1 /* 2 * @ubi: UBI device description object 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 20 */ 21 22 /* 23 * UBI wear-leveling sub-system. 24 * 25 * This sub-system is responsible for wear-leveling. It works in terms of 26 * physical eraseblocks and erase counters and knows nothing about logical 27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 28 * eraseblocks are of two types - used and free. Used physical eraseblocks are 29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 31 * 32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 33 * header. The rest of the physical eraseblock contains only %0xFF bytes. 34 * 35 * When physical eraseblocks are returned to the WL sub-system by means of the 36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 37 * done asynchronously in context of the per-UBI device background thread, 38 * which is also managed by the WL sub-system. 39 * 40 * The wear-leveling is ensured by means of moving the contents of used 41 * physical eraseblocks with low erase counter to free physical eraseblocks 42 * with high erase counter. 43 * 44 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 45 * bad. 46 * 47 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 48 * in a physical eraseblock, it has to be moved. Technically this is the same 49 * as moving it for wear-leveling reasons. 50 * 51 * As it was said, for the UBI sub-system all physical eraseblocks are either 52 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 53 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 54 * RB-trees, as well as (temporarily) in the @wl->pq queue. 55 * 56 * When the WL sub-system returns a physical eraseblock, the physical 57 * eraseblock is protected from being moved for some "time". For this reason, 58 * the physical eraseblock is not directly moved from the @wl->free tree to the 59 * @wl->used tree. There is a protection queue in between where this 60 * physical eraseblock is temporarily stored (@wl->pq). 61 * 62 * All this protection stuff is needed because: 63 * o we don't want to move physical eraseblocks just after we have given them 64 * to the user; instead, we first want to let users fill them up with data; 65 * 66 * o there is a chance that the user will put the physical eraseblock very 67 * soon, so it makes sense not to move it for some time, but wait. 68 * 69 * Physical eraseblocks stay protected only for limited time. But the "time" is 70 * measured in erase cycles in this case. This is implemented with help of the 71 * protection queue. Eraseblocks are put to the tail of this queue when they 72 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 73 * head of the queue on each erase operation (for any eraseblock). So the 74 * length of the queue defines how may (global) erase cycles PEBs are protected. 75 * 76 * To put it differently, each physical eraseblock has 2 main states: free and 77 * used. The former state corresponds to the @wl->free tree. The latter state 78 * is split up on several sub-states: 79 * o the WL movement is allowed (@wl->used tree); 80 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 81 * erroneous - e.g., there was a read error; 82 * o the WL movement is temporarily prohibited (@wl->pq queue); 83 * o scrubbing is needed (@wl->scrub tree). 84 * 85 * Depending on the sub-state, wear-leveling entries of the used physical 86 * eraseblocks may be kept in one of those structures. 87 * 88 * Note, in this implementation, we keep a small in-RAM object for each physical 89 * eraseblock. This is surely not a scalable solution. But it appears to be good 90 * enough for moderately large flashes and it is simple. In future, one may 91 * re-work this sub-system and make it more scalable. 92 * 93 * At the moment this sub-system does not utilize the sequence number, which 94 * was introduced relatively recently. But it would be wise to do this because 95 * the sequence number of a logical eraseblock characterizes how old is it. For 96 * example, when we move a PEB with low erase counter, and we need to pick the 97 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 98 * pick target PEB with an average EC if our PEB is not very "old". This is a 99 * room for future re-works of the WL sub-system. 100 */ 101 102 #include <linux/slab.h> 103 #include <linux/crc32.h> 104 #include <linux/freezer.h> 105 #include <linux/kthread.h> 106 #include "ubi.h" 107 108 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 109 #define WL_RESERVED_PEBS 1 110 111 /* 112 * Maximum difference between two erase counters. If this threshold is 113 * exceeded, the WL sub-system starts moving data from used physical 114 * eraseblocks with low erase counter to free physical eraseblocks with high 115 * erase counter. 116 */ 117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 118 119 /* 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target 121 * physical eraseblock to move to. The simplest way would be just to pick the 122 * one with the highest erase counter. But in certain workloads this could lead 123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 124 * situation when the picked physical eraseblock is constantly erased after the 125 * data is written to it. So, we have a constant which limits the highest erase 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 127 * does not pick eraseblocks with erase counter greater than the lowest erase 128 * counter plus %WL_FREE_MAX_DIFF. 129 */ 130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 131 132 /* 133 * Maximum number of consecutive background thread failures which is enough to 134 * switch to read-only mode. 135 */ 136 #define WL_MAX_FAILURES 32 137 138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 139 static int self_check_in_wl_tree(const struct ubi_device *ubi, 140 struct ubi_wl_entry *e, struct rb_root *root); 141 static int self_check_in_pq(const struct ubi_device *ubi, 142 struct ubi_wl_entry *e); 143 144 #ifdef CONFIG_MTD_UBI_FASTMAP 145 /** 146 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue 147 * @wrk: the work description object 148 */ 149 static void update_fastmap_work_fn(struct work_struct *wrk) 150 { 151 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); 152 ubi_update_fastmap(ubi); 153 } 154 155 /** 156 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. 157 * @ubi: UBI device description object 158 * @pnum: the to be checked PEB 159 */ 160 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 161 { 162 int i; 163 164 if (!ubi->fm) 165 return 0; 166 167 for (i = 0; i < ubi->fm->used_blocks; i++) 168 if (ubi->fm->e[i]->pnum == pnum) 169 return 1; 170 171 return 0; 172 } 173 #else 174 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 175 { 176 return 0; 177 } 178 #endif 179 180 /** 181 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 182 * @e: the wear-leveling entry to add 183 * @root: the root of the tree 184 * 185 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 186 * the @ubi->used and @ubi->free RB-trees. 187 */ 188 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 189 { 190 struct rb_node **p, *parent = NULL; 191 192 p = &root->rb_node; 193 while (*p) { 194 struct ubi_wl_entry *e1; 195 196 parent = *p; 197 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 198 199 if (e->ec < e1->ec) 200 p = &(*p)->rb_left; 201 else if (e->ec > e1->ec) 202 p = &(*p)->rb_right; 203 else { 204 ubi_assert(e->pnum != e1->pnum); 205 if (e->pnum < e1->pnum) 206 p = &(*p)->rb_left; 207 else 208 p = &(*p)->rb_right; 209 } 210 } 211 212 rb_link_node(&e->u.rb, parent, p); 213 rb_insert_color(&e->u.rb, root); 214 } 215 216 /** 217 * do_work - do one pending work. 218 * @ubi: UBI device description object 219 * 220 * This function returns zero in case of success and a negative error code in 221 * case of failure. 