL_MAX_FAILURES) {
1823 				/*
1824 				 * Too many failures, disable the thread and
1825 				 * switch to read-only mode.
1826 				 */
1827 				ubi_msg("%s: %d consecutive failures",
1828 					ubi->bgt_name, WL_MAX_FAILURES);
1829 				ubi_ro_mode(ubi);
1830 				ubi->thread_enabled = 0;
1831 				continue;
1832 			}
1833 		} else
1834 			failures = 0;
1835 
1836 		cond_resched();
1837 	}
1838 
1839 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1840 	return 0;
1841 }
1842 
1843 /**
1844  * cancel_pending - cancel all pending works.
1845  * @ubi: UBI device description object
1846  */
1847 static void cancel_pending(struct ubi_device *ubi)
1848 {
1849 	while (!list_empty(&ubi->works)) {
1850 		struct ubi_work *wrk;
1851 
1852 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1853 		list_del(&wrk->list);
1854 		wrk->func(ubi, wrk, 1);
1855 		ubi->works_count -= 1;
1856 		ubi_assert(ubi->works_count >= 0);
1857 	}
1858 }
1859 
1860 /**
1861  * ubi_wl_init - initialize the WL sub-system using attaching information.
1862  * @ubi: UBI device description object
1863  * @ai: attaching information
1864  *
1865  * This function returns zero in case of success, and a negative error code in
1866  * case of failure.
1867  */
1868 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1869 {
1870 	int err, i, reserved_pebs, found_pebs = 0;
1871 	struct rb_node *rb1, *rb2;
1872 	struct ubi_ainf_volume *av;
1873 	struct ubi_ainf_peb *aeb, *tmp;
1874 	struct ubi_wl_entry *e;
1875 
1876 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1877 	spin_lock_init(&ubi->wl_lock);
1878 	mutex_init(&ubi->move_mutex);
1879 	init_rwsem(&ubi->work_sem);
1880 	ubi->max_ec = ai->max_ec;
1881 	INIT_LIST_HEAD(&ubi->works);
1882 #ifdef CONFIG_MTD_UBI_FASTMAP
1883 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1884 #endif
1885 
1886 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1887 
1888 	err = -ENOMEM;
1889 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1890 	if (!ubi->lookuptbl)
1891 		return err;
1892 
1893 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1894 		INIT_LIST_HEAD(&ubi->pq[i]);
1895 	ubi->pq_head = 0;
1896 
1897 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1898 		cond_resched();
1899 
1900 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1901 		if (!e)
1902 			goto out_free;
1903 
1904 		e->pnum = aeb->pnum;
1905 		e->ec = aeb->ec;
1906 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1907 		ubi->lookuptbl[e->pnum] = e;
1908 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1909 			kmem_cache_free(ubi_wl_entry_slab, e);
1910 			goto out_free;
1911 		}
1912 
1913 		found_pebs++;
1914 	}
1915 
1916 	ubi->free_count = 0;
1917 	list_for_each_entry(aeb, &ai->free, u.list) {
1918 		cond_resched();
1919 
1920 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1921 		if (!e)
1922 			goto out_free;
1923 
1924 		e->pnum = aeb->pnum;
1925 		e->ec = aeb->ec;
1926 		ubi_assert(e->ec >= 0);
1927 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1928 
1929 		wl_tree_add(e, &ubi->free);
1930 		ubi->free_count++;
1931 
1932 		ubi->lookuptbl[e->pnum] = e;
1933 
1934 		found_pebs++;
1935 	}
1936 
1937 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1938 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1939 			cond_resched();
1940 
1941 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1942 			if (!e)
1943 				goto out_free;
1944 
1945 			e->pnum = aeb->pnum;
1946 			e->ec = aeb->ec;
1947 			ubi->lookuptbl[e->pnum] = e;
1948 
1949 			if (!aeb->scrub) {
1950 				dbg_wl("add PEB %d EC %d to the used tree",
1951 				       e->pnum, e->ec);
1952 				wl_tree_add(e, &ubi->used);
1953 			} else {
1954 				dbg_wl("add PEB %d EC %d to the scrub tree",
1955 				       e->pnum, e->ec);
1956 				wl_tree_add(e, &ubi->scrub);
1957 			}
1958 
1959 			found_pebs++;
1960 		}
1961 	}
1962 
1963 	dbg_wl("found %i PEBs", found_pebs);
1964 
1965 	if (ubi->fm)
1966 		ubi_assert(ubi->good_peb_count == \
1967 			   found_pebs + ubi->fm->used_blocks);
1968 	else
1969 		ubi_assert(ubi->good_peb_count == found_pebs);
1970 
1971 	reserved_pebs = WL_RESERVED_PEBS;
1972 #ifdef CONFIG_MTD_UBI_FASTMAP
1973 	/* Reserve enough LEBs to store two fastmaps. */
1974 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1975 #endif
1976 
1977 	if (ubi->avail_pebs < reserved_pebs) {
1978 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1979 			ubi->avail_pebs, reserved_pebs);
1980 		if (ubi->corr_peb_count)
1981 			ubi_err("%d PEBs are corrupted and not used",
1982 				ubi->corr_peb_count);
1983 		goto out_free;
1984 	}
1985 	ubi->avail_pebs -= reserved_pebs;
1986 	ubi->rsvd_pebs += reserved_pebs;
1987 
1988 	/* Schedule wear-leveling if needed */
1989 	err = ensure_wear_leveling(ubi, 0);
1990 	if (err)
1991 		goto out_free;
1992 
1993 	return 0;
1994 
1995 out_free:
1996 	cancel_pending(ubi);
1997 	tree_destroy(&ubi->used);
1998 	tree_destroy(&ubi->free);
1999 	tree_destroy(&ubi->scrub);
2000 	kfree(ubi->lookuptbl);
2001 	return err;
2002 }
2003 
2004 /**
2005  * protection_queue_destroy - destroy the protection queue.