222 */ 223 static int do_work(struct ubi_device *ubi) 224 { 225 int err; 226 struct ubi_work *wrk; 227 228 cond_resched(); 229 230 /* 231 * @ubi->work_sem is used to synchronize with the workers. Workers take 232 * it in read mode, so many of them may be doing works at a time. But 233 * the queue flush code has to be sure the whole queue of works is 234 * done, and it takes the mutex in write mode. 235 */ 236 down_read(&ubi->work_sem); 237 spin_lock(&ubi->wl_lock); 238 if (list_empty(&ubi->works)) { 239 spin_unlock(&ubi->wl_lock); 240 up_read(&ubi->work_sem); 241 return 0; 242 } 243 244 wrk = list_entry(ubi->works.next, struct ubi_work, list); 245 list_del(&wrk->list); 246 ubi->works_count -= 1; 247 ubi_assert(ubi->works_count >= 0); 248 spin_unlock(&ubi->wl_lock); 249 250 /* 251 * Call the worker function. Do not touch the work structure 252 * after this call as it will have been freed or reused by that 253 * time by the worker function. 254 */ 255 err = wrk->func(ubi, wrk, 0); 256 if (err) 257 ubi_err("work failed with error code %d", err); 258 up_read(&ubi->work_sem); 259 260 return err; 261 } 262 263 /** 264 * produce_free_peb - produce a free physical eraseblock. 265 * @ubi: UBI device description object 266 * 267 * This function tries to make a free PEB by means of synchronous execution of 268 * pending works. This may be needed if, for example the background thread is 269 * disabled. Returns zero in case of success and a negative error code in case 270 * of failure. 271 */ 272 static int produce_free_peb(struct ubi_device *ubi) 273 { 274 int err; 275 276 while (!ubi->free.rb_node) { 277 spin_unlock(&ubi->wl_lock); 278 279 dbg_wl("do one work synchronously"); 280 err = do_work(ubi); 281 282 spin_lock(&ubi->wl_lock); 283 if (err) 284 return err; 285 } 286 287 return 0; 288 } 289 290 /** 291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 292 * @e: the wear-leveling entry to check 293 * @root: the root of the tree 294 * 295 * This function returns non-zero if @e is in the @root RB-tree and zero if it 296 * is not. 297 */ 298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 299 { 300 struct rb_node *p; 301 302 p = root->rb_node; 303 while (p) { 304 struct ubi_wl_entry *e1; 305 306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 307 308 if (e->pnum == e1->pnum) { 309 ubi_assert(e == e1); 310 return 1; 311 } 312 313 if (e->ec < e1->ec) 314 p = p->rb_left; 315 else if (e->ec > e1->ec) 316 p = p->rb_right; 317 else { 318 ubi_assert(e->pnum != e1->pnum); 319 if (e->pnum < e1->pnum) 320 p = p->rb_left; 321 else 322 p = p->rb_right; 323 } 324 } 325 326 return 0; 327 } 328 329 /** 330 * prot_queue_add - add physical eraseblock to the protection queue. 331 * @ubi: UBI device description object 332 * @e: the physical eraseblock to add 333 * 334 * This function adds @e to the tail of the protection queue @ubi->pq, where 335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 337 * be locked. 338 */ 339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 340 { 341 int pq_tail = ubi->pq_head - 1; 342 343 if (pq_tail < 0) 344 pq_tail = UBI_PROT_QUEUE_LEN - 1; 345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 348 } 349 350 /** 351 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 352 * @ubi: UBI device description object 353 * @root: the RB-tree where to look for 354 * @diff: maximum possible difference from the smallest erase counter 355 * 356 * This function looks for a wear leveling entry with erase counter closest to 357 * min + @diff, where min is the smallest erase counter. 358 */ 359 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 360 struct rb_root *root, int diff) 361 { 362 struct rb_node *p; 363 struct ubi_wl_entry *e, *prev_e = NULL; 364 int max; 365 366 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 367 max = e->ec + diff; 368 369 p = root->rb_node; 370 while (p) { 371 struct ubi_wl_entry *e1; 372 373 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 374 if (e1->ec >= max) 375 p = p->rb_left; 376 else { 377 p = p->rb_right; 378 prev_e = e; 379 e = e1; 380 } 381 } 382 383 /* If no fastmap has been written and this WL entry can be used 384 * as anchor PEB, hold it back and return the second best WL entry 385 * such that fastmap can use the anchor PEB later. */ 386 if (prev_e && !ubi->fm_disabled && 387 !ubi->fm && e->pnum < UBI_FM_MAX_START) 388 return prev_e; 389 390 return e; 391 } 392 393 /** 394 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 395 * @ubi: UBI device description object 396 * @root: the RB-tree where to look for 397 * 398 * This function looks for a wear leveling entry with medium erase counter, 399 * but not greater or equivalent than the lowest erase counter plus 400 * %WL_FREE_MAX_DIFF/2. 401 */ 402 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 403 struct rb_root *root) 404 { 405 struct ubi_wl_entry *e, *first, *last; 406 407 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 408 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 409 410 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 411 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 412 413 #ifdef CONFIG_MTD_UBI_FASTMAP 414 /* If no fastmap has been written and this WL entry can be used 415 * as anchor PEB, hold it back and return the second best 416 * WL entry such that fastmap can use the anchor PEB later. */ 417 if (e && !ubi->fm_disabled && !ubi->fm && 418 e->pnum < UBI_FM_MAX_START) 419 e = rb_entry(rb_next(root->rb_node), 420 struct ubi_wl_entry, u.rb); 421 #endif 422 } else 423 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 424 425 return e; 426 } 427 428 #ifdef CONFIG_MTD_UBI_FASTMAP 429 /** 430 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. 431 * @root: the RB-tree where to look for 432 */ 433 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) 434 { 435 struct rb_node *p; 436 struct ubi_wl_entry *e, *victim = NULL; 437 int max_ec = UBI_MAX_ERASECOUNTER; 438 439 ubi_rb_for_each_entry(p, e, root, u.rb) { 440 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { 441 victim = e; 442 max_ec = e->ec; 443 } 444 } 445 446 return victim; 447 } 448 449 static int anchor_pebs_avalible(struct rb_root *root) 450 { 451 struct rb_node *p; 452 struct ubi_wl_entry *e; 453 454 ubi_rb_for_each_entry(p, e, root, u.rb) 455 if (e->pnum < UBI_FM_MAX_START) 456 return 1; 457 458 return 0; 459 } 460 461 /** 462 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. 463 * @ubi: UBI device description object 464 * @anchor: This PEB will be used as anchor PEB by fastmap 465 * 466 * The function returns a physical erase block with a given maximal number 467 * and removes it from the wl subsystem. 468 * Must be called with wl_lock held! 469 */ 470 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) 471 { 472 struct ubi_wl_entry *e = NULL; 473 474 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 475 goto out; 476 477 if (anchor) 478 e = find_anchor_wl_entry(&ubi->free); 479 else 480 e = find_mean_wl_entry(ubi, &ubi->free); 481 482 if (!e) 483 goto out; 484 485 self_check_in_wl_tree(ubi, e, &ubi->free); 486 487 /* remove it from the free list, 488 * the wl subsystem does no longer know this erase block */ 489 rb_erase(&e->u.rb, &ubi->free); 490 ubi->free_count--; 491 out: 492 return e; 493 } 494 #endif 495 496 /** 497 * __wl_get_peb - get a physical eraseblock. 498 * @ubi: UBI device description object 499 * 500 * This function returns a physical eraseblock in case of success and a 501 * negative error code in case of failure. 502 */ 503 static int __wl_get_peb(struct ubi_device *ubi) 504 { 505 int err; 506 struct ubi_wl_entry *e; 507 508 retry: 509 if (!ubi->free.rb_node) { 510 if (ubi->works_count == 0) { 511 ubi_err("no free eraseblocks"); 512 ubi_assert(list_empty(&ubi->works)); 513 return -ENOSPC; 514 } 515 516 err = produce_free_peb(ubi); 517 if (err < 0) 518 return err; 519 goto retry; 520 } 521 522 e = find_mean_wl_entry(ubi, &ubi->free); 523 if (!e) { 524 ubi_err("no free eraseblocks"); 525 return -ENOSPC; 526 } 527 528 self_check_in_wl_tree(ubi, e, &ubi->free); 529 530 /* 531 * Move the physical eraseblock to the protection queue where it will 532 * be protected from being moved for some time. 533 */ 534 rb_erase(&e->u.rb, &ubi->free); 535 ubi->free_count--; 536 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 537 #ifndef CONFIG_MTD_UBI_FASTMAP 538 /* We have to enqueue e only if fastmap is disabled, 539 * is fastmap enabled prot_queue_add() will be called by 540 * ubi_wl_get_peb() after removing e from the pool. */ 541 prot_queue_add(ubi, e); 542 #endif 543 return e->pnum; 544 } 545 546 #ifdef CONFIG_MTD_UBI_FASTMAP 547 /** 548 * return_unused_pool_pebs - returns unused PEB to the free tree. 549 * @ubi: UBI device description object 550 * @pool: fastmap pool description object 551 */ 552 static void return_unused_pool_pebs(struct ubi_device *ubi, 553 struct ubi_fm_pool *pool) 554 { 555 int i; 556 struct ubi_wl_entry *e; 557 558 for (i = pool->used; i < pool->size; i++) { 559 e = ubi->lookuptbl[pool->pebs[i]]; 560 wl_tree_add(e, &ubi->free); 561 ubi->free_count++; 562 } 563 } 564 565 /** 566 * refill_wl_pool - refills all the fastmap pool used by the 567 * WL sub-system. 568 * @ubi: UBI device description object 569 */ 570 static void refill_wl_pool(struct ubi_device *ubi) 571 { 572 struct ubi_wl_entry *e; 573 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 574 575 return_unused_pool_pebs(ubi, pool); 576 577 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 578 if (!ubi->free.rb_node || 579 (ubi->free_count - ubi->beb_rsvd_pebs < 5)) 580 break; 581 582 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 583 self_check_in_wl_tree(ubi, e, &ubi->free); 584 rb_erase(&e->u.rb, &ubi->free); 585 ubi->free_count--; 586 587 pool->pebs[pool->size] = e->pnum; 588 } 589 pool->used = 0; 590 } 591 592 /** 593 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. 594 * @ubi: UBI device description object 595 */ 596 static void refill_wl_user_pool(struct ubi_device *ubi) 597 { 598 struct ubi_fm_pool *pool = &ubi->fm_pool; 599 600 return_unused_pool_pebs(ubi, pool); 601 602 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 603 if (!ubi->free.rb_node || 604 (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 605 break; 606 607 pool->pebs[pool->size] = __wl_get_peb(ubi); 608 if (pool->pebs[pool->size] < 0) 609 break; 610 } 611 pool->used = 0; 612 } 613 614 /** 615 * ubi_refill_pools - refills all fastmap PEB pools. 616 * @ubi: UBI device description object 617 */ 618 void ubi_refill_pools(struct ubi_device *ubi) 619 { 620 spin_lock(&ubi->wl_lock); 621 refill_wl_pool(ubi); 622 refill_wl_user_pool(ubi); 623 spin_unlock(&ubi->wl_lock); 624 } 625 626 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of 627 * the fastmap pool. 628 */ 629 int ubi_wl_get_peb(struct ubi_device *ubi) 630 { 631 int ret; 632 struct ubi_fm_pool *pool = &ubi->fm_pool; 633 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; 634 635 if (!pool->size || !wl_pool->size || pool->used == pool->size || 636 wl_pool->used == wl_pool->size) 637 ubi_update_fastmap(ubi); 638 639 /* we got not a single free PEB */ 640 if (!pool->size) 641 ret = -ENOSPC; 642 else { 643 spin_lock(&ubi->wl_lock); 644 ret = pool->pebs[pool->used++]; 645 prot_queue_add(ubi, ubi->lookuptbl[ret]); 646 spin_unlock(&ubi->wl_lock); 647 } 648 649 return ret; 650 } 651 652 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. 653 * 654 * @ubi: UBI device description object 655 */ 656 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 657 { 658 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 659 int pnum; 660 661 if (pool->used == pool->size || !pool->size) { 662 /* We cannot update the fastmap here because this 663 * function is called in atomic context. 664 * Let's fail here and refill/update it as soon as possible. */ 665 schedule_work(&ubi->fm_work); 666 return NULL; 667 } else { 668 pnum = pool->pebs[pool->used++]; 669 return ubi->lookuptbl[pnum]; 670 } 671 } 672 #else 673 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 674 { 675 struct ubi_wl_entry *e; 676 677 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 678 self_check_in_wl_tree(ubi, e, &ubi->free); 679 rb_erase(&e->u.rb, &ubi->free); 680 681 return e; 682 } 683 684 int ubi_wl_get_peb(struct ubi_device *ubi) 685 { 686 int peb, err; 687 688 spin_lock(&ubi->wl_lock); 689 peb = __wl_get_peb(ubi); 690 spin_unlock(&ubi->wl_lock); 691 692 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset, 693 ubi->peb_size - ubi->vid_hdr_aloffset); 694 if (err) { 695 ubi_err("new PEB %d does not contain all 0xFF bytes", peb); 696 return err; 697 } 698 699 return peb; 700 } 701 #endif 702 703 /** 704 * prot_queue_del - remove a physical eraseblock from the protection queue. 705 * @ubi: UBI device description object 706 * @pnum: the physical eraseblock to remove 707 * 708 * This function deletes PEB @pnum from the protection queue and returns zero 709 * in case of success and %-ENODEV if the PEB was not found. 710 */ 711 static int prot_queue_del(struct ubi_device *ubi, int pnum) 712 { 713 struct ubi_wl_entry *e; 714 715 e = ubi->lookuptbl[pnum]; 716 if (!e) 717 return -ENODEV; 718 719 if (self_check_in_pq(ubi, e)) 720 return -ENODEV; 721 722 list_del(&e->u.list); 723 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 724 return 0; 725 } 726 727 /** 728 * sync_erase - synchronously erase a physical eraseblock. 729 * @ubi: UBI device description object 730 * @e: the the physical eraseblock to erase 731 * @torture: if the physical eraseblock has to be tortured 732 * 733 * This function returns zero in case of success and a negative error code in 734 * case of failure. 735 */ 736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 737 int torture) 738 { 739 int err; 740 struct ubi_ec_hdr *ec_hdr; 741 unsigned long long ec = e->ec; 742 743 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 744 745 err = self_check_ec(ubi, e->pnum, e->ec); 746 if (err) 747 return -EINVAL; 748 749 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 750 if (!ec_hdr) 751 return -ENOMEM; 752 753 err = ubi_io_sync_erase(ubi, e->pnum, torture); 754 if (err < 0) 755 goto out_free; 756 757 ec += err; 758 if (ec > UBI_MAX_ERASECOUNTER) { 759 /* 760 * Erase counter overflow. Upgrade UBI and use 64-bit 761 * erase counters internally. 