2006  * @ubi: UBI device description object
2007  */
2008 static void protection_queue_destroy(struct ubi_device *ubi)
2009 {
2010 	int i;
2011 	struct ubi_wl_entry *e, *tmp;
2012 
2013 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2014 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2015 			list_del(&e->u.list);
2016 			kmem_cache_free(ubi_wl_entry_slab, e);
2017 		}
2018 	}
2019 }
2020 
2021 /**
2022  * ubi_wl_close - close the wear-leveling sub-system.
2023  * @ubi: UBI device description object
2024  */
2025 void ubi_wl_close(struct ubi_device *ubi)
2026 {
2027 	dbg_wl("close the WL sub-system");
2028 	cancel_pending(ubi);
2029 	protection_queue_destroy(ubi);
2030 	tree_destroy(&ubi->used);
2031 	tree_destroy(&ubi->erroneous);
2032 	tree_destroy(&ubi->free);
2033 	tree_destroy(&ubi->scrub);
2034 	kfree(ubi->lookuptbl);
2035 }
2036 
2037 /**
2038  * self_check_ec - make sure that the erase counter of a PEB is correct.
2039  * @ubi: UBI device description object
2040  * @pnum: the physical eraseblock number to check
2041  * @ec: the erase counter to check
2042  *
2043  * This function returns zero if the erase counter of physical eraseblock @pnum
2044  * is equivalent to @ec, and a negative error code if not or if an error
2045  * occurred.
2046  */
2047 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2048 {
2049 	int err;
2050 	long long read_ec;
2051 	struct ubi_ec_hdr *ec_hdr;
2052 
2053 	if (!ubi->dbg->chk_gen)
2054 		return 0;
2055 
2056 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2057 	if (!ec_hdr)
2058 		return -ENOMEM;
2059 
2060 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2061 	if (err && err != UBI_IO_BITFLIPS) {
2062 		/* The header does not have to exist */
2063 		err = 0;
2064 		goto out_free;
2065 	}
2066 
2067 	read_ec = be64_to_cpu(ec_hdr->ec);
2068 	if (ec != read_ec && read_ec - ec > 1) {
2069 		ubi_err("self-check failed for PEB %d", pnum);
2070 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2071 		dump_stack();
2072 		err = 1;
2073 	} else
2074 		err = 0;
2075 
2076 out_free:
2077 	kfree(ec_hdr);
2078 	return err;
2079 }
2080 
2081 /**
2082  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2083  * @ubi: UBI device description object
2084  * @e: the wear-leveling entry to check
2085  * @root: the root of the tree
2086  *
2087  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2088  * is not.
2089  */
2090 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2091 				 struct ubi_wl_entry *e, struct rb_root *root)
2092 {
2093 	if (!ubi->dbg->chk_gen)
2094 		return 0;
2095 
2096 	if (in_wl_tree(e, root))
2097 		return 0;
2098 
2099 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2100 		e->pnum, e->ec, root);
2101 	dump_stack();
2102 	return -EINVAL;
2103 }
2104 
2105 /**
2106  * self_check_in_pq - check if wear-leveling entry is in the protection
2107  *                        queue.
2108  * @ubi: UBI device description object
2109  * @e: the wear-leveling entry to check
2110  *
2111  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2112  */
2113 static int self_check_in_pq(const struct ubi_device *ubi,
2114 			    struct ubi_wl_entry *e)
2115 {
2116 	struct ubi_wl_entry *p;
2117 	int i;
2118 
2119 	if (!ubi->dbg->chk_gen)
2120 		return 0;
2121 
2122 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2123 		list_for_each_entry(p, &ubi->pq[i], u.list)
2124 			if (p == e)
2125 				return 0;
2126 
2127 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2128 		e->pnum, e->ec);
2129 	dump_stack();
2130 	return -EINVAL;
2131 }
2132