762 */ 763 ubi_err("erase counter overflow at PEB %d, EC %llu", 764 e->pnum, ec); 765 err = -EINVAL; 766 goto out_free; 767 } 768 769 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 770 771 ec_hdr->ec = cpu_to_be64(ec); 772 773 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 774 if (err) 775 goto out_free; 776 777 e->ec = ec; 778 spin_lock(&ubi->wl_lock); 779 if (e->ec > ubi->max_ec) 780 ubi->max_ec = e->ec; 781 spin_unlock(&ubi->wl_lock); 782 783 out_free: 784 kfree(ec_hdr); 785 return err; 786 } 787 788 /** 789 * serve_prot_queue - check if it is time to stop protecting PEBs. 790 * @ubi: UBI device description object 791 * 792 * This function is called after each erase operation and removes PEBs from the 793 * tail of the protection queue. These PEBs have been protected for long enough 794 * and should be moved to the used tree. 795 */ 796 static void serve_prot_queue(struct ubi_device *ubi) 797 { 798 struct ubi_wl_entry *e, *tmp; 799 int count; 800 801 /* 802 * There may be several protected physical eraseblock to remove, 803 * process them all. 804 */ 805 repeat: 806 count = 0; 807 spin_lock(&ubi->wl_lock); 808 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 809 dbg_wl("PEB %d EC %d protection over, move to used tree", 810 e->pnum, e->ec); 811 812 list_del(&e->u.list); 813 wl_tree_add(e, &ubi->used); 814 if (count++ > 32) { 815 /* 816 * Let's be nice and avoid holding the spinlock for 817 * too long. 818 */ 819 spin_unlock(&ubi->wl_lock); 820 cond_resched(); 821 goto repeat; 822 } 823 } 824 825 ubi->pq_head += 1; 826 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 827 ubi->pq_head = 0; 828 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 829 spin_unlock(&ubi->wl_lock); 830 } 831 832 /** 833 * __schedule_ubi_work - schedule a work. 834 * @ubi: UBI device description object 835 * @wrk: the work to schedule 836 * 837 * This function adds a work defined by @wrk to the tail of the pending works 838 * list. Can only be used of ubi->work_sem is already held in read mode! 839 */ 840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 841 { 842 spin_lock(&ubi->wl_lock); 843 list_add_tail(&wrk->list, &ubi->works); 844 ubi_assert(ubi->works_count >= 0); 845 ubi->works_count += 1; 846 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 847 wake_up_process(ubi->bgt_thread); 848 spin_unlock(&ubi->wl_lock); 849 } 850 851 /** 852 * schedule_ubi_work - schedule a work. 853 * @ubi: UBI device description object 854 * @wrk: the work to schedule 855 * 856 * This function adds a work defined by @wrk to the tail of the pending works 857 * list. 858 */ 859 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 860 { 861 down_read(&ubi->work_sem); 862 __schedule_ubi_work(ubi, wrk); 863 up_read(&ubi->work_sem); 864 } 865 866 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 867 int cancel); 868 869 #ifdef CONFIG_MTD_UBI_FASTMAP 870 /** 871 * ubi_is_erase_work - checks whether a work is erase work. 872 * @wrk: The work object to be checked 873 */ 874 int ubi_is_erase_work(struct ubi_work *wrk) 875 { 876 return wrk->func == erase_worker; 877 } 878 #endif 879 880 /** 881 * schedule_erase - schedule an erase work. 882 * @ubi: UBI device description object 883 * @e: the WL entry of the physical eraseblock to erase 884 * @vol_id: the volume ID that last used this PEB 885 * @lnum: the last used logical eraseblock number for the PEB 886 * @torture: if the physical eraseblock has to be tortured 887 * 888 * This function returns zero in case of success and a %-ENOMEM in case of 889 * failure. 890 */ 891 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 892 int vol_id, int lnum, int torture) 893 { 894 struct ubi_work *wl_wrk; 895 896 ubi_assert(e); 897 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 898 899 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 900 e->pnum, e->ec, torture); 901 902 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 903 if (!wl_wrk) 904 return -ENOMEM; 905 906 wl_wrk->func = &erase_worker; 907 wl_wrk->e = e; 908 wl_wrk->vol_id = vol_id; 909 wl_wrk->lnum = lnum; 910 wl_wrk->torture = torture; 911 912 schedule_ubi_work(ubi, wl_wrk); 913 return 0; 914 } 915 916 /** 917 * do_sync_erase - run the erase worker synchronously. 918 * @ubi: UBI device description object 919 * @e: the WL entry of the physical eraseblock to erase 920 * @vol_id: the volume ID that last used this PEB 921 * @lnum: the last used logical eraseblock number for the PEB 922 * @torture: if the physical eraseblock has to be tortured 923 * 924 */ 925 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 926 int vol_id, int lnum, int torture) 927 { 928 struct ubi_work *wl_wrk; 929 930 dbg_wl("sync erase of PEB %i", e->pnum); 931 932 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 933 if (!wl_wrk) 934 return -ENOMEM; 935 936 wl_wrk->e = e; 937 wl_wrk->vol_id = vol_id; 938 wl_wrk->lnum = lnum; 939 wl_wrk->torture = torture; 940 941 return erase_worker(ubi, wl_wrk, 0); 942 } 943 944 #ifdef CONFIG_MTD_UBI_FASTMAP 945 /** 946 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling 947 * sub-system. 948 * see: ubi_wl_put_peb() 949 * 950 * @ubi: UBI device description object 951 * @fm_e: physical eraseblock to return 952 * @lnum: the last used logical eraseblock number for the PEB 953 * @torture: if this physical eraseblock has to be tortured 954 */ 955 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, 956 int lnum, int torture) 957 { 958 struct ubi_wl_entry *e; 959 int vol_id, pnum = fm_e->pnum; 960 961 dbg_wl("PEB %d", pnum); 962 963 ubi_assert(pnum >= 0); 964 ubi_assert(pnum < ubi->peb_count); 965 966 spin_lock(&ubi->wl_lock); 967 e = ubi->lookuptbl[pnum]; 968 969 /* This can happen if we recovered from a fastmap the very 970 * first time and writing now a new one. In this case the wl system 971 * has never seen any PEB used by the original fastmap. 972 */ 973 if (!e) { 974 e = fm_e; 975 ubi_assert(e->ec >= 0); 976 ubi->lookuptbl[pnum] = e; 977 } else { 978 e->ec = fm_e->ec; 979 kfree(fm_e); 980 } 981 982 spin_unlock(&ubi->wl_lock); 983 984 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; 985 return schedule_erase(ubi, e, vol_id, lnum, torture); 986 } 987 #endif 988 989 /** 990 * wear_leveling_worker - wear-leveling worker function. 991 * @ubi: UBI device description object 992 * @wrk: the work object 993 * @cancel: non-zero if the worker has to free memory and exit 994 * 995 * This function copies a more worn out physical eraseblock to a less worn out 996 * one. Returns zero in case of success and a negative error code in case of 997 * failure. 998 */ 999 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 1000 int cancel) 1001 { 1002 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 1003 int vol_id = -1, uninitialized_var(lnum); 1004 #ifdef CONFIG_MTD_UBI_FASTMAP 1005 int anchor = wrk->anchor; 1006 #endif 1007 struct ubi_wl_entry *e1, *e2; 1008 struct ubi_vid_hdr *vid_hdr; 1009 1010 kfree(wrk); 1011 if (cancel) 1012 return 0; 1013 1014 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1015 if (!vid_hdr) 1016 return -ENOMEM; 1017 1018 mutex_lock(&ubi->move_mutex); 1019 spin_lock(&ubi->wl_lock); 1020 ubi_assert(!ubi->move_from && !ubi->move_to); 1021 ubi_assert(!ubi->move_to_put); 1022 1023 if (!ubi->free.rb_node || 1024 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 1025 /* 1026 * No free physical eraseblocks? Well, they must be waiting in 1027 * the queue to be erased. Cancel movement - it will be 1028 * triggered again when a free physical eraseblock appears. 1029 * 1030 * No used physical eraseblocks? They must be temporarily 1031 * protected from being moved. They will be moved to the 1032 * @ubi->used tree later and the wear-leveling will be 1033 * triggered again. 1034 */ 1035 dbg_wl("cancel WL, a list is empty: free %d, used %d", 1036 !ubi->free.rb_node, !ubi->used.rb_node); 1037 goto out_cancel; 1038 } 1039 1040 #ifdef CONFIG_MTD_UBI_FASTMAP 1041 /* Check whether we need to produce an anchor PEB */ 1042 if (!anchor) 1043 anchor = !anchor_pebs_avalible(&ubi->free); 1044 1045 if (anchor) { 1046 e1 = find_anchor_wl_entry(&ubi->used); 1047 if (!e1) 1048 goto out_cancel; 1049 e2 = get_peb_for_wl(ubi); 1050 if (!e2) 1051 goto out_cancel; 1052 1053 self_check_in_wl_tree(ubi, e1, &ubi->used); 1054 rb_erase(&e1->u.rb, &ubi->used); 1055 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 1056 } else if (!ubi->scrub.rb_node) { 1057 #else 1058 if (!ubi->scrub.rb_node) { 1059 #endif 1060 /* 1061 * Now pick the least worn-out used physical eraseblock and a 1062 * highly worn-out free physical eraseblock. If the erase 1063 * counters differ much enough, start wear-leveling. 1064 */ 1065 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1066 e2 = get_peb_for_wl(ubi); 1067 if (!e2) 1068 goto out_cancel; 1069 1070 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 1071 dbg_wl("no WL needed: min used EC %d, max free EC %d", 1072 e1->ec, e2->ec); 1073 goto out_cancel; 1074 } 1075 self_check_in_wl_tree(ubi, e1, &ubi->used); 1076 rb_erase(&e1->u.rb, &ubi->used); 1077 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 1078 e1->pnum, e1->ec, e2->pnum, e2->ec); 1079 } else { 1080 /* Perform scrubbing */ 1081 scrubbing = 1; 1082 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 1083 e2 = get_peb_for_wl(ubi); 1084 if (!e2) 1085 goto out_cancel; 1086 1087 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 1088 rb_erase(&e1->u.rb, &ubi->scrub); 1089 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 1090 } 1091 1092 ubi->move_from = e1; 1093 ubi->move_to = e2; 1094 spin_unlock(&ubi->wl_lock); 1095 1096 /* 1097 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 1098 * We so far do not know which logical eraseblock our physical 1099 * eraseblock (@e1) belongs to. We have to read the volume identifier 1100 * header first. 1101 * 1102 * Note, we are protected from this PEB being unmapped and erased. The 1103 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 1104 * which is being moved was unmapped. 1105 */ 1106 1107 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 1108 if (err && err != UBI_IO_BITFLIPS) { 1109 if (err == UBI_IO_FF) { 1110 /* 1111 * We are trying to move PEB without a VID header. UBI 1112 * always write VID headers shortly after the PEB was 1113 * given, so we have a situation when it has not yet 1114 * had a chance to write it, because it was preempted. 1115 * So add this PEB to the protection queue so far, 1116 * because presumably more data will be written there 1117 * (including the missing VID header), and then we'll 1118 * move it. 1119 */ 1120 dbg_wl("PEB %d has no VID header", e1->pnum); 1121 protect = 1; 1122 goto out_not_moved; 1123 } else if (err == UBI_IO_FF_BITFLIPS) { 1124 /* 1125 * The same situation as %UBI_IO_FF, but bit-flips were 1126 * detected. It is better to schedule this PEB for 1127 * scrubbing. 1128 */ 1129 dbg_wl("PEB %d has no VID header but has bit-flips", 1130 e1->pnum); 1131 scrubbing = 1; 1132 goto out_not_moved; 1133 } 1134 1135 ubi_err("error %d while reading VID header from PEB %d", 1136 err, e1->pnum); 1137 goto out_error; 1138 } 1139 1140 vol_id = be32_to_cpu(vid_hdr->vol_id); 1141 lnum = be32_to_cpu(vid_hdr->lnum); 1142 1143 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 1144 if (err) { 1145 if (err == MOVE_CANCEL_RACE) { 1146 /* 1147 * The LEB has not been moved because the volume is 1148 * being deleted or the PEB has been put meanwhile. We 1149 * should prevent this PEB from being selected for 1150 * wear-leveling movement again, so put it to the 1151 * protection queue. 1152 */ 1153 protect = 1; 1154 goto out_not_moved; 1155 } 1156 if (err == MOVE_RETRY) { 1157 scrubbing = 1; 1158 goto out_not_moved; 1159 } 1160 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 1161 err == MOVE_TARGET_RD_ERR) { 1162 /* 1163 * Target PEB had bit-flips or write error - torture it. 1164 */ 1165 torture = 1; 1166 goto out_not_moved; 1167 } 1168 1169 if (err == MOVE_SOURCE_RD_ERR) { 1170 /* 1171 * An error happened while reading the source PEB. Do 1172 * not switch to R/O mode in this case, and give the 1173 * upper layers a possibility to recover from this, 1174 * e.g. by unmapping corresponding LEB. Instead, just 1175 * put this PEB to the @ubi->erroneous list to prevent 1176 * UBI from trying to move it over and over again. 1177 */ 1178 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 1179 ubi_err("too many erroneous eraseblocks (%d)", 1180 ubi->erroneous_peb_count); 1181 goto out_error; 1182 } 1183 erroneous = 1; 1184 goto out_not_moved; 1185 } 1186 1187 if (err < 0) 1188 goto out_error; 1189 1190 ubi_assert(0); 1191 } 1192 1193 /* The PEB has been successfully moved */ 1194 if (scrubbing) 1195 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 1196 e1->pnum, vol_id, lnum, e2->pnum); 1197 ubi_free_vid_hdr(ubi, vid_hdr); 1198 1199 spin_lock(&ubi->wl_lock); 1200 if (!ubi->move_to_put) { 1201 wl_tree_add(e2, &ubi->used); 1202 e2 = NULL; 1203 } 1204 ubi->move_from = ubi->move_to = NULL; 1205 ubi->move_to_put = ubi->wl_scheduled = 0; 1206 spin_unlock(&ubi->wl_lock); 1207 1208 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 1209 if (err) { 1210 kmem_cache_free(ubi_wl_entry_slab, e1); 1211 if (e2) 1212 kmem_cache_free(ubi_wl_entry_slab, e2); 1213 goto out_ro; 1214 } 1215 1216 if (e2) { 1217 /* 1218 * Well, the target PEB was put meanwhile, schedule it for 1219 * erasure. 1220 */ 1221 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 1222 e2->pnum, vol_id, lnum); 1223 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 1224 if (err) { 1225 kmem_cache_free(ubi_wl_entry_slab, e2); 1226 goto out_ro; 1227 } 1228 } 1229 1230 dbg_wl("done"); 1231 mutex_unlock(&ubi->move_mutex); 1232 return 0; 1233 1234 /* 1235 * For some reasons the LEB was not moved, might be an error, might be 1236 * something else. @e1 was not changed, so return it back. @e2 might 1237 * have been changed, schedule it for erasure. 1238 */ 1239 out_not_moved: 1240 if (vol_id != -1) 1241 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 1242 e1->pnum, vol_id, lnum, e2->pnum, err); 1243 else 1244 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 1245 e1->pnum, e2->pnum, err); 1246 spin_lock(&ubi->wl_lock); 1247 if (protect) 1248 prot_queue_add(ubi, e1); 1249 else if (erroneous) { 1250 wl_tree_add(e1, &ubi->erroneous); 1251 ubi->erroneous_peb_count += 1; 1252 } else if (scrubbing) 1253 wl_tree_add(e1, &ubi->scrub); 1254 else 1255 wl_tree_add(e1, &ubi->used); 1256 ubi_assert(!ubi->move_to_put); 1257 ubi->move_from = ubi->move_to = NULL; 1258 ubi->wl_scheduled = 0; 1259 spin_unlock(&ubi->wl_lock); 1260 1261 ubi_free_vid_hdr(ubi, vid_hdr); 1262 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 1263 if (err) { 1264 kmem_cache_free(ubi_wl_entry_slab, e2); 1265 goto out_ro; 1266 } 1267 mutex_unlock(&ubi->move_mutex); 1268 return 0; 1269 1270 out_error: 1271 if (vol_id != -1) 1272 ubi_err("error %d while moving PEB %d to PEB %d", 1273 err, e1->pnum, e2->pnum); 1274 else 1275 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 1276 err, e1->pnum, vol_id, lnum, e2->pnum); 1277 spin_lock(&ubi->wl_lock); 1278 ubi->move_from = ubi->move_to = NULL; 1279 ubi->move_to_put = ubi->wl_scheduled = 0; 1280 spin_unlock(&ubi->wl_lock); 1281 1282 ubi_free_vid_hdr(ubi, vid_hdr); 1283 kmem_cache_free(ubi_wl_entry_slab, e1); 1284 kmem_cache_free(ubi_wl_entry_slab, e2); 1285 1286 out_ro: 1287 ubi_ro_mode(ubi); 1288 mutex_unlock(&ubi->move_mutex); 1289 ubi_assert(err != 0); 1290 return err < 0 ? err : -EIO; 1291 1292 out_cancel: 1293 ubi->wl_scheduled = 0; 1294 spin_unlock(&ubi->wl_lock); 1295 mutex_unlock(&ubi->move_mutex); 1296 ubi_free_vid_hdr(ubi, vid_hdr); 1297 return 0; 1298 } 1299 1300 /** 1301 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1302 * @ubi: UBI device description object 1303 * @nested: set to non-zero if this function is called from UBI worker 1304 * 1305 * This function checks if it is time to start wear-leveling and schedules it 1306 * if yes. This function returns zero in case of success and a negative error 1307 * code in case of failure. 1308 */ 1309 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1310 { 1311 int err = 0; 1312 struct ubi_wl_entry *e1; 1313 struct ubi_wl_entry *e2; 1314 struct ubi_work *wrk; 1315 1316 spin_lock(&ubi->wl_lock); 1317 if (ubi->wl_scheduled) 1318 /* Wear-leveling is already in the work queue */ 1319 goto out_unlock; 1320 1321 /* 1322 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1323 * the WL worker has to be scheduled anyway. 1324 */ 1325 if (!ubi->scrub.rb_node) { 1326 if (!ubi->used.rb_node || !ubi->free.rb_node) 1327 /* No physical eraseblocks - no deal */ 1328 goto out_unlock; 1329 1330 /* 1331 * We schedule wear-leveling only if the difference between the 1332 * lowest erase counter of used physical eraseblocks and a high 1333 * erase counter of free physical eraseblocks is greater than 1334 * %UBI_WL_THRESHOLD. 1335 */ 1336 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1337 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1338 1339 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1340 goto out_unlock; 1341 dbg_wl("schedule wear-leveling"); 1342 } else 1343 dbg_wl("schedule scrubbing"); 1344 1345 ubi->wl_scheduled = 1; 1346 spin_unlock(&ubi->wl_lock); 1347 1348 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1349 if (!wrk) { 1350 err = -ENOMEM; 1351 goto out_cancel; 1352 } 1353 1354 wrk->anchor = 0; 1355 wrk->func = &wear_leveling_worker; 1356 if (nested) 1357 __schedule_ubi_work(ubi, wrk); 1358 else 1359 schedule_ubi_work(ubi, wrk); 1360 return err; 1361 1362 out_cancel: 1363 spin_lock(&ubi->wl_lock); 1364 ubi->wl_scheduled = 0; 1365 out_unlock: 1366 spin_unlock(&ubi->wl_lock); 1367 return err; 1368 } 1369 1370 #ifdef CONFIG_MTD_UBI_FASTMAP 1371 /** 1372 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. 1373 * @ubi: UBI device description object 1374 */ 1375 int ubi_ensure_anchor_pebs(struct ubi_device *ubi) 1376 { 1377 struct ubi_work *wrk; 1378 1379 spin_lock(&ubi->wl_lock); 1380 if (ubi->wl_scheduled) { 1381 spin_unlock(&ubi->wl_lock); 1382 return 0; 1383 } 1384 ubi->wl_scheduled = 1; 1385 spin_unlock(&ubi->wl_lock); 1386 1387 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1388 if (!wrk) { 1389 spin_lock(&ubi->wl_lock); 1390 ubi->wl_scheduled = 0; 1391 spin_unlock(&ubi->wl_lock); 1392 return -ENOMEM; 1393 } 1394 1395 wrk->anchor = 1; 1396 wrk->func = &wear_leveling_worker; 1397 schedule_ubi_work(ubi, wrk); 1398 return 0; 1399 } 1400 #endif 1401 1402 /** 1403 * erase_worker - physical eraseblock erase worker function. 1404 * @ubi: UBI device description object 1405 * @wl_wrk: the work object 1406 * @cancel: non-zero if the worker has to free memory and exit 1407 * 1408 * This function erases a physical eraseblock and perform torture testing if 1409 * needed. It also takes care about marking the physical eraseblock bad if 1410 * needed. Returns zero in case of success and a negative error code in case of 1411 * failure. 1412 */ 1413 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1414 int cancel) 1415 { 1416 struct ubi_wl_entry *e = wl_wrk->e; 1417 int pnum = e->pnum; 1418 int vol_id = wl_wrk->vol_id; 1419 int lnum = wl_wrk->lnum; 1420 int err, available_consumed = 0; 1421 1422 if (cancel) { 1423 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1424 kfree(wl_wrk); 1425 kmem_cache_free(ubi_wl_entry_slab, e); 1426 return 0; 1427 } 1428 1429 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1430 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1431 1432 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1433 1434 err = sync_erase(ubi, e, wl_wrk->torture); 1435 if (!err) { 1436 /* Fine, we've erased it successfully */ 1437 kfree(wl_wrk); 1438 1439 spin_lock(&ubi->wl_lock); 1440 wl_tree_add(e, &ubi->free); 1441 ubi->free_count++; 1442 spin_unlock(&ubi->wl_lock); 1443 1444 /* 1445 * One more erase operation has happened, take care about 1446 * protected physical eraseblocks. 1447 */ 1448 serve_prot_queue(ubi); 1449 1450 /* And take care about wear-leveling */ 1451 err = ensure_wear_leveling(ubi, 1); 1452 return err; 1453 } 1454 1455 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1456 kfree(wl_wrk); 1457 1458 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1459 err == -EBUSY) { 1460 int err1; 1461 1462 /* Re-schedule the LEB for erasure */ 1463 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1464 if (err1) { 1465 err = err1; 1466 goto out_ro; 1467 } 1468 return err; 1469 } 1470 1471 kmem_cache_free(ubi_wl_entry_slab, e); 1472 if (err != -EIO) 1473 /* 1474 * If this is not %-EIO, we have no idea what to do. Scheduling 1475 * this physical eraseblock for erasure again would cause 1476 * errors again and again. Well, lets switch to R/O mode. 1477 */ 1478 goto out_ro; 1479 1480 /* It is %-EIO, the PEB went bad */ 1481 1482 if (!ubi->bad_allowed) { 1483 ubi_err("bad physical eraseblock %d detected", pnum); 1484 goto out_ro; 1485 } 1486 1487 spin_lock(&ubi->volumes_lock); 1488 if (ubi->beb_rsvd_pebs == 0) { 1489 if (ubi->avail_pebs == 0) { 1490 spin_unlock(&ubi->volumes_lock); 1491 ubi_err("no reserved/available physical eraseblocks"); 1492 goto out_ro; 1493 } 1494 ubi->avail_pebs -= 1; 1495 available_consumed = 1; 1496 } 1497 spin_unlock(&ubi->volumes_lock); 1498 1499 ubi_msg("mark PEB %d as bad", pnum); 1500 err = ubi_io_mark_bad(ubi, pnum); 1501 if (err) 1502 goto out_ro; 1503 1504 spin_lock(&ubi->volumes_lock); 1505 if (ubi->beb_rsvd_pebs > 0) { 1506 if (available_consumed) { 1507 /* 1508 * The amount of reserved PEBs increased since we last 1509 * checked. 1510 */ 1511 ubi->avail_pebs += 1; 1512 available_consumed = 0; 1513 } 1514 ubi->beb_rsvd_pebs -= 1; 1515 } 1516 ubi->bad_peb_count += 1; 1517 ubi->good_peb_count -= 1; 1518 ubi_calculate_reserved(ubi); 1519 if (available_consumed) 1520 ubi_warn("no PEBs in the reserved pool, used an available PEB"); 1521 else if (ubi->beb_rsvd_pebs) 1522 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1523 else 1524 ubi_warn("last PEB from the reserve was used"); 1525 spin_unlock(&ubi->volumes_lock); 1526 1527 return err; 1528 1529 out_ro: 1530 if (available_consumed) { 1531 spin_lock(&ubi->volumes_lock); 1532 ubi->avail_pebs += 1; 1533 spin_unlock(&ubi->volumes_lock); 1534 } 1535 ubi_ro_mode(ubi); 1536 return err; 1537 } 1538 1539 /** 1540 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1541 * @ubi: UBI device description object 1542 * @vol_id: the volume ID that last used this PEB 1543 * @lnum: the last used logical eraseblock number for the PEB 1544 * @pnum: physical eraseblock to return 1545 * @torture: if this physical eraseblock has to be tortured 1546 * 1547 * This function is called to return physical eraseblock @pnum to the pool of 1548 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1549 * occurred to this @pnum and it has to be tested. This function returns zero 1550 * in case of success, and a negative error code in case of failure. 1551 */ 1552 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1553 int pnum, int torture) 1554 { 1555 int err; 1556 struct ubi_wl_entry *e; 1557 1558 dbg_wl("PEB %d", pnum); 1559 ubi_assert(pnum >= 0); 1560 ubi_assert(pnum < ubi->peb_count); 1561 1562 retry: 1563 spin_lock(&ubi->wl_lock); 1564 e = ubi->lookuptbl[pnum]; 1565 if (e == ubi->move_from) { 1566 /* 1567 * User is putting the physical eraseblock which was selected to 1568 * be moved. It will be scheduled for erasure in the 1569 * wear-leveling worker. 1570 */ 1571 dbg_wl("PEB %d is being moved, wait", pnum); 1572 spin_unlock(&ubi->wl_lock); 1573 1574 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1575 mutex_lock(&ubi->move_mutex); 1576 mutex_unlock(&ubi->move_mutex); 1577 goto retry; 1578 } else if (e == ubi->move_to) { 1579 /* 1580 * User is putting the physical eraseblock which was selected 1581 * as the target the data is moved to. It may happen if the EBA 1582 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1583 * but the WL sub-system has not put the PEB to the "used" tree 1584 * yet, but it is about to do this. So we just set a flag which 1585 * will tell the WL worker that the PEB is not needed anymore 1586 * and should be scheduled for erasure. 1587 */ 1588 dbg_wl("PEB %d is the target of data moving", pnum); 1589 ubi_assert(!ubi->move_to_put); 1590 ubi->move_to_put = 1; 1591 spin_unlock(&ubi->wl_lock); 1592 return 0; 1593 } else { 1594 if (in_wl_tree(e, &ubi->used)) { 1595 self_check_in_wl_tree(ubi, e, &ubi->used); 1596 rb_erase(&e->u.rb, &ubi->used); 1597 } else if (in_wl_tree(e, &ubi->scrub)) { 1598 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1599 rb_erase(&e->u.rb, &ubi->scrub); 1600 } else if (in_wl_tree(e, &ubi->erroneous)) { 1601 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1602 rb_erase(&e->u.rb, &ubi->erroneous); 1603 ubi->erroneous_peb_count -= 1; 1604 ubi_assert(ubi->erroneous_peb_count >= 0); 1605 /* Erroneous PEBs should be tortured */ 1606 torture = 1; 1607 } else { 1608 err = prot_queue_del(ubi, e->pnum); 1609 if (err) { 1610 ubi_err("PEB %d not found", pnum); 1611 ubi_ro_mode(ubi); 1612 spin_unlock(&ubi->wl_lock); 1613 return err; 1614 } 1615 } 1616 } 1617 spin_unlock(&ubi->wl_lock); 1618 1619 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1620 if (err) { 1621 spin_lock(&ubi->wl_lock); 1622 wl_tree_add(e, &ubi->used); 1623 spin_unlock(&ubi->wl_lock); 1624 } 1625 1626 return err; 1627 } 1628 1629 /** 1630 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1631 * @ubi: UBI device description object 1632 * @pnum: the physical eraseblock to schedule 1633 * 1634 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1635 * needs scrubbing. This function schedules a physical eraseblock for 1636 * scrubbing which is done in background. This function returns zero in case of 1637 * success and a negative error code in case of failure. 1638 */ 1639 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1640 { 1641 struct ubi_wl_entry *e; 1642 1643 ubi_msg("schedule PEB %d for scrubbing", pnum); 1644 1645 retry: 1646 spin_lock(&ubi->wl_lock); 1647 e = ubi->lookuptbl[pnum]; 1648 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1649 in_wl_tree(e, &ubi->erroneous)) { 1650 spin_unlock(&ubi->wl_lock); 1651 return 0; 1652 } 1653 1654 if (e == ubi->move_to) { 1655 /* 1656 * This physical eraseblock was used to move data to. The data 1657 * was moved but the PEB was not yet inserted to the proper 1658 * tree. We should just wait a little and let the WL worker 1659 * proceed. 1660 */ 1661 spin_unlock(&ubi->wl_lock); 1662 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1663 yield(); 1664 goto retry; 1665 } 1666 1667 if (in_wl_tree(e, &ubi->used)) { 1668 self_check_in_wl_tree(ubi, e, &ubi->used); 1669 rb_erase(&e->u.rb, &ubi->used); 1670 } else { 1671 int err; 1672 1673 err = prot_queue_del(ubi, e->pnum); 1674 if (err) { 1675 ubi_err("PEB %d not found", pnum); 1676 ubi_ro_mode(ubi); 1677 spin_unlock(&ubi->wl_lock); 1678 return err; 1679 } 1680 } 1681 1682 wl_tree_add(e, &ubi->scrub); 1683 spin_unlock(&ubi->wl_lock); 1684 1685 /* 1686 * Technically scrubbing is the same as wear-leveling, so it is done 1687 * by the WL worker. 1688 */ 1689 return ensure_wear_leveling(ubi, 0); 1690 } 1691 1692 /** 1693 * ubi_wl_flush - flush all pending works. 1694 * @ubi: UBI device description object 1695 * @vol_id: the volume id to flush for 1696 * @lnum: the logical eraseblock number to flush for 1697 * 1698 * This function executes all pending works for a particular volume id / 1699 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1700 * acts as a wildcard for all of the corresponding volume numbers or logical 1701 * eraseblock numbers. It returns zero in case of success and a negative error 1702 * code in case of failure. 1703 */ 1704 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1705 { 1706 int err = 0; 1707 int found = 1; 1708 1709 /* 1710 * Erase while the pending works queue is not empty, but not more than 1711 * the number of currently pending works. 1712 */ 1713 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1714 vol_id, lnum, ubi->works_count); 1715 1716 while (found) { 1717 struct ubi_work *wrk; 1718 found = 0; 1719 1720 down_read(&ubi->work_sem); 1721 spin_lock(&ubi->wl_lock); 1722 list_for_each_entry(wrk, &ubi->works, list) { 1723 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1724 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1725 list_del(&wrk->list); 1726 ubi->works_count -= 1; 1727 ubi_assert(ubi->works_count >= 0); 1728 spin_unlock(&ubi->wl_lock); 1729 1730 err = wrk->func(ubi, wrk, 0); 1731 if (err) { 1732 up_read(&ubi->work_sem); 1733 return err; 1734 } 1735 1736 spin_lock(&ubi->wl_lock); 1737 found = 1; 1738 break; 1739 } 1740 } 1741 spin_unlock(&ubi->wl_lock); 1742 up_read(&ubi->work_sem); 1743 } 1744 1745 /* 1746 * Make sure all the works which have been done in parallel are 1747 * finished. 1748 */ 1749 down_write(&ubi->work_sem); 1750 up_write(&ubi->work_sem); 1751 1752 return err; 1753 } 1754 1755 /** 1756 * tree_destroy - destroy an RB-tree. 1757 * @root: the root of the tree to destroy 1758 */ 1759 static void tree_destroy(struct rb_root *root) 1760 { 1761 struct rb_node *rb; 1762 struct ubi_wl_entry *e; 1763 1764 rb = root->rb_node; 1765 while (rb) { 1766 if (rb->rb_left) 1767 rb = rb->rb_left; 1768 else if (rb->rb_right) 1769 rb = rb->rb_right; 1770 else { 1771 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1772 1773 rb = rb_parent(rb); 1774 if (rb) { 1775 if (rb->rb_left == &e->u.rb) 1776 rb->rb_left = NULL; 1777 else 1778 rb->rb_right = NULL; 1779 } 1780 1781 kmem_cache_free(ubi_wl_entry_slab, e); 1782 } 1783 } 1784 } 1785 1786 /** 1787 * ubi_thread - UBI background thread. 1788 * @u: the UBI device description object pointer 1789 */ 1790 int ubi_thread(void *u) 1791 { 1792 int failures = 0; 1793 struct ubi_device *ubi = u; 1794 1795 ubi_msg("background thread \"%s\" started, PID %d", 1796 ubi->bgt_name, task_pid_nr(current)); 1797 1798 set_freezable(); 1799 for (;;) { 1800 int err; 1801 1802 if (kthread_should_stop()) 1803 break; 1804 1805 if (try_to_freeze()) 1806 continue; 1807 1808 spin_lock(&ubi->wl_lock); 1809 if (list_empty(&ubi->works) || ubi->ro_mode || 1810 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1811 set_current_state(TASK_INTERRUPTIBLE); 1812 spin_unlock(&ubi->wl_lock); 1813 schedule(); 1814 continue; 1815 } 1816 spin_unlock(&ubi->wl_lock); 1817 1818 err = do_work(ubi); 1819 if (err) { 1820 ubi_err("%s: work failed with error code %d", 1821 ubi->bgt_name, err); 1822 if (failures++ > WL_MAX_FAILURES) { 1823 /* 1824 * Too many failures, disable the thread and 1825 * switch to read-only mode. 1826 */ 1827 ubi_msg("%s: %d consecutive failures", 1828 ubi->bgt_name, WL_MAX_FAILURES); 1829 ubi_ro_mode(ubi); 1830 ubi->thread_enabled = 0; 1831 continue; 1832 } 1833 } else 1834 failures = 0; 1835 1836 cond_resched(); 1837 } 1838 1839 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1840 return 0; 1841 } 1842 1843 /** 1844 * cancel_pending - cancel all pending works. 1845 * @ubi: UBI device description object 1846 */ 1847 static void cancel_pending(struct ubi_device *ubi) 1848 { 1849 while (!list_empty(&ubi->works)) { 1850 struct ubi_work *wrk; 1851 1852 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1853 list_del(&wrk->list); 1854 wrk->func(ubi, wrk, 1); 1855 ubi->works_count -= 1; 1856 ubi_assert(ubi->works_count >= 0); 1857 } 1858 } 1859 1860 /** 1861 * ubi_wl_init - initialize the WL sub-system using attaching information. 1862 * @ubi: UBI device description object 1863 * @ai: attaching information 1864 * 1865 * This function returns zero in case of success, and a negative error code in 1866 * case of failure. 1867 */ 1868 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1869 { 1870 int err, i, reserved_pebs, found_pebs = 0; 1871 struct rb_node *rb1, *rb2; 1872 struct ubi_ainf_volume *av; 1873 struct ubi_ainf_peb *aeb, *tmp; 1874 struct ubi_wl_entry *e; 1875 1876 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1877 spin_lock_init(&ubi->wl_lock); 1878 mutex_init(&ubi->move_mutex); 1879 init_rwsem(&ubi->work_sem); 1880 ubi->max_ec = ai->max_ec; 1881 INIT_LIST_HEAD(&ubi->works); 1882 #ifdef CONFIG_MTD_UBI_FASTMAP 1883 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); 1884 #endif 1885 1886 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1887 1888 err = -ENOMEM; 1889 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1890 if (!ubi->lookuptbl) 1891 return err; 1892 1893 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1894 INIT_LIST_HEAD(&ubi->pq[i]); 1895 ubi->pq_head = 0; 1896 1897 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1898 cond_resched(); 1899 1900 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1901 if (!e) 1902 goto out_free; 1903 1904 e->pnum = aeb->pnum; 1905 e->ec = aeb->ec; 1906 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1907 ubi->lookuptbl[e->pnum] = e; 1908 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1909 kmem_cache_free(ubi_wl_entry_slab, e); 1910 goto out_free; 1911 } 1912 1913 found_pebs++; 1914 } 1915 1916 ubi->free_count = 0; 1917 list_for_each_entry(aeb, &ai->free, u.list) { 1918 cond_resched(); 1919 1920 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1921 if (!e) 1922 goto out_free; 1923 1924 e->pnum = aeb->pnum; 1925 e->ec = aeb->ec; 1926 ubi_assert(e->ec >= 0); 1927 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1928 1929 wl_tree_add(e, &ubi->free); 1930 ubi->free_count++; 1931 1932 ubi->lookuptbl[e->pnum] = e; 1933 1934 found_pebs++; 1935 } 1936 1937 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1938 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1939 cond_resched(); 1940 1941 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1942 if (!e) 1943 goto out_free; 1944 1945 e->pnum = aeb->pnum; 1946 e->ec = aeb->ec; 1947 ubi->lookuptbl[e->pnum] = e; 1948 1949 if (!aeb->scrub) { 1950 dbg_wl("add PEB %d EC %d to the used tree", 1951 e->pnum, e->ec); 1952 wl_tree_add(e, &ubi->used); 1953 } else { 1954 dbg_wl("add PEB %d EC %d to the scrub tree", 1955 e->pnum, e->ec); 1956 wl_tree_add(e, &ubi->scrub); 1957 } 1958 1959 found_pebs++; 1960 } 1961 } 1962 1963 dbg_wl("found %i PEBs", found_pebs); 1964 1965 if (ubi->fm) 1966 ubi_assert(ubi->good_peb_count == \ 1967 found_pebs + ubi->fm->used_blocks); 1968 else 1969 ubi_assert(ubi->good_peb_count == found_pebs); 1970 1971 reserved_pebs = WL_RESERVED_PEBS; 1972 #ifdef CONFIG_MTD_UBI_FASTMAP 1973 /* Reserve enough LEBs to store two fastmaps. */ 1974 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; 1975 #endif 1976 1977 if (ubi->avail_pebs < reserved_pebs) { 1978 ubi_err("no enough physical eraseblocks (%d, need %d)", 1979 ubi->avail_pebs, reserved_pebs); 1980 if (ubi->corr_peb_count) 1981 ubi_err("%d PEBs are corrupted and not used", 1982 ubi->corr_peb_count); 1983 goto out_free; 1984 } 1985 ubi->avail_pebs -= reserved_pebs; 1986 ubi->rsvd_pebs += reserved_pebs; 1987 1988 /* Schedule wear-leveling if needed */ 1989 err = ensure_wear_leveling(ubi, 0); 1990 if (err) 1991 goto out_free; 1992 1993 return 0; 1994 1995 out_free: 1996 cancel_pending(ubi); 1997 tree_destroy(&ubi->used); 1998 tree_destroy(&ubi->free); 1999 tree_destroy(&ubi->scrub); 2000 kfree(ubi->lookuptbl); 2001 return err; 2002 } 2003 2004 /** 2005 * protection_queue_destroy - destroy the protection queue. 2006 * @ubi: UBI device description object 2007 */ 2008 static void protection_queue_destroy(struct ubi_device *ubi) 2009 { 2010 int i; 2011 struct ubi_wl_entry *e, *tmp; 2012 2013 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 2014 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 2015 list_del(&e->u.list); 2016 kmem_cache_free(ubi_wl_entry_slab, e); 2017 } 2018 } 2019 } 2020 2021 /** 2022 * ubi_wl_close - close the wear-leveling sub-system. 2023 * @ubi: UBI device description object 2024 */ 2025 void ubi_wl_close(struct ubi_device *ubi) 2026 { 2027 dbg_wl("close the WL sub-system"); 2028 cancel_pending(ubi); 2029 protection_queue_destroy(ubi); 2030 tree_destroy(&ubi->used); 2031 tree_destroy(&ubi->erroneous); 2032 tree_destroy(&ubi->free); 2033 tree_destroy(&ubi->scrub); 2034 kfree(ubi->lookuptbl); 2035 } 2036 2037 /** 2038 * self_check_ec - make sure that the erase counter of a PEB is correct. 2039 * @ubi: UBI device description object 2040 * @pnum: the physical eraseblock number to check 2041 * @ec: the erase counter to check 2042 * 2043 * This function returns zero if the erase counter of physical eraseblock @pnum 2044 * is equivalent to @ec, and a negative error code if not or if an error 2045 * occurred. 2046 */ 2047 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2048 { 2049 int err; 2050 long long read_ec; 2051 struct ubi_ec_hdr *ec_hdr; 2052 2053 if (!ubi->dbg->chk_gen) 2054 return 0; 2055 2056 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2057 if (!ec_hdr) 2058 return -ENOMEM; 2059 2060 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2061 if (err && err != UBI_IO_BITFLIPS) { 2062 /* The header does not have to exist */ 2063 err = 0; 2064 goto out_free; 2065 } 2066 2067 read_ec = be64_to_cpu(ec_hdr->ec); 2068 if (ec != read_ec && read_ec - ec > 1) { 2069 ubi_err("self-check failed for PEB %d", pnum); 2070 ubi_err("read EC is %lld, should be %d", read_ec, ec); 2071 dump_stack(); 2072 err = 1; 2073 } else 2074 err = 0; 2075 2076 out_free: 2077 kfree(ec_hdr); 2078 return err; 2079 } 2080 2081 /** 2082 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2083 * @ubi: UBI device description object 2084 * @e: the wear-leveling entry to check 2085 * @root: the root of the tree 2086 * 2087 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2088 * is not. 2089 */ 2090 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2091 struct ubi_wl_entry *e, struct rb_root *root) 2092 { 2093 if (!ubi->dbg->chk_gen) 2094 return 0; 2095 2096 if (in_wl_tree(e, root)) 2097 return 0; 2098 2099 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ", 2100 e->pnum, e->ec, root); 2101 dump_stack(); 2102 return -EINVAL; 2103 } 2104 2105 /** 2106 * self_check_in_pq - check if wear-leveling entry is in the protection 2107 * queue. 2108 * @ubi: UBI device description object 2109 * @e: the wear-leveling entry to check 2110 * 2111 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2112 */ 2113 static int self_check_in_pq(const struct ubi_device *ubi, 2114 struct ubi_wl_entry *e) 2115 { 2116 struct ubi_wl_entry *p; 2117 int i; 2118 2119 if (!ubi->dbg->chk_gen) 2120 return 0; 2121 2122 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 2123 list_for_each_entry(p, &ubi->pq[i], u.list) 2124 if (p == e) 2125 return 0; 2126 2127 ubi_err("self-check failed for PEB %d, EC %d, Protect queue", 2128 e->pnum, e->ec); 2129 dump_stack(); 2130 return -EINVAL; 2131 } 